WorldWideScience

Sample records for arctic environmental change

  1. Atmospheric Aspects of Recent Arctic Environmental Change

    Science.gov (United States)

    Serreze, M. C.

    2002-12-01

    Evidence assembled over the past several decades shows the Arctic system as in the midst of significant environmental change. This includes pronounced warming over most land areas, reductions in sea ice extent, alterations in precipitation, river discharge and sea ice circulation, and warming and increased areal extent of the Arctic Ocean's Atlantic layer. The accepted paradigm is that these changes relate to general dominance of the positive phase of the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO). The AO is defined as the leading mode of Northern Hemisphere sea level pressure variability. It can be considered as an index of the strength of the circumpolar vortex. Circulation variability associated with the AO is most pronounced over the Atlantic sector, such that its index is strongly correlated with that of the NAO, which describes mutual strengthening and weakening of the Icelandic Low and Azores High. Whether the AO is a more fundamental mode than the NAO is acontinuing issue of debate. In the broadest sense, environmental changes associated with the dominant positive phase of the AO/NAO are responses to alterations in surface wind regimes and transports of heat and moisture. However, linkages with some variables, such as winter discharge from the Siberian rivers, appear to be indirect. Furthermore, while the AO/NAO is best expressed in winter, many Arctic changes, such as reduced sea ice extent, are most apparent during summer. Variability in other key variables, such as precipitation over the Eurasian Arctic watersheds, exhibit only weak links. The AO/NAO are natural modes of variability which operate on a spectrum of time scales. There is ample evidence that multidecadal variability in the AO/NAO relates to variability in sea surface temperatures. However, growing evidence suggests that the recent positive tendency may contain an anthropogenic component. A leading contender is stratospheric ozone loss. In this framework, the atmospheric

  2. Inuit Perspectives on Arctic Environmental Change': A Traveling Exhibition

    Science.gov (United States)

    Sheffield, E. M.; Hakala, J. S.; Gearheard, S.

    2006-12-01

    The Inuit of Nunavut, Canada, have an intimate relationship with their surroundings. As a culture that relies on knowledge of sea ice, snow, and weather conditions for success in hunting, fishing, and healthy wellbeing, Inuit have observed and studied environmental patterns for generations. An ongoing study into their traditional knowledge and their observations of environmental change is being conducted by researcher Dr. Shari Gearheard, who has worked with Inuit communities in Nunavut for over a decade. The results of the research have been published in scientific journals, and to communicate the results to a broader audience, Dr. Gearheard designed an interactive CD-ROM displaying photographs, maps, and interview videos of Inuit Elders' perspectives on the changes they have witnessed. Receiving immediate popularity since its release in 2004, copies of `When the Weather is Uggianaqtuq: Inuit Observations of Environmental Change' have been distributed worldwide, to indigenous peoples, social science and climate change researchers, teachers, students, and the general public. To further disseminate the information contained on the CD-ROM, the National Snow and Ice Data Center and the Museum of Natural History, both of the University of Colorado, are partnering to create an exhibition which will open at the Museum during the International Polar Year in April 2008. The exhibit, tentatively titled `Inuit Perspectives on Arctic Environmental Change,' will feature photographs, graphics, and text in both English and Inuktitut describing environmental change in the North. The goals are to make the information and interpretation contained on the CD-ROM available and more accessible to a broad audience and to raise awareness about Arctic climate change and the important contribution of Inuit knowledge. Following exhibition at the Museum, the exhibit will travel throughout the United States, Alaska, and Nunavut, through a network of museums, schools, libraries, tribal

  3. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Shnoro, R. S.; Eicken, H.; Francis, J. A.; Scambos, T. A.; Schuur, E. A.; Straneo, F.; Wiggins, H. V.

    2013-12-01

    SEARCH is an interdisciplinary, interagency program that works with academic and government agency scientists and stakeholders to plan, conduct, and synthesize studies of Arctic change. Over the past three years, SEARCH has developed a new vision and mission, a set of prioritized cross-disciplinary 5-year goals, an integrated set of activities, and an organizational structure. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. SEARCH's 5-year science goals include: 1. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice. 2. Document and understand how degradation of near-surface permafrost will affect Arctic and global systems. 3. Improve predictions of future land-ice loss and impacts on sea level. 4. Analyze societal and policy implications of Arctic environmental change. Action Teams organized around each of the 5-year goals will serve as standing groups responsible for implementing specific goal activities. Members will be drawn from academia, different agencies and stakeholders, with a range of disciplinary backgrounds and perspectives. 'Arctic Futures 2050' scenarios tasks will describe plausible future states of the arctic system based on recent trajectories and projected changes. These scenarios will combine a range of data including climate model output, paleo-data, results from data synthesis and systems modeling, as well as expert scientific and traditional knowledge. Current activities include: - Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. A newly-launched Sea Ice Prediction Network

  4. Arctic Observing Network (AON): Enhancing Observing, Data Archiving and Data Discovery Capabilities as Arctic Environmental System Change Continues

    Science.gov (United States)

    Jeffries, M. O.

    2008-12-01

    The National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration, under the auspices of the U.S. Inter-Agency Arctic Research Policy Committee, are leading the development of the Arctic Observing Network (AON) as part of the implementation of the Study of Environmental Arctic Change (SEARCH) and as a legacy of International Polar Year (IPY). As the Observing Change component of SEARCH, AON complements the Understanding Change and Responding to Change components. AON addresses the need to enhance observing capabilities in a data-sparse region where environmental system changes are among the most rapid on Earth. AON data will contribute to research into understanding the causes and consequences of Arctic environmental system change and its global connections, and to improving predictive skill. AON is also a contribution to the development of a multi-nation, pan-Arctic observing network that is being discussed at the IPY 'Sustaining Arctic Observing Networks' (SAON) workshops. Enhancing Arctic observing capabilities faces many challenges, including coordination and integration of disparate observing elements and data systems that operate according to diverse policies and practices. There is wide agreement that data systems that provide archiving and discovery services are essential and integral to AON. In recognition of this, NSF is supporting the development of CADIS (Cooperative Arctic Data and Information Service) as an AON portal for data discovery, a repository for data storage, and a platform for data analysis. NSF is also supporting ELOKA (Exchange for Local Observations and Knowledge in the Arctic), a pilot project for a data management and networking service for community- based observing that keeps control of data in the hands of data providers while still allowing for broad searches and sharing of information. CADIS and ELOKA represent the application of cyberinfrastructure to meet AON data system needs that might also

  5. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian

  6. Supporting decisions through the Study of Environmental Arctic Change (SEARCH) Program: A History and Way Forward

    Science.gov (United States)

    Druckenmiller, M. L.; Wiggins, H. V.; Eicken, H.; Francis, J. A.; Huntington, H.; Scambos, T. A.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH), ongoing since the early-2000s, aims to develop scientific knowledge to help society understand and respond to the rapidly changing Arctic. Through collaboration with the research community, funding agencies, national and international science programs, and other stakeholders, SEARCH facilitates research activities across local-to-global scales, with increasing emphasis on addressing the information needs of policy and decision-makers. This talk will explore the program's history, spanning its earliest efforts to understand interrelated atmospheric, oceanic, and terrestrial changes in the Arctic to more recent objectives of providing stakeholder-relevant information, such as community-wide summaries of the expected arctic summer sea ice minimum or up-to-date information on sea ice conditions to Alaska Native walrus hunters in the Bering and Chukchi Seas. We will discuss SEARCH's recent shift toward a "Knowledge to Action" vision and implementation of focused Action Teams to: (1) improve understanding, advance prediction, and explore consequences of changing arctic sea ice; (2) document and understand how degradation of near-surface permafrost will affect arctic and global systems; and (3) improve predictions of future land-ice loss and impacts on sea level. Tracking and evaluating how scientific information from such research reaches stakeholders and informs decisions are critical for interactions that allow the research community to keep pace with an evolving landscape of arctic decision-makers. Examples will be given for the new directions these Action Teams are taking regarding science communication and approaches for research community collaboration to synthesize research findings and promote arctic science and interdisciplinary scientific discovery.

  7. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    OpenAIRE

    Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M.

    2011-01-01

    Background: In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are d...

  8. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations.

    OpenAIRE

    Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2011-01-01

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed ...

  9. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    Directory of Open Access Journals (Sweden)

    Torkjel M. Sandanger

    2011-11-01

    Full Text Available In 2007, the Intergovernmental Panel on Climate Change (IPCC presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants.Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas.The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to Mercury

  10. Spatial and temporal variability in the responses of Arctic terrestrial ecosystems to environmental change

    OpenAIRE

    Callaghan, Terry V.; Press, Malcolm C.; Lee, John A.; Robinson, David L.; Anderson, Clive W.

    1999-01-01

    This paper compares the responses of two contrasting Arctic ecosystems to climate change simulations: a polar semi-desert (in Svalbard) and a dwarf shrub heath (at Abisko, northern Sweden). These ecosystems are located close to the northern-and southernmost extremes of the Arctic region, respectively. Inmacts of simulated climatic changes were determined through factorial perturbation experiments, where growing season temperature, nutrient availability and water supply were manipulated. The r...

  11. Recent Progress Towards Establishing an Arctic Ocean Observing System - A NOAA Contribution to the Study of Environmental Arctic Change (SEARCH)

    Science.gov (United States)

    Rigor, I. G.; Richter-Menge, J.; Calder, J.

    2004-12-01

    SEARCH is a coordinated, interagency program focused on understanding the full scope of changes taking place in the Arctic and to determine if the changes indicate the start of a major climate shift in this region. NOAA has initiated its contribution to the SEARCH program with seed activities that address high priority issues relating to the atmosphere and the cryosphere. One element of the NOAA SEARCH program is an Arctic Ocean Observing System. This presentation describes the recent progress made in establishing components of this observing system, specifically the deployment of drifting ice mass balance mass (IMB) and ocean buoys and a seafloor mooring equipped with ice profiling sonar (IPS). We present examples of data collected from the drifting buoys, show the location of equipment deployed in 2003, the planned deployments for 2004, and describe other historic observations of changes in the thickness of the sea ice cover. Combined, these data are being used to monitor changes in the thickness of the Arctic sea ice cover and in near surface ocean characteristics.

  12. Integrating Access to Arctic Environmental Change and Human Health Research for the International Polar Year and Beyond

    Science.gov (United States)

    Garrett, C. L.

    2006-12-01

    Each day, people in the communities of the Arctic face challenges to their health and well-being from changing climatic and environmental conditions and increasing levels of pollution to emerging infectious diseases. For this reason, it is critical that Arctic researchers and residents have access to timely, accurate, and relevant information addressing their unique concerns. To meet this need, the National Library of Medicine (NLM) and the University of Alaska Anchorage (UAA) have developed the Arctic Health website, www.arctichealth.org. The website provides an easy-to-use one-stop shop for information on the diverse health-related aspects of the Arctic region. It is organized around relevant topics, including climate change and environmental health, traditional healing and telehealth/telemedicine. The Arctic Health website provides links to the most reliable resources available from local, state, and international agencies, universities, and professional organizations. Two major goals of the site are to create a comprehensive, accessible repository for various media and a listing of research projects, past and present that relate to climate change and human health in the Arctic. To increase the site's relevance, the project has established and continues to create collaborations with researchers, communities, and other organizations to supply publications not available elsewhere, including gray literature, streaming video of traditional healers, and oral histories. These collaborations will also help ensure a database with a comprehensive list of research projects being done in the Arctic, from the international to the local level. Finding ways to negotiate the legal, cultural and national concerns of data sharing are a continuing job for the management team. All of this helps to create a system that will eventually track and ensure that data and reports from the research database translate to the publications database. As part of these efforts, the site is

  13. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    Science.gov (United States)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  14. Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?

    Science.gov (United States)

    Fort, Jérôme; Grémillet, David; Traisnel, Gwendoline; Amélineau, Françoise; Bustamante, Paco

    2016-04-01

    Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006-2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination. PMID:26798998

  15. Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?

    Science.gov (United States)

    Fort, Jérôme; Grémillet, David; Traisnel, Gwendoline; Amélineau, Françoise; Bustamante, Paco

    2016-04-01

    Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006-2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination.

  16. Distribution and autecology of chrysophyte cysts from high Arctic Svalbard lakes: preliminary evidence of recent environmental change

    OpenAIRE

    Betts-Piper, Alexandra M.; Zeeb, Barbara A.; John P. Smol

    2004-01-01

    Chrysophycean stomatocyst assemblages were analysed from the sediments of 17 lakes and ponds from Svalbard as one component of a multi-proxy investigation of recent environmental change in the high Arctic. Sediment cores and water chemistry were collected from each of the study lakes, and chrysophyte stomatocysts were investigated from the top 0.25 cm of sediment (present-day) and bottom (i.e. bottom of short sediment core, pre-industrial) sediment samples. This study represents the first und...

  17. Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator.

    Science.gov (United States)

    Atwood, Todd C; Peacock, Elizabeth; McKinney, Melissa A; Lillie, Kate; Wilson, Ryan; Douglas, David C; Miller, Susanne; Terletzky, Pat

    2016-01-01

    In the Arctic Ocean's southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska's north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities. PMID:27249673

  18. Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator

    Science.gov (United States)

    Atwood, Todd C.; Peacock, Elizabeth; McKinney, Melissa A.; Lillie, Kate; Wilson, Ryan; Douglas, David C.; Miller, Susanne; Terletzky, Pat

    2016-01-01

    In the Arctic Ocean’s southern Beaufort Sea (SB), the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall) has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus) of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den), but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska’s north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus) remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities. PMID:27249673

  19. Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator.

    Directory of Open Access Journals (Sweden)

    Todd C Atwood

    Full Text Available In the Arctic Ocean's southern Beaufort Sea (SB, the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den, but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska's north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.

  20. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modern ice and sea bed environments, and by interpretation of geological records imprinted in the sea floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but it is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  1. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  2. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic Atmosphere

    Directory of Open Access Journals (Sweden)

    S. Becker

    2009-01-01

    Full Text Available An extensive database of organochlorine (OC pesticide concentrations measured at the Norwegian Arctic Monitoring Station was analysed to assess longer-term trends in the Arctic atmosphere. Dynamic Harmonic Regression (DHR is employed to investigate the seasonal and cyclical behaviour of chlordanes, DDTs and hexachlorobenzene (HCB, and to isolate underlying inter-annual trends. Although a simple comparison of annual mean concentrations (1994–2005 suggest a decline for all of the OCs investigated, the longer-term trends identified by DHR only show a significant decline for p,p'-DDT. Indeed, HCB shows an increase from 2003–2005. This is thought to be due to changes in source types and the presence of impurities in current use pesticides, together with retreating sea ice affecting air-water exchange. Changes in source types were revealed by using isomeric ratios for the chlordanes and DDTs. Declining trends in ratios of trans-chlordane/cis-chlordane (TC/CC indicate a shift from primary sources, to more ''weathered'' secondary sources, whereas an increasing trend in o,p'-DDT/p,p'-DDT ratios indicate a shift from use of technical DDT to dicofol. Continued monitoring of these OC pesticides is required to fully understand the influence of a changing climate on the behaviour and environmental cycling of these chemicals in the Arctic as well as possible impacts from ''new'' sources.

  3. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere

    Science.gov (United States)

    Becker, S.; Halsall, C. J.; Tych, W.; Kallenborn, R.; Schlabach, M.; Manø, S.

    2012-05-01

    An extensive database of organochlorine (OC) pesticide concentrations measured at the Norwegian Arctic monitoring station at Ny-Ålesund, Svalbard, was analysed to assess longer-term trends in the Arctic atmosphere. Dynamic Harmonic Regression (DHR) is employed to investigate the seasonal and cyclical behaviour of chlordanes, DDTs and hexachlorobenzene (HCB), and to isolate underlying inter-annual trends. Although a simple comparison of annual mean concentrations (1994-2005) suggest a decline for all of the OCs investigated, the longer-term trends identified by DHR only show a significant decline for p,p'-DDT. Indeed, HCB shows an increase from 2003-2005. This is thought to be due to changes in source types and the presence of impurities in current use pesticides, together with retreating sea ice affecting air-water exchange. Changes in source types were revealed by using isomeric ratios for the chlordanes and DDTs. Declining trends in ratios of trans-chlordane/cis-chlordane (TC/CC) indicate a shift from primary sources, to more "weathered" secondary sources, whereas an increasing trend in o,p'-DDT/p,p'-DDT ratios indicate a shift from use of technical DDT to dicofol. Continued monitoring of these OC pesticides is required to fully understand the influence of a changing climate on the behaviour and environmental cycling of these chemicals in the Arctic as well as possible impacts from "new" sources.

  4. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere

    Directory of Open Access Journals (Sweden)

    S. Becker

    2012-05-01

    Full Text Available An extensive database of organochlorine (OC pesticide concentrations measured at the Norwegian Arctic monitoring station at Ny-Ålesund, Svalbard, was analysed to assess longer-term trends in the Arctic atmosphere. Dynamic Harmonic Regression (DHR is employed to investigate the seasonal and cyclical behaviour of chlordanes, DDTs and hexachlorobenzene (HCB, and to isolate underlying inter-annual trends. Although a simple comparison of annual mean concentrations (1994–2005 suggest a decline for all of the OCs investigated, the longer-term trends identified by DHR only show a significant decline for p,p'-DDT. Indeed, HCB shows an increase from 2003–2005. This is thought to be due to changes in source types and the presence of impurities in current use pesticides, together with retreating sea ice affecting air-water exchange. Changes in source types were revealed by using isomeric ratios for the chlordanes and DDTs. Declining trends in ratios of trans-chlordane/cis-chlordane (TC/CC indicate a shift from primary sources, to more "weathered" secondary sources, whereas an increasing trend in o,p'-DDT/p,p'-DDT ratios indicate a shift from use of technical DDT to dicofol. Continued monitoring of these OC pesticides is required to fully understand the influence of a changing climate on the behaviour and environmental cycling of these chemicals in the Arctic as well as possible impacts from "new" sources.

  5. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.

    Science.gov (United States)

    Higuera, Philip E; Brubaker, Linda B; Anderson, Patricia M; Brown, Thomas A; Kennedy, Alison T; Hu, Feng Sheng

    2008-01-01

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21(st) century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere. PMID:18320025

  6. Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change.

    Directory of Open Access Journals (Sweden)

    Philip E Higuera

    Full Text Available Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44. Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21(st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  7. Arctic Shipping Emissions in the Changing Climate

    OpenAIRE

    Vihanninjoki, Vesa

    2014-01-01

    Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general conditions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase. Despite the observed development, the sailing conditions in the Arctic waters will remain challenging. Thus particular attention will be ...

  8. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    Science.gov (United States)

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  9. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  10. Time varying arctic climate change amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  11. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    Science.gov (United States)

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  12. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  13. Environmental radioactivity in the Arctic

    International Nuclear Information System (INIS)

    The conference considered several broad themes: (1) assessment of releases from landbased sources and river transport, (2) assessment of dumping of nuclear waste, (3) arctic radioecology, (4) assessment of impacts of nuclear explosions and accidents, (5) nuclear safety and consequences of nuclear accidents in the arctic, and (6) waste management. The presentations demonstrated that current levels of radioactivity in the Arctic are generally low. The two most important sources are global fallout from the nuclear weapons tests of the 1950's and 1960's, and discharges to the sea from reprocessing plants in Western Europe which are transported northward by prevailing currents. The conference was attended by scientists from 17 countries and served as a forum for collection and dissemination of information on the range of themes and described above. It is hoped that this will serve to increase awareness of areas of uncertainty and act as a stimulus to further research

  14. Health in the Arctic and climate change

    OpenAIRE

    Sloth Pedersen, Henning

    2007-01-01

    The Arctic environment is like a magnifying glass. Many of the hazards stemming from industrial activity in the South tend to concentrate in the North. This is true for DDT, PCB, heavy metals and many other substances that may endanger human health. Climate change is yet another example of how the negative impact of industrial activity may be magnified in the Arctic region.

  15. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    Science.gov (United States)

    Bigras, S. C.

    2009-12-01

    participation of indigenous peoples in the development and management process. The effective application of accumulated climate change knowledge requires development of a policy framework that can address cumulative effects and take into account various stakeholders, multi-jurisdictional regulations and interests, environmental impacts and other concerns specific to the Arctic. Fundamental to such a framework are responsible economic development, sustainable communities, the commitment to achieving consensus between parties, and the use of traditional knowledge. One way to facilitate collaborative policy making is to increase international co-operation between Northerners, indigenous peoples, scientists, politicians and policy makers. The International Polar Year (IPY) 2007-2008 proved a solid stepping-stone for multinational collaborations. Clear communication with politicians and policy-makers is challenging but essential, despite the lingering uncertainties in climate-change science. Public awareness helps considerably in getting messages to politicians, and it is therefore important that scientists and researchers share their results not only with colleagues but also with the general public.

  16. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  17. Atmospheric dynamics: Arctic winds of change

    Science.gov (United States)

    Notz, Dirk

    2016-09-01

    The Earth's climate evolves in response to both externally forced changes and internal variability. Now research suggests that both drivers combine to set the pace of Arctic warming caused by large-scale sea-ice loss.

  18. NASA's Arctic-Boreal Vulnerability Experiment: A large-scale study of environmental change in Western North America and its implications for ecological systems and society

    Science.gov (United States)

    Kasischke, E. S.; Hayes, D. J.; Griffith, P. C.; Larson, E. K.; Wickland, D. E.

    2013-12-01

    Climate change in high northern latitudes is unfolding faster than anywhere else on Earth, resulting in widespread changes in landscape structure and ecosystem function in the Arctic-Boreal Region (ABR). Recognizing its sensitivity, vulnerability and global importance, national- and international-level scientific efforts are now advancing our ability to observe, understand and model the complex, multi-scale processes that drive the ABR's natural and social systems. Long at the edge of our mental map of the world, environmental change in the ABR is increasingly becoming the focus of numerous policy discussions at the highest levels of decision-making. To improve our understanding of environmental change and its impacts in the ABR, the Terrestrial Ecology Program of the U.S. National Aeronautics and Space Administration (NASA) is planning its next major field campaign for Western Canada and Alaska. The field campaign will be based on the Arctic-Boreal Vulnerability Experiment (ABoVE) concept as described in the Revised Executive Summary from the ABoVE Scoping Study Report. The original Scoping Study Report provided the proof-of-concept demonstration of scientific importance and feasibility for this large-scale study. In early 2013, NASA announced the selection of the ABoVE Science Definition Team, which is charged with developing the Concise Experiment Plan for the campaign. Here, we outline the conceptual basis for ABoVE and present the compelling rationale explaining the scientific and societal importance of the study. We present the current status of the planning process, which includes development of the science questions to drive ABoVE research; the study design for the field campaign to address them; and the interagency and international collaborations necessary for implementation. The ABoVE study will focus on 1) developing a fuller understanding of ecosystem vulnerability to climate change in the ABR, and 2) providing the scientific information required to

  19. Revealing Interactions between Human Resources, Quality of Life and Environmental Changes within Socially-oriented Observations : Results from the IPY PPS Arctic Project in the Russian North

    Science.gov (United States)

    Vlasova, Tatiana

    2010-05-01

    Socially-oriented Observations (SOO) in the Russian North have been carried out within multidisciplinary IPY PPS Arctic project under the leadership of Norway and supported by the Research Council of Norway as well as Russian Academy of Sciences. The main objective of SOO is to increase knowledge and observation of changes in quality of life conditions (state of natural environment including climate and biota, safe drinking water and foods, well-being, employment, social relations, access to health care and high quality education, etc.) and - to reveal trends in human capital and capacities (health, demography, education, creativity, spiritual-cultural characteristics and diversity, participation in decision making, etc.). SOO have been carried out in industrial cities as well as sparsely populated rural and nature protection areas in observation sites situated in different bioms (from coastal tundra to southern taiga zone) of Murmansk, Arkhangelsk Oblast and Republic of Komi. SOO were conducted according to the international protocol included in PPS Arctic Manual. SOO approaches based both on local people's perceptions and statistics help to identify main issues and targets for life quality, human capital and environment improvement and thus to distinguish leading SOO indicators for further monitoring. SOO have revealed close interaction between human resources, quality of life and environmental changes. Negative changes in human capital (depopulation, increasing unemployment, aging, declining physical and mental health, quality of education, loss of traditional knowledge, marginalization etc.), despite peoples' high creativity and optimism are becoming the major driving force effecting both the quality of life and the state of environment and overall sustainability. Human induced disturbances such as uncontrolled forests cuttings and poaching are increasing. Observed rapid changes in climate and biota (ice and permafrost melting, tundra shrubs getting taller and

  20. The Arctic Grand Challenge: Abrupt Climate Change

    Science.gov (United States)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  1. Schools In Board - Bridging Arctic Research And Environmental Science Education

    Science.gov (United States)

    Barber, D. G.; Barber, L.

    2008-12-01

    Schools on Board (www.arcticnet.ulaval.ca) was created in 2002 to address the outreach objectives of a network of Canadian scientists conducting research in the High Arctic. The program was piloted with great success with the 2004 research program called the Canadian Arctic Shelf Study (CASES). Since then, the S/B program continues as an integral outreach program of the Canadian Network of Centres of Excellence (NCE) known as ArcticNet. The primary objective of the program is to bridge Arctic climate change research with science and environmental education in the public school system. It is a vehicle for scientists and graduate students to share their research program with high schools and the general public. The program encourages schools to include Arctic Sciences into their science programs by linking Arctic research to existing curriculum, providing resources and opportunities to send high school students and teachers into the Arctic to participate in a science expedition on board the Canadian research icebreaker CCGS Amundsen. The field program is an adventure into Arctic research that exposes students and teachers to the objectives and methods of numerous science teams representing a number of research disciplines and institutions from across Canada and beyond. Face-to-face interactions with scientists of all levels (masters, PhD's, researchers, CRC chairs), hands-on experiences in the field and in the labs, and access to state-of-the-art scientific instrumentation, combine to create a powerful learning environment. In addition to hands-on research activities the program introduces participants to many aspects of Canada's North, including local knowledge related to climate change, culture, history, and politics - within the educational program on the ship and the planned visits to Northern communities. During International Polar Year (IPY) Schools on Board collaborated with international researchers and northern agencies from 11 countries to offer one

  2. Geochemistry of rare-earth elements and its significance in the study of climatic and environmental change in Barrow, Arctic Alaska

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Geochemical characteristics of rare-earth elements (REE) and sedimentary features were studied in the borehole 96-7-1 from Elson Lagoon in Barrow, Arctic Alaska. The results show that total contents of REE (∑ REE) are lower, suggesting that physical weathering is dominate, therefore, concentrations of rare-earth elements are lower in the paleosediment environment. The chondrite-normalized distribution patterns of RE,Es are characterized by light REE (LREE) enrichment and Eu-depletion with the terrestrial sedimentary rock as the parent materials. In comparison with the borecore AB-67 in Elson Lagoon, the main conclusions for climatic and environmental changes are similar: before 1740 A. D. , it was cold and dry with terrestrial properties,but the comparatively warming around 1400 A.D. and 1550 A. D. ; after 1740 A. D. ,it became warming, or markedly after 1821 A.D. ; but it was cold around 1890 A. D.From 1904 A. D. , it got warm again, but it was relatively cold around 1971 A. D..

  3. Environmental accounting for Arctic shipping - a framework building on ship tracking data from satellites.

    Science.gov (United States)

    Mjelde, A; Martinsen, K; Eide, M; Endresen, O

    2014-10-15

    Arctic shipping is on the rise, leading to increased concern over the potential environmental impacts. To better understand the magnitude of influence to the Arctic environment, detailed modelling of emissions and environmental risks are essential. This paper describes a framework for environmental accounting. A cornerstone in the framework is the use of Automatic Identification System (AIS) ship tracking data from satellites. When merged with ship registers and other data sources, it enables unprecedented accuracy in modelling and geographical allocation of emissions and discharges. This paper presents results using two of the models in the framework; emissions of black carbon (BC) in the Arctic, which is of particular concern for climate change, and; bunker fuels and wet bulk carriage in the Arctic, of particular concern for oil spill to the environment. Using the framework, a detailed footprint from Arctic shipping with regards to operational emissions and potential discharges is established. PMID:25168183

  4. Law, climate change and the arctic: legal governance of climate change induced risks in the arctic ecosystems

    OpenAIRE

    Meyenhofer, Nadja

    2014-01-01

    Climate change is the cause of a variety of new environmental risks, which profoundly affect the Earth's ecosystems. Maintaining fragile regions, such as the Arctic and protecting them against threats is in this context of utmost importance, as their ecosystems provide many valuable goods and services human well-being depends upon. This thesis offers a definition of climate change induced risks and outlines how they are being governed under existing international, regional and domestic la...

  5. Environmental contaminants and human health in the Canadian Arctic.

    Science.gov (United States)

    Donaldson, S G; Van Oostdam, J; Tikhonov, C; Feeley, M; Armstrong, B; Ayotte, P; Boucher, O; Bowers, W; Chan, L; Dallaire, F; Dallaire, R; Dewailly, E; Edwards, J; Egeland, G M; Fontaine, J; Furgal, C; Leech, T; Loring, E; Muckle, G; Nancarrow, T; Pereg, D; Plusquellec, P; Potyrala, M; Receveur, O; Shearer, R G

    2010-10-15

    The third Canadian Arctic Human Health Assessment conducted under the Canadian Northern Contaminants Program (NCP), in association with the circumpolar Arctic Monitoring and Assessment Programme (AMAP), addresses concerns about possible adverse health effects in individuals exposed to environmental contaminants through a diet containing country foods. The objectives here are to: 1) provide data on changes in human contaminant concentrations and exposure among Canadian Arctic peoples; 2) identify new contaminants of concern; 3) discuss possible health effects; 4) outline risk communication about contaminants in country food; and 5) identify knowledge gaps for future contaminant research and monitoring. The nutritional and cultural benefits of country foods are substantial; however, some dietary studies suggest declines in the amount of country foods being consumed. Significant declines were found for most contaminants in maternal blood over the last 10 years within all three Arctic regions studied. Inuit continue to have the highest levels of almost all persistent organic pollutants (POPs) and metals among the ethnic groups studied. A greater proportion of people in the East exceed Health Canada's guidelines for PCBs and mercury, although the proportion of mothers exceeding these guidelines has decreased since the previous assessment. Further monitoring and research are required to assess trends and health effects of emerging contaminants. Infant development studies have shown possible subtle effects of prenatal exposure to heavy metals and some POPs on immune system function and neurodevelopment. New data suggest important beneficial effects on brain development for Inuit infants from some country food nutrients. The most successful risk communication processes balance the risks and benefits of a diet of country food through input from a variety of regional experts and the community, to incorporate the many socio-cultural and economic factors to arrive at a risk

  6. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    Science.gov (United States)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  7. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research.

    Science.gov (United States)

    Harley, John R; Bammler, Theo K; Farin, Federico M; Beyer, Richard P; Kavanagh, Terrance J; Dunlap, Kriya L; Knott, Katrina K; Ylitalo, Gina M; O'Hara, Todd M

    2016-02-16

    The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic. PMID:26730740

  8. Changing geo-political realities in the Arctic region

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2014-01-01

    This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region.......This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region....

  9. Environmental change

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    of a changing environment is also addressing social and human issues and concerns, and architectural norms and tools. One of the main themes and questions concerns how we relate the built environment and open urban spaces to water. Water plays an important role in Danish culture, tradition. To many Danes...... environmental conditions both in a practical, functional way but also in an aesthetical, spatial way. As professionals we should contribute to the creation of new images, ideas, strategies and solutions able to handle the challenges, to investigate the potentials and interpret these architecturally...

  10. The Northern Bering Sea: An Arctic Ecosystem in Change

    Science.gov (United States)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in

  11. The North Atlantic Region and Socio-Economic impacts of Global Change: Tracking Change using Arctic Social Indicators

    OpenAIRE

    Sölmundur Karl Pálsson

    2009-01-01

    The interest of social scientists on the arctic has increased steadily in recent years, because of the climate change and its impacts on resources. Scientists have predicted some environmental and social change in the arctic. The focus of this paper will be on the north Atlantic region and possible impacts of global changes. The possible impacts of climate change on Greenland and Iceland is shift in commercial species, especially on cod and shrimp. The main interest of social scientists o...

  12. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  13. Biodiversity of Arctic marine ecosystems and responses to climate change

    DEFF Research Database (Denmark)

    Michel, C.; Bluhm, B.; Gallucci, V.;

    2012-01-01

    . These changes have important impacts on the chemical and biological processes that are at the root of marine food webs, influencing their structure, function and biodiversity. Here we summarise current knowledge on the biodiversity of Arctic marine ecosystems and provide an overview of fundamental factors...... that structure ecosystem biodiversity in the Arctic Ocean. We also discuss climateassociated effects on the biodiversity of Arctic marine ecosystems and discuss implications for the functioning of Arctic marine food webs. Based on the complexity and regional character of Arctic ecosystem reponses...

  14. Role of Greenland meltwater in the changing Arctic

    Science.gov (United States)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  15. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  16. Early Paleogene Arctic terrestrial ecosystems affected by the change of polar hydrology under global warming:Implications for modern climate change at high latitudes

    Institute of Scientific and Technical Information of China (English)

    Gaytha; A.; LANGLOIS

    2010-01-01

    Our understanding of both the role and impact of Arctic environmental changes under the current global warming climate is rather limited despite efforts of improved monitoring and wider assessment through remote sensing technology. Changes of Arctic ecosystems under early Paleogene warming climate provide an analogue to evaluate long-term responses of Arctic environmental alteration to global warming. This study reviews Arctic terrestrial ecosystems and their transformation under marked change of hydrological conditions during the warmest period in early Cenozoic, the Paleocene and Eocene. We describe a new approach to quantitatively reconstruct high latitudinal paleohydrology using compound-specific hydrogen isotope analysis which applies empirically derived genus-specific hydrogen isotope fractionations to in situ biomolecules from fossil plants. We propose a moisture recycling model at the Arctic to explain the reconstructed hydrogen isotope signals of ancient high latitude precipitation during early Paleogene, which bears implications to the likely change of modern Arctic ecosystems under the projected accelerated global warming.

  17. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    As climate changes, how will terrestrial vegetation respond? Because the fates of many biogeochemical, hydrological and economic cycles depend on vegetation, this question is fundamental to climate change science but extremely challenging to address. This is particularly true in the Arctic, where temperature change has been most acute globally (IPCC 2007) and where potential feedbacks to carbon, energy and hydrological cycles have important implications for the rest of the Earth system (Chapin et al 2000). It is well known that vegetation is tightly coupled to precipitation and temperature (Whittaker 1975), but predicting the response of vegetation to changes in climate involves much more than invoking the limitations of climate envelopes (Thuiller et al 2008). Models must also consider efficacy of dispersal, soil constraints, ecological interactions, possible CO2 fertilization impacts and the changing impact of other, more proximal anthropogenic effects such as pollution, disturbance, etc (Coops and Waring 2011, Lenihan et al 2008, Scheller and Mladenoff 2005). Given this complexity, a key test will be whether models can match empirical observations of changes that have already occurred. The challenge is finding empirical observations of change that are appropriate to test hypothesized impacts of climate change. As climate gradually changes across broad bioclimatic gradients, vegetation condition may change gradually as well. To capture these gradual trends, observations need at least three characteristics: (1) they must quantify a vegetation attribute that is expected to change, (2) they must measure that attribute in exactly the same way over long periods of time, and (3) they must sample diverse communities at geographic scales commensurate with the scale of expected climatic shifts. Observation networks meeting all three criteria are rare anywhere on the globe, but particularly so in remote areas. For this reason, satellite images have long been used as a

  18. Transboundary approach proposal for sustainable and climate change adaptation strategies in the Arctic

    OpenAIRE

    Azcarate, Juan; Balfors, Berit; Destouni, Georgia; Bring, Arvid

    2012-01-01

    Introduction Decisions on the development of the Arctic should be given increased attention as its environmental, socio-economic and political circumstances are being significantly influenced by major trends that reinforce and support each other and together are causing long lasting transformations in the region. Increased strategic interest in the Arctic combined with rapid technological advances and climate change are leading to growing economic activities and natural resource extraction th...

  19. Past Changes in Arctic Terrestrial Ecosystems, Climate and UV Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.

  20. Environmental change

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    In low-lying regions like Denmark a rising sea level combined with change in rain and wind patterns now cause problems in several coastal cities where open urban spaces, infrastructure, and houses are flooded. The initiatives taken to prevent damages are mainly technical. But the impact of a chan......In low-lying regions like Denmark a rising sea level combined with change in rain and wind patterns now cause problems in several coastal cities where open urban spaces, infrastructure, and houses are flooded. The initiatives taken to prevent damages are mainly technical. But the impact...... of a changing environment is also addressing social and human issues and concerns, and architectural norms and tools. One of the main themes and questions concerns how we relate the built environment and open urban spaces to water. Water plays an important role in Danish culture, tradition. To many Danes...

  1. Climate change and the ecology and evolution of Arctic vertebrates

    DEFF Research Database (Denmark)

    Gilg, Olivier; Kovacs, Kit M.; Aars, J.;

    2012-01-01

    , and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have...

  2. Oceanographic Aspects of Recent Changes in the Arctic

    Science.gov (United States)

    Morison, J. H.

    2002-12-01

    In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important

  3. Climate change effects on human health in a gender perspective: some trends in Arctic research

    Directory of Open Access Journals (Sweden)

    Kukarenko Natalia

    2011-09-01

    Full Text Available Background: Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective: To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods: A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results: Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion: Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both

  4. Holocene climate change in Arctic Canada and Greenland

    Science.gov (United States)

    Briner, Jason P.; McKay, Nicholas P.; Axford, Yarrow; Bennike, Ole; Bradley, Raymond S.; de Vernal, Anne; Fisher, David; Francus, Pierre; Fréchette, Bianca; Gajewski, Konrad; Jennings, Anne; Kaufman, Darrell S.; Miller, Gifford; Rouston, Cody; Wagner, Bernd

    2016-09-01

    This synthesis paper summarizes published proxy climate evidence showing the spatial and temporal pattern of climate change through the Holocene in Arctic Canada and Greenland. Our synthesis includes 47 records from a recently published database of highly resolved Holocene paleoclimate time series from the Arctic (Sundqvist et al., 2014). We analyze the temperature histories represented by the database and compare them with paleoclimate and environmental information from 54 additional published records, mostly from datasets that did not fit the selection criteria for the Arctic Holocene database. Combined, we review evidence from a variety of proxy archives including glaciers (ice cores and glacial geomorphology), lake sediments, peat sequences, and coastal and deep-marine sediments. The temperature-sensitive records indicate more consistent and earlier Holocene warmth in the north and east, and a more diffuse and later Holocene thermal maximum in the south and west. Principal components analysis reveals two dominant Holocene trends, one with early Holocene warmth followed by cooling in the middle Holocene, the other with a broader period of warmth in the middle Holocene followed by cooling in the late Holocene. The temperature decrease from the warmest to the coolest portions of the Holocene is 3.0 ± 1.0 °C on average (n = 11 sites). The Greenland Ice Sheet retracted to its minimum extent between 5 and 3 ka, consistent with many sites from around Greenland depicting a switch from warm to cool conditions around that time. The spatial pattern of temperature change through the Holocene was likely driven by the decrease in northern latitude summer insolation through the Holocene, the varied influence of waning ice sheets in the early Holocene, and the variable influx of Atlantic Water into the study region.

  5. Arctic root-associated fungal community composition reflects environmental filtering.

    Science.gov (United States)

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized. PMID:24320873

  6. Climate Change in the North American Arctic: A One Health Perspective.

    Science.gov (United States)

    Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J

    2015-12-01

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.

  7. The summer aerosol in the central Arctic 1991–2008: did it change or not?

    Directory of Open Access Journals (Sweden)

    J. Heintzenberg

    2012-05-01

    Full Text Available In the course of global warming dramatic changes are taking place in the Arctic and boreal environments. However, physical aerosol data in from the central summer Arctic taken over the course of 18 yr from 1991 to 2008 do not show systematic year-to-year changes, albeit substantial interannual variations. Besides the limited extent of the data several causes may be responsible for these findings. The processes controlling concentrations and particle size distribution of the aerosol over the central Arctic perennial pack ice area, north of 80°, may not have changed substantially during this time. Environmental changes are still mainly effective in the marginal ice zone, the ice-free waters and continental rims and have not propagated significantly into the central Arctic yet where they could affect the local aerosol and its sources. The analysis of meteorological conditions of the four expedition summers reveal substantial variations which we see as main causes of the measured variations in aerosol parameters. With combined lognormal fits of the hourly number size distributions of the four expeditions representative mode parameters for the summer aerosol in the central Arctic have been calculated. The combined aerosol statistics discussed in the present paper provide comprehensive physical data on the summer aerosol in the central Arctic. These data are the only surface aerosol information from this region.

  8. Climate change and zoonotic infections in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Boris Revich

    2012-07-01

    Full Text Available Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  9. Arctic climate change: Greenhouse warming unleashed

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  10. One Health - a strategy for resilience in a changing arctic

    OpenAIRE

    Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of c...

  11. The summer aerosol in the Central Arctic 1991–2008: did it change or not?

    Directory of Open Access Journals (Sweden)

    J. Heintzenberg

    2012-01-01

    Full Text Available In the course of global warming dramatic changes are taking place in the Arctic and boreal environments. However, physical aerosol data in from the central summer Arctic taken over the course of 17 years from 1991 to 2008 to not show clear trends, albeit substantial interannual variations. Several causes can be responsible for these findings. The processes controlling concentrations and particle size distribution of the aerosol over the central Arctic perennial pack ice area, north of 80, may not have changed substantially during this time. Environmental changes are still mainly effective in the marginal ice zone, the ice-free waters and continental rims and have not propagated significantly into the central Arctic yet where they could affect the local aerosol and its sources. The analysis of meteorological conditions of the four expedition summers reveal substantial variations which we see as main causes of the measured variations in aerosol parameters and the lack of clear decadal trends. With combined lognormal fits of the hourly number size distributions of the four expeditions representative mode parameters for the summer aerosol in the central Arctic have been calculated. The combined aerosol statistics discussed in the present paper provide comprehensive physical data on the summer aerosol in the central Arctic. These data are the only aerosol information from this region and will probably remain so for some time because orbiting satellites do not cover the area close to the North Pole.

  12. Development of Exhibit on Arctic Climate Change Called The Arctic: A Friend Acting Strangely Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Barbara W.

    2006-04-01

    The exhibition, The Arctic: A Friend Acting Strangely, was developed at the Smithsonian Institution’s National Museum of Natural History (NMNH) as a part of the museum’s Forces of Change exhibit series on global change. It opened to the public in Spring 2006, in conjunction with another Forces of Change exhibit on the Earth’s atmosphere called Change Is in the Air. The exhibit was a 2000 square-foot presentation that explored the forces and consequences of the changing Arctic as documented by scientists and native residents alike. Native peoples of the Arctic have always lived with year-to-year fluctuations in weather and ice conditions. In recent decades, they have witnessed that the climate has become unpredictable, the land and sea unfamiliar. An elder in Arctic Canada recently described the weather as uggianaqtuq —an Inuit word that can suggest strange, unexpected behavior, sometimes described as that of “a friend acting strangely.” Scientists too have been documenting dramatic changes in the Arctic. Air temperatures have warmed over most—though not all—of the Arctic since the 1950s; Arctic precipitation may have increased by as much as 8%; seasonal melting of the Greenland Ice Sheet has increased on average by 16% since 1979; polar-orbiting satellites have measured a 15¬–20% decline in sea ice extent since the 1970s; aircraft reconnaissance and ship observations show a steady decrease in sea ice since the 1950s. In response to this warming, plant distributions have begun to shift and animals are changing their migration routes. Some of these changes may have beneficial effects while others may bring hardship or have costly implications. And, many scientists consider arctic change to be a ‘bell-weather’ for large-scale changes in other regions of the world. The exhibition included text, photos artifacts, hands-on interactives and other exhibitry that illustrated the changes being documented by indigenous people and scientists alike.

  13. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  14. Climate change and sexual size dimorphism in an Arctic spider

    OpenAIRE

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-01-01

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. E...

  15. Changes to freshwater systems affecting Arctic infrastructure and natural resources

    Science.gov (United States)

    Instanes, Arne; Kokorev, Vasily; Janowicz, Richard; Bruland, Oddbjørn; Sand, Knut; Prowse, Terry

    2016-03-01

    The resources component of the Arctic Freshwater Synthesis focuses on the potential impact of future climate and change on water resources in the Arctic and how Arctic infrastructure and exploration and production of natural resources are affected. Freshwater availability may increase in the Arctic in the future in response to an increase in middle- and high-latitude annual precipitation. Changes in type of precipitation, its seasonal distribution, timing, and rate of snowmelt represent a challenge to municipalities and transportation networks subjected to flooding and droughts and to current industries and future industrial development. A reliable well-distributed water source is essential for all infrastructures, industrial development, and other sectorial uses in the Arctic. Fluctuations in water supply and seasonal precipitation and temperature may represent not only opportunities but also threats to water quantity and quality for Arctic communities and industrial use. The impact of future climate change is varying depending on the geographical area and the current state of infrastructure and industrial development. This paper provides a summary of our current knowledge related to the system function and key physical processes affecting northern water resources, industry, and other sectorial infrastructure.

  16. A Friend Acting Strangely: an Exhibition on Climate Change in the Arctic

    Science.gov (United States)

    Stauffer, B. W.; Fitzhugh, W. W.; Krupnik, I.; Mannes, J.; Rusk, K.

    2003-12-01

    The Arctic: A Friend Acting Strangely is a new exhibit being developed at the Smithsonian Institution's National Museum of Natural History (NMNH) as a part of the museum's Forces of Change exhibit series on global change issues. The exhibit will open to the public in Summer 2004 and is the third component of the series. The other two components are about El Niño (El Niño's Powerful Reach) and atmospheric chemistry (Change is in the Air). The Arctic exhibit's underlying theme is that current global change is causing such rapid shifts in Arctic weather and the polar environment that it has become `strange,' - or unpredictable - to its residents. The speed of change in Arctic ice and climate patterns, ocean and terrestrial ecosystems, and wildlife creates a great challenge for polar scientists; but it also advances beyond the experience and memory of northern indigenous people, who know it so well. The key issues the NMNH team faces in preparing the new exhibit are: how to document and display the forces and consequences of rapid change; how to make complex scientific processes and research comprehensible to visitors; and how to engage the general public in the on-going discussion. Because current shifts in the Arctic environment have been observed and recorded in much detail by scientists and Native residents alike, this topic offers unique opportunities beyond the museum presentation, including outreach through public programs and the Internet. The exhibit is being developed jointly by the NMNH Arctic Studies Center and Office of the Exhibits, and in close collaboration with NOAA' Office of Arctic Research, NSF' new Study of Environmental Arctic Change (SEARCH) initiative, and NASA's Earth Science Enterprise. Exhibit components will include objects, text, graphic panels, video, and a computer interactive. Special efforts will be made to present the voices and opinions of Arctic indigenous people who experience new challenges to their traditional subsistence

  17. Arctic climate change in an ensemble of regional CORDEX simulations

    Directory of Open Access Journals (Sweden)

    Torben Koenigk

    2015-03-01

    Full Text Available Fifth phase Climate Model Intercomparison Project historical and scenario simulations from four global climate models (GCMs using the Representative Concentration Pathways greenhouse gas concentration trajectories RCP4.5 and RCP8.5 are downscaled over the Arctic with the regional Rossby Centre Atmosphere model (RCA. The regional model simulations largely reflect the circulation bias patterns of the driving global models in the historical period, indicating the importance of lateral and lower boundary conditions. However, local differences occur as a reduced winter 2-m air temperature bias over the Arctic Ocean and increased cold biases over land areas in RCA. The projected changes are dominated by a strong warming in the Arctic, exceeding 15°K in autumn and winter over the Arctic Ocean in RCP8.5, strongly increased precipitation and reduced sea-level pressure. Near-surface temperature and precipitation are linearly related in the Arctic. The wintertime inversion strength is reduced, leading to a less stable stratification of the Arctic atmosphere. The diurnal temperature range is reduced in all seasons. The large-scale change patterns are dominated by the surface and lateral boundary conditions so future response is similar in RCA and the driving global models. However, the warming over the Arctic Ocean is smaller in RCA; the warming over land is larger in winter and spring but smaller in summer. The future response of winter cloud cover is opposite in RCA and the GCMs. Precipitation changes in RCA are much larger during summer than in the global models and more small-scale change patterns occur.

  18. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    Science.gov (United States)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  19. Is climate change affecting wolf populations in the high arctic?

    Energy Technology Data Exchange (ETDEWEB)

    Mech, L.D. [Northern Prairie Wildlife Research Center, Biological Resources Division, U.S. Geological Survey, 8711-37th St., SE, 58401-7317 Jamestown, North Dakota (United States)

    2004-11-01

    Global climate change may affect wolves in Canadas High Arctic (80{sup o} N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  20. Climate change and zoonotic infections in the Russian Arctic

    OpenAIRE

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arct...

  1. Climate change and zoonotic infections in the Russian Arctic

    OpenAIRE

    Boris Revich; Nikolai Tokarevich; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in th...

  2. One Health - a strategy for resilience in a changing arctic.

    Science.gov (United States)

    Ruscio, Bruce A; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human-animal-environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722

  3. Environmental Factors Influencing Arctic Halogen Chemistry During Late Spring

    Science.gov (United States)

    Burd, J.; Nghiem, S. V.; Simpson, W. R.

    2015-12-01

    Reactive halogen radicals (e.g. Br, Cl atoms and their oxides, BrO, ClO) are important oxidizers in the troposphere that decrease atmospheric pollutants and deplete tropospheric ozone, affecting the abundance of other oxidizers such as the hydroxyl radical. During Arctic springtime, the heterogeneous chemical cycles (often called the "bromine explosion") produce high levels of bromine monoxide (BrO), through reactions on saline snow, ice, and/or aerosol surfaces. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measured BrO at Barrow, AK, from 2008-2009 and 2012-2015, as well at various locations above the frozen Arctic Ocean with O-Buoys in 2008 and 2011-2015. Observed BrO levels drop suddenly during late spring (May-June) and generally do not recover, which indicates the bromine explosion cycle can no longer produce significant amounts of BrO. We have established, through an objective algorithm, the local day of year of this drop in BrO as the "seasonal end." Additionally, in about half of the years, "recurrence" events were observed where BrO levels recover for at least a day. This study investigates the environmental factors influencing seasonal end and recurrence events including: temperature, relative humidity, precipitation and snowmelt. Analysis of BrO and air temperature revealed the temperature reaches 0°C within five days of the seasonal end event; however, temperatures drop below freezing during a recurrence event. In addition, there are periods where the temperature remains below freezing, but no recurrence event is observed. This BrO and temperature analysis indicates above-freezing air temperature prevents reactive bromine release; however, it is not the only environmental factor influencing this heterogeneous recycling. Further analysis of additional environmental influences on the bromine explosion cycle could help to better understand and model bromine chemistry in the Arctic.

  4. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    Science.gov (United States)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  5. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    Science.gov (United States)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating

  6. Climate Change and Risk Management Challenges in the Arctic

    DEFF Research Database (Denmark)

    Jakobsen, Uffe

    Climate change or global warming results in melting ice in the Arctic, both inland and sea ice. This opens up opportunities of natural ressource extraction and possibilities of new shipping routes, that opens up opportunities for increased maritime activities. However, with these opportunies come...

  7. Arctic Sea Ice and Its Changes during the Satellite Period

    Science.gov (United States)

    Wang, X.; Liu, Y.; Key, J. R.

    2009-12-01

    Sea ice is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect the complex exchanges of momentum, heat, and mass between sea and the atmosphere, along with profound socio-economic influences due to its role in transportation, fisheries, hunting, polar animal habitat. Over the last two decades of the 20th century, the Arctic underwent significant changes in sea ice as part of the accelerated global warming of that period. More accurate, consistent, and detailed ice thickness, extent, and volume data are critical for a wide range of applications including climate change detection, climate modeling, and operational applications such as shipping and hazard mitigation. Satellite data provide an unprecedented opportunity to estimate and monitor Arctic sea ice routinely with relatively high spatial and temporal resolutions. In this study, a One-dimensional Thermodynamic Ice Model (OTIM) has been developed to estimate sea ice thickness based on the surface energy balance at a thermo-equilibrium state, containing all components of the surface energy balance. The OTIM has been extensively validated against submarine Upward-Looking Sonar (ULS) measurements, meteorological station measurements, and comprehensive numerical model simulations. Overall, OTIM-estimated sea ice thickness is accurate to within about 20% error when compared to submarine ULS ice thickness measurements and Canadian meteorological station measurements for ice less than 3 m. Along with sea ice extent information from the SSM/I, the Arctic sea ice volume can be estimated for the satellite period from 1984 to 2004. The OTIM has been used with satellite data from the extended Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) products for the Arctic sea ice thickness, and sequentially sea ice volume estimations, and following statistical analysis of spatial and temporal distribution and trends in sea

  8. Interdisciplinary cooperation on impacts of climate change in the Arctic

    Science.gov (United States)

    Wardell, Lois; Chen, Linling; Strey, Sara

    2012-09-01

    Impact of Climate Change on Resources, Maritime Transport and Geopolitics in the Arctic and the Svalbard Area; Svalbard, Norway, 21-28 August 2011 Drastic changes in the Arctic climate directly relate to resource and transport development and complex geopolitical challenges in the Arctic. To encourage future interdisciplinary cooperation among political, social, and climate scientists, 30 early-career researchers from varied backgrounds—including climate change, resources, polar maritime transport, and geopolitics—assembled in Svalbard, Norway. Ola Johannessen, president of the Norwegian Scientific Academy of Polar Research, led this diverse group to highlight the importance of collaboration across disciplines for broadening the terms in which assessments are defined, thus collapsing distinctions between the physical and the human Arctic. He also highlighted the feasibility of conducting effective assessment exercises within short time frames. The group was also mentored by Willy Østreng, author of Science Without Boundaries: Interdisciplinarity in Research, Society, and Politics, who aided participants in understanding the process of interdisciplinary collaboration rather than creating an assemblage of discrete findings.

  9. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    Science.gov (United States)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  10. A comparison of climate changes between Arctic and China in the last 600 years%近600年来北极与中国气候变化的对比

    Institute of Scientific and Technical Information of China (English)

    许娟

    2004-01-01

    A compilation of paleoclimate records from lake sediments, trees, ice cores, and historical documents provide a view of China and Arctic environmental changes in the last 600 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic Ocean, Arctic and Greenland and ice cores from the Qinghai-Tibet Plateau, confirming the linkage of environmental changes of different time scales between the Arctic and China. It is shown that the changes of precipitation, temperature and sea ice cover in Arctic were correlated with climate changes in China. This paper also developed a comparative research on the climate changes between Arctic and China both during the Little Ice Age (LIA) and the instrumental observation period. Cycles and trend of temperature variations during LIA and temperature and precipitation during the instrumental observation period are performed. We found some similarities and differences of environmental changes between Arctic and China.

  11. Arctic Ocean freshwater as a trigger for abrupt climate change

    Science.gov (United States)

    Bradley, Raymond; Condron, Alan; Coletti, Anthony

    2016-04-01

    The cause of the Younger Dryas cooling remains unresolved despite decades of debate. Current arguments focus on either freshwater from Glacial Lake Agassiz drainage through the St Lawrence or the MacKenzie river systems. High resolution ocean modeling suggests that freshwater delivered to the North Atlantic from the Arctic Ocean through Fram Strait would have had more of an impact on Atlantic Meridional Overturning Circulation (AMOC) than freshwater from the St Lawrence. This has been interpreted as an argument for a MacKenzie River /Lake Agassiz freshwater source. However, it is important to note that although the modeling identifies Fram Strait as the optimum location for delivery of freshwater to disrupt the AMOC, this does not mean the freshwater source came from Lake Agassiz. Another potential source of freshwater is the Arctic Ocean ice cover itself. During the LGM, ice cover was extremely thick - many tens of meters in the Canada Basin (at least), resulting in a hiatus in sediment deposition there. Extreme ice thickness was related to a stagnant circulation, very low temperatures and continuous accumulation of snow on top of a base of sea-ice. This resulted in a large accumulation of freshwater in the Arctic Basin. As sea-level rose and a more modern circulation regime became established in the Arctic, this freshwater was released from the Arctic Ocean through Fram Strait, leading to extensive sea-ice formation in the North Atlantic (Greenland Sea) and a major reduction in the AMOC. Here we present new model results and a review of the paleoceanographic evidence to support this hypothesis. The bottom line is that the Arctic Ocean was likely a major player in causing abrupt climate change in the past, via its influence on the AMOC. Although we focus here on the Younger Dryas, the Arctic Ocean has been repeatedly isolated from the world ocean during glacial periods of the past. When these periods of isolation ended, it is probable that there were significant

  12. The changing Arctic Sea ice cover : regional and seasonal aspects

    OpenAIRE

    Steene, Rebekka Jastamin

    2015-01-01

    As global climate changes are becoming increasingly evident, increasing air temperatures, melting glaciers, rising sea levels, and decreasing biodiversity is observed at increasing rates worldwide. The Arctic sea ice cover has has become a key indicator of the ongoing global climate change through its substantial decline in both extent and thickness. In this study we show how the observed regression of the Northern Hemisphere sea ice is distributed over different regions of the...

  13. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  14. Chemical changes in the Arctic troposphere at polar sunrise

    International Nuclear Information System (INIS)

    At polar sunrise, the Arctic troposphere (0 to ∼8 km) is a unique chemical reactor influenced by human activity and the Arctic Ocean. It is surrounded by industrialized continents that in winter contribute gaseous and particulate pollution (Arctic haze). It is underlain by the flat Arctic Ocean from which it is separated by a crack-ridden ice membrane 3 to 4 m thick. Ocean to atmosphere exchange of heat, water vapor and marine biogenic gases influence the composition of the reactor. From 21 September to 21 December to 21 March, the region north of the Arctic circle goes from a completely sunlit situation to a completely dark one and then back to light. At the same time the lower troposphere is stably stratified. This hinders vertical mixing. In this environment, chemical reactions involving sunlight are much slower than further south. Thus, it would not be surprising to find a high abundance of photochemically reactive compounds in the atmosphere at polar sunrise. Between complete dark in February and complete light in April, a number of chemical changes in the lower troposphere are observed. Perhaps the most sensational is the destruction of lower tropospheric ozone accompanied by production of filterable bromine and iodine. The latter are likely of marine origin, although their production may involve anthropogenic compounds. Another change is the shift in the fraction of total sulfur in its end oxidation state (VI) from 50% to 90%. Several gaseous hydrocarbons disappear from the atmosphere at this time. Preliminary observations also indicate a maximum in total non-black carbon on particulate matter. This is consistent with the formation of non-volatile organics from photochemically induced reactions of gas phase organics. Results of the Canadian Polar Sunrise Experiment 1988 are presented

  15. Arctic climate change and oil spill risk analysis

    Institute of Scientific and Technical Information of China (English)

    William B. Samuels; David E. Amstutz; Heather A. Crowley

    2011-01-01

    The purpose of this project was to:1) describe the effects of climate change in the Arctic and its impact on circulation,2) describe hindcast data used in the Ocean Energy Management,Regulation and Enforcement (BOEMRE) Oil Spill Risk Analysis (OSRA) model,3)evaluate alternatives such as using forecast results in the OSRA model,and 4) recommend future studies.Effects of climate change on winds,sea ice,ocean circulation and river discharge in the Arctic and impacts on surface circulation can be evaluated only through a series of specially designed numerical experiments using highresolution coupled ice-ocean models to elucidate the sensitivity of the models to various parameterizations or forcings.The results of these experiments will suggest what mechanisms are most important in controlling model response and guide inferences on how OSRA may respond to different climate change scenarios.Climatological change in the Arctic could lead to drastic alterations of wind,sea ice cover and concentration,and surface current fields all of which would influence hypothetical oil spill trajectories.Because of the pace at which conditions are changing,BOEMRE needs to assess whether forecast ice/ocean model results might contain useful information for the purposes of calculating hypothetical oil spill trajectories.

  16. Transportation, economical development and environmental considerations in the Arctic areas

    International Nuclear Information System (INIS)

    There is a need for increased development in Arctic regions for obtaining resources such as hydrocarbons and ores. Development of these resources in remote areas requires suitable transportation routes and proper attention to the environmental sensitivity of northern lands. Developing a transport route must take into account such matters as resource location, economic feasibility, type of material to be transported, length of time the route will be needed, the interest of the route to tourism, and the effect of transport on the environment. Design, construction, and maintenance of the transport route requires collection of reliable data and conformity to specifications relevant to the region concerned. Construction and maintenance in northern areas is affected by such complicated and costly factors as the short construction season, long distances for transportation of both equipment and workers, presence of permafrost, and low winter temperatures. 6 figs

  17. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cassotta Pertoldi-Bianchi, Sandra; Hossain, Kamrul; Ren, Jingzheng;

    2015-01-01

    The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitates natural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in the Arctic Ocean. Climate change facilitates natural resource extractions and increases competition...... between states and can result in tensions, even military ones. This article investigates through a political and legal analysis the role of China as an emerging regulatory sea power in the Arctic Ocean given its assertive “energy hungry country behaviour” in the Arctic Ocean. The United Nations Convention...... on the Law of the Sea (UNCLOS) and the Arctic Council (AC) are taken into consideration under climate change effects, to assess how global legal frameworks and institutions can deal with China’s strategy in the Arctic Ocean. China’s is moving away from its role as “humble power” to one of “informal...

  18. Climate change and sexual size dimorphism in an Arctic spider.

    Science.gov (United States)

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-08-23

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible. PMID:19435831

  19. The state of climate change adaptation in the Arctic

    International Nuclear Information System (INIS)

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts. (letter)

  20. The state of climate change adaptation in the Arctic

    Science.gov (United States)

    Ford, James D.; McDowell, Graham; Jones, Julie

    2014-10-01

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts.

  1. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD

  2. Cross-Border Assessment of Environmental Radioactivity in the Euro-Arctic Region

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandyan, Anna; Gwynn, Justin P.; Moeller, Bredo [Norwegian Radiation Protection Authority (NRPA), Section High North, 9296 Tromsoe (Norway); Leppaenen, Ari-Pekka; Rasilainen, Tiina [STUK Radiation and Nuclear Safety Authority, Regional Laboratory in Northern Finland, 96400 Rovaniemi (Finland); Kasatkina, Nadezhda; Usiagina, Irina [Murmansk Marine Biological Institute (MMBI), 183010 Murmansk (Russian Federation)

    2014-07-01

    The Euro-Arctic region is currently experiencing rapid changes in environmental, social and economic conditions. The issue of environmental radioactivity is of special concern to the Arctic region due to numerous existing and potential sources of radioactive pollution in the immediate and adjacent areas. Due to cross-border nature of any potential radioactive contamination and common challenges in border countries, one should consider risks related to radioactivity, monitoring and protection at a regional and international level. This research presents results of cross-border cooperation between Norway, Finland and Russia and joint assessment of the status of terrestrial radioactivity in the Euro-Arctic region and in particular across Troms and Finnmark (Norway), Lapland (Finland) and Murmansk Oblast (Russia). To assess current environmental radioactivity levels in the terrestrial environment, environmental samples were collected in each country in 2010-2012. The main focus was comparison of radioactivity levels in the natural food products such as berries, mushrooms and freshwater fish. The results showed that large variations in activity concentrations exist between species and sampling areas. However, activity concentrations of {sup 137}Cs in all berries and mushrooms in Northern Norway, Finland and Russia were below the national limits set for commercial retail and well below the national limits for freshwater fish from Northern Norway and Finland. The sampled species from three countries were analysed in order to find out reference species available for further monitoring and data comparison. The doses to man arising from consumption of berries, mushrooms and freshwater fish were calculated. To compare overall terrestrial radioactivity levels in the Euro-Arctic region, partners exchanged long-term monitoring data available in the three countries such as data for soil, vegetation, berries, mushrooms, lichens, reindeer meat, freshwater fish, whole body counting

  3.  Climate Change and the Arctic Discourses

    DEFF Research Database (Denmark)

    Bjørst, Lill Rastad

    2009-01-01

      It is now a fact that global warming and climate change are on the public agenda and will remain there for a long time to come. The Arctic has been portrayed as a thermometer for the world mostly because it is very vulnerable to the climatic changes and the subsequent consequences. Inuit are used...... as an example and included as the first witnesses to ‘the big catastrophe'. My hypothesis is that the newly emerging climate debate can establish an unexpected and unique political platform where Inuit can get influence on local as well as global questions. My investigating focus concerning these matters...

  4. Respiratory changes due to extreme cold in the Arctic environment

    Science.gov (United States)

    Bandopadhyay, P.; Selvamurthy, W.

    1993-03-01

    Effects of acute exposure and acclimatisation to cold stress on respiratory functions were investigated in healthy tropical Indian men ( n=10). Initial baseline recordings were carried out at Delhi and thereafter serially thrice at the arctic region and once on return to Delhi. For comparison the respiratory functions were also evaluated on Russian migrants (RM; n=7) and Russian natives (RN; n=6). The respiratory functions were evaluated using standard methodology on a Vitalograph: In Indians, there was an initial decrease in lung vital capacity (VC), forced vital capacity (FVC), forced expiratory volume 1st s (FEV1), peak expiratory flow rate (PEFR) and maximum voluntary ventilation (MVV) on acute exposure to cold stress, followed by gradual recovery during acclimatisation for 4 weeks and a further significant improvement after 9 weeks of stay at the arctic region. On return to India all the parameters reached near baseline values except for MVV which remained slightly elevated. RM and RN showed similar respiratory functions at the beginning of acute cold exposure at the arctic zone. RN showed an improvement after 10 weeks of stay whereas RM did not show much change. The respiratory responses during acute cold exposure are similar to those of initial altitude responses.

  5. THE ARCTIC: AN INDICATOR OF THE PLANET"S HEALTH

    OpenAIRE

    Callaghan, Terry

    2012-01-01

    The Arctic is a critically important component of the earth system and the Arctic is subject to dramatic change due to global warming in particular. To build capacity for better environmental monitoring and research in the Arctic, the EU has funded the SCANNET-INTERACT Consortium, which consists of partners from all the Arctic countries and 33 research infrastructures located throughout the large environmental envelope of the Arctic and a further 8 research facilities have joined as "observer...

  6. An Arctic perspective on dating Mid-Late Pleistocene environmental history

    DEFF Research Database (Denmark)

    Alexanderson, Helena; Backman, Jan; Cronin, Thomas M.;

    2014-01-01

    To better understand Pleistocene climatic changes in the Arctic, integrated palaeoenvironmental and palaeoclimatic signals from a variety of marine and terrestrial geological records as well as geochronologic age control are required, not least for correlation to extra-Arctic records. In this pap...

  7. Scenarios use to engage scientists and decision-makers in a changing Arctic

    Science.gov (United States)

    Lee, O. A.; Eicken, H.; Payne, J. F.

    2015-12-01

    Scenarios provide a framework to develop more adaptive Arctic policies that allow decision makers to consider the best available science to address complex relationships and key uncertainties in drivers of change. These drivers may encompass biophysical factors such as climate change, socioeconomic drivers, and wild-cards that represent low likelihood but influential events such as major environmental disasters. We outline some of the lessons learned from the North Slope Science Initiative (NSSI) scenarios project that could help in the development of adaptive science-based policies. Three spatially explicit development scenarios were identified corresponding to low, medium and high resource extraction activities on the North Slope and adjacent seas. In the case of the high energy development scenario science needs were focused on new technology, oil spill response, and the effects of offshore activities on marine mammals important for subsistence. Science needs related to community culture, erosion, permafrost degradation and hunting and trapping on land were also identified for all three scenarios. The NSSI science needs will guide recommendations for future observing efforts, and data from these observing activities could subsequently improve policy guidance for emergency response, subsistence management and other issues. Scenarios at pan-Arctic scales may help improve the development of international policies for resilient northern communities and encourage the use of science to reduce uncertainties in plans for adapting to change in the Arctic.

  8. Indicators of changing landscape wetness in the western Canadian Arctic

    Science.gov (United States)

    Marsh, P.; de Jong, T.; Walker, B.

    2015-12-01

    The landscape of the western Canadian arctic has been changing over the last 5 decades in response to warming air temperatures and decreasing precipitation. Changes include thinner snowcover, decreased river and lake ice thickness, deepening active layer, increasing thaw slumping, and expanding shrub cover for example. Although there are no long term data sets to consider changes in soil wetness in this region, changes in surface moisture can be considered through analysis of both long term stream discharge records and remote sensing of tundra ponds and lakes. In this paper, we will use these long term records in order to explore past changes to this environment. In addition, we will outline details of ongoing observations at long term observatories and modelling efforts to consider the controls on future changes in wetness.

  9. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    Science.gov (United States)

    Rumpf, Sabine B; Semenchuk, Philipp R; Dullinger, Stefan; Cooper, Elisabeth J

    2014-01-01

    The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  10. Idiosyncratic responses of high Arctic plants to changing snow regimes.

    Directory of Open Access Journals (Sweden)

    Sabine B Rumpf

    Full Text Available The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

  11. Evidence and Implications of Recent Climate Change in Terrestrial Regions of the Arctic

    Science.gov (United States)

    Hinzman, L. D.; Bettez, N.; Chapin, F. S.; Dyurgerov, M.; Fastie, C.; Griffith, D. B.; Hope, A.; Huntington, H. P.; Jensen, A.; Kane, D. L.; Kofinas, G.; Lynch, A.; Lloyd, A.; McGuire, A. D.; Nelson, F. E.; Osterkamp, T.; Oechel, W. C.; Racine, C.; Romanovsky, V. E.; Schimel, J.; Stow, D.; Sturm, M.; Tweedie, C. E.; Vourlitis, G.; Walker, M.; Webber, P. J.; Welker, J.; Winker, K.; Yoshikawa, K.

    2002-12-01

    Are changes occurring in the polar terrestrial regime? Is the distribution of permafrost and Arctic region freeze and thaw changing? Is the hydrology of Arctic terrestrial regions changing? Are significant changes occurring in the distribution and productivity of high-latitude vegetation? If one examines any individual scientific discipline, evidence of climate change in arctic regions offers only pieces of the puzzle. Here we present a broad array of evidence to provide a convincing case of change in the arctic climate and a system-wide response of terrestrial processes. The thermal regime of the Arctic holds unique characteristics and consequently will display marked changes in response to climate warming. In many cases, threshold changes will occur in physical systems proceeding from permanently frozen to periodically thawed. Dramatic changes also accompany biological systems adapting to an evolving environment. In the last 25 to 400 years a wide range of changes in the Arctic have been detected. In many cases, these changes started, or accelerated, in the mid-1970s. Some of the changes, like later freeze-up and earlier break-up of arctic rivers and lakes, mirror arctic-wide and even global increases in air temperature. Others document more subtle or complex responses of the arctic system as it adapts to current and longer-term trends in climate. Since the arctic system is particularly sensitive to changes in rain- and snowfall, timing of freeze-up and break-up, and the intensity of storm activity, it is likely that much of what has been documented to date, and will be observed in the future, arises from changes in these forcing fields. Unfortunately, compared with temperature, they are poorly known. Regardless of the driving forces, however, the combined observations and documentation offer diffuse but substantial evidence that the arctic system may be entering a state not seen before in recent history.

  12. Propaganda, News, or Education: Reporting Changing Arctic Sea Ice Conditions

    Science.gov (United States)

    Leitzell, K.; Meier, W.

    2010-12-01

    The National Snow and Ice Data Center provides information on Arctic sea ice conditions via the Arctic Sea Ice News & Analysis (ASINA) website. As a result of this effort to explain climatic data to the general public, we have attracted a huge amount of attention from our readers. Sometimes, people write to thank us for the information and the explanation. But people also write to accuse us of bias, slant, or outright lies in our posts. The topic of climate change is a minefield full of political animosity, and even the most carefully written verbiage can appear incomplete or biased to some audiences. Our strategy has been to report the data and stick to the areas in which our scientists are experts. The ASINA team carefully edits our posts to make sure that all statements are based on the science and not on opinion. Often this means using some technical language that may be difficult for a layperson to understand. However, we provide concise definitions for technical terms where appropriate. The hope is that by communicating the data clearly, without an agenda, we can let the science speak for itself. Is this an effective strategy to communicate clearly about the changing climate? Or does it downplay the seriousness of climate change? By writing at a more advanced level and avoiding oversimplification, we require our readers to work harder. But we may also maintain the attention of skeptics, convincing them to read further and become more knowledgeable about the topic.

  13. A Pan-Arctic Assessment of High-Latitude Lake Change ~25 Years Apart

    Science.gov (United States)

    Sheng, Y.; Smith, L. C.; Li, J.; Lyons, E. A.; Wang, J.

    2011-12-01

    The Arctic and Sub-Arctic regions are the home to the world's largest quantity of terrestrial lakes. These lakes play a preeminent role in the global water cycle and balance, are sensitive to global warming, and are vital for human and animal water supply. However, they are poorly observed, and a uniform lake inventory is unavailable at the pan-Arctic scale. Though there have been studies of Arctic lake dynamics at local scales, the general picture of Arctic lake change stays unclear. A systematic regional-scale assessment of Arctic lake change in the past ~30 years is crucial for us to address "How have Arctic lakes responded to global warming?" The presentation reports a systematic effort of high-latitude (45N and north) lake inventory using recently available high-resolution satellite imagery. Since Arctic lakes are abundant in small-size classes and their seasonality varies from region to region, pan-Arctic lake mapping requires the use of thousands of cloud-free Landsat images acquired in lake-stable seasons. Nearly eight million lakes have been mapped in various landscapes of the pan-Arctic using automated lake identification algorithms with high replicability. Lake-abundant regions are selected using a systematic sampling strategy to detect decadal lake change using the mid-1970s and circa-2000 Landsat imagery. Spatial patterns of the observed lake dynamics are analyzed at regional scales and the relationship between lake abundance and size distribution is investigated.

  14. Climate change and natural hazards in the Arctic

    Science.gov (United States)

    Eichelberger, J. C.; Eichelberger, L. P.

    2015-12-01

    Climate change is motivating much of the science research in the Arctic. Natural hazards, which have always been with us and can be influenced by climate, also pose a serious threat to sustainability of Arctic communities, the Native cultures they support, and the health and wellbeing of their residents. These are themes of the US Chairship of the Arctic Council. For example, repetitive floods, often associated with spring ice jams, are a particularly severe problem for river communities. People live near rivers because access to food, water and river transportation support an indigenous subsistence lifestyle. Some settlement sites for Indigenous Peoples were mandated by distant authorities without regard to natural hazards, in Alaska no less than in other countries. Thus bad policy of the past casts a long shadow into the future. Remote communities are subject to multiple challenges, including natural hazards, access to education, and limited job opportunities. These intersect to reproduce structural vulnerability and have over time created a need for substantial support from government. In the past 40 years, the themes of "sustainability" and "self reliance" have become prominent strategies for governance at both state and local levels. Communities now struggle to demonstrate their sustainability while grappling with natural hazards and chronic poverty. In the extreme, the shifting of responsibility to resource-poor communities can be called "structural violence". Accepting the status quo can mean living without sanitation and reliable water supply, leading to the high observed rates of disease not normally encountered in developed countries. Many of the efforts to address climate change and natural hazards are complementary: monitoring the environment; forecasting extreme events; and community-based participatory research and planning. Natural disaster response is complementary to the Arctic Council's Search and Rescue (SAR) initiative, differing in that those

  15. The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Sector

    Science.gov (United States)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2011-12-01

    The Pacific sector of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Variations in upper ocean water hydrography, planktonic production, pelagic-benthic coupling and sediment carbon cycling are all influenced by sea ice and temperature changes. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. Several regionally critical marine sites in the Pacific Arctic sector that have very high biomass and are focused foraging points for apex predators have been re-occupied during multiple international cruises. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. To more systematically track the broad biological response to sea ice retreat and associated environmental change, an international consortium of scientists are developing a "Distributed Biological Observatory" (DBO) that includes selected biological measurements at multiple trophic levels. The DBO currently focuses on five regional biological "hotspot" locations along a

  16. Postglacial environmental succession of Nettilling Lake (Baffin Island, Canadian Arctic) inferred from biogeochemical and microfossil proxies

    Science.gov (United States)

    Narancic, Biljana; Pienitz, Reinhard; Chapligin, Bernhard; Meyer, Hanno; Francus, Pierre; Guilbault, Jean-Pierre

    2016-09-01

    Nettilling Lake (Baffin Island, Nunavut) is currently the largest lake in the Canadian Arctic Archipelago. Despite its enormous size, this freshwater system remains little studied until the present-day. Existing records from southern Baffin Island indicate that in the early postglacial period, the region was submerged by the postglacial Tyrell Sea due to isostatic depression previously exerted by the Laurentide Ice Sheet. However, these records are temporally and spatially discontinuous, relying on qualitative extrapolation. This paper presents the first quantitative reconstruction of the postglacial environmental succession of the Nettilling Lake basin based on a 8300 yr-long high resolution sedimentary record. Our multi-proxy investigation of the glacio-isostatic uplift and subsequent changes in paleosalinity and sediment sources is based on analyses of sediment fabric, elemental geochemistry (μ-XRF), diatom assemblage composition, as well as on the first diatom-based oxygen isotope record from the eastern Canadian Arctic. Results indicate that the Nettilling Lake basin experienced a relatively rapid and uniform marine invasion in the early Holocene, followed by progressive freshening until about 6000 yr BP when limnological conditions similar to those of today were established. Our findings present evidence for deglacial processes in the Foxe Basin that were initiated at least 400yrs earlier than previously thought.

  17. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda;

    , satellites and manned aircraft are the traditional platforms on which scientists gather data of the atmosphere, sea ice, glaciers, fauna and vegetation. However, significant data gaps still exist over much of the Arctic because there are few research stations, satellites are often hindered by cloud cover......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS......, technical and logistical challenges facing scientists intending to use UAS in their arctic work. Future planned campaigns and science goals under the Coordinated Investigation of Climate-Cryosphere Interactions (CICCI) umbrella will be outlined. A new AMAP report on conducting safe UAS operations...

  18. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2015-03-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990–2000 and future (2090–2100 climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of

  19. National Oceanic and Atmospheric Administration(NOAA) Arctic Climate Change Studies: A Contribution to IPY

    Science.gov (United States)

    Calder, J.; Overland, J.; Uttal, T.; Richter-Menge, J.; Rigor, I.; Crane, K.

    2004-12-01

    NOAA has initiated four activities that respond to the Arctic Climate Impact Assessment(ACIA) recommendations and represent contributions toward the IPY: 1) Arctic cloud, radiation and aerosol observatories, 2) documentation and attribution of changes in sea-ice thickness through direct measurement and modeling, 3) deriving added value from existing multivariate and historical data, and 4) following physical and biological changes in the northern Bering and Chukchi Seas. Northeast Canada, the central Arctic coast of Russia and the continuing site at Barrow have been chosen as desirable radiation/cloud locations as they exhibit different responses to Arctic Oscillation variability. NOAA is closely collaborating with Canadian groups to establish an observatory at Eureka. NOAA has begun deployment of a network of ice-tethered ice mass balance buoys complemented by several ice profiling sonars. In combination with other sea ice investigators, the Arctic buoy program, and satellites, changes can be monitored more effectively in sea ice throughout the Arctic. Retrospective data analyses includes analysis of Arctic clouds and radiation from surface and satellite measurements, correction of systematic errors in TOVS radiance data sets for the Arctic which began in 1979, addressing the feasibility of an Arctic System Reanalysis, and an Arctic Change Detection project that incorporates historical and recent physical and biological observations and news items at a website, www.arctic.noaa.gov. NOAA has begun a long-term effort to detect change in ecosystem indicators in the northern Bering and Chukchi Seas that could provide a model for other northern marine ecosystems. The first efforts were undertaken in summer 2004 during a joint Russian-US cruise that mapped the regions physical, chemical and biological parameters to set the stage for future operations over the longer term. A line of biophysical moorings provide detection of the expected warming of this area. A

  20. CLIMATE CHANGE AND VULNERABILITY OF THE ARCTIC ELDERLY: AN ASSESSMENT FROM HUMAN RIGHTS POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Shahnaj Begum

    2012-10-01

    Full Text Available There are increasing challenges among the elderly in the Arctic region. Global warming due to climate change is one of the major reasons for these challenges. Because of climate change temperature in the region increases, which results in rapid melting of sea ice causing various environmental, social, cultural and economic problems. Population in the region suffers from these problems where elderly people are the most vulnerable. Climate change has already affected the elderly lives in different ways, such as, by physical, social, political, cultural and psychological ways. These have serious consequences in terms of human rights of this vulnerable group of people. However, the elderly people’s human rights issues have not been adequately researched in the context of this region. The goal of this paper is to present elderly related human rights issues, particularly the rights that are affected due to climate change in this specific region.

  1. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime

    Science.gov (United States)

    Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.

    2016-03-01

    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).

  2. Boundary layer stability and Arctic climate change: a feedback study using EC-Earth

    NARCIS (Netherlands)

    Bintanja, R.; Linden, van der E.C.; Hazeleger, W.

    2012-01-01

    Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback m

  3. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    Science.gov (United States)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  4. Arctic climate change with a 2C global warming. Timing, climate patterns and vegetation change

    International Nuclear Information System (INIS)

    The signatories to United Nations Framework Convention on Climate Change are charged with stabilizing the concentrations of greenhouse gases in the atmosphere at a level that prevents dangerous interference with the climate system. A number of nations, organizations and scientists have suggested that global mean temperature should not rise over 2C above preindustrial levels. However, even a relatively moderate target of 2C has serious implications for the Arctic, where temperatures are predicted to increase at least 1.5 to 2 times as fast as global temperatures. High latitude vegetation plays a significant role in the lives of humans and animals, and in the global energy balance and carbon budget. These ecosystems are expected to be among the most strongly impacted by climate change over the next century. To investigate the potential impact of stabilization of global temperature at 2C, we performed a study using data from six Global Climate Models (GCMs) forced by four greenhouse gas emissions scenarios, the BIOME4 biogeochemistry-biogeography model, and remote sensing data. GCM data were used to predict the timing and patterns of Arctic climate change under a global mean warming of 2C. A unified circumpolar classification recognizing five types of tundra and six forest biomes was used to develop a map of observed Arctic vegetation. BIOME4 was used to simulate the vegetation distributions over the Arctic at the present and for a range of 2C global warming scenarios. The GCMs simulations indicate that the earth will have warmed by 2C relative to preindustrial temperatures by between 2026 and 2060, by which stage the area-mean annual temperature over the Arctic (60-90N) will have increased by between 3.2 and 6.6C. Forest extent is predicted by BIOME4 to increase in the Arctic on the order of 3 x 106 km2 or 55% with a corresponding 42% reduction in tundra area. Tundra types generally also shift north with the largest reductions in the prostrate dwarf-shrub tundra

  5. Changing Arctic ecosystems--the role of ecosystem changes across the Boreal-Arctic transition zone on the distribution and abundance of wildlife populations

    Science.gov (United States)

    McNew, Lance; Handel, Colleen; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary

    2013-01-01

    Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.

  6. Effectively Communicating Information about Dynamically Changing Arctic Sea Ice to the Public through the Global Fiducials Program

    Science.gov (United States)

    Molnia, B. F.; Friesen, B.; Wilson, E.; Noble, S.

    2015-12-01

    On July 15, 2009, the National Academy of Sciences (NAS) released a report, Scientific Value of Arctic Sea Ice Imagery Derived Products, advocating public release of Arctic images derived from classified data. In the NAS press release that announced the release, report lead Stephanie Pfirman states "To prepare for a possibly ice-free Arctic and its subsequent effects on the environment, economy, and national security, it is critical to have accurate projections of changes over the next several decades." In the same release NAS President Ralph Cicerone states "We hope that these images are the first of many that could help scientists learn how the changing climate could impact the environment and our society." The same day, Secretary of the Interior Ken Salazar announced that the requested images had been released and were available to the public on a US Geological Survey Global Fiducials Program (GFP) Library website (http://gfl.usgs.gov). The website was developed by the USGS to provide public access to the images and to support environmental analysis of global climate-related science. In the statement describing the release titled, Information Derived from Classified Materials Will Aid Understanding of Changing Climate, Secretary Salazar states "We need the best data from all places if we are to meet the challenges that rising carbon emissions are creating. This information will be invaluable to scientists, researchers, and the public as we tackle climate change." Initially about 700 Arctic sea ice images were released. Six years later, the number exceeds 1,500. The GFP continues to facilitate the acquisition of new Arctic sea ice imagery from US National Imagery Systems. This example demonstrates how information about dynamically changing Arctic sea ice continues to be effectively communicated to the public by the GFP. In addition to Arctic sea ice imagery, the GFP has publicly released imagery time series of more than 125 other environmentally important

  7. Technological and environmental challenges of Arctic shipping—a case study of a fictional voyage in the Arctic

    Directory of Open Access Journals (Sweden)

    Lars-Henrik Larsen

    2016-05-01

    Full Text Available Shipping in Arctic seas is challenging and poses an environmental risk. This paper presents a fictional case involving a multipurpose supply vessel transporting one large object (a 750-tonne compressor and 24 containers loaded with chemicals and equipment for use by the petroleum industry in western Siberia. With technical details representative of vessels navigating the Arctic today, the fictitious ship Oleum has an ice class sufficient for navigating unaccompanied in the Barents and Kara seas, so no assistance is in range when, in late October, clogged fuel filters cause engine failure and the vessel eventually drifts ashore. Heeling over, Oleum loses both cargo and marine diesel oil. The scenario includes a successful helicopter rescue of the 16 crewmembers and a partial recovery of oil and chemicals by booms and skimmers. Recovery of chemicals with physical properties not allowing mechanical collection is not attempted. The scenario ends as the abandoned wreck is broken down at the stranding location, and containers rupture and discharge their cargo. The scenario postulates a moderate and short-lived environmental impact. The most visible effects of the grounding are the hull itself, the compressor and the spreading effects and degradation of oil and chemicals unmanageable for the clean-up operations.

  8. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    Science.gov (United States)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  9. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    Science.gov (United States)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  10. Investigating changes in the climate- and ecosystemof Arctic sea ice using remotely operated vehicles

    OpenAIRE

    Katlein, Christian; Arndt, Stefanie; Fernandez Mendez, Mar; Lange, Benjamin; Nicolaus, Marcel; Wenzhöfer, Frank; Jakuba, Mike; German, Chris

    2014-01-01

    The Arctic Ocean is currently undergoing a dramatic change. Decreasing sea-ice extent, thickness and age are changing important processes in the climate system. An increasing coverage of the sea ice by melt ponds and an increased amount of light transmitted to the upper ocean are also affecting the ice associated ecosystem. To document these changes, we operated different remotely operated vehicles (ROV) underneath the drifting sea ice of the Central Arctic Ocean. The newest under...

  11. Late Holocene Peat Growth at the Northern Siberian Periphery and its Relation to Arctic Climate Change

    Science.gov (United States)

    Bauch, H. A.; Abramova, E.; Alenius, T.; Saarnisto, M.

    2014-12-01

    During the last postglacial evolution of the shallow northern Siberian shelf systems regional sea level in the Arctic came to its Holocene highstand some time between 5 to 6 ka. After that time a general stabilization of the sedimentary regime occurred. That is well noted in a drastic decrease in sedimentation rates observed in all sediment cores taken from middle to outer shelf water depths of the Laptev Sea. But, at water depths lower than 30 meters - i.e., in the inner shelf and nearer to the coasts - sedimentation continued at relatively higher rates, presumably due to input of terrigenous material from river runoff as well as coastal erosion. Compared with that latter process, the huge Lena Delta should comprise a region of sediment catchment where aggradation wins over erosion. However, little is known about the detailed history of this delta during the second half of the Holocene. In order to gain more insight into this issue we have investigated three islands within the Lena Delta. All of these are comprised of massive peat of several meters in thickness. Picking discrete specimens of water mosses (Sphagnum) only, we have radiocarbon-dated these peat sections. The depth/age relation of the sampled profiles reflect the growth rate of peat. It shows that the islands' history above the present-day delta-sea level is about 4000 yrs. old. Moreover, a significant change in peat growth occurred after 2500 yrs BP in both, accumulation and composition, and allows the conclusion of a major shift in Arctic environmental conditions since then. Thus, our results may add further information also for other coastal studies, as the ongoing degradation of the rather vulnerable permafrost coast in the Laptev Sea and elsewhere along the North Siberian margin is often mentioned in context with recent Arctic climate change due to global warming.

  12. Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure

    Science.gov (United States)

    Nevalainen, Liisa; Rantala, Marttiina V.; Luoto, Tomi P.; Ojala, Antti E. K.; Rautio, Milla

    2016-07-01

    Despite the biologically damaging impacts of solar ultraviolet radiation (UV) in nature, little is known about its natural variability, forcing mechanisms, and long-term effects on ecosystems and organisms. Arctic zooplankton, for example the aquatic keystone genus Daphnia (Crustacea, Cladocera) responds to biologically damaging UV by utilizing photoprotective strategies, including pigmentation. We examined the preservation and content of UV-screening pigments in fossil Daphnia remains (ephippia) in two arctic lake sediment cores from Cornwallis Island (Lake R1), Canada, and Spitsbergen (Lake Fugledammen), Svalbard. The aims were to document changes in the degree of UV-protective pigmentation throughout the past centuries, elucidate the adaptive responses of zooplankton to long-term variations in UV exposure, and estimate the potential of fossil zooplankton pigments in reconstructing aquatic UV regimes. The spectroscopic absorbance measurements of fossil Daphnia ephippia under UV (280-400 nm) and visible light (400-700 nm) spectral ranges indicated that melanin (absorbance maxima at UV wavebands 280-350 nm) and carotenoids (absorbance maxima at 400-450 nm) pigments were preserved in the ephippia in both sediment cores. Downcore measurements of the most important UV-protective pigment melanin (absorbance measured at 305 and 340 nm) showed marked long-term variations in the degree of melanisation. These variations likely represented long-term trends in aquatic UV exposure and were positively related with solar radiation intensity. The corresponding trends in melanisation and solar activity were disrupted at the turn of the 20th century in R1, but remained as strong in Fugledammen. The reversed trends in the R1 core were simultaneous with a significant aquatic community reorganization taking place in the lake, suggesting that recent environmental changes, likely related to climate warming had a local effect on pigmentation strategies. This time horizon is also

  13. Response of Arctic sea level and hydrography to hydrological regime change over boreal catchments

    Science.gov (United States)

    Tourian, Mohammad J.; Sneeuw, Nico; Losch, Martin; Rabe, Benjamin

    2016-04-01

    Changes in freshwater influx into the Arctic Ocean are a key driver of regional dynamics and sea level change in the Arctic waters. Low-salinity surface waters maintain a strong stratification in the Arctic. This halocline largely shields the cool polar surface water and sea ice from the warmer waters of Atlantic origin below and, hence, inhibits vertical heat fluxes of heat, salt and nutrients. Recently observed changes in the freshwater content of the upper Arctic Ocean raise the question of the effect of these changes on the region. Changes in the freshwater budget affect regional steric sea level, but also the modified ocean dynamics may change sea level through mass transports within the Arctic. One component of the freshwater budget is continental runoff. The hydrological regime of river runoff appears to be non-stationary. There is both interannual variability and a significantly positive trend since the 1970s. The decreasing Arctic sea-ice cover may be a possible reason for the non-stationary behavior of runoff, especially in coastal and marginal seas. The decrease of sea ice due to global warming would lead to cloud formation and, indeed, increased precipitation. During the warmer season, increased precipitation would lead to more discharge of freshwater to the Arctic shelves and basins. The observational record of discharge into the Arctic Ocean, however, is still too sparse to address important science questions about the long-term behavior and development of Arctic sea level and climate. Given the insufficient monitoring from in situ gauge networks, and without any outlook of improvement, spaceborne approaches are currently being investigated. In this contribution we assess the long-term behavior of monthly runoff time series obtained from hydro-geodetic approaches and explore the effects of interannual runoff variability and long term trends on ocean model simulations.

  14. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    Science.gov (United States)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that

  15. Seasonal changes in the optical properties of dissolved organic matter (DOM) in large Arctic rivers

    DEFF Research Database (Denmark)

    Walker, S.A.; Amon, R.M.; Stedmon, Colin

    Arctic rivers deliver over 10% of the annual global river discharge yet little is known about the seasonal fluctuations in the quantity and quality of terrigenous dissolved organic matter (tDOM). A good constraint on such fluctuations is paramount to understand the role that climate change may have...... on tDOM input to the Arctic Ocean. To understand such changes the optical properties of colored tDOM (tCDOM) were studied. Samples were collected over several seasonal cycles from the six largest Arctic Rivers as part of the PARTNERS project. This unique dataset is the first of its kind capturing...

  16. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect

    OpenAIRE

    Swann, Abigail L.; Fung, Inez Y.; Levis, Samuel; BONAN, GORDON B.; Doney, Scott C.

    2010-01-01

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high ...

  17. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    Science.gov (United States)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  18. Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    DEFF Research Database (Denmark)

    Nilsson, Johan; Sørensen, Louise Sandberg; Barletta, Valentina Roberta;

    2015-01-01

    The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived n this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003–2009. Four methods, based...... of the regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross validation.The cross...

  19. Seasonal Changes in the Marine Production Cycles in Response to Changes in Arctic Sea Ice and Upper Ocean Circulation

    Science.gov (United States)

    Spitz, Y. H.; Ashjian, C. J.; Campbell, R. G.; Steele, M.; Zhang, J.

    2011-12-01

    Significant seasonal changes in arctic sea ice have been observed in recent years, characterized by unprecedented summer melt-back. As summer sea ice extent shrinks to record low levels, the peripheral seas of the Arctic Ocean are exposed much earlier to atmospheric surface heat flux, resulting in longer and warmer summers with more oceanic heat absorption. The changing seasonality in the arctic ice/ocean system will alter the timing, magnitude, duration, and pattern of marine production cycles by disrupting key trophic linkages and feedbacks in planktonic food webs. We are using a coupled pan-arctic Biology/Ice/Ocean Modeling and Assimilation System (BIOMAS) to investigate the changes in the patterns of seasonality in the arctic physical and biological system. Focus on specific regions of the Arctic, such as the Chukchi Sea, the Beaufort Sea and the adjacent central Arctic, reveals that changes in the timing of the spring bloom, its duration and the response of the secondary producers vary regionally. The major changes are, however, characterized by an earlier phytoplankton bloom and a slight increase of the biomass. In addition, the largest response in the secondary producers is seen in the magnitude of the microzooplankton concentration as well as in the period (early summer to late fall) over which the microzooplankton is present.

  20. Relationship between environmental conditions and rates of coastal erosion in Arctic Alaska

    Science.gov (United States)

    Barnhart, K. R.; Anderson, R. S.; Overeem, I.; Wobus, C. W.; Clow, G. D.; Urban, F. E.; LeWinter, A. L.; Stanton, T. P.

    2012-12-01

    Rates of coastal cliff erosion are a function of the geometry and substrate of the coast; storm frequency, duration, magnitude, and wave field; and regional sediment sources. In the Arctic, the duration of sea ice-free conditions limits the time over which coastal erosion can occur, and sea water temperature modulates erosion rates where ice content of coastal bluffs is high. Predicting how coastal erosion rates in this environment will respond to future climate change requires that we first understand modern coastal erosion rates. Arctic coastlines are responding rapidly to climate change. Remotely sensed observations of coastline position indicate that the mean annual erosion rate along a 60-km reach of Alaska's Beaufort Sea coast, characterized by high ice content and small grain size, doubled from 7 m yr-1 for the period 1955-1979 to 14 m yr-1 for 2002-2007. Over the last 30 years the duration of the open water season expanded from ˜45 days to ˜95 days, increasing exposure of permafrost bluffs to seawater by a factor of 2.5. Time-lapse photography indicates that coastal erosion in this environment is a halting process: most significant erosion occurs during storm events in which local water level is elevated by surge, during which instantaneous submarine erosion rates can reach 1-2 m/day. In contrast, at times of low water, or when sea ice is present, erosion rates are negligible. We employ a 1D coastal cross-section numerical model of the erosion of ice-rich permafrost bluffs to explore the sensitivity of the system to environmental drivers. Our model captures the geometry and style of coastal erosion observed near Drew Point, Alaska, including insertion of a melt-notch, topple of ice-wedge-bounded blocks, and subsequent degradation of these blocks. Using consistent rules, we test our model against the temporal pattern of coastal erosion over two periods: the recent past (~30 years), and a short (~2 week) period in summer 2010. Environmental conditions used

  1. One Health – a strategy for resilience in a changing arctic

    OpenAIRE

    Ruscio, Bruce A.; Michael Brubaker; Joshua Glasser; Will Hueston; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of c...

  2. Ecological risk analysis as a key factor in environmental safety system development in the Arctic region of the Russian Federation

    International Nuclear Information System (INIS)

    Due to specific natural and climatic conditions combined with human intervention, the Arctic is regarded as a highly sensitive region to any environmental pressures. Arctic projects require continuous environmental monitoring. This poses for the government of the Russian Federation (RF) a tremendous task concerning the formation and implementation of sustainable nature management policy within the international framework. The current article examines the basic constraints to the effective ecological safety system implementation in the Arctic region of the RF. The ecological risks and their effects which influence the sustainable development of the region were analyzed. The model of complex environmental safety system was proposed

  3. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... measurements in this thesis were performed using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analyzed by gas chromatography-mass spectrometry following thermal desorption. Also modifications in leaf anatomy in response to the studied effects of climate change were assessed...... common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...

  4. Are Recent Arctic Sea Ice Changes a Fingerprint of Greenhouse Warming?

    Science.gov (United States)

    Vavrus, S. J.

    2002-12-01

    Arctic sea ice has undergone significant reductions in thickness and extent in recent decades, leading to speculation that the ice pack is already showing signs of greenhouse warming. The decline in ice cover is not uniform across the Arctic Ocean, but instead shows a distinct spatial pattern of maximum reductions in the eastern (European) sector and minimum decreases in the western (North American) sector. This dipole spatial pattern has been dubbed the "East-West Arctic Anomaly Pattern" (EWAAP) and is consistent with recent trends in high-latitude atmospheric circulation, which in turn are driven by the well-known decrease in Arctic sea level pressure. Climate simulations using an AGCM coupled to a mixed-layer ocean (GENESIS) are presented to show that enhanced greenhouse forcing causes the model to produce the EWAAP and its associated anomalous cyclonic circulation pattern. Paleoclimate simulations of orbitally forced warm periods in the Arctic (mid-Holocene and last interglacial) show similar changes of sea ice cover and surface winds, suggesting that the recent anomalies may be a signature of warmer Arctic climates. The consistent EWAAP response to warm external forcings is caused by two dynamical mechanisms. First, the flow of Arctic sea ice in the modern climate produces ice divergence (convergence) and more (less) open water in the eastern (western) Arctic Ocean, thus favoring (hindering) melting in the eastern (western) sector under warmer conditions. Second, because warmer climates promote a decrease in Arctic sea level pressure, anomalous surface winds blow across the Arctic Ocean from Eurasia toward North America and thus enhance the spatial dipole pattern of ice coverage.

  5. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    Directory of Open Access Journals (Sweden)

    S. B. Dalsøren

    2012-10-01

    Full Text Available We quantify the concentrations change of atmospheric pollutants and Radiative Forcing (RF of short-lived components due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. A set of models is used to evaluate the period 2004–2030. This time period reflects expected increasing traffic in the Arctic region. Two datasets for ship emissions are used that may characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: A high (HIGH scenario and a low scenario with Maximum Feasible Reduction (MFR of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 significant increases occur for all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH and 73 mW m−2 (MFR are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. Arctic regional forcing is largest in the HIGH scenario because other components become locally more important in polar latitudes. In the HIGH scenario ozone dominates the RF during Arctic summer and the transit season. RF due to BC in air, and snow and ice becomes of significance in Arctic spring. For the HIGH

  6. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    Science.gov (United States)

    Dalsøren, S. B.; Samset, B. H.; Myhre, G.; Corbett, J. J.; Minjares, R.; Lack, D.; Fuglestvedt, J. S.

    2013-02-01

    We quantify the concentrations changes and Radiative Forcing (RF) of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004-2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004-2030 of 53 mW m-2 (HIGH) and 73 mW m-2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August-October). RF due to BC in air, and snow and ice becomes significant during Arctic spring. For the HIGH

  7. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region

    Directory of Open Access Journals (Sweden)

    S. B. Dalsøren

    2013-02-01

    Full Text Available We quantify the concentrations changes and Radiative Forcing (RF of short-lived atmospheric pollutants due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. We use high resolution ship emission inventories for the Arctic that are more suitable for regional scale evaluation than those used in former studies. A chemical transport model and a RF model are used to evaluate the time period 2004–2030, when we expect increasing traffic in the Arctic region. Two datasets for ship emissions are used that characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: a high (HIGH scenario and a low scenario with Maximum Feasible Reduction (MFR of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 we find increased concentrations of all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH and 73 mW m−2 (MFR are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts with the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. The Arctic RF is largest in the HIGH scenario. In the HIGH scenario ozone dominates the RF during the transit season (August–October. RF due to BC in air, and

  8. Impacts of northern climate changes on Arctic engineering practice

    International Nuclear Information System (INIS)

    Potential impacts of climate changes on engineering design practices in the Arctic are discussed with reference to permafrost engineering aspects, hydrology, and coastal and sea ice processes. Permafrost generally remains thermally stable only when mean annual air temperature remains 2-4 degrees below zero and the original surface conditions remain unchanged. It has been demonstrated that a temperature rise of only 1-2 degrees is very critical. The many different climate change forecasts make it difficult to design structures in permafrost with definite levels of confidence over a project's lifetime (i.e. up to 50 years). Consequences of climate warming on transportation-related structures can be estimated to a certain degree by examining experience with natural permafrost surfaces affected by land clearing or with structures built in permafrost. Melting of permafrost will be accompanied by surface settlements, slumping of slopes and banks, and creation of thaw pits and ponds, with eventual distress to many surface structures such as pavements and foundations. Designing for a warmer climate is illustrated for the case of the Bethel Highway, the first in Alaska to be designed for a progressively warmer climate. Increased water flows both from ice melting and increased precipitation in a warmer climate will make forecasting of discharge levels in drainage basins a difficult task. Of great concern to engineers is the potential for increased erosion and sediment loadings in streams. In coastal engineering, the effects of rising sea levels, increased open-water areas, and more severe storms foreseen in a warmer climate will require heavier and more elevated shore protection. On the other hand, shipping and offshore operations will be made easier. 9 refs., 4 figs

  9. Implications of a Changing Arctic on Summertime Surface Seawater pCO2 Variations in the Eastern Canadian Arctic

    Science.gov (United States)

    Burgers, T.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T. N.

    2015-12-01

    Arctic marine carbonate chemistry and rates of air-sea CO2 exchange are anticipated to be affected by current changes in sea-ice structure and extent, freshwater inputs, ocean circulation patterns, and the seasonality of phytoplankton blooms. This study examines how such changes will impact rates of air-sea CO2 exchange in northern Baffin Bay, Nares Strait, and the eastern Canadian Arctic Archipelago. This complex oceanographic region includes the North Water polynya; one of the most biologically productive areas in the Arctic Ocean, and the convergence site of the warm West Greenland Current with cold exported Arctic waters. Continuous measurements of atmospheric and surface seawater CO2 (pCO2) were collected onboard the Canadian Coast Guard Ship Amundsen during its 2013 and 2014 summer cruises. Surface seawater pCO2 displayed considerable variability (145 - 389 ppm), but never exceeded atmospheric concentrations. Calculated CO2 fluxes ranged from 0 to -45 mmol m-2 day-1 (oceanic uptake), and were estimated using the Sweeney et al. (2007) parameterization with in-situ wind speed measurements. Ancillary measurements of chlorophyll a reveal low productivity in surface waters during mid-summer with isolated sub-surface blooms. This is likely the result of nutrient limitation within the highly stratified polar mixed layer (PML). Measurements of stable oxygen isotope ratios (δ18O) and total alkalinity were used to estimate freshwater inputs (sea-ice melt vs. meteoric water) to the PML. These and in-situ observations of sea ice cover were used to interpret seawater pCO2 variations. Surface waters influenced by sea-ice melt exhibit lower pCO2 than those influenced by meteoric water. The results of this investigation shed light on the future role of this region as a summertime sink of atmospheric CO2.

  10. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts

    OpenAIRE

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncer...

  11. The influence of changing seasonality and snow cover on arctic ground squirrel phenology.

    Science.gov (United States)

    Barnes, B.; Sheriff, M.; Kenagy, J.; Buck, L.; Team Squirrel

    2011-12-01

    A warming climate in the Arctic may have asymmetrical effects on seasonality, depending on the timing and extent of snow cover. Warm autumns that delay the onset of persistent snow cover will lengthen growing seasons of some plants and, combined with continuing access to fallen seeds, berries, and leaves, extend feeding opportunities for ground foragers. Warming in spring should advance when the ground becomes snow free and the onset of plant productivity, leading overall to a longer growing season. However, if winter and spring precipitation increase, as is predicted in climate models, the amount and seasonal extent of snow pack will increase, which will delay melt and lead to delayed springs. Either of these scenarios may develop regionally, depending on local weather, snow, and wind. Since 1996, we have been investigating the timing of annual events in natural populations of arctic ground squirrels, Urocitellus parryii, living at two nearby sites (Toolik and Atigun, 68o38'N) in arctic Alaska that greatly differ in timing and duration of snow cover. Since arctic ground squirrels are highly dependent on snow free ground for foraging, we predicted that these environmental differences will have had major impacts on life histories and timing of annual events on the local populations. Precision in dates of the beginning and end of hibernation, use of heterothermy, and birth of young were determined by temperature-sensitive data loggers implanted into juvenile and adult animals of both sexes. Weather stations, snow cameras, and transects for plant phenology are in place at both locations, although record lengths differ. While across the past 15 years annual timing of hibernation and breeding has not shown significant trends at either site, the two populations have differed consistently in hibernation timing and length of active season, and they show a 13 day difference in average timing of reproduction. These results reveal a substantial flexibility of timing of the

  12. The Arctic Boreal Vulnerability Experiment: Observing, Understanding, and Predicting Social-Ecological Change in the Far North

    Science.gov (United States)

    Mack, M. C.; Goetz, S. J.; Kasischke, E. S.; Kimball, J. S.; Boelman, N.

    2015-12-01

    In the high northern latitudes, climate is warming more rapidly than anywhere else on Earth, transforming vulnerable arctic tundra and boreal forest landscapes. These changes are altering the structure and function of energy, water and carbon cycles, producing significant feedbacks to regional and global climate through changes in energy, water and carbon cycles. These changes are also challenging local and global society. At the local level, communities seek to adapt to new social-ecological regimes. At the global level, changing arctic and boreal systems are increasing becoming the focus of policy discussions at all levels of decision-making. National and international scientific efforts associated with a new NASA field campaign, the Arctic-Boreal Vulnerability Experiment (ABOVE) will advance our ability to observe, understand and predict the complex, multiscale and non-linear processes that are confronting the natural and social systems in this rapidly changing region. Over the next decade, the newly assembled ABOVE Science Team will pursue this overarching question: "How vulnerable or resilient are ecosystems and society to environmental change in the Arctic and boreal region of western North America?" Through integration of remote sensing and in situ observations with modeling of both ecological and social systems, the ABOVE Science Team will advance an interdisciplinary understanding of the Far North. In this presentation, we will discuss the conceptual basis for the ABOVE Field Campaign, describe Science Team composition and timeline, and update the community on activities. In addition, we will reflect on the visionary role of Dr. Diane Wickland, retired NASA Terrestrial Ecology Program Manager and lead of the Carbon Cycle & Ecosystems Focus Area, in the development and commencement of ABOVE.

  13. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    Science.gov (United States)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  14. Leading By Example: Canada and its Arctic Stewardship Role

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2016-01-01

    The notion that Canada is the steward of the fragile Arctic environment is a part of the fabric of the Canadian narrative about the country’s relationship with the Arctic region. In light of political, legal and environmental changes impacting Arctic politics, this paper argues that it is importa...

  15. Projected changes in regional climate extremes arising from Arctic sea ice loss

    Science.gov (United States)

    Screen, James A.; Deser, Clara; Sun, Lantao

    2015-08-01

    The decline in Arctic sea ice cover has been widely documented and it is clear that this change is having profound impacts locally. An emerging and highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. Of particular societal relevance is the open question: will continued Arctic sea ice loss make mid-latitude weather more extreme? Here we analyse idealized atmospheric general circulation model simulations, using two independent models, both forced by projected Arctic sea ice loss in the late twenty-first century. We identify robust projected changes in regional temperature and precipitation extremes arising solely due to Arctic sea ice loss. The likelihood and duration of cold extremes are projected to decrease over high latitudes and over central and eastern North America, but to increase over central Asia. Hot extremes are projected to increase in frequency and duration over high latitudes. The likelihood and severity of wet extremes are projected to increase over high latitudes, the Mediterranean and central Asia; and their intensity is projected to increase over high latitudes and central and eastern Asia. The number of dry days over mid-latitude Eurasia and dry spell duration over high latitudes are both projected to decrease. There is closer model agreement for projected changes in temperature extremes than for precipitation extremes. Overall, we find that extreme weather over central and eastern North America is more sensitive to Arctic sea ice loss than over other mid-latitude regions. Our results are useful for constraining the role of Arctic sea ice loss in shifting the odds of extreme weather, but must not be viewed as deterministic projections, as they do not account for drivers other than Arctic sea ice loss.

  16. Environmental Sensitivity Index (ESI) Atlas: Northwest Arctic, Alaska, volume 2, maps and geographic information systems data (NODC Accession 0046028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Northwest Arctic, Alaska. ESI data characterize estuarine environments and wildlife by...

  17. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  18. An overview of international institutional mechanisms for environmental management with reference to Arctic pollution

    International Nuclear Information System (INIS)

    Evidence is mounting of the environmental impact in the Far North of economic and industrial activity elsewhere in the world. While the sources of pollutants found in the Arctic are many and widespread, it is up to just a few countries - notably Canada, the former Soviet Union, Finland, Norway and Greenland - to assess the damage and deal with the impacts. This paper discusses the issue of Arctic pollution in the context of trends in world economic growth, globalization of economic activity, international trade and related institutional arrangements (such as trade and environmental agreements). The importance of tracing the sources of particular contaminants is stressed; this is a first step towards internalization of environmental costs of production, and is also politically a key in efforts to control emissions. Trade and investment agreements commonly discuss rules for cross-border flows of goods, services, personnel and investment capital, as well as matters specific to particular economic sectors. Cross-border flows of pollutants and other 'bads' also merit detailed sectoral attention. This linkage would make explicit the connections between production and pollution (making possible the 'polluter pays' approach), and also widen the scope for redistribution of economic resources to equilibrate the situation (via trade and investment measures, among others) if flows of goods are related directly to flows of 'bads'. The paper examines the outlook for addressing Arctic pollution via international environmental agreements (along the lines of the Basel Convention, the Montreal Protocol, CITES, etc.), existing and future trade agreements (such as GATT), or new institutional approaches

  19. CEEPRA - Collaboration Network on EuroArctic Environmental Radiation Protection and Research

    International Nuclear Information System (INIS)

    CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) is an EU-funded project acting under the Kolarctic ENPI CBC programme. The CEEPRA project's main aim is to develop a collaboration network between key radiation research institutions in the EuroArctic region, which will lead to improved emergency preparedness capabilities in the event of any nuclear accidents. The project is studying the current state of radioactive contamination in the terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from Lapland in Finland, Finnmark and Troms in Norway, the Kola Peninsula in Russia and in the Barents Sea. The results provide updated information on the present levels, occurrence and the fate of radioactive substances in the Arctic environments and food chains. Special attention is given to collection and analyses of natural products widely used by general public in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments are carried out through modelling and studying of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region's indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. The project partners are Radiation and Nuclear Safety Authority (STUK) from Finland, the Murmansk Marine Biological Institute (MMBI) from Russia, the Norwegian Radiation Protection Authority (NRPA), Finnish Meteorological Institute and Poeyry Finland Oy. The Southern Scientific Centre of the Russian Academy of Sciences (SSC RAS) and Norwegian Meteorological Institute (MET) are taking part in the project as well. The main results of the project are presented in this study. Document available in abstract form only. (authors)

  20. CEEPRA - Collaboration Network on EuroArctic Environmental Radiation Protection and Research

    Energy Technology Data Exchange (ETDEWEB)

    Solatie, D.; Leppaenen, A.P. [STUK-Radiation and Nuclear Safety Authority (Finland); Kasatkina, N. [Murmansk Marine Biological Institute (Russian Federation); Nalbandyan, A. [Norwegian Radiation Protection Authority (Norway); Paatero, J. [Finnish Meteorological Institute (Finland); Reinikainen, K.; Nissi, M. [Poeyry Finland Oy (Finland); Vaaramaa, K. [Radiation and Nuclear Safety Authority (Finland)

    2014-07-01

    CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) is an EU-funded project acting under the Kolarctic ENPI CBC programme. The CEEPRA project's main aim is to develop a collaboration network between key radiation research institutions in the EuroArctic region, which will lead to improved emergency preparedness capabilities in the event of any nuclear accidents. The project is studying the current state of radioactive contamination in the terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from Lapland in Finland, Finnmark and Troms in Norway, the Kola Peninsula in Russia and in the Barents Sea. The results provide updated information on the present levels, occurrence and the fate of radioactive substances in the Arctic environments and food chains. Special attention is given to collection and analyses of natural products widely used by general public in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments are carried out through modelling and studying of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region's indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. The project partners are Radiation and Nuclear Safety Authority (STUK) from Finland, the Murmansk Marine Biological Institute (MMBI) from Russia, the Norwegian Radiation Protection Authority (NRPA), Finnish Meteorological Institute and Poeyry Finland Oy. The Southern Scientific Centre of the Russian Academy of Sciences (SSC RAS) and Norwegian Meteorological Institute (MET) are taking part in the project as well. The main results of the project are presented in this study. Document available in abstract form only. (authors)

  1. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    Science.gov (United States)

    Ford, James D.

    2009-04-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions—one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  2. Breast cancer in the Arcticchanges over the past decades

    Directory of Open Access Journals (Sweden)

    Stine Overvad Fredslund

    2012-08-01

    Full Text Available The purpose of this study is to review the current literatures on breast cancer (BC in the Arctic, especially the trends in incidence during the last decades and the possible explanations. The design of this study is a literature review. The scientific literature concerning BC were reviewed, especially focusing on the Arctic and the special conditions that exist in this region. Breast cancer incidence is increasing all over the world, including in the Arctic. The enormous transition in health conditions and lifestyle in the Arctic might be contributing to the known risk factors. In Greenland, the age at menarche has diminished by 3 years during the course of 100 years, and the number of children per women as well as the duration of breastfeeding is decreasing. Obesity and intake of saturated fat is increasing and the intake of traditional food rich in unsaturated fat and vitamin D decreasing. Smoking and alcohol consumption in the Arctic has been relatively high but is now decreasing. More focus on genetic susceptibility in relation to BC has identified the specific BRCA1 founder mutation in the Greenlandic population, which might appear to be an important risk factor. However, the known established risk factors alone cannot account for the increasing trend observed. Studies suggest that environmental contaminants such as persistent organic pollutants (POPs including perfluorinated compounds increase the risk of BC possibly in conjunction with certain genetic polymorphisms involved in carcinogen activation. The lipophilic POPs such as polychlorinated biphenyls and organochlorine pesticides are found at very high levels in the Arctic population. Several factors can explain the increasing incidence of BC in the Arctic. The transition in lifestyle and health conditions unfortunately increases the known risk factors of BC. Moreover, the population of the Arctic might show up to be especially vulnerable because of the contemporary high burden of POPs

  3. Seasonal Changes in Diversity and Metabolic Potential of Freshwater Microbial Communities in an Arctic Lake

    Science.gov (United States)

    Nalven, S.; Crump, B. C.; Kling, G. W.

    2015-12-01

    Ecologists have studied the diversity of microbial communities worldwide, largely motivated by the hypothesis that diversity is an important determinant of ecosystem function. However, direct links between microbial diversity and ecosystem function are difficult to demonstrate. Here we use a combination of 16S amplicon sequencing and metagenomic sequencing to determine whether seasonal shifts in microbial diversity correspond to similar shifts in functional potential in Toolik Lake, a deep kettle lake in the Alaskan Arctic. We found that microbial diversity displays a repeating annual cycle set to the date of the spring snowmelt, with the most dramatic shifts in diversity occurring each year during the ten weeks following the onset of snowmelt. Similarly, the functional character of these communities appears to repeat annually, with season a better predictor of gene abundance than year among several gene families. Further, during the ten-week period after spring snowmelt, abundances of several gene families changed substantially. For example, while genes involved in photosynthesis were more abundant in summer than in winter, genes involved in the degradation of aromatic compounds were more abundant in winter than in summer. This pairing of shifts in diversity and metagenomic data suggests that microbial diversity is related to ecosystem function in a predictable way. Seasonally shifting environmental conditions likely drive transitions in both diversity and functional potential of Toolik Lake microbial communities, suggesting that both diversity and function will change in response to long-term shifts in environmental conditions such as those brought on by climate change.

  4. Changing Arctic ecosystems: sea ice decline, permafrost thaw, and benefits for geese

    Science.gov (United States)

    Flint, Paul; Whalen, Mary; Pearce, John M.

    2014-01-01

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) strives to inform resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. A key area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced a warming trend over the past 30 years, leading to reductions in sea ice and thawing of permafrost. Loss of sea ice has increased ocean wave action, leading to erosion and salt water inundation of coastal habitats. Saltwater tolerant plants are now thriving in these areas and this appears to be a positive outcome for geese in the Arctic. This finding is contrary to the deleterious effects that declining sea ice is having on habitats of ice-dependent animals, such as polar bear and walrus.

  5. Multivariate benthic ecosystem functioning in the Arctic – benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

    Directory of Open Access Journals (Sweden)

    H. Link

    2013-09-01

    Full Text Available The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual, long-term (annual to decadal and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment–water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink–source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57% by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with

  6. The Endangered Arctic, the Arctic as Resource Frontier: Canadian News Media Narratives of Climate Change and the North.

    Science.gov (United States)

    Stoddart, Mark C J; Smith, Jillian

    2016-08-01

    The Arctic is one of the most radically altered parts of the world due to climate change, with significant social and cultural impacts as a result. Using discourse network analysis and qualitative textual analysis of articles published in the Globe and Mail and National Post during the period 2006 to 2010, we identify and analyze key frames that interpret the implications of climate change on the Arctic. We examine Canadian national news media coverage to ask: How does the Arctic enter media coverage of climate change? Is there evidence of a climate justice discourse in relation to regional disparities in the risks and harms of climate change between northern and southern Canada? Climate change in the Arctic is often framed through the lens of Canadian national interests, which downplays climate-related social impacts that are already occurring at subnational political and geographical scales. L'Arctique est une des régions du monde la plus radicalement altérée par le changement climatique, menant comme résultat des importants changements sociaux et culturels. En utilisant l'analyse des réseaux de discours ainsi que l'analyse textuelle qualitative des articles publiés dans le Globe and Mail et le National Post de 2006 à 2010, nous identifions and analysons des cadres clés qui servent à interpréter les conséquences du changement climatique dans l'Arctique. Nous examinons la couverture des médias nationaux canadiens pour pouvoir demander : comment est-ce que l'Arctique s'insère dans la couverture médiatique du changement climatique? Est-ce qu'il y a de la preuve d'un discours de la justice climatique en relation des disparités régionales des risques et méfaits du changement climatique entre le Canada du nord et du sud? Le changement climatique dans l'Arctique est souvent encadré à travers le prisme des intérêts nationaux canadiens, ce qui minimise les impacts sociaux reliés au climat qui se produisent actuellement aux échelons sous

  7. The Endangered Arctic, the Arctic as Resource Frontier: Canadian News Media Narratives of Climate Change and the North.

    Science.gov (United States)

    Stoddart, Mark C J; Smith, Jillian

    2016-08-01

    The Arctic is one of the most radically altered parts of the world due to climate change, with significant social and cultural impacts as a result. Using discourse network analysis and qualitative textual analysis of articles published in the Globe and Mail and National Post during the period 2006 to 2010, we identify and analyze key frames that interpret the implications of climate change on the Arctic. We examine Canadian national news media coverage to ask: How does the Arctic enter media coverage of climate change? Is there evidence of a climate justice discourse in relation to regional disparities in the risks and harms of climate change between northern and southern Canada? Climate change in the Arctic is often framed through the lens of Canadian national interests, which downplays climate-related social impacts that are already occurring at subnational political and geographical scales. L'Arctique est une des régions du monde la plus radicalement altérée par le changement climatique, menant comme résultat des importants changements sociaux et culturels. En utilisant l'analyse des réseaux de discours ainsi que l'analyse textuelle qualitative des articles publiés dans le Globe and Mail et le National Post de 2006 à 2010, nous identifions and analysons des cadres clés qui servent à interpréter les conséquences du changement climatique dans l'Arctique. Nous examinons la couverture des médias nationaux canadiens pour pouvoir demander : comment est-ce que l'Arctique s'insère dans la couverture médiatique du changement climatique? Est-ce qu'il y a de la preuve d'un discours de la justice climatique en relation des disparités régionales des risques et méfaits du changement climatique entre le Canada du nord et du sud? Le changement climatique dans l'Arctique est souvent encadré à travers le prisme des intérêts nationaux canadiens, ce qui minimise les impacts sociaux reliés au climat qui se produisent actuellement aux échelons sous

  8. Environmental Working Group Arctic Meteorology and Climate Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Working Group (EWG) was established in June 1995 under the framework of the U.S.-Russian Joint Commission on Economic and Technological...

  9. Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability

    DEFF Research Database (Denmark)

    Hendriksen, Kåre

    2011-01-01

    Globalization and climate change challenges the Arctic communities adaptability and increases vulnerability Kåre Hendriksen, PhD student, Aalborg University, Denmark The previous isolation of the Arctic will change as a wide range of areas increasingly are integrated into the globalized world....... Coinciding climate changes cause an easier access for worldwide market as well as for the extraction of coastal oil and mineral resources. In an attempt to optimize the fishing fleet by economic measures it is centralized to larger units, and the exports of unprocessed fish and shellfish to low wage...

  10. Studying the impact of changes in the Arctic outflow by using a coupled ice-ocean model

    Science.gov (United States)

    Pasha Karami, Mehdi; Myers, Paul G.; Tremblay, Bruno; de Vernal, Anne

    2016-04-01

    The export of cold and fresh water from the Arctic Ocean into the North Atlantic Ocean happens mainly through the Fram Strait and the Canadian Arctic Archipelago (CAA). The magnitude of the Arctic outflow and its distribution between the Fram Strait and CAA has been suggested to change in the future. Such changes might affect the Arctic sea ice, and possibly alter the location and the intensity of dense water formation and, therefore, the Atlantic meridional overturning circulation (AMOC). One factor controlling the Arctic outflow is the wind forcing. Another factor is the Atlantic inflow to the Arctic, which also depends on the wind forcing and is linked to the intermediate circulation within the Arctic. There is also synergy between all the Arctic gateways. Here we explore the changes in CAA and Fram outflows accompanying the Arctic dipole mode as a plausible climatic state in future, and their corresponding impacts on the Arctic and Atlantic Oceans. For this purpose, a regional configuration of the coupled ice-ocean model, NEMO (Nucleus for European Modelling of the Ocean model) version 3.4 is used for a set of sensitivity experiments. For the surface boundary condition, composites of atmospheric variables associated with the two phases of Arctic dipole mode were calculated from the COREII data. To better understand what controls the distribution of Arctic outflow between the Fram Strait and CAA and to exclude their synergism, we launch similar experiments with a closed CAA. This will allow us to better understand the impacts caused by the modulation of the wind forcing versus changes in the gateway flows. Our results will also have implications for the paleo-studies of the Arctic.

  11. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    Science.gov (United States)

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  12. Shifts in the distribution of molting Spectacled Eiders (Somateria fischeri) indicate ecosystem change in the Arctic

    Science.gov (United States)

    Sexson, Matthew; Petersen, Margaret; Greg A. Breed,; Powell, Abby N.

    2016-01-01

    Shifts in the distribution of benthivorous predators provide an indication of underlying environmental changes in benthic-mediated ecosystems. Spectacled Eiders (Somateria fischeri) are benthivorous sea ducks that spend the nonbreeding portion of their annual cycle in the Bering, Chukchi, Beaufort, and East Siberian seas. Sea ducks generally molt in biologically productive areas with abundant prey. If the distribution of eiders at molting areas matches prey abundance, spatial shifts may indicate changes in environmental conditions in the Arctic. We used a randomization procedure to test for shifts in the distribution of satellite telemetry locations received from Spectacled Eiders in the 1990s and 2008–2011 within 4 late-summer, ice-free molting areas: Indigirka–Kolyma, northern Russia; Ledyard Bay, eastern Chukchi Sea; Norton Sound, northeastern Bering Sea; and Mechigmenskiy Gulf, northwestern Bering Sea. We also tested for interannual and interdecadal changes in dive depth required to reach prey, which might affect the energetic costs of foraging during the molting period. Transmitter-marked birds used each molting area in each year, although the distribution of Spectacled Eiders shifted within each area. Interdecadal shifts in Ledyard Bay and Norton Sound decreased dive depth in recent years, although minor differences in depth were biologically negligible in relation to the energetic expense of feather growth. Shifts in Mechigmenskiy Gulf and Indigirka–Kolyma did not occur consistently within or among decades, which suggests greater interannual variability among environmental factors that influence distribution in these areas. Shifts in each molting area suggest dynamic ecosystem processes, with implications for Spectacled Eiders if changes result in novel competition or predation, or in shifting prey regimes.

  13. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    Science.gov (United States)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  14. How Will Aerosol-Cloud Interactions Change in an Ice-Free Arctic Summer?

    Science.gov (United States)

    Gilgen, Anina; Katty Huang, Wan Ting; Ickes, Luisa; Lohmann, Ulrike

    2016-04-01

    Future temperatures in the Arctic are expected to increase more than the global mean temperature, which will lead to a pronounced retreat in Arctic sea ice. Before mid-century, most sea ice will likely have vanished in late Arctic summers. This will allow ships to cruise in the Arctic Ocean, e.g. to shorten their transport passage or to extract oil. Since both ships and open water emit aerosol particles and precursors, Arctic clouds and radiation may be affected via aerosol-cloud and cloud-radiation interactions. The change in radiation feeds back on temperature and sea ice retreat. In addition to aerosol particles, also the temperature and the open ocean as a humidity source should have a strong effect on clouds. The main goal of this study is to assess the impact of sea ice retreat on the Arctic climate with focus on aerosol emissions and cloud properties. To this purpose, we conducted ensemble runs with the global climate model ECHAM6-HAM2 under present-day and future (2050) conditions. ECHAM6-HAM2 was coupled with a mixed layer ocean model, which includes a sea ice model. To estimate Arctic aerosol emissions from ships, we used an elaborated ship emission inventory (Peters et al. 2011); changes in aerosol emissions from the ocean are calculated online. Preliminary results show that the sea salt aerosol and the dimethyl sulfide burdens over the Arctic Ocean significantly increase. While the ice water path decreases, the total water path increases. Due to the decrease in surface albedo, the cooling effect of the Arctic clouds becomes more important in 2050. Enhanced Arctic shipping has only a very small impact. The increase in the aersol burden due to shipping is less pronounced than the increase due to natural emissions even if the ship emissions are increased by a factor of ten. Hence, there is hardly an effect on clouds and radiation caused by shipping. References Peters et al. (2011), Atmos. Chem. Phys., 11, 5305-5320

  15. Icy rivers heating up : Modelling hydrological impacts of climate change in the (sub)arctic

    NARCIS (Netherlands)

    Linden, Sandra van der

    2003-01-01

    The Arctic is considered to be particularly sensitive to global climate change. Global warming will seriously affect the components of the water balance in northern regions and changes in precipitation and temperature have immediate as well as long term effects on river systems. The main goal of thi

  16. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.

    Science.gov (United States)

    Jueterbock, Alexander; Smolina, Irina; Coyer, James A; Hoarau, Galice

    2016-03-01

    Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy-forming seaweeds provide an ideal system to predict the potential impact of climate-change on rocky-shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate-change induced range-shift of Fucus distichus, the dominant canopy-forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold-temperate shores of the northern hemisphere will display the greatest distributional change of F. distichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range-limiting factors and 169 occurrence records. Using three climate-change scenarios, we projected habitat suitability of F. distichus - and its niche overlap with three dominant temperate macroalgae - until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of F. distichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold-temperate to subarctic regions, new areas of niche overlap were predicted between F. distichus and intertidal macroalgae immigrating from the south. While climate-change threatens intertidal seaweeds in warm-temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed-harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem. PMID:27087933

  17. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    Science.gov (United States)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  18. One Health – a strategy for resilience in a changing arctic

    Directory of Open Access Journals (Sweden)

    Bruce A. Ruscio

    2015-09-01

    Full Text Available The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants.

  19. One Health – a strategy for resilience in a changing arctic

    Science.gov (United States)

    Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W.

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722

  20. Future change in ocean productivity: Is the Arctic the new Atlantic?

    Science.gov (United States)

    Yool, A.; Popova, E. E.; Coward, A. C.

    2015-12-01

    One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea-ice and strong vertical stratification that characterize this region. However, Arctic sea-ice is currently declining, and forecasts suggest this may lead to completely ice-free summers by the mid-21st century. Such change may open the Arctic up to Atlantic-style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change-driven ocean stratification. Here we use low and high-resolution instances of a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate productivity. Drivers of present-day patterns are identified, and changes in these across a climate change scenario (IPCC RCP 8.5) are analyzed. We find a globally significant decline in North Atlantic productivity (> -20%) by 2100, and a correspondingly significant rise in the Arctic (> +50%). However, rather than the future Arctic coming to resemble the current Atlantic, both regions are instead transitioning to a common, low nutrient regime. The North Pacific provides a counterexample where nutrients remain high and productivity increases with elevated temperature. These responses to climate change in the Atlantic and Arctic are common between model resolutions, suggesting an independence from resolution for key impacts. However, some responses, such as those in the North Pacific, differ between the simulations, suggesting the reverse and supporting the drive to more fine-scale resolutions. This article was corrected on 5 JAN 2016. See the end of the full text for details.

  1. Rethinking Greenland and the Arctic in the Era of Climate Change

    DEFF Research Database (Denmark)

    Sejersen, Frank

    This book investigates how Arctic indigenous communities deal with the challenges of climate change and how they strive to develop self-determination. Adopting an anthropological focus on Greenland’s vision to boost extractive industries and transform society, the book examines how indigenous...... communities engage with climate change and development discourses. It applies a critical and comparative approach, integrating both local perspectives and adaptation research from Canada and Greenland to make the case for recasting the way the Arctic and Inuit are approached conceptually and politically....... The emphasis on indigenous peoples as future-makers and right-holders paves the way for a new understanding of the concept of indigenous knowledge and a more sensitive appreciation of predicaments and dynamics in the Arctic....

  2. High Arctic paleoenvironmental and Paleoclimatic changes in the Mid-Cretaceous

    Science.gov (United States)

    Herrle, Jens; Schröder-Adams, Claudia; Selby, David; Du Vivier, Alice; Flögel, Sascha; McAnena, Alison; Davis, William; Pugh, Adam; Galloway, Jennifer; Hofmann, Peter; Wagner, Thomas

    2014-05-01

    Although major progress in Cretaceous (145-66 Ma) paleoclimate and paleoceanography has been made during the last decades (e.g., Hay, 2008, 2011; Föllmi, 2012 and references therein), our knowledge of high latitudinal environmental change remains largely unknown compared to low- and mid-latitude marine and terrestrial environments. Drilling the Arctic Ocean remains challenging and expensive, whereas the Sverdrup Basin provides excellent exposures on land. To fully understand the climate and paleoceanographic dynamics of the warm, equable greenhouse world of the Cretaceous Period it is important to determine polar paleotemperatures and to study paleoceanographic changes in a well-established and continuous bio- and chemostratigraphic context. Exceptional exposures of Cretaceous sediments on the central to southern part of Axel Heiberg Island at a Cretaceous paleolatitude of about 71°N (Tarduno et al., 1998) provide a unique window on the Cretaceous Arctic paleoenvironment and climate history (Schröder-Adams et al., 2014). Here we present high-resolution records combining sedimentological studies, U-Pb zircon geochronology, marine organic carbon isotopes and initial 187Os/188Os data, TEX86-derived sea-surface temperatures (SST) and climate modelling, that constrain the timing and magnitude of major Oceanic Anoxic Events (OAEs) and climate events constructed from a ~1.8 km sedimentary succession exposed on Axel Heiberg and Ellef Ringnens islands in the Canadian Arctic Archipelago. The first high latitude application of initial 187Os/188Os data are agreeable with global profiles (Du Vivier et al., 2014) indicating the widespread magmatic pulse of the Caribbean Large Igneous Province (LIP) at the onset of OAE2 but also record the emplacement of local High Arctic LIP prior to the OAE2 in the Sverdrup Basin. Initial SST data suggest a slightly lower meridional temperature gradient during the Middle/Late Albian compared to present and a similar to the present one during

  3. Recent changes in the dynamic properties of declining Arctic sea ice: A model study

    Science.gov (United States)

    Zhang, Jinlun; Lindsay, Ron; Schweiger, Axel; Rigor, Ignatius

    2012-10-01

    Results from a numerical model simulation show significant changes in the dynamic properties of Arctic sea ice during 2007-2011 compared to the 1979-2006 mean. These changes are linked to a 33% reduction in sea ice volume, with decreasing ice concentration, mostly in the marginal seas, and decreasing ice thickness over the entire Arctic, particularly in the western Arctic. The decline in ice volume results in a 37% decrease in ice mechanical strength and 31% in internal ice interaction force, which in turn leads to an increase in ice speed (13%) and deformation rates (17%). The increasing ice speed has the tendency to drive more ice out of the Arctic. However, ice volume export is reduced because the rate of decrease in ice thickness is greater than the rate of increase in ice speed, thus retarding the decline of Arctic sea ice volume. Ice deformation increases the most in fall and least in summer. Thus the effect of changes in ice deformation on the ice cover is likely strong in fall and weak in summer. The increase in ice deformation boosts ridged ice production in parts of the central Arctic near the Canadian Archipelago and Greenland in winter and early spring, but the average ridged ice production is reduced because less ice is available for ridging in most of the marginal seas in fall. The overall decrease in ridged ice production contributes to the demise of thicker, older ice. As the ice cover becomes thinner and weaker, ice motion approaches a state of free drift in summer and beyond and is therefore more susceptible to changes in wind forcing. This is likely to make seasonal or shorter-term forecasts of sea ice edge locations more challenging.

  4. Changing Arctic Snow Cover: A Review of Recent Developments and Assessment of Future Needs for Observations, Modelling, and Impacts

    Science.gov (United States)

    Bokhorst, Stef; Pedersen, Stine Hojlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jonsdottir, Svala Ingibjorg; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A.; Terzago, Silivia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qui, Yubao; Callaghan, Terry V.

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.

  5. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts.

    Science.gov (United States)

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W; Brown, Ross D; Ehrich, Dorothee; Essery, Richard L H; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather; McLennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A; Terzago, Silvia; Vikhamar-Schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V

    2016-09-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region. PMID:26984258

  6. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    Science.gov (United States)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  7. Macroecology of Environmental Change Response

    DEFF Research Database (Denmark)

    Jørgensen, Peter Søgaard

    for co-existence, minimizing local extinctions of coldadapted species during global warming. Effects on biodiversity of human-mediated environmental change feed back to human society by challenging food production, human health and environmental management. These challenges are caused by declines...... with climate change being proposed as one of the causes. The chapter investigates the evidence for recent increases in tropical precipitation and primary productivity to cause a recovery in migrant populations. It presents novel evidence for two dichotomies in the effect of such “re-greening”. Over yearly time...... in species that human societies depend on and due to rapid evolution in species that are considered pests and pathogens. Chapter VIII takes a step back and provides a multidisciplinary review of how biological knowledge of environmental change effects can be turned into solutions to minimize current global...

  8. Environmental and Ecological Challenges

    OpenAIRE

    Sauter, E. J.

    2014-01-01

    Abstract: Title: “Environmental and Ecological Challenges” The Arctic faces rapid changes in the context of global warming. This presentation recaps the most important processes and physical boundary conditions relevant for the development of Arctic shipping. It is common sense that the changes observed in the Arctic are not created locally but globally. Vice versa the will affect back global processes. Globalism includes the Arctic in both directions. However, as an area of extreme cli...

  9. Environmental change in the Sahel

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; D'haen, Sarah Ann Lise; Fensholt, Rasmus;

    2016-01-01

    The Sahel has been the object of intensive international research since the drought of the early 1970s. A considerable part of the research has focused on environmental change in general and land degradation, land cover change and climate change in particular. Rich and diverse insights from many...... different scientific disciplines about these three domains have been put forward. One intriguing feature is that an agreement on the overall trends of environmental change does not appear to emerge: questions such as whether the Sahel is greening, cropland is encroaching on rangelands, drought persists...... and choice of indicators, (2) biases, for example, related to selection of study sites, methodological choices, measurement accuracy, perceptions among interlocutors, and selection of temporal and spatial scales of analysis. The analysis of the root causes for different interpretations suggests...

  10. The Distributed Biological Observatory (DBO): A Change Detection Array in the Pacific Arctic Region

    Science.gov (United States)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2012-12-01

    The Pacific region of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. The developing Distributed Biological Observatory (DBO) is composed of focused biological and oceanographic sampling at biological "hot spot" sites for lower and higher trophic organisms on a latitudinal S-to-N array. The DBO is being developed by an international consortium of scientists in the Pacific Arctic as a change detection array to systematically track the broad biological response to sea ice retreat and associated environmental change. Coordinated ship-based observations over various seasons, together with satellite and mooring data collections at the designated sites, can provide an early detection system for biological and ecosystem response to climate warming. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. As a ramp up to a fully operational observatory, hydrographic transects and select

  11. Simulating the effects of temperature and precipitation change on vegetation composition in Arctic tundra ecosystems

    OpenAIRE

    Van Der Kolk, H; M. M. P. D. Heijmans; Van Huissteden, J.; Pullens, J. W. M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation has changed significantly along with climatic changes in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid dominated wetland. Which mechanisms drive vegetation changes in the tundra ecosystem is still not sufficiently clear. In this study, the dynamic tundra vegetation model NUCOM-tundra was used to e...

  12. Tracking and responding to a changing Arctic sea-ice cover: How ice users can help the scientific community design better observing systems (Louis Agassiz Medal Lecture)

    Science.gov (United States)

    Eicken, Hajo

    2010-05-01

    The Arctic sea-ice cover is undergoing a major transformation, with substantial reductions in summer ice extent reflecting changes in ice thickness, age, and circulation. These changes are impacting Arctic ecosystems and a range of human activities. Anticipating and responding to such impacts, exacerbated by increasing economic activity in parts of the Arctic, requires a foundation of environmental observations and model predictions. Recent increases in industrial activities such as shipping and resource development in parts of the Arctic have further highlighted the need for an integrated observing system. In the case of a changing sea-ice cover, how would one best design and optimize such a system? One of the challenges is to meet the information needs of the scientific community in furthering fundamental understanding of the Arctic system, as well as those of key stakeholders and society, helping them to prepare for and respond to Arctic change. This presentation focuses on how the concept of sea-ice system services, i.e., the uses and benefits (or harm) derived from sea ice, may help guide the implementation of an effective observing system. Principal service categories are (1) sea ice as climate regulator, marine hazard, and coastal buffer; (2) transportation and use of ice as a platform; (3) cultural services obtained from the "icescape"; and (4) support of food webs and biological diversity by sea ice. An analysis of the different ice services provided to different user groups can help prioritize different types of observations and determine optimal measurement strategies. Moreover, the focus on different uses of the ice cover may also help synthesize fundamental and applied research to help Arctic communities adapt in a changing environment. Alaska has experienced some of the most substantial changes in sea-ice conditions throughout the Arctic over the past three decades and is used to illustrate the concepts discussed above. Specifically, we have examined

  13. Changes in forcing factors affecting coastal and shallow water erosion in the future Arctic climate change projections.

    Science.gov (United States)

    Dobrynin, Mikhail; Razumov, Sergey; Brovkin, Victor; Ilyina, Tatiana; Grigoriev, Mikhail

    2016-04-01

    Driving factors of seabed and coastal erosion in the Arctic can be classified as thermal and mechanical. Thermal factors such as air and ocean temperatures affect the seabed and coastal ground temperatures. Mechanical factors such as ocean currents and surface gravity waves contribute to the seabed and costal erosion due to shear stress. Due to polar amplification, the Arctic experiences strong increase in air and water temperature, sea-ice loss and changes in the ocean and atmospheric circulation, temperature and wind distribution. These climatic changes lead to changes in factors driving seabed and coastal erosion, which is expected to accelerate in the shallow Arctic regions such as the Laptev sea and East Siberian sea. In these regions, the coastal line to a large extent consists of frozen rocks, sediments and organic soils including ground ice. The increase of erosion rate of the coastal line will increase the release of organic and inorganic matter from thawed permafrost. Dynamics of thermal and mechanical drivers of seabed and coastal erosion in the present and future climate change (RCP8.5 scenario) simulated by the CMIP5 version of the MPI Earth system model and wave model WAM will be presented. Special attention will be given to changes in the air temperature, wind dynamics and development of new waves system in the ``ice-free'' Arctic and its role in the seabed and coastal erosion.

  14. Monitoring Sea Ice Conditions and Use in Arctic Alaska to Enhance Community Adaptation to Change

    Science.gov (United States)

    Druckenmiller, M. L.; Eicken, H.

    2010-12-01

    Sea ice changes in the coastal zone, while less conspicuous in relation to the dramatic thinning and retreat of perennial Arctic sea ice, can be more readily linked to local impacts. Shorefast ice is a unique area for interdisciplinary research aimed at improving community adaptation to climate through local-scale environmental observations. Here, geophysical monitoring, local Iñupiat knowledge, and the documented use of ice by the Native hunting community of Barrow, Alaska are combined to relate coastal ice processes and morphologies in the Chukchi Sea to ice stability and community adaption strategies for travel, hunting, and risk assessment. A multi-year effort to map and survey the community’s seasonal ice trails, alongside a detailed record of shorefast ice conditions, provides insight into how hunters evaluate the evolution of ice throughout winter and spring. Various data sets are integrated to relate the annual accretion history of the local ice cover to both measurements of ice thickness and topography and hunter observations of ice types and hazards. By relating changes in the timing of shorefast ice stabilization, offshore ice conditions, and winter wind patterns to ice characteristics in locations where spring bowhead whaling occurs, we are working toward an integrated scientific product compatible with the perspective of local ice experts. A baseline for assessing future change and community climate-related vulnerabilities may not be characterized by single variables, such as ice thickness, but rather by how changes in observable variables manifest in impacts to human activities. This research matches geophysical data to ice-use to establish such a baseline. Documenting human-environment interactions will allow future monitoring to illustrate how strategies for continued community ice-use are indicative of or responsive to change, and potentially capable of incorporating science products as additional sources of useable information.

  15. Phenology of high-arctic butterflies and their floral resources: species-specific responses to climate change

    NARCIS (Netherlands)

    T.T. Høye; A. Eskildsen; R.R. Hansen; J.J. Bowden; N.M. Schmidt; W.D. Kissling

    2014-01-01

    Current global warming is particularly pronounced in the Arctic and arthropods are expected to respond rapidly to these changes. Long-term studies of individual arthropod species from the Arctic are, however, virtually absent. We examined butterfly specimens collected from yellow pitfall traps over

  16. Decadal Changes in Arctic Radiative Forcing from Aerosols and Tropospheric Ozone

    Science.gov (United States)

    Breider, T. J.; Mickley, L. J.; Jacob, D. J.; Payer Sulprizio, M.; Croft, B.; Ridley, D. A.; Ge, C.; Yang, Q.; Bitz, C. M.; McConnell, J.; Sharma, S.; Skov, H.; Eleftheriadis, K.

    2014-12-01

    Annual average Arctic sea ice coverage has declined by 3.6% per decade since the 1980s, but factors driving this trend are uncertain. Long-term surface observations and ice core records suggest recent, large declines in the Arctic atmospheric burden of sulfate aerosol, which may account in part for the warming trend. The decline in black carbon (BC) aerosol in the Arctic during the same period may partly offset the warming due to decreases in sulfate. Here we use the GEOS-Chem chemical transport model together with a detailed inventory of historical anthropogenic trace gas and primary aerosol emissions to quantify changes in Arctic radiative forcing from tropospheric ozone and aerosol between 1980 and 2010. Previous studies have reported an increasing trend in observed ozone at 500 hPa over Canada, but our simulation shows no significant trend. Over Europe, good agreement is found with observed long-term trends in sulfate in surface air (observed = -0.14±0.02 μg m-3 yr-1, model = -0.13±0.01 μg m-3 yr-1), while the observed trend in sulfate in precipitation (-0.20±0.03 μg m-3 yr-1) is underestimated by 40%. At Alert, the timing of the observed decline in sulfate after 1991 is well captured in the simulation, but the observed trend between 1991 and 2001 (-36.3±4.1 ng m-3 yr-1) is underestimated by 26%. BC observations at remote Arctic surface stations are biased low throughout 1980-2010 by a factor of 2. At Greenland ice cores, observed 1980-2010 trends in sulfate deposition are underestimated by 35%. The smaller model bias in observed sulfate and BC deposition at ice cores in southern Greenland (5% and 65%) compared to northern Greenland (56% and 90%) indicates greater uncertainty in pollution emissions from Eurasian sources. We estimate a surface radiative forcing from atmospheric aerosols in the Arctic during 2008 of -0.51 W m-2. The forcing is largest in spring (-1.36 W m-2) and dominated by sulfate aerosol (87%). We will quantify the contributions to the

  17. On the Arctic Ocean ice thickness response to changes in the external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Stranne, Christian; Bjoerk, Goeran [University of Gothenburg, Department of Earth Sciences, Box 460, Goeteborg (Sweden)

    2012-12-15

    Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F{sub wall}, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness - ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F{sub wall} is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated

  18. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  19. Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: impact of climate change and possible adaptation plan

    OpenAIRE

    Rosol, Renata; Powell-Hellyer, Stephanie; Chan, Hing Man

    2016-01-01

    Background. The pervasive food insecurity and the diet transition away from local, nutrient-rich country foods present a public health challenge among Inuit living in the Canadian Arctic. While environmental factors such as climate change decreased the accessibility and availability of many country food species, new species were introduced into regions where they were previously unavailable. An adaptation such as turning to alternate country food species can be a viable solution to substitute...

  20. Changing seasonality and phenological responses of free-living male arctic ground squirrels: the importance of sex.

    Science.gov (United States)

    Sheriff, Michael J; Richter, Melanie M; Buck, C Loren; Barnes, Brian M

    2013-08-19

    Many studies have addressed the effects of climate change on species as a whole; however, few have examined the possibility of sex-specific differences. To understand better the impact that changing patterns of snow-cover have on an important resident Arctic mammal, we investigated the long-term (13 years) phenology of hibernating male arctic ground squirrels living at two nearby sites in northern Alaska that experience significantly different snow-cover regimes. Previously, we demonstrated that snow-cover influences the timing of phenological events in females. Our results here suggest that the end of heterothermy in males is influenced by soil temperature and an endogenous circannual clock, but timing of male emergence from hibernation is influenced by the timing of female emergence. Males at both sites, Atigun and Toolik, end heterothermy on the same date in spring, but remain in their burrows while undergoing reproductive maturation. However, at Atigun, where snowmelt and female emergence occur relatively early, males emerge 8 days earlier than those at Toolik, maintaining a 12-day period between male and female emergence found at each site, but reducing the pre-emergence euthermic period that is critical for reproductive maturation. This sensitivity in timing of male emergence to female emergence will need to be matched by phase shifts in the circannual clock and responsiveness to environmental factors that time the end of heterothermy, if synchrony in reproductive readiness between the sexes is to be preserved in a rapidly changing climate. PMID:23836786

  1. Understanding Pan-Arctic Tundra Vegetation Change Through Long-term Remotely Sensed Data

    Science.gov (United States)

    Bhatt, U.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2012-12-01

    The goal of this paper is to present an analysis of the seasonality of tundra vegetation variability and change using long-term remotely sensed data as well as ground based measurements and reanalyses. An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI). Coherent variability between NDVI, springtime coastal sea ice (passive microwave) and land surface temperatures (AVHRR) has also been established. Satellite based snow and cloud cover data sets are being incorporated into this analysis. The Arctic tundra is divided into domains based on Treshnikov divisions that are modified based on floristic provinces. There is notable heterogeneity in Pan-Arctic vegetation and climate trends, which necessitates a regional analysis. This study uses remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2010. The GIMMS NDVI3g data has been corrected for biases during the spring and fall, with special focus on the Arctic. Trends of Maximum NDVI (MaxNDVI), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), and open water area are calculated for the Pan Arctic. Remotely sensed snow data trends suggest varying patterns throughout the Arctic and may in part explain the heterogeneous MaxNDVI trends. Standard climate data (station, reanalysis, and model data) and ground observations are used in the analysis to provide additional support for hypothesized mechanisms. Overall, we find that trends over the 30-year record are changing as evidenced by the following examples from recent years. The sea ice decline has increased in Eurasia and slowed in North America. The weekly AVHRR landsurface temperatures reveal that there has been summer cooling over Eurasia and that the warming over North America has slowed. The MaxNDVI rates of change have diverged between N. America and Eurasia

  2. Changes in Arctic warm and cold spell occurrence during winter and summer

    Science.gov (United States)

    Matthes, Heidrun; Rinke, Annette; Dethloff, Klaus

    2016-04-01

    In the Arctic, climate change manifests with the strongest warming trends on the globe, especially in the cold season, associated with Arctic Amplification. However, climate change is not restricted to mean temperature but also expresses itself in changes of temperature extremes. It is under debate if climate extremes change similarly strong, and what mechanisms apply. Our study provides detailed regional information about two selected temperature extreme indices in the Arctic, namely warm and cold spells in winter and summer. Both indices detect lasting cold respectively warm periods that are based on extreme temperatures: cold nights as days where the daily minimum temperature is below the 10th percentile of minimum temperatures and warm day times where the daily maximum temperature is above the 90th percentile of maximum temperatures. We analyze the temporal evolution and variability of warm and cold spells from 1979-2013, based on daily station data and the ERA-Interim reanalysis. Calculated trends from both datasets suggest a widespread decrease of cold spells in winter and summer of up to -4 days/decade, with regional patches where trends are statistically significant throughout the Arctic. Winter trends are spatially heterogeneous, the reanalysis also shows small areas with statistically significant increases of cold spells throughout Siberia. Calculated changes in warm spells from both datasets are mostly small throughout the Arctic (below ± 1 day/decade) and statistically not significant. Remarkable exceptions are the Lena river basin in winter with a statistically significant decrease of up to 1.5 days/decade and areas in Scandinavia with statistically significant increases of up to 2.5 days/decade in winter and summer (again from both datasets). Changes in both warm and cold spells may be caused by two separate mechanisms: changes in occurrence of the underlying extremes (changes in the number of cold nights and warm daytimes) or changes in the temporal

  3. The Arctic Sea ice in the CMIP3 climate model ensemble – variability and anthropogenic change

    Directory of Open Access Journals (Sweden)

    L. K. Behrens

    2012-12-01

    Full Text Available The strongest manifestation of global warming is observed in the Arctic. The warming in the Arctic during the recent decades is about twice as strong as in the global average and has been accompanied by a summer sea ice decline that is very likely unprecedented during the last millennium. Here, Arctic sea ice variability is analyzed in the ensemble of CMIP3 models. Complementary to several previous studies, we focus on regional aspects, in particular on the Barents Sea. We also investigate the changes in the seasonal cycle and interannual variability. In all regions, the models predict a reduction in sea ice area and sea ice volume during 1900–2100. Toward the end of the 21st century, the models simulate higher sea ice area variability in September than in March, whereas the variability in the preindustrial control runs is higher in March. Furthermore, the amplitude and phase of the sea ice seasonal cycle change in response to enhanced greenhouse warming. The amplitude of the sea ice area seasonal cycle increases due to the very strong sea ice area decline in September. The seasonal cycle amplitude of the sea ice volume decreases due to the stronger reduction of sea ice volume in March.

    Multi-model mean estimates for the late 20th century are comparable with observational data only for the entire Arctic and the Central Arctic. In the Barents Sea, differences between the multi-model mean and the observational data are more pronounced. Regional sea ice sensitivity to Northern Hemisphere average surface warming has been investigated.

  4. US CLIVAR Working Group: Arctic Change and Possible Influence on Mid-latitude Climate and Weather

    Science.gov (United States)

    Cohen, J. L.; Zhang, X.

    2015-12-01

    The Arctic has warmed more than twice as fast as the global average, a phenomenon known as Arctic amplification (AA). These profound changes to the Arctic system have coincided with a period of ostensibly more frequent events of extreme weather across the Northern Hemisphere mid-latitudes, including extreme heat and rainfall events and recent severe winters. The possible link between Arctic change and mid-latitude weather has spurred a rush of new observational and modeling studies. These studies have argued that heavy precipitation events and heat waves are at least partially attributable to Arctic warming. A growing number of recent studies even argue that recent extreme winter weather is related to AA. In part due to the high impact of extreme weather on our society, some of these studies linking AA to the increased frequency of extreme weather have garnered public and media attention. At the same time, uncertainties from the large intrinsic variability of the system, the short observational record due to the recentness of AA and the shortcomings of global climate models have also resulted in much skepticism in any argued links between AA and severe weather. This in turn has resulted in a number of workshops trying to frame the problem and laying the groundwork to improve our understanding of Arctic-mid-latitude linkages and accurate attribution of extreme weather events. Although these workshops identified existing problems and difficulties, and provided broad recommendations, they did not synthesize the diversified research results to identify where community consensus and gaps exist. Therefore we have assembled many of the leading scientists researching Arctic-mid-latitude linkages as part of a US CLIVAR working group. Through the three-year efforts of this working group, we will use the outcome of the previous workshops and newly planned activities to guide the synthesis efforts, coordinate on-going research to fill out key gaps, and provide specific

  5. Determination of changes in the state of the Arctic ice pack using the NPS Pan-Arctic coupled ice-ocean model

    OpenAIRE

    McNamara, Terry P.

    2006-01-01

    This thesis provides an analysis of the diminishing sea ice trend in the Arctic Ocean by examining the NPS 1/12-degree pan-Arctic coupled ice-ocean model. While many previous studies have analyzed changes in ice extent and concentration, this research focuses on ice thickness as it gives a better indication of ice volume variability. The skill of the model is examined by comparing its output to sea ice thickness data gathered during the last two decades. The first dataset used is the collecti...

  6. Variation in nematode assemblages over multiple spatial scales and environmental conditions in Arctic deep seas

    Science.gov (United States)

    Fonseca, Gustavo; Soltwedel, Thomas; Vanreusel, Ann; Lindegarth, Mats

    2010-03-01

    Although the comparison of relevant scales of variation is a prerequisite for understanding processes structuring benthic communities, deep-sea studies have traditionally examined spatial patterns of distribution of assemblages along a single scale or environmental gradient. A multiple-scale approach identifying which spatial-scale and associated environmental gradient is the most important in structuring the deep-sea benthos has never been attempted. To answer this question this study merged three independent data sets of nematodes from the Arctic deep seas. The data set included 300 samples and covered both margins of the Arctic Seas (Greenland and Norway-Spitsbergen, ca. 10 3 km distant apart), seven degrees of latitude (72-79°N), 2700 m depth differences (656-3350 m), horizontal distances between cores (20 cm) and vertical distances within the uppermost sediment layers (1-5 cm). Results showed that for abundance (N) and generic composition, differences between margins (M) and between cores (C) were the most important sources of variability, followed by water depth (D), vertical distribution within the sediment (VD) and latitude ( L). For species and genera diversity, measured as ES(50) and EG(50), the order was slightly different. For species, C was the most important source of variability, followed by D, M and L, while for genera VD was the most important. Relationships between environmental variables and the fauna were highly dependent on scale indicating that, at least for the deep-sea environment, we cannot predict the structure of nematode assemblages by scaling up or down results obtained on one or another scale. The only consistent pattern across different spatial scales was that higher abundances were associated with higher number and lower turnover of species. This raises the hypothesis that the most abundant species are also the most widespread and that abundance is the best predictor of nematode diversity patterns in deep-sea ecosystems.

  7. Changing black carbon transport to the Arctic from present day to the end of 21st century

    Science.gov (United States)

    Jiao, Chaoyi; Flanner, Mark G.

    2016-05-01

    Here we explore how climate warming under the Representative Concentration Pathway 8.5 (RCP8.5) impacts Arctic aerosol distributions via changes in atmospheric transport and removal processes. We modify the bulk aerosol module in the Community Atmosphere Model to track distributions and fluxes of 200 black carbon-like tracers emitted from different locations, and we conduct idealized experiments with and without active aerosol deposition. Changing wind patterns, studied in isolation, cause the Arctic burdens of tracers emitted from East Asia and West Europe during winter to increase about 20% by the end of the century while decreasing the Arctic burdens of North American emissions by about 30%. These changes are caused by an altered winter polar dome structure that results from Arctic amplification and inhomogeneous sea ice loss and surface warming, both of which are enhanced in the Chukchi Sea region. The resulting geostrophic wind favors Arctic transport of East Asian emissions while inhibiting poleward transport of North American emissions. When active deposition is also considered, however, Arctic burdens of emissions from northern midlatitudes show near-universal decline. This is a consequence of increased precipitation and wet removal, particularly within the Arctic, leading to decreased Arctic residence time. Simulations with present-day emissions of black carbon indicate a 13.6% reduction in the Arctic annual mean burden by the end of the 21st century, due to warming-induced transport and deposition changes, while simulations with changing climate and emissions under RCP8.5 show a 61.0% reduction.

  8. Does Reality Matter? Social and Science Bases of Public Beliefs about Arctic Change

    Science.gov (United States)

    Walker, D. A.; Schaefer, K. M.; Schaeffer, K. P.; Schaefer, K. M.; Hamilton, L.

    2015-12-01

    Surveys of public perceptions about trends in Arctic sea ice find that over two-thirds are aware of the multi-decade decrease. This awareness differs sharply across ideological and educational subgroups, however. It does not appear to shift in response to scientific and media discussion following a September with unusually low (2012) or somewhat higher (2013) sea ice extent. Other perceptions about Arctic change, such as impacts on mid-latitude weather, follow similar patterns with sharp ideological difference and limited response to external events, including science reports. On the other hand, public accuracy on basic factual questions that do not by themselves imply directional change (such as location of the North Pole) may be very low, and among some subgroups accurate knowledge shows an oddly negative correlation with self-confidence about understanding of climate change. These results from 13 surveys over 2011-2015 suggest that biased assimilation filters the acceptance of information about Arctic change, with implications for science communication.

  9. Delivering Global Environmental Change Science Through Documentary Film

    Science.gov (United States)

    Dodgson, K.; Byrne, J. M.; Graham, J. R.

    2010-12-01

    Communicating authentic science to society presents a significant challenge to researchers. This challenge stems from unfortunate misrepresentation and misunderstanding in the mainstream media, particularly in relation to science on global environmental change. This has resulted in a lower level of confidence and interest amongst audiences in regards to global environmental change and anthropogenic climate change discussions. This project describes a new form of documentary film that aspires to break this trend and increase audiences’ interest, reinvigorating discussion about global environmental change. The documentary film adopts a form that marries traditional scientific presentation with the high entertainment value of narrative storytelling. This format maintains the authenticity of the scientific message and ensures audience engagement throughout the entire presentation due to the fact that a sense of equality and intimacy between the audience and the scientists is achieved. The film features interviews with scientists studying global environmental change and opens with a comparison of authentic scientific information and the mainstream media’s presentation, and subsequent public opinion. This enables an analysis of the growing disconnect between society and the scientific community. Topics investigated include: Arctic ice melt, coastal zone hypoxia, tropical cyclones and acidification. Upon completion of the film, public and private screenings with predetermined audience demographics will be conducted using a short, standardized survey to gain feedback regarding the audience’s overall review of the presentation. In addition to the poster, this presentation features an extended trailer for the documentary film.

  10. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    Science.gov (United States)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  11. Eternal Kantele at the End of Time– Reflections on Retraditionalization of Traditional Knowledge In the Face of Rapid Ecological Changes in the Arctic

    OpenAIRE

    Mustonen, Tero

    2010-01-01

    This paper looks at the role of traditional knowledge (TK) and revitalization attempts of this knowledge in face of rapid social and ecological changes in the Arctic, more specifically in the context of human-induced Arctic climate collapse (Arctic Council 2004, Mustonen et al. 2004).

  12. Eternal Kantele at the End of Time– Reflections on Retraditionalization of Traditional Knowledge In the Face of Rapid Ecological Changes in the Arctic

    Directory of Open Access Journals (Sweden)

    Mustonen, Tero

    2008-03-01

    Full Text Available This paper looks at the role of traditional knowledge (TK and revitalization attempts of this knowledge in face of rapid social and ecological changes in the Arctic, more specifically in the context of human-induced Arctic climate collapse (Arctic Council 2004, Mustonen et al. 2004.

  13. Trophic transfer of contaminants in a changing arctic marine food web: Cumberland Sound, Nunavut, Canada.

    Science.gov (United States)

    McKinney, Melissa A; McMeans, Bailey C; Tomy, Gregg T; Rosenberg, Bruno; Ferguson, Steven H; Morris, Adam; Muir, Derek C G; Fisk, Aaron T

    2012-09-18

    Contaminant dynamics in arctic marine food webs may be impacted by current climate-induced food web changes including increases in transient/subarctic species. We quantified food web organochlorine transfer in the Cumberland Sound (Nunavut, Canada) arctic marine food web in the presence of transient species using species-specific biomagnification factors (BMFs), trophic magnification factors (TMFs), and a multifactor model that included δ(15)N-derived trophic position and species habitat range (transient versus resident), and also considered δ(13)C-derived carbon source, thermoregulatory group, and season. Transient/subarctic species relative to residents had higher prey-to-predator BMFs of biomagnifying contaminants (1.4 to 62 for harp seal, Greenland shark, and narwhal versus 1.1 to 20 for ringed seal, arctic skate, and beluga whale, respectively). For contaminants that biomagnified in a transient-and-resident food web and a resident-only food web scenario, TMFs were higher in the former (2.3 to 10.1) versus the latter (1.7 to 4.0). Transient/subarctic species have higher tissue contaminant levels and greater BMFs likely due to higher energetic requirements associated with long-distance movements or consumption of more contaminated prey in regions outside of Cumberland Sound. These results demonstrate that, in addition to climate change-related long-range transport/deposition/revolatilization changes, increasing numbers of transient/subarctic animals may alter food web contaminant dynamics.

  14. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    Science.gov (United States)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2016-07-01

    The changes of atmospheric flow patterns related to Arctic Amplification have impacts well beyond the Arctic regional weather and climate system. Here we examine modulations of vertically propagating planetary waves, a major feature of the climate response to Arctic sea ice reduction by comparing the corresponding results of an atmospheric general circulation model with reanalysis data for periods of high and low sea ice conditions. Under low sea ice condition we find enhanced coupling between troposphere and stratosphere starting in November with preferred polar stratospheric vortex breakdowns in February, which then feeds back to the troposphere. The model experiment and ERA-Interim reanalysis data agree well with respect to temporal and spatial characteristics associated with vertical planetary wave propagation including its precursors. The upward propagating planetary wave anomalies resemble a wave number 1 and 2 pattern depending on region and timing. Since our experimental design only allows influences from sea ice changes and there is a high degree of resemblance between model results and observations, we conclude that sea ice is a main driver of observed winter circulation changes.

  15. Trophic transfer of contaminants in a changing arctic marine food web: Cumberland Sound, Nunavut, Canada.

    Science.gov (United States)

    McKinney, Melissa A; McMeans, Bailey C; Tomy, Gregg T; Rosenberg, Bruno; Ferguson, Steven H; Morris, Adam; Muir, Derek C G; Fisk, Aaron T

    2012-09-18

    Contaminant dynamics in arctic marine food webs may be impacted by current climate-induced food web changes including increases in transient/subarctic species. We quantified food web organochlorine transfer in the Cumberland Sound (Nunavut, Canada) arctic marine food web in the presence of transient species using species-specific biomagnification factors (BMFs), trophic magnification factors (TMFs), and a multifactor model that included δ(15)N-derived trophic position and species habitat range (transient versus resident), and also considered δ(13)C-derived carbon source, thermoregulatory group, and season. Transient/subarctic species relative to residents had higher prey-to-predator BMFs of biomagnifying contaminants (1.4 to 62 for harp seal, Greenland shark, and narwhal versus 1.1 to 20 for ringed seal, arctic skate, and beluga whale, respectively). For contaminants that biomagnified in a transient-and-resident food web and a resident-only food web scenario, TMFs were higher in the former (2.3 to 10.1) versus the latter (1.7 to 4.0). Transient/subarctic species have higher tissue contaminant levels and greater BMFs likely due to higher energetic requirements associated with long-distance movements or consumption of more contaminated prey in regions outside of Cumberland Sound. These results demonstrate that, in addition to climate change-related long-range transport/deposition/revolatilization changes, increasing numbers of transient/subarctic animals may alter food web contaminant dynamics. PMID:22957980

  16. Exploring Arctic Transpolar Drift During Dramatic Sea Ice Retreat

    DEFF Research Database (Denmark)

    Gascard, J.C.; Festy, J.; le Goff, H.;

    2008-01-01

    The Arctic is undergoing significant environmental changes due to climate warming. The most evident signal of this warming is the shrinking and thinning of the ice cover of the Arctic Ocean. If the warming continues, as global climate models predict, the Arctic Ocean will change from a perennially...... ice-covered to a seasonally ice-free ocean. Estimates as to when this will occur vary from the 2030s to the end of this century. One reason for this huge uncertainty is the lack of systematic observations describing the state, variability, and changes in the Arctic Ocean....

  17. Changes in the Arctic Ocean CO2 sink (1996-2007): A regional model analysis

    Science.gov (United States)

    Manizza, M.; Follows, M. J.; Dutkiewicz, S.; Menemenlis, D.; Hill, C. N.; Key, R. M.

    2013-12-01

    The rapid recent decline of Arctic Ocean sea ice area increases the flux of solar radiation available for primary production and the area of open water for air-sea gas exchange. We use a regional physical-biogeochemical model of the Arctic Ocean, forced by the National Centers for Environmental Prediction/National Center for Atmospheric Research atmospheric reanalysis, to evaluate the mean present-day CO2 sink and its temporal evolution. During the 1996-2007 period, the model suggests that the Arctic average sea surface temperature warmed by 0.04°C a-1, that sea ice area decreased by ˜0.1 × 106 km2 a-1, and that the biological drawdown of dissolved inorganic carbon increased. The simulated 1996-2007 time-mean Arctic Ocean CO2 sink is 58 ± 6 Tg C a-1. The increase in ice-free ocean area and consequent carbon drawdown during this period enhances the CO2 sink by ˜1.4 Tg C a-1, consistent with estimates based on extrapolations of sparse data. A regional analysis suggests that during the 1996-2007 period, the shelf regions of the Laptev, East Siberian, Chukchi, and Beaufort Seas experienced an increase in the efficiency of their biological pump due to decreased sea ice area, especially during the 2004-2007 period, consistent with independently published estimates of primary production. In contrast, the CO2 sink in the Barents Sea is reduced during the 2004-2007 period due to a dominant control by warming and decreasing solubility. Thus, the effect of decreasing sea ice area and increasing sea surface temperature partially cancel, though the former is dominant.

  18. Climate Change Influences on Species Interrelationships and Distributions in High-Arctic Greenland

    DEFF Research Database (Denmark)

    D. R., Klein; Bruun, H. H.; Lundgren, R.;

    2008-01-01

    , reproduction, and dispersal of all life forms present. Climate-associated changes in the biotic communities of the region are altering inter-species interactions, notably pollination, seed dispersal and plant-herbivore relations. Sexual reproduction and dispersal of propagules, primarily seeds, are essential...... be of particular significance to long-distance seed dispersal. In Northeast Greenland, dispersal of viable seeds may frequently occur by passage through the guts of geese and musk oxen. Research at Zackenberg on the role of insects in pollination of flowering plants has shown that Diptera species, primarily flies......, dominate among the insect species visiting flowers each summer. Diptera, Lepidoptera (butterflies and moths), Hymenoptera (bumble bees and small wasps), and one Hemiptera (true bugs) species have constituted the primary pollinators at Zackenberg. Arctic willow Salix arctica, white arctic bell heather...

  19. Change of sea ice content in the Arctic and the associated climatic effects: detection and simulation

    Directory of Open Access Journals (Sweden)

    I. I. Mokhov

    2013-01-01

    Full Text Available Modeling results of the impact of sea surface temperature and sea ice extent changes over the last decades on the formation of weather and climate anomalies are presented. It was found that the Arctic sea ice area reduction may lead to anti-cyclonic regimes’ formation causing anomalously cold winters in particular on the Russian territory. Using simulation with an atmospheric general circulation model, it is shown that the Early 20th Century Warming must have been accompanied by a large negative Arctic sea ice area anomaly in winter time. The results imply a considerable role of long-term natural climate variations in the modern sea ice area decrease. Estimates of the possible probability’s changes of the dangerous events of strong winds and high waves in the Arctic basin and favorable navigation conditions for the Northern Sea Route in the 21st century are made based on numerical model calculations. An increase of extreme wave height is found to the middle of the 21st century for Kara and Chukchi Seas as a consequence of prolonged run length and increased surface winds.

  20. Signs of the Land: Reaching Arctic Communities Facing Climate Change

    Science.gov (United States)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.

    2014-12-01

    In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.

  1. PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways): Introduction and overview

    Science.gov (United States)

    Ó Cofaigh, Colm; Briner, Jason P.; Kirchner, Nina; Lucchi, Renata G.; Meyer, Hanno; Kaufman, Darrell S.

    2016-09-01

    This special issue relates to the Second International Conference of the PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways) network which was held in Trieste, Italy in 2014. Twenty five papers are included and they address topics under four main themes: (1) The growth and decay of Arctic ice sheets; (2) Arctic sea ice and palaeoceanography; (3) Terrestrial Arctic environments and permafrost change; and (4) Holocene Arctic environmental change. Geographically the focus is circum-Arctic; the special issue includes detailed regional studies from Greenland, Scandinavia, Russia, and Arctic North America and the adjoining seas, as well as a series of synthesis-type, review papers on Fennoscandian Ice Sheet deglaciation and Holocene Arctic palaeo-climate change. The methodologies employed are diverse and include marine sediment core and geophysical investigations, terrestrial glacial geology and geomorphology, isotopic analysis of ground ice, palaeo-ecological analysis of lacustrine and terrestrial sedimentary archives, geochronology and numerical ice sheet modeling.

  2. Climate change and the loss of organic archaeological deposits in the Arctic

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn;

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types...... of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between...

  3. More Arctic research needed

    Science.gov (United States)

    Bush, Susan

    The desire to achieve a balance between Arctic and Antarctic study was the message of the Senate Committee on Commerce, Science, and Transportation, which heard testimony on the need for more Arctic research on April 24. Ted Stevens (R-Alaska) noted that since 1986, study in the area has not increased as the National Science Foundation has claimed, but rather, owing to inflation, has merely kept pace. Robert Correll, assistant director of geosciences at NSF and chair of the Interagency Arctic Oceans Working Group, gave several reasons why the Arctic is an important area for study by the scientific community. Its unique environment, he said, makes it a natural laboratory. And due to its environmental sensitivity, it may provide one of the earliest indicators of global climate change. Also, its geographic location makes it a “window on space,” some of the world's largest mineral and petroleum resources are in the Arctic, and the region has great strategic and military importance.

  4. Groundwater salinity and environmental change

    International Nuclear Information System (INIS)

    The accumulation and release of salinity from near surface environments takes place naturally as a result of climatic cycles and environmental change. Salinity stratification, both in the saturated and unsaturated zones of aquifers, may be used in certain circumstances to record past recharge events and periods of drought. Chloride, in conjunction with the stable isotopes δ18O, δ2H and other chemical and stable or radioactive indicator parameters, enables the origins of salinity and the timing of these events to be determined. Salinity may be used as a practical tool in water resource investigation to estimate recharge and discharge, to investigate palaeohydrology and in the understanding and management of groundwater in coastal regions. Human impacts have severely disturbed the natural salinity balance, especially in the past 100 years, and examples of human intervention are presented relating to dryland salinity, irrigation effects and overexploitation. (author)

  5. Little auks buffer the impact of current Arctic climate change

    DEFF Research Database (Denmark)

    Grémillet, David; Welcker, Jorg; Karnovsky, Nina J.;

    2012-01-01

    Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the impact of such changes upon marine organisms. With 40-80 million individuals, planktivorous little auks (Alle alle) are an essential component of pelagic food webs...... in this region that are potentially highly susceptible to climatic effects. Using an integrative study of their behaviour, physiology and fitness at three study sites, we evaluated the impact of ocean warming on little auks across the Greenland Sea in 2005-2007. Contrary to our hypothesis, the birds responded...... to a wide range of sea surface temperatures via plasticity of their foraging behaviour, allowing them to maintain their fitness levels unchanged. Predicted effects of climate change are significantly attenuated by such plasticity, confounding attempts to forecast future impacts of climate change by envelope...

  6. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  7. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles – variability and change

    OpenAIRE

    V. A. Semenov; Martin, T.; Behrens, L. K.; M Latif

    2015-01-01

    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research ...

  8. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    OpenAIRE

    Cristina M. Surdu; Duguay, Claude R.; Fernández Prieto, Diego

    2016-01-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions – polar oases – with longer growing ...

  9. Interpreting environmental change in coastal Alaska using traditional and scientific ecological knowledge

    Directory of Open Access Journals (Sweden)

    William Gerald Ambrose Jr.

    2014-09-01

    Full Text Available Humans who interact directly with local ecosystems possess traditional ecological knowledge that enables them to detect and predict ecosystem changes. Humans who use scientific ecological methods can use species such as mollusks that lay down annual growth rings to detect past environmental variation and use statistical models to make predictions about future change. We used traditional ecological knowledge shared by local Iñupiaq, combined with growth histories of two species of mollusks, at different trophic levels, to study local change in the coastal ecosystems of Kotzebue, Alaska, an area in the Arctic without continuous scientific monitoring. For the mollusks, a combination of the Arctic Oscillation and total Arctic ice coverage, and summer air temperature and summer precipitation explained 79-80% of the interannual variability in growth of the suspension feeding Greenland cockle (Serripes groenlandicus and the predatory whelk (Neptunea hero respectively, indicating these mollusks seem to be impacted by local and regional environmental parameters, and should be good biomonitors for change in coastal Alaska. The change experts within the Kotzebue community were the elders and the fishers, and they observed changes in species abundance and behaviors, including benthic species, and infer that a fundamental change in the climate has taken place within the area. We conclude combining traditional and scientific ecological knowledge provides greater insight than either approach alone, and offers a powerful way to document change in an area that otherwise lacks widespread quantitative monitoring.

  10. Towards a calculation of organic carbon release from erosion of Arctic coasts using non-fractal coastline datasets

    NARCIS (Netherlands)

    Lantuit, H.; Rachold, V.; Pollard, W. H.; Steenhuisen, F.; Odegard, R.; Hubberten, H. -W.

    2009-01-01

    Changing environmental conditions in the Arctic will affect patterns of coastal erosion processes and thus modify the carbon cycle in the Arctic Ocean. To address this issue, a coastal classification of the Arctic was established to provide the first reliable estimate of organic carbon input from co

  11. Recent changes in the multi-year ice area budget of the Canadian Arctic Archipelago

    Science.gov (United States)

    Howell, Stephen; Pizzolato, Larissa; Derksen, Chris; Brady, Michael

    2014-05-01

    The Canadian Arctic Archipelago (CAA) is intricate collection of islands and channels located on the North American continental shelf. The deep-water route of the North West Passage crosses through the CAA near 75°N connecting the Atlantic and Pacific Oceans. The major challenge to safe navigation of the North West Passage is the presence of multi-year sea ice (MYI). In recent years, MYI conditions within the CAA during September have begun to decrease considerably with 2011 and 2012 being the lightest MYI years on record since 1968. Recent light MYI years within the CAA are associated with recent openings of the North West Passage (i.e. 2007, 2008, 2010, 2011 and 2012). MYI within the CAA is either imported from the Arctic Ocean or grown in situ and therefore in order to understand the processes contributing to these recent reductions in September MYI within the CAA we derived the first estimates of the MYI area budget of the CAA using RADARSAT-1 and RADARSAT-2 imagery from 1997-2012. Overall, there has been a reduced amount of Arctic Ocean MYI inflow into the CAA during the summer months since 2007. The latter process can be attributed to more frequent high sea level pressure anomalies over the Beaufort Sea and Canadian Basin. The amount of MYI grown in situ within the CAA has also reduced because of longer melt seasons reducing the survivability of seasonal ice over. MYI outflow to Baffin Bay from the CAA has been relatively consistent over the period. Interestingly, the recent reduced amount of MYI within the CAA, particularly noticeable since 2007, was found to be quantitatively linked with a step change increase in observed Arctic marine shipping activity following the dramatic summer sea ice reductions that began in 2007.

  12. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions.

    Directory of Open Access Journals (Sweden)

    Steeve Comeau

    Full Text Available Thecosome pteropods (pelagic mollusks can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO(2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO(2 levels of 280, 380, 550, 760 and 1020 microatm and at control (0 degrees C and elevated (4 degrees C temperatures. The respiration rate was unaffected by pCO(2 at control temperature, but significantly increased as a function of the pCO(2 level at elevated temperature. pCO(2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO(3, measured as the incorporation of (45Ca, significantly declined as a function of pCO(2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.

  13. Why unprecedented ozone loss in the Arctic in 2011? Is it related to climatic change?

    Directory of Open Access Journals (Sweden)

    J.-P. Pommereau

    2013-01-01

    Full Text Available An unprecedented ozone loss occurred in the Arctic in spring 2011. The details of the event are re-visited from the twice-daily total ozone and NO2 columns measurements of the eight SAOZ/NDACC (Système d'Analyse par Observation Zénitale/Network for Detection of Atmospheric Composition Changes stations in the Arctic. It is shown that the total ozone depletion in the polar vortex reached 38% (approx. 170 DU by the end of March that is larger than the 30% of the previous record in 1996. Asides from the long extension of the cold stratospheric NAT PSC period, the amplitude of the event is shown to be resulting from a record daily total ozone loss rate of 0.7% day���1 after mid-February, never seen before in the Arctic but similar to that observed in the Antarctic over the last 20 yr. This high loss rate is attributed to the absence of NOx in the vortex until the final warming, in contrast to all previous winters where, as shown by the early increase of NO2 diurnal increase, partial renoxification is occurring by import of NOx or HNO3 from the outside after minor warming episodes, leading to partial chlorine deactivation.

    The cause of the absence of renoxification and thus of high loss rate, is attributed to a vortex strength similar to that of the Antarctic but never seen before in the Arctic. The total ozone reduction on 20 March was identical to that of the 2002 Antarctic winter, which ended around 20 September, and a 15-day extension of the cold period would have been enough to reach the mean yearly amplitude of the Antarctic ozone hole. However there is no sign of trend since 1994, neither in PSC volume, early winter denitrification, late vortex renoxification, and vortex strength nor in total ozone loss. The unprecedented large Arctic ozone loss in 2011 appears to resulting from an extreme meteorological event and there is no indication of possible strengthening

  14. Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change?

    Directory of Open Access Journals (Sweden)

    J.-P. Pommereau

    2013-05-01

    Full Text Available An unprecedented ozone loss occurred in the Arctic in spring 2011. The details of the event are revisited from the twice-daily total ozone and NO2 column measurements of the eight SAOZ/NDACC (Système d'Analyse par Observation Zénithale/Network for Detection of Atmospheric Composition Changes stations in the Arctic. It is shown that the total ozone depletion in the polar vortex reached 38% (approx. 170 DU by the end of March, which is larger than the 30% of the previous record in 1996. Aside from the long extension of the cold stratospheric NAT PSC period, the amplitude of the event is shown to be resulting from a record daily total ozone loss rate of 0.7% d−1 after mid-February, never seen before in the Arctic but similar to that observed in the Antarctic over the last 20 yr. This high loss rate is attributed to the absence of NOx in the vortex until the final warming, in contrast to all previous winters where, as shown by the early increase of NO2 diurnal increase, partial renoxification occurs by import of NOx or HNO3 from the outside after minor warming episodes, leading to partial chlorine deactivation. The cause of the absence of renoxification and thus of high loss rate, is attributed to a vortex strength similar to that of the Antarctic but never seen before in the Arctic. The total ozone reduction on 20 March was identical to that of the 2002 Antarctic winter, which ended around 20 September, and a 15-day extension of the cold period would have been enough to reach the mean yearly amplitude of the Antarctic ozone hole. However there is no sign of trend since 1994, either in PSC (polar stratospheric cloud volume (volume of air cold enough to allow formation of PSCs, early winter denitrification, late vortex renoxification, and vortex strength or in total ozone loss. The unprecedented large Arctic ozone loss in 2011 appears to result from an extreme meteorological event and there is no indication of possible strengthening related to

  15. Environmental Sensitivity Index (ESI) Atlas: Alaska - 2, Northwest Arctic - 2002, North Slope - 2005, Western - 2003, maps and geographic systems data (NODC Accession 0049913)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Northwest Arctic, North Slope, and Western Alaska. ESI data characterize estuarine...

  16. Climate change and the loss of organic archaeological deposits in the Arctic.

    Science.gov (United States)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn; Westergaard-Nielsen, Andreas; Elberling, Bo

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action. PMID:27356878

  17. Climate change and the loss of organic archaeological deposits in the Arctic

    Science.gov (United States)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn; Westergaard-Nielsen, Andreas; Elberling, Bo

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action. PMID:27356878

  18. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  19. Monitoring Arctic sea ice phenology change using hypertemporal remotely sensed data: 1989-2010

    Science.gov (United States)

    Tan, Wenxia; LeDrew, Ellsworth

    2016-07-01

    Arctic sea ice has undergone a significant decline in recent years. Previous studies have demonstrated that the annual sea ice cycle has experienced earlier melt and later freeze up, leading to a significant reduction in minimum sea ice extents and the lengthening of the melting season. The Arctic is being transformed into a regime of widespread seasonal ice with a large loss of old and thick multiyear ice in recent years. However, the sea ice change exhibits considerable interannual and regional variability at different spatial and temporal scales. In this study, we present a new method for hypertemporal sea ice data change detection based on the annual sea ice concentration (SIC) profile for the melt months of each year. A decision tree-based classification is adopted to group pixels with similar annual SIC profiles, and a phenology map of each year is generated for visualization. The phenoregion map visualizes the spatial and temporal configurations of ice melt process for a year. The change detection objective is achieved by comparing the phenoregion number of the same pixel in different years. The algorithm further leads to interpretation of anomalies to obtain change maps at the pixel level. Compared to previous sea ice studies that mainly focused on a particular spatial region and commonly use time period averages, the proposed pixel-based approach has the potential to map sea ice data change both temporally and spatially.

  20. Response of Arctic marine microalgae to changes of salinity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An algal assemblage collected from the bottom of floe in the Greenland Sea was batchcultured at 1 ± 1℃ and 10 salinity gradients varied from 4.0 to 90.8 for 19 d. The growth for both the algal community and individual populations was characterized by an initial lag phase of six days followed by positive growth. Maximum growth rates were obtained as 0.19/d for the algal community and 0.32 to 0.39 d- 1 for individual populations for the whole experiment period, which mostly occurred at the lower salinities. The competition between the algal species and the evolution of the algal assemblages under the salinity changes was checked. After 14-d culture, the dominating algae in the lower salinities were centric diatoms, pennate diatoms and phytoflagellates, while ones in the higher salinities almost belonged to pennate diatoms. It is suggested that the sea ice algal community from the Greenland Sea prefer lower salinities to higher ones, and the decrease in salinity in small ranges could stimulate the growth of sea ice algae.

  1. Flux variations and vertical distributions of microzooplankton (Radiolaria in the western Arctic Ocean: environmental indices in a warming Arctic

    Directory of Open Access Journals (Sweden)

    T. Ikenoue

    2014-12-01

    Full Text Available The vertical distribution of radiolarians was investigated using a vertical multiple plankton sampler (100–0, 250–100, 500–250 and 1000–500 m water depths, 62 μm mesh size at the Northwind Abyssal Plain and southwestern Canada Basin in September 2013. To investigate seasonal variations in the flux of radiolarians in relation to sea-ice and water masses, time series sediment trap system was moored at Station NAP (75°00' N, 162°00' W, bottom depth 1975 m in the western Arctic Ocean during October 2010–September 2012. We showed characteristics of fourteen abundant radiolarian taxa related to the vertical hydrographic structure in the western Arctic Ocean. We found the Ceratocyrtis histricosus, a warm Atlantic water species, in net samples, indicating that it has extended its habitat into the Pacific Winter Water. The radiolarian flux was comparable to that in the North Pacific Oceans. Amphimelissa setosa was dominant during the open water and the beginning and the end of ice cover seasons with well-grown ice algae, ice fauna and with alternation of stable water masses and deep vertical mixing. During the sea-ice cover season, however, oligotrophic and cold-water tolerant Actinommidae was dominant and the productivity of radiolaria was lower and its species diversity was greater, which might be associated with the seasonal increase of solar radiation that induce the growth of algae on the ice and the other phytoplankton species under the sea-ice. These indicated that the dynamics of sea-ice was a major factor affecting the productivity, distribution, and composition of radiolarian fauna.

  2. Flux variations and vertical distributions of microzooplankton (Radiolaria) in the western Arctic Ocean: environmental indices in a warming Arctic

    Science.gov (United States)

    Ikenoue, T.; Bjørklund, K. R.; Kruglikova, S. B.; Onodera, J.; Kimoto, K.; Harada, N.

    2014-12-01

    The vertical distribution of radiolarians was investigated using a vertical multiple plankton sampler (100-0, 250-100, 500-250 and 1000-500 m water depths, 62 μm mesh size) at the Northwind Abyssal Plain and southwestern Canada Basin in September 2013. To investigate seasonal variations in the flux of radiolarians in relation to sea-ice and water masses, time series sediment trap system was moored at Station NAP (75°00' N, 162°00' W, bottom depth 1975 m) in the western Arctic Ocean during October 2010-September 2012. We showed characteristics of fourteen abundant radiolarian taxa related to the vertical hydrographic structure in the western Arctic Ocean. We found the Ceratocyrtis histricosus, a warm Atlantic water species, in net samples, indicating that it has extended its habitat into the Pacific Winter Water. The radiolarian flux was comparable to that in the North Pacific Oceans. Amphimelissa setosa was dominant during the open water and the beginning and the end of ice cover seasons with well-grown ice algae, ice fauna and with alternation of stable water masses and deep vertical mixing. During the sea-ice cover season, however, oligotrophic and cold-water tolerant Actinommidae was dominant and the productivity of radiolaria was lower and its species diversity was greater, which might be associated with the seasonal increase of solar radiation that induce the growth of algae on the ice and the other phytoplankton species under the sea-ice. These indicated that the dynamics of sea-ice was a major factor affecting the productivity, distribution, and composition of radiolarian fauna.

  3. Climate change and the loss of organic archaeological deposits in the Arctic

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn;

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types...... of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between......, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology...

  4. Potential NEE Budget and Prediction of Future Emissions under Climate Change in an Arctic Wet Sedge Tundra, Barrow, Alaska .

    Science.gov (United States)

    Kalhori, A. A. M.; Oechel, W. C.; Burba, G. G.; Gioli, B.; Zona, D.; Murphy, P.; Goodrich, J. P.

    2015-12-01

    Arctic ecosystems are critically affected by climate change and also play an important role in the global carbon budget. Presented here is a 14-year study of growing season CO2 fluxes in an Alaskan wet sedge tundra ecosystem -which is about 2 km south of the Arctic Ocean and is adjacent to the NOAA Climate Monitoring & Diagnostic Laboratory (CMDL)- and the key environmental controls on these fluxes. We have measured net ecosystem exchange of CO2 (NEE) using the eddy covariance technique from 1998 to 2014 in order to quantify the long-term seasonal and inter-annual variability in the CO2 budget over this period. The WPL correction and the surface heating correction were applied to all CO2 flux data from the open-path instrument (Burba et al., 2008). Despite several gaps in measurement years, we found that growing season net CO2 uptake has significantly increased since the 2000s and that NEE is sensitive to dry conditions in tundra. Our data suggest this increase in CO2 uptake (larger than -6 μmol m-2 s-1) occurred during the initial thawing period and during the June-August growing season. However, there is a decreasing trend in total summer uptake beginning in 2011, continuing until the end of 2014. The mean diurnal pattern for the summer period over the course of 14 years (Figure below), indicates inter-annual variability associated with the key environmental controls on these CO2 fluxes. Monthly trends in Photosynthetically Active Radiation (PAR), net radiation, relative humidity as well as air temperature and soil temperature have consistently simultaneous effects on the variation in NEE. More significant effect of PAR than temperature on summer NEE had been observed for the first period of this study, however our ANOVA, multiple regression and t-test results showed a stronger effect of temperature than PAR in the recent years assuming that Arctic warming will be greater than average global warming. Also the diurnal pattern shows that the maximum daily carbon

  5. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    Science.gov (United States)

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  6. Marine Arctic science capability making big strides

    Science.gov (United States)

    Johnson, Leonard; Brass, Garrett

    The profound influence of the Arctic Ocean on global environment, the rapid variability of Arctic processes, and the unresolved geology of the ocean floor have led to growing scientific interest in this region. Ongoing studies are investigating recent historical processes and modern processes such as changes in ocean circulation and ice cover patterns. Sediments beneath the Arctic Ocean record long- and short-term waxing and waning of the cryosphere in the Northern Hemisphere and its linkages to bottom water renewal and faunal adaptation. Underlying basement rocks reflect the tectonic history of the ocean basin, including its ridges and plateaus, which are unsampled and of unknown composition and origin. The vulnerability of Arctic populations to environmental problems makes the need to understand the region even more compelling (see, for example, Arctic Monitoring and Assessment Programme, 1997; also see Web site http://www.grida.no/amap).

  7. The USSR/Russia, Norway and international co-operation on environmental matters in the Arctic, 1984-1996

    OpenAIRE

    Karelina, Irina

    2013-01-01

    This thesis examines the USSR, Norway and international cooperation on environmental matters in the Arctic (1984-1996). During the Cold War, the region attracted much attention from of the main adversaries. It was a playground for strategic planners and a laboratory for the improvement of military technology. But at the same time these territories were also – at least potentially – a source for contacts between scientist of the East and the West. Especially in the last decade of the Cold War,...

  8. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group

    Directory of Open Access Journals (Sweden)

    Alan J. Parkinson

    2014-09-01

    Full Text Available The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

  9. Climate change and water security with a focus on the Arctic

    Directory of Open Access Journals (Sweden)

    Birgitta Evengard

    2011-10-01

    Full Text Available Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed.

  10. Conceptual data modeling of wildlife response indicators to ecosystem change in the Arctic

    Science.gov (United States)

    Walworth, Dennis; Pearce, John M.

    2015-01-01

    Large research studies are often challenged to effectively expose and document the types of information being collected and the reasons for data collection across what are often a diverse cadre of investigators of differing disciplines. We applied concepts from the field of information or data modeling to the U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative to prototype an application of information modeling. The USGS CAE initiative is collecting information from marine and terrestrial environments in Alaska to identify and understand the links between rapid physical changes in the Arctic and response of wildlife populations to these ecosystem changes. An associated need is to understand how data collection strategies are informing the overall science initiative and facilitating communication of those strategies to a wide audience. We explored the use of conceptual data modeling to provide a method by which to document, describe, and visually communicate both enterprise and study level data; provide a simple means to analyze commonalities and differences in data acquisition strategies between studies; and provide a tool for discussing those strategies among researchers and managers.

  11. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity

    Science.gov (United States)

    Meier, Walter N.; Hovelsrud, Greta K.; Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.; Makshtas, Alexander; Reist, James D.

    2014-09-01

    Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30%, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40% decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting people living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction. Significant progress has been made in recent years in understanding of Arctic sea ice and its role in climate, the ecosystem, and human activities. However, significant challenges remain in furthering the knowledge of the processes, impacts, and future evolution of the system.

  12. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    previous findings on the potential influence of Arctic gateways on ocean overturning and also suggests that Northern Hemisphere climate, particularly in the North Atlantic, was very sensitive to changes in Arctic seaways. This result is of particular significance when considered in the context of the Paleocene Eocene Thermal Maximum (PETM). Volcanic activity prior to the PETM may have been responsible for the formation of a sub-aerial barrier in the North Atlantic, and consequently may have driven warming of intermediate waters sufficient to destabilize methane clathrates. Evidence for freshening of Arctic ocean waters prior to the PETM would support this hypothesis.

  13. Numerical simulation of the impact of underlying surface changes on Arctic climate

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; XIA Huasheng

    2014-01-01

    Using a regional atmospheric model for Arctic climate simulation, two groups of numerical experiments were carried out to study the inlfuence of changes in the underlying surface (land surface, sea surface, and sea ice (LS/SS/SI)) from mild ice years to severe ice years on Arctic climate. In each experiment in the same group, the initial values and lateral boundary conditions were identical. The underlying surface conditions were updated every six hours. The model was integrated for 10 a and monthly mean results were saved for analysis. Variations in annual mean surface air temperature were closely correlated with changes in LS/SS/SI, with a maximum change of more than 15 K. The impact of changes in LS/SS/SI on low-level air temperature was also evident, with signiifcant changes seen over the ocean. However, the maximum change was less than 2 K. For air temperature above 700 hPa, the impact of LS/SS/SI changes was not signiifcant. The distribution of annual mean sea level pressure differences was coincident with the distribution of annual mean sea ice concentration. The difference centers were located in the Barents Sea, the Kara Sea, and the East Siberian Sea, with the maximum value exceeding 3 hPa. For geopotential height, some results passed and some failed at-test. For results passing thet-test, the area of signiifcance did not decrease with height. There was a signiifcant difference at high levels, with a value of 27 gpm in the difference center at 200 hPa.

  14. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    Science.gov (United States)

    Stempniewicz, Lech; Błachowiak-Samołyk, Katarzyna; Węsławski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate

  15. Forty years of change: a northern Alaskan seabird's response to a warming Arctic

    Science.gov (United States)

    Divoky, G.; Suydam, R.

    2012-12-01

    While recent decadal-scale decreases in the snow and ice habitats of the Arctic are well documented, there are few concurrent long-term biological data sets, especially for species dependent on the cryopelagic ecosystem associated with arctic sea ice. The Black Guillemot (Cepphus grylle mandti), a marine apex predator specializing on prey associated with arctic pack ice has been studied annually since 1975 at a colony on Cooper Island, 35 km east of Point Barrow, Alaska. Over the last four decades critical components of the species' life history have been found to be sensitive to a number of physical and biological effects associated with the region's increasing atmospheric temperatures. Black Guillemots first colonized northern Alaska in the late 1960s and early 1970s as the annual snow-free period increased sufficiently to allow access to nesting cavities for the 80 days required to successfully raise young. At the Cooper Island colony abundance increased during the 1970s and 1980s as summer length continued to increase and wooden nest cavities were provided to increase sample size for monitoring. During this time breeding success was high as summer sea ice remained in the 30-km foraging range of guillemot parents, providing Arctic Cod (Boreogadus saida), the principal forage fish associated with sea ice and the preferred prey of Black Guillemots. Decreasing summer sea ice extent in the 1990s that accelerated in the last decade reduced the guillemots' access to cryopelagic prey during the critical period when parents are provisioning nestlings. Distance from the colony to the pack ice on 15 August averaged 100 km from 2003-2011. This ice retreat had a major affect on Arctic Cod availability, causing parent guillemots to shift to lower quality benthic fish resulting in decreases in nestling quality and breeding success when sea ice had retreated and SST was > 4o C. Increasing loss of summer ice in the last decade also facilitated changes in the distribution of a

  16. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

    Science.gov (United States)

    Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.

    2013-01-01

    Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

  17. Integrating Research on Global Climate Change and Human Use of the Oceans: a Geospatial Method for Daily Monitoring of Sea Ice and Ship Traffic in the Arctic

    Science.gov (United States)

    Eucker, W.; McGillivary, P. A.

    2012-12-01

    One apparent consequence of global climate change has been a decrease in the extent and thickness of Arctic sea ice more rapidly than models have predicted, while Arctic ship traffic has likewise increased beyond economic predictions. To ensure representative observations of changing climate conditions and human use of the Arctic Ocean, we concluded a method of tracking daily changes in both sea ice and shipping in the Arctic Ocean was needed. Such a process improves the availability of sea ice data for navigational safety and allows future developments to be monitored for understanding of ice and shipping in relation to policy decisions appropriate to optimize sustainable use of a changing Arctic Ocean. The impetus for this work was the 2009 Arctic Marine Shipping Assessment (AMSA) which provided baseline data on Arctic ship traffic. AMSA was based on responses from circumpolar countries, was manpower intensive, and took years to compile. A more timely method of monitoring human use of the Arctic Ocean was needed. To address this, a method of monitoring sea ice on a scale relevant to ship-navigation (internationally required on ships over a certain size, which includes most commercial vessels in the Arctic Ocean. Daily AIS and sea ice observations were chosen for this study. Results of this method of geospatial analysis of the entire arctic are presented for a year long period from April 1, 2010 to March 31, 2011. This confirmed the dominance of European Arctic ship traffic. Arctic shipping is maximal during August and diminishes in September with a minimum in winter, although some shipping continues year-round in perennially ice-free areas. Data are analyzed for the four principal arctic quadrants around the North Pole by season for number and nationality of vessels. The goal of this study was not merely to monitor ship traffic and ice conditions concurrently, but also to demonstrate a new method of ocean monitoring based on daily assimilation, data fusion, and

  18. Environmental management systems and organizational change

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg

    2000-01-01

    The establishment of an environmental management system and its continuous improvements is a process towards a reduction of the companies' and the products' environmental impact. The organizations' ability to change is crucial in order to establish a dynamic environmental management system...... and environmental management systems. The structure of the organizations has changed, the relationships with external partners have strengthened and the implementation of quality and environmental management systems has trimmed the organizations to manage and develop these areas. The organization analysis is based...... and to achieve continuous environmental improvements. The study of changes gives an insight into how organizations function, as well as their forces and barriers. This article focuses on the organizational changes that two companies have undergone from 1992 up until today in connection with their quality...

  19. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    Science.gov (United States)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  20. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.

    Science.gov (United States)

    Macdonald, R W; Harner, T; Fyfe, J

    2005-04-15

    The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and change in ocean currents and watermass distribution. It is likely that these primary changes have altered the carbon cycle and biological systems, but the difficulty of observing these together with sporadic, incomplete time series makes it difficult to evaluate what the changes have been. Because contaminants enter global systems and transport through air and water, the changes listed above will clearly alter contaminant pathways. Here, we review what is known about recent changes using the Arctic Oscillation as a proxy to help us understand the forms under which global change will be manifest in the Arctic. For Pb, Cd and Zn, the Arctic is likely to become a more effective trap because precipitation is likely to increase. In the case of Cd, the natural cycle in the ocean appears to have a much greater potential to alter exposure than do human releases of this metal. Mercury has an especially complex cycle in the Arctic including a unique scavenging process (mercury depletion events), biomagnifying foodwebs, and chemical transformations such as methylation. The observation that mercury seems to be increasing in a number of aquatic species whereas atmospheric gaseous mercury shows little sign of change suggests that factors related to change in the physical system (ice cover, permafrost degradation, organic carbon cycling) may be more important than human activities. Organochlorine contaminants offer a surprising array of possibilities for changed pathways. To change in precipitation patterns can be added change in ice cover (air-water exchange), change in food webs either from the top down or from the bottom up (biomagnification), change in the organic carbon cycle and change in diets. Perhaps the most interesting

  1. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data

    International Nuclear Information System (INIS)

    The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and change in ocean currents and watermass distribution. It is likely that these primary changes have altered the carbon cycle and biological systems, but the difficulty of observing these together with sporadic, incomplete time series makes it difficult to evaluate what the changes have been. Because contaminants enter global systems and transport through air and water, the changes listed above will clearly alter contaminant pathways. Here, we review what is known about recent changes using the Arctic Oscillation as a proxy to help us understand the forms under which global change will be manifest in the Arctic. For Pb, Cd and Zn, the Arctic is likely to become a more effective trap because precipitation is likely to increase. In the case of Cd, the natural cycle in the ocean appears to have a much greater potential to alter exposure than do human releases of this metal. Mercury has an especially complex cycle in the Arctic including a unique scavenging process (mercury depletion events), biomagnifying foodwebs, and chemical transformations such as methylation. The observation that mercury seems to be increasing in a number of aquatic species whereas atmospheric gaseous mercury shows little sign of change suggests that factors related to change in the physical system (ice cover, permafrost degradation, organic carbon cycling) may be more important than human activities. Organochlorine contaminants offer a surprising array of possibilities for changed pathways. To change in precipitation patterns can be added change in ice cover (air-water exchange), change in food webs either from the top down or from the bottom up (biomagnification), change in the organic carbon cycle and change in diets. Perhaps the most interesting

  2. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.

    Science.gov (United States)

    Macdonald, R W; Harner, T; Fyfe, J

    2005-04-15

    The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and change in ocean currents and watermass distribution. It is likely that these primary changes have altered the carbon cycle and biological systems, but the difficulty of observing these together with sporadic, incomplete time series makes it difficult to evaluate what the changes have been. Because contaminants enter global systems and transport through air and water, the changes listed above will clearly alter contaminant pathways. Here, we review what is known about recent changes using the Arctic Oscillation as a proxy to help us understand the forms under which global change will be manifest in the Arctic. For Pb, Cd and Zn, the Arctic is likely to become a more effective trap because precipitation is likely to increase. In the case of Cd, the natural cycle in the ocean appears to have a much greater potential to alter exposure than do human releases of this metal. Mercury has an especially complex cycle in the Arctic including a unique scavenging process (mercury depletion events), biomagnifying foodwebs, and chemical transformations such as methylation. The observation that mercury seems to be increasing in a number of aquatic species whereas atmospheric gaseous mercury shows little sign of change suggests that factors related to change in the physical system (ice cover, permafrost degradation, organic carbon cycling) may be more important than human activities. Organochlorine contaminants offer a surprising array of possibilities for changed pathways. To change in precipitation patterns can be added change in ice cover (air-water exchange), change in food webs either from the top down or from the bottom up (biomagnification), change in the organic carbon cycle and change in diets. Perhaps the most interesting

  3. The influence of human activity in the Arctic on climate and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.P. [23834 The Clearing Dr., Eagle River, AK 99577 (United States); Boyle, M. [Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6S 1K4 (Canada); Flowers, G.E. [Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 (Canada); Weatherly, J.W. [Snow and Ice Division, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755 (United States); Hamilton, L.C. [Department of Sociology, University of New Hampshire, 20 College Road, Durham, NH 03824 (United States); Hinzman, L. [Water and Environment Research Center, University of Alaska Fairbanks, P.O. Box 755860, Fairbanks, AK 99775 (United States); Gerlach, C. [Department of Anthropology, University of Alaska Fairbanks, P.O. Box 757720, Fairbanks, AK 99775 (United States); Zulueta, R. [Department of Biology, Global Change Research Group, San Diego State University, 5500 Campanile Drive, PS-240, San Diego, CA 92182 (United States); Nicolson, C. [Department of Natural Resources Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA , 01003 (United States); Overpeck, J. [Institute for the Study of Planet Earth, University of Arizona, 715 North Park Avenue, 2nd Floor, Tucson, AZ, 85721 (United States)

    2007-05-15

    Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change.

  4. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra Arthropods using weather and seasonal variation

    NARCIS (Netherlands)

    Tulp, I.Y.M.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  5. Environmental Contaminants in American and Arctic Peregrine Falcon Eggs in Alaska, 1979-95

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Arctic and American peregrine falcons (Falco peregrinus tundrius and F. p. anatum) were listed as endangered under the Endangered Species Preservation Act (1969) in...

  6. Environmental contaminants in three eider species from Alaska and Arctic Russia

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study provides baseline data on contaminant concentrations in three eider species from coastal areas of western and northern Alaska and arctic Russia....

  7. Arctic National Wildlife Refuge: Comprehensive Conservation Plan, Environmental Impact Statement, Wilderness Review, and Wild River Plans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan CCP was written to guide management on Arctic NWR for the next 15 years. This plan outlines the Refuge vision and purpose and...

  8. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    Science.gov (United States)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  9. Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR

    International Nuclear Information System (INIS)

    Increases in air, permafrost, and sea surface temperature, loss of sea ice, the potential for increased wave energy, and higher river discharge may all be interacting to escalate erosion of arctic coastal lowland landscapes. Here we use airborne light detection and ranging (LiDAR) data acquired in 2006 and 2010 to detect landscape change in a 100 km2 study area on the Beaufort Sea coastal plain of northern Alaska. We detected statistically significant change (99% confidence interval), defined as contiguous areas (>10 m2) that had changed in height by at least 0.55 m, in 0.3% of the study region. Erosional features indicative of ice-rich permafrost degradation were associated with ice-bonded coastal, river, and lake bluffs, frost mounds, ice wedges, and thermo-erosional gullies. These features accounted for about half of the area where vertical change was detected. Inferred thermo-denudation and thermo-abrasion of coastal and river bluffs likely accounted for the dominant permafrost-related degradational processes with respect to area (42%) and volume (51%). More than 300 thermokarst pits significantly subsided during the study period, likely as a result of storm surge flooding of low-lying tundra (<1.4 m asl) as well as the lasting impact of warm summers in the late-1980s and mid-1990s. Our results indicate that repeat airborne LiDAR can be used to detect landscape change in arctic coastal lowland regions at large spatial scales over sub-decadal time periods. (letter)

  10. 末次间冰段以来北极及北半球其他地区气候变化%Climate change comparison between Arctic and other areas in the Northern Hemisphere since the last Interstade

    Institute of Scientific and Technical Information of China (English)

    许娟; 王国; 张百平

    2007-01-01

    Based on temperature reconstruction and proxy data from 14 sites in the Northern Hemisphere, this paper focused on comparing the cycles of temperature variations between the Arctic and other areas, including Atlantic, Europe, China, Asia, Pacific, Indian Ocean, and America during the transition from the last Interstade to the Last Glacial Maximum, from the Last Glacial Maximum to megathermal period in Holocene and the transition of the Little Ice Age (LIA) by the methods of Singular Spectrum Analysis (SSA) and Maximum Entropy Spectrum (MES). The results showed that environmental changes in the Arctic are most similar to that in the North American and better similar to Asia, Atlantic and Pacific, the least similar to Indian Ocean and Europe. The 1500-year oscillation of temperature existed both in Arctic and Europe.

  11. Characterization of Arctic Environment by Means of Polarimetric Synthetic Aperture Radar (PolSAR) Data and Digital Elevation Models (DEM)

    OpenAIRE

    Ullmann, Tobias

    2015-01-01

    The ecosystem of the high northern latitudes is affected by the recently changing environmental conditions. The Arctic has undergone a significant climatic change over the last decades. The land coverage is changing and a phenological response to the warming is apparent. Remotely sensed data can assist the monitoring and quantification of these changes. The remote sensing of the Arctic was predominantly carried out by the usage of optical sensors but these encounter problems in the Arctic env...

  12. Resilience, human agency and climate change adaptation strategies in the Arctic

    DEFF Research Database (Denmark)

    Sejersen, Frank

    2009-01-01

      In the Arctic, indigenous peoples, researchers and governments are working to develop climate change adaptation strategies due to the rapid changes in sea ice extent, weather conditions and in the ecosystem as such. These strategies are often based on specific perceptions of vulnerability...... and work with a number of barriers for resilience. The objective of the article is first to address the position of institutional barriers in the studies and strategies. Second the article analyses the role human agency is ascribed in proposed strategies and projects in Nunavut and Greenland. With a focus...... on institutions and human agency the question is not only ‘how do people manage to adapt?' but moreover ‘what constrains people in pursuing a given adaptation strategy?' The article introduces the concept of double agency which stresses two different aspects of human agency that can be used to understand...

  13. Relations between Arctic large-scale TEC changes and scintillations over Greenland

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Høeg, Per; von Benzon, Hans-Henrik

    The increasing dependence on GNSS-based methods and technologies for global or regionalnavigation and communication has raised concerns about the impact of space weather on thesesystems. Temporal and spatial ionosphere variations caused by driving forces, such as changes insolar radiation, solar...... wind, and the Earth’s magnetic field contribute to errors in satellite navigationpositioning and communication systems. In this study we will focus on the impact of space weatherin the Arctic region related to total electron content (TEC) and scintillation changes.Measurements from the GNSS network...... – consisting of 62 stations, while thescintillations data are based on 50 Hz sampled data from a set of sites on the west coast ofGreenland (i.e., Thule, Sisimiut, and Kangerlussuaq).The GNSS-derived data is augmented by ground-based geomagnetic measurements, such as theDst-index and magnetic H-component data...

  14. Monthly Changes in the Influence of the Arctic Oscillation on Surface Air Temperature over China

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiayou; TAN Benkui; SUO Lingling; HU Yongyun

    2007-01-01

    Partial Least Squares Regression (PLSR) is used to study monthly changes in the influence of the Arctic Oscillation (AO) on spring, summer and autumn air temperature over China with the January 500 hPa geopotential height data from 1951 to 2004 and monthly temperature data from January to November at 160 stations in China. Several AO indices have been defined with the 500-hPa geopotential data and the index defined as the first principal component of the normalized geopotential data is best to be used to study the influence of the AO on SAT (surface air temperature) in China. There are three modes through which the AO in winter influences SAT in China. The influence of the AO on SAT in China changes monthly and is stronger in spring and summer than in autumn. The main influenced regions are Northeast China and the Changjiang River drainage area.

  15. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2016-09-01

    Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere. PMID:27004610

  16. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    Science.gov (United States)

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D. A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  17. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Science.gov (United States)

    Bourgain, P.; Gascard, J. C.; Shi, J.; Zhao, J.

    2013-04-01

    Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY) period (2007-2008) to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the near-surface temperature maximum due to incoming solar radiation, and (3) the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N) in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW) was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely due to a strong

  18. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2013-04-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the near-surface temperature maximum due to incoming solar radiation, and (3 the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely

  19. Fluctuating Arctic Sea ice thickness changes estimated by an in situ learned and empirically forced neural network model

    Science.gov (United States)

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2008-01-01

    Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.

  20. Landscape and Hydrological Transformation in the Canadian High Arctic: Climate Change and Permafrost Degradation As Drivers of Change

    Science.gov (United States)

    Lamoureux, S. F.; Lafreniere, M. J.

    2014-12-01

    Recent climate warming and landscape instability arising from permafrost degradation in the Canadian High Arctic have resulted in significant changes to the hydrological system. We have undertaken an integrated watershed and permafrost research program at the Cape Bounty Arctic Watershed Observatory (75°N, 109°W) in paired watershed-lake systems to assess the impact of these changes. Research has captured hydrological changes resulting from exceptional warmth, and permafrost degradation and disturbance. Results highlight the contrasting effect of thermal (deeper soil thaw) versus physical perturbation (slope failures and permafrost degradation). Thermal perturbation applies to most of the landscape, and results indicate that ground ice melt alters flow and mobilizes solutes for a number of years following a single warm year. These effects are measureable at the slope-catchment scale, especially during baseflow. By contrast, physical disturbance is highly localized and produces high sediment and particulate carbon erosion from slopes, but downstream particulate delivery is dependent on surface connectivity. Recovery from disturbances appears to occur rapidly, and continued geomorphic change and new slope channels result in sustained delivery of particulates to channels. The result is increased long term landscape heterogeneity with respect to erosion compared to the pre-disturbance condition. Downstream channel response to particulate loading further dampens the response to physical disturbance through channel storage of material. Hence, at the larger watershed scale, the effect of physical perturbation is minimal in the initial years of recovery. These results point to a landscape that has been substantially impacted by recent hydrological and permafrost changes. Understanding and distinguishing these impacts provides a basis for systematically evaluating biogeochemical cycling and ecosystem responses in aquatic settings.

  1. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  2. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  3. Arctic Sea Ice in Transformation: A Review of Recent Observed Changes and Impacts on Biology and Human Activity

    Science.gov (United States)

    Meier, Walter N.; Hovelsrud, Greta K.; van Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.; Makshtas, Alexander; Reist, James D.

    2014-01-01

    Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction.

  4. Environmental change enhances cognitive abilities in fish.

    Directory of Open Access Journals (Sweden)

    Alexander Kotrschal

    Full Text Available Flexible or innovative behavior is advantageous, especially when animals are exposed to frequent and unpredictable environmental perturbations. Improved cognitive abilities can help animals to respond quickly and adequately to environmental dynamics, and therefore changing environments may select for higher cognitive abilities. Increased cognitive abilities can be attained, for instance, if environmental change during ontogeny triggers plastic adaptive responses improving the learning capacity of exposed individuals. We tested the learning abilities of fishes in response to experimental variation of environmental quality during ontogeny. Individuals of the cichlid fish Simochromis pleurospilus that experienced a change in food ration early in life outperformed fish kept on constant rations in a learning task later in life--irrespective of the direction of the implemented change and the mean rations received. This difference in learning abilities between individuals remained constant between juvenile and adult stages of the same fish tested 1 y apart. Neither environmental enrichment nor training through repeated neural stimulation can explain our findings, as the sensory environment was kept constant and resource availability was changed only once. Instead, our results indicate a pathway by which a single change in resource availability early in life permanently enhances the learning abilities of animals. Early perturbations of environmental quality may signal the developing individual that it lives in a changing world, requiring increased cognitive abilities to construct adequate behavioral responses.

  5. Vulnerability and adaptation to climate change in the arctic (VACCA): Implementing recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report provides recommendations for how Norway's government could move forward with the results from the Arctic Council supported VACCA project, suggesting how concrete activities may be implemented and applied to policy and practice. Based on the results of interviews with Arctic peoples and people involved in Arctic work, combined with desk studies of relevant literature, four Arctic contexts are defined within the dividing lines coastal/non-coastal and urban/non-urban. This report provides up to five concrete recommendations within each context, recommendations for cross-contextual action, and specific projects for further research and action.(auth)

  6. Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview

    Science.gov (United States)

    Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.

    2015-12-01

    Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be

  7. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Schmutz, Joel A.; Urban, Frank E.; Jorgenson, M. Torre

    2010-01-01

    Arctic habitats at the interface between land and sea are particularly vulnerable to climate change. The northern Teshekpuk Lake Special Area (N-TLSA), a coastal plain ecosystem along the Beaufort Sea in northern Alaska, provides habitat for migratory waterbirds, caribou, and potentially, denning polar bears. The 60-km coastline of N-TLSA is experiencing increasing rates of coastline erosion and storm surge flooding far inland resulting in lake drainage and conversion of freshwater lakes to estuaries. These physical mechanisms are affecting upland tundra as well. To better understand how these processes are affecting habitat, we analyzed long-term observational records coupled with recent short-term monitoring. Nearly the entire coastline has accelerating rates of erosion ranging from 6 m/year from 1955 to 1979 and most recently peaking at 17 m/year from 2007 to 2009, yet an intensive monitoring site along a higher bluff (3–6 masl) suggested high interannual variability. The frequency and magnitude of storm events appears to be increasing along this coastline and these patterns correspond to a greater number of lake tapping and flooding events since 2000. For the entire N-TLSA, we estimate that 6% of the landscape consists of salt-burned tundra, while 41% is prone to storm surge flooding. This offset may indicate the relative frequency of low-magnitude flood events along the coastal fringe. Monitoring of coastline lakes confirms that moderate westerly storms create extensive flooding, while easterly storms have negligible effects on lakes and low-lying tundra. This study of two interacting physical mechanisms, coastal erosion and storm surge flooding, provides an important example of the complexities and data needs for predicting habitat change and biological responses along Arctic land–ocean interfaces.

  8. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NARCIS (Netherlands)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S.M.; Melling, H.; McLaughlin, F.A.; Kwok, R.; Smethie Jr., W.M.; Schlosser, P.

    2013-01-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 uppe

  9. Arctic Climate Tipping Points

    OpenAIRE

    Lenton, Timothy M.

    2012-01-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the A...

  10. Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

    2011-12-01

    Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

  11. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  12. Biannual cycles of organochlorine pesticide enantiomers in arctic air suggest changing sources and pathways

    Science.gov (United States)

    Bidleman, T. F.; Jantunen, L. M.; Hung, H.; Ma, J.; Stern, G. A.; Rosenberg, B.; Racine, J.

    2014-09-01

    Air samples collected during 1994-2000 at the Canadian arctic air monitoring station Alert (82°30' N, 62°20' W) were analyzed by enantiospecific gas chromatography - mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = quantities of (+)/[(+) + (-)] enantiomers), where EFs = 0.5, 0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for α-HCH (0.504 ± 0.004, n = 197) and CC (0.505 ± 0.004, n = 162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed biannual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed biannual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC = TC/(TC + CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall vs. winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.

  13. Annual cycles of organochlorine pesticide enantiomers in Arctic air suggest changing sources and pathways

    Science.gov (United States)

    Bidleman, T. F.; Jantunen, L. M.; Hung, H.; Ma, J.; Stern, G. A.; Rosenberg, B.; Racine, J.

    2015-02-01

    Air samples collected during 1994-2000 at the Canadian Arctic air monitoring station Alert (82°30' N, 62°20' W) were analysed by enantiospecific gas chromatography-mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = peak areas of (+)/[(+) + (-)] enantiomers), where EFs = 0.5, 0.5 indicate racemic composition, and preferential depletion of (+) and (-) enantiomers, respectively. Long-term average EFs were close to racemic values for α -HCH (0.504 ± 0.004, n = 197) and CC (0.505 ± 0.004, n = 162), and deviated farther from racemic for TC (0.470 ± 0.013, n = 165). Digital filtration analysis revealed annual cycles of lower α-HCH EFs in summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of partially degraded α-HCH with EF 0.5 during the cold season. The contribution of sea-volatilized α-HCH was only 11% at Alert, vs. 32% at Resolute Bay (74.68° N, 94.90° W) in 1999. EFs of TC also followed annual cycles of lower and higher values in the warm and cold seasons. These were in phase with low and high cycles of the TC/CC ratio (expressed as FTC = TC/(TC+CC)), which suggests greater contribution of microbially "weathered" TC in summer-fall versus winter-spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997-1998. EF profiles are likely to change with rising contribution of secondary emission sources, weathering of residues in the environment, and loss of ice cover in the Arctic. Enantiomer-specific analysis could provide added forensic capability to air monitoring programs.

  14. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  15. Environmental Working Group Joint U.S.-Russian Arctic Sea Ice Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Note: The Russian chart component of this product has been replaced and updated by Sea Ice Charts of the Russian Arctic in Gridded Format, 1933-2006 and the U.S...

  16. Education for climate changes, environmental health and environmental justice

    International Nuclear Information System (INIS)

    Full text: The climates changes-health effects-environmental justice nexus is analyzed. The complex issue of climate changes needs to be approached from an interdisciplinary point of view. The nature of the problem necessitates dealing with scientific uncertainty. The health effects caused by climate changes are described and analyzed from a twofold inequalities point of view: health inequalities between rich and poor within countries, and inequalities between northern and southern countries. It is shown thai although the emission of greenhouse gasses is to a large extent caused by the industrialized countries, the effects, including the health effects, will merely impact the South. On the other hand, the southern countries have the highest potential to respond to and offer sustainable energy solutions to counteract climate changes. These inequalities are at the basis to call for environmental justice, of which climate justice is part. This movement calls for diversification of ecologists and their subject of study, more attention for urban ecology, more comprehensive human ecological analyses of complex environmental issues and more participation of stakeholders in the debate and the solution options. The movement advocates a more inclusive ecology targeted to management, sodo-ecological restoration, and comprehensive policies. The fundamental aspects of complexity, inter-disciplinary approaches, uncertainty, and social and natural inequalities should be core issues in environmental health programs. Training on these issues for muitidisciplinary groups of participants necessitates innovative approaches including self-directed, collaborative, and problem oriented learning in which tacit knowledge is important. It is advocated that quality assessments of environmental health programs should take these elements into account. key words: environmental justice, climate changes, sustainable energy solutions

  17. Selective processes for bioaccumulative up-take of persistent organic pollutants (POPs) in Arctic food webs

    OpenAIRE

    Carlsson, Pernilla Marianne

    2013-01-01

    The overall aim of the present study was to elucidate selective environmental up-take processes in Arctic food webs that lead to the bioaccumulation of persistent organic pollutants (POP) in food items consumed by Arctic indigenous people. In addition, this study aimed to increase the scientific understanding of the principles behind climate change related influences on transport processes of contaminants. Svalbard and Nuuk, Greenland were chosen as study areas since they represent Arctic con...

  18. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    Science.gov (United States)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  19. Climate change and consequences in the Arctic: perception of climate change by the Nenets people of Vaigach Island

    Directory of Open Access Journals (Sweden)

    Alexander N. Davydov

    2011-11-01

    Full Text Available Arctic climate change is already having a significant impact on the environment, economic activity, and public health. For the northern peoples, traditions and cultural identity are closely related to the natural environment so any change will have consequences for society in several ways.A questionnaire was given to the population on the Vaigach island, the Nenets who rely to a large degree on hunting, fishing and reindeer herding for survival. Semi-structured interviews were also conducted about perception of climate change.Climate change is observed and has already had an impact on daily life according to more than 50% of the respondents. The winter season is now colder and longer and the summer season colder and shorter. A decrease in standard of living was noticeable but few were planning to leave.Climate change has been noticed in the region and it has a negative impact on the standard of living for the Nenets. However, as of yet they do not want to leave as cultural identity is important for their overall well-being.

  20. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  1. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  2. Global Environmental change: Understanding the Human Dimensions

    International Nuclear Information System (INIS)

    This book is from the National Research Council's Committee on the Human dimensions of Global Change. The object is to examine what is known about human dimensions of global environmental change, identify the major immediate needs for knowledge, and recommend a strategy over the next 5-10 years. Case studies are used in human causes of global change. issues related to theory, methods, and data are covered, as well as institutional needs for interdicipinary approaches

  3. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  4. Landscape and hydrologic changes in the permafrost regions of the Western Canadian Arctic

    Science.gov (United States)

    Marsh, P.

    2012-12-01

    The Western Canadian Arctic, in the vicinity of the Mackenzie River Delta, is characterized by long cold winters, short summers, low precipitation, thin organic soils, and ice-rich continuous permafrost. Over the last few decades, this region has undergone dramatic changes in climate, with warming air temperature and decreasing winter and summer precipitation. This has resulted in various landscape changes, including the warming of the upper layers of the permafrost, deepening of the active layer, drainage of permafrost affected lakes, an ongoing change from tundra to shrub tundra, and earlier spring breakup of streams, rivers and lakes. However, interactions between climate, hydrology, snow, and vegetation greatly affect both the spatial and temporal changes to the permafrost and hydrology of this region. Knowledge of these changes is important to the understanding of methane dynamics in this permafrost landscape, and for predicting future changes. Two examples of observed landscape change will be discussed. First, ground based observations and analysis of air photo images has demonstrated that shrub expansion is not uniform across the landscape, but instead is characterized by shrub patches of varying size. This patchiness is likely related to existing variations in soil temperature and moisture, active layer depth, snowcover, and tundra fires. As shrub patches further develop, they impact soil temperature and active layer depth. For example, small patches of shrubs typically have snow depths that are deeper than surrounding tundra areas due to the accumulation of blowing snow, and as a result have much warmer soil temperatures and deeper active layers. In contrast to these small shrub patches, large shrub patches have snow depths only slightly larger than found in the surrounding tundra and therefore only slightly warmer winter soil temperatures. However, shading of the surface during the summer may result in cooler summer soil temperatures. The overall effect

  5. Modeling crop responses to environmental change

    Science.gov (United States)

    Rosenzweig, Cynthia

    1993-01-01

    Potential biophysical responses of crops to climate change are studied focusing on the primary environmental variables which define the limits to agricultural crop growth and production, and the principal methods for predicting climate change impacts on crop geography and production. It is concluded that the principal uncertainties in the prediction of the impacts of climate change on agriculture reside in the contribution of the direct effects of increasing CO2, in potential changes inclimate variability, and the effects of adjustments mechanisms in the context of climatic changes.

  6. Environmental Awareness Campaign: The Change It Brings

    Directory of Open Access Journals (Sweden)

    Merlita C. Medallon

    2014-02-01

    Full Text Available The study was conducted to determine the awareness and sensitivity of the younger generation in environmental issues such global warming, climate change and waste management. Data were gathered from selected students who attended the environmental awareness seminar held at Lyceum of the Philippines – Laguna in 2011. There were 54 students who participated in the survey. The respondents had participated in several activities related to environmental issues which include attendance to seminars, and participation in school and community projects. Most of the information about environmental issues was obtained by the students from their teachers. Global warming was the most common issue. There was a significant increase in the level of knowledge after the environmental awareness campaign was made. As a result, the highest level of action proposed by the students is on the proper disposal of wastes and the proper segregation of wastes.

  7. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    Science.gov (United States)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  8. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea-ice to open ocean

    Science.gov (United States)

    Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.

    2016-04-01

    The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime

  9. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming.

  10. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown.

    Science.gov (United States)

    Speelman, E N; Van Kempen, M M L; Barke, J; Brinkhuis, H; Reichart, G J; Smolders, A J P; Roelofs, J G M; Sangiorgi, F; de Leeuw, J W; Lotter, A F; Sinninghe Damsté, J S

    2009-03-01

    Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter. PMID:19323694

  11. Climate change, its consequences in the Arctic and around the world

    Science.gov (United States)

    Jayer, Sophie; Le Divenah, Claudie; Rosetti, Alexandra

    2010-05-01

    CLIMATE CHANGE, ITS CONSEQUENCES IN THE ARCTIC AND AROUND THE WORLD This project has been led in a French European Class either in physics, chemistry, geology, biology and English by: - Sophie Jayer (Biology and geology teacher) - Claudie Le Divenah (Physics and Chemistry teacher) - Alexandra Rosetti (English teacher) As it was a European class, all the classes were held in English. The goals were - to have the students study both sciences and English - to show them that all these subjects were linked in real life and how important English was for scientists - To give them a glimpse of what scientific researches were both in the field and in a lab - To get them involved in the polar year - To make them work on the notion of world citizenship and raise their awareness about the issue of sustainable development We first introduced the Damocles and Tara project to the pupils. Then we studied the Arctic's geography, their inhabitants and ecosystem (Biology and English). In physics and chemistry, they talked about their working conditions, equipments and what kind of analysis they would do. In geology, we studied the evolution of the sea ice and its consequences but also climate changes of the past, the influence of climate on human history and the evidences of global warming nowadays (the pupils had to find information and to make a presentation about different climate events that could be evidence of global warming). A man who works on a research boat for a French national organization came in our class and was able to present his work, the conditions of life on board and to answer the pupils' questions. This is a quick summary of our work. If you need any additional information before the GIFT, please contact me at: sophie.jayer@neuf.fr or Sophie Jayer 61 A route de Paris 78550 Bazainville 0033 (0)1 34 87 61 06 0033 (0)6 20 53 84 65 (mobile) Our group teaches at Emilie de Breteuil High School In Montigny le Bretonneux, 30 km southwest of Paris Lycée Emilie de

  12. Comparative analysis of land, marine, and satellite observations of methane in the lower Atmosphere in the Russian Arctic under conditions of climate change

    Science.gov (United States)

    Anisimov, O. A.; Kokorev, V. A.

    2015-12-01

    Land, marine, and satellite observations have been used to study changes in methane concentrations in the lower atmosphere during the warm months of the year (July through October) in Arctic regions having different potentials for methane production. The Atmospheric Infrared Sounder (AIRS) data for 2002-2013 are used to explore the interplay between local methane sources in the terrestrial region of the Eurasian Arctic and on the Arctic shelf over the warm period of the year. Linear trends in atmospheric methane concentrations over different Arctic regions are calculated, and a hypothesis of the relation of concentration variations to climatic parameters is tested. The combination of land, marine, and satellite observation is used to develop a conceptual model of the atmospheric methane field in the terrestrial part of the Russian Arctic and on the Arctic shelf. It is shown that the modern methane growth rate in the Arctic does not exceed the Northern Hemisphere mean. It is concluded that the methane emission in the Arctic has little effect on global climate compared to other factors.

  13. Large-scale temperature and salinity changes in the upper Canadian basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2012-05-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large scale evolution of the upper Western Arctic Ocean based on temperature and salinity summertime observations collected during icebreaker campaigns and from Ice-Tethered Platforms (ITP drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the Near Surface Temperature Maximum due to incoming solar radiation and (3 the water masses advected from the Pacific and Atlantic Oceans into the deep Arctic Ocean.

    The observations revealed a freshwater content change in the Canadian basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a diversion of the Siberian rivers runoff toward the Eurasian basin at the same time.

    The Near Surface Temperature Maximum due to incoming solar radiation was almost 1 °C colder in the Southern Canada basin (south of 75° N in 2010 compared to 2008 which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space.

    The Pacific waters were also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada basin, both Summer and Winter Pacific waters influence increased between 75° N and 80° N. This was more likely

  14. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  15. Changing Social and Environmental Reporting Systems

    DEFF Research Database (Denmark)

    Kaspersen, Mia; Riise Johansen, Thomas

    2016-01-01

    Based on a case study of a large multinational group, this paper addresses the way in which social and environmental reporting (SER) systems were changed and the consequences and controversies associated with this change. Drawing on Power's work on the processes by which things are made auditable...... pursuit of auditability legitimized SER and paved the way for data systems to be changed. The programme borrowed authority from financial accounting technologies not only to make a system change but also to push SER internally, as we suggest that an intraorganizational group used the programme to ensure...

  16. Recent Changes in Arctic Ocean Sea Ice Motion Associated with the North Atlantic Oscillation

    Science.gov (United States)

    Kwok, R.

    1999-01-01

    Examination of a new ice motion dataset of the Arctic Ocean over a recent eighteen year period (1978-1996) reveals patterns of variability that can be linked directly to the North Atlantic Oscillation.

  17. The Toolik Lake project: Terrestrial and freshwater research on change in the arctic

    International Nuclear Information System (INIS)

    The Toolik Lake research project in the foothills of the North Slope, Alaska, has collected data since 1975 with funding from the NSF's Division of Polar Programs and from the Long Term Ecological Research Program and Ecosystems Research Program of the Division of Biotic Systems and Resources. The broad goal is to understand and predict how ecosystems of tundra, lakes, and streams function and respond to change. One specific goal is to understand the extent of control by resources or by grazing and predation. The processes and relationships are analyzed in both natural ecosystems and in ecosystems that have undergone long-term experimental manipulations to simulate effects of climate and human-caused change. These manipulations include the fertilization of lakes and streams, the addition and removal of lake trout from lakes, the changing of the abundance of arctic grayling in sections of rivers, the exclusion of grazers from tundra, and the shading, fertilizing, and heating of the tussock tundra. A second specific goal is to monitor year-to-year variability and to measure how rapidly long-term change occurs. The measurements include: for lakes, measurements of temperature, chlorophyll, primary productivity; for streams, nutrients, chlorophyll on riffle rocks, insect and fish abundance, and water flow; and for the tundra, amount of flowering, air temperature, solar radiation, and biomass. A third specific goal is to understand the exchange of nutrients between land and water. Measurements include the flow of water in rivers, the concentration of nitrogen and phosphorus in streams, lakes, and soil porewater, and the effect of vegetation on nutrient movement through the tundra soils. A dynamic model of nutrient fluxes in the entire upper Kuparuk River watershed is being constructed that will interact with geographically referenced databases

  18. Shifts in Identity and Activity of Methanotrophs in Arctic Lake Sediments in Response to Temperature Changes

    OpenAIRE

    He, Ruo; Wooller, Matthew J; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°...

  19. Methods for environmental change; an exploratory study

    Directory of Open Access Journals (Sweden)

    Kok Gerjo

    2012-11-01

    Full Text Available Abstract Background While the interest of health promotion researchers in change methods directed at the target population has a long tradition, interest in change methods directed at the environment is still developing. In this survey, the focus is on methods for environmental change; especially about how these are composed of methods for individual change (‘Bundling’ and how within one environmental level, organizations, methods differ when directed at the management (‘At’ or applied by the management (‘From’. Methods The first part of this online survey dealt with examining the ‘bundling’ of individual level methods to methods at the environmental level. The question asked was to what extent the use of an environmental level method would involve the use of certain individual level methods. In the second part of the survey the question was whether there are differences between applying methods directed ‘at’ an organization (for instance, by a health promoter versus ‘from’ within an organization itself. All of the 20 respondents are experts in the field of health promotion. Results Methods at the individual level are frequently bundled together as part of a method at a higher ecological level. A number of individual level methods are popular as part of most of the environmental level methods, while others are not chosen very often. Interventions directed at environmental agents often have a strong focus on the motivational part of behavior change. There are different approaches targeting a level or being targeted from a level. The health promoter will use combinations of motivation and facilitation. The manager will use individual level change methods focusing on self-efficacy and skills. Respondents think that any method may be used under the right circumstances, although few endorsed coercive methods. Conclusions Taxonomies of theoretical change methods for environmental change should include combinations of individual

  20. Radioactive and other environmental threats to the United States and the Arctic resulting from past Soviet activities

    International Nuclear Information System (INIS)

    Earlier this year the Senate Intelligence Committee began to receive reports from environmental and nuclear scientists in Russia detailing the reckless nuclear waste disposal practices, nuclear accidents and the use of nuclear detonations. We found that information disturbing to say the least. Also troubling is the fact that 15 Chernobyl style RBMK nuclear power reactors continue to operate in the former Soviet Union today. These reactors lack a containment structure and they're designed in such a way that nuclear reaction can actually increase when the reactor overheats. As scientists here at the University of Alaska have documented, polar air masses and prevailing weather patterns provide a pathway for radioactive contaminants from Eastern Europe and Western Russia, where many of these reactors are located. The threats presented by those potential radioactive risks are just a part of a larger Arctic pollution problem. Every day, industrial activities of the former Soviet Union continue to create pollutants. I think we should face up to the reality that in a country struggling for economic survival, environment protection isn't necessarily the high priority. And that could be very troubling news for the Arctic in the future

  1. Radioactive and other environmental threats to the United States and the Arctic resulting from past Soviet activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Earlier this year the Senate Intelligence Committee began to receive reports from environmental and nuclear scientists in Russia detailing the reckless nuclear waste disposal practices, nuclear accidents and the use of nuclear detonations. We found that information disturbing to say the least. Also troubling is the fact that 15 Chernobyl style RBMK nuclear power reactors continue to operate in the former Soviet Union today. These reactors lack a containment structure and they`re designed in such a way that nuclear reaction can actually increase when the reactor overheats. As scientists here at the University of Alaska have documented, polar air masses and prevailing weather patterns provide a pathway for radioactive contaminants from Eastern Europe and Western Russia, where many of these reactors are located. The threats presented by those potential radioactive risks are just a part of a larger Arctic pollution problem. Every day, industrial activities of the former Soviet Union continue to create pollutants. I think we should face up to the reality that in a country struggling for economic survival, environment protection isn`t necessarily the high priority. And that could be very troubling news for the Arctic in the future.

  2. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    Science.gov (United States)

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  3. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    Directory of Open Access Journals (Sweden)

    Niraj Kumar

    Full Text Available The impact of silver nanoparticles (NPs and microparticles (MPs on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6% of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  4. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    Science.gov (United States)

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages. PMID:24926877

  5. The progress in the study of Arctic pack ice ecology

    Institute of Scientific and Technical Information of China (English)

    何剑锋; 王桂忠; 蔡明红; 李少菁

    2004-01-01

    The sea ice community plays an important role in the Arctic marine ecosystem. Because of the predicted environmental changes in the Arctic environment and specifically related to sea ice, the Arctic pack ice biota has received more attention in recent years using modern ice-breaking research vessels. Studies show that the Arctic pack ice contains a diverse biota and besides ice algae, the bacterial and protozoan biomasses can be high. Surprisingly high primary production values were observed in the pack ice of the central Arctic Ocean. Occasionally biomass maximum were discovered in the interior of the ice floes, a habitat that had been ignored in most Arctic studies. Many scientific questions, which deserve special attention, remained unsolved due to logistic limitations and the sea ice characteristics. Little is know about the pack ice community in the central Arctic Ocean. Almost no data exists from the pack ice zone for the winter season. Concerning the abundance of bacteria and protozoa, more studies are needed to understand the microbial network within the ice and its role in material and energy flows. The response of the sea ice biota to global change will impact the entire Arctic marine ecosystem and a long-term monitoring program is needed. The techniques, that are applied to study the sea ice biota and the sea ice ecology, should be improved.

  6. Peeking Under the Ice… Literally: Records of Arctic Climate Change from Radiocarbon Dating Moss Emerging from Beneath Retreating Glaciers

    Science.gov (United States)

    Briner, J. P.; Schweinsberg, A.; Miller, G. H.; Lifton, N. A.; Beel, C. R.; Bennike, O.

    2014-12-01

    Dramatic changes are taking place throughout the Arctic. Many glaciers have already melted away completely, and most others are well on their way as rising snowline elevations promise continued glacier retreat. Emerging from beneath retreating glacier margins is a landscape rich in information about past climate and glacier changes. Within newly exposed bedrock is an inventory of cosmogenic nuclides that archive past ice cover timing and duration. Lake basins re-appearing due to retreating ice preserve sediment archives that tell of cooling climate and advancing ice. And ancient surfaces vegetated with tundra communities that have long been entombed beneath frozen-bedded ice caps are now being revealed for the first time in millennia. This presentation will focus on the climate and glacier record derived from radiocarbon dating of in situ moss recently exhumed from retreating local ice cap margins on western Greenland. Dozens of radiocarbon ages from moss group into several distinct modes, which are interpreted as discrete times of persistent summer cooling and resultant glacier expansion. The data reveal a pattern of glacier expansion beginning ~5000 years ago, followed by periods of glacier growth around 3500 and 1500 years ago. Because these times of glacier expansion are recorded at many sites in western Greenland and elsewhere in the Arctic, they are interpreted as times of step-wise summer cooling events during the Holocene. These non-linear climate changes may be a result of feedbacks that amplify linear insolation forcing of Holocene climate. In addition to these insights into the Arctic climate system, the antiquity of many radiocarbon ages of ice-killed moss indicate that many arctic surfaces are being re-exposed for the first time in millennia due to retreating ice, emphasizing the unprecedented nature of current summer warming.

  7. Environmental impact of climate change in pakistan

    International Nuclear Information System (INIS)

    Climate change results in the increase or decrease in temperature and rainfall. These have significant impact on environment - impinge agricultural crop yields, affect human health, cause changes to forests and other ecosystems, and even impact our energy supply. Climate change is a global phenomenon and its impact can be observed on Pakistan's economy and environment. This paper contains details concerning the climate change and environmental impacts. It takes into account current and projected key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and environment. The purpose of the study is to devise national policies and incentive systems combined with national level capacity-building programs to encourage demand-oriented conservation technologies. Recommendations are also made to abate the climate change related issues in country. (author)

  8. Urbanization, Economic Development and Environmental Change

    Directory of Open Access Journals (Sweden)

    Shushu Li

    2014-08-01

    Full Text Available This paper applies the pressure-state-response (PSR model to establish environmental quality indices for 30 administrative regions in China from 2003 to 2011 and employs panel data analysis to study the relationships among the urbanization rate, economic development and environmental change. The results reveal a remarkable inverted-U-shaped relationship between the urbanization rate and changes in regional environmental quality; the “turning point” generally appears near an urbanization rate of 60%. In addition, the degree and mode of economic development have significant, but anisotropic effects on the regional environment. Generally, at a higher degree of economic development, the environment will tend to improve, but an extensive economic growth program that simply aims to increase GDP has a clear negative impact on the environment. Overall, the results of this paper not only further confirm the “environmental Kuznets curve hypothesis”, but also expand it in a manner. The analysis in this paper implies that the inverted-U-shaped evolving relationship between environmental quality and economic growth (urbanization is universally applicable.

  9. Environmental change makes robust ecological networks fragile

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  10. Environmental change makes robust ecological networks fragile

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.

  11. Environmental change makes robust ecological networks fragile.

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host-parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  12. Irreversivle Climate Change Will Also Change Environmental Assessment and Management

    OpenAIRE

    Cairns, John

    2010-01-01

    Currently, the environmental and management methods for climate change will not be effective after irreversible climate change occurs. Without efforts to stabilize greenhouse gases, the temperature will continue to increase leading to: 1) risk to unique and threatened systems, 2) risk of extreme weather events, 3) distribution of impacts, 4) aggregate damages, and 5) risks of large-scaled discontinuities. New management systems must be put in place to protect natural capital and ecosystem se...

  13. Monitoring Polar Environmental Change Using FORMOSAT-2 Satellite

    Science.gov (United States)

    Huang, C.; Liu, C.; Chang, L.; Wang, S.; Yan, K.; Wu, F.; Wu, A.

    2007-12-01

    Polar ice loss to the sea currently account for virtually all of the sea-level rise that is not attributable to ocean warming. Huge section of the Ayles Ice Shelf broke off into the Arctic Ocean. Permafrost soil is losing its permanence across the Northern Hemisphere, altering ecosystems and damaging roads and buildings across Alaska, Canada, and Russia. Global warming change the polar environment significantly, especially in recent year. The National Space Organization (NSPO) of Taiwan successfully launched FORMOSAT-2 on 20 May 2004. The orbit is designed to be high-altitude,. Sun-synchronous, and daily-revisit. With high agility in attitude control, FORMOSAT-2 can cover the polar areas up to +/- 90 deg latitude. More than 72 Area of interests in Alaska, Canada, Greenland area and Ice land have imaged periodically in 2006 and 2007. The images have 2m resolution in panchromatic band and 8m in multispectral bands, with size of about 24 x 100 km or large. The ability of FORMOSAT-2 daily revisit has been extended to monitor the change of topography for the glacier and ice shelf daily, weekly and monthly. By using the FORMOSAT-2 stereo pair, we can determine the elevation profile (DEM) across the glacier surface. In this paper, we will present the mapping and topography of Greenland glaciers and ice land including Kangerdlugssuaq Glacier, Greenland, Belcher Glacier, Canada and Ayles ice island. We will demonstrate the DEM extract ability from FORMOSAT-2 polar stereo images( up to 82 deg latitude), and compared with the DEM of the popular SRTM, ASTER which can be acquired to 79 deg latitude. It is expected that FORMOSAT-2 polar images will be continuously collected for years and contribute to the research of global environmental change.

  14. Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook

    Science.gov (United States)

    Oakley, Karen L.; Atwood, Todd C.; Mugel, Douglas N.; Rode, Karyn D.; Whalen, Mary E.

    2015-01-01

    The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus) depends on sea ice over the biologically productive continental shelves of the Arctic Ocean as a platform for hunting seals. In 2008, the U.S. Fish and Wildlife Service listed the polar bear as threatened under the Endangered Species Act (ESA) due to the threat posed by sea ice loss. The polar bear was the first species to be listed due to forecasted population declines from climate change.

  15. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska�s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska�s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  16. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  17. Parameterizing ice-edge biological productivity in a changing Arctic: Growth factors associated with specific ice provenances

    Science.gov (United States)

    Sambrotto, R.

    2015-12-01

    Sea ice plays a significant role in the ecology of polar seas and a significant portion of the biological production in the Arctic occurs at ice edges. These environments are inherently variable in space and time and subject to climate variation as the summer ice extent changes. Recent field results from the northern Bering Sea suggest that the parameterization of ice edge production in coupled physical-biological models that ignore processes specific to the ice-melt environment will be insufficient to describe the variability and intensity of Arctic production. In addition to the stabilizing the surface layer, ice may contribute phytoplankton growth factors such as trace metals that have been derived from the regions of ice formation as well as aeolian deposition. Results of an analysis of sea ice formation, flow and melt suggests regions that are likely to receive trace metals from ice and has been validated with regions of known ice edge productivity in the Bering Sea. A similar analysis for the Chukchi Sea compared the likely ice-edge productivity regions between pre-2000 ice conditions and those in the more recent period of reduced summer ice cover. Changes are predicted in both the timing and distribution of these regions in proportion to the variations in the dominant ice flow patterns. Ways in which the non-local processes important to elevated ice edge productivity can be incorporated into couple arctic models will be discussed.

  18. The Svalbard REU Program: Undergraduates Pursuing Arctic Climate Change Research on Svalbard, Norway

    Science.gov (United States)

    Roof, S.; Werner, A.

    2007-12-01

    The Svalbard Research Experiences for Undergraduates (REU) program sponsored by the Arctic Natural Sciences Program of the National Science Foundation has been successfully providing international field research experiences since 2004. Each year, 7-9 undergraduate students have participated in 4-5 weeks of glacial geology and climate change fieldwork on Spitsbergen in the Svalbard archipelago in the North Atlantic (76- 80° N lat.). While we continue to learn new and better ways to run our program, we have learned specific management and pedagogical strategies that allow us to streamline our logistics and to provide genuine, meaningful research opportunities to undergraduate students. We select student participants after extensive nationwide advertising and recruiting. Even before applying to the program, students understand that they will be doing meaningful climate change science, will take charge of their own project, and will be expected to continue their research at their home institution. We look for a strong commitment of support from a student's advisor at their home institution before accepting students into our program. We present clear information, including participant responsibilities, potential risks and hazards, application procedures, equipment needed, etc on our program website. The website also provides relevant research papers and data and results from previous years, so potential participants can see how their efforts will contribute to growing body of knowledge. New participants meet with the previous years' participants at a professional meeting (our "REUnion") before they start their field experience. During fieldwork, students are expected to develop research questions and test their own hypotheses while providing and responding to peer feedback. Professional assessment by an independent expert provides us with feedback that helps us improve logistical procedures and shape our educational strategies. The assessment also shows us how

  19. Spatial and temporal variation of an ice-adapted predator's feeding ecology in a changing Arctic marine ecosystem.

    Science.gov (United States)

    Yurkowski, David J; Ferguson, Steven H; Semeniuk, Christina A D; Brown, Tanya M; Muir, Derek C G; Fisk, Aaron T

    2016-03-01

    Spatial and temporal variation can confound interpretations of relationships within and between species in terms of diet composition, niche size, and trophic position (TP). The cause of dietary variation within species is commonly an ontogenetic niche shift, which is a key dynamic influencing community structure. We quantified spatial and temporal variations in ringed seal (Pusa hispida) diet, niche size, and TP during ontogeny across the Arctic-a rapidly changing ecosystem. Stable carbon and nitrogen isotope analysis was performed on 558 liver and 630 muscle samples from ringed seals and on likely prey species from five locations ranging from the High to the Low Arctic. A modest ontogenetic diet shift occurred, with adult ringed seals consuming more forage fish (approximately 80 versus 60 %) and having a higher TP than subadults, which generally decreased with latitude. However, the degree of shift varied spatially, with adults in the High Arctic presenting a more restricted niche size and consuming more Arctic cod (Boreogadus saida) than subadults (87 versus 44 %) and adults at the lowest latitude (29 %). The TPs of adult and subadult ringed seals generally decreased with latitude (4.7-3.3), which was mainly driven by greater complexity in trophic structure within the zooplankton communities. Adult isotopic niche size increased over time, likely due to the recent circumpolar increases in subarctic forage fish distribution and abundance. Given the spatial and temporal variability in ringed seal foraging ecology, ringed seals exhibit dietary plasticity as a species, suggesting adaptability in terms of their diet to climate change. PMID:26210748

  20. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares.

    Science.gov (United States)

    Tape, Ken D; Christie, Katie; Carroll, Geoff; O'Donnell, Jonathan A

    2016-01-01

    Warming during the 20th century has changed the arctic landscape, including aspects of the hydrology, vegetation, permafrost, and glaciers, but effects on wildlife have been difficult to detect. The primary aim of this study is to examine the physical and biological processes contributing to the expanded riparian habitat and range of snowshoe hares (Lepus americanus) in northern Alaska. We explore linkages between components of the riparian ecosystem in Arctic Alaska since the 1960s, including seasonality of stream flow, air temperature, floodplain shrub habitat, and snowshoe hare distributions. Our analyses show that the peak discharge during spring snowmelt has occurred on average 3.4 days per decade earlier over the last 30 years and has contributed to a longer growing season in floodplain ecosystems. We use empirical correlations between cumulative summer warmth and riparian shrub height to reconstruct annual changes in shrub height from the 1960s to the present. The effects of longer and warmer growing seasons are estimated to have stimulated a 78% increase in the height of riparian shrubs. Earlier spring discharge and the estimated increase in riparian shrub height are consistent with observed riparian shrub expansion in the region. Our browsing measurements show that snowshoe hares require a mean riparian shrub height of at least 1.24-1.36 m, a threshold which our hindcasting indicates was met between 1964 and 1989. This generally coincides with observational evidence we present suggesting that snowshoe hares became established in 1977 or 1978. Warming and expanded shrub habitat is the most plausible reason for recent snowshoe hare establishment in Arctic Alaska. The establishment of snowshoe hares and other shrub herbivores in the Arctic in response to increasing shrub habitat is a contrasting terrestrial counterpart to the decline in marine mammals reliant on decreasing sea ice. PMID:26527375

  1. Future generations, environmental ethics, and global environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey, renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.

  2. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  3. Long-term increases in young-of-the-year growth of Arctic cisco Coregonus autumnalis and environmental influences.

    Science.gov (United States)

    von Biela, V R; Zimmerman, C E; Moulton, L L

    2011-01-01

    Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r² = 0·29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r² = 0·14-0·31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r² = 0·13-0·50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels.

  4. The Role of Disturbance in Arctic Ecosystem Response to a Changing Climate

    Science.gov (United States)

    Hinzman, L. D.

    2014-12-01

    Wildfires in the tundra regions and the boreal forest project an immediate effect upon the surface energy and water budget by drastically altering the surface albedo, roughness, infiltration rates, and moisture absorption capacity in organic soils. Although fires create a sudden and drastic change to the landcover, it is only the beginning of a long process of recovery and perhaps a shift to a different successional pathway. In permafrost regions, these effects become part of a process of long-term (20-50 years) cumulative impacts. Burn severity may largely determine immediate impacts and long-term disturbance trajectories. As transpiration decreases or ceases, soil moisture increases markedly, remaining quite wet throughout the year. Because the insulating quality of the organic layer is removed during fires, permafrost begins to thaw near the surface and warm to greater depths. Within a few years, it may thaw to the point where it can no longer completely refreeze every winter, creating a permanently thawed layer in the soil called a talik. After formation of a talik, soils can drain internally throughout the year. At this point, soils may become quite dry, as the total precipitation received annually in the Arctic is quite low. The local ecological community must continuously adapt to the changing soil thermal and moisture regimes. The wet soils found over shallow permafrost favor black spruce forests. After a fire creates a deeper permafrost table (thicker active layer) the invading tree species tend to be birch or alder. The hydrologic and thermal regime of the soil is the primary factor controlling these vegetation trajectories and the subsequent changes in surface mass and energy fluxes. The complexities of a changing climate accentuate these processes of change and complicate predictions of the resulting vegetation trajectories. Understanding these shifts in vegetative communities and quantifying the consequences of thawing permafrost can only be

  5. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    OpenAIRE

    de Steur, L.; Steele, M; E. Hansen; J. Morison; Polyakov, I.; Olsen, S. M.; Melling, H.; F. A. McLaughlin; Kwok, R; Smethie Jr., W.M.; Schlosser, P.

    2013-01-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008–2010, the freshest surface waters in the western Lincoln Sea show water mass properties simi...

  6. National Institute for Global Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  7. National Institute for Global Environmental Change

    International Nuclear Information System (INIS)

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves

  8. Simulation of changes in arctic terrestrial carbon stocks under using ecosys mathematical model

    Science.gov (United States)

    Metivier, K.; Grant, R. F.; Humphreys, E. R.; Lafleur, P.; Zhang, H.

    2010-12-01

    Sustainable Canadian arctic terrestrial ecosystems are vital for northern communities and also for global communities. Arctic terrestrial ecosystems have huge stores of soil C and also contain plant C, all which are important for ecosystem health. However, there are large knowledge gaps concerning the current state of these northern ecosystems, which lead to huge uncertainties in quantification of how climate variables affect these ecosystems. These uncertainties are in part due to the complex nature of climate impacts on biological, physical and chemical activities in soils and plants. The major objective of the modelling effort is to develop a methodology using the ecosys mathematical model, to bring a greater understanding and quantification of ecological processes in northern ecosystems thereby reduce uncertainties of the dynamics of these ecosystems. Addressing current uncertainties associated with quantifying tundra ecosystems may improve our long - term predictions of climate impact on future sustainability of these ecosystems. This research will allow further insights of these ecosystems at several spatial scales - site/plot, landscape and regional. Study site locations include Daring Lake (mesic tundra, wet sedge and fen tundra), Churchill, Iqaluit, Cape Bounty and Ellesmere Island-Lake Hazen, Canada. Modelled results will be compared to measured soil temperature, carbon dioxide and energy exchange fluxes, nitrous oxide, methane emissions and phytomass growth. We have conducted preliminary simulations for the Daring Lake fen site - Modelled (57 g C m-2) and measured (43 g C m-2) shoot biomass were comparable for sedge however, the model underestimated the growth of the dwarf birch trees; work is in progress to determine whether the dwarf tree physiology is represented correctly in the model. Overall, the fen site resulted in a net C source with net ecosystem productivity of 13.5 g C m-2 yr-1, however this could change when the dwarf birch tree growth are

  9. The shallow benthic food web structure in the high Arctic does not follow seasonal changes in the surrounding environment

    Science.gov (United States)

    Kędra, Monika; Kuliński, Karol; Walkusz, Wojciech; Legeżyńska, Joanna

    2012-12-01

    Seasonality, quality and quantity of food resources strongly affect fitness and survival of polar fauna. Most research conducted in polar areas has been carried out during the summer, rarely including aspects of seasonality; therefore, there are gaps in our knowledge of the structure of food webs in the Arctic, particularly information is lacking on the possible shifts in winter feeding strategies of organisms. This study is the first to compare potential shifts in benthic food-web structure between winter and summer in a shallow-water Arctic fjord (Kongsfjorden, Svalbard). Winter data were collected in March when conditions are representative of winter and when Arctic shallow benthic fauna is likely to be most affected by absence of fresh food supply as opposed to summer (August). Samples of particulate suspended organic matter (POM), settled organic matter, surface sediment and benthic organisms were taken and analyzed for stable isotopes signatures (δ13C and δ15N). Four relative trophic levels (TL) were distinguished in both winter and summer, and no differences in the structure of benthic food web were found between seasons. Our study shows that the shallow sublittoral benthos depends on primary production, fresh and reworked settled organic matter and, to a certain degree, on terrestrial input. We also demonstrate that shallow water polar benthic fauna is characterized by a high level of omnivory and feeds at multiple trophic levels showing strong resilience to changing seasonal conditions.

  10. Changing Arctic ecosystems--measuring and forecasting the response of Alaska's terrestrial ecosystem to a warming climate

    Science.gov (United States)

    Pearce, John; DeGange, Anthony R.; Flint, Paul; Fondell, Tom F.; Gustine, David; Holland-Bartels, Leslie; Hope, Andrew G.; Hupp, Jerry; Koch, Josh; Schmutz, Joel; Talbot, Sandra; Ward, David; Whalen, Mary

    2012-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades, leading to thawing of on-shore permafrost and the disappearance of sea ice at an unprecedented rate. The loss of sea ice has increased ocean wave action, leading to higher rates of erosion and salt water inundation of coastal habitats. Warming temperatures also have advanced the overall phenology of the region, including earlier snowmelt, lake ice thaw, and plant growth. As a result, many migratory species now arrive in the Arctic several days earlier in spring than in the 1970s. Predicted warming trends for the future will continue to alter plant growth, ice thaw, and other basic landscape processes. These changes will undoubtedly result in different responses by wildlife (fish, birds, and mammals) and the food they rely upon (plants, invertebrates, and fish). However, the type of response by different wildlife populations and their habitats-either positively or negatively-remains largely unknown.

  11. Immune system changes during simulated planetary exploration on Devon Island, high arctic

    Directory of Open Access Journals (Sweden)

    Effenhauser Rainer

    2007-05-01

    Full Text Available Abstract Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts

  12. Detecting environmental change using stable isotopes

    International Nuclear Information System (INIS)

    Changing land use is one of the primary causes of increased sedimentation and nutrient levels in aquatic systems, resulting in contamination and reduction of biodiversity. Detecting and quantifying these inputs is the first step of remediation, to enable targeted reduction of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as a detection and quantification tool in aquatic environments. Carbon and nitrogen isotopes of sediments, algae and invertebrates from aquatic systems can be used as proxies to record both short and long term environmental change. Excess nutrients derived from urbanization, industry, forestry, farming and agriculture increase the bio-availability of nitrogen to aquatic organisms, changing their natural 15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes the 13C isotope ratios and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The combined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools which are useful indicators of source and transport pathways of terrestrial derived material and anthropogenic pollutants into streams, rivers and estuaries. (author).

  13. EDITORIAL: Northern Hemisphere high latitude climate and environmental change

    Science.gov (United States)

    Groisman, Pavel; Soja, Amber

    2007-10-01

    funded projects (always with international participation) in the United States, Russian Federation, China, European Union, Japan, and Canada have been mutually united to explore the scientifically significant Northern Eurasian region. NEESPI scientists have been quite productive during the past two years (2005 2006) publishing more than 200 books, book chapters, and papers in refereed journals. NEESPI sessions at international conferences are open to everyone who works on environmental and climate change problems in Northern Eurasia and the circumpolar boreal zone. This thematic issue brings together articles from the authors who presented their latest results at the Annual Fall American Geophysical Union Meeting in San Francisco (December 2006). The research letters in this issue are preceded by two editorial papers (Leptoukh et al and Sherstyukov et al) devoted to informational support of research in the NEESPI domain that is critical to the success of the Initiative. The following papers are quite diverse and are assembled into five groups devoted to studies of climate and hydrology, land cover and land use, the biogeochemical cycle and its feedbacks, the cryosphere, and human dimensions in the NEESPI domain and the circumpolar boreal zone. Focus on Northern Hemisphere High Latitude Climate and Environmental Change Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Editorials NASA NEESPI Data and Services Center for Satellite Remote Sensing Information Gregory Leptoukh, Ivan Csiszar, Peter Romanov, Suhung Shen, Tatiana Loboda and Irina Gerasimov NEESPI Science and Data Support Center for Hydrometeorological Information in Obninsk, Russia B G Sherstyukov, V N Razuvaev, O N Bulygina and P Ya Groisman Climate and hydrology Changes in the fabric of the Arctic's greenhouse blanket Jennifer A Francis and Elias Hunter Spatial variations of summer precipitation trends in South Korea, 1973 2005 Heejun

  14. Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM

    Science.gov (United States)

    Gregory, J. M.; Stott, P. A.; Cresswell, D. J.; Rayner, N. A.; Gordon, C.; Sexton, D. M. H.

    2002-12-01

    The HadCM3 AOGCM has been used to undertake an ensemble of four integrations from 1860 to 1999 with forcings due to all major anthropogenic and natural climate factors. The simulated decreasing trend in average Arctic sea ice extent for 1970-1999 (-2.5% per decade) is very similar to observations. HadCM3 indicates that internal variability and natural forcings (solar and volcanic) of the climate system are very unlikely by themselves to have caused a trend of this size. The simulated decreasing trend in Arctic sea ice volume (-3.4% per decade for 1961-1998) is less than some recent observationally based estimates. Extending the integrations into the 21st century, Arctic sea ice area and volume continue to decline. Area decreases linearly as global-average temperature rises (by 13% per K), and volume diminishes more rapidly than area. By the end of the century, in some scenarios, the Arctic is ice-free in late summer.

  15. Ice cores from Arctic sub-polar glaciers : Chronology and post-depositional processes deduced from radioactivity measurements

    NARCIS (Netherlands)

    Pinglot, J.F.; Vaikmae, R.A.; Kamiyama, K.; Igarashi, M.; Fritsche, D.; Wilhalms, F.; Koerner, R.; Henderson, L.; Isaksson, E.; Winther, J.G.; van de Wal, R.S.W.; Fournier, M; Bouisset, P.; Meijer, H.A.J.

    2003-01-01

    The response of Arctic ice masses to climate change is studied using ice cores containing information on past climatic and environmental features. Interpretation of this information requires accurate chronological data. Absolute dating of ice cores from sub-polar Arctic glaciers is possible using we

  16. Drifting buoy and other data from the Arctic Ocean and Beaufort Sea as part of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 November 1975 to 01 October 1976 (NODC Accession 7700114)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data was collected from the Arctic Ocean and Beaufort Sea by the University of Washington (UW) as part of the Outer Continental Shelf Environmental...

  17. Drifting buoy and other data from the Arctic Ocean in support of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) from 04 June 1976 to 27 November 1976 (NODC Accession 7700205)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drifting buoy data were collected from the Arctic Ocean by the University of Washington in support of the Outer Continental Shelf Environmental Assessment Program...

  18. Bioclim Deliverable D1: environmental change analysis

    International Nuclear Information System (INIS)

    The BIOCLIM project on modelling sequential Biosphere systems under Climate change for radioactive waste disposal is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. The project aims at providing a scientific basis and practical methodology for assessing the possible long term impacts on the safety of radioactive waste repositories in deep formations due to climate and environmental change. The project brings together a number of representatives from both European radioactive waste management organisations which have national responsibilities for the safe disposal of radioactive waste, either as disposers or regulators, and several highly experienced climate research teams. In particular, BIOCLIM aims to address the important objective of how to represent the development of future biosphere systems by addressing both how to model long-term climate change, the relevant environmental consequences of such changes and the implementation of a sequential approach to such changes. The results from the development of this sophisticated approach will be of great benefit for improving long term radiological impact calculations and the information presented in a safety case. Simulations will be conducted to represent the time series of long-term climate in three European areas within which disposal sites may be established (i.e. Central/Southern Spain, Northeast of France and Central Britain). Two complementary strategies will provide representations of future climate predictions together with associated vegetation patterns using either an analysis of distinct climate states or a continuous climate simulation over at least one glacial-interglacial cycle and possibly for other selected periods over the next 1,000,000 years. These results will be used to derive the characteristics of possible future human environments (i.e. biosphere systems) through which radionuclides, emerging from the repository, may

  19. Affects of Changes in Sea Ice Cover on Bowhead Whales and Subsistence Whaling in the Western Arctic

    Science.gov (United States)

    Moore, S.; Suydam, R.; Overland, J.; Laidre, K.; George, J.; Demaster, D.

    2004-12-01

    Committee of the International Whaling Commission. Research plans include biopsy sampling and subsequent genetic analyses, long-term acoustic detection and satellite tracking of whales in selected portions of their range coupled with community-based management of the subsistence harvest. This research, in concert with extension of oceanographic observing capabilities, promises to elucidate underlying forcing mechanisms key to the changing high-Arctic marine ecosystem.

  20. Satellite Microwave Detection of Boreal-Arctic Wetland Inundation Changes and Their Impact on Regional Methane Emission Estimates

    Science.gov (United States)

    Watts, J. D.; Kimball, J. S.; Bartsch, A.

    2014-12-01

    Surface water inundation strongly regulates land-atmosphere energy and carbon exchange in northern environments. However, the dynamic nature of inundation in boreal-Arctic landscapes, and the impact of changing surface water extent on wetland methane (CH4) emissions, is not well understood. We examine recent (2003-2011) changes and spatiotemporal variability in surface inundation across high latitude wetland regions (> 45 deg. N) using passive microwave remote sensing retrievals of fractional open water extent (Fw) derived from Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 18.7 and 23.8 GHz brightness temperatures. The daily Fw retrievals are sensitive to sub-grid scale (~25-km resolution) open water area (e.g. lakes and emergent vegetation), and are insensitive to solar illumination and atmosphere contamination effects. We also explore the potential implications of surface Fw variability on high latitude methane emissions using a remote sensing data driven model sensitivity analysis. Our results show widespread surface wetting across the Arctic continuous permafrost zone, which increased model simulated high latitude methane emissions by 0.56 Tg CH4 yr-1 relative to the 2003-2011 mean. This increase was largely offset (-0.38 Tg CH4 yr-1) by drying in boreal Alaska, Canada and western Eurasia. We also find that accounting for dynamic Fw variability in model simulations may significantly lower regional methane emission budgets. These findings accentuate the need for frequent satellite remote sensing driven Fw monitoring across the high latitude systems, to better assess regional sensitivities to climate change. An extended Fw record using AMSR2 data and enhanced (3-9 km) resolution L-band active/passive microwave retrievals from the NASA Soil Moisture Active Passive mission, are expected to improve understanding of regional surface water trends and variability, and reduce uncertainty in boreal-Arctic wetland emission estimates.

  1. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  2. Consideration of environmental change in performance assessments.

    Science.gov (United States)

    Pinedo, P; Thorne, M; Egan, M; Calvez, M; Kautsky, U

    2005-01-01

    Depending on the particular circumstances in which a post-closure performance assessment of a radioactive waste repository is made, it may be appropriate to follow simple or more complex approaches in characterising the biosphere. Several different Example Reference Biospheres were explored in BIOMASS Theme 1 to address a range of issues that arise. Here, consideration is given to Example Reference Biospheres relevant to representing the implications of changes that may occur within the biosphere system during the period over which releases of radionuclides from a disposal facility might take place. Mechanisms of change considered include those extrinsic and intrinsic to the system of interest. An overall methodology for incorporating environmental change into assessments is proposed. This includes screening of primary mechanisms of change; identification of possible time sequences of change; development of a coherent description of the regional landscape response for each time sequence; integration of source term and geosphere-biosphere interface information; identification and description of one or more time series of assessment biospheres; and evaluation of the advantages and disadvantages of simulating the effects of sequences of biosphere systems and the transitions between them, or of defining a set of biosphere systems to be represented individually in a non-sequential analysis. The usefulness of the methodology is explored in two site-specific examples and one generic example. PMID:16198459

  3. Environmental health implications of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Robert T.; Patz, Jonathan; Gubler, Duane J.; Parson, Edward A.; Vincent, James H.

    2005-07-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and - associated with all the preceding - the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem. (Author)

  4. Evaluating observed and projected future climate changes for the Arctic using the Koeppen-Trewartha climate classification

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Song [University of Nebraska-Lincoln, School of Natural Resources, Lincoln, NE (United States); Ho, Chang-Hoi; Jeong, Su-Jong [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Hu, Qi; Oglesby, Robert J. [University of Nebraska-Lincoln, School of Natural Resources, Lincoln, NE (United States); University of Nebraska-Lincoln, Department of Earth and Atmospheric Sciences, Lincoln, NE (United States); Kim, Baek-Min [Korea Polar Research Institute, Incheon (Korea, Republic of)

    2012-04-15

    The ecosystems in the Arctic region are known to be very sensitive to climate changes. The accelerated warming for the past several decades has profoundly influenced the lives of the native populations and ecosystems in the Arctic. Given that the Koeppen-Trewartha (K-T) climate classification is based on reliable variations of land-surface types (especially vegetation), this study used the K-T scheme to evaluate climate changes and their impact on vegetation for the Arctic (north of 50 N) by analyzing observations as well as model simulations for the period 1900-2099. The models include 16 fully coupled global climate models from the Intergovernmental Panel on Climate Change Fourth Assessment. By the end of this century, the annual-mean surface temperature averaged over Arctic land regions is projected to increase by 3.1, 4.6 and 5.3 C under the Special Report on Emissions Scenario (SRES) B1, A1b, and A2 emission scenarios, respectively. Increasing temperature favors a northward expansion of temperate climate (i.e., Dc and Do in the K-T classification) and boreal oceanic climate (i.e., Eo) types into areas previously covered by boreal continental climate (i.e., Ec) and tundra; and tundra into areas occupied by permanent ice. The tundra region is projected to shrink by -1.86 x 10{sup 6} km{sup 2} (-33.0%) in B1, -2.4 x 10{sup 6} km{sup 2} (-42.6%) in A1b, and -2.5 x 10{sup 6} km{sup 2} (-44.2%) in A2 scenarios by the end of this century. The Ec climate type retreats at least 5 poleward of its present location, resulting in -18.9, -30.2, and -37.1% declines in areal coverage under the B1, A1b and A2 scenarios, respectively. The temperate climate types (Dc and Do) advance and take over the area previously covered by Ec. The area covered by Dc climate expands by 4.61 x 10{sup 6} km{sup 2} (84.6%) in B1, 6.88 x 10{sup 6} km{sup 2} (126.4%) in A1b, and 8.16 x 10{sup 6} km{sup 2} (149.6%) in A2 scenarios. The projected redistributions of K-T climate types also differ

  5. Monitoring adaptive genetic responses to environmental change

    DEFF Research Database (Denmark)

    Hansen, M.M.; Olivieri, I.; Waller, D.M.;

    2012-01-01

    to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing...... for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We......% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations...

  6. Environmental factors structuring Arctic megabenthos - a case study from a shelf and two fjords

    Directory of Open Access Journals (Sweden)

    Kirstin eMeyer

    2015-04-01

    Full Text Available From photographic samples, we describe the benthic megafaunal communities in two north Svalbard fjords and on the adjacent continental shelf. We analyze the fauna in relation to abiotic factors of depth, bottom water temperature, percent cover of hard substratum, heterogeneity of stone size, and bottom-water turbidity to explore how these factors might affect the fauna and how they are related to the functional traits (size, morphology, mobility, colonial/solitary, and feeding type of the megabenthos. Depth and bottom water temperature were consistently the strongest correlates with faunal composition and functional traits of the constituent species. A greater proportion of the variability in the functional traits of the megabenthos could be explained by abiotic factors rather than faunal composition, indicating that the abiotic factors of depth and temperature were strongly related to the functional traits of the megabenthos. On a local scale, stone size heterogeneity explained most variation in the functional traits of the megabenthos in one fjord. The results of this case study show a significant relationship between bottom water temperature and the functioning of north Svalbard megabenthic communities. Warming temperatures in the Arctic will likely decrease the variety of functional traits represented in Svalbard megabentos, resulting in scavenger-dominated communities. A reduction in megabenthic biomass may also result, reducing energy availability to higher trophic levels.

  7. Environmental federalism and US climate change policy

    International Nuclear Information System (INIS)

    Environmental disputes involving states over the proper state and federal roles have grown in number and magnitude over the last several years, with many disputes engaging dozens of states. States with competing views are fully engaged in the ongoing debate over climate change, a textbook case for testing the contours of environmental federalism. The issue has all the necessary components: transboundary environmental impacts; competing state economic and environmental interests; state self-interest; disagreement on first principles including what is the proper role of the states; and a somewhat ill-defined federal role. With those qualities, one would expect the federal government to step in and regulate. Instead, the federal government has declined to regulate, inviting a national discourse on whether and how to reduce greenhouse gas (GHG) emissions. As of Spring 2004, twenty-eight states have launched or are planning initiatives, some of which will directly regulate sources of GHG emissions. As these programs take root, pressure will build for a greater federal role. This paper will advance the position that even with this building momentum, the federal government is not likely to emulate state programs that mandate CO2 emission reductions. In the face of high national cost, uncertain environmental benefits, and a history of federal non-regulatory action, federal regulation at this time appears to be a remote possibility. State efforts to address global climate change add value to the debate, but they do not create the cocoon of consensus the federal government seeks before launching mandatory programs of this magnitude. The more likely scenario is that the federal government will continue on its present course, funding research and development, investing in energy efficient technologies, and supporting voluntary measures. Under this scenario, states and the private sector would continue to function as the 'laboratories' to develop new ideas to improve energy

  8. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.

    Directory of Open Access Journals (Sweden)

    Hayley C Lanier

    Full Text Available Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the

  9. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.

    Science.gov (United States)

    Lanier, Hayley C; Gunderson, Aren M; Weksler, Marcelo; Fedorov, Vadim B; Olson, Link E

    2015-01-01

    Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of

  10. 77 FR 2513 - Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean

    Science.gov (United States)

    2012-01-18

    ... Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine Fisheries Service (NMFS... the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on several written requests... the Notice of Availability (76 FR 82275, December 30, 2011). Public Meetings Comments will be...

  11. Forecasting sudden changes in environmental pollution patterns

    Science.gov (United States)

    Olascoaga, María J.; Haller, George

    2012-01-01

    The lack of reliable forecasts for the spread of oceanic and atmospheric contamination hinders the effective protection of the ecosystem, society, and the economy from the fallouts of environmental disasters. The consequences can be dire, as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010. We present a methodology to predict major short-term changes in environmental contamination patterns, such as oil spills in the ocean and ash clouds in the atmosphere. Our approach is based on new mathematical results on the objective (frame-independent) identification of key material surfaces that drive tracer mixing in unsteady, finite-time flow data. Some of these material surfaces, known as Lagrangian coherent structures (LCSs), turn out to admit highly attracting cores that lead to inevitable material instabilities even under future uncertainties or unexpected perturbations to the observed flow. These LCS cores have the potential to forecast imminent shape changes in the contamination pattern, even before the instability builds up and brings large masses of water or air into motion. Exploiting this potential, the LCS-core analysis developed here provides a model-independent forecasting scheme that relies only on already observed or validated flow velocities at the time the prediction is made. We use this methodology to obtain high-precision forecasts of two major instabilities that occurred in the shape of the Deepwater Horizon oil spill. This is achieved using simulated surface currents preceding the prediction times and assuming that the oil behaves as a passive tracer. PMID:22411824

  12. Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice.

    Science.gov (United States)

    Eddie, Brian; Juhl, Andrew; Krembs, Christopher; Baysinger, Charles; Neuer, Susanne

    2010-03-01

    Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice.

  13. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  14. Changing women's roles, changing environmental knowledges: evidence from Upper Egypt

    OpenAIRE

    Briggs, J.; Sharp, J.; Hamed, N.; Yacoub, H.

    2003-01-01

    The aim of this paper is to investigate the ways in which changing gender roles in a Bedouin community in Upper Egypt, brought about by settlement over the last 20 years on the shores of Lake Nasser, have impacted on the accumulation and development of indigenous environmental knowledges by Bedouin women. The research was carried out among four groups of Ababda Bedouin in the Eastern Desert of Egypt and involved in-depth monthly conversations carried out over a period of 12 months. The main c...

  15. The Eurasian and Makarov Basins target changes in the Arctic Ocean

    Science.gov (United States)

    Polyakov, I.; Padman, L.; Pnyushkov, A.; Rember, R.; Ivanov, V.; Lenn, Y. D.

    2015-12-01

    The Arctic Ocean interior is warming, and there is no indication that the rate of warming will decrease in the near future. The relative role of the interior ocean's warmth in setting net energy flux to, and the mass balance of, Arctic sea ice, however, is still under debate. Thus, quantifying this flux and understanding mechanisms for redistributing heat in the ocean interior are of particular importance. Warm (>0°C) intermediate-depth (150-900m) water of Atlantic origin (the so-called Atlantic Water, AW) is the major source of heat for the ocean interior. Ice thickness along the continental slope east of Svalbard is much less than that expected of first-year ice, suggesting that AW has a direct impact on sea ice just after entering the Arctic. However, in the Canadian Basin, far away from Fram Strait, overlying fresher and colder stable layers effectively insulate the upper mixed layer and ice from impacts of the AW heat. Even though the eastern Eurasian Basin (EEB) is separated from Fram Strait by hundreds of kilometers, the AW heat finds its ways for reaching the ice base in this part of the Arctic Ocean. A distinct process, double diffusion convection, plays an important role in vertical redistribution of AW heat in this region. Double diffusion convection is typically identified as a vertical sequence of almost-homogeneous convective layers separated by high-gradient interfaces, forming a double diffusive "staircase". The staircase structure is a consequence of the differing molecular diffusivities of heat and salt; surprisingly, even though molecular properties drive the instability, resulting net fluxes can be very large, up to several W/m2. The interaction of shear and diffusive layering can significantly alter the heat (and momentum) flux through a staircase. The existing data set are limited and further detailed process studies in the EEB targeting the unique mechanisms of oceanic heat exchange in the interior of the EEB are required.

  16. Impact of North Atlantic Current changes on the Nordic Seas and the Arctic Ocean

    OpenAIRE

    Kauker, Frank; Gerdes, Rüdiger; Karcher, Michael; Köberle, Cornelia

    2005-01-01

    The impact of North Atlantic Current (NAC) volume, heat, and salt transport variability onto the NordicSeas and the Arctic Ocean is investigated using numerical hindcast and sensitivity experiments. Theocean-sea ice model reproduces observed propagation pathways and speeds of SST anomalies.Part of the signal reaching the entrance to the Nordic Seas between Iceland and Scotland originatesin the lower latitude North Atlantic. Response experiments with different prescribed conditionsat 50N show ...

  17. Arctic Sea Level Change over the altimetry era and reconstructed over the last 60 years

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Svendsen, Peter Limkilde; Nielsen, Allan Aasbjerg;

    The Arctic Ocean process severe limitations on the use of altimetry and tide gauge data for sea level studies and prediction due to the presence of seasonal or permanent sea ice. In order to overcome this issue we reprocessed all altimetry data with editing tailored to Arctic conditions, hereby....... Good altimetric data is seen to crucial for sea level studies and profoundly for sea level reconstruction where we present a 60 years sea level reconstruction based on this new data set. We here present a new multi-decade altimetric dataset and a 60 year reconstruction of sea level based on this...... together with tide gauge information. From our reconstruction, we found that the Arctic mean sea level trend is around 1.5 mm +/- 0.3 mm/y for the period 1950 to 2010, between 68ºN and 82ºN. This value is in good agreement with the global mean trend of 1.8 +/- 0.3 mm/y over the same period as found by...

  18. Environmental Variability, Bowhead Whale Distributions, and Inupiat Subsistence Whaling in the Coastal Arctic Ocean

    Science.gov (United States)

    Ashjian, C. J.; Campbell, R. G.; George, J. C.; Moore, S. E.; Okkonen, S. R.; Sherr, B. F.; Sherr, E. B.

    2006-12-01

    The annual migration of bowhead whales (Balaena mysticetus) past Barrow, Alaska has provided subsistence hunting opportunities to Native whalers for centuries. Bowheads regularly feed along the Arctic coast near Barrow in autumn, presumably to utilize recurrent aggregations of their zooplankton prey (e.g., copepods, euphausiids). Oceanographic field-sampling on the narrow continental shelf near Barrow and in Elson Lagoon was conducted during mid-August to mid-September of 2005 and 2006 to describe the different water mass types and plankton communities, to identify exchange of water and material between the shelf and lagoon and offshore, and to identify biological and physical mechanisms of plankton aggregation. High spatial resolution profiles of temperature, salinity, fluorescence, optical backscatter, and C-DOM were collected using an Acrobat undulating towed vehicle in the lagoon and across the shelf from near-shore to the ~150 m isobath. Discrete sampling for nutrients, chlorophyll a, and phytoplankton, and microzooplankton and mesozooplankton abundance and composition was conducted in distinct water types and across frontal boundaries identified from the high-resolution data. The distributions of bowhead whales were documented using aerial surveys. Inter-annual and shorter-term (days to weeks) variability in the distribution of water masses and intrinsic biological properties was observed. Distinct hydrographic and biological-chemical regions were located across the shelf that may contribute to the formation of bowhead whale prey aggregations. The lagoon system is an important interface between the ocean and land and may be critical to the formation of nearshore bowhead whale prey aggregations. Results from the field sampling will be coupled to biological-physical modeling and retrospective analyses to understand the response of this complex environment-whale-human system to climate variability.

  19. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    Science.gov (United States)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale

  20. Environmental Working Group Joint U.S.-Russian Atlas of the Arctic Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Environmental Working Group (EWG) was established in June 1995 under the framework of the U.S.-Russian Joint Commission on Economic and Technological...

  1. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change

    NARCIS (Netherlands)

    Bokhorst, Stef; Phoenix, Gareth K.; Berg, Matty P.; Callaghan, Terry V.; Kirby-Lambert, Christopher; Bjerke, Jarle W.

    2015-01-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecos

  2. Pävi Naskali, Marjaana Seppänen & Shahnaj Begum (eds., Ageing, Wellbeing and Climate Change in the Arctic. An interdisciplinary analysis (London: Routledge, 2015

    Directory of Open Access Journals (Sweden)

    Hermann Óskarsson

    2016-03-01

    Full Text Available Book review of: Pävi Naskali, Marjaana Seppänen and Shahnaj Begum (eds., Ageing, Wellbeing and Climate Change in the Arctic. An interdisciplinary analysis (London: Routledge’s series on advances in climate change research, 2015

  3. The role of seasonality and large-scale climate drivers in recent Pan-Arctic tundra vegetation variability and change

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P. A.; Raynolds, M. K.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.

    2011-12-01

    An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI) and a coherent variability between NDVI, springtime coastal sea ice and land surface temperatures has been shown. The goal of this paper is to understand the forcing factors of this change and variability better through an analysis of the seasonality of these remotely sensed variables as well as long-term climate data sets. This study uses remotely sensed submonthly 25-km sea ice concentration, surface temperature, and NDVI from 1982 to 2010. The NDVI3g data has been corrected for biases in the spring and fall. Standard climate data (station, reanalysis, and model data) and ground observations are also examined. For overall trends, we find that summer time open water area has increased most in the Beaufort, and Siberian Seas. The seasonality of SWI trends display distinct heterogeneity across the Arctic, with maximum warming in August for most regions (Figure 1). The monthly time integrated NDVI trends display the largest positive values for most of the Arctic in July, with the exception of the E. Bering and Kara regions, which show declines during most months (Figure 2). The largest magnitude increases in Max-NDVI tend to be in subzones that are inland, particularly in the Beaufort and Chukchi regions. NDVI has increased more during spring in Eurasia and more during peak vegetation activity (July) over North America. The analysis suggests that local atmospheric circulation as well as other local factors likely plays an important role in vegetation productivity.

  4. Detecting environmental change using stable isotopes

    International Nuclear Information System (INIS)

    Changing land use is one of the primary causes of increased sedimentation and nturient levels in aquqatic systems, resulting in contamiantion and reduction of biodiversity. Detecting and quantifying these inputs is the first step of remediation, to enable targeted reduction of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as a detection and quantification tool in aquatic environments. Carbon and nitrogen isotopes of sediments, algae and invertebrates from aquatic systems can be used as proxies to record both short and long term enviornmental cahgne. Excess nutrients derived from urbanization, industry, forestry, farming and agriculture increase the bio-availability of nitrogen to aquatic organisms, changing their natural 15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes the 13C isotope ratios and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The comined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools which are useful indicators of source and transport pathways of terrestrial derive dmaterial and anthropogenic pollutants into streams, rivers and estuaries. (author). 56 refs., 10 figs., 3 tabs.

  5. Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: impact of climate change and possible adaptation plan

    Directory of Open Access Journals (Sweden)

    Renata Rosol

    2016-07-01

    Full Text Available Background: The pervasive food insecurity and the diet transition away from local, nutrient-rich country foods present a public health challenge among Inuit living in the Canadian Arctic. While environmental factors such as climate change decreased the accessibility and availability of many country food species, new species were introduced into regions where they were previously unavailable. An adaptation such as turning to alternate country food species can be a viable solution to substitute for the nutrients provided by the declined food species. The objective of this study was to estimate the impact on nutrient intake using hypothetical scenarios that current commonly harvested country foods were reduced by 50%, and were replaced with alternate or new species. Methods: Data collected during the 2007–2008 Inuit Health Survey from 36 Canadian Arctic communities spanning Nunavut, the Inuvialuit Settlement Region and Nunatsiavut were used. Results: A 50% decline in consumption of fish, whale, ringed seals and birds (the food that was reported to be in decline resulted in a significant decrease in essential nutrient intake. Possible substitute foods were identified but some nutrients such as zinc and especially vitamin D were most often found lacking in the alternative diet. Conclusions: If the alternative species are not available or feasible, more expensive and less nutritionally dense store-bought foods may be sought. Given the superior quality of country foods and their association with food security, and Inuit cultural health and personal identity, developing skills and awareness for adaptation, promoting regional sharing networks, forming a co-management agency and continuing nutritional monitoring may potentially preserve the nutritional integrity of Inuit diet, and in turn their health and cultural survival.

  6. Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: impact of climate change and possible adaptation plan

    Science.gov (United States)

    Rosol, Renata; Powell-Hellyer, Stephanie; Chan, Hing Man

    2016-01-01

    Background The pervasive food insecurity and the diet transition away from local, nutrient-rich country foods present a public health challenge among Inuit living in the Canadian Arctic. While environmental factors such as climate change decreased the accessibility and availability of many country food species, new species were introduced into regions where they were previously unavailable. An adaptation such as turning to alternate country food species can be a viable solution to substitute for the nutrients provided by the declined food species. The objective of this study was to estimate the impact on nutrient intake using hypothetical scenarios that current commonly harvested country foods were reduced by 50%, and were replaced with alternate or new species. Methods Data collected during the 2007–2008 Inuit Health Survey from 36 Canadian Arctic communities spanning Nunavut, the Inuvialuit Settlement Region and Nunatsiavut were used. Results A 50% decline in consumption of fish, whale, ringed seals and birds (the food that was reported to be in decline) resulted in a significant decrease in essential nutrient intake. Possible substitute foods were identified but some nutrients such as zinc and especially vitamin D were most often found lacking in the alternative diet. Conclusions If the alternative species are not available or feasible, more expensive and less nutritionally dense store-bought foods may be sought. Given the superior quality of country foods and their association with food security, and Inuit cultural health and personal identity, developing skills and awareness for adaptation, promoting regional sharing networks, forming a co-management agency and continuing nutritional monitoring may potentially preserve the nutritional integrity of Inuit diet, and in turn their health and cultural survival. PMID:27388896

  7. Amphibians as models for studying environmental change.

    Science.gov (United States)

    Hopkins, William A

    2007-01-01

    The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.

  8. Introduction to Holocene environmental change in Kamchatka

    Science.gov (United States)

    Brooks, S. J.; Diekmann, B.; Jones, V. J.; Hammarlund, D.

    2015-11-01

    This volume brings together a collection of papers on Holocene environmental change in the Kamchatka Peninsula, in the Russian Far East. Much of the work that appears in these papers was completed under the auspices of two major research activities: a UK NERC-funded project Influence of global teleconnections on Holocene climate in Kamchatka, which dealt with the analysis of lake records collected during the Swedish Beringia 2005 expedition organised by the Swedish Polar Research Secretariat; and a Russian-German multidisciplinary research project KALMAR - Kurile-Kamchatka and Aleutian Marginal Sea-Island Arc Systems: Geodynamic and Climate Interaction in Space and Time, funded by the German Federal Ministry of Education and Research (BMBF).

  9. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    Science.gov (United States)

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  10. Regional Sea level change in the Arctic Ocean from a combination of radar and laser altimetry, tide gauges and ocean models

    Science.gov (United States)

    Andersen, O. B.; Bondo, T.; Cheng, Y.

    2010-12-01

    Lack of adequate spatial and temporal sea level observations in the Arctic Ocean is one of the most challenging problems in the study of changes in sea level and ocean circulation in the Arctic Ocean today. Especially as sea level variation in the Arctic Ocean plays an important role in the global climate system. Only a few tide gauges with long time series exists (1933-> present). Preliminarily investigations show that several of these are not indicative of sea level changes but rather of changes in river flows due to their position so a careful editing is required. The use of satellite altimetry (1992->present) is hampered due to a suite of problems. The error on sea level recovery increases, standard retracking removes most data in areas of sea ice and furthermore most of the Arctic is not covered due to the inclination of the satellites. Only the radar altimeters on board ERS and ENVISAT and the laser altimeter on board ICESAT have so far provided sparse information about Arctic sea level change. However, the combined relatively long operation period of the three satellites has now made it possible to investigate annual and decadal sea level variations. Together with similar results from ocean models like GECCO, MICOM and University of Washington Ocean model we aim to improve the recovery of sea level changes in the Arctic Ocean on annual to inter-decadal scale and the first result for this work will be presented. The presentation is a contribution to the EU supported projects MONARCH and MyOcean.

  11. Hydrological and Biogeochemical Trajectories Change in Response to Permafrost Thaw in Arctic and Subarctic Regions

    Science.gov (United States)

    Striegl, R. G.; Walvoord, M. A.

    2012-12-01

    High latitude regions are particularly susceptible to changes in hydrology, carbon and nutrient biogeochemistry, and ecosystem dynamics in response to climate warming. However, these regions are vast, have few historical data, and are difficult to study because of their remoteness. Large-scale studies of water and materials exports by river systems inform on changes that are occurring on the basin scale, but provide limited process level information. Conversely, process studies in small watersheds and catchments provide bounds on responses to environmental change, but have limited value in scaling to larger systems, unless the variability of controlling conditions has been adequately captured and the distribution of these conditions is known. Regional process-based models that accurately account for spatial and temporal variability can inform on the potential location and intensity of change in a basin or region. We use the Yukon River basin of Alaska USA and NW Canada as a model for understanding the trajectories of hydrologic and carbon cycle changes in permafrost-dominated landscapes. Early measurements of carbon exports by the Yukon River suggested that recent changes in hydrology were affecting C exports; this was confirmed by historical analyses of change in groundwater contributions to river flow. Since all carbon cycling processes are directly linked to water distribution, availability, and movement, we recognized the need for implementing hydrologic models to quantify the role of permafrost on water flow and distribution and to accurately project hydrologic conditions, based on historical hydrologic information, current and projected land surface and subsurface information, and current and projected climatic information. Coupling of hydrologic projections with source, sink, and other process understanding of carbon biogeochemistry resulted in improved basin scale understanding of current and future carbon dynamics in permafrost-dominated landscapes.

  12. Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker Amundsen from the Polar 6 aircraft platform

    OpenAIRE

    Aliabadi, Amir A.; Thomas, Jennie L.; Herber, Andreas B.; Staebler, Ralf M.; Leaitch, W. Richard; Schulz, Hannes; Law, Kathy S.; Marelle, Louis; Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Hoor, Peter M.; Köllner, Franziska; Schneider, Johannes; Levasseur, Maurice

    2016-01-01

    Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plum...

  13. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperaturesincrease, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is importantto predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), andpyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C,and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activitywas measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of37.5 mol g1 day1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and ofthe 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained bySIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisitionfrom CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature.Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments(depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R0.82) with the relativeabundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophiccommunities in arctic lake sediments respond to temperature variations.

  14. Surface Snowpack Key to Bromine Activation in a Changing Arctic Environment

    Science.gov (United States)

    Pratt, Kerri; Custard, Kyle; Shepson, Paul; Douglas, Thomas; Pöhler, Denis; Stephan, General; Zielcke, Johannes; Simpson, William; Platt, Ulrich; von Glasow, Roland; Tanner, David; Huey, L. Gregory; Carlsen, Mark; Stirm, Brian

    2013-04-01

    Arctic sea ice is rapidly declining and transforming from a multiyear ice pack to thinner, more saline, seasonal ice, which has important implications for Arctic atmospheric composition. Following springtime polar sunrise, "ozone depletion events", attributed to bromine chemistry, lead to episodic decreases in lower tropospheric ozone concentrations to near zero, concurrent with mercury depletion and deposition. Despite our increasing understanding of the spatial variability of BrO and possible reaction pathways based on laboratory studies, important questions remain regarding the most efficient sources of and mechanisms for Arctic halogen activation. During the March-April 2012 BRomine, Ozone, and Mercury EXperiment (BROMEX) in Barrow, Alaska, outdoor chamber experiments with snow and ice samples were conducted. Ozone was added as the precursor oxidant, and the samples were investigated with and without ambient sunlight. Samples included first-year sea ice, brine icicles, several layers of snow above first-year sea ice, and seasonal snow above the tundra. Chemical ionization mass spectrometry was utilized to monitor Br2 production. Tundra snow and surface snow above sea ice produced the most Br2, with no production resulting from sea ice and basal snow directly above sea ice. Overall, the most efficient Br2 production was observed from snow samples characterized by lower pH and higher bromide/chloride ratios. Br2 was only observed in the presence of sunlight, indicating the role of snowpack photochemical reactions and the hydroxyl radical in its production. Br2 production via the surface snowpack explains previously-observed BrO enhancements above sea ice, as well as observations of inland tundra hotspots in measured BrO by aircraft-based nadir MAX-DOAS (Multi Axis-Differential Optical Absorption Spectroscopy) measurements, conducted during BROMEX. The findings indicate that atmospherically processed snow is likely a major source of Arctic bromine release, which

  15. Spatial variation of the Arctic Oscillation and its long-term change

    OpenAIRE

    Zhao, Jinping; Cao, Yong; Shi, Jiuxin

    2010-01-01

    The Arctic Oscillation (AO) is spatially varied, but lack of study. The authors defined the spatial variation of AO as the temporal variation of the ensemble of grids with sea level pressure (SLP) varying consistent with the AO index in certain time span. The region of the ensemble is called as ‘AO-dominant region’, identified by the running correlation coefficient of gridded SLP with the AO index. The positive and negative AO-dominant regions show that the SLP oscillated sometimes between th...

  16. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    DEFF Research Database (Denmark)

    Granskog, M.A.; Stedmon, Colin; Dodd, P.A.;

    2012-01-01

    and CDOM is indicative of the riverine/terrigenous origin of CDOM in the EGC. Based on CDOM absorption in Polar Water and comparison with an Arctic river discharge weighted mean, we estimate that a 49–59% integrated loss of CDOM absorption across 250–600 nm has occurred. A preferential removal...

  17. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  18. Arctic National Wildlife Refuge: Revised Comprehensive Conservation Plan, Final Environmental Impact Statement, Wilderness Review, and Wild and Scenic River Review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Arctic NWR for the next 15 years. It is a revision of the 1988 plan, and it describes...

  19. The role of sustained observations and data co-management in Arctic Ocean governance

    Science.gov (United States)

    Eicken, H.; Lee, O. A.; Rupp, S. T.; Trainor, S.; Walsh, J. E.

    2015-12-01

    Rapid environmental change, a rise in maritime activities and resource development, and increasing engagement by non-Arctic nations are key to major shifts underway in Arctic social-environmental systems (SES). These shifts are triggering responses by policy makers, regulators and a range of other actors in the Arctic Ocean region. Arctic science can play an important role in informing such responses, in particular by (i) providing data from sustained observations to serve as indicators of change and major transitions and to inform regulatory and policy response; (ii) identifying linkages across subsystems of Arctic SES and across regions; (iii) providing predictions or scenarios of future states of Arctic SES; and (iv) informing adaptation action in response to rapid change. Policy responses to a changing Arctic are taking a multi-faceted approach by advancing international agreements through the Arctic Council (e.g., Search and Rescue Agreement), global forums (e.g., IMO Polar Code) or private sector instruments (e.g., ISO code for offshore structures). At the regional level, co-management of marine living resources involving local, indigenous stakeholders has proven effective. All of these approaches rely on scientific data and information for planning and decision-making. Examples from the Pacific Arctic sector illustrate how such relevant data is currently collected through a multitude of different government agencies, universities, and private entities. Its effective use in informing policy, planning and emergency response requires coordinated, sustained acquisition, common standards or best practices, and data sharing agreements - best achieved through data co-management approaches. For projections and scenarios of future states of Arctic SES, knowledge co-production that involves all relevant stakeholders and specifically addresses major sources of uncertainty is of particular relevance in an international context.

  20. Multiproxy paleoecological evidence of Holocene climatic changes on the Boothia Peninsula, Canadian Arctic

    Science.gov (United States)

    Fortin, Marie-Claude; Gajewski, Konrad

    2016-05-01

    A study of chironomid remains in the sediments of Lake JR01 on the Boothia Peninsula in the Central Canadian Arctic provides a high-resolution record of mean July air temperatures for the last 6.9 ka. Diatom and pollen studies have previously been published from this core. Peak Holocene temperatures occurred prior to 5.0 ka, a time when overall aquatic and terrestrial biological production was high. Chironomid-inferred summer air temperatures reached up to 7.5°C during this period. The region of Lake JR01 cooled over the mid- to late-Holocene, with high biological production between 6.1 and 5.4 ka. Biological production decreased again at ∼2 ka and the rate of cooling increased in the past 2 ka, with coolest temperatures occurring between 0.46 and 0.36 ka, coinciding with the Little Ice Age. Although biological production increased in the last 150 yr, the reconstructed temperatures do not indicate a warming during this time. During transitions, either warming or cooling, chironomid production increases, suggesting an ecosystem-level response to climate variability, seen at a number of lakes across the Arctic.

  1. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record

    Science.gov (United States)

    Maturilli, Marion; Kayser, Markus

    2016-07-01

    Radiosonde measurements obtained at the Arctic site Ny-Ålesund (78.9°N, 11.9°E), Svalbard, from 1993 to 2014 have been homogenized accounting for instrumentation discontinuities by correcting known errors in the manufacturer provided profiles. The resulting homogenized radiosonde record is provided as supplementary material at http://doi.pangaea.de/10.1594/PANGAEA.845373. From the homogenized data record, the first Ny-Ålesund upper-air climatology of wind, temperature and humidity is presented, forming the background for the analysis of changes during the 22-year period. Particularly during the winter season, a strong increase in atmospheric temperature and humidity is observed, with a significant warming of the free troposphere in January and February up to 3 K per decade. This winter warming is even more pronounced in the boundary layer below 1 km, presumably amplified by mesoscale processes including e.g. orographic effects or the boundary layer capping inversion. Though the largest contribution to the increasing atmospheric water vapour column in winter originates from the lowermost 2 km, no increase in the contribution by specific humidity inversions is detected. Instead, we find an increase in the humidity content of the large-scale background humidity profiles. At the same time, the tropospheric flow in winter is found to occur less frequent from northerly directions and to the same amount more frequent from the South. We conclude that changes in the atmospheric circulation lead to an enhanced advection of warm and moist air from lower latitudes to the Svalbard region in the winter season, causing the warming and moistening of the atmospheric column above Ny-Ålesund, and link the observations to changes in the Arctic Oscillation.

  2. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    Science.gov (United States)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  3. Invertebrate communities of the High Arctic ponds in Hornsund

    OpenAIRE

    Luoto Tomi P.; Oksman Mimmi; Ojala Antti E.K.

    2016-01-01

    How environmental conditions influence current distributions of organisms at the local scale in sensitive High Arctic freshwaters is essential to understand in order to better comprehend the cascading consequences of the ongoing climate change. This knowledge is also important background data for paleolimnological assessments of long−term limno− ecological changes and in describing the range of environmental variability. We sampled five limnologically different freshwater sites...

  4. Arctic River organic matter transport

    Science.gov (United States)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  5. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    Science.gov (United States)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ˜37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  6. Tourism and Arctic Observation Systems: exploring the relationships

    NARCIS (Netherlands)

    Barre, de la Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing th

  7. Report of a seminar on natural environmental change

    International Nuclear Information System (INIS)

    This document reports the presentations given at a seminar on Natural Environmental Change: Processes Affecting the Deep Disposal of Radioactive Waste in Britain and the ensuing discussion. Following introductory summaries of the Department of the Environment research programme into radioactive waste management and Nirex-funded research into long-term environmental change, four topical presentations were given, namely, ''Climatic Change'', ''Surface Processes'', and ''Stress and Seismicity''. These presentations and the consequent discussion have served to clarify many key aspects of long-term environmental change and have provided direction to the ongoing studies of the effects of environmental change on the performance of deep radioactive waste disposal facilities. (author)

  8. Seasonal Change in Trophic Niche of Adfluvial Arctic Grayling (Thymallus arcticus) and Coexisting Fishes in a High-Elevation Lake System

    Science.gov (United States)

    Cutting, Kyle A.; Cross, Wyatt F.; Anderson, Michelle L.; Reese, Elizabeth G.

    2016-01-01

    Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901

  9. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  10. Arctic cultural heritage and climate change – the preservation of a permafrozen site in a warm future

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, B.; Matthiesen, Henning

    2014-01-01

    Most pre-historical archaeological sites lack well-preserved organic artefacts because organic materials such as wood, bone, and DNA have been decomposed. However, at some archaeological kitchen middens in the Arctic, organic materials have been preserved due to a combination of high deposition...... extremely important. However, future climatic changes are predicted to be most pronounced at Northern latitudes. Increasing temperatures cause longer periods of ground thawing and altered precipitation patterns may result in the drying of near surface layers. Both factors accelerate the deterioration...... of organic materials and increase the risk of losing unique information stored in these archaeological sites. Here we present a four year monitoring and research project taking place at Qajaa in the Disko Bay area in West Greenland. Qajaa is a large kitchen midden, containing frozen remains from 4000 years...

  11. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  12. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    Science.gov (United States)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  13. The changing Arctic and its effects on the development of Norway and Russia's offshore oil-spill prevention policies

    Science.gov (United States)

    Bouffard, T. J.

    2015-12-01

    Two very different nations are joined with a northern border and have worked together for decades to manage shared Arctic affairs, yet have very disparate approaches to policy development. Increased access to the Arctic and the push to develop its resources has also created a requirement for developing national policies to address the possibilities of oil spill response and remediation. Norway and Russia are the significant regional powers, with a shared arctic boundary, yet substantially differing approaches to policy development and implementation. We are exploring the variations in their approaches to Arctic offshore oil-spill policy development, in the context of policy informed by economic, social, and physical sciences.

  14. Power Scaling and Seasonal Changes of Floe Areas in the Arctic East Siberian Sea

    Science.gov (United States)

    Geise, Gregory R.; Barton, Christopher C.; Tebbens, Sarah F.

    2016-08-01

    The cumulative number versus floe area distribution of seasonal sea floes from six satellite images of the Arctic Ocean during the summer breakup and melting is fit by two scale-invariant power law scaling regimes for floe areas ranging from 30 to 28,400,000 m2. Scaling exponents, β, for larger floe areas range from -0.6 to -1.0 with an average of -0.8. Scaling exponents, β, for smaller floe areas range from -0.3 to -0.6 with an average of -0.5. The inflection point between the two scaling regimes ranges from 283 × 102 to 4850 × 102 m2 and generally moves from larger to smaller floe areas through the summer melting season. The stability of the power scaling results is demonstrated for two of the images by dividing each in half and analyzing each half separately, with the result that the scaling exponents and the size of the inflection points are nearly the same for each half as for the whole image. We propose that the two scaling regimes and the inflection between them are established during the initial breakup of sea ice solely by the process of fracture. The distributions of floe size regimes retain their scaling exponents as the floe pack evolves from larger to smaller floe areas from the initial breakup through the summer season, due to grinding, crushing, fracture, and melting. The scaling exponents for floe area distribution are in the same range as those reported in previous studies of Arctic floes and for the single scaling exponents found for crushed and ground geologic materials including streambed gravel, lunar debris, and artificially crushed quartz. The single scaling exponent found for fault gouge falls below the range for floes possibly because the fracturing and grinding process in fault gouge takes place under high confining pressure. A probabilistic model of fragmentation is proposed that generates a single power law scaling distribution of fragment size.

  15. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    Science.gov (United States)

    Granskog, Mats A.; Stedmon, Colin A.; Dodd, Paul A.; Amon, Rainer M. W.; Pavlov, Alexey K.; de Steur, Laura; Hansen, Edmond

    2012-12-01

    Absorption coefficients of colored dissolved organic matter (CDOM) were measured together with salinity, δ18O, and inorganic nutrients across the Fram Strait. A pronounced CDOM absorption maximum between 30 and 120 m depth was associated with river and sea ice brine enriched water, characteristic of the Arctic mixed layer and upper halocline waters in the East Greenland Current (EGC). The lowest CDOM concentrations were found in the Atlantic inflow. We show that the salinity-CDOM relationship is not suitable for evaluating conservative mixing of CDOM. The strong correlation between meteoric water and CDOM is indicative of the riverine/terrigenous origin of CDOM in the EGC. Based on CDOM absorption in Polar Water and comparison with an Arctic river discharge weighted mean, we estimate that a 49-59% integrated loss of CDOM absorption across 250-600 nm has occurred. A preferential removal of absorption at longer wavelengths reflects the loss of high molecular weight material. In contrast, CDOM fluxes through the Fram Strait using September velocity fields from a high-resolution ocean-sea ice model indicate that the net southward transport of terrigenous CDOM through the Fram Strait equals up to 50% of the total riverine CDOM input; this suggests that the Fram Strait export is a major sink of CDOM. These contrasting results indicate that we have to constrain the (C)DOM budgets for the Arctic Ocean much better and examine uncertainties related to using tracers to assess conservative mixing in polar waters.

  16. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang

    2006-01-01

    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  17. Climate Change and Arctic Response:Opportunities, Challenges and Risks%气候变化与北极响应--机遇、挑战与风险

    Institute of Scientific and Technical Information of China (English)

    杨孟倩; 葛珊珊; 张韧

    2016-01-01

    Based on research results on observed facts, trends and impact assessments about global climate change and the Arctic region response, this paper systematically analyzed and reviewed the spatial and temporal distribution, trends, meteorological, hydrological and geographic factors, pathways and mechanisms that affect the ecological environment of Arctic sea ice in the background of global climate change. We analyzed that the ice melting made oil and gas in theArctic, development of mineral resources, and the expected impact on Arctic navigation and shipping of the channel pattern of maritime strategy, opportunities, challenges and risks. And it puts forward some suggestions about our government participating in Arctic affairs, planning to use of Arctic waterways and Arctic interests of the game to respond to Arctic circumpolar countries for strategy.%基于全球气候变化与北极区域响应的观测事实、趋势预测和影响评估等国内外研究成果,较为系统地分析、评述了全球气候变化背景下,北极海冰的时空分布特征、变化趋势及其对气象、水文要素和地理形态、生态环境的影响途径和机理;分析了冰雪融化对北极油气、矿藏资源开发、北极通航预期及对我国海上战略通道和航运格局的影响、机遇、挑战和风险;针对环北极国家的北极战略,提出了我国参与北极事务、规划利用北极航道和北极利益博弈的对策建议。

  18. Could massive Arctic sea ice export to the North Atlantic be the real cause of abrupt climate change during the last deglaciation?

    Science.gov (United States)

    Coletti, A. J.; Condron, A.

    2015-12-01

    Using a coupled ocean-sea ice model (MITgcm), we investigate whether the break-up and mobilization of thick, multiyear, Arctic sea ice might have supplied enough freshwater to the Nordic Seas to reduce North Atlantic Deep Water (NADW) formation and weaken the Atlantic Meridional Overturning Circulation (AMOC). Numerical simulations of a Last Glacial Maximum (LGM) environment show the potential for sea ice to grow to ~30m thick, storing ~1.41x105 km3 of freshwater as sea ice in the Arctic (this is ~10 times the volume of freshwater stored in the modern-day Arctic). Releasing this volume of sea ice from the Arctic in 1-yr is equivalent to a high-latitude freshwater forcing of ~4.5 Sv, which is comparable (or larger) in magnitude to most meltwater floods emanating from land-based glacial lakes (e.g. Agassiz) during the last deglaciation. Opening of the Bering Strait and Barents Sea are two plausible mechanisms that may have initiated sea ice mobilization. Opening Bering Strait increases sea ice transport through the Fram Strait by 7% and results in a 22% weakening of AMOC for 2000 years and a >3°C warming in the Arctic basin at 800 m depth. Opening Barents Sea to simulate a collapse of the Fennoscandian ice sheet has little impact on Arctic sea ice and freshwater export to the North Atlantic, but weakens AMOC ~8%. In a simulation with both straits open there is a transition to near-modern sea ice circulation pattern and a 24% reduction in AMOC. Experiments with the Bering Strait open and sea ice artificially capped to 10 m show barely any difference to those when sea ice can grow to ~30m, suggesting that changes in topography have a much greater impact on AMOC than the freshwater forcing from sea ice melting in the Nordic Seas.

  19. Arctic freshwater synthesis: Introduction

    Science.gov (United States)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  20. Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia - A review

    Science.gov (United States)

    Wennrich, Volker; Andreev, Andrei A.; Tarasov, Pavel E.; Fedorov, Grigory; Zhao, Wenwei; Gebhardt, Catalina A.; Meyer-Jacob, Carsten; Snyder, Jeffrey A.; Nowaczyk, Norbert R.; Schwamborn, Georg; Chapligin, Bernhard; Anderson, Patricia M.; Lozhkin, Anatoly V.; Minyuk, Pavel S.; Koeberl, Christian; Melles, Martin

    2016-09-01

    Lake El'gygytgyn in Far East Russia is a 3.6 Myr old impact crater lake. Located in an area that has never been affected by Cenozoic glaciations nor desiccation, the unique sediment record of the lake represents the longest continuous sediment archive of the terrestrial Arctic. The surrounding crater is the only impact structure on Earth developed in mostly acid volcanic rocks. Recent studies on the impactite, permafrost, and sediment sequences recovered within the framework of the ICDP "El'gygytgyn Drilling Project" and multiple pre-site surveys yielded new insight into the bedrock origin and cratering processes as well as permafrost dynamics and the climate and environmental history of the terrestrial Arctic back to the mid-Pliocene. Results from the impact rock section recovered during the deep drilling clearly confirm the impact genesis of the El'gygytgyn crater, but indicate an only very reduced fallback impactite sequence without larger coherent melt bodies. Isotope and element data of impact melt samples indicate a F-type asteroid of mixed composition or an ordinary chondrite as the likely impactor. The impact event caused a long-lasting hydrothermal activity in the crater that is assumed to have persisted for c. 300 kyr. Geochemical and microbial analyses of the permafrost core indicate a subaquatic formation of the lower part during lake-level highstand, but a subaerial genesis of the upper part after a lake-level drop after the Allerød. The isotope signal and ion compositions of ground ice is overprinted by several thaw-freeze cycles due to variations in the talik underneath the lake. Modeling results suggest a modern permafrost thickness in the crater of c. 340 m, and further confirm a pervasive character of the talik below Lake El'gygytgyn. The lake sediment sequences shed new leight into the Pliocene and Pleistocene climate and environmental evolution of the Arctic. During the mid-Pliocene, significantly warmer and wetter climatic conditions in

  1. Climate-induced changes in autumn impact spring breeding phenology and reproductive fitness in arctic ground squirrels

    Science.gov (United States)

    Sheriff, M. J.; Buck, L.; Barnes, B. M.

    2012-12-01

    Rapid climate change and shifts in seasonality can threaten the reproductive success of organisms and have negative consequences for species' range and even persistence. Focus on unidirectional effects of earlier springs and onset of reproduction do not consider effects warming may also have on autumn conditions. Shifts in the timing and duration of autumn conditions may influence spring breeding since earlier autumns may constrain offspring's winter preparation, forcing animals to breed earlier in the spring, while prolonged autumns may extend the time offspring have for winter preparation; this effect may alleviating the necessity of breeding early in spring and ultimately increase reproductive fitness. In the Arctic, warming and change in seasonality is occurring at unprecedented rates that are two to three times that of the global average. Further, rates are accelerating from about 0.15-0.17°C per decade (1961-1990) to about 0.3-0.4°C per decade. Unlike in temperate regions, arctic warming has had and is predicted to continue having major heterogeneous effects on the extent of seasonal snow cover. Future scenarios involve deeper and prolonged spring snow cover due to increased winter precipitation and frequency of spring snowstorms in some areas and reduced snow depth and earlier snowmelt with increased warming, wind, and winter precipitation falling as rain in other areas. Under both scenarios autumn is expected to become later in the year, potentially prolonging the snow free season. Snow cover is extremely important for many arctic animals controlling microclimates, defining the beginning and length of the growing season, affecting plant productivity, and allowing access to food resources. Using long-term data from two nearby populations of free-living arctic ground squirrels (AGS) that includes fine-scale information on timing of hibernation and reproduction, we found that seasonal differences in snow cover significantly influenced AGS breeding phenology

  2. Hotspots in cold seas: The composition, distribution, and abundance of marine birds in the North American Arctic

    Science.gov (United States)

    Wong, Sarah N. P.; Gjerdrum, Carina; Morgan, Ken H.; Mallory, Mark L.

    2014-03-01

    The distribution and thickness of sea ice in the Arctic is changing rapidly, resulting in changes to Arctic marine ecosystems. Seabirds are widely regarded as indicators of marine environmental change, and understanding their distribution patterns can serve as a tool to monitor and elucidate biological changes in the Arctic seas. We examined the at-sea distribution of seabirds in the North American Arctic in July and August, 2007-2012, and marine areas of high density were identified based on bird densities for four foraging guilds. Short-tailed shearwaters (Puffinus tenuirostris) were the most abundant species observed. Northern fulmars (Fulmarus glacialis), thick-billed murres (Uria lomvia), and dovekies (Alle alle) were also sighted in large numbers. Few birds were sighted between Dolphin and Union Strait and King William Island. Areas of high density over multiple years were found throughout the entire western portion of the study area (Bering Sea, Bering Strait, and Chukchi Sea), Lancaster Sound, Baffin Bay, Davis Strait, and the low Arctic waters off Newfoundland. These waters are characterized by high primary productivity. This study is the first to document the marine distribution of seabirds across the entire North American Arctic within the same time period, providing a critical baseline for monitoring the distribution and abundance of Arctic seabirds in a changing Arctic seascape.

  3. Bioaccumulation of radiocaesium in Arctic seals

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, JoLynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 deg. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of {sup 137}Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23{+-}0.045 Bq/kg f.w. {sup 137}Cs concentrations in both liver and kidney samples were near detection limits ({approx}0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of {sup 137}Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed.

  4. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.

    Science.gov (United States)

    Boesgaard, Kristine S; Albert, Kristian R; Ro-Poulsen, Helge; Michelsen, Anders; Mikkelsen, Teis N; Schmidt, Niels M

    2012-08-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic. PMID:22211955

  5. Environmental Assessment for a Marine Geophysical Survey of Parts of the Arctic Ocean, August-September 2010

    Science.gov (United States)

    Haley, Beth; Ireland, Darren; Childs, Jonathan R.

    2010-01-01

    According to the United Nations Convention on the Law of the Sea (UNCLOS), individual nations? sovereign rights extend to 200 nautical miles (n.mi.) (370 km) offshore or to a maritime boundary in an area called the continental shelf. These rights include jurisdiction over all resources in the water column and on and beneath the seabed. Article 76 of UNCLOS also establishes the criteria to determine areas beyond the 200 n.mi. (370 km) limit that could be defined as ?extended continental shelf,? where a nation could extend its sovereign rights over the seafloor and sub-seafloor (As used in UNCLOS, ?continental shelf? refers to a legally defined region of the sea floor rather than a morphological shallow-water area adjacent to continents commonly used by geologists and hydrographers.). This jurisdiction provided in Article 76 includes resources on and below the seafloor but not in the water column. The United States has been acquiring data to determine the outer limits of its extended continental shelf in the Arctic and has a vested interest in declaring and receiving international recognition of the reach of its extended continental shelf. The U.S. collaborated with Canada in 2008 and 2009 on extended continental shelf studies in the Arctic Ocean. The U.S. Coast Guard (USCG) Cutter Healy worked with the Canadian Coast Guard ship Louis S. St. Laurent to map the continental shelf beyond 200 n.mi. (370 km) in the Arctic. Each icebreaking vessel contributed different capabilities in order to collect data needed by both nations more efficiently in order to save money, avoid redundancy, and foster cooperation. Generally, the Healy collects bathymetric (sea-floor topography) data and the Louis S. St. Laurent collects seismic reflection profile data. The vessels work in concert when ice conditions are heavy, with one vessel breaking ice for the ship collecting data. The Canadian Environmental Assessments for these projects are available on line at http://www.ceaa.gc.ca/052

  6. What Is Climate Change? (Environmental Health Student Portal)

    Science.gov (United States)

    ... climate change, which can seriously affect our: Health Economy Crops Water resources Coastlines Energy usage Wildlife Outdoor ... A Student's Guide to Global Climate Change (U.S. Environmental Protection Agency) - Information about causes, detrimental global impact ...

  7. Towards a process-based understanding of Holocene polar climate change. Using glacier-fed lake sediments from Arctic Svalbard and Antarctic South Georgia

    OpenAIRE

    Bilt, Willem van der

    2016-01-01

    Earth`s polar regions are undergoing dramatic changes due to ongoing climate change as demonstrated by increasing temperatures, collapsing ice shelves, Arctic sea ice loss and rapid glacier retreat. Driving an accelerating rise in global sea level, this amplified regional response may have devastating global socio-economic consequences in the foreseeable future. Yet the causes and range of polar climate variability remain poorly understood as observational records are short and fragmentary, w...

  8. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovsky, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-06-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  9. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  10. On the change of latitude of Arctic East Siberia at the end of the Pleistocene

    CERN Document Server

    Wölfli, W

    2007-01-01

    Mammoths lived in Arctic East Siberia. In this region there is not sufficient sunlight over the year for the growth of the plants on which these animals feed. Therefore the latitude of this region was lower before the end of the Pleistocene. As the cause of this geographic pole shift, we postulate a massive object, which moved in an extremely eccentric orbit and was hot from tidal work and solar radiation. Evaporation produced a disk-shaped cloud of ions around the Sun. This cloud partially shielded the solar radiation, producing the cold and warm periods that characterize the Pleistocene. The shielding depends on the inclination of Earth's orbit, which has a period of 100'000 years. The cloud builds up to a density at which inelastic particle collisions induce its collapse The resulting near-periodic time dependence resembles that of Dansgaard-Oeschger events. During cold periods fine grained inclusions were deposited into the ice. The Pleistocene ended when the massive object had a close encounter with the ...

  11. An interdecadal change in the relationship between January-March Arctic Oscillation and North Pacific Precipitation

    Science.gov (United States)

    Hu, Miao

    2014-05-01

    An analysis of variability in the relationships between the winter (January-March) Arctic Oscillation and precipitation over the Northern Pacific during the period of 1979 to 2011 is presented based on the monthly precipitation data (CMAP) and NCEP/NCAR Reanalysis, after subtracting ENSO signals from all datasets. The sliding correlation analysis demonstrates there is a prominent weakening in the AO-precipitation relation around the early 1990s. In the total 33 years a high (low) AO phase more likely accompanies with a stronger (weaker) precipitation in the subtropical Pacific, and the mainly significant correlation area ranges from 10°-30°N,150°E-190°W. During the year 1979 to 1989, the positive correlations over the tropical Pacific are significant and widely-ranged; however, the correlations weaken over the whole region and even negative over the central Pacific after the early 1990s. In addition, the Model BCCR-BCM2 is capable of simulating the correct overall AO-precipitation relation over North Pacific.

  12. Future Atmospheric Research Priorities of the International Arctic Research Committee(IASC)

    Science.gov (United States)

    Overland, J. E.; Rachold, V.; Bowden, S.

    2010-12-01

    Since the founding of IASC, scientific, environmental, economic and political realities of the North have changed dramatically. New problems and challenges ask for new or improved scientific knowledge. In response, IASC has established five new Working Groups (WG): Terrestrial, Cryosphere, Marine, Atmosphere, and Social and Human; they will identify scientific priorities and initiate and stimulate cross-disciplinary initiatives. The Arctic Ocean Sciences Board(ASOB) has merged to become the IASC Marine WG. The scope of the Atmospheric Working Group is to understand and predict Arctic change, including local processes, the Arctic response to global change (Arctic amplification), fate of perennial sea ice, and impacts of Arctic changes on northern hemispheric atmospheric circulation. Approaches include investigation of past climate, Arctic processes across data sets and approaches, and climate model projections of the future. The research direction of the IASC Atmospheric WG can build on the strong results of the IPY Oslo Science Conference (June 2010) and the WCRP Polar Climate Predictability Workshop (October 2010). Changes are underway. Continued loss of sea ice will be a major driver of large changes across the Arctic over the next decades leading to Arctic amplification and mid-latitude teleconnections. Two major surprises were the major loss of sea ice extent in summer 2007 and the strong connectivity between warm Arctic conditions and mid-latitude cold events during winter 2009-2010. Additional ocean heat storage is a major new process in fall. Over the past decade, a newly persistent Arctic atmospheric climate pattern, the Arctic Dipole (AD) with a meridional (north-south) flow direction is now rivaling the well known Arctic Oscillation (AO) climate pattern. The AD pattern was predominate for the whole summer in 2007, but was active only in early summer in 2009 and 2010 which slowed down the sea ice retreat in those years. While the climate of the Arctic is

  13. New Trans-Arctic shipping routes navigable by midcentury.

    Science.gov (United States)

    Smith, Laurence C; Stephenson, Scott R

    2013-03-26

    Recent historic observed lows in Arctic sea ice extent, together with climate model projections of additional ice reductions in the future, have fueled speculations of potential new trans-Arctic shipping routes linking the Atlantic and Pacific Oceans. However, numerical studies of how projected geophysical changes in sea ice will realistically impact ship navigation are lacking. To address this deficiency, we analyze seven climate model projections of sea ice properties, assuming two different climate change scenarios [representative concentration pathways (RCPs) 4.5 and 8.5] and two vessel classes, to assess future changes in peak season (September) Arctic shipping potential. By midcentury, changing sea ice conditions enable expanded September navigability for common open-water ships crossing the Arctic along the Northern Sea Route over the Russian Federation, robust new routes for moderately ice-strengthened (Polar Class 6) ships over the North Pole, and new routes through the Northwest Passage for both vessel classes. Although numerous other nonclimatic factors also limit Arctic shipping potential, these findings have important economic, strategic, environmental, and governance implications for the region. PMID:23487747

  14. Baseline studies for monitoring global climatic change in the Arctic environment; A remote sensing-spatial data base approach

    International Nuclear Information System (INIS)

    The US Geological Survey's National Mapping Division has initiated research to establish a long-term monitoring program based on remotely sensed and other digital spatial earth science data bases. Six to eight specific eco-physiographic provinces in Alaska will be identified and studied in support of global climate change research in Arctic regions. A study site in the Colville River delta region has been selected for developing a demonstration/pilot data base, which will serve as a conceptual model for the other eco-physiographic regions yet to be identified. Regional data sets assembled to date include a complete Alaskan coastline digitized from 1:250,000 scale USGS map sheets, a state-wide mosaic of digital elevation model data at 0.5-km resolution, and a digitized version of the physiographic divisions of Alaska. The monitoring program focuses on the compilation and integration of digital spatial data bases for scientific investigations of earth system processes. Research elements associated with the climate change study include the spatial integration of widely varying sources of earth science data and multi-platform, multi-temporal sources of remotely sensed data. Selection of the monitoring sites follow criteria established by the international Geosphere-Biosphere Program and will occur through a series of interagency workshops. The integrated digital spatial data bases for the defined monitoring sites will provide a working tool for researchers to examine global climate change over the past 20 years, as well as provide a basis for future comparative studies

  15. Antarctic terrestrial ecosystems: responses to environmental change

    OpenAIRE

    Convey, Peter

    2006-01-01

    The consequences of climate change are exciting considerable concern worldwide. Parts of Antarctica are facing the most rapid rates of anthropogenic climate change currently seen on the planet. This paper sets out to introduce contemporary ecosystems of the Antarctic, and the factors that have influenced them and their biodiversity over evolutionary timescales. Contemporary climate change processes significant to terrestrial biota, and the biological consequences of these changes seen t...

  16. Paleoecology: An Untapped Resource for Teaching Environmental Change

    Science.gov (United States)

    Raper, Diana J.; Zander, Holli

    2009-01-01

    Global warming and climate change have become hot topics that incite debate, inspire scientific research, and influence international policy. However, the scientific research that provides the past climate and environmental information upon which contemporary environmental change is measured, receives little attention in high school curriculum.…

  17. Sustainability and environmental enhancement in changing cirumstances

    Institute of Scientific and Technical Information of China (English)

    LU Yong-long; SHI Ya-juan

    2007-01-01

    @@ Natural environment has endured fast economic growth and population explosion sine the 20th century,which has soil erosion,land desertification,ozone layer depletion,bio-diversity reduction and persistent toxic and harmful pollutants are among the major environmental challenges.

  18. The impact of Pleistocene climate change on an ancient arctic-alpine plant: multiple lineages of disparate history in Oxyria digyna.

    Science.gov (United States)

    Allen, Geraldine A; Marr, Kendrick L; McCormick, Laurie J; Hebda, Richard J

    2012-03-01

    The ranges of arctic-alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic-alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, T(MRCA)) ranged from ∼0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic-alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum. PMID:22822441

  19. Paleo-environmental gateways in the eastern Canadian arctic - Recent isotope hydrology and diatom oxygen isotopes from Nettilling Lake, Baffin Island, Canada

    Science.gov (United States)

    Chapligin, B.; Narancic, B.; Meyer, H.; Pienitz, R.

    2016-09-01

    Nettilling Lake is located on Baffin Island, Nunavut, Canada between the areas of past warming (Canadian High Arctic to the North) and climatic stability (Northern Quebec and Labrador region to the South). Despite being the largest lake in the Nunavut region with a postglacial marine to lacustrine transition history only a few paleo-environmental investigations were completed in this area. The oxygen isotope composition of diatoms (δ18Odiatom) can provide valuable insights into paleo-environmental conditions. Here, the recent (isotope) hydrology and hydrochemical data from the lake are presented to facilitate the interpretation of a δ18Odiatom record from an 82 cm sediment core (Ni-2B). The well-mixed lake (δ18Owater = -17.4‰) is influenced by a heavier (less negative) isotope composition (-18.80‰) from Amadjuak River draining Amadjuak Lake to the South and water of lighter (more negative) isotopic composition (-16.4‰) from the Isurtuq River originating from Penny Ice Cap in the North-East. From the δ18Owater and δ18Odiatom of the topmost sample of core Ni-2B a Δ18Osilica-water of 1000 ln α(silica-water) = 40.2‰ for sub-recent diatoms of Nettilling Lake was calculated matching the known water-silica fractionation for fossil sediments well and thereby showing the general applicability of this proxy for paleo-reconstructions in this region. Extremely large δ18Odiatom variations in the core of more than 13‰ are mainly induced by changes in the isotopic composition of the lake water due to a shift from glaciomarine (δ18Odiatom = +34.6‰) through brackish (+23.4 to +27.2‰) towards lacustrine (+21.5‰) conditions (transition zones glaciomarine to brackish at 69 cm/7300 yr cal. BP and brackish to lacustrine at 35 cm/6000 yr cal. BP) associated with a shift in the degree of salinity. Our study provides the first evidence that paleo-salinity can be reconstructed by δ18Odiatom. Additionally, for the lacustrine section it could be demonstrated that

  20. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  1. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  2. How is the Fram Strait Freshwater Outflow Responding to Changes in the Arctic Climate System?

    Science.gov (United States)

    Dodd, Paul; Rabe, Benjamin; Granskog, Mats; Stedmon, Colin; Kristiansen, Svein; Hansen, Edmond

    2014-05-01

    The composition of the Fram Strait freshwater outflow is investigated by comparing 10 sections of concurrent salinity, δ18O, nitrate and phosphate measurements collected between 1997 and 2012. The largest inventories of net sea ice meltwater are found in 2009, 2010, 2011 and 2012. The 2009-2012 sections are also the first to show positive fractions of sea ice meltwater at the surface near the core of the EGC. Sections from September 2009-2012 show an increased input of sea ice meltwater at the surface relative to older September sections. This suggests that more sea ice now melts back into the surface in late summer than previously. Comparison of April, July and September sections reveals seasonal variations in the inventory of positive sea ice meltwater, with maximum inventories in September sections. The time series of sections reveals a strong anti-correlation between meteoric water and net sea ice meltwater inventories, suggesting that meteoric water and brine may be delivered to Fram Strait together from a common source. We find that the freshwater outflow at Fram Strait exhibits a similar meteoric water to net sea ice meltwater ratio as the central Arctic Ocean and Siberian shelves, suggesting that much of the sea ice meltwater and meteoric water at Fram Strait may originate from these regions. However, we also find that the ratio of meteoric water to sea ice meltwater inventories at Fram Strait is decreasing with time, due to an increased surface input of sea ice meltwater in recent sections. From 2010 to 2013, automatic water samplers have provided high frequency year round tracer observations required to resolve seasonal and short-term variations in the freshwater composition at Fram Strait. Measurements from these instruments reveal significant short-term variations in the freshwater composition over the East Greenland Shelf.

  3. Rapidly changing distribution of velocity and suspended materials under the drifting Arctic sea ice

    Science.gov (United States)

    Ha, Ho Kyung; Im, Jungho; Kim, Yong Hoon; Yae Son, Eun; Lee, Sanggyun

    2015-04-01

    In two summer seasons of 2011 and 2014, the short-term (1-4 days) ice-camp study has been conducted on the drifting Arctic sea ice. In particular, in 2014, the international collaboration with the Marginal Ice Zone program (sponsored by Office of Naval Research) has been integrated. The mooring package comprises the acoustic Doppler velocity profiler, holographic imaging camera, and conductivity-temperature-depth profiler, which are used to understand the dynamic behavior of sea ice and spatial-temporal variation of mixing layer (ML) and suspended particulate matters under the sea ice. Mooring data clearly shows the mixing and entrainment pattern in the upper ML in the marginal ice zone. When ice floes drift toward the pack ice, the upward entrainment from the seasonal pycnocline to sea ice-water boundary was induced by shear across ML and seasonal pycnocline. The entrainment speed was in the range of 0.25-2 m/hr, which matches well with thickening and thinning rate of ML during the near-inertial period (~12 hr). When ice floes drift toward the open ocean, the turbulent wakes at the advancing edge of ice were combined with the entrainment caused by near-inertial motion, which results in a complex mixing pattern of both upward and downward fluxes in the ML. Also, the acoustic backscatter observed by the acoustic Doppler current profiler and beam attenuation from transmissometer revealed the increased concentration of suspended particulate materials in the ML, which can be direct evidence visualizing the mixing pattern. Results suggest that the mixing and entrainment found in our study sustain particulate matters in suspension within the upper ML for a few months.

  4. Baseline scenarios of global environmental change

    International Nuclear Information System (INIS)

    This paper presents three baseline scenarios of no policy action computed by the IMAGE2 model. These scenarios cover a wide range of coupled global change indicators, including: energy demand and consumption; food demand, consumption, and production; changes in land cover including changes in extent of agricultural land and forest; emissions of greenhouse gases and ozone precursors; and climate change and its impacts on sea level rise, crop productivity and natural vegetation. Scenario information is available for the entire world with regional and grid scale detail, and covers from 1970 to 2100. (author)

  5. Towards a tipping point in responding to change: rising costs, fewer options for Arctic and global societies.

    Science.gov (United States)

    Huntington, Henry P; Goodstein, Eban; Euskirchen, Eugénie

    2012-02-01

    Climate change incurs costs, but government adaptation budgets are limited. Beyond a certain point, individuals must bear the costs or adapt to new circumstances, creating political-economic tipping points that we explore in three examples. First, many Alaska Native villages are threatened by erosion, but relocation is expensive. To date, critically threatened villages have not yet been relocated, suggesting that we may already have reached a political-economic tipping point. Second, forest fires shape landscape and ecological characteristics in interior Alaska. Climate-driven changes in fire regime require increased fire-fighting resources to maintain current patterns of vegetation and land use, but these resources appear to be less and less available, indicating an approaching tipping point. Third, rapid sea level rise, for example from accelerated melting of the Greenland ice sheet, will create a choice between protection and abandonment for coastal regions throughout the world, a potential global tipping point comparable to those now faced by Arctic communities. The examples illustrate the basic idea that if costs of response increase more quickly than available resources, then society has fewer and fewer options as time passes. PMID:22270706

  6. World Wind Tools Reveal Environmental Change

    Science.gov (United States)

    2012-01-01

    Originally developed under NASA's Learning Technologies program as a tool to engage and inspire students, World Wind software was released under the NASA Open Source Agreement license. Honolulu, Hawaii based Intelesense Technologies is one of the companies currently making use of the technology for environmental, public health, and other monitoring applications for nonprofit organizations and Government agencies. The company saved about $1 million in development costs by using the NASA software.

  7. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    Science.gov (United States)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential

  8. Traditional Ecological Knowledge in Arctic EIA's

    DEFF Research Database (Denmark)

    Egede, Parnuna Petrina; Hansen, Anne Merrild

    2016-01-01

    The search for new oil and mineral reserves in the Arctic is increasing. This has called for both local and international concerns and opposition to the activities based on environmental apprehensions. Environmental Impact Assessments (EIA’s) have been implemented in legislations by the Arctic...

  9. Directed Technical Change and Economic Growth Effects of Environmental Policy

    DEFF Research Database (Denmark)

    Kruse-Andersen, Peter Kjær

    A Schumpeterian growth model is developed to investigate how environmental policy affects economic growth when environmental policy also affects the direction of technical change. In contrast to previous models, production and pollution abatement technologies are embodied in separate intermediate...... unambiguously directs research efforts toward pollution abatement technologies and away from production technologies. This directed technical change reduces economic growth and pollution emission growth. Simulation results indicate that even large environmental policy reforms have small economic growth effects....... However, these economic growth effects have relatively large welfare effects which suggest that static models and exogenus growth models leave out an important welfare effect of environmental policy....

  10. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures and ...... and resources. This poster will present the conceptual framework for this project focusing on species resilience......., an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...

  11. Late Quaternary paleomagnetic secular variation, relative paleointensity, and environmental magnetism from Cascade Lake, Brooks Range, Arctic Alaska

    Science.gov (United States)

    Steen, D. P.; Kaufman, D. S.; Stoner, J. S.; Reilly, B. T.

    2015-12-01

    Two sediment cores from Cascade Lake (68.38°N, 154.60°W), Arctic Alaska were selected for paleomagnetic analysis to compare 14C age control with paleomagnetic secular variation (PSV) and relative paleointensity (RPI) age control derived from field models and other local sedimentary records. Rock magnetic experiments were performed to quantify variability in magnetic properties and to infer sediment sourcing during the late Quaternary. U-channels were studied through AF demagnetization of the natural remanent magnetization, and laboratory-induced magnetizations including anhysteretic remanent magnetization (ARM) acquisition, ARM demagnetization, and isothermal remanent magnetization (IRM). Maximum angular deviation values average coercivity component that increases up core. Average inclinations are within 4° of the expected geocentric axial dipole, and major inclination features can be correlated across the two cores. Correlation of inclination changes with the Burial Lake record, 200 km to the west (Dorfman, 2013, unpub. thesis), indicates that the Cascade Lake sedimentary sequence overlying the basal diamicton likely spans at least 16 ka. Cascade Lake sediments may be suitable for RPI estimation using the ARM or IRM as a normalizer, following a more detailed examination of magnetic properties. A systematic offset between the Cascade Lake 14C chronology and PSV and RPI chronologies wiggle-matched to field models suggests a hard-water effect of ~1000 yr, although we cannot rule out the possibility that at least some of the age offset represents a post-depositional remanent magnetization lock-in effect at Cascade Lake. S-ratios (IRM0.3T/SIRM) and ARM-ratios (ARM/SIRM) show a sharp decrease in low-coercivity material across the transition from clastic sediments to organic-rich sediments, followed by an increase in the concentration of fine-grained magnetic material and fining of the magnetic grain size up core, along with an increase in organic matter after ~10 ka

  12. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000-11)

    Science.gov (United States)

    Dutrieux, L. P.; Bartholomeus, H.; Herold, M.; Verbesselt, J.

    2012-12-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000-11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr-1) and warming (+0.27% yr-1) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting factors

  13. The environmental impact of changing consumption patterns: a survey

    DEFF Research Database (Denmark)

    Røpke, Inge

    2001-01-01

    How does environmental impact change when national income increases? So far, this question has been mainly discussed from the point of view of production, but in recent years several studies have dealt with the question of decoupling from the point of view of consumption. The optimistic subscribers...... assessment of the environmental impact is most appropriately based on an input approach. Then data on input intensities for different categories of consumption goods are combined with data on changes in consumption patterns, and it is concluded that the historical changes in the composition of consumption...... seem to have done little to counterbalance the environmental effects of growth....

  14. Climate and environmental change in China. 1951-2012

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dahe [Chinese Academy of Sciences, Lanzhou (China). Cold and Arid Regions Environmental and Engineering Research Institute; Academy of Meteorological Sciences, Beijing, BJ (China). State Meteorological Administration; Ding, Yongjian [Chinese Academy of Sciences, Lanzhou (China). Cold and Arid Regions Environmental and Engineering Research Institute; Mu, Mu (ed.) [Chinese Academy of Sciences, Qingdao (China). Inst. of Oceanology

    2016-02-01

    Through numerous color figures and tables, this book presents the most up-to-date knowledge on climate and environmental change in China. It documents the evidence and attribution of climate and environmental changes in the past few decades and discusses the impacts of climate change on environments, economy, and society. The book further provides projections of climate change and its impacts in the future. Finally, it offers the climate change mitigation and adaption technologies with strategic options which will be of interest for policy makers, researchers and the general public as well.

  15. Climate and environmental change in China. 1951-2012

    International Nuclear Information System (INIS)

    Through numerous color figures and tables, this book presents the most up-to-date knowledge on climate and environmental change in China. It documents the evidence and attribution of climate and environmental changes in the past few decades and discusses the impacts of climate change on environments, economy, and society. The book further provides projections of climate change and its impacts in the future. Finally, it offers the climate change mitigation and adaption technologies with strategic options which will be of interest for policy makers, researchers and the general public as well.

  16. North Pole Environmental Observatory CTD surveys: Springtime temperature and salinity measurements in the Arctic Ocean by aircraft, 2000 - 2008 (NODC Accession 0057592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The investigators propose to take annual springtime, large-scale airborne surveys of the Arctic Ocean. These surveys will be in two regions: the central Arctic...

  17. Composition and meteorological changes associated with a strong stratospheric intrusion event in the Canadian High Arctic

    Science.gov (United States)

    Zhao, Xiaoyi; Strong, Kimberly; Conway, Stephanie; Tarasick, David; Osman, Mohammed; Richter, Andreas; Blechschmidt, Anne; Manney, Gloria

    2015-04-01

    Stratosphere-troposphere exchange (STE) provides a mechanism for trace gas transport between the lower stratosphere and the troposphere. Intense downward stratospheric intrusions may significantly affect the oxidizing capacity of the troposphere. Most STE events occur in tropical and mid-latitude regions, with less known about STE in the polar regions. In this work, we present an observation and modelling study of a strong stratospheric intrusion in the high Arctic (Eureka, 80°N) in March 2013, which led to an increase of total ozone and BrO columns observed by both ground-based and satellite instruments. The meteorological conditions for this event were similar to those observed for STEs associated with cold fronts. Before the cold front arrived at Eureka, the surface temperature first increased from -25.3°C (25 March 13:00 UTC) to -14.5°C (27 March 20:00 UTC) and then dropped to -36.4°C (29 March 6:00 UTC) after the front passed by. Meanwhile, the ground-level pressure decreased from 103.8 kPa to 101.8 kPa, then rose back to 102.6 kPa. Ozonesonde data (27 March 23:15 UTC) showed unusually high ozone (>100 ppbv) above ~3 km altitude, while the relative humidity profile indicated that the airmass was of stratospheric origin (very low relative humidity). The thermal tropopause height was ~9 km, based on a uniform lapse rate of 3.9 K/km from surface to 9 km. From ECMWF Interim data, the airmass with high relative potential vorticity (4 pvu) extended down to 3 km. In addition, HYSPLIT model ensemble back-trajectories show a clear Rossby wave signature in the upper troposphere during this event, which could explain the intrusion. However, there are no strong downwelling layers along the trajectories, which indicates that the intrusion may have occurred close to Eureka. Trace gas composition data from three ground-based spectrometers and the GOME-2 satellite instrument are presented in this work. Ozone vertical column densities (VCDs) measured by two Zenith

  18. Environmental change in Bashang Region historical periods

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Bashang region is a typical vulnerable eco-environmentalzone. Our analysis of paleodunes, paleosol profiles, and lake changes taking place during last ten thousands years indicated that:(1) 10-6.9 ka B.P. was a post-glacial temperature-increasing stage, in which lakes had their high water level; (2) 6.9-3.0 ka B. P. was a large warm stage, during which four paleosol layers were developed and climate fluctuation has assumed 4-5 smallcold-humid and cold-dry alternations. Since 5.4 ka B.P, the lakestended to gradually shrink; and by 2.1 ka B.P., water level has fallen by 2.7 m; (3) since 3.0 ka B. P. a general trend of the region was to change into a dry, warm-dry and cold-dry environment.

  19. High-latitude environmental change during MIS 8–12: biogeochemical evidence from Lake El'gygytgyn, Far East Russia

    Directory of Open Access Journals (Sweden)

    D. B. Finkelstein

    2012-09-01

    Full Text Available Marine Isotope Stages (MIS 11 has been proposed as an analog for the present interglacial; however, terrestrial records of this time period are rare. Sediments from Lake El'gygytgyn (67°30´ N, 172°5´ E in Far East Russia contain a 3.56 Ma record of climate variability from the Arctic. Here, we present an organic geochemical reconstruction of environmental and climatic changes from MIS 8 through 12 (289 to 460 ka. Terrestrial vegetation changes, as revealed by plant leaf wax (n-alkane indices and concentrations of arborinol (a biomarker for trees, show increased tree cover around the lake during interglacial periods, with higher concentrations observed during MIS 11 as compared to MIS 9. A similar pattern is also observed in records of aquatic productivity revealed by molecular indicators from dinoflagellates (dinosterol, eustigmatophyte algae (long-chain (C28–C32 1,15 n-alkyl diols in addition to short-chain nalkanes, where aquatic productivity is highest during MIS 11. Changes recorded in these molecular proxies track relative temperature variability as recorded by the MBT/CBT paleothermometer, based on branched glycerol dialkyl glycerol tetraethers (GDGTs. Additionally, relative MBT/CBT temperature changes generally track pollen and diatom δ18O temperature estimates, compiled by other studies, which suggest glacial–interglacial temperature changes of ~ 9–12 °C. These records of environmental and climatic change indicate Arctic sensitivity to external forcings such as orbital variability and atmospheric greenhouse gas concentrations. Overall, this study indicates that organic geochemical analyses of the Lake El'gygytgyn sediment archive can provide critical insight into the response of lake ecosystems and their sensitivity in high latitude regions.

  20. Environmental Issues, Climate Changes, and Energy Security in Developing Asia

    OpenAIRE

    Sovacool, Benjamin K

    2014-01-01

    Four environmental dimensions of energy security—climate change, air pollution, water availability and quality, and land-use change—and the environmental impact of 13 energy systems on each are discussed in this paper. Climate change threatens more land, people, and economies in Asia and small Pacific island states than any other part of the planet. Air pollution takes a substantial toll on national health-care expenditures and economies in general. Of the 18 megacities worldwide with severe ...

  1. Adaptive responses to environmental changes in Lake Victoria cichlids

    OpenAIRE

    Rijssel, Jacobus Cornelis van (Jacco)

    2014-01-01

    Lake Victoria cichlids show the fastest vertebrate adaptive radiation known which is why they function as a model organism to study evolution. In the past 40 years, Lake Victoria experienced severe environmental changes including the boom of the introduced, predatory Nile perch and eutrophication. Both environmental changes resulted in a decline of haplochromine cichlid species and numbers during the 1980s. However, during the 1990s and 2000s, some haplochromine species recovered. With the us...

  2. Long-term trends in suspended chlorophyll a and vertical particle flux with respect to changing physical conditions in eastern Fram Strait, Arctic Ocean

    Science.gov (United States)

    Nöthig, Eva-Maria; Bauerfeind, Eduard; Beszczynska-Möller, Agnieszka; Kraft, Angelina; Bracher, Astrid; Cherkasheva, Alexandra; Fahl, Kirsten; Hardge, Kristin; Kaleschke, Lars; Lalande, Catherine; Metfies, Katja; Peeken, Ilka; Klages, Michael; Soltwedel, Thomas

    2014-05-01

    The Fram Strait is the main gateway for water, heat, sea ice and plankton exchanges between the Arctic Ocean and the North Atlantic. The abundance and composition of phyto- and zooplankton communities is governed to a large extent by key physical factors such as water temperature, salinity, currents, stratification of the water column and the presence or absence of sea ice. With our study we aim at tracing effects of environmental changes in pelagic system structure and impacts on the fate of organic matter produced in the upper water column in a region that is anticipated to react rapidly to climate change. Chlorophyll a, an indicator of biomass standing stock of phytoplankton, has been measured in the upper 100 m of the water column since 1991 during several summer cruises (with RV 'Polarstern') across Fram Strait. Chlorophyll a measurements are used to validate productivity estimates by remote sensing from space. The quantity and composition of export fluxes of organic matter including biomarker have been measured since 2000 by annually moored sediment traps deployed at 200-300m at the AWI long-term observatory HAUSGARTEN in eastern Fram Strait (79°/4°E). Along with sinking particles, zooplankton (so-called 'swimmers') was also caught in the traps. Analyses of the material collected by the sediment traps allowed us to track seasonal and inter-annual changes in the surface waters at HAUSGARTEN. We present temporal trends in the chlorophyll a distribution (1991-2012), in swimmer composition in the traps (2000-2009), and in the export of biomarker (2000-2008), particulate organic carbon, particulate biogenic silica, calcium carbonate, and the protist composition (2000-2012), in relation to the changing sea ice cover and water temperature. Whereas chlorophyll a (integrated values 0-100m) showed only a slight increase, the swimmer composition and the composition of the annual particle flux changed after a warm water event occurring from 2005-2007. The warm anomaly

  3. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate-reducing...... bacteria (SRB). However, high rates at in situ temperatures compared with maximum rates showed the predominance of psychrophilic SRB even at high incubation temperatures. Changing apparent activation energies (Ea) showed that increasing temperatures had an initial negative impact on sulfate reduction...

  4. Past climate variability and change in the Arctic and at high latitudes

    Science.gov (United States)

    Alley, Richard B.; Brigham-Grette, Julie; Miller, Gifford H.; Polyak, Leonid; U.S. Climate Change Science Program; Subcommittee on Global Change Research; U.S. Geological Survey

    2009-01-01

    Paleoclimate records play a key role in our understanding of Earth's past and present climate system and in our confidence in predicting future climate changes. Paleoclimate data help to elucidate past and present active mechanisms of climate change by placing the short instrumental record into a longer term context and by permitting models to be tested beyond the limited time that instrumental measurements have been available.

  5. Sensitizing nurses for a changing environmental health role.

    Science.gov (United States)

    Tiedje, L B; Wood, J

    1995-12-01

    This paper traces the evolution of a broader environmental health role for nursing by focusing on the health effects of exposure to environmental pollutants and of global environmental change. This evolving role is reviewed through the examination of selected community health nursing texts published during the last several decades. Key role strategies based on this expanded and evolving environmental role are proposed. Finally, a survey is described that is intended to heighten awareness of personal and professional attitudes and behaviors related to the environment.

  6. Climate change impacts on continental weathering through the Middle Jurassic to Lower Cretaceous of Sverdrup Basin, Canadian Arctic

    Science.gov (United States)

    Galloway, Jennifer; Grasby, Stephen; Swindles, Graeme; Dewing, Keith

    2014-05-01

    Jurassic to Cretaceous strata of Sverdrup Basin, Canadian Arctic Archipelago, contain marine and non-marine successions that can be studied to reconstruct ancient paleoclimates and paleoenvironments that are poorly understood in high-latitude regions. We use element geochemistry integrated with palynology to study a continuous Aalenian to Albian-aged succession preserved in the Hoodoo Dome H-37 oil and gas well located on southern Ellef Ringnes Island near the centre of Sverdrup Basin. Cluster analysis (stratigraphically constrained incremental sum of squares; CONISS) is used to delineate four geochemical zones that are broadly coeval with major changes in palyno-assemblages interpreted to reflect changes in regional paleoclimate. Zone 1 (late Aalenian to Bathonian) is characterized by palynomorphs associated with humid and warm climate conditions. The chemical alteration index (CAI) is high in this interval, expected under this a humid and warm climate. A transition to a seasonally arid and warm climate occurred in the Bathonian and persisted until the Kimmeridgian or Valanginian (Zone 2). This interval is characterized by decreased chemical weathering, indicated by a drop in CAI. The onset of Zone 3 (Kimmeridgian or Valanginian to late Barremian or early Aptian) occurs during a transition to humid and cool climate conditions and is associated with a period of regional uplift and rifting. Zone 3 is marked by a substantial and progressive drop in CAI, indicating a transition from a weathering to transport-dominated system, possibly associated with landscape destabilization. Reduced tectonic activity in Zone 4 (early Aptian to early or mid Albian) shows a return to active chemical weathering, possibly associated with landscape stabilization, suggested by a continued increase in pollen from upland coniferous taxa. The geochemical and palynological records of Middle Jurassic to Lower Cretaceous strata of the Hoodoo Dome H-37 oil and gas well show close correlation

  7. Technological change in economic models of environmental policy: A survey

    OpenAIRE

    Löschel, Andreas

    2002-01-01

    This paper provides an overview of the treatment of technological change in economic models of environmental policy. Numerous economic modeling studies have confirmed the sensitivity of mid- and long-run climate change mitigation cost and benefit pro-jections to assumptions about technology costs. In general, technical progress is considered to be a non-economic, exogenous variable in global climate change modeling. However, there is overwhelming evidence that technological change is not an e...