WorldWideScience

Sample records for arctic energy technology

  1. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  2. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  3. Arctic wind energy

    International Nuclear Information System (INIS)

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  4. Arctic Energy Resources: Energy Research

    Science.gov (United States)

    Gryc, George

    1984-04-01

    Arctic Energy Resources is a volume of 26 papers recording the proceedings of the Comite' Arctique International Conference, held at the Veritas Centre, Oslo, Norway, September 22-24, 1982. This was the fourth of a series of meetings on the Arctic organized by the Comite', an organization established in the Principality of Monaco with the active support of H.S.H. Prince Rainer III. The fourth Conference was opened by H.R.H. Crown Prins Harald of Norway, a noble beginning for a noble objective.The North Polar Region has drawn world attention recently because of several large hydrocarbon and other mineral discoveries and because of major political and environmental actions in the North American Arctic. Since 1923 when Naval Petroleum Reserve number 4 (NPR-4) was established, northern Alaska has been considered a major petroleum province. It was first explored systematically with modern techniques from 1943 to 1953. In 1958, Alaska became a state, and both federal and state lands in northern Alaska were available for private exploration. Building on the knowledge base provided by the Pet-4 program and its spinoff research laboratory at Barrow, industry explored the area east of NPR-4 and discovered the largest hydrocarbon accumulation (9.6 bbl crude oil and 26 Tcf (trillion cubic feet) gas) in North America at Prudhoe Bay. Concerns for environmental impacts, including oil spills, led to the passing of the National Environmental Policy Act in 1969. In 1970, over 9 million acres were set aside, now known as the Arctic National Wildlife Range, and in 1971 the Alaska Native Claims Settlement Act was passed by the U.S. Congress. The Arab oil embargo of 1973 heightened the energy crisis and changed the economic basis for further exploration in the Arctic. The convergence of these events dramatically changed the balance of power and the pace of activity in the North American Arctic.

  5. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  6. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  7. Technological and economic factors in the future development and utilization of Arctic natural gas

    International Nuclear Information System (INIS)

    Development of Arctic gas reserves will be accelerated during the next two decades in response to higher oil prices, environmental and safety advantages of gas, and the potentially low costs of tapping giant reservoirs. Total Arctic gas reserves are estimated at over 63 trillion m3. Due to low population and industrial activity in the Arctic, only limited markets for Arctic gas exist in the Arctic itself. The main part of Arctic gas must therefore be transported over long distances. Giant Arctic gas fields will provide a basis for different production alternatives including both pipeline gas, liquefied gas, and converted gas products. Transportation systems are the most critical part of Arctic natural gas development and the sector requiring the greatest investment. Major investment decisions will depend on accurate estimates of gas transport technology and economics, as well as on perceived energy market share growth and geopolitical stability. 27 refs., 4 figs., 3 tabs

  8. ARCTIC FOUNDATIONS, INC. FREEZE BARRIER TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tech...

  9. ARCTIC FOUNDATIONS, INC. FREEZE BARRIER SYSTEM - SITE TECHNOLOGY CAPSULE

    Science.gov (United States)

    Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tec...

  10. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  11. Review of technology for Arctic offshore oil and gas recovery. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  12. Northern exposure : as the ice recedes, Arctic exploration, and technology development, heats up

    International Nuclear Information System (INIS)

    This article discussed the affect that climate change and global warming has had on the Arctic and what it foretells for the oil industry. For a few brief weeks during the summers of 2007 and 2008 ice caps receded to the point that ships could navigate the historically impassable Northwest Passage of the Arctic Ocean. The Arctic Institute of North America estimates that the North Pole will be ice-free in 10 to 15 years, much earlier than originally thought. In response to the possibilities that may open up over the next couple of decades, some oil companies are investing hundreds of millions in a new search, with new technologies at old prospect areas. Service provides are increasing research spending into new exploration, production and transportation solutions suited to harsh Arctic conditions. This article described some of the projects planned at locations off Norway and Russia in which advanced subsea production techniques will be applied, such as remotely operated vehicles and liquefied natural gas (LNG) transportation solutions. An unprecedented level of survey activity will resolve border disputes in prospective areas, resulting in seabed mapping that will provide a better understanding of the region. Petro-Canada's efforts to develop the Hecla and Drake Point gas fields was also discussed. The Canadian Energy Research Institute determined that ship-borne transportation from Melville Island in the Arctic is economically feasible. Vancouver-based Teekay Corporation is developing a floating liquefied natural gas (FLNG) technology capable of producing 1 to 2 million tonnes of LNG annually from fields containing 0.5 to 5 tcf. The unique concept was recently granted concept approval by the American Bureau of Shipping, confirming the design is robust and safe. The company is in discussions with potential producers and could be ready for production within 4 years. 6 figs

  13. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  14. Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology

    Energy Technology Data Exchange (ETDEWEB)

    Canja, S.; Williams, C.R.

    1982-04-01

    This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

  15. An energy efficient building for the Arctic climate

    DEFF Research Database (Denmark)

    Vladyková, Petra

    The Arctic is climatically very different from a temperate climate. In the Arctic regions, the ambient temperature reaches extreme values and it has a direct large impact on the heat loss through the building envelope and it creates problems with the foundation due to the permafrost. The solar...... pattern is completely different due to the limited availability in winter, yet, in summer, the sun is above horizon for 24 hours. Furthermore, the sunrays reach the vertical opaque elements at shallow angles. The great winds and storms have large effects on the infiltration of buildings and they heavily...... the net positive solar gain, and a ventilation system with very efficient heat recovery. To design a passive house in the way it is defined by Wolfgang Feist, the founder of the Passivhaus Institute, its annual heat demand should not exceed 15 kWh/(m2∙a) and its total primary energy demand should...

  16. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  17. Estimating carbon and energy fluxes in arctic tundra

    Science.gov (United States)

    Gokkaya, K.; Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2013-12-01

    Arctic ecosystems are undergoing a very rapid change due to climate change and their response to climate change has important implications for the global energy budget and carbon (C) cycling. Therefore, it is important to understand how (C) and energy fluxes in the Arctic will respond to climate change. However, attribution of these responses to climate is challenging because measured fluxes are the sum of multiple processes that respond differently to environmental factors. For example, net ecosystem exchange of CO2 (NEE) is the net result of gross (C) uptake by plant photosynthesis (GPP) and (C) loss by ecosystem respiration (ER) and similarly, evapotranspiration (i.e. latent energy, LE) is the sum of transpiration and evaporation. Partitioning of NEE into GPP and ER requires nighttime measurements of NEE, when photosynthesis does not take place, to be extrapolated to daytime. This is challenging in the Arctic because of the long photoperiod during the growing season and the errors involved during the extrapolation. Transpiration (energy), photosynthesis (carbon), and vegetation phenology are inherently coupled because leaf stomata are the primary regulators of gas exchange. Our objectives in this study are to i) estimate canopy resistance (Rc) based on a light use efficiency model, ii) utilize the estimated Rc to predict GPP and transpiration using a coupled C and energy model and thus improve the partitioning of NEE and LE, and iii) to test ensemble Kalman filter (EnKF) to estimate model parameters and improve model predictions. Results from one growing season showed that the model predictions can explain 75 and 71% of the variance in GPP and LE in the Arctic tundra ecosystem, respectively. When the model was embedded within the EnKF for estimating Rc, the amount of variance explained for GPP increased to 81% but there was no improvement for the prediction of LE. This suggests that the factors controlling LE are not fully integrated in the model such as the

  18. Seasonal cycle of solar energy fluxes through Arctic sea ice

    Directory of Open Access Journals (Sweden)

    S. Arndt

    2014-06-01

    Full Text Available Arctic sea ice has not only decreased considerably during the last decades, but also changed its physical properties towards a thinner and more seasonal cover. These changes strongly impact the energy budget and might affect the ice-associated ecosystem of the Arctic. But until now, it is not possible to quantify shortwave energy fluxes through sea ice sufficiently well over large regions and during different seasons. Here, we present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The annual maximum solar heat flux of 30 × 105 J m−2 occurs in June, then also matching the under ice ocean heat flux. Furthermore, our results suggest that 96% of the total annual solar heat input occurs from May to August, during four months only. Applying the new parameterization on remote sensing and reanalysis data from 1979 to 2011, we find an increase in light transmission of 1.5% a−1 for all regions. Sensitivity studies reveal that the results strongly depend on the timing of melt onset and the correct classification of ice types. Hence, these parameters are of great importance for quantifying under-ice radiation fluxes and the uncertainty of this parameterization. Assuming a two weeks earlier melt onset, the annual budget increases by 20%. Continuing the observed transition from Arctic multi- to first year sea ice could increase light transmittance by another 18%. Furthermore, the increase in light transmission directly contributes to an increase in internal and bottom melt of sea ice, resulting in a positive transmittance-melt feedback process.

  19. Arctic resource development. Risks and responsible management. The geopolitics of energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    A new study about crucial risk management issues relating to Arctic operations is released by DNV (Det Norske Veritas) and the Fridtjof Nansen Institute (FNI). This concludes that, in order to safely develop Arctic resources, there is a need for improved technology, oil spill preparedness and close cooperation between the authorities, industry and society.

  20. Review of technology for Arctic offshore oil and gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  1. Energy Technologies 2050

    OpenAIRE

    Marlene Arens; Christian Dotsch; Sebastian Herkel; Wolfram Krewitt; Peter Markevitz; Dominique Most; Julie Oberschmidt; Martin Scheufen; Martin Wietschel

    2011-01-01

    Research and development in the field of energy technologies is characterized by high risks and substantial investments which pay off only long term. Research in the field of energy technologies requires special support from the government. The study entitled «Energy technologies 2050» reveals priorities for the public policy support with reference to prospective non-nuclear energy research. For this purpose an evaluation methodology has been developed that allows the systematic comparison of...

  2. Deciphering the Arctic's depths : application of latest in exploration technologies yielding new insights into undersea geology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2009-12-15

    As new technologies become available, exploration in the Arctic is expanding into largely unexplored basins. This article highlighted many recent exploration efforts in areas such as the Beaufort Sea, the Chukchi Sea, Alaska, Mackenzie Delta, the Northwest Passage through the Canadian Arctic archipelago, and the waters surrounding northeast Greenland. It listed the companies who have sought exploration leases and summarized their activities, which include seismic surveys that provide new insights on a basin-wide scale. Houston-based ION Geophysical Corporation has undertaken 3 major seismic surveys known as the SPAN projects. These are geologically inspired, basin-scale, ultra-deep seismic programs that allow exploration companies to evaluate the geologic evolution, deep basin architecture and depositional and structural histories of entire petroleum systems across a region. Their purpose is to determine where source rocks are most prevalent, where sediment fairways are located and where the most promising migration paths from source to reservoir exist. ION has approximately 250,000 line kilometres of SPAN data acquired around the globe. Several of the world's largest energy companies agreed to underwrite the basin-scale imaging project, recognizing the potential in the Arctic, which contains nearly 25 per cent of the world's undiscovered oil and gas resources according to the United States Geological Survey. 1 ref., 5 figs.

  3. Promoting Renewable Energy Technologies

    DEFF Research Database (Denmark)

    Olsen, Ole Jess; Skytte, Klaus

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  4. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  5. Enabling Technology for the Exploration of the Arctic Ocean - Multi Channel Seismic Reflection data acquisition

    Science.gov (United States)

    Coakley, B.; Anderson, R.; Chayes, D. N.; Goemmer, S.; Oursler, M.

    2009-12-01

    Great advances in mapping the Arctic Ocean have recently been made through the relatively routine acquisition of multibeam data from icebreakers operating on various cruise. The USCGC Healy, the German icebreaker Polarstern, the Canadian icebreaker Amundsen and the Swedish icebreaker Oden all routinely collect multibeam data, even while in heavy ice pack. This increase in data has substantially improved our knowledge of the form of the Arctic Ocean seafloor. Unfortunately, it is not possible to routinely collect Multi Channel Seismic Reflection (MCS) data while underway in the ice pack. Our inability to simply collect these data restricts how we understand many of the features that segment the basin by depriving us of the historical information that can be obtained by imaging the stratigraphy. Without these data, scientific ocean drilling, the ultimate ground truth for Marine Geology, cannot be done. The technology and expertise to collect MCS must be adapted for the particular circumstances of the Arctic Ocean. While MCS data have been collected in the Arctic Ocean, the procedures have relied on icebreakers towing equipment. Since icebreakers follow the path of least resistance through the pack, data are acquired in locations that are not scientifically optimal and rarely in the relatively straight lines necessary for optimal processing. Towing in the ice pack is also difficult, inefficient and puts this equipment at substantial risk of crushing or loss. While icebreakers are one means to collect these data, it is time to conduct a systematic evaluation of the costs and benefits of different platforms for MCS data acquisition. This evaluation should enable collection of high-quality data set at selected locations to solve scientific problems. Substantial uncertainties exist about the relative capabilities, costs and limitations for acquisition of MCS data from various platforms in the Arctic Ocean. For example; - Is it possible to collect multi-channel seismic

  6. Energy use and indoor environment in new and existing dwellings in Arctic climates

    DEFF Research Database (Denmark)

    Kotol, Martin

    2014-01-01

    Buildings in Arctic climates require large amounts of heat to provide their occupants with a comfortable indoor environment. In recent years the intention to conserve energy has caused buildings in the Arctic (and worldwide) to become more insulated and airtight. The natural infiltration of...... investigated. For energy and indoor environmental reasons it is advisable that new airtight buildings be equipped with mechanical ventilation systems with heat recovery. Nevertheless, these systems when exposed to the Arctic winter climate face the risk of frost formation, which may put the ventilation system...... that the majority of the monitored bedrooms were insufficiently ventilated. The problems with poor ventilation were more severe in newer buildings (build after 1990) due to tighter envelopes and unchanged ventilation strategies. In conclusion, it is possible to provide dwellings in the Arctic with good...

  7. Energy and technology review

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory, operated by the University of California for the United States Department of Energy, was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, in response to new national needs, we have added other major programs, including technology transfer, laser science (fusion, isotope separation, materials processing), biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computing science and technology, engineering, and physics. The Laboratory also carries out a variety of projects for other federal agencies. Energy and Technology Review is published monthly to report on unclassified work in all our programs. This issue reviews work performed in the areas of modified retoring for waste treatment and underground stripping to remove contamination

  8. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  9. Department of energy technology

    International Nuclear Information System (INIS)

    The general development of the Department of Energy Technology at Risoe during 1982 is presented, and the activities within the major subject fields are described in some detail. List of staff, publications and computer programs are included. (author)

  10. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  11. Technology Roadmap: Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Energy storage technologies are valuable components in most energy systems and could be an important tool in achieving a low-carbon future. These technologies allow for the decoupling of energy supply and demand, in essence providing a valuable resource to system operators. There are many cases where energy storage deployment is competitive or near-competitive in today's energy system. However, regulatory and market conditions are frequently ill-equipped to compensate storage for the suite of services that it can provide. Furthermore, some technologies are still too expensive relative to other competing technologies (e.g. flexible generation and new transmission lines in electricity systems). One of the key goals of this new roadmap is to understand and communicate the value of energy storage to energy system stakeholders. This will include concepts that address the current status of deployment and predicted evolution in the context of current and future energy system needs by using a ''systems perspective'' rather than looking at storage technologies in isolation.

  12. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  13. Feasibility of hydrogen from renewable energy in the Arctic

    International Nuclear Information System (INIS)

    'Full text:' There is an abundance of renewable resources in the Canadian Arctic. Despite that diesel is still the conventional source used by homes and businesses for their electrical and space heating needs. Electrolysis of water to produce hydrogen using renewable resources is under investigation. A techno-economic feasibility has been conducted for hybrid systems including wind turbine, photovoltaic system, electrolyser and fuel cells. Different scenarios have been considered for meeting the needs of a small, remote community in the Arctic. Results will be presented indicating the most cost-effective Wind-PV-Electrolyser-Fuel Cell system for combined heat and power. (author)

  14. New energy technologies. Report

    International Nuclear Information System (INIS)

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  15. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd

    2012-12-13

    of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy

  16. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  17. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Bathgate, M.B.; Crawford, R.B.; McCaleb, C.S.; Prono, J.K. (eds.)

    1976-05-01

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices.

  18. Energy and technology review

    International Nuclear Information System (INIS)

    The chief objective of LLL's biomedical and environmental research program is to enlarge mankind's understanding of the implications of energy-related chemical and radioactive effluents in the biosphere. The effluents are studied at their sources, during transport through the environment, and at impact on critical resources, important ecosystems, and man himself. We are pursuing several projects to acquire such knowledge in time to guide the development of energy technologies toward safe, reasonable, and optimal choices

  19. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  20. Energy and technology review

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers

  1. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The Lawrence Livermore National Laboratory publishes the Energy and Technology Review Monthly. This periodical reviews progress mode is selected programs at the laboratory. This issue includes articles on in-situ coal gasification, on chromosomal aberrations in human sperm, on high speed cell sorting and on supercomputers.

  2. Energy and technology review

    International Nuclear Information System (INIS)

    Brief discussions of research progress on the following topics are given: (1) lasers and laser applications, (2) advanced energy systems, (3) science and technology, and (4) national security. Some experiments on the in-flight laser irradiation of ammonia pellets are discussed

  3. EDITORIAL: Renewing energy technology Renewing energy technology

    Science.gov (United States)

    Demming, Anna

    2011-06-01

    Renewable energy is now a mainstream concern among businesses and governments across the world, and could be considered a characteristic preoccupation of our time. It is interesting to note that many of the energy technologies currently being developed date back to very different eras, and even predate the industrial revolution. The fuel cell was first invented as long ago as 1838 by the Swiss--German chemist Christian Friedrich Schönbein [1], and the idea of harnessing solar power dates back to ancient Greece [2]. The enduring fascination with new means of harnessing energy is no doubt linked to man's innate delight in expending it, whether it be to satisfy the drive of curiosity, or from a hunger for entertainment, or to power automated labour-saving devices. But this must be galvanized by the sustained ability to improve device performance, unearthing original science, and asking new questions, for example regarding the durability of photovoltaic devices [3]. As in so many fields, advances in hydrogen storage technology for fuel cells have benefited significantly from nanotechnology. The idea is that the kinetics of hydrogen uptake and release may be reduced by decreasing the particle size. An understanding of how effective this may be has been hampered by limited knowledge of the way the thermodynamics are affected by atom or molecule cluster size. Detailed calculations of individual atoms in clusters are limited by computational resources as to the number of atoms that can studied, and other innovative approaches that deal with force fields derived by extrapolating the difference between the properties of clusters and bulk matter require labour-intensive modifications when extending such studies to new materials. In [4], researchers in the US use an alternative approach, considering the nanoparticle as having the same crystal structure as the bulk but relaxing the few layers of atoms near the surface. The favourable features of nanostructures for catalysis

  4. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic

    Directory of Open Access Journals (Sweden)

    Danielle Camenzuli

    2015-09-01

    Full Text Available Petroleum hydrocarbon contaminated sites, associated with the contemporary and legacy effects of human activities, remain a serious environmental problem in the Antarctic and Arctic. The management of contaminated sites in these regions is often confounded by the logistical, environmental, legislative and financial challenges associated with operating in polar environments. In response to the need for efficient and safe methods for managing contaminated sites, several technologies have been adapted for on-site or in situ application in these regions. This article reviews six technologies which are currently being adapted or developed for the remediation of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Bioremediation, landfarming, biopiles, phytoremediation, electrokinetic remediation and permeable reactive barriers are reviewed and discussed with respect to their advantages, limitations and potential for the long-term management of soil and groundwater contaminated with petroleum hydrocarbons in the Antarctic and Arctic. Although these technologies demonstrate potential for application in the Antarctic and Arctic, their effectiveness is dependent on site-specific factors including terrain, soil moisture and temperature, freeze–thaw processes and the indigenous microbial population. The importance of detailed site assessment prior to on-site or in situ implementation is emphasized, and it is argued that coupling of technologies represents one strategy for effective, long-term management of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic.

  5. Risk of energy technologies

    International Nuclear Information System (INIS)

    This article briefly reviews health risk estimates presented in the book, Health Risks of Energy Technologies, sponsored by the American Association for the Advancement of Science. State-of-the-art estimates of the occupational and public health risks associated with nuclear and coal power generation are presented as well as those associated with some of the less conventional energy technologies, including solar power, biomass, and geothermal. Public perception of risk, philosophical attitudes toward risk, and the global ramifications of risk are also discussed. When judged solely on the basis of fatalities and injuries during normal operation and maintenance, it appears that nuclear power produces the least health impact and coal-fired power plants the highest, with the renewable technologies ranging between the two

  6. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O' Neal, E.; Van Dyke, P. (eds.)

    1982-07-01

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

  7. Energy and technology review

    International Nuclear Information System (INIS)

    The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs

  8. The Challenges & Opportunities for Arctic Microstates in Developing an Energy Sector

    DEFF Research Database (Denmark)

    Smits, Coco; Bertelsen, Rasmus Gjedssø; Justinussen, Jens Christian Svabo

    2014-01-01

    Like many Arctic states, Iceland and the Faroe Islands used to be the resource-based economies which Greenland is today. Remotely located in relation to the World economy, Iceland and the Faroe Islands have succeeded in developing a knowledge- based economy, also related to their energy sector. T...

  9. New energy technologies report

    International Nuclear Information System (INIS)

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  10. Energy conservation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, H.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1993-12-31

    The conservation of energy through the efficiency improvement of existing end-uses and the development of new technologies to replace less efficient systems is an important component of the overall effort to reduce greenhouse gases which may contribute to global climate change. Even though uncertainties exist on the degree and causes of global warming, efficiency improvements in end-use applications remain in the best interest of utilities, their customers and society because efficiency improvements not only reduce environmental exposures but also contribute to industrial productivity, business cost reductions and consumer savings in energy costs.

  11. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.S. (ed.)

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  12. Energy and technology review

    International Nuclear Information System (INIS)

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base

  13. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  14. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    International Nuclear Information System (INIS)

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  15. Energy and technology review

    International Nuclear Information System (INIS)

    Topics covered include: development of a new sensor for rapid airborne measurements of carbon dioxide exchange rates in regions as diverse as the tropics and the arctic; design of extremely reliable high-current pulse compressors capable of generating continuous, 50 ns, 250 kW pulses at increasingly higher repetition rates exceeding 1 kHz; and developments in the tandem-mirror concept of magnetic confinement fusion, thermal barriers and axisymmetric mirror cells

  16. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Topics covered include: development of a new sensor for rapid airborne measurements of carbon dioxide exchange rates in regions as diverse as the tropics and the arctic; design of extremely reliable high-current pulse compressors capable of generating continuous, 50 ns, 250 kW pulses at increasingly higher repetition rates exceeding 1 kHz; and developments in the tandem-mirror concept of magnetic confinement fusion, thermal barriers and axisymmetric mirror cells. (GHT)

  17. Information sources in energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, L.J. (ed.)

    1988-01-01

    Energy technology is a rapidly growing topic of research throughout the world. Although there are many books and journals about energy technology, until now there has not been a single volume available about sources of information. The comprehensive book presented describes the international and national organizational sources of information as well as primary and secondary documentary sources. Sources in fuel technology including energy conservation and specific fuels including alternative energy sources such as wind, wave and geothermal energy are discussed.

  18. Achieving generic competences through a cross-disciplinary research based course in Arctic Technology

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Hansen, Claus Thorp; Jensen, Pernille Erland

    2014-01-01

    successful in achieving both the scientific and generic competences than the students who did not. The students evaluate the course as being highly motivating for further learning and they get confident by successfully having executed a research based project in a new context. The project and field work......In a research based course in Arctic Technology, different teaching activities were used to support learning of both technical and generic competences. The active learning was based around a 3-weeks field work period in Greenland in combination with lectures, assignments, project and peer group...... support the process of developing generic competences and are preparing the students to become professional engineers. For the future teaching of the course we have some suggestions for improvements: • Include peer-work as a learning objective and specify rubrics of how to give feedback to make it more...

  19. Energy Consumption and Technological Developments

    OpenAIRE

    Okorokov, V.R.

    1989-01-01

    This report determines an outline of the world energy prospects based on principal development trends of energy consumption analysed over a long period. According to the author, the development of energy systems will be determined in the nearest future (30-40 years) by contemporary energy technologies based on the exploitation of traditional energy resources, but in the more distant future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role.

  20. Energy consumption and technological developments

    International Nuclear Information System (INIS)

    The paper determines an outline of the world energy prospects based on principal trends of the development of energy consumption analysed over the long past period. According to the author's conclusion the development of energy systems will be determined in the nearest future (30 - 40 years) by contemporary energy technologies based on the exploitation of traditional energy resources but in the far future technologies based on the exploitation of thermonuclear and solar energy will play the decisive role. (author)

  1. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J. (ed.)

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an x-ray microscope for biological research.

  2. Morgantown Energy Technology Center, technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  3. Morgantown Energy Technology Center, technology summary

    International Nuclear Information System (INIS)

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE's cleanup and waste management efforts, as well as improve US industry's competitiveness in global environmental markets. METC's R ampersand D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities

  4. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    Science.gov (United States)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  5. Key energy technologies for Europe

    International Nuclear Information System (INIS)

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO2 capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  6. Progress in sustainable energy technologies

    CERN Document Server

    Dincer, Ibrahim; Kucuk, Haydar

    2014-01-01

    This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simula

  7. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic

    OpenAIRE

    Camenzuli, Danielle; Freidman, Benjamin L.

    2015-01-01

    Petroleum hydrocarbon contaminated sites, associated with the contemporary and legacy effects of human activities, remain a serious environmental problem in the Antarctic and Arctic. The management of contaminated sites in these regions is often confounded by the logistical, environmental, legislative and financial challenges associated with operating in polar environments. In response to the need for efficient and safe methods for managing contaminated sites, several technologies have been a...

  8. Wind energy technology developments

    OpenAIRE

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    This chapter describes the present mainstream development of the wind turbine technology at present. The turbine technology development trend is characterized by up-scaling to turbines with larger capacity for both onshore and offshore applications, larger rotors and new drivetrain solution, including the direct-drive solution without gearbox. The technology solutions are strongly influenced by the development of the international industry with a global market for components and a trend towar...

  9. Alternative energy technologies: integrated energy systems

    International Nuclear Information System (INIS)

    This paper describes the smart energy technology which refers to fully integrated energy systems from generation through distribution and consumption. The main thrust of this approach is to make energy systems more reliable, intelligent and more eco-friendly. Population growth will increase the demand for energy. Climate change is driving the need for carbon dioxide reduction and increase demand for renewable energy sources. Canada's electricity infrastructure deficit is significant and there is a need to replace outdate infrastructure.

  10. Emerging wind energy technologies

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Grivel, Jean-Claude; Faber, Michael Havbro;

    2014-01-01

    This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive.......This chapter will discuss emerging technologies that are expected to continue the development of the wind sector to embrace new markets and to become even more competitive....

  11. Industrial Energy Conservation Technology

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  12. Industrial energy conservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  13. Key energy technologies for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Holst Joergensen, Birte

    2005-09-01

    The report is part of the work undertaken by the High-Level Expert Group to prepare a report on emerging science and technology trends and the implications for EU and Member State research policies. The outline of the report is: 1) In the introductory section, energy technologies are defined and for analytical reasons further narrowed down; 2) The description of the socio-economic challenges facing Europe in the energy field is based on the analysis made by the International Energy Agency going back to 1970 and with forecasts to 2030. Both the world situation and the European situation are described. This section also contains an overview of the main EU policy responses to energy. Both EU energy R and D as well as Member State energy R and D resources are described in view of international efforts; 3) The description of the science and technology base is made for selected energy technologies, including energy efficiency, biomass, hydrogen, and fuel cells, photovoltaics, clean fossil fuel technologies and CO{sub 2} capture and storage, nuclear fission and fusion. When possible, a SWOT is made for each technology and finally summarised; 4) The forward look highlights some of the key problems and uncertainties related to the future energy situation. Examples of recent energy foresights are given, including national energy foresights in Sweden and the UK as well as links to a number of regional and national foresights and roadmaps; 5) Appendix 1 contains a short description of key international organisations dealing with energy technologies and energy research. (ln)

  14. Energy and technology review

    International Nuclear Information System (INIS)

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81)

  15. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Research is described in three areas, high-technology design of unconventional, nonnuclear weapons, a model for analyzing special nuclear materials safeguards decisions, and a nuclear weapons accident exercise (NUWAX-81). (GHT)

  16. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  17. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; Quirk, W.J. [eds.

    1994-06-01

    This report discusses: The Clementine satellite, the first US satellite to the Moon in more than two decades, sent back more than 1.5 million images of the lunar surface using cameras designed and calibrated by LLNL. An LLNL-developed laser ranger provided information that will be used to construct a relief map of the Moon`s surface; and Uncertainty and the Federal Role in Science and Technology, Ralph E. Gomory was a recent participate in the Director`s Distinguished Lecturer Series at LLNL. In his lecture, he addressed some of the tensions, conflicts, and possible goals related to federal support for science and technology.

  18. Energy and Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W.A.; McElroy, L.; Wheatcraft, D.; Middleton, C.; Shang, S. [eds.

    1994-10-01

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure.

  19. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    , including the direct-drive solution without gearbox. The technology solutions are strongly influenced by the development of the international industry with a global market for components and a trend towards a “shared” development effort in collaboration between the OEM’s and component sub-suppliers. Wind...

  20. Energy and Technology Review

    International Nuclear Information System (INIS)

    Two articles are included: the industrial computing initiative, and artificial hip joints (applying weapons expertise to medical technology). Three research highlights (briefs) are included: KEN project (face recognition), modeling groundwater flow and chemical migration, and gas and oil national information infrastructure

  1. Information sources in energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, L.J.

    1988-01-01

    This book lists the major national and international information sources in the field of energy technology. Includes organizations, journals, indexing and abstracting services, conference papers, standards, online databases, dictionaries, directories, handbooks, and encyclopedias.

  2. Energy and Technology Review

    International Nuclear Information System (INIS)

    Three articles and two briefs discuss ongoing research at Lawrence Livermore National Laboratory. Topics in this issue include: construction of human chromosome library (brief); dispersion of liquified gases (brief); magma evolution; energy flow diagrams; and computer simulation of particulate flow

  3. Technology and energy at school

    International Nuclear Information System (INIS)

    The teaching of technology and energy in schools requires more than simply the transfer of information. Public attitudes towards technology often contain unacknowledged contradictions, and research has shown that programmes for greater public understanding of science depend for their success on context, motivation, and on the source of the information. Exploration of the methods of science, its motivations and its limitations, should provide the basis for teaching nuclear energy in schools

  4. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets. (GHT)

  5. Energy and technology review

    International Nuclear Information System (INIS)

    Three areas of research are discussed: microcomputer technology applied to inspecting machined parts to determine roundness in ultraprecision measurements; development of an electrolytic technique for preparing dinitrogen pentoxide as a potentially less expensive step in the large-scale synthesis of the explosive HMX; and the application of frequency conversion to short wavelengths in the Novette and Nova lasers to improve the performance of inertial-confinement fusion targets

  6. Gas and energy technology 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    Norway has a long tradition as an energy producing nation. No other country administers equally large quantities of energy compared to the number of inhabitants. Norway faces great challenges concerning the ambitions of utilizing natural gas power and living up to its Kyoto protocol pledges. Tekna would like to contribute to increased knowledge about natural gas and energy, its possibilities and technical challenges. Topics treated include carrying and employing natural gas, aspects of technology, energy and environment, hydrogen as energy carrier, as well as other energy alternatives, CO{sub 2} capture and the value chain connected to it.

  7. Russian Arctic Petroleum Resources Ressources pétrolières de l’Arctique russe

    OpenAIRE

    Zolotukhin A.; Gavrilov V.

    2011-01-01

    The Arctic continental shelf is believed to be the area with the highest unexplored potential for oil and gas as well as for unconventional hydrocarbon resources such as gas hydrates. Despite a common view that the Arctic has plentiful of hydrocarbon resources, there are ongoing debates regarding the potential of this region as a future energy supply base. Driving forces for such discussions are geopolitics, environmental concern, assessment and delineation of Arctic resources, technology ava...

  8. Effects of interannual variability in snow accumulation on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    OpenAIRE

    Stiegler, C; Lund, M.; Christensen, T.R.; M. Mastepanov; A. Lindroth

    2016-01-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong interannual variability in snow accumulation during two subsequent years (2013–2014) on the land–atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/13 resulted in strong response of th...

  9. Energy and technology review

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  10. Energy and technology review

    International Nuclear Information System (INIS)

    Research programs at LLNL are reviewed. This issue discusses validation of the pulsed-power design for FXR, the NOVA plasma shutter, thermal control of the MFTF superconducting magnet, a low-energy x-ray spectrometer for pulsed-source diagnostics, micromachining, the electronics engineer's design station, and brazing with a laser microtorch

  11. Energy and technology review

    International Nuclear Information System (INIS)

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures

  12. Simulation of arctic surface radiation and energy budget during the summertime using the single-column model

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; WANG Hui; ZHANG Zhanhai; WU Huiding

    2008-01-01

    The surface heat budget of the Arctic Ocean (SHEBA) project has shown that the study of the surface heat budget characteristics is crucial to understanding the interface process and environmental change in the polar region.An arctic single-column model (ARCSCM) of Colorado University is used to simulate the arctic surface radiation and energy budget during the summertime.The simulation results are analyzed and compared with the SHEBA measurements.Sensitivity analyses are performed to test microphys- ical and radiative parameterizations in this model.The results show that the ARCSCM model is able to simulate the surface radia- tion and energy budget in the arctic during the summertime,and the different parameterizations have a significant influence on the results.The combination of cloud microphysics and RRTM parameterizations can fairly derive the surface solar shortwave radiation and downwelling Iongwave radiation flux.But this cloud microphysics parameterization scheme deviates notably from the simula- tion of surface sensible and latent heat flux.Further improvement for the parameterization scheme applied to the Arctic Regions is necessary.

  13. Wind Energy Technology

    OpenAIRE

    Brandao, R. Mesquita; Carvalho, J. Beleza; Barbosa, F. P. Maciel

    2009-01-01

    Electricity is regarded as one of the indispensable means to growth of any country’s economy. This source of power is the heartbeat of everything from the huge metropolitans, industries, worldwide computer networks and our global communication systems down to our homes. Electrical energy is the lifeline for any economic and societal development of a region or country. It is central to develop countries for maintaining acquired life styles and essential to developing countr...

  14. Handbook of renewable energy technology

    CERN Document Server

    Zobaa, Ahmed F

    2011-01-01

    This book, consisting a series of papers written by experts in their respective fields of specialization, will provide a comprehensive coverage of renewable energy technologies, such as wind, wave and solar thermal energy. Other industrial terms like photovoltaic systems, biomass, distributed generations and small hydro power systems are also discussed and further elaborated upon. ""The Handbook of Renewable Energy Technology"" will be of great practical benefit to professionals, scientists and researchers in the relevant industries, and will be of interest to those of the general public wanti

  15. Energy and Technology Review

    International Nuclear Information System (INIS)

    A specialized laser amplifier for use with velocity-measuring systems is described which makes possible detailed measurements of explosion-driven targets extending over long times. The experimental and diagnostic facilities of the Bunker 801 project enables sensitive and thorough hydrodynamics tests on the high-explosive components of nuclear devices. An improved spectrometry system has been developed covering the energy range from 0.025 eV to 20 MeV for use in radiation monitoring, and a new material is being tested for the neutron dosimeter worn with identification badges

  16. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    Science.gov (United States)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries

  17. Commercialization of sustainable energy technologies

    International Nuclear Information System (INIS)

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  18. Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology

    Science.gov (United States)

    Bock, Judith K.

    2011-01-01

    The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…

  19. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  20. Superconductivity in energy technology II

    International Nuclear Information System (INIS)

    The conference on ''Superconductivity in energy technology II'' was held on May 10 and 11, 1995 in Munich and was jointly organised by the VDI society for energy technology, the Energietechnische Gesellschaft of VDI, and the Karlsruhe Research Center and Munich Technical University. This VDI report 1187 presents the full-text papers read at the conference, the focus being on the following aspects: (1) state of development of HT superconductors and conventional LT superconductors; (2) HT superconducting permanent magnets and current leads; (3) electrical energy transmission: cables and current limiters; (4) energy storage; (5) electrical machines; (6) electrical network loads; (7) superconductivity in nuclear fusion devices; (8) cryogenic engineering; (9) activities for the promotion of superconductivity. (orig./MM)

  1. Arctic Summer Surface Energy Balance at Two Coastal Drained Lake Basins, Barrow, Alaska

    Science.gov (United States)

    Liljedahl, A.; Hinzman, L.; Harazono, Y.; Zona, D.; Oechel, W.

    2008-12-01

    We examined the partitioning of the summer surface energy balance at two coastal drained lake basins using measurements from two eddy covariance towers in Barrow, Alaska. Drained lake basins are a common land feature covering approximately one fourth of the Arctic Coastal Plain but have been given limited attention. Overall, wetlands are extensive in the region in spite of an annual precipitation close to a desert and a negative summer P-ET. Included in the analysis was summer 2007, which experienced unusually high air temperatures and low precipitation compared to the long term mean. During the five analyzed summers, most of the energy available at the ground surface was partitioned into sensible heat flux despite saturated or nearly saturated near-surface soils. The maritime conditions resulted in a cool and close to saturated air mass with a few exceptions on individual days. With a ground surface often warmer than the air above and limited air vapor pressure deficits, the dissipation of the available heat at the ground surface was mainly partitioned into sensible heat flux resulting in midday Bowen Ratios (sensible divided by latent heat flux) above unity. Total daily latent heat flux presented in mm of water varied between 0.2 - 4.2 mm/day with a Jun-Aug mean of 1.5 mm. In 80% of the analyzed days, mean midday evapotranspiration occurred below the equilibrium rate resulting in a Priestley-Taylor alpha value below unity. The equilibrium evaporation rates of inland arctic wetlands have previously shown to occur at or above equilibrium rate. Further, the energy balance partitioning of a wetland located in a maritime or continental climate show differences such as in the Bowen Ratio. It is therefore necessary to analyze coastal and inland areas separately when examining the hydrological response of wetlands to climate changes.

  2. Integration with Energy Harvesting Technology

    OpenAIRE

    Williams, S.; Zhu, M.; V. Marsic

    2012-01-01

    This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smar...

  3. Flywheel Energy Storage technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  4. Studies of Heat Dynamics in an Arctic Low-energy House

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff; Rode, Carsten; Madsen, Henrik

    2012-01-01

    . Statistical methods are being developed in a PhD project to derive the properties to be used in a dynamic thermal model of the whole building. Characteristic of the building is its exposure to the extreme Arctic climate, which is both very cold and where the sun in some periods may shine constantly...... energy-efficient windows, and heat recovery. The house is divided into two symmetric apartments, of which one is inhabited by a family, and the other is used for experiments and demonstration. The situation provides unique options for measuring and analysis with large signal to noise ratios facilitating...... observation of thermal response to external temperatures, solar radiation, wind, user behaviour, and heating....

  5. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    Science.gov (United States)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  6. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  7. Tidal energy - a technology review

    International Nuclear Information System (INIS)

    The tides are caused by gravitational attraction of the sun and the moon acting upon the world's oceans. This creates a clean renewable form of energy which can in principle be tapped for the benefit of mankind. This paper reviews the status of tidal energy, including the magnitude of the resource, the technology which is available for its extraction, the economics, possible environmental effects and non-technical barriers to its implementation. Although the total energy flux of the tides is large, at about 2 TW, in practice only a very small fraction of this total potential can be utilised in the foreseeable future. This is because the energy is spread diffusely over a wide area, requiring large and expensive plant for its collection, and is often available remote from centres of consumption. The best mechanism for exploiting tidal energy is to employ estuarine barrages at suitable sites with high tidal ranges. The technology is relatively mature and components are commercially available now. Also, many of the best sites for implementation have been identified. However, the pace and extent of commercial exploitation of tidal energy is likely to be significantly influenced, both by the treatment of environmental costs of competing fossil fuels, and by the availability of construction capital at modest real interest rates. The largest projects could require the involvement of national governments if they are to succeed. (author) 8 figs., 2 tabs., 19 refs

  8. 77 FR 31677 - Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic...

    Science.gov (United States)

    2012-05-29

    ... TECHNOLOGY POLICY Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic Research Plan: FY2013-2017 May 22, 2012. ACTION: Request for public comment. SUMMARY: The Arctic Research and Policy Act of 1984 (ARPA), Public Law 98-373, established the Interagency Arctic Research...

  9. Energy Technology Programs: program summaries for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Technology Programs in the BNL Department of Energy and Environment cover a broad range of activities, namely: electrochemical research, chemical energy storage, chemical heat pumps, solar technology, fossil technology, catalytic systems development, space-conditioning technology, and technical support/program management. Summaries of the individual tasks associated with these activities along with publications, significant accomplishments, and program funding levels are presented.

  10. Technology for aircraft energy efficiency

    Science.gov (United States)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  11. Commercialization of sustainable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Balachandra, P. [Department of Management Studies, Indian Institute of Science, Bangalore 560 012 (India); Kristle Nathan, Hippu Salk; Reddy, B. Sudhakara [Indira Gandhi Institute of Development Research, Goregaon (E), Mumbai 400 065 (India)

    2010-08-15

    Commercialization efforts to diffuse sustainable energy technologies (SETs) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of SETs in the backdrop of the basic theory of technology diffusion. The different SETs in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the 'potential adopters' to 'techno-entrepreneurs', the study presents the mechanisms for adopting a private sector driven 'business model' approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization. (author)

  12. Two-source energy balance model implementation in the Alaska Arctic tundra

    Science.gov (United States)

    Cristóbal-Rosselló, J.; Prakash, A.; Anderson, M. C.; Kustas, W. P.; Kane, D. L.

    2014-12-01

    Evaporation and transpiration are the two main processes involved in water transfer from vegetated and non-vegetated areas to the atmosphere. Evapotranspiration (ET) from the Earth's vegetation constitutes 88% of the total terrestrial ET, and returns more than 50% of terrestrial precipitation to the atmosphere (Oki and Kane, 2006); therefore it plays a key role in both the hydrological cycle and the energy balance of the land surface. In Arctic regions, surface-atmosphere exchanges due to ET are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, these bulk estimates do not accurately account for spatial and temporal variability due to vegetation type, topography, etc. (Kane and Yang, 2004). In this work we present the implementation of the Two-Source Energy Balance method, TSEB (Norman et al., 1995), in two Alaska Arctic tundra settings, as a base-line to retrieve energy fluxes at the regional scale from remote sensing imagery. In order to calibrate and validate the model, four flux towers located at the Imanvait Creek and the Anaktuvuk river were used. The TSEB model mainly requires meteorological inputs as well as land surface temperature (LST) and leaf area index (LAI) data. In this study, TSEB was run from late May to early September from 2008 to 2011 in all sky conditions using half hour intervals of meteorological data from the flux tower, and the LST derived from the four component net radiation instrument. TERRA/AQUA MODIS LAI daily product (MOD15/MYD15) was used as LAI input data. Results show an acceptable agreement between the TSEB model and flux tower data. RMSE obtained in the case of net radiation, latent heat, sensible heat and soil heat fluxes was 12, 51, 60 and 27 W/m2. Further efforts will be focused on the daily energy flux integration through implementation of the DTD model (Norman et al., 2000).

  13. New energy technologies in Singapore

    International Nuclear Information System (INIS)

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  14. Nuclear energy: A female technology

    International Nuclear Information System (INIS)

    Amongst the important scientific and technological revolutions of history there is none in which women have played such a substantial and many-sided role as in the development of nuclear energy. The birth of nuclear energy is not only due to Marie Curie and Lise Meitner but also to a large number of courageous 'nuclear women' who decided against all sorts of prejudices and resistances in favour of a life in research. Therefore the revolution of the atom has also become the greatest breakthrough of women in natural sciences. This double revolution is the subject of this book. Here the history of nuclear energy itself is dealt with documented with the original work and personal memories of different persons - mainly women - who have been substantially involved in this development. (orig./HP)

  15. SIHTI - Energy and environmental technology

    International Nuclear Information System (INIS)

    The research and development program SIHTI was carried out during 1991-1992, mainly concentrating on energy and environmental technology. SIHTI focused on examining emissions from various sources of energy in all stages of the production chain. The objective was to create new methods and equipment, with which the environmental drawbacks of energy production can be reduced. Also a development work aiming at reduced traffic emissions was included in the program. Totally the program included 53 projects, which were divided into the following subsections: energy production, traffic, fuel chains and other projects. In the energy production projects the main attention was paid to reduction of sulphur dioxide, nitrogen oxide and particulate emissions. Furthermore waste utilization and possibilities of reducing carbon dioxide emissions were studied. The traffic study was focused on developing of more environmental-friendly liquid fuels. The research of emissions at low ambient temperatures was developed to an international level. Further the use of gases and the rape seed oil ester as traffic fuel was studied in practical tests. In the fuel chain study the emissions from the most important fuel chains were examined all the way from the purchase of the primary energy to the final end product. Methods for further reduction of water discharges from peat production were developed. The other projects were concentrated on modelling development, environmental impact assessment and emission surveys

  16. Technology data for energy plants

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    The Danish Energy Agency and Energinet.dk, the Danish electricity transmission and system operator, have at regular intervals published a catalogue of energy producing technologies. The previous edition was published in March 2005. This report presents the results of the most recent update. The primary objective of publishing a technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses, e.g. on the framework conditions for the development and deployment of certain classes of technologies. With this scope in mind, it has not been the intention to establish a comprehensive catalogue, including all main gasification technologies or all types of electric batteries. Only selected, representative, technologies are included, to enable generic comparisons of e.g. thermal gasification versus combustion of biomass and electricity storage in batteries versus hydro-pumped storage. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiatives aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to rely primarily on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesstimates. The ambition of the present publication has been to reduce the level of inconsistency to a minimum without compromising the fact that the real world

  17. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  18. An Overview of Ocean Renewable Energy Technologies

    OpenAIRE

    Roger Bedard; Paul T. Jacobson; Mirko Previsic; Walt Musial; Robert Varley

    2010-01-01

    Ocean energy is a term used to describe renewable energy derived from the sea, including ocean wave energy, tidal and open-ocean current energy (sometimes called marine hydrokinetic energy), tidal barrages, offshore wind energy, and ocean thermal and salinity gradient energy. Shallow water offshore wind is a commercial technology (over 1,500 MW capacity installed in Europe). The technologies to convert the other ocean energy resources to electricity, including deepwater offshore wind technolo...

  19. The Challenges & Opportunities for Arctic Microstates in Developing an Energy Sector:The Role of Human Capital and Knowledge Institutes

    OpenAIRE

    Smits, Coco; Bertelsen, Rasmus Gjedssø; Justinussen, Jens Christian Svabo

    2014-01-01

    Like many Arctic states, Iceland and the Faroe Islands used to be the resource-based economies which Greenland is today. Remotely located in relation to the World economy, Iceland and the Faroe Islands have succeeded in developing a knowledge- based economy, also related to their energy sector. To create a knowledge-based economy a sufficient mass of human capital is of crucial importance. In forming this critical mass, higher education and knowledge institutes play a central role. The cases ...

  20. IEA Energy Technology Essentials: Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Nuclear power is the topic covered in this edition.

  1. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  2. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  3. On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review

    Directory of Open Access Journals (Sweden)

    Danielle Camenzuli

    2013-12-01

    Full Text Available Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frameworks to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in polar environments, namely permeable reactive barriers (PRB, chemical fixation, bioremediation, phytoremediation, electrokinetic separation, land capping, and pump and treat systems. The technologies reviewed are discussed in terms of their advantages, limitations and overall potential for the management of metal-contaminated sites in Antarctica and the Arctic. This review demonstrates that several of the reviewed technologies show potential for on-site or in situ usage in Antarctica and the Arctic. Of the reviewed technologies, chemical fixation and PRB are particularly promising technologies for metal-contaminated sites in polar environments. However, further research and relevant field trials are required before these technologies can be considered proven techniques.

  4. An eddy covariance network to investigate post-fire carbon and energy dynamics in remote regions of Alaskan arctic tundra

    Science.gov (United States)

    Rocha, A. V.; Shaver, G. R.; Rastetter, E.; Jiang, Y.

    2012-12-01

    The Alaskan arctic is experiencing pronounced changes such as fires, increased shrub cover, and permafrost thaw that are the result of increased air temperatures. Quantifying the effect of these changes on arctic carbon and energy fluxes is difficult because the Arctic is remote and difficult to access throughout the year. Here we report on an experimental design that uses a roving eddy covariance network, remote sensing, and model data fusion to determine post-fire effects on carbon and energy exchange over hours to decadal timescales in Alaskan arctic tundra. We describe the approach, challenges and goals of this project, and present some preliminary data. Our approach incorporated a number of sites along an Alaskan tundra fire chronosequence, and paired fire scars of different age with an unburned control. Challenges included; limited site access and power, communication and data acquisition, spatial variability, and missing data. We approached these challenges in a variety of ways, including; assessing spatial variability with MODIS data and roving towers, comparing burned to nearby unburned sites, harvesting biomass to understand decadal carbon recovery, and developing models that incorporate remotely sensed, eddy covariance, and biomass data. Our experimental design provides a test-bed for assessing large-scale variability across time and space, which is critical for understanding the role of disturbance on regional carbon and energy fluxes. Conceptual framework for our study. Field measurements will encompass both fast [top of hatched line] to slow [bottom of hatched line] ecosystem processes and states along a fire chronosequence [1] that will be assimilated into a fast and slow response model framework through model-data fusion [2], and used to scale up to the North Slope with MODIS data [3].

  5. A low-energy building under arctic conditions – a case study

    DEFF Research Database (Denmark)

    Norling, Casper Roland; Rode, Carsten; Svendsen, Svend;

    2006-01-01

    larger focus on energy efficiency. Therefore a low-energy house, located in Sisimiut, has been constructed. The low-energy house will be a forerunner for the development of new building element designs and technologies in Greenland. In the forthcoming years, the house will also be a base for scientific...... projects which will evaluate the design of the low-energy house including an assessment of the effect of the highly insulated building envelope, advanced windows and a ventilation system with heat recovery, all of which cuts the energy consumption of the building to half of what will be the requirement in......Greenland is a relatively small community with limited natural resources, which results in the necessity to import all supplies, including a big share of the energy. Because of this, it is important to decrease the energy consumption. This can be done by developing new construction technology with...

  6. A low-energy building under arctic conditions – a case study

    DEFF Research Database (Denmark)

    Norling, Casper Roland; Rode, Carsten; Svendsen, Svend; Kragh, Jesper; Reimann, Gregers Peter

    larger focus on energy efficiency. Therefore a low-energy house, located in Sisimiut, has been constructed. The low-energy house will be a forerunner for the development of new building element designs and technologies in Greenland. In the forthcoming years, the house will also be a base for scientific...... projects which will evaluate the design of the low-energy house including an assessment of the effect of the highly insulated building envelope, advanced windows and a ventilation system with heat recovery, all of which cuts the energy consumption of the building to half of what will be the requirement in......Greenland is a relatively small community with limited natural resources, which results in the necessity to import all supplies, including a big share of the energy. Because of this, it is important to decrease the energy consumption. This can be done by developing new construction technology with...

  7. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  8. International energy technology collaboration: benefits and achievements

    International Nuclear Information System (INIS)

    The IEA Energy Technology Collaboration Programme facilitates international collaboration on energy technology research, development and deployment. More than 30 countries are involved in Europe, America, Asia, Australasia and Africa. The aim is to accelerate the development and deployment of new energy technologies to meet energy security, environmental and economic development goals. Costs and resources are shared among participating governments, utilities, corporations and universities. By co-operating, they avoid unproductive duplication and maximize the benefits from research budgets. The IEA Programme results every year in hundreds of publications which disseminate information about the latest energy technology developments and their commercial utilisation. The IEA Energy Technology Collaboration Programme operates through a series of agreements among governments. This report details the activities and achievements of all 41 agreements, covering energy technology information centres and Research and Development projects in fossil fuels, renewable energy efficient end-use, and nuclear fusion technologies. (authors). 58 refs., 9 tabs

  9. Global energy and technology trends

    International Nuclear Information System (INIS)

    Economic development translates into growing demand for energy services. However, more than 1.6 billion people at present still do not have access to modern energy services. Continued population growth compounds this demand for energy, which is central to achieving sustainable development goals. Poverty eradication calls for affordable energy services. There is a need to minimize health and environmental impacts of energy use. Nuclear power's share of global electricity rose to 16% in 1986. Near the end of the 1980s growth stagnated. Regulatory interventions often stretched out licensing times and increased costs. Inflation and rising energy costs resulting from the oil shocks of 1973 and 1979 brought about a significant drop in electricity demand and raised the costs of capital intensive power plants, like nuclear power plants. Some utilities found the regulatory and transaction costs of nuclear power simply too high to manage costs-effectively. The 1979 Three Mile Island accident and the Chernobyl accident in 1986 retarded the expansion of nuclear power. The electricity market liberalization and privatization exposed excess capacity, pushed electricity prices lower and made power plant investments more risky. Other things being equal, nuclear power's front-loaded cost structure was a disadvantage in markets that emphasize short term profits and rapid returns. In the 1990s, growth in nuclear electricity generation exceeded the growth in nuclear capacity as management efficiencies and technological advances progressively raised the average energy availability of the world's nuclear plants. The energy availability factor measures the percentage of time that a power reactor is available to generate electricity, rather than being shutdown for refuelling, maintenance and other reasons. The global average for nuclear power reactors has risen from 67% in 1990 to 81% in 2004. This increase is equivalent to the addition of 34 new 1000 MW reactors. Electricity generation

  10. The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife Refuge oil production

    International Nuclear Information System (INIS)

    This paper compares the potential contribution of solar electric power in the form of photovoltaics to meet future US energy demand with the projected volume of oil estimated to be available in the Arctic National Wildlife Refuge. Such a comparison has practical value since it directly addresses a key policy choice under consideration in the new century, namely, that between one of the most promising untapped oil deposits in the world and one of the most rapidly growing renewable energy options

  11. Harnessing Ocean Energy by Tidal Current Technologies

    OpenAIRE

    Nasir Mehmood; Zhang Liang; Jawad Khan

    2012-01-01

    The world is heavily dependent on fossil fuels since most of its energy requirements are fulfilled by conventional methods of burning these fuels. The energy demand is increasing by day with growing population. The energy production by fossil fuels is devastating the environment and survival of life on globe is endangered. The renewal energy technologies are vital to ensure future energy sustenance and environmental issues. Ocean is a vast resource of renewable energy. The technology today ma...

  12. Assessment of tidal and wave energy conversion technologies in Canada

    International Nuclear Information System (INIS)

    This paper presented an attractive option to help meet Canada's future energy needs, notably the vast and energetic Atlantic, Pacific and Arctic coastal waters which make ocean renewable energy, particularly tidal in-stream energy conversion (TISEC) and wave energy conversion (WEC). There is much uncertainty regarding the possible environmental impacts associated with their deployment and operation. In support of commercial development of the industry, a review of scientific knowledge was needed for the development of policy and regulations consistent with Canada's conservation and sustainability priorities. In April 2009, Fisheries and Oceans Canada (DFO) hosted a two-day national science advisory process meeting in order to determine the current state of knowledge on the environmental impacts of tidal and wave energy conversion technologies and their application in the Canadian context based on published reports. Potential mitigation measures were identified and the feasibility of developing a relevant Canadian statement of practice was determined. This report presented an assessment and analysis of wave power, including the impacts on physical processes; impacts on habitat characteristics; impacts on water quality; impacts of noise and vibrations; impacts of electromagnetic fields; impacts of physical encounters; cumulative impacts; and mitigation measures. It was concluded that there is a recognized need to develop and maintain national and regional georeferenced, interoperable, standards-based databases that enable access by governments, developers, academics, non-governmental organizations and the general public. 1 ref., 1 fig.

  13. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    2012-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  14. Environmental aspects of solar energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Strojan, C.L.

    1980-09-01

    Solar energy technologies have environmental effects, and these may be positive or negative compared with current ways of producing energy. In this respect, solar energy technologies are no different from other energy systems. Where solar energy technologies differ is that no unresolvable technological problems (e.g., CO/sub 2/ emissions) or sociopolitical barriers (e.g., waste disposal, catastrophic accidents) have been identified. This report reviews some of the environmental aspects of solar energy technologies and ongoing research designed to identify and resolve potential environmental concerns. It is important to continue research and assessment of environmental aspects of solar energy to ensure that unanticipated problems do not arise. It is also important that the knowledge gained through such environmental research be incorporated into technology development programs and policy initiatives.

  15. Technology, energy and the environment

    Science.gov (United States)

    Mitchell, Glenn Terry

    This dissertation consists of three distinct papers concerned with technology, energy and the environment. The first paper is an empirical analysis of production under uncertainty, using agricultural production data from the central United States. Unlike previous work, this analysis identifies the effect of actual realizations of weather as well as farmers' expectations about weather. The results indicate that both of these are significant factors explaining short run profits in agriculture. Expectations about weather, called climate, affect production choices, and actual weather affects realized output. These results provide better understanding of the effect of climate change in agriculture. The second paper examines how emissions taxes induce innovation that reduces pollution. A polluting firm chooses technical improvement to minimize cost over an infinite horizon, given an emission tax set by a planner. This leads to a solution path for technical change. Changes in the tax rate affect the path for innovation. Setting the tax at equal to the marginal damage (which is optimal in a static setting with no technical change) is not optimal in the presence of technical change. When abatement is also available as an alternative to technical change, changes in the tax can have mixed effects, due to substitution effects. The third paper extends the theoretical framework for exploring the diffusion of new technologies. Information about new technologies spreads through the economy by means of a network. The pattern of diffusion will depend on the structure of this network. Observed networks are the result of an evolutionary process. This paper identifies how these evolutionary outcomes compare with optimal solutions. The conditions guaranteeing convergence to an optimal outcome are quite stringent. It is useful to determine the set of initial population states that do converge to an optimal outcome. The distribution of costs and benefits among the agents within an

  16. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological...... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share of...

  17. Energy Storage (II): Developing Advanced Technologies

    Science.gov (United States)

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  18. On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review

    OpenAIRE

    Danielle Camenzuli; Freidman, Benjamin L.; Tom M. Statham; Mumford, Kathryn A.; Gore, Damian B.

    2013-01-01

    Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frameworks to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in polar ...

  19. On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review

    OpenAIRE

    Camenzuli, Danielle; Freidman, Benjamin L.; Tom M. Statham; Mumford, Kathryn A.; Gore, Damian B.

    2013-01-01

    Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frame- works to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in pola...

  20. Emerging energy-efficient technologies for industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

    2004-01-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

  1. Air Tightness and Energy Performance of an Arctic Low-Energy House

    DEFF Research Database (Denmark)

    Rode, Carsten; Vladyková, Petra; Kotol, Martin

    2010-01-01

    A low-energy house has been built in Sisimiut, Greenland, five years ago. An ambitious target was set for its low energy consumption for heating: 80 kWh/(m2∙a). But unfortunately, the house has used more energy than planned, approximately 140 kWh/(m2∙a). Although higher than anticipated, this is...... still for Greenland a very low energy consumption. The purpose of the work presented in the paper has been to analyze the energy consumption of the house and to understand why it was different than anticipated. One significant lesson learned is that the house was not built with sufficient air...

  2. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  3. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  4. Emerging energy-efficient technologies for industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-03-20

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  5. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    Science.gov (United States)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  6. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  7. Solar energy – new photovoltaic technologies

    OpenAIRE

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiati...

  8. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  9. Energy conservation employing membrane-based technology

    International Nuclear Information System (INIS)

    Membranes based processes, if properly adapted to industrial processes have good potential with regard to optimisation and economisation of energy consumption. The specific benefits of MBT (membrane based technology) as an energy conservation methodology are highlighted. (author). 6 refs

  10. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  11. Synoptic controls on the surface energy and water budgets in sub-arctic regions of Canada

    Science.gov (United States)

    Petrone, Richard M.; Rouse, Wayne R.

    2000-08-01

    An objective hybrid classification of daily surface weather maps for central and western Canadian sub-arctic locations was used to determine their dominant synoptic conditions during the snow free period. This classification yielded seven dominant synoptic types for each location during the snowmelt and snow-free periods (20 April-7 September), accounting for 90% of the days in period. The effects of source regions were used to explain the observed air mass characteristics, and their influence on the respective study locations. Cooler, drier air masses were the most frequent at both study locations. Arctic high pressure cells to the northeast brought the coolest air to the western sub-arctic site, Trail Valley Creek (TVC), Northwest Territories, while high pressure systems approaching from the northwest brought the coolest conditions to the central sub-arctic site, Churchill, Manitoba. Sub-tropical high pressure approaching from the west-southwest brought warm air to TVC, whereas stationary high pressure to the south warmed Churchill. These synoptic regimes exerted strong controls on the precipitation and evaporation components of the water balance as observed in terms of cloud cover, radiation and precipitation and evaporation efficiencies.

  12. The new energy technologies in Australia

    International Nuclear Information System (INIS)

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  13. Technological Change during the Energy Transition

    OpenAIRE

    van der Meijden, Gerard; Smulders, Sjak

    2014-01-01

    The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a non-renewable resource and an alternative energy source in a market economy model of endogenous growth through expanding varieties. During the energy transition, technological progress is non-monotonic over time: it declines initially, starts increasing when the economy approaches the regime shift, a...

  14. Bionic models for new sustainable energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Tributsch, H. [Hahn-Meitner Inst., Dept. Solare Energetik, Berlin (Germany)

    2004-07-01

    Within the boundary conditions of an abundant, but diluted solar energy supply nature has successfully evolved sophisticated regenerative energy technologies, which are not yet familiar to human engineering tradition. Since until the middle of this century a substantial contribution of renewable energy to global energy consumption is required in order to limit environmental deterioration, bionic technologies may contribute to the development of commercially affordable technical options. Four biological energy technologies have been selected as examples to discuss the challenges, both in scientific and technological terms, as well as the material research aspects involved: photovoltaics based on irreversible kinetics, tensile water technology, solar powered protonic energy circuits, fuel cell catalysis based on abundant transition metals. (orig.)

  15. Power Technologies Energy Data Book - Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  16. Technological learning in the energy sector

    NARCIS (Netherlands)

    Junginger, H.M.; Lako, P.; Lensink, S.; van Sark, W.G.J.H.M.; Weiss, M.

    2008-01-01

    Technology learning is a key driver behind the improvement of (energy) technologies available to mankind and subsequent reduction of production costs. Many of the conventional technologies in use today have already been continuously improved over decades, sometimes even a century. In contrast, many

  17. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  18. Harnessing Ocean Energy by Tidal Current Technologies

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The world is heavily dependent on fossil fuels since most of its energy requirements are fulfilled by conventional methods of burning these fuels. The energy demand is increasing by day with growing population. The energy production by fossil fuels is devastating the environment and survival of life on globe is endangered. The renewal energy technologies are vital to ensure future energy sustenance and environmental issues. Ocean is a vast resource of renewable energy. The technology today makes it possible to extract energy from tides. The growing interest in exploring tidal current technologies has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The purpose of this study is to present a comprehensive review of tidal current technologies to harness ocean energy. The ocean energy resources are presented. The author discusses tidal energy technologies. The tidal current turbines are discussed in detail. The author reviews today’s popular tidal current technologies. The present status of ocean energy development is also reported.

  19. Energy Technology Innovation in Brazil

    OpenAIRE

    Nnaemeka Vincent Emodi; Zorig Bayaraa; Samson D. Yusuf

    2015-01-01

    The Brazilian electricity sector has witnessed numerous technological changes and has evolved to become a global leader in clean technology sales, both to the domestic and foreign market. A lot of factors contributed to the innovative activities in its electricity sector which includes both government and FDI contribution. This paper reviewed the past and current technology innovation in the country’s electricity sector with some concentration on the patent, and research and development. Some...

  20. New energy technologies part 2, storage and low emission technologies

    International Nuclear Information System (INIS)

    After a first volume devoted to renewable energy sources, this second volume follows the first one and starts with a detailed presentation of energy storage means and technologies. This first chapter is followed by a prospective presentation of innovative concepts in the domain of nuclear energy. A detailed analysis of cogeneration systems, which aim at optimizing the efficiency of heat generation facilities by the adjunction of a power generation unit, allows to outline the advantages and limitations of this process. The next two chapters deal with the development of hydrogen industry as energy vector and with its application to power generation using fuel cells in several domains of use. Content: - forewords: electric power, the new paradigm, the decentralized generation, the energy conversion means; - chapter 1: energy storage, applications in relation with the electricity vector (energy density, storage problems, storage systems); - chapter 2: nuclear fission today and tomorrow, from rebirth to technological jump (2006 energy green book, keeping all energy options opened); nuclear energy in the world: 50 years of industrial experience; main actors: common needs, international vision and strategic instruments; at the eve of a technological jump: research challenges and governmental initiatives; generation 2 (today): safety of supplies and respect of the environment; generation 3 (2010): rebirth with continuous improvements; generation 4 (2040): technological jump to satisfy new needs; education and training: general goals; conclusion: nuclear power as part of the solution for a sustainable energy mix; - chapter 3: cogeneration (estimation of cogeneration potential, environmental impact, conclusions and perspectives); - chapter 4: hydrogen as energy vector (context, energy vector of the future, hydrogen generation, transport, distribution and storage; applications of hydrogen-energy, risks, standards, regulations and acceptability; hydrogen economics; hydrogen

  1. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  2. Solar Energy: Its Technologies and Applications

    Science.gov (United States)

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  3. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  4. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I.W.; Yoon, K.S.; Cho, B.W. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)] [and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  5. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  6. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  7. Renewable Energy: Markets and Prospects by Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This information paper accompanies the IEA publication Deploying Renewables 2011: Best and Future Policy Practice (IEA, 2011a). It provides more detailed data and analysis, and explores the markets, policies and prospects for a number of renewable energy technologies. This paper provides a discussion of ten technology areas: bioenergy for electricity and heat, biofuels, geothermal energy, hydro energy, ocean energy, solar energy (solar photovoltaics, concentrating solar power, and solar heating), and wind energy (onshore and offshore). Each technology discussion includes: the current technical and market status; the current costs of energy production and cost trends; the policy environment; the potential and projections for the future; and an analysis of the prospects and key hurdles to future expansion.

  8. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  9. Emerging Energy-Efficient Technologies for Industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  10. Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level

    International Nuclear Information System (INIS)

    Many countries, especially in Europe, have ambitious goals to transform their national energy systems towards renewable energies. Technological change in both renewable production and efficient use of energy can help us to make these targets come true. Using a panel of German firms linked to the PATSTAT patent data, we study inventions in both types of energy technologies and investigate the role prior inventions as technology-push factors play for both types of technologies. In addition and more importantly, we study whether previous inventions in non-energy technologies also stimulate technical change in energy technologies and whether this effect differs between energy conservation and renewable energy technologies

  11. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing

  12. Shaping a Sustainability Strategy for the Arctic

    OpenAIRE

    Azcarate, Juan; Balfors, Berit; Destouni, Georgia; Bring, Arvid

    2011-01-01

    The development of the Arctic is shaped by the opportunities and constraints brought by climate change and technological advances. In the Arctic, warmer climate is expected to affect ecosystems, local communities and infrastructure due to a combination of effects like reduced sea ice and glaciers, thawing permafrost and increased frequency of floods. Less ice and new technologies mean openings to exploit natural resources in the Arctic. Fishing, mining, hydrocarbon extraction and vessel trans...

  13. Scenario Planning to Identify Science Needs for the Management of Energy and Resource Development in the Arctic

    Science.gov (United States)

    Lassuy, D.

    2013-12-01

    The North Slope Science Initiative (NSSI) is an intergovernmental science collaboration forum in Arctic Alaska (USA). NSSI has initiated a 'Scenario Planning' effort with the focal question: 'What is the future of energy development, resource extraction, and associated support activities on the North Slope and adjacent seas through 2040?' With over 500 thousand square kilometers of land and sea, the area of the North Slope and adjacent seas is believed to have some of the largest oil, gas, and coal potential remaining in the United States, but it is also home to a diverse array of fish, wildlife, and plant resources that support a vibrant subsistence culture. Our scenario planning will involve a full and collaborative dialogue among a wide range of U.S. Arctic stakeholders, including Alaska Native subsistence users, local communities, academia, non-governmental organizations, and a variety of industries (oil and gas, mining, transportation, etc.) and government agencies (federal, state, local). The formulation of development scenarios and an understanding of their implications will provide a practical context for NSSI member agencies to make informed decisions about the research and monitoring that will be needed to sustain these resources and to plan for safe energy and resource development in the face of impending changes. The future of Arctic America is difficult to accurately predict, particularly in an era of intense pressures from both energy development and climate warming. However, it will almost surely be characterized by highly consequential and unprecedented changes. Complex and uncertain are appropriate descriptors of the Arctic and its future; and scenario planning has proven an effective tool to help engage diverse stakeholders in a focused dialogue and systematic thinking about plausible futures in complex and uncertain settings. The NSSI leadership recognized the critical need for this dialogue and has begun a scenario planning effort for the North

  14. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  15. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  16. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    Science.gov (United States)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  17. Polar energy resources potential. Report prepared for the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fourth Congress, Second Session by the Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The study covers both Antarctic and Arctic energy resources including oil, coal, natural gas, hydroelectric power, geothermal energy, oil shale, uranium, solar energy, and wind power. The environment, geology, topography, climate, and weather are also treated. Consideration is given to the international relations involved in energy resource exploitation in both polar regions, and the technologies necessary to develop polar resources are discussed. The potential resources in each area are described. Resource potentials south of 60 degrees in Antartica and north of 60 degrees in the Arctic are summarized. (MCW)

  18. Institute for Energy Technology, Annual Report 1981

    International Nuclear Information System (INIS)

    The annual report gives a brief account of the activities of Institute for Energy Technology and presents a fairly comprehensive anasis of the budgetary dispositions in 1981 and, for comparison, 1980. (RF)

  19. Energy modelling: Clean grids with current technology

    Science.gov (United States)

    Jacobson, Mark Z.

    2016-05-01

    The need for new energy storage is often seen as an obstacle to integrating renewable electricity into national power systems. Modelling shows that existing technologies could provide significant emissions reductions in the US without the need for storage, however.

  20. BGP Ltd Adopts Energy-saving Technology

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ An exploration subsidiary of China National Petroleum Corporation (CNPC), the country's largest oil company, has agreed to use energy-saving technology developed by a Beijing firm in an attempt to slash costs.

  1. Waste-to-Energy Technology Brief

    Science.gov (United States)

    ETV's Greenhouse Gas Technology (GHG) Center, operated by Southern Research Institute under a cooperative agreement with US EPA, verified two biogas processing systems and four distributed generation (DG) energy systems in collaboration with the Colorado Governors Office or the N...

  2. Wind Energy: Trends And Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Devabhaktuni, Vijay; Alam, Mansoor; Boyapati, Premchand; Chandna, Pankaj; Kumar, Ashok; Lack, Lewis; Nims, Douglas; Wang, Lingfeng

    2010-09-15

    With attention now focused on the damaging impact of greenhouse gases, wind energy is rapidly emerging as a low carbon, resource efficient, cost-effective sustainable technology in many parts of the world. Despite higher economic costs, offshore appears to be the next big step in wind energy development alternative because of the space scarcity for installation of onshore wind turbine. This paper presents the importance of off-shore wind energy, the wind farm layout design, the off-shore wind turbine technological developments, the role of sensors and the smart grid, and the challenges and future trends of wind energy.

  3. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  4. Comic Visions Dark Energy: Technology

    CERN Document Server

    Dodelson, Scott; Hirata, Chris; Honscheid, Klaus; Roodman, Aaron; Seljak, Uroš; Slosar, Anže; Trodden, Mark

    2016-01-01

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  5. Cosmic Visions Dark Energy: Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    A strong instrumentation and detector R&D program has enabled the current generation of cosmic frontier surveys. A small investment in R&D will continue to pay dividends and enable new probes to investigate the accelerated expansion of the universe. Instrumentation and detector R&D provide critical training opportunities for future generations of experimentalists, skills that are important across the entire Department of Energy High Energy Physics program.

  6. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  7. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  8. Energy efficient vehicles technology II

    Energy Technology Data Exchange (ETDEWEB)

    Baeker, Bernard; Morawietz, Lutz (eds.) [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics

    2012-11-01

    This book presents the proceedings of the 2{sup nd} International Energy Efficient Vehicles Conference (EEVC 2012) which took place from June 18{sup th}-19{sup th} in Dresden, Germany. The special conference program for EEVC 2012 contained contributions and presentations by researchers, developers, product planners and managers of the main German and international vehicle manufacturers, system suppliers and research institutes. So all the main topics related to energy efficient vehicles could be covered, as there are for example new development and optimization strategies, battery management systems, different power net topologies and hybridization concepts (e.g. hydraulic power trains). A special focus lies on different aspects of electric vehicles as there are charging strategies, light weight construction and also the point of view from an energy supplier. (orig.)

  9. Nordic Energy Technologies : Enabling a sustainable Nordic energy future

    Energy Technology Data Exchange (ETDEWEB)

    Vik, Amund; Smith, Benjamin

    2009-10-15

    A high current Nordic competence in energy technology and an increased need for funding and international cooperation in the field are the main messages of the report. This report summarizes results from 7 different research projects relating to policies for energy technology, funded by Nordic Energy Research for the period 2007-2008, and provides an analysis of the Nordic innovation systems in the energy sector. The Nordic countries possess a high level of competence in the field of renewable energy technologies. Of the total installed capacity comprises a large share of renewable energy, and Nordic technology companies play an important role in the international market. Especially distinguished wind energy, both in view of the installed power and a global technology sales. Public funding for energy research has experienced a significant decline since the oil crisis of the 1970s, although the figures in recent years has increased a bit. According to the IEA, it will require a significant increase in funding to reduce greenhouse gas emissions and limit further climate change. The third point highlighted in the report is the importance of international cooperation in energy research. Nordic and international cooperation is necessary in order to reduce duplication and create the synergy needed if we are to achieve our ambitious policy objectives in the climate and energy issue. (AG)

  10. Inter-technology knowledge spillovers for energy technologies

    International Nuclear Information System (INIS)

    Both anecdotal evidence and the innovation literature indicate that important advances in energy technology have made use of knowledge originating in other technological areas. This study uses the set of U.S. patents granted from 1976 to 2006 to assess the role of knowledge acquired from outside each energy patent's technological classification. It identifies the effect of external knowledge on the forward citation frequency of energy patents. The results support the claim above. Regression coefficients on citations to external prior art are positive and significant. Further, the effect of external citations is significantly larger than that of other types of citations. Conversely, citations to prior art that is technologically near have a negative effect on forward citation frequency. These results are robust across several alternative specifications and definitions of whether each flow of knowledge is external. Important energy patents have drawn heavily from external prior art categorized as chemical, electronics, and electrical; they cite very little prior art from computers, communications, and medical inventions.

  11. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions a

  12. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  13. New energy technologies. Research program proposition

    International Nuclear Information System (INIS)

    This document presents the most promising program propositions of research and development and the public financing needed for their realization. The concerned technologies are: the hydrogen and the fuel cell PAN-H, the separation and the storage of the CO2, the photovoltaic solar electricity, the PREBAT program of the building energy recovery and the bio-energies. (A.L.B.)

  14. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.;

    2011-01-01

    huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind...

  15. Sustainable Energy Technology Acceptance: A psychological perspective

    NARCIS (Netherlands)

    Huijts, N.M.A.

    2013-01-01

    Sustainable energy systems are designed to overcome the large problems resulting from current fossil fuel use, such as climate change, air pollution and energy insecurity. Citizens’ opinions and responses are crucial to the successful implementation of new technologies. This thesis explains public a

  16. A Course on Energy Technology and Policy

    Science.gov (United States)

    Edgar, Thomas F.

    2007-01-01

    The emerging energy situation in the United States puts chemical engineering at the forefront of the large research and education effort that will need to be undertaken during the next 20 years. Chemical engineering undergraduates and graduate students will need to be literate on energy alternatives and the interconnection of technology,…

  17. Technology and the diffusion of renewable energy

    International Nuclear Information System (INIS)

    We consider investment in wind, solar photovoltaic, geothermal, and electricity from biomass and waste across 26 OECD countries from 1991 to 2004. Using the PATSTAT database, we obtain a comprehensive list of patents for each of these technologies throughout the world, which we use to assess the impact of technological change on investment in renewable energy capacity. We consider four alternative methods for counting patents, using two possible filters: weighting patents by patent family size and including only patent applications filed in multiple countries. For each patent count, we create knowledge stocks representing the global technological frontier. We find that technological advances do lead to greater investment, but the effect is small. Investments in other carbon-free energy sources, such as hydropower and nuclear power, serve as substitutes for renewable energy. Comparing the effectiveness of our four patent counts, we find that both using only patents filed in multiple countries and weighting by family size improve the fit of the model.

  18. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  19. Life cycle emissions from renewable energy technologies

    International Nuclear Information System (INIS)

    This paper presents the methodology used in the ETSU review, together with the detailed results for three of the technologies studied: wind turbines, photovoltaic systems and small, stand-alone solar thermal systems. These emissions are then compared with those calculated for both other renewables and fossil fuel technology on a similar life cycle basis. The life cycle emissions associated with renewable energy technology vary considerably. They are lowest for those technologies where the renewable resource has been concentrated in some way (e.g. over distance in the case of wind and hydro, or over time in the case of energy crops). Wind turbines have amongst the lowest emissions of all renewables and are lower than those for fossil fuel generation, often by over an order of magnitude. Photovoltaics and solar thermal systems have the highest life cycle emissions of all the renewable energy technologies under review. However, their emissions of most pollutants are also much lower than those associated with fossil fuel technologies. In addition, the emissions associated with PV are likely to fall further in the future as the conversion efficiency of PV cells increases and manufacturing technology switches to thin film technologies, which are less energy intensive. Combining the assessments of life cycle emissions of renewables with predictions made by the World Energy Council (WEC) of their future deployment has allowed estimates to be made of amount by which renewables could reduce the future global emissions of carbon dioxide, sulphur dioxide and nitrogen oxides. It estimated that under the WEC's 'Ecologically Driven' scenario, renewables might lead to significant reductions of between 3650 and 8375 Mt in annual CO2 emissions depending on the fossil fuel technology they are assumed to displace. (author)

  20. Gas and energy technology 2006

    International Nuclear Information System (INIS)

    The conference Energy21 is a yearly event gathering young people working in the oil sector or students in subjects related to the business to meet and network. Presentations are given by young people working in the industry, describing their experiences from working in the sector. The oil sector's history and forecast about the future of the Norwegian oil sector are also topics discussed (ml)

  1. Energy efficient vehicles technology I

    Energy Technology Data Exchange (ETDEWEB)

    Baeker, Bernard [Dresden Univ. of Technology (Germany). Inst. of Automotive Technology Dresden - IAD; Morawietz, Lutz (eds.) [Dresden Univ. of Technology (Germany). Dept. of Vehicle Mechatronics; IAM GmbH, Dresden (Germany)

    2011-07-01

    The ongoing demand for optimization of today's (auto-)mobility concepts towards increased efficiency and customer perceivable functionality can only be realized using novel mechatronic sensor, control and actuator systems. This development trend is especially evident in the field of alternative or hybrid/full electric powertrain systems of vehicles. This book originates from the 1{sup st} International Energy Efficient Vehicles Conference (EEVC 2011) which took place from June 30{sup th} - July 1{sup st} in Dresden, Germany. The special conference program for EEVC 2011 contained contributions and presentations by researcher, developers, product planners and managers of all main German and international OEMs, system suppliers and research institutes. So all the main topics related to energy efficient vehicles could be covered, as there are for example aerodynamics and thermal management, renewable energy management linked to mobile systems, hybrid power trains, semiconductors and driver assistance systems. Different types of vehicles such as cars, trains and even fork lift trucks were also discussed.

  2. Oil and Gas in a New Arctic. Developments of the Energy Issue and Regional Strategic Dynamic; Olja och gas i ett nytt och foeraendrat Arktis. Energifraagans utveckling mot bakgrund av regionens strategiska dynamik

    Energy Technology Data Exchange (ETDEWEB)

    Granholm, Niklas; Kiesow, Ingolf

    2010-03-15

    This study has as its point of departure that large reserves of energy and minerals are deposited in the Arctic. There is uncertainty on how large these reserves are and if extraction of them is technically and economically feasible. As the Arctic gradually becomes more accessible as the melting of the sea-ice in the Arctic Ocean progresses, the region becomes more open to human activities than ever before. The energy issue in the Arctic develops against the background of the region's increasing geostrategic importance. Russia shows no hesitation, Norway also put considerable resources into energy extraction in the Arctic. Environ-mental protection is a more prominent issue in Norway, Canada and the USA than in Russia. In addition to the energy issue, other factors in the Arctic are also changing. Shipping, climate change, military strategy, nuclear weapons, overlapping territorial claims, developments in international security and national policies and efforts, are all parts of a development that does not easily let itself be described and analysed. The different factors under change develop according to their own character and inner logic and how they interact will be hard to foresee. Uncertainties of future developments in the Arctic therefore remain. The Arctic will become more clearly linked into developments in the rest of the world than hitherto. The region will no longer be exclusively an issue for the states in the region. The interest in the Arctic is on the increase, not only from the Arctic states, but also from external state actors in Europe and Asia, as well as multilateral organisations such as the European Union and NATO

  3. Energy & Technology Review, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.; Van Dyke, P. [eds.

    1994-03-01

    This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide better healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.

  4. Energy-technology choices: Shaping our future

    International Nuclear Information System (INIS)

    The report provides a broad overview of energy choices facing the Nation. It is not an exhaustive analysis of any one technology; rather, it draws together the main themes of OTA reports from the past 16 years, and other documents, into an outline of the main directions the country could follow. The report contrasts a baseline scenario (no major initiatives or surprises) with five variations representing different paths the Nation could follow: emphasizing production of conventional fuels, improving efficiency of use to the economic optimum, minimizing the use of energy as far as is technologically possible, emphasizing renewable energy sources, and emphasizing nuclear energy. Any of these scenarios could be the most appropriate path depending on the resolution of uncertainties over climate changes induced by the greenhouse effect, technological developments, and resource discoveries. Each scenario presents risks as well as opportunities. The report describes the choices available to policymakers and the implications of choosing one path versus another

  5. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  6. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  7. Solar Energy, Technology Policy, and Institutional Values

    Science.gov (United States)

    Laird, Frank N.

    2001-03-01

    Energy policies influence the shape of emergent technological systems, and also condition our social, political, and economic lives. This book demonstrates the difficulties of deliberating such properties by providing a historical case study that analyzes U.S. renewable energy policy from the end of World War II through the energy crisis of the 1970s. It illuminates the ways beliefs and values come to dominate official problem frames and get entrenched in institutions.

  8. Adopting Energy Saving Technology: Inertia or Incentives?

    OpenAIRE

    Peter A. Groothuis; Tanga McDaniel Mohr

    2013-01-01

    In an effort to improve efficiency of electrical markets the U.S. government hopes to encourage changing household use patterns, such as dishwasher and clothes dryer use, to off-peak times. One strategy has been to subsidize the installation of smart meters. In addition the government has encouraged electrical energy conservation by providing incentives for energy saving technologies such as the purchase of energy star appliances or increased insulation in the home. Households have sometimes ...

  9. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  10. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  11. Electric energy storage - Overview of technologies

    International Nuclear Information System (INIS)

    Energy storage is a challenging and costly process, as electricity can only be stored by conversion into other forms of energy (e.g. potential, thermal, chemical or magnetic energy). The grids must be precisely balanced in real time and it must be made sure that the cost of electricity is the lowest possible. Storage of electricity has many advantages, in centralized mass storages used for the management of the transmission network, or in decentralized storages of smaller dimensions. This article presents an overview of the storage technologies: mechanical storage in hydroelectric and pumped storage power stations, compressed air energy storage (CAES), flywheels accumulating kinetic energy, electrochemical batteries with various technologies, traditional lead acid batteries, lithium ion, sodium sulfur (NaS) and others, including vehicle to grid, sensible heat thermal storage, superconducting magnetic energy storage (SMES), super-capacitors, conversion into hydrogen... The different technologies are compared in terms of cost and level of maturity. The development of intermittent renewable energies will result in a growing need for mechanisms to regulate energy flow and innovative energy storage solutions seem well positioned to develop. (author)

  12. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  13. Market penetration rates of new energy technologies

    International Nuclear Information System (INIS)

    The market penetration rates of 11 different new energy technologies were studied covering energy production and end-use technologies. The penetration rates were determined by fitting observed market data to an epidemical diffusion model. The analyses show that the exponential penetration rates of new energy technologies may vary from 4 up to over 40%/yr. The corresponding take-over times from a 1% to 50% share of the estimated market potential may vary from less than 10 to 70 years. The lower rate is often associated with larger energy impacts. Short take-over times less than 25 years seem to be mainly associated with end-use technologies. Public policies and subsides have an important effect on the penetration. Some technologies penetrate fast without major support explained by technology maturity and competitive prices, e.g. compact fluorescent lamps show a 24.2%/yr growth rate globally. The penetration rates determined exhibit some uncertainty as penetration has not always proceeded close to saturation. The study indicates a decreasing penetration rate with increasing time or market share. If the market history is short, a temporally decreasing functional form for the penetration rate coefficient could be used to anticipate the probable behavior

  14. Energy technologies at the cutting edge: international energy technology collaboration IEA Implementing Agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pottinger, C. (ed.)

    2007-05-15

    Ensuring energy security and addressing climate change issues in a cost-effective way are the main challenges of energy policies and in the longer term will be solved only through technology cooperation. To encourage collaborative efforts to meet these energy challenges, the IEA created a legal contract - Implementing Agreement - and a system of standard rules and regulations. This allows interested member and non-member governments or other organisations to pool resources and to foster the research, development and deployment of particular technologies. For more than 30 years, this international technology collaboration has been a fundamental building block in facilitating progress of new or improved energy technologies. There are now 41 Implementing Agreements. This is the third in the series of publications highlighting the recent results and achievements of the IEA Implementing Agreements. This document is arranged in the following sections: Cross-cutting activities (sub-sectioned: Climate technology initiative; Energy Technology Data Eexchange; and Energy technology systems analysis programme); End-use technologies (sub-sectioned: Buildings; Electricity; Industry; and Transport; Fossil fuels (sub-sectioned: Clean Coal Centre; Enhanced oil recovery Fluidized bed conversion; Greenhouse Gas R & D; Multiphase flow sciences); Fusion power; Renewable energies and hydrogen; and For more information (including detail on the IEA energy technology network; IEA Secretariat Implementing Agreement support; and IEA framework. Addresses are given for the Implementing Agreements. The publication is based on core input from the Implementing Agreement Executive Committee.

  15. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  16. Renewable energy technologies: costs and markets

    International Nuclear Information System (INIS)

    A prominent feature of renewable energy utilisation is the magnitude of renewable energy that is physically available worldwide. The present paper attempts an economic valuation of development strategies for renewable energy sources (RES) on the basis of the past development of RES markets. It comes to the conclusion that if current energy prices remain largely unchanged, it will be necessary to promote RES technologies differentially according to the technique and type of energy employed or to provide start-up funding. The more probable a long-term increase in energy prices becomes, the greater will be the proportion of successfully promoted technologies. Energy taxes on exhaustible or environmentally harmful energy carriers and other instruments to this end would contribute greatly to the attractivity of RES investment both in terms of national economy and from the viewpoint of the private investor. Renewable energies will play an important role in the hardware and services sectors of the energy market in the decades to come. Long-term promotion of market introduction programmes and unequivocal energy-political aims on the part of the government are needed if the German industry is to have a share in this growing market and be able to offer internationally competitive products

  17. The Arctic

    International Nuclear Information System (INIS)

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  18. Energy and Technology Review, April 1994

    Science.gov (United States)

    Quirk, W. J.; Canada, J.; Devore, L.; Gleason, K.; Kirvel, R. D.; McElroy, L.; Kroopnick, H.

    1994-04-01

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, other major programs have been added, including technology transfer, laser science, biology and biotechnology, environmental research and remediation, arms control and nonproliferation, advanced defense technology, and applied energy technology. These programs in turn require research in basic scientific disciplines including chemistry and materials science, computing science and technology, engineering, and physics. This review highlights two R&D 100 award winning research topics: (1) The world's fastest digitizer which captures 30 ps transient electrical events, and (2) the MACHO camera system which fully exploits the power of large format digital imagers and integrates into one package the taking and analysis of images at a prodigious rate and the storage and archiving of extensive amounts of data.

  19. Scientific challenges in sustainable energy technology

    Science.gov (United States)

    Lewis, Nathan

    2006-04-01

    We describe and evaluate the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies. First, we estimate fossil fuel resources and reserves and, together with the current and projected global primary power production rates, estimate the remaining years of oil, gas, and coal. We then compare the conventional price of fossil energy with that from renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the potential for a transition to renewable energy in the next 20-50 years. Secondly, we evaluate - per the Intergovernmental Panel on Climate Change - the greenhouse constraint on carbon-based power consumption as an unpriced externality to fossil-fuel use, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit GDP. This constraint is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, to levels far greater than current renewable energy demand. Thirdly, we evaluate the level and timescale of R&D investment needed to produce the required quantity of carbon-free power by the 2050 timeframe. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected demand. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power required. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  20. Norwegian focus on new energy technology

    International Nuclear Information System (INIS)

    Norsk Hydro Technology Ventures, a venture capital fund recently set up by Norsk Hydro, will raise equity capital to companies that are developing promising new projects on new energy technology or to investment funds promoting such projects. Norsk Hydro will withdraw from the investments when the projects have reached commercialization or are listed on the stock exchange. There is a well-developed market for venture capital in the energy sector and a strong international competition for investments in good projects. The sharp environmental focus on fossil fuels and climate gases has boosted the research on new energy technologies. Another and more important factor is the fact that modern society with its heavy dependence on the computer is vulnerable to power failure

  1. Market penetration of new energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  2. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  3. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  4. SIHTI 2 - Energy and environmental technology

    International Nuclear Information System (INIS)

    The programme is divided into system and technology parts. The aim of system studies is to determine, on the basis of lifecycle analyses, long-term environmental-technological aims for various fields (energy, industry) and to find out an optimum strategy for reaching these aims. The analysis will give data on emission reduction costs and on fields, where technical improvements are required, and will determine the limits set by environmental factors for future technical development. Environmental impacts will be discussed from national and economic viewpoints. Technological development is dependent on new ideas. The aim is to indicate possibilities for reducing emissions from energy use of peat and wood, for low-emission production at least on one industrial field (wood-processing industry), to establish emission measuring and control methods, to indicate utilization alternatives for solid matter separated at power plants, and to find out operable alternatives for the energy use of wastes. Other ventures of significance will also be financed: survey of 'new' emissions and development of their measuring and purification methods. The field of the programme will be divided into synergic sub-fields: systematics of emission chains, fields of operation (energy and environment problems in the wood-processing industries), development of flue gas purification technology, measuring and control technology, by-products of power plants, emissions from peat production, etc

  5. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  6. Values and Technologies in Energy Savings

    DEFF Research Database (Denmark)

    Nørgård, Jørgen Stig

    2000-01-01

    ´s behavioural pattern and lifestyles. Deliberate changes in social values are illustrated by a historical example. From the side of technology the basic principles in the economy of energy savings are briefly described. The marginally profitable energy savings provides an economic saving. The application of...... this saving can cause what is called the rebound effect, which reduces the savings obtained from the technology. Ways to avoid this effect are suggested, and they require value changes, primarly around frugality, consumption, and hard-working. There are indications that some of the necessary changes...

  7. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  8. Understanding China's renewable energy technology exports

    International Nuclear Information System (INIS)

    China became a major player in renewable energy (RE) technology during the 2000s. Chinese solar PV cell and module makers quickly dominated global sales in that industry, while the country's wind turbine producers became poised for significant exports after capturing their rapidly growing home market. In countries like the US, Chinese RE technology strength has been met with claims of excessive governmental support of exports. This study examines to what extent Chinese firms' solar PV and wind technology successes have been enabled by policy supports, and whether those policies appear to have been driven by broader goals versus RE export promotion per se. The evidence suggests that governmental policy toward both wind and solar originated in a push for export-competitive Chinese companies. But the specifics differed substantially due to the particular requirements of building technological capabilities in each: export readiness necessitated substantial support for domestic installation of wind but not solar PV power. The findings also suggest that as the decade of the 2000s progressed, environmental goals played an increasing role alongside export promotion in motivating and shaping Chinese RE technology policies. - Highlights: ► Export policy in the rise of Chinese renewable energy technologies is studied. ► Policy supported wind turbine firms' capabilities via domestic uptake, not exports. ► Pre-2009 solar module exports enjoyed, but did not depend on, export subsidies. ► Renewables development also fit wider technology and environmental policy goals.

  9. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  10. A post-2020 EU energy technology policy: Revisiting the strategic energy technology plan

    International Nuclear Information System (INIS)

    With the European Strategic Energy Technology Plan (SET Plan) expiring in 2020, the EU needs to revisit its energy technology policy for the post-2020 horizon and to establish a policy framework that fosters the achievement of ambitious EU commitments for decarbonization by 2050. We discuss options for a post-2020 EU energy technology policy, taking account of uncertain technology developments, uncertain carbon prices and the highly competitive global market for energy technologies. We propose a revised SET Plan that enables policy makers to be pro-active in pushing innovation in promising technologies, no matter what policy context will be realized in the future. In particular, a revised SET Plan should include a more technology-specific focus, provide the basis for planning and prioritization among decarbonization technologies, and should be based on a comprehensive approach across sectors. Selected technology targets and EU funding of innovation should be in line with the SET Plan prioritization. - Highlights: • We discuss options for a post-2020 EU energy technology policy. • The policy context is defined by market pull regimes, and here foremost by the ETS. • A multi-criteria evaluation shows that no single policy is clearly superior. • We propose a revised, post-2020 SET Plan that supports all possible futures. • Priority identification requires a comprehensive approach across sectors

  11. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  12. NEDO's white paper on renewable energy technologies

    International Nuclear Information System (INIS)

    This document proposes a synthesis of a 'white paper' published by the Japanese institution NEDO (New Energy and Industrial Technology Development Organization) on the development of technologies in the field of renewable energies. For the various considered energies, this report gives indications of the world market recent evolutions, of Japanese productions and objectives in terms of productions and costs. The different energies treated in this report are: solar photovoltaic, wind, biomass, solar thermal, waves, seas, hydraulic, geothermal, hot springs, snow and ice, sea currents, electricity production by thermo-electrical effect or by piezoelectric modules, reuse of heat produced by factories, use of the thermal gradient between air and water, intelligent communities and networks

  13. A personal history: Technology to energy strategy

    International Nuclear Information System (INIS)

    This personal history spans a half century of participation in the frontiers of applies science and engineering ranging from the nuclear weapons project of World War II, through the development of nuclear power, engineering education, and risk analysis, to today's energy research and development. In each of these areas, this account describes some of the exciting opportunities for technology to contribute to society's welfare, as well as the difficulties and constraints imposed by society's institutional and political systems. The recounting of these experiences in energy research and development illustrates the importance of embracing social values, cultures, and environmental views into the technologic design of energy options. The global importance of energy in a rapidly changing and unpredictable world suggests a strategy for the future based on these experiences which emphasizes the value of applied research and development on a full spectrum of potential options

  14. Promoting exports in the energy technology area

    International Nuclear Information System (INIS)

    This report for the Swiss Federal Office of Energy (SFOE) examines the position of Switzerland as a leader in the investment goods markets for energy-efficiency products and for technologies for using renewable forms of energy. The report quotes figures for exports in these areas and discusses the difficulty of extracting useful data on these products from normal statistical data. Analyses made by a group of experts from the export-oriented technology field, energy service providers and representatives of export promotion institutions are presented and figures are quoted for various product categories. Factors promoting the competitiveness of Swiss products are discussed as well as those impeding it. An analysis of export potential is presented and measures to promote export are discussed. The report also discusses the aids and promotion activities that are considered necessary by companies in the field and the macro-economic perspectives of increased export promotion

  15. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  16. Trends in Wind Energy Technology Development

    OpenAIRE

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.; van Kuik, Gijs

    2011-01-01

    Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption. The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a...

  17. Geospatial Technologies to Improve Urban Energy Efficiency

    OpenAIRE

    Bharanidharan Hemachandran; Arvai, Joseph L.; Fung, Tak S.; Gang Chen; Christopher Kyle; Geoffrey J. Hay; Mir Mustafizur Rahman

    2011-01-01

    The HEAT (Home Energy Assessment Technologies) pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA) and Canadian built Thermal Airborne Broadband Imager...

  18. Energy technology progress for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  19. Computer technology can enhance industrial energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Rapid escalation in energy costs since 1973 has increased operating costs and, in turn, caused a sharp rise in the prices of both consumer and industrial products. Reoptimizing manufacturing processes to account for higher energy costs is a formidable task and will strain the technical manpower of industrial communities. Analysis of a process will identify several technological or operating options that might decrease operating costs by improving energy efficiency and feedstock use. Each option must be carefully evaluated to achieve the maximum return on invested capital and manpower costs. Developments in computer technology have created tools with potential for energy conservation in the process industries comparable in some cases to the use of more energy-efficient process equipment. Some of the new developments are discussed. This report was written to familiarize the process industry manager with computer applications that have potential for minimizing energy consumption and to present an overview of the current level of computer technology and terminology as it applies to the process industry.

  20. Energy saving screw compressor technology; Energiebesparende schroefcompressortechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, A. [RefComp, Lonigo (Italy); Neus, M. [Delta Technics Engineering, Breda (Netherlands)

    2011-03-15

    Smart solutions to reduce the energy consumption are continuously part of investigation in the refrigeration technology. This article subscribed the technology on which way energy can be saved at the operation of screw compressors which are used in air conditioners and refrigerating machinery. The combination of frequency control and Vi-control (intrinsic volumetric ratio) such as researched in the laboratory of RefComp is for the user attractive because the energy efficiency during part load operation is much better. Smart uses of thermodynamics, electric technology and electronic control are the basics of these applications. According to the manufacturer's information it is possible with these new generation screw compressors to save approx. 26% energy in comparison with the standard screw compressor. [Dutch] In dit artikel wordt de technologie omschreven waarmee veel energie bespaard kan worden bij schroefcompressoren die worden gebruikt in airconditioningsystemen en koel- en vriesinstallaties. De combinatie van frequentieregeling en Vi- regeling (Vi is de intrinsieke volumetrische verhouding) zoals onderzocht in het laboratorium van RefComp biedt de gebruiker veel voordelen doordat de energie-efficintie van de compressor tijdens deellast enorm wordt verbeterd. Slim gebruik van thermodynamika, elektrotechniek en elektronica vormen de basis van deze toepassing. Volgens de fabrikant kan met deze nieuwe generatie schroefcompressoren circa 26 procent op het energiegebruik tijdens deellast worden bespaard in vergelijking met de standaard serie schroefcompressoren.

  1. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  2. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  3. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  4. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  5. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  6. Indigenous and adapted energy technologies and energy efficiency [Brazil: A country profile on sustainable energy development

    International Nuclear Information System (INIS)

    Brazil has significant experience in the development and use of innovative technologies. This chapter presents and discusses general aspects of indigenous and adapted energy technologies in Brazil and analyses of energy efficiencies of selected technologies. The most important technologies include sugar cane production and conversion to ethanol, hydropower, electricity transmission and offshore oil production

  7. Novel energy saving technologies evaluation tool

    NARCIS (Netherlands)

    Klemeš, J.; Bulatov, I.; Koppejan, J.

    2009-01-01

    The lead-time for the development of a new energy technology, from the initial idea to the commercial application, can take many years. The reduction of this time has been the main objective of the EC DGTREN, who have funded two related recent projects, EMINENT and EMINENT2 (Early Market Introductio

  8. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  9. Biomass recycling heat technology and energy products

    Science.gov (United States)

    Tabakaev, R. B.; Gergelizhiu, P. S.; Kazakov, A. V.; Zavorin, A. S.

    2014-10-01

    Relevance is determined by necessity of utilizing of local low-grade fuels by energy equpment. Most widespread Tomsk oblast (Russian Federation region) low-grade fuels are described and listed. Capability of utilizing is analysed. Mass balances of heat-technology conversion materials and derived products are described. As a result, recycling capability of low-grade fuels in briquette fuel is appraised.

  10. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  11. Energy and Technology Review, August--September

    Energy Technology Data Exchange (ETDEWEB)

    Sefcik, J A [ed.

    1992-01-01

    This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

  12. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  13. New energy technologies 3 - Geothermal and biomass energies

    International Nuclear Information System (INIS)

    This third tome of the new energy technologies handbook is devoted to two energy sources today in strong development: geothermal energy and biomass fuels. It gives an exhaustive overview of the exploitation of both energy sources. Geothermal energy is presented under its most common aspects. First, the heat pumps which encounter a revival of interest in the present-day context, and the use of geothermal energy in collective space heating applications. Finally, the power generation of geothermal origin for which big projects exist today. The biomass energies are presented through their three complementary aspects which are: the biofuels, in the hypothesis of a substitutes to fossil fuels, the biogas, mainly produced in agricultural-type facilities, and finally the wood-fuel which is an essential part of biomass energy. Content: Forewords; geothermal energy: 1 - geothermal energy generation, heat pumps, direct heat generation, power generation. Biomass: 2 - biofuels: share of biofuels in the energy context, present and future industries, economic and environmental status of biofuel production industries; 3 - biogas: renewable natural gas, involuntary bio-gases, man-controlled biogas generation, history of methanation, anaerobic digestion facilities or biogas units, biogas uses, stakes of renewable natural gas; 4 - energy generation from wood: overview of wood fuels, principles of wood-energy conversion, wood-fueled thermal energy generators. (J.S.)

  14. Environmental impacts from the solar energy technologies

    International Nuclear Information System (INIS)

    Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers. To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include - during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies - noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects

  15. Russian Arctic Petroleum Resources; Ressources petrolieres de l'Arctique russe

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, A.; Gavrilov, V. [Gubkin Russian State University of Oil and Gas, GSP-1, Leninsky prospekt, 65, 119991, Moscow - (Russian Federation)

    2011-07-01

    The Arctic continental shelf is believed to be the area with the highest unexplored potential for oil and gas as well as for unconventional hydrocarbon resources such as gas hydrates. Despite a common view that the Arctic has plentiful of hydrocarbon resources, there are ongoing debates regarding the potential of this region as a future energy supply base. Driving forces for such discussions are geopolitics, environmental concern, assessment and delineation of Arctic resources, technology available for their successful development and the market demand for energy supply. The Russian part is recognized to be the largest among oil and gas resources owned by Arctic nations. However, scarce information and available geological data create uncertainty regarding a future role of the Russian Arctic as main base of energy supply in the second part of the 21. century. A further uncertainty is the pace at which production from northern areas including the Arctic will be brought on stream - either because of national policy, infrastructure development or investment by the state and the oil companies. These areas embrace those where development has already been started (Offshore Sakhalin, northern Timan Pechora) and those awaiting future involvement, like Barents and Pechora seas, East Siberia, Yamal, Kara Sea and Kamchatka. Offshore production levels are likely to be very important to Russia in mid and long terms, especially as most (if not all) production will go for export and, in the process, open doors to new markets. In this way, offshore production will introduce a new and very significant component to Russia's export strategy. However, active involvement of the Russian Arctic resources in the global energy supply process needs a detailed analysis and clear understanding of the market potential for Russian gas and oil (required volumes, time frame, transportations routes) and requires close attention of the government to the most important issues that should be in

  16. Renewable energy technologies and the European industry

    International Nuclear Information System (INIS)

    The European renewable energy industry has the potential to be a world leader. This has been achieved within the European region for specific technologies, through a set of policy activities at a national and regional level, driven primarily by employment, energy self-sufficiency and industrial competitiveness. Using the experience gained in recent years, European industry has the opportunity to continue to expand its horizons on a worldwide level. Through the use of the SAFIRE rational energy model, an assessment has been made of the future penetration of renewable energy within Europe and the effects on these socio-economic factors. In conjunction with these outputs, assessments of the worldwide markets for wind, photovoltaics, solar thermal plant and biomass have been assessed. A case study of the Danish wind industry is used as a prime example of a success story from which the learning opportunities are replicated to other industries, so that the European renewable energy industry can achieve its potential. (orig.)

  17. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  18. Nordic energy technology scoreboard. Full version

    Energy Technology Data Exchange (ETDEWEB)

    Kiltkou, Antje; Iversen, Eric; Scortato, Lisa

    2010-07-01

    The Nordic Energy Technology Scoreboard provides a tool for understanding the state of low-carbon energy technology development in the Nordic region. It assesses the five Nordic countries of Denmark, Finland, Iceland, Norway and Sweden, alongside reference countries and regions including: The United Kingdom, Germany, Spain, Portugal, France, Italy, the Netherlands, Austria, USA, Japan and the EU 27. It focuses on five low-carbon energy technologies: Wind, photovoltaic (PV) solar, bio-fuels, geothermal, and carbon capture and storage (CCS). This scoreboard was developed as a pilot project with a limited scope of technologies, countries and indicators. In addition to providing a tool for decision-makers, it aimed to act as a catalyst for the future development of scoreboards and a vehicle to promote better data collection. Low-carbon energy technologies are not easy to measure. This is due to a variety of factors that much be kept in account when developing scoreboards for this purpose. Many low-carbon technologies are still at immature stages of development. Sound comparable data requires common definitions and standards to be adopted before collection can even take place. This process often lags behind the development of low-carbon technologies, and there are therefore considerable data availability and categorisation issues. The diversity of technologies and their different stages of development hamper comparability. The IEA classifies low-carbon technologies into three categories. The most mature includes hydropower, onshore wind, biomass CHP, and geothermal energy, the second most mature includes PV solar and offshore wind power, while the least mature includes concentrating solar power, CCS and ocean energy. This is problematic as less mature technologies are underrepresented in later stages of the innovation system. Many low-carbon technologies are systemic, meaning progress in developing one technology may hinge on developments in a connected technology

  19. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW he/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW he/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the

  20. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  1. Energy and technology lessons since Rio

    International Nuclear Information System (INIS)

    The 1992 Framework Convention on Climate Change created the basic international architecture for addressing climate change. That treaty was negotiated at a time when the research literature examining emissions mitigation and the role of energy technology was relatively limited. In the two subsequent decades a great deal has been learned. The problem of stabilizing the concentration of greenhouse gases in the atmosphere has proved far more difficult than envisioned in 1992 and the role of technology appears even more important when emissions mitigation strategies are co-developed in the context of multiple competing ends.

  2. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  3. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  4. Environmental data energy technology characterizations: natural gas

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides backup documentation on natural gas. The transformation of the energy in gas into a more useful form is described in this document in terms of major activity areas in the gas cycle; that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are exploration, extraction, purification, power-plants, storage and transportation of natural gas. These activities represent both well-documented and non-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The other activity areas examined are those like exploration and extraction, where reliance on engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  5. Arctic Solutions The Frozen (Thawing) Relations of the High North

    International Nuclear Information System (INIS)

    It's cold, inhospitable and deadly. The image of the Arctic in years past is one of bewilderment, ignorance and awe. How the image of the Arctic has changed in recent years can be directly linked to our recognition that the Arctic has a great deal to offer in meeting the basic needs of future generations. Although we are still in awe of the Arctic's cruel beauty, new technologies are making it easier to explore the once unmanageable environment. The Arctic has moved into the mainstream with a host of suitors jockeying for position in the race to possess the Arctic and all that it contains. To highlight this increased interest, Russia's 'National Security Until 2020' initiative, has upgraded the High North to one of Russia's main priorities and identifies the Arctic as liable to produce military conflict in the future linked to competition for the Arctic's abundant raw materials.1 Even Canada, a peaceful and respectful country, has stepped outside the box of traditional Canadian rhetoric by giving Canada's Northern Strategy a tag line: 'Our North, our heritage, our future'. The Arctic is increasingly viewed as central to meeting the challenges of an ever changing world where climate change and economic benefit drive international agreements and policies. However Canada and Russia are not the only actors here. The other Arctic Five states: Denmark, Norway, and the United States of America all lay claims to some area or activity within the Arctic region. The Arctic is a unique part of this world, one that has been left largely untouched by human hands, and one that is on the brink of being changed forever. To fully understand Arctic issues, resource figures must be taken into account. Every nation involved in the Arctic debate has considered and based its policies on its set of numbers and resource estimates. A U.S. Geological Survey (USGS) in 2009 put Arctic resource figures in the range of thirty percent of the remaining world reserves of natural gas and ten percent

  6. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  7. Wood-energy in Europe: resources, technologies

    International Nuclear Information System (INIS)

    A voluntaristic policy for the development of wood fuel would contribute to save energy and to protect the environment. Different strategies of development exist at the European scale as demonstrated by a recent report ordered by the French agency of environment and energy mastery (ADEME). This paper gives a synthesis of this report. It deals successively with: the European wood resources (the northern and continental forests, the mountain and bocage regions, the Mediterranean forests); the 3 main resources: forest exploitation, wood transformation, recycling of waste wood; the different economical status of wood resources; the place of wood-fuel in the economy: estimation, complementarity of industrial and energy uses; technological files and perspectives of development: collection, transport, conditioning, fuel production and supply, technologies of energy production from wood (domestic heating, collective heating, cogeneration and mixed wood-coal combustion); future markets; strategy of development: forestry and agriculture, management, producers, environmental aspects, afforestation of abandoned lands, employment...; policies of European, national and regional authorities: political and financial help, regulations and standardizations, financial helps and fiscal policy, inter-region cooperation and R and D, advice and communication; contribution of wood-fuel to the energy supply of Europe. (J.S.)

  8. Thermionic energy conversion technology - Present and future

    Science.gov (United States)

    Shimada, K.; Morris, J. F.

    1977-01-01

    Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.

  9. Summary of solar energy technology characterizations

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Dr., Robert R.

    1980-09-01

    This report summarizes the design, operating, energy, environmental, and economic characteristics of 38 model solar systems used in the Technology Assessment of Solar Energy Systems Project including solar heating and cooling of buildings, agricultural and industrial process heat, solar electric conversion, and industrial biomass systems. The generic systems designs utilized in this report were based on systems studies and mission analyses performed by the DOE National Laboratories and the MITRE Corporation. The purpose of those studies were to formulate materials and engineering cost data and performance data of solar equipment once mass produced.

  10. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  11. The new energy technologies in Australia; Les nouvelles technologies de l'energie en Australie

    Energy Technology Data Exchange (ETDEWEB)

    Le Gleuher, M.; Farhi, R

    2005-06-15

    The large dependence of Australia on the fossil fuels leads to an great emission of carbon dioxide. The Australia is thus the first greenhouse gases emitter per habitant, in the world. In spite of its sufficient fossil fuels reserves, the Australia increases its production of clean energies and the research programs in the domain of the new energies technology. After a presentation of the australia situation, the authors detail the government measures in favor of the new energy technologies and the situation of the hydroelectricity, the wind energy, the wave and tidal energy, the biomass, the biofuels, the solar energy, the ''clean'' coal, the hydrogen and the geothermal energy. (A.L.B.)

  12. Emerging Computing Technologies in High Energy Physics

    OpenAIRE

    Farbin, Amir

    2009-01-01

    While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of empl...

  13. User innovation in sustainable home energy technologies

    International Nuclear Information System (INIS)

    The new millennium has marked an increasing interest in citizens as energy end-users. While much hope has been placed on more active energy users, it has remained less clear what citizens can and are willing to do. We charted user inventions in heat pump and wood pellet burning systems in Finland in years 2005–2012. In total we found 192 inventions or modifications that improved either the efficiency, suitability, usability, maintenance or price of the heat pump or pellet systems, as evaluated by domain experts. Our analysis clarifies that users are able to successfully modify, improve and redesign next to all subsystems in these technologies. It appears that supplier models do not cater sufficiently for the variation in users' homes, which leaves unexplored design space for users to focus on. The inventive users can speed up the development and proliferation of distributed renewable energy technologies both through their alternative designs as well as through the advanced peer support they provide in popular user run Internet forums related to the purchase, use and maintenance of these technologies. There are several implications for how such users can be of benefit to energy and climate policy as well as how to support them. - Highlights: ► We clarify how citizen users are able to invent in home heating systems. ► We researched inventions that users did to heat pump and wood pellet burning systems. ► During the years 2005–2012 there were 192 inventions by users in Finland alone. ► Users were able to invent in practically all subsystems of these technologies. ► Users’ ability merits policy attention and can lead to new types of policy action

  14. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  15. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  16. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  17. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  18. Environmental consequences of new energy technology

    International Nuclear Information System (INIS)

    This report summarises and assesses the environmental consequences associated with new energy technologies, with particular emphasis on their use for space heating supplies in the built environment. In the case of solar heating, it is primarily the processes associated with the production of the necessary materials and ground use requirements that can adversely affect the environment. There is also a certain risk associated with the leakage of heat transfer fluid. For heat stores, problem areas are primarily those associated with heating of the ground, discharge of foreign substances in connection with water treatment and conflicts of other users of ground water. The main adverse effects of heat pumps are their emissions of CFCs, which damage the ozone layer, utilisation of certain types of heat sources and the need to provide primary energy for mechanical drive of the pumps. All three of these new energy technologies are regarded as having less environmental consequences than conventional alternatives, although this assumes a change to less hazardous working media in heat pumps. A mutual comparison of the three technologies indicates that solar heating and heat stores have somewhat better environmental characteristics than heat pumps

  19. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  20. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  1. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  2. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  3. Renewable energy technologies in Pakistan. Prospects and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf Chaudhry, M.; Raza, R.; Hayat, S.A. [COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore 54000 (Pakistan)

    2009-08-15

    Pakistan is an energy-deficient country. This paper accentuates the importance and challenges of new era technologies. The renewable energy sources like wind energy, solar energy, geothermal energy, ocean energy, biomass energy and fuel cell technology can be used to overcome energy shortage in Pakistan. Renewable energy sources and technologies have the potential to provide solutions to the long-standing energy problems being faced by the developing countries. The expansion of existing energy resources and exploration of new sources is an important exercise to be considered in order to sustain their development initiatives. (author)

  4. Student Outreach With Renewable Energy Technology

    Science.gov (United States)

    Clark, Eric B. (Technical Monitor); Buffinger, D.; Fuller, C.; Kalu, A.

    2003-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is a joint grant that involves a collaboration between three HBCU's (Central State University, Savannah State University, and Wilberforce University) and NASA John H. Glenn Research Center at Lewis Field. The overall goal of the grant is to increase the interest of minority students in the technical disciplines, to encourage participating minority students to continue their undergraduate study in these disciplines, and to promote graduate school to these students. As a part of SORET, Central State University has developed an undergraduate research associates program over the past two years. As part of this program, students are required to take special laboratory courses offered at Wilberforce University that involve the application of renewable energy systems. The course requires the students to design, construct, and install a renewable energy project. In addition to the applied renewable energy course, Central State University provided four undergraduate research associates the opportunity to participate in summer internships at Texas Southern University (Renewable Energy Environmental Protection Program) and the Cleveland African-American Museum (Renewable Energy Summer Camp for High School Students) an activity co sponsored by NASA and the Cleveland African-American Museum. Savannah State University held a high school summer program with a theme of the Direct Impact of Science on Our Every Day Lives. The purpose of the institute was to whet the interest of students in science, mathematics, engineering, and technology (SMET) by demonstrating the effectiveness of science to address real world problems. The 2001 institute involved the design and installation of a PV water pumping system at the Center for Advanced Water Technology and Energy Systems at Savannah State. Both high school students and undergraduates contributed to this project. Wilberforce University has used NASA support to provide

  5. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  6. Arctic Wears - Perspectives on Arctic Clothing

    OpenAIRE

    Konola, Sanna; Kähkönen, Päivi

    2015-01-01

    Arctic issues are rising around us on every field at the point of view of environment, sustainability, climate change, indigenous peoples’ rights, design and society, snow and ice building knowledge, challenges and possibilities in Arctic areas. The Arctic is written in Finland’s future strategies, and in 2017 Finland assumes the chairmanship of Arctic Council. In the northernmost university of European Union, University of Lapland, the northern issues have always been written in the DNA ...

  7. New energy technologies. Report; Nouvelles technologies de l'energie. Rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report on the new energy technologies has been written by a working group on request of the French ministry of economy, finances and industry, of the ministry of ecology and sustainable development, of the ministry of research and new technologies and of the ministry of industry. The mission of the working group is to identify goals and priority ways for the French and European research about the new technologies of energy and to propose some recommendations about the evolution of research incentive and sustain systems in order to reach these goals. The working group has taken into consideration the overall stakes linked with energy and not only the climatic change. About this last point, only the carbon dioxide emissions have been considered because they represent 90% of the greenhouse gases emissions linked with the energy sector. A diagnosis is made first about the present day context inside which the new technologies will have to fit with. Using this diagnosis, the research topics and projects to be considered as priorities for the short-, medium- and long-term have been identified: energy efficiency in transports, in dwellings/tertiary buildings and in the industry, development for the first half of the 21. century of an energy mix combining nuclear, fossil-fuels and renewable energy sources. (J.S.)

  8. General Purpose Technologies and Energy Policy

    International Nuclear Information System (INIS)

    We employ a general purpose technology model with endogenous stochastic growth to simulate the effects of different energy policy schemes. An R and D sector produces endogenous growth by developing radical and incremental technologies. These innovations result in blueprints for capital intermediates, which require raw capital and either carbon or noncarbon-based fuels. A carbon tax therefore affects not only the final production sector but also the R and D sector by making the development of non-carbon-based technologies more attractive. Due to path dependencies and possible lock-in situations, policy can have a significant long-term impact on the energy structure of the economy. Allowing for different elasticities of substitution between consumption and environmental quality, we examine the effects of different carbon policies on growth, environmental quality, and welfare. We find that an anti-carbon policy may reduce welfare initially, but in the long run there is a strong potential for a 'double dividend' due to faster growth and reduced pollution

  9. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  10. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  11. Technology policy and renewable energy: public roles in the development of new energy technologies

    International Nuclear Information System (INIS)

    Efforts to restructure the electric utility industry have led to renewed calls for increased use of renewable energy technologies for electricity generation. These technologies are, for the most part, not yet cost competitive with traditional methods of generation. While wind generation of electricity is perhaps the closest to commercial viability, it is widely believed that further advances in the technology are necessary for it to become fully practicable in the general view. Indeed, public resources continue to be spent toward this end. This paper presents a study of the technological and policy history of the development of wind power in the United States. The primary conclusion is that demand-side policies are needed to encourage not only diffusion of wind energy, but innovation in the technology itself. Weak demand-side policies for wind energy risks wasting the expenditure of public resources on research programs aimed at technological innovation. When these programs operate without the benefit of a market to test the results or provide guidance for future efforts, they are less likely to succeed. Recommendations as to specific public policies for creating a market for renewable energy are made. (author)

  12. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  13. Diffusion of irreversible energy technologies under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Cacallo, J.D.; Sutherland, R.J.

    1993-09-01

    This paper presents a model of technology diffusion is consistent with characteristics of participants in most energy markets. Whereas the models used most widely for empirical research are based on the assumption that the extended delays in adoption of cost-saving innovations are the result of either lack of knowledge about the new processes or heterogeneity across potential adopters, the model presented in this paper is based on the strategic behavior by firms. The strategic interdependence of the firms` decisions is rooted in spillover effects associated with an inability to exclude others from the learning-by-doing acquired when a firm implements a new technology. The model makes extensive use of recent developments in investment theory as it relates irreversible investments under uncertainty.

  14. Nuclear technologies for local energy systems

    International Nuclear Information System (INIS)

    If nuclear energy is to realize its full potential as a safe and cost-effective alternative to fossil fuels, applications beyond those that are currently being serviced by large, central nuclear power stations must be identified and appropriate reactors developed. The Canadian program on reactor systems for local energy supply is at the forefront of these developments. This program emphasizes design simplicity, low power density and fuel rating, reliance on natural processes, passive systems, and reduced reliance on operator action. The first product, the SLOWPOKE Energy System, is a 10 MW heat source specifically designed to provide hot water to satisfy the needs of local heating systems for building complexes, institutions and municipal district heating systems. A demonstration heating reactor has been constructed at the Whiteshell Nuclear Research Establishment in Manitoba and has been undergoing an extensive test program since first operation in 1987 July. Based on the knowledge learned from the design, construction, licensing and operational testing of this facility, the design of the 10 MW commercial-size unit is well advanced, and Atomic Energy of Canada Limited is prepared to commit the construction of the first commercial unit. Although the technical demonstration of the concept is important, it is recognized that another crucial element is the public and regulatory acceptance of small nuclear systems in urban areas. The decision by a community to commit the construction of a SLOWPOKE Energy System brings to a sharp focus the current public apprehension about nuclear technologies

  15. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  16. Renewable energy technologies for electricity generation

    International Nuclear Information System (INIS)

    The output of electricity supplied by some renewable sources cannot be easily predicted in advance because of their dependence on naturally varying phenomena (e.g. wind or sunshine). To accommodate this variability within the grid, additional amounts of conventional plant might be maintained in reserve, which would add to the overall system cost. This paper examines some aspects of renewable energy technologies for electricity generation as well as factors to be considered in the incorporation of renewables within a grid. 7 refs, 3 figs, 2 tabs

  17. Arctic studies

    International Nuclear Information System (INIS)

    Idaho National Engineering Laboratory (INEL) conducted a study of contamination of the Arctic Ocean and surrounding areas in order to better understand the severity of the problem and identify possible parallels in the United States. The findings were published in a quarterly report as a part of this technical task plan (TTP). While many radioactive and hazardous material contamination sites in this region have been identified, official Russian statements indicate that contaminant concentrations are within normal limits and are currently confined to specific areas

  18. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  19. Deployment Effects of Marin Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  20. Induced Seismicity Potential of Energy Technologies

    Science.gov (United States)

    Hitzman, Murray

    2013-03-01

    Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.

  1. A Low-energy Building under Arctic Conditions - Experiences After Five Years of Operation

    DEFF Research Database (Denmark)

    Rode, Carsten; Vladyková, Petra; Kotol, Martin

    2011-01-01

    In 2005, a low energy house was inaugurated in Sisimiut, Greenland. The house and the plans with it were presented at the third International Building Physics Conference in 2006. The house is characterised by having a highly insulated building envelope which is almost free of thermal bridges...... to the Greenlandic Building Regulations. The house has been the base of a number of research and student activities which have studied the house and evaluated how well it has performed. These investigations have clarified how the weather influences the hygrothermal performance of the house, and...... whether the house matches the expectations regarding low energy consumption and a high indoor climatic standard. The house did not meet the anticipated low target for energy consumption, and some reasons have been found which could explain why. Insufficient air-tightness of the building envelope...

  2. Energy Choices. Choices for future technology development

    International Nuclear Information System (INIS)

    In the next few years political decisions lie ahead in Sweden and the EU regarding the detailed formulation of the EU's so-called 20-20-20 targets and accompanying EU directives. Talks on a new international post-2012 climate agreement are imminent. The EU targets involve reducing emissions of greenhouse gases by 20 per cent, increasing the proportion of renewable energy by 20 per cent and improving energy efficiency by 20 per cent - all by the year 2020. According to the analysis of the consequences of the targets that the Technology Development Group has commissioned, the reduction in carbon dioxide in the stationary energy system in the Nordic region will be 40 per cent, not 20 per cent, if all the EU targets are to be achieved. The biggest socio-economic cost is associated with achieving the efficiency target, followed by the costs associated with achieving the renewable energy target and the CO2 target. On the basis of this analysis and compilations about technology development, we want to highlight the following important key issues: Does Sweden want to have the option of nuclear power in the future or not? How to choose good policy instruments for new electricity production and networks? How best to reduce the carbon dioxide emissions of the transport sector and how to develop control and incentive measures that promote such a development? We are proposing the following: Carry out a more in-depth analysis of the consequences of the EU targets, so that the policy instruments produce the best combination as regards climate, economy and security of supply. To achieve the EU targets would require large investments in electricity production, particularly renewable energy, and in electricity networks. Internationally harmonized policy instruments and other incentive measures are required in order for the necessary investments to take place. The policy instruments have to provide a level playing field for all players in the energy sector. The large investments will

  3. Commercialization of aquifer thermal energy storage technology

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  4. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David

    2010-01-01

    ), Battery Energy Storage (BES), Flow Battery Energy Storage (FBES), Flywheel Energy Storage (FES), Supercapacitor Energy Storage (SCES), Superconducting Magnetic Energy Storage (SMES), Hydrogen Energy Storage System (HESS), Thermal Energy Storage (TES), and Electric Vehicles (EVs). The objective was to...

  5. Electric energy savings from new technologies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  6. The effects of different oil spill cleanup technologies on body burden and biomarkers in Arctic marine organisms - a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Hansen, Bjorn Henrik; Nordtug, Trond [SINTEF Materials and Chemistry (Norway)], email: livgurif@sintef.no; Borseth, Jan Fredrik; Baussant, Thierry; Tandberg, Anne Helene S.; Ingvarsdottir, Anna; Aarab, Nadia [IRIS Biomiljo (Norway); Altin, Dag [Altins BioTrix (Norway)

    2011-07-01

    This paper studies the effects and toxicity of a water soluble fraction (WSF) of oil versus chemically dispersed oil and also of WSF versus the underlying water after in situ burning (ISB). The applications of exposure concentrations were based on monitoring of WSF in the water column during an offshore field experiment. A continuous flow-through system for the dispersant experiments was set up and an Arctic amphipod was used as the test species. Seawater and gammarids were also used as samples for chemical and biological analyses. Good correlation with the data was presented by chemical analysis of the water samples. However, more PAHs (Polycyclic Aromatic Hydrocarbons) were measured in the gammarids exposed to oil mixed with dispersant than in those exposed to oil alone. On the other hand, a system was developed to allow water sampling after ISB and samples of seawater and of oil prior to, and immediately after, ISB were collected and a chemical analysis was conducted. The result of the analysis was that there was no increase in toxicity in the underlying water after ISB.

  7. Industrial applications of low energy accelerator technologies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah [KAERI, Daejeon (Korea, Republic of)

    2008-05-15

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  8. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  9. Geospatial Technologies to Improve Urban Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Bharanidharan Hemachandran

    2011-07-01

    Full Text Available The HEAT (Home Energy Assessment Technologies pilot project is a FREE Geoweb mapping service, designed to empower the urban energy efficiency movement by allowing residents to visualize the amount and location of waste heat leaving their homes and communities as easily as clicking on their house in Google Maps. HEAT incorporates Geospatial solutions for residential waste heat monitoring using Geographic Object-Based Image Analysis (GEOBIA and Canadian built Thermal Airborne Broadband Imager technology (TABI-320 to provide users with timely, in-depth, easy to use, location-specific waste-heat information; as well as opportunities to save their money and reduce their green-house-gas emissions. We first report on the HEAT Phase I pilot project which evaluates 368 residences in the Brentwood community of Calgary, Alberta, Canada, and describe the development and implementation of interactive waste heat maps, energy use models, a Hot Spot tool able to view the 6+ hottest locations on each home and a new HEAT Score for inter-city waste heat comparisons. We then describe current challenges, lessons learned and new solutions as we begin Phase II and scale from 368 to 300,000+ homes with the newly developed TABI-1800. Specifically, we introduce a new object-based mosaicing strategy, an adaptation of Emissivity Modulation to correct for emissivity differences, a new Thermal Urban Road Normalization (TURN technique to correct for scene-wide microclimatic variation. We also describe a new Carbon Score and opportunities to update city cadastral errors with automatically defined thermal house objects.

  10. Modelling of endogenous technological learning of energy technologies - an analysis with a global multi-regional energy system model

    OpenAIRE

    Rout, Ullash Kumar

    2007-01-01

    The modelling of energy systems, which coevolved from socio-technological interactions and their interplay with the economy, plays a key role in the development of national and international policies to solve the problem of energy poverty. The other important issues addressed by energy system modelling are change in energy infrastructure, develop energy strategies, paving pathways towards technological sustainability and predicting future energy demand. Almost all energy system models are bas...

  11. Promotional issues on alternative energy technologies in Nepal

    International Nuclear Information System (INIS)

    Alternative energy technologies are being disseminated in many countries with an objective to reduce the uses of traditional and commercial energy sources. These technologies convert local resources to usable energy forms. Since the scale of these technologies is small, their implementation is targeted mainly to individual households or small communities. However, due to various constraints, these implementation programmes have not been very successful. In this paper, the author introduces the main characteristics of alternative energy technologies used in Nepal and discusses promotional barriers for their implementation. It is hoped that this paper would help energy policy makers to devise better alternative energy programmes

  12. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  13. Economic reassessment of energy technologies with risk-management techniques

    International Nuclear Information System (INIS)

    A new approach for the reassessment of modern energy technologies is discussed. This mainly addresses renewable-energy systems, like photovoltaics or wind converters. A new number called the 'Marginal Energy Risk Price (MERP) for Hedging' is introduced. (Author)

  14. Energy Scavenging Technology and Components in WSN

    Directory of Open Access Journals (Sweden)

    Sutapa Sarkar

    2014-02-01

    Full Text Available With the evolution of modern technology wireless sensor nodes are finding a lot of applications in day to day life starting from smart home system to military surveillance. The primary building block of a wireless sensor network is a spatially distributed set of autonomous sensor nodes or motes. In order to design a wireless sensor network it is necessary to understand the structure and working of a sensor node. The sensor nodes can be considered as tiny battery powered computers that consists of a computing subsystem, communication subsystem, sensor subsystem, power subsystem. In this paper we review the features of these subsystems so that it is easy for the application developer to quickly understand and select the type of component for building customized sensor node platform. In this paper we have studied the features of different microprocessors and transceivers properties used in sensor nodes. We also study the classifications of sensors based on applications, the relevant sensor parameters, and different storage devices with their properties. This paper can be a ready reference to beginners interested in this field. One more major problem of wireless sensor network application that should be addressed is the limited lifetime of sensor nodes due to energy constraints. We also review how energy harvesting can increase the lifetime of a wireless sensor network and the possible methods that can be implemented for energy harvesting.

  15. Target technology of high energy neutron source

    International Nuclear Information System (INIS)

    As a facility of high energy neutron source for materials research and development, Fusion Materials Irradiation Test Facility (FMIT) is a strong candidate. The FMIT is designed to study the irradiation effect of fusion neutron on a fusion reactor materials. The FMIT generates a high-flux, high-energy neutron, which is produced in a stripping reaction by impinging a 3.5 MeV-0.1A beam of deuterons on a flowing lithium target. Target technology obtained in the FMIT will be useful for Energy Selective Neutron Irradiation Test Facility (ESNIT) and IFMIF of D-Li stripping reaction facility. In the first report (I), the flowing lithium target of the FMIT was reviewed, and some technical considerations in design were pointed out. In the second report (II), the target assembly and target material were proposed as the option of the HEDEL reference design of FMIT in order to improve the hazard and economy for the Li system: Firstly, the exchangeable target back wall and the measures to minimize the outside device damage in case of back wall breaking, and secondly, the option of molten fluoride salt as target material were proposed. (M.T.)

  16. Development of Ocean Energy Technologies: A Case Study of China

    OpenAIRE

    Wu Xianglian; Qin Guodong; Lou Ping

    2013-01-01

    For the energy shortage in China’s coastal areas, which has exerted severe impact on economy development, a growing number of attentions have been paid to ocean energy utilization. In this paper, a review of related researches as well as development of ocean energy in China is given. The main part of this paper is the investigation into ocean energy distribution and technology status of tidal energy, wave energy, and thermal energy, especially that of the tidal energy and wave energy. Finally...

  17. Energy Technologies Research and Education Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Abbas [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  18. Heterogeneous Policies, Heterogeneous Technologies: The Case of Renewable Energy

    International Nuclear Information System (INIS)

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main findings show that lowering entry barriers is a more significant driver of renewable energy innovation than privatisation and un-bundling, but its effect varies across technologies, being stronger in technologies characterised by the potential entry of small, independent power producers. Additionally, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, the ratification of the Kyoto protocol - determining a more stable and less uncertain policy framework - amplifies the inducement effect of both energy policy and market liberalisation. (authors)

  19. A review of experience curve analyses for energy demand technologies

    NARCIS (Netherlands)

    Weiss, M.; Patel, M.K.; Junginger, H.M.; Blok, K.

    2009-01-01

    Transitioning towards a sustainable energy system requires the large-scale introduction of novel energy demand and supply technologies. Such novel technologies are often expensive at the point of their market introduction but eventually become cheaper due to technological learning. In order to quant

  20. Deployment Effects of Marin Renewable Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for

  1. The Arctic Climate Modeling Program: Professional Development for Rural Teachers

    Science.gov (United States)

    Bertram, Kathryn Berry

    2010-01-01

    The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…

  2. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    OpenAIRE

    Min-Gyu Kang; Woo-Suk Jung; Chong-Yun Kang; Seok-Jin Yoon

    2016-01-01

    Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising tec...

  3. Metal oxide electrocatalysts for alternative energy technologies

    Science.gov (United States)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  4. Sustainable Energy Technologies annual report 2003

    International Nuclear Information System (INIS)

    Calgary based Sustainable Energy Technologies is a public company that develops and manufactures alternative energy products that enable distributed renewable energy resources to be integrated with the existing electrical infrastructure. The company has moved from a development stage company to one that manufactures power electronic products that can compete globally and which will play an important role in the transition to a cleaner world. Achievements in the past year have included a joint effort with RWE Piller GmbH to develop a power electronics platform for a fuel cell inverter. Ten inverters were delivered to Nuvera Fuel Cells and were reported to have performed very well in the Avanti distributed generation fuel cell. The universality of the inverter was demonstrated when the same power electronics platform was used to support a 5 kW grid interactive converter for the solar power market. During the 18-month period ending on March 31, 2003, the company invested $1.5 million to create their first two commercial product lines, without net investment of shareholder equity. The objective for the future is to generate cash flow and earnings from sales into the solar power market and to build a leadership role in the stationary fuel cell industry. The major challenge will lie in product support and customer service. As the customer base expands, the company will invest in product-tracking software. This annual report includes an auditor's report, consolidated financial statements including balance sheets, statements of income and deficit, statements of cash flows, and notes to the consolidated financial statements. tabs

  5. Crystal growth technology CGT for energy: saving energy and renewable energy

    Science.gov (United States)

    Scheel, Hans J.

    2005-02-01

    The fast-growing worldwide demand for energy, due to population growth and increasing standard of living, is in contrast with the limited fossil energy resources, with the political problems of nuclear fission energy, with the demand to reduce CO 2 production for climate control (Kyoto protocol), and with the slow advances of renewable energy sources. It will be shown how crystal growth technology (including epitaxy technology) can contribute to reduce the energy problem. CGT is the rate-determining factor for progress in energy-saving electrical technologies with high-temperature/high-power electrical technology and illumination from GaN-based devices as examples. Progress in CGT is also essential for the development of renewable energy sources like economic high-efficiency solar cells and in future laser-fusion energy where large laser and nonlinear-optic crystals of high radiation hardness are required. Education of CGT engineers and scientific development of CGT, using normally one optimum technology for industrial fabrication of specific crystals and one technology for specific epitaxial layers "epilayers", are needed.

  6. New energy technologies report; Nouvelles technologies de l'energie rapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the conclusions of the working group, decided by the french government to identify the objectives and main axis for the french and european research on the new energy technologies and to propose recommendations on the assistance implemented to reach these objectives. The three main recommendations that the group drawn concern: the importance of the research and development on the energy conservation; a priority on the renewable energies, the sequestration and the nuclear power; the importance of the France for the research programs on the hydrogen, the fuel cells, the photovoltaic, the electric power networks and storage, the production of liquid fuels from fossil fuels, the underground geothermal energy, the fusion and the offshore wind power. (A.L.B.)

  7. Energy Technology Perspectives 2012: Executive Summary [French version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  8. Review of NASA programs in applying aerospace technology to energy

    Science.gov (United States)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  9. Energy Technology Perspectives 2012: Executive Summary [Italian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  10. Energy Technology Perspectives 2012: Executive Summary [Arabic version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  11. Energy Technology Perspectives 2012: Executive Summary [Spanish version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  12. Energy Technology Perspectives 2012: Executive Summary [Portuguese version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Energy Technology Perspectives (ETP) is the International Energy Agency’s most ambitious publication on new developments in energy technology. It demonstrates how technologies – from electric vehicles to smart grids – can make a decisive difference in achieving the objective of limiting the global temperature rise to 2°C and enhancing energy security. ETP 2012 presents scenarios and strategies to 2050, with the aim of guiding decision makers on energy trends and what needs to be done to build a clean, secure and competitive energy future.

  13. Energy Assurance: Essential Energy Technologies for Climate Protection and Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Boudreaux, Philip R [ORNL; Dean, David Jarvis [ORNL; Fulkerson, William [University of Tennessee, Knoxville (UTK); Gaddis, Abigail [University of Tennessee, Knoxville (UTK); Graham, Robin Lambert [ORNL; Graves, Ronald L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Hughes, Patrick [ORNL; Lapsa, Melissa Voss [ORNL; Mason, Thom [ORNL; Standaert, Robert F [ORNL; Wilbanks, Thomas J [ORNL; Zucker, Alexander [ORNL

    2009-12-01

    We present and apply a new method for analyzing the significance of advanced technology for achieving two important national energy goals: climate protection and energy security. Quantitative metrics for U.S. greenhouse gas emissions in 2050 and oil independence in 2030 are specified, and the impacts of 11 sets of energy technologies are analyzed using a model that employs the Kaya identity and incorporates the uncertainty of technological breakthroughs. The goals examined are a 50% to 80% reduction in CO2 emissions from energy use by 2050 and increased domestic hydrocarbon fuels supply and decreased demand that sum to 11 mmbd by 2030. The latter is intended to insure that the economic costs of oil dependence are not more than 1% of U.S. GDP with 95% probability by 2030. Perhaps the most important implication of the analysis is that meeting both energy goals requires a high probability of success (much greater than even odds) for all 11 technologies. Two technologies appear to be indispensable for accomplishment of both goals: carbon capture and storage, and advanced fossil liquid fuels. For reducing CO2 by more than 50% by 2050, biomass energy and electric drive (fuel cell or battery powered) vehicles also appear to be necessary. Every one of the 11 technologies has a powerful influence on the probability of achieving national energy goals. From the perspective of technology policy, conflict between the CO2 mitigation and energy security is negligible. These general results appear to be robust to a wide range of technology impact estimates; they are substantially unchanged by a Monte Carlo simulation that allows the impacts of technologies to vary by 20%.

  14. New energy technologies for power generation

    International Nuclear Information System (INIS)

    Intensive R and D activity in the recent years is responsible for the development of various new technologies for power generation including fluidized bed combustion systems, gasifier-combined cycle plants, fuel cells and magneto-hydrodynamic power plants, advanced nuclear technologies such as fast-breeder reactor and fusion technology and renewable technologies such as solar, wind, hydro, geothermal, and ocean-thermal conversion plants. In this paper, the technical and economic facts regarding some of these technologies are briefly presented for the purpose of consistent technology evaluation and future planning for power generation. Most of these technologies are not yet commercialized or demonstrated and much uncertainty lies in any projections of their cost and performance data. For these technologies, the projections of cost and performance assume that the technology has already been successfully developed and is in a mature state of commercial use. (author)

  15. Technology diffusion and energy intensity in US commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Clinton J. [Edward J. Bloustein School of Planning and Public Policy, Rutgers University, 33 Livingston Avenue 302, New Brunswick, NJ 08901 (United States); Krogmann, Uta [Department of Environmental Sciences, Rutgers University (United States)

    2009-02-15

    This paper analyzes the 1992 and 2003 US Commercial Buildings Energy Consumption Survey microdata files to show the extent to which certain heating, cooling, lighting, and window technologies are entering use, and the resulting impacts on the intensity of energy use. Excepting the case of fluorescent lights, no technology dominates the entire market but instead each conquers a specific niche. Most of the buildings in which these technologies are installed do not have lower-than-average energy intensity, measured as annual energy use per square meter of floor space. The exceptional technology that does measurably correlate with reduced energy intensity is daylighting. These results suggest that technologies are adopted to serve comfort or quality objectives rather than to save energy, or that buildings' users confound the designers' intentions. Decision makers thus should improve operating and maintenance practices, invest in building commissioning, and rely more heavily on passive design features to save energy. (author)

  16. Bringing solutions to big challenges. Energy - climate - technology (ECT)

    International Nuclear Information System (INIS)

    The conference contains 45 presentations within the sections integrated policy and strategic perspectives on energy, climate change and technology, energy efficiency with prospects and measures, climate change and challenges for offshore energy and technology, possibilities for technology utilization, nuclear technology developments including some papers on thorium utilization, ethics of energy resource use and climate change, challenges and possibilities for the Western Norway and sustainability and security in an ECT-context. Some economic aspects are discussed as well. 16 of the 45 papers have been indexed for the database (tk)

  17. Adoption of bioenergy technologies for a sustainable energy system

    OpenAIRE

    Bjørnstad, Even

    2011-01-01

    A future sustainable energy system must achieve great improvements in energy efficiency and the energy supply must be based on renewable energy sources. Bioenergy will be an important part of this system. Changing from the current fossil-dependent energy system to a truly sustainable energy system will require fundamental changes in basic structures of society, in the technologies we utilize in the living of our lives and in the way we as citizens and consumers behave relative to energy use. ...

  18. Future implications of China's energy-technology choices

    International Nuclear Information System (INIS)

    This paper summarizes an assessment of future energy-technology strategies for China that explored the prospects for China to continue its social and economic development while ensuring national energy-supply security and promoting environmental sustainability over the next 50 years. The MARKAL energy-system modeling tool was used to build a model of China's energy system representing all sectors of the economy and including both energy conversion and end-use technologies. Different scenarios for the evolution of the energy system from 1995 to 2050 were explored, enabling insights to be gained into different energy development choices. The analysis indicates a business-as-usual strategy that relies on coal combustion technologies would not be able to meet all environmental and energy security goals. However, an advanced technology strategy emphasizing (1) coal gasification technologies co-producing electricity and clean liquid and gaseous energy carriers (polygeneration), with below-ground storage of some captured CO2; (2) expanded use of renewable energy sources (especially wind and modern biomass); and (3) end-use efficiency would enable China to continue social and economic development through at least the next 50 years while ensuring security of energy supply and improved local and global environmental quality. Surprisingly, even when significant limitations on carbon emissions were stipulated, the model calculated that an advanced energy technology strategy using our technology-cost assumptions would not incur a higher cumulative (1995-2050) total discounted energy system cost than the business-as-usual strategy. To realize such an advanced technology strategy, China will need policies and programs that encourage the development, demonstration and commercialization of advanced clean energy conversion technologies and that support aggressive end-use energy efficiency improvements

  19. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  20. Energy Technology Programmes 1993-1998. Intermediate report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Tekes energy technology research programmes were launched in 1993. The aim is to produce innovative solutions that are efficient, environmentally sound and widely - even globally - applicable. Now Tekes manages a total of 12 energy technology research programmed. Research programmed form a network linking academia and industry. Total funding for the energy technology programmed during the years 1993-1998 is estimated at some FIM 1.5 billion, about half of which will be put up by the Tekes and the rest by the industry. Funding by the Ministry of Trade and Industry covers the first full-scale applications (demonstrations) resulting from the research and development activities. Finnish technology is front-ranking in the efficient use of energy, combustion technology, renewable energy sources and environmental technology. In this report the results and the research activities of the separate programmes is presented and discussed

  1. Energy technology perspectives: scenarios and strategies to 2050 [Russian version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  2. Energy technology perspectives - scenarios and strategies to 2050

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-03

    At their 2005 summit in Gleneagles, G8 leaders confronted questions of energy security and supply and lowering of CO{sub 2} emissions and decided to act with resolve and urgency. They called upon the International Energy Agency to provide advice on scenarios and strategies for a clean and secure energy future. Energy Technology Perspectives is a response to the G8 request. This work demonstrates how energy technologies can make a difference in a series of global scenarios to 2050. It reviews in detail the status and prospects of key energy technologies in electricity generation, buildings, industry and transport. It assesses ways the world can enhance energy security and contain growth in CO{sub 2} emissions by using a portfolio of current and emerging technologies. Major strategic elements of a successful portfolio are energy efficiency, CO{sub 2} capture and storage, renewables and nuclear power. 110 figs., 4 annexes.

  3. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  4. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2011-05-15

    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  5. DOE Solar Energy Technologies Program: Overview and Highlights

    Energy Technology Data Exchange (ETDEWEB)

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  6. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    International Nuclear Information System (INIS)

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  7. The relationship between agricultural technology and energy demand in Pakistan

    International Nuclear Information System (INIS)

    The purpose of this study was two fold: (i) to investigate the casual relationship between energy consumption and agricultural technology factors, and (ii) electricity consumption and technological factors in the agricultural sector of Pakistan. The study further evaluates four alternative but equally plausible hypotheses, each with different policy implications. These are: (i) Agricultural technology factors cause energy demand (the conventional view), (ii) energy demand causes technological factors, (iii) There is a bi-directional causality between the two variables and (iv) Both variables are causality independent. By applying techniques of Cointegration and Granger causality tests on energy demand (i.e., total primary energy consumption and electricity consumption) and agricultural technology factors (such as, tractors, fertilizers, cereals production, agriculture irrigated land, high technology exports, livestock; agriculture value added; industry value added and subsides) over a period of 1975–2010. The results infer that tractor and energy demand has bi-directional relationship; while irrigated agricultural land; share of agriculture and industry value added and subsides have supported the conventional view i.e., agricultural technology cause energy consumption in Pakistan. On the other hand, neither fertilizer consumption and high technology exports nor energy demand affect each others. Government should form a policy of incentive-based supports which might be a good policy for increasing the use of energy level in agriculture. - Highlights: ► Find the direction between green technology factors and energy demand in Pakistan. ► The results indicate that there is a strong relationship between them. ► Agriculture machinery and energy demand has bi-directional relationship. ► Green technology causes energy consumption i.e., unidirectional relationship. ► Agriculture expansion is positive related to total primary energy consumption.

  8. New energy technologies in Singapore; Les Nouvelles technologies de l'energie a Singapour

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Singapore is considered as an interesting example: this country has become the third world oil refining centre and the first Asian oil trade place, but has also implemented a series of strategic measures to promote a sustainable development. The Singapore Green Plan was launched in 1992 and defines important objectives in terms of reduction of carbon emissions, of water consumption, of improvement of waste management services, and so on. This policy results in investments in experimental programs for the development of new energy technologies. This paper presents the public actors (institutions and public agencies) and their projects, the academic projects and programs, and the private sector projects. These programs and projects are concerning the search for clean energies, the development of the solar capacity, various renewable energies, or the automotive industry (projects conducted by Bosch, Renault and Nissan, Daimler, this last one on biofuels)

  9. A Numerical and Graphical Review of Energy Storage Technologies

    Directory of Open Access Journals (Sweden)

    Siraj Sabihuddin

    2014-12-01

    Full Text Available More effective energy production requires a greater penetration of storage technologies. This paper takes a looks at and compares the landscape of energy storage devices. Solutions across four categories of storage, namely: mechanical, chemical, electromagnetic and thermal storage are compared on the basis of energy/power density, specific energy/power, efficiency, lifespan, cycle life, self-discharge rates, capital energy/power costs, scale, application, technical maturity as well as environmental impact. It’s noted that virtually every storage technology is seeing improvements. This paper provides an overview of some of the problems with existing storage systems and identifies some key technologies that hold promise.

  10. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  11. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  12. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  13. DOE Solar Energy Technologies Program 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  14. DOE Solar Energy Technologies Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  15. DOE Solar Energy Technologies Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  16. Efficient Portfolios of the Energy Technologies

    Science.gov (United States)

    Nikonov, Oleg I.; Medvedeva, Marina A.

    2011-09-01

    The goal of the research is to apply the methods of Portfolio Theory to a set of technologies instead of to a set of securities on a stock market (as it is the case in the original model). Assets on the stock market are objects that have risk and return, parameters that depend on uncertain factors and thus are uncertain. The returns from the use of technologies also depend on uncertain factors and thus each technology has a certain amount of risk. The simultaneous use of technologies could diversify the risks that are associated with technologies just the same way as diversification works on the stock market.

  17. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  18. Energy technology monitoring - New areas and in-depth investigations

    International Nuclear Information System (INIS)

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined long-term trends in the energy technology area in order to provide information that is to form the basis for political action and the distribution of energy research funding in Switzerland. Energy-technology areas examined include variable-speed electrical drives, ventilation systems for low-energy-consumption buildings, membrane technology and the use of plastics in lightweight automobiles. Examples are quoted and the current state of the appropriate technologies and market aspects are examined. Also, the potential and future developments in the areas listed are looked at. The consequences for energy policy and future developments in the technology-monitoring area are considered

  19. On the economics of technology diffusion and energy efficiency

    International Nuclear Information System (INIS)

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level

  20. On the economics of technology diffusion and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, P.

    2003-11-06

    Energy is an essential factor that fuels economic growth and serves human well-being. World energy use has grown enormously since the middle of the 19th century. This increase in the scale of energy demand comes at a certain price, including environmental externalities, such as the enhanced greenhouse effect. Notwithstanding the need for renewable energy sources, these environmental problems also necessitate further improvements in energy efficiency. Technological change plays a crucial role in realizing energy efficiency improvements and, hence, in ameliorating the conflict between economic growth and environmental quality. At the same time, it is known that not only innovation, but also diffusion of new technologies is a costly and lengthy process, and that many firms do not invest in best-practice technologies. This study aims to contribute to a better understanding of the inter. play between economic growth, energy use and technological change, with much emphasis on the adoption and diffusion of energy-saving technologies. The thesis presents a mix of theoretical and empirical analyses inspired by recent developments in economic theorizing on technological change that stress the role of accumulation and distribution of knowledge (learning), uncertainty, path dependency and irreversibility. The theoretical part of the study examines how several characteristics of technological change as well as environmental policy affect the dynamics of technology choice. The empirical part of the study explores long-run trends in energy- and labour productivity performance across a range of OECD countries at a detailed sectoral level.

  1. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  2. Energy prices, technological knowledge and green energy innovation. A dynamic panel analysis of patent counts

    International Nuclear Information System (INIS)

    We examine the effect of energy prices and technological knowledge on innovation in green energy technologies. In doing so, we consider both demand-pull effects, which induce innovative activity by increasing the expected value of innovations, and technology-push effects, which drive innovative activity by extending the technological capability of an economy. Our analysis is conducted using patent data from the European Patent Office on a panel of 26 OECD countries over the period 1978-2009. Utilizing a dynamic count data model for panel data, we analyze 11 distinct green energy technologies. Our results indicate that the existing knowledge stock is a significant driver of green energy innovation for all technologies. Furthermore, the results suggest that energy prices have a positive impact on innovation for some but not all technologies and that the e.ect of energy prices and technological knowledge on green energy innovation becomes more pronounced after the Kyoto protocol agreement in 1997.

  3. Energy prices, technological knowledge and green energy innovation. A dynamic panel analysis of patent counts

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Juergen; Wetzel, Heike [Koeln Univ. (Germany). Dept. of Economics; Koeln Univ. (Germany). Energiewirtschaftliches Inst.

    2014-07-15

    We examine the effect of energy prices and technological knowledge on innovation in green energy technologies. In doing so, we consider both demand-pull effects, which induce innovative activity by increasing the expected value of innovations, and technology-push effects, which drive innovative activity by extending the technological capability of an economy. Our analysis is conducted using patent data from the European Patent Office on a panel of 26 OECD countries over the period 1978-2009. Utilizing a dynamic count data model for panel data, we analyze 11 distinct green energy technologies. Our results indicate that the existing knowledge stock is a significant driver of green energy innovation for all technologies. Furthermore, the results suggest that energy prices have a positive impact on innovation for some but not all technologies and that the e.ect of energy prices and technological knowledge on green energy innovation becomes more pronounced after the Kyoto protocol agreement in 1997.

  4. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  5. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  6. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  7. Technology diffusion of energy-related products in residential markets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  8. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  9. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  10. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    Energy Technology Data Exchange (ETDEWEB)

    Martinsen, Thomas, E-mail: thomas_martinsen@hotmail.com [Institute for Energy Technology (Norway); Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim (Norway)

    2011-06-15

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: > Spillover of global technology learning may be forwarded into a macroeconomic model. > The national electricity price differs significantly between the different global scenarios. > Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  11. Energy-saving Technology and Market Value (Japanese)

    OpenAIRE

    EDAMURA Kazuma; Okada, Yosuke

    2013-01-01

    Based upon the standard model of Grilliches (1981), this paper examines the relationship between the intangible asset of energy-saving technologies and stock market value. We furthermore construct the spillover variable of energy-saving technologies for each firm using the definition of technological proximity by Jaffe (1986), and consider their distinctive impact on stock market value. Non-linear estimation using firm-level data of listed Japanese manufacturing firms reveals that intangible ...

  12. Stimulating R and D of industrial energy-efficient technology. Policy lessons--impulse technology

    International Nuclear Information System (INIS)

    Stimulating research and development (R and D) of innovative energy-efficient technologies for industry is an attractive option for reducing greenhouse gas emissions. Impulse technology, an innovative papermaking technology, is always included in studies assessing the long-term potential of industrial energy efficiency. Aim of this article is to analyse the R and D trajectory of impulse technology in order to explore how government can stimulate the development of industrial energy-efficient technology. The concept of 'momentum' is used to characterise the network of actors and to understand the effect of government R and D support in this particular case study. The network analysis convincingly shows that although marketed as an energy-efficient technology, other benefits were in fact driving forces. Researchers at various national pulp and paper research institutes were successful in attracting government R and D support by claiming an improved energy efficiency. The momentum of the technology network was modest between 1980 and 1990. Therefore, government R and D support accelerated the development of impulse technology in this period. However, when the perspectives of the technology deteriorated--momentum decreased--researchers at national research institutes continued to attract government R and D support successfully. But 25 years of R and D--and over 15 years government R and D support--have not yet resulted in a proven technology. The case study illustrates the risk of continuing R and D support too long without taking into account actors' drivers to invest in R and D. Once momentum decreased, government should have been more circumspect in evaluating the (energy efficiency) promise of impulse technology. The major policy lesson is that government has to look beyond claimed energy efficiencies; government has to value (qualitative) information on (changing) technology networks in deciding upon starting, continuing or pulling out financial R and D support to

  13. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  14. Solar Energy Technologies Program Newsletter - July 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  15. Energy technologies and the environment: Environmental information handbook

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This revision of Energy Technologies and the Environment reflects the changes in energy supply and demand, focus of environmental concern, and emphasis of energy research and development that have occurred since publication of the earlier edition in 1980. The increase in availability of oil and natural gas, at least for the near term, is responsible in part for a reduced emphasis on development of replacement fuels and technologies. Trends in energy development also have been influenced by an increased reliance on private industry initiatives, and a correspondingly reduced government involvement, in demonstrating more developed technologies. Environmental concerns related to acid rain and waste management continue to increase the demand for development of innovative energy systems. The basic criteria for including a technology in this report are that (1) the technology is a major current or potential future energy supply and (2) significant changes in employing or understanding the technology have occurred since publication of the 1980 edition. Coal is seen to be a continuing major source of energy supply, and thus chapters pertaining to the principal coal technologies have been revised from the 1980 edition (those on coal mining and preparation, conventional coal-fired power plants, fluidized-bed combustion, coal gasification, and coal liquefaction) or added as necessary to include emerging technologies (those on oil shale, combined-cycle power plants, coal-liquid mixtures, and fuel cells).

  16. Productivity effects of technology diffusion induced by an energy tax

    International Nuclear Information System (INIS)

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  17. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  18. Technology Teachers' Attitudes toward Nuclear Energy and Their Implications for Technology Education

    Science.gov (United States)

    Lee, Lung-Sheng; Yang, Hsiu-Chuan

    2013-01-01

    The purpose of this paper was to explore high-school (grades 10-12) technology teachers' attitudes toward nuclear energy and their implications to technology education. A questionnaire was developed to solicit 323 high-school technology teachers' responses in June 2013 and 132 (or 41%) valid questionnaires returned. Consequently, the…

  19. Analysing research and technology development strategies : the 'ATLAS' project : energy efficient technologies in industry

    NARCIS (Netherlands)

    Worrell, E.; Bode, J.-W.; Beer, J. de

    2006-01-01

    For Research and Technology Development (RTD) strategies in the field of energy efficiency improvement it is important to have an overview of important and emerging technology areas, that might have an impact on energy use, as well as other related areas. The ATLAS-project "Analysing RTD Strategy" e

  20. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  1. Energy technologies for post Kyoto targets in the medium term

    International Nuclear Information System (INIS)

    The Risoe International Energy Conference took place 19 - 21 May 2003 and the aim was to present and discuss new developments and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years. The conference addressed R and D related to the individual technologies as well as system integration. The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 25 June 2003. (au)

  2. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  3. Energy technologies for post Kyoto targets in the medium term

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, H. (eds.)

    2003-09-01

    The Risoe International Energy Conference took place 19 - 21 May 2003 and the aim was to present and discuss new developments and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years. The conference addressed R&D related to the individual technologies as well as system integration. The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 25 June 2003. (au)

  4. Homeland security: safeguarding America's future with energy efficiency and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-08-01

    The State Energy Advisory Board (STEAB) presents this 10th annual report following the one-year anniversary of the September 11, 2001 terrorist attacks on the World Trade Center and the Pentagon. This event has had profound impacts on all segments of American society, not the least of which is this country’s energy sector. Long before September 11, a number of energy issues grabbed the nation’s attention, including opening the Arctic National Wildlife Refuge to oil and natural gas exploration, the power crisis in California, nationwide natural gas and gasoline price increases, and the administration’s May 2001 National Energy Policy. However, the events of September 11 refocused attention on the prominent role energy plays in the country’s homeland security. For the most part, the energy aspects of homeland security have focused on the physical security of critical energy emergency planning and energy infrastructure, such as power plants, refineries, and power and fuel transmission systems. While STEAB recognizes the importance of protecting our existing energy infrastructure, this should not be the sole focus of homeland security as it relates to energy.

  5. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    Energy Technology Data Exchange (ETDEWEB)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  6. Fast and efficient: postnatal growth and energy expenditure in an Arctic-breeding waterbird, the Red-throated Loon (Gavia stellata)

    Science.gov (United States)

    Rizzolo, Daniel; Schmutz, Joel A.; Speakman, John R.

    2015-01-01

    Environmental conditions can exert a strong influence on the growth and energy demands of chicks. We hypothesized that postnatal growth in a cold, aquatic environment would require a high level of energy metabolism in semiprecocial Red-throated Loon (Gavia stellata) chicks. We measured body-mass growth and daily energy expenditure (DEE) of free-ranging chicks in the Arctic. We used daily gains in body mass and DEE to estimate daily metabolizable energy (DME, kJ day-1) and total metabolizable energy (TME, kJ chick-1). Chicks gained body mass quickly, with a logistic growth rate constant 57% greater than the allometric prediction, yet were at only 60% of adult body mass at fledging. Males grew at a rate similar to that of females but for a slightly longer duration and so reached an asymptotic body mass 23% greater, and tarsus length 8% longer, than that of females. Chick growth performance was similar between first- and second-hatched chicks within broods of 2, which suggests that food availability was not limited. DEE increased in proportion to body mass, and DME peaked at 1,214 kJ day-1 on day 25 posthatching. Over the average 49-day postnatal period, TME was 49.0 MJ, which is within the range of error of the allometric prediction. Parents provided 58.6 MJ as food to meet this energy requirement. Given this chick energy requirement and the range of energy content of prey observed in the chick diet, selecting prey with higher energy content would greatly reduce adult provisioning effort. Red-throated Loon chicks did not have a high postnatal energy requirement, but rather grew quickly and fledged at a small size-with the effect of reducing the length of the postnatal period and, consequently, parental energy investment in chicks.

  7. Global Nuclear Energy Partnership Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  8. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies

    Directory of Open Access Journals (Sweden)

    Min-Gyu Kang

    2016-02-01

    Full Text Available Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.

  9. Promoting clean technologies: The energy market structure crucially matters

    OpenAIRE

    Azomahou, T.T.; R. Boucekkine; Nguyen-Van, P.

    2008-01-01

    We develop a general equilibrium vintage capital model with embodied energy- saving technological progress and an explicit energy market to study the impact of investment subsidies on investment and output. Energy and capital are assumed to be complementary in the production process. New machines are less energy con- suming and scrapping is endogenous. It is shown that the impact of investment subsidies heavily depends on the structure of the energy market, the mechanism explaining this outco...

  10. Materials Research for Energy Technologies In FP7

    International Nuclear Information System (INIS)

    Materials research in FP7 Energy Theme are foreseen mainly in the area of hydrogen and fuel cells, photovoltaic, wind energy, CO2 capture, solar thermal energy and energy efficiency and saving. The discovery of novel high-performance, low-cost materials, and their application in manufacturing processes will be supported. The main effort will be at achieving significant performance and durability improvements and cost reductions of the energy technologies. (author)

  11. Evolution of the Arctic Calanus complex: an Arctic marine avocado?

    OpenAIRE

    Berge, Jørgen; Gabrielsen, Tove M.; Mark A Moline; Renaud, Paul

    2012-01-01

    Before man hunted the large baleen whales to near extinction by the end of the nineteenth century, Arctic ecosystems were strongly influenced by these large predators. Their main prey were zooplankton, among which the calanoid copepod species of the genus Calanus, long considered key elements of polar marine ecosystems, are particularly abundant. These herbivorous zooplankters display a range of adaptations to the highly seasonal environments of the polar oceans, most notably extensive energy...

  12. Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries

    OpenAIRE

    Mills, Bradford; Schleich, Joachim

    2012-01-01

    Relationships between a number of measures of household energy use behavior are estimated using a unique dataset of approximately 5,000 households in ten EU countries and Norway. Knowledge of energy consumption and energy-efficient technology options is found to be associated with household use of energy conservation practices, but not with adoption of energy-efficient technologies. Household characteristics also influence household energy use behavior. Younger household cohorts are more like...

  13. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  14. Integrating energy and environmental goals. Investment needs and technology options

    International Nuclear Information System (INIS)

    Economic and population growth will continue to drive an expansion of the global energy market. The Earth's energy resources are undoubtedly adequate to meet rising demand for at least the next three decades. But the projected increases in energy consumption and market developments raise serious concerns about the security of energy supplies, investment in energy infrastructure, the threat of environmental damage caused by energy use and the uneven access of the world's population to modern energy. The first two sections of this background paper provide an outlook for energy demand and emissions over the next thirty years, based on findings in the IEA's World Energy Outlook 2002. Section four presents projections for global investment needs from the latest WEO publication, the World Energy Investment Outlook 2003. For both the energy and investment outlooks, an alternative scenario for OECD countries is examined. The scenarios describe a world in which environmental and energy supply security concerns will continue to plague policy makers. Clearly, changes in power generation, automotive engines and fuel technologies will be required to change trends in energy demand and emissions over the next thirty years and beyond. Improvements in energy efficiency will also play a fundamental role. A number of technologies offer the long term potential to diversify the energy sector away from its present heavy reliance on fossil fuels. Based on various IEA studies, section five evaluates those technologies that offer the potential to reduce emissions, including renewable energy, fossil-fuel use with CO2 capture and storage, nuclear, hydrogen, biofuels and efficient energy end use. No single technology can meet the challenge by itself. Different regions and countries will require different combinations of technologies to best serve their needs and best exploit their indigenous resources. Developing countries, in particular, will face far greater challenges in the years ahead

  15. Sustainable energy for a resilient future: proceedings of the 14th International Conference on Sustainable Energy Technologies

    OpenAIRE

    Rodrigues, Lucélia Taranto

    2016-01-01

    Volume I, 898 pages, ISBN 9780853583134 Energy Technologies & Renewables Session 1: Biofuels & Biomass Session 5: Building Energy Systems Session 9: Low-carbon/ Low-energy Technologies Session 13: Biomass Systems Session 16: Solar Energy Session 17: Biomass & Biofuels Session 20: Solar Energy Session 21: Solar Energy Session 22: Solar Energy Session 25: Building Energy Technologies Session 26: Solar Energy Session 29: Low-carbon/ Low-energy Technologies ...

  16. Sustainable Energy Sources and Developing Clean Energy Technologies

    OpenAIRE

    Reis, A. Heitor; Miguel, A. F.

    2009-01-01

    Energy and sustainability are issues in the global agenda. The concern for the impacts of energy use, which adds to the alarm for the scarcity of primary sources of energy has triggered new research on sustainable primary energy sources and on clean and efficient energy systems and processes. Due to the current global warming, the link between energy and environment becomes inescapable in such a way that researchers have to deal both with efficiency and environmental impacts.

  17. Space power technology applied to the energy problem

    Science.gov (United States)

    Miller, J. L.; Morgan, J. R.

    1977-01-01

    A solution to the energy problem is suggested through the technology of photovoltaic electrolysis of water to generate hydrogen. Efficient solar devices are discussed in relation to available solar energy, and photovoltaic energy cost. It is concluded that photovoltaic electrolytic generation of hydrogen will be economically feasible in 1985.

  18. Developing a framework for energy technology portfolio selection

    Science.gov (United States)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  19. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    Energy Technology Data Exchange (ETDEWEB)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  20. Modeling energy technology choices. Which investment analysis tools are appropriate?

    International Nuclear Information System (INIS)

    A variety of tools from modern investment theory appear to hold promise for unraveling observed energy technology investment behavior that often appears anomalous when analyzed using traditional investment analysis methods. This paper reviews the assumptions and important insights of the investment theories most commonly suggested as candidates for explaining the apparent ''energy technology investment paradox''. The applicability of each theory is considered in the light of important aspects of energy technology investment problems, such as sunk costs, uncertainty and imperfect information. The theories addressed include the capital asset pricing model, the arbitrage pricing theory, and the theory of irreversible investment. Enhanced net present value methods are also considered. (author)

  1. Energy perspectives of France by 2020-2050. Technological evolutions

    International Nuclear Information System (INIS)

    The different technologies in phase of research and development and concerning the energy production or storage, are examined and presented in function of their probability of emergence at the industrial level: the projects which are going to appear in planed time on the market, the projects based on known technologies which should appear but at non predicted date and the possible projects but based on a new technology. The different type of energy, from the fossil fuels to the renewable energies are concerned. (A.L.B.)

  2. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  3. Proceedings of the 11. Brazilian congress on energy; 1. Brazilian seminar on technological innovation in energy sector. Technological innovation and sustainable development

    International Nuclear Information System (INIS)

    Theoretical papers are presented in this congress, comprising the following subjects: energy supply logistic, energy distributed generation, energy and environment, renewable energy sources, petroleum and natural gas, politics and technological management, energy efficiency, norms, quality and regulation, nuclear energy

  4. Energy conservation technologies based on thermodynamic principles

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Masaru [Shibaura Institute of Technology of Technology, Tokyo (Japan)

    1996-12-31

    In order to reduce CO{sub 2} emission to prevent global warming, the most promising way for electric generation in the Northeast Asia is to introduce cogeneration and {open_quotes}repowering{close_quotes} technologies based on high temperature gas turbines fueled by natural gas. Especially the old type coal burning boiler-steam turbine plants should be retrofit by introducing gas turbines to become highly efficient combined cycle. Same technologies should be applied to the old garbage incineration plants and/or even to the nuclear power plants. The exhaust heat or steam should become much increased and it should be utilized as the process heat for industries or heat supply as the distinct heating or cooling for residential area. This paper introduces a brief survey of these new technologies.

  5. Energy Technology Initiatives - Implementation Through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    New technologies will be critical in addressing current global energy challenges such as energy security. More must be done, however, to push forward the development and deployment of the technologies we need today and will need in the future. Government leaders have repeatedly underlined the crucial role of industry and businesses in advancing energy technologies and the importance of strong collaboration among all stakeholders to accelerate technology advances. To attain these goals, increased co-operation between industries, businesses and government energy technology research is indispensable. The public and private sectors must work together, share burdens and resources, while at the same time multiplying results and outcomes. The 42 multilateral technology initiatives (Implementing Agreements) supported by the IEA are a flexible and effective framework for IEA member and non-member countries, businesses, industries, international organisations and non-government organisations to research breakthrough technologies, to fill existing research gaps, to build pilot plants, to carry out deployment or demonstration programmes -- in short to encourage technology-related activities that support energy security, economic growth and environmental protection. This publication highlights the significant accomplishments of the IEA Implementing Agreements.

  6. Improved Energy Technologies for Rural Cambodia

    OpenAIRE

    World Bank

    2009-01-01

    More than 90 percent of total household energy used in rural Cambodia comes from wood and charcoal, which will continue to be the primary energy source for many more years, especially for poorer people. Faced with this reality, it is clear that simple and affordable solutions to the problems associated with burning wood and charcoal should be addressed. One obvious solution is the production ...

  7. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  8. The Future of the Arctic: A Key to Global Sustainability

    Directory of Open Access Journals (Sweden)

    Francesco Stipo

    2012-10-01

    Full Text Available The USACOR Report forecasts that by 2050 the Arctic will become the major supplier of energy to the world, in particular oil and natural gas, and natural resources such as mineral water. In the coming decades, the population in the Arctic region is projected to increase significantly due to the expansion of exploration for resources. The Report recommends that a Zero emission policy be implemented throughout the Arctic area for water emissions into the seas, rivers, or estuaries and oceans. The Report recommends that the Arctic Council guarantees safe navigation and environmental protection, establishing a Fund to cover expenses to purchase icebreakers and towards the cost of the personnel in order to assist commercial navigation in the Arctic region. The Arctic Council shall also issue environmental rules to regulate the mineral exploitation in the region and ensure that the wildlife is protected and that the exploitation of resources is conducted in a sustainable manner.

  9. Arctic Climate Tipping Points

    OpenAIRE

    Lenton, Timothy M.

    2012-01-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the A...

  10. Environmental regulation and the export dynamics of energy technologies

    International Nuclear Information System (INIS)

    The pollution haven hypothesis affirms that an open market regime will encourage the flow of low-technology polluting industries towards developing countries because of potential comparative advantages related to low environmental standards. In contrast, the hypothesis suggested by Porter and van der Linde claims that innovating firms operate in a dynamic competitive situation which allows global diffusion of environmental-friendly technologies. Environmental regulation may represent a relevant mechanism through which technological change is induced. In this way, countries that are subject to more stringent environmental regulations may become net exporters of environmental technologies. This paper provides new evidence on the evolution of export flows of environmental technologies across different countries for the energy sector. Advanced economies, particularly the European Union, have increasingly focused on the role of energy policies as tools for sustaining the development path. The Kyoto Protocol commitments, together with growing import dependence on energy products, have brought attention to the analysis of innovation processes in this specific sector. The analysis uses a gravity model in order to test the determinants and the transmission channels through which environmental technologies for renewable energies and energy efficiency are exported to advanced and developing countries. Our results are consistent with the Porter and van der Linde hypothesis where environmental regulation represents a significant source of comparative advantages. What strongly emerges is that the stringency of environmental regulation supplemented by the strength of the National Innovation System is a crucial driver of export performance in the field of energy technologies. (author)

  11. INFOENERGY: TECHNOLOGY FOR REPLACING MASSIVE DEGRADATION WITH SPEEDIER (CLEANER ENERGY

    Directory of Open Access Journals (Sweden)

    Carlos Ferran

    2013-10-01

    Full Text Available This paper provides an information technology perspective of energy that can help explain and promote more environmentally friendly energy sources. Following the equation energy equals mass times velocity squared (E = m * v2, a source 10 times more massive will produce 10 times more energy, but a source 10 times faster will produce 100 times more energy. Since chemical sources such as oil combustion are about ten times faster than mechanical sources such as waterfalls and winds, getting the same quantity of energy out of wind would require 10 times more mass (steel and concrete for wind towers, than getting it out of burning oil (CO2 and oil plants materials. A nuclear source is one million times faster than chemical, thus its mass requirement is negligible but technology (mainly information technology is needed to safely drive its speed allowing us to substitute mass -i.e. future debris- with information.

  12. Assessing Rare Metal Availability Challenges for Solar Energy Technologies

    Directory of Open Access Journals (Sweden)

    Leena Grandell

    2015-08-01

    Full Text Available Solar energy is commonly seen as a future energy source with significant potential. Ruthenium, gallium, indium and several other rare elements are common and vital components of many solar energy technologies, including dye-sensitized solar cells, CIGS cells and various artificial photosynthesis approaches. This study surveys solar energy technologies and their reliance on rare metals such as indium, gallium, and ruthenium. Several of these rare materials do not occur as primary ores, and are found as byproducts associated with primary base metal ores. This will have an impact on future production trends and the availability for various applications. In addition, the geological reserves of many vital metals are scarce and severely limit the potential of certain solar energy technologies. It is the conclusion of this study that certain solar energy concepts are unrealistic in terms of achieving TW scales.

  13. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...... solutions, can pave the way for renewable energies. In light of this, some of the most emerging renewable energies, e.g. wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored in this paper. Issues like technology...... development, implementation, power converter technologies, control of the systems, and synchronization are addressed. Special focuses are paid on the future trends in power electronics for those systems like how to lower the cost of energy and to develop emerging power devices and better reliability tool....

  14. Arctic Black Carbon Initiative: Reducing Emissions of Black Carbon from Power & Industry in Russia

    Science.gov (United States)

    Cresko, J.; Hodson, E. L.; Cheng, M.; Fu, J. S.; Huang, K.; Storey, J.

    2012-12-01

    resolution (2.5° x 2.5° spatial resolution) that a particular region emits BC which deposits in the Russian Arctic. We utilize data from three Arctic measurement stations during the most recent decade: Alert, Northwest Territories, Canada; Barrow, Alaska; and Tiksi Bay, Russia. To understand more about individual Arctic BC sources, we conduct further research to improve inventory estimates of Russian industrial and energy sector BC emissions. By comparing inventory data on power plant locations and emissions from two publically-available databases (EDGAR-HTAP and CARMA databases) to each other and to additional observations from satellites and the AERONET observation network in Russia, we assess the accuracy of the Russian BC emission inventory in EDGAR-HTAP, a commonly used database for atmospheric transport modeling. We then use a global (GEOS-CHEM) atmospheric transport model to quantify the finer spatial distribution of BC within the Arctic. Lastly, we use data on Russian fuel use combined with published emissions factors to build a national-scale model of energy use and associated emissions from critical industrial and heat & power sources of BC. We use this model to estimate the technical potential of reducing BC emissions through proven mitigation efforts such as improvements in energy efficiency and in emission control technologies.

  15. Breakthrough Energy Savings with Waterjet Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee W. Saperstein; R. Larry Grayson; David A. Summers; Jorge Garcia-Joo; Greg Sutton; Mike Woodward; T.P. McNulty

    2007-05-15

    Experiments performed at the University of Missouri-Rolla's Waterjet Laboratory have demonstrated clearly the ability of waterjets to disaggregate, in a single step, four different mineral ores, including ores containing iron, lead and copper products. The study focused mainly on galena-bearing dolomite, a lead ore, and compared the new technology with that of traditional mining and milling to liberate the valuable constituent for the more voluminous host rock. The technical term for the disintegration of the ore to achieve this liberation is comminution. The potential for energy savings if this process can be improved, is immense. Further, if this separation can be made at the mining face, then the potential energy savings include avoidance of transportation (haulage and hoisting) costs to move, process and store this waste at the surface. The waste can, instead, be disposed into the available cavities within the mine. The savings also include the elimination of the comminution, crushing and grinding, stages in the processing plant. Future prototype developments are intended to determine if high-pressure waterjet mining and processing can be optimized to become cheaper than traditional fragmentation by drilling and blasting and to optimize the separation process. The basic new mining process was illustrated in tests on two local rock types, a low-strength sandstone with hematite inclusions, and a medium to high-strength dolomite commonly used for construction materials. Illustrative testing of liberation of minerals, utilized a lead-bearing dolomite, and included a parametric study of the optimal conditions needed to create a size distribution considered best for separation. The target goal was to have 50 percent of the mined material finer than 100 mesh (149 microns). Of the 21 tests that were run, five clearly achieved the target. The samples were obtained as run-of-mine lumps of ore, which exhibited a great deal of heterogeneity within the samples. This

  16. Introducing topisc on wind energy in technology

    OpenAIRE

    Skrt, Tina

    2013-01-01

    This thesis presents an overview of wind power, its action and representation in Slovenia. The presented method is inductive method, that is discovery learning, which can be used in teaching techniques technology. It is described one of the ideas to students about the functioning of wind farms on the basis of the model and discovery learning.

  17. Nuclear energy for technology and industry

    International Nuclear Information System (INIS)

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  18. Wind Energy Technology: Training a Sustainable Workforce

    Science.gov (United States)

    Krull, Kimberly W.; Graham, Bruce; Underbakke, Richard

    2009-01-01

    Through innovative teaching and technology, industry and educational institution partnerships, Cloud County Community College is preparing a qualified workforce for the emerging wind industry estimated to create 80,000 jobs by 2020. The curriculum blends on-campus, on-line and distance learning, land-lab, and field training opportunities for…

  19. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    Science.gov (United States)

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  20. Frameworks for Understanding and Promoting Solar Energy Technology Development

    Directory of Open Access Journals (Sweden)

    Chelsea Schelly

    2015-02-01

    Full Text Available In this paper, the contrasting theories of metabolic rift and ecological modernization theory (EMT are applied to the same empirical phenomenon. Metabolic rift argues that the natural metabolic relationship between humans and nature has been fractured through modernization, industrialization and urbanization. EMT, in contrast, argues that societies in an advanced state of industrialization adopt ecologically benign production technologies and political policies, suggesting that modern societies could be on course to alleviate the ecological damage caused by capitalism. These two theories are fundamentally different in their assumptions about modern economies and technologies, yet both can be used as a theoretical lens to examine the phenomenon of solar energy technology adoption. Furthermore, both theories shed light on the increasing adoption of solar energy technologies in both “developing” and “developed” regions and the potential social conditions for promoting renewable energy technology adoption.

  1. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian;

    maritime industries (including shipping, offshore energy, ports, and maritime service and equipment suppliers) as well as addresses topics that cut across maritime industries (regulation and competitiveness). The topics and narrower research questions addressed in the initiative were developed in close...

  2. Electrical energy efficiency technologies and applications

    CERN Document Server

    Sumper, Andreas

    2012-01-01

    The improvement of electrical energy efficiency is fast becoming one of the most essential areas of sustainability development, backed by political initiatives to control and reduce energy demand. Now a major topic in industry and the electrical engineering research community, engineers have started to focus on analysis, diagnosis and possible solutions. Owing to the complexity and cross-disciplinary nature of electrical energy efficiency issues, the optimal solution is often multi-faceted with a critical solutions evaluation component to ensure cost effectiveness. This single-source refer

  3. Long-term energy futures: the critical role of technology

    International Nuclear Information System (INIS)

    The paper briefly reviews the results of a 5-year study conducted by IIASA jointly with the World Energy Council (WEC) on long term-energy perspectives. After summarizing the study's main findings, the paper addresses the crucial role of technological change in the evolution of long-term energy futures and in responding to key long-term uncertainties in the domains of energy demand growth, economics, as well as environmental protection. Based on most recent empirical and methodological findings, long-term dynamics of technological change portray a number of distinct features that need to be taken account of in technology and energy policy. First, success of innovation efforts and ultimate outcomes of technological are uncertain. Second, new, improved technologies are not a free good, but require continued dedicated efforts. Third, technological knowledge (as resulting from R and D and accumulation of experience, i.e. technological learning) exhibits characteristics of (uncertain) increasing returns. Forth, due to innovation - diffusion lags, technological interdependence, and infrastructure needs (network externalities), rates of change in large-scale energy systems are necessarily slow. This implies acting sooner rather than later as a contigency policy to respond to long-term social, economic and environmental uncertainties, most notably possible climate change. Rather than picking technological 'winners' the results of the IIASA-WEC scenario studies are seen most appropriate to guide technology and R and D portfolio analysis. Nonetheless, robust persistent patterns of technological change invariably occur across all scenarios. Examples of primising groups of technologies are given. The crucial importance of meeting long-energy demand in developing countries, assuring large-scale infrastructure investments, maintaining a strong and diversified R AND D protfolio, as well as to dvise new institutional mechnisms for technology development and diffusion for instance

  4. Global energy transitions : Renewable energy technology and non-renewable resources

    OpenAIRE

    Davidsson, Simon

    2015-01-01

    The global energy system is dominated by the use of fossil fuels. This system suffers from several problems, such as different environmental issues, while the long-term energy security is sometimes questioned. As an alternative to this situation, a transition to a global energy system based on renewable energy technologies, to a large extent solar and wind energy, is commonly proposed. Constructing the technology needed for such a transition requires resources and how fast this could happen i...

  5. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  6. Timelines for mitigating methane emissions from energy technologies

    CERN Document Server

    Roy, Mandira; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  7. Energy/environment/technology two visions, two directions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Penner, P.

    1995-12-31

    This paper compares the energy policies proposed by the U.S. Congress and the U.S. Department of Energy (DOE). Connections between energy, economy, environment, and technology are discussed in some detail. The National Energy Policy Plan of the DOE is summarized, and the impact of budget cuts proposed by Congress are projected. Aspects of the DOE plan which are emphasized include research and development, minimization of regulation, and eliminating redundant government and private industry efforts. 5 figs., 5 tabs.

  8. Hydro-Kinetic Energy Conversion : Resource and Technology

    OpenAIRE

    Grabbe, Mårten

    2013-01-01

    The kinetic energy present in tidal currents and other water courses has long been appreciated as a vast resource of renewable energy. The work presented in this doctoral thesis is devoted to both the characteristics of the hydro-kinetic resource and the technology for energy conversion. An assessment of the tidal energy resource in Norwegian waters has been carried out based on available data in pilot books. More than 100 sites have been identified as interesting with a total estimated theor...

  9. The Valley of Death for New Energy Technologies

    OpenAIRE

    Peter R. Hartley; Kenneth B. Medlock III

    2014-01-01

    More than 90% of the world's primary energy currently is supplied by fossil fuels, while more than 8% comes from nuclear power and hydroelectricity. Thus, despite the recent publicity for energy sources such as wind, solar, geothermal or biofuels, they provide only a tiny fraction of the world's energy, and even then mainly as a result of subsidies. On the positive side, large-scale energy production from non-hydroelectric renewable sources has at least become technologically feasible. One of...

  10. Technological Progress, Structural Change and China's Energy Efficiency

    Institute of Scientific and Technical Information of China (English)

    Wang Junsong; He Canfei

    2009-01-01

    China has witnessed rapid economic development since 1978, and during the time, energy production and consumptiondeveloped at a tremendous speed as well.Energy efficiency which can he measured by energy consumption per unit of GDP, how-ever, experienced continuous decrease.Theoretically, the change of energy efficiency can be attributed to industry structural change and technological change.In order to explain the transformation of Chinese energy efficiency, we adopt logarithmic mean Divisia index techniques to decompose changes in energy intensity in the period of 1994-2005.We find that technological change is the dominant contributor in the decline of energy intensity, but the contribution has declined since 2001.The change in industry structure has decreased the energy intensity before 1998, but raised the intensity after 1998.Decomposed technological effects for all sectors indicate that technological progresses in high energy consuming industries such as raw chemical materials and chemi-cal products, smelting and pressing of ferrous metals, manufacture of non-metallic mineral products and household contribute are the principal drivers of China's declining energy intensity.

  11. Energy Technology Initiatives 2013. Implementation through Multilateral Co-operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Ensuring energy security and addressing climate change cost-effectively are key global challenges. Tackling these issues will require efforts from stakeholders worldwide. To find solutions, the public and private sectors must work together, sharing burdens and resources, while at the same time multiplying results and outcomes. Through its broad range of multilateral technology initiatives (Implementing Agreements), the IEA enables member and non-member countries, businesses, industries, international organisations and non-governmental organisations to share research on breakthrough technologies, to fill existing research gaps, to build pilot plants and to carry out deployment or demonstration programmes across the energy sector. This publication highlights the most significant recent achievements of the IEA Implementing Agreements. At the core of the IEA energy technology network, these initiatives are a fundamental building block for facilitating the entry of new and improved energy technologies into the marketplace.

  12. Energy ampersand technology review, April 1995

    International Nuclear Information System (INIS)

    This publication presents research overviews on projects from the Lawrence Livermore laboratory. This issue provides information on microsphere targets for inertial confinement fusion experiments; laser fabrication of berllium components; and the kinetic energy interceptor

  13. Energy resources and technology. Vol.2, 1992

    International Nuclear Information System (INIS)

    An international spectrum of topical reviews and innovative articles of contemporary interest on various forms of energy and power such as solar, bioconversion, wind, ocean, hydro and geothermal is presented. Socio-economic and environmental aspects of energy utilization are also included. The exposition is at a level intermediate between text books and original papers. This volume contains 11 papers out of which 2 fall within the subject scope of INIS and are added to the INIS database. (M.G.B.)

  14. Developing markets for renewable energy technologies

    International Nuclear Information System (INIS)

    Although renewable energy resources are now being utilised more on a global scale than ever before, there is no doubt their contribution to the energy economy can still be greatly increased. Recently international support for developing these relatively new sources of energy has been driven by their benefits as assessed by reduced environmental impact, particularly reduced greenhouse gas emissions. After several decades of continuous but somewhat erratic funding for research and development of renewables, it is time to take stock of the key issues to be addressed in terms of implementation of major renewable energy programmes on a large scale worldwide. One of the first steps in this process is the identification and encouragement of reliable continuous markets both in developed and developing nations. Future energy policy and planning scenarios should take into account the factors necessary to integrate renewables in all their diverse forms into the normal energy economy of the country. Other critical factors in market development will include the mass production of high quality, reliable and reasonable cost technical products and the provision of adequate finance for demonstrating market ready and near market renewables equipment. Government agencies need to aid in the removal of legislative and institutional barriers hindering the widespread introduction of non-conventional energy sources and to encourage the implementation of government purchasing schemes. Recent moves by companies in Australia to market 'green energy' to customers should also aid in the public awareness of the ultimate potential of renewables leading to greater use in the industrial, commercial and domestic sectors. (author)

  15. Energy technology programmes 1993-1998. Evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    In the late 1980s Finland`s Ministry of Trade and Industry (KTM) initiated a series of research and development (R and D) programmes in the field of energy technology. Subsequently, in 1993, it launched a further suite of eleven Energy Technology Programmes scheduled to run over the period 1993-1998. Aimed at the development of efficient and environmentally sound energy technologies intended to be competitive in the international marketplace, the programmes sought to involve the research, industrial and public sectors in some FIM 1.2 billion of research and development activity. The technology areas spanned: Combustion and gasification techniques Bioenergy, Advanced energy systems and technologies (e.g. wind, solar energy), Fusion, Energy and environmental technology, Energy and the environment in transportation, Energy use in buildings, Energy in steel and metal production, Energy in paper and board production, District heating, Electricity distribution automation. In early 1995, the Technology Development Centre of Finland (Tekes) assumed responsibility for the funding, management and administration of the programmes. As the final year of activities began, Tekes commissioned Technopolis to assemble a team to conduct a major review of all eleven programmes over the course of 1998. The broad aim of the exercise was to review the experience of the eleven technology R and D programmes and to make suggestions for the future. In particular, the intention was to cover a number of distinct levels. Most important were the Programme and Portfolio levels. At the individual Programme level, the review was to comment on the relevance, calibre and impact of programmes, concentrating in particular on the following: Relevance - were programme and project level goals in line with Finnish interests and comparable agendas in other countries; Efficiency - how well were the programmes implemented and managed; Quality - how did the scientific and technological quality of the work

  16. Technology utilization and energy efficiency: Lessons learned and future prospects

    International Nuclear Information System (INIS)

    The concept of energy efficiency within the context of economic and environmental policy making is quite complex. Relatively poor economic performance ratings can weaken the validity of some energy supply systems which tend to reduce energy inputs for specific volumes of output, but don't minimize total cost per unit product; and industry is often slow to adopt new technologies, even those proven to reduce total costs. In this paper, the problems connected with growth in energy requirements in relation to product are first examined within the context of world economic performance history. Three key elements are shown to explain the differences in energy intensity and consumption typology among various countries, i.e., availability of energy sources, prices and government policies. Reference is made to the the role of recent energy prices and policies in the United States whose industrialization has been directly connected with the vast availability of some energy sources. In delineating possible future energy scenarios, the paper cites the strong influence of long term capital investment on the timing of the introduction of energy efficient technologies into industrial process schemes. It illustrates the necessity for flexibility in new energy strategies which are to take advantage the opportunities offered by a wide range of alternative energy sources now being made available through technological innovation

  17. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  18. Adoption of a clean technology using a renewable energy

    OpenAIRE

    Ben Youssef, Slim

    2010-01-01

    We consider a monopolistic firm producing a good while polluting and using a fossil energy. This firm can adopt a clean technology by incurring an investment cost decreasing exponentially with the adoption date. This clean technology does not pollute and has a lower production cost because it uses a renewable energy. We determine the optimal adoption date for the firm in the cases where it is regulated at each period of time and when it is not regulated. Interestingly, the regulated firm ado...

  19. Methane mitigation timelines to inform energy technology evaluation

    International Nuclear Information System (INIS)

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers. (letter)

  20. Methane mitigation timelines to inform energy technology evaluation

    Science.gov (United States)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.

  1. A Review of Renewable Energy Supply and Energy Efficiency Technologies

    OpenAIRE

    Abolhosseini, Shahrouz; Heshmati, Almas; Altmann, Jörn

    2014-01-01

    Electricity consumption will comprise an increasing share of global energy demand during the next two decades. In recent years, the increasing prices of fossil fuels and concerns about the environmental consequences of greenhouse gas emissions have renewed the interest in the development of alternative energy resources. In particular, the Fukushima Daiichi accident was a turning point in the call for alternative energy sources. Renewable energy is now considered a more desirable source of fue...

  2. Energy and technology review, March 1995

    International Nuclear Information System (INIS)

    This journal contains two feature articles. The first article reports on the background, design, and capabilities of the Portable Tritium Processing System currently being used to clean up and decontaminate the Laboratory's Tritium Facility. The second article discusses the development of a x-ray lasers as a probe to obtain high-resolution images of high-density plasmas produced at the Nova laser facility. Finally, two research programs are highlighted. They are silicon microcomponents and modern technology for advanced military training

  3. Technology Roadmap: Wind Energy. 2013 edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The IEA Wind Power Technology Roadmap 2013 Edition recognises the very significant progress made since the first edition was published in 2009. The technology continues to improve rapidly, and costs of generation from land-based wind installations continue to fall. Wind power is now being deployed in countries with good resources without any dedicated financial incentives. The 2013 Edition targets an increased share (15% to 18%) of global electricity to be provided by wind power in 2050, compared to 12% in the original roadmap of 2009. However, increasing levels of low-cost wind still require predictable, supportive regulatory environments and appropriate market designs. The challenges of integrating higher levels of variable wind power into the grid need to be addressed. For offshore wind, much remains to be done to develop appropriate large-scale systems and to reduce costs. The 2013 Wind Power Roadmap also provides updated analysis on the barriers that exist for the technology and suggests ways to address them, including legal and regulatory recommendations.

  4. Building Design Guidelines for Solar Energy Technologies

    Science.gov (United States)

    Givoni, B.

    1989-01-01

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of "solar architecture" and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings.

  5. Technology Roadmaps: How2Guide for Wind Energy Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-01

    Whether in OECD, emerging or developing country economies, governments are increasingly looking to diversify their energy mix beyond simply fossil fuels. While wind energy is developing towards a mainstream, competitive and reliable technology, a range of barriers can delay progress, such as financing, grid integration, social acceptance and aspects of planning processes. National and regional technology roadmaps can play a key role in supporting wind energy development and implementation, helping countries to identify priorities and pathways tailored to local resources and markets. Recognising this, the IEA has started the How2Guides - a new series co-ordinated by the International Low-Carbon Energy Technology Platform to address the need for more focused guidance in the development of national roadmaps, or strategies, for specific low-carbon technologies. This builds on the success of the IEA global technology roadmap series and responds to a growing number of requests for IEA guidance to adapt the findings of the IEA global technology roadmaps to national circumstances. A successful roadmap contains a clear statement of the desired outcome, followed by a specific pathway for reaching it. The How2Guide for Wind Energy builds on the IEA well established methodology for roadmap development and shares wind specific recommendations on how to address the four phases to developing and implementing a wind energy roadmap: Planning; Visioning; Development; and Implementation. The manual also offers menus of recommendations on policy and technical options for deployment of utility-scale wind energy installations. A matrix of barriers-versus-realistic solutions options is cross-listed with considerations such as planning, development, electricity market and system, infrastructure, and finance and economics. Drawing on several case studies from around the globe, as well as on the IEA Technology Roadmap for Wind Energy, the How2Guide for Wind Energy it is intended as a

  6. Use of nuclear space technology of direct energy conversion for terrestrial application

    International Nuclear Information System (INIS)

    In due time the SSC RF-IPPE exercised the scientific supervision and directly participated in the development, fabrication, space flight test and maintenance of the direct energy conversion nuclear power plants (NPP) for space application under the 'BUK' and 'TOPAZ' programs. We have used the acquired experience and the high technologies developed for the 'BUK' NPP with a thermoelectric conversion of thermal (nuclear) energy into electrical one in the development under the order of RAO 'GAZPROM' of the natural gas fired self contained thermoelectric current sources (AIT-500) and heat and electricity sources (TEP-500). These are intended for electrochemical rust protection of gas pipelines and for the electricity and heat supply to the telemetric and microwave-link systems located along the gas pipelines. Of special interest at the moment are the new developments of self contained current sources with the electrical output of ∼500 Wel for new gas pipelines being constructed under the projects such as the 'Yamal-Europe' project. The electrochemical rust protection of gas pipelines laying on unsettled and non-electrified territory of arctic regions of Russia is performed by means of the so-called Cathodic Protection Stations (CPS). Accounting for a complex of rather rigid requirements imposed by arctic operating conditions, the most attractive sources of electricity supply to the CPS are the thermoelectric heat-into-electricity converters and the generators (TEG). This paper deals with the essential results of the development, investigation and testing of unconventional TEGs using the low-temperature bismuth-tellurium thermoelectric batteries assembled together as tubular thermoelectric batteries with a radial ring geometry built into the gas-heated thermoelectric modules, which are collected to make up either the thermoelectric plants for heat and electricity supply or the self contained power sources. One of the peculiarities of these plants is the combination of

  7. Influence of sea ice on Arctic precipitation.

    Science.gov (United States)

    Kopec, Ben G; Feng, Xiahong; Michel, Fred A; Posmentier, Eric S

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km(2) sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  8. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  9. Biomass gasification- a promising renewable energy technology for industries

    International Nuclear Information System (INIS)

    The demand for energy in the industrial sector is increasing to meet the growing activities due to the encouragement of the government in our country. This energy requirement is mostly thermal or electrical. To sustain the healthy trend there is an urgent need to look for alternate (renewable) sources of energy in addition to the measures of energy conservation wherever possible. One such very promising, matured, and advanced renewable energy technology is biomass gasification, offering a host of benefits. The use of this technology especially in the industrial sector, by taking the first hand practical examples from our experience of working in this area where it has been put to use is discussed. To further give an idea of the vast nature of its applicability different class of industries have been chosen highlighting the advantages derived by adopting this technology. (author). 8 refs., 3 figs

  10. Research trends of nuclear energy technology by citation network analysis

    International Nuclear Information System (INIS)

    Considering a new way of being energy system, what is required is the decision making with balances of human security, environmental safeguards, energy security, proliferation risk, economic risks and etc. After FUKUSHIMA, there are needs to provide the information for transvaluation of what nuclear energy technology is. Therefore this study focuses on nuclear energy technology. In this paper, we analyze the information about the structure and history of past and the present research papers, which aim to clarify the characteristics of research trends and issues. Our results showed overview of the structure of R and D of nuclear energy technology by citation network analysis. We found that the impacts of Chernobyl accident to basic research papers are limited and research trends seem to be influenced by national R and D budget for nuclear power but not by national fund for basic science research. (author)

  11. Energy Efficiency: Information Sources for New and Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Steven A.

    2007-12-31

    The purpose of this article is to share a list of useful organizations that provide reliable information on new and emerging energy-efficient technologies based on research and experience. Experienced energy managers may use the information provided by these organizations to enhance their knowledge and understanding, thereby improving their energy management programs. The scope is limited to publicly-available and open-membership organizations that deal with new and emerging, energy-efficient technologies, strategies, and products. The sources identified should not be considered exhaustive but rather a first step “go to” list suggested by the author when searching for useful information on new and emerging energy-efficient technologies.

  12. Technology, risks and insurance of alternative energy sources

    International Nuclear Information System (INIS)

    The discussion of conversion scenarios from nuclear energy to alternative energy sources has taken up a central position in the field of electrical and environmental policy. The possibilities of using solar energy and its conversion forms of hydroelectric power, wind energy, biomass, environmental heat and solar hydrogen (as a secondary energy carrier) are presented, using typical pilot projects. The analysis of the technological status, the main centres of development interest and the operating and damage experience demonstrates the risks involved in these energy technologies. The investigation of the technical and economic development potential leads to an assessment of the position of the alternative energy sources in the electricity supply market. This leads to a survey of their importance in the future insurance market. (orig.)

  13. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    Energy Technology Data Exchange (ETDEWEB)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  14. Flywheel Energy Storage Technology Being Developed

    Science.gov (United States)

    Wolff, Frederick J.

    2001-01-01

    A flywheel energy storage system was spun to 60,000 rpm while levitated on magnetic bearings. This system is being developed as an energy-efficient replacement for chemical battery systems. Used in groups, the flywheels can have two functions providing attitude control for a spacecraft in orbit as well as providing energy storage. The first application for which the NASA Glenn Research Center is developing the flywheel is the International Space Station, where a two-flywheel system will replace one of the nickel-hydrogen battery strings in the space station's power system. The 60,000-rpm development rotor is about one-eighth the size that will be needed for the space station (0.395 versus 3.07 kWhr).

  15. Submicron CMOS technologies for high energy physics and space applications

    CERN Document Server

    Anelli, G; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Snoeys, W

    2001-01-01

    The radiation environment present in some of today's High-Energy Physics (HEP) experiments and in space has a detrimental influence on the integrated circuits working in these environments. Special technologies, called radiation hardened, have been used in the past to prevent the radiation-induced degradation. In the last decades, the market of these special technologies has undergone a considerable shrinkage, rendering them less reliably available and far more expensive than today's mainstream technologies. An alternative approach is to use a deep submicron CMOS technology. The most sensitive part to radiation effects in a MOS transistor is the gate oxide. One way to reduce the effects of ionizing radiation in the gate oxide is to reduce its thickness, which is a natural trend in modern technologies. Submicron CMOS technologies seem therefore a good candidate for implementing radiation-hardened integrated circuits using a commercial, inexpensive technology. Nevertheless, a certain number of radiation-induced...

  16. Commercialization of new energy technologies. Appendix A. Case study 1: central station electric power generation technologies

    International Nuclear Information System (INIS)

    The results of a survey on Technologies for Central Power Generation are presented. The central power generation technologies selected for consideration were: fusion; breeder reactors; solar electric (thermal); geothermal; and magnetohydrodynamics. The responses of industry executives who make key investment decisions concerning new energy technologies and who to identify the problems faced in the development and commercialization of new energy systems are presented. Evaluation of these responses led to the following recommendations: increase industry input into the R, D and D planning process; establish and advocate priorities for new technologies based on detailed analysis of a technology's value in terms of overall national goals; create a mechanism for a joint ERDA/industry appraisal of priorities and programs; increase level of federal funding or subsidy of new technology demonstrations; and focus the activities of the national laboratories on basic research and very early product development; and emphasize industry involvement in systems development

  17. Technological conditions of electronic energy market

    International Nuclear Information System (INIS)

    The restructurization of Polish power industry is discussed. The national power system will be controlled by Transmission Grid Management and therefore a free trade of electric energy will be limited. A nature of power industry requires control coordination of infrastructure modernization and investments. The conditions of free market are analysed. The third party access to transmission system will be allowed. The energy law and actions towards an electric market development require taking into accounts the technical conditions and the systematic character of generation and transmission

  18. Risoe energy report 2. New and emerging bioenergy technologies

    International Nuclear Information System (INIS)

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  19. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.; Kossmann, J.; Soenderberg Petersen, L. (eds.)

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  20. Socio-economic research for innovative energy technologies

    International Nuclear Information System (INIS)

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  1. Energy End-Use Technologies for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, S; Haegermark, H; Larsen, H; Morishita, M; Nakicenovic, N; Schock, R N; Suntola, T

    2005-04-13

    The World Energy Council's recent study examined the potential of energy end-use technologies and of research, development, and demonstration (RD&D) into these technologies on a global scale. Surprises are likely, but nevertheless, current research and development offer a picture of what might happen in the future as new technologies face the competition of the marketplace. Given the breadth of energy end-use technologies and the differences between regions and economic conditions, the study focused on technologies that appear most important from today's vantage point. Globally, robust research and development followed by demonstrations of new end-use technologies can potentially save at least 110 EJ/year by 2020 and over 300 EJ/year by 2050. If achieved, this translates to worldwide energy savings of as much as 25% by 2020 and over 40% by 2050, over what may be required without these technologies. It is almost certain that no single technology, or even a small set of technologies, will dominate in meeting the needs of the globe in any foreseeable timeframe. Absent a significant joint government-industry effort on end-use technology RD&D, the technologies needed will not be ready for the marketplace in the timeframes required with even the most pessimistic scenarios. Based on previous detailed analyses for the United States, an international expenditure of $4 billion per year seems more than justified. The success of new energy end-use technologies depends on new RD&D investments and policy decisions made today. Governments, in close cooperation with industry, must carefully consider RD&D incentives that can help get technologies from the laboratory or test-bed to market. Any short-term impact areas are likely to benefit from focused RD&D. These include electricity transmission and distribution, distributed electricity production, transportation, the production of paper and pulp, iron and steel, aluminum, cement and chemicals, and information and

  2. Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Roberts, D.

    2008-11-01

    To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

  3. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, F.; Turton, H.; Hirschberg, S.

    2009-12-15

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO{sub 2} prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a

  4. Key factors affecting the deployment of electricity generation technologies in energy technology scenarios

    International Nuclear Information System (INIS)

    This report presents the findings of a survey of key factors affecting the deployment of electricity generation technologies in selected energy scenarios. The assumptions and results of scenarios, and the different models used in their construction, are compared. Particular attention is given to technology assumptions, such as investment cost or capacity factors, and their impact on technology deployment. We conclude that the deployment of available technologies, i.e. their market shares, can only be explained from a holistic perspective, and that there are strong interactions between driving forces and competing technology options within a certain scenario. Already the design of a scenario analysis has important impacts on the deployment of technologies: the choice of the set of available technologies, the modeling approach and the definition of the storylines determine the outcome. Furthermore, the quantification of these storylines into input parameters and cost assumptions drives technology deployment, even though differences across the scenarios in cost assumptions are not observed to account for many of the observed differences in electricity technology deployment. The deployment can only be understood after a consideration of the interplay of technology options and the scale of technology deployment, which is determined by economic growth, end-use efficiency, and electrification. Some input parameters are of particular importance for certain technologies: CO2 prices, fuel prices and the availability of carbon capture and storage appear to be crucial for the deployment of fossil-fueled power plants; maximum construction rates and safety concerns determine the market share of nuclear power; the availability of suitable sites represents the most important factor for electricity generation from hydro and wind power plants; and technology breakthroughs are needed for solar photovoltaics to become cost-competitive. Finally, this analysis concludes with a review on

  5. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  6. Energy demand analytics using coupled technological and economic models

    Science.gov (United States)

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  7. Department of Energy Recovery Act Investment in Biomass Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  8. MHD--Developing New Technology to Meet the Energy Crisis

    Science.gov (United States)

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  9. Optimal technological choices in meeting Australian energy policy goals

    International Nuclear Information System (INIS)

    Australia's energy system faces a number of environmental challenges and chief among them is reducing greenhouse gas emissions. In the electricity sector, the Australian government has began implementing policies, which require greater use of gas and renewables based technologies. In this study, we simulate the optimal shares of several electricity generation technologies for Australia under a policy of greenhouse gas mitigation. In doing so, we seek to determine the likely technological investment paths over the next two decades and consider the sensitivity of those projections to assumptions regarding technological change, resource scarcity and economies or diseconomies of scale

  10. Feed-in tariffs for promotion of energy storage technologies

    International Nuclear Information System (INIS)

    Faster market integration of new energy technologies can be achieved by use of proper support mechanisms that will create favourable market conditions for such technologies. The best examples of support mechanisms presented in the last two decades have been the various schemes for the promotion of renewable energy sources (RES). In the EU, the most successful supporting schemes are feed-in tariffs which have significantly increased utilisation of renewable energy sources in Germany, Spain, Portugal, Denmark and many other EU countries. Despite the successful feed-in tariffs for RES promotion, in many cases RES penetration is limited by power system requirements linked to the intermittency of RES sources and technical capabilities of grids. These problems can be solved by implementation of energy storage technologies like reversible or pumped hydro, hydrogen, batteries or any other technology that can be used for balancing or dump load. In this paper, feed-in tariffs for various energy storage technologies are discussed along with a proposal for their application in more appropriate regions. After successful application on islands and outermost regions, energy storage tariffs should be also applied in mainland power systems. Increased use of energy storage could optimise existing assets on the market. - Research highlights: → Feed-in tariffs will promote development and use of energy storage technologies. → Energy storage effectively increases RES penetration. → Pumped Hydro Storage: an efficient solution for RES integration in islands. → Remuneration of Batteries and Inverters as a service can increase RES Penetration. → Desalination, apart from water can help in more efficient RES integration.

  11. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  12. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  13. Surface free energy and microarray deposition technology

    OpenAIRE

    McHale, Glen

    2007-01-01

    Microarray techniques use a combinatorial approach to assess complex biochemical interactions. The fundamental goal is simultaneous, large-scale experimentation analogous to the automation achieved in the semiconductor industry. However, microarray deposition inherently involves liquids contacting solid substrates. Liquid droplet shapes are determined by surface and interfacial tension forces, and flows during drying. This article looks at how surface free energy and wetting considerations ma...

  14. Strategic Energy Technology Plan Study on Energy Education and Training in Europe

    OpenAIRE

    2014-01-01

    This document contains the collection of Assessment Reports from the Expert Working Groups of the Strategic Energy Technology Plan European Energy Education and Training Task Force. It provides background information supporting the findings and recommendations put forward in the Strategic Energy Technology (SET) Plan Roadmap on Education and Training, which addresses the human resource challenge for the energy research and innovation sector and constitutes an integral part of the SET Plan age...

  15. Energy systems analysis of waste to energy technologies by use of EnergyPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, M.

    2009-04-15

    Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This report asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO{sub 2} reductions and costs. The comparison is made by conducting detailed energy system analyses of the present system as well as a potential future Danish energy system with a large share of combined heat and power and wind power. The study shows the potential of using waste for the production of transport fuels such as upgraded biogas and petrol made from syngas. Biogas and thermal gasification technologies are interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together, the two solutions may contribute to an alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority given to combined heat and power plants with high electrical efficiencies. (author)

  16. Comparing energy technology alternatives from an environmental perspective

    International Nuclear Information System (INIS)

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity

  17. Energy technology X: a decade of progress. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.F. (ed.)

    1983-06-01

    The characterization, development, and availability of various energy sources for large scale energy production are discussed. Attention is given to government, industry, and international policies on energy resource development and implementation. Techniques for energy analysis, planning, and regulation are examined, with consideration given to conservation practices, military energy programs, and financing schemes. Efficient energy use is examined, including energy and load management, building retrofits, and cogeneration installations, as well as waste heat recovery. The state of the art of nuclear, fossil, and geothermal power extraction is investigated, with note taken of synthetic fuels, fluidized bed combustion, and pollution control in coal-powered plants. Finally, progress in renewable energy technologies, including solar heating and cooling, biomass, and large and small wind energy conversion devices is described.

  18. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  19. Renewable energy technologies in Australia: research, status and prospects

    International Nuclear Information System (INIS)

    In support of environmental goals - principally reductions in greenhouse gas emissions from the energy sector - Australian Federal and State governments have put in place a range of measures to support the deployment of increasing levels of renewable energy products and services. These market-making mechanisms complement Australia's leadership in a wide range of technologies for stationary energy applications of renewable energy, including photovoltaics, electricity storage, concentrating solar power, small wind turbines, energy efficiency products, hot dry rock geothermal and wave power. Industry is responding to these market and technology opportunities, and associated policy measures to support their growth, with the aim of growing a sizeable renewable energy sector that delivers economically competitive solutions for Australian and export markets. (author)

  20. Renewable energy technology applications in the Asian region

    International Nuclear Information System (INIS)

    The interest shown by Asia in renewable energy technologies is currently extremely high as the region is expected to account for up to 50 percent of the total world power generation equipment orders over the next ten years. Mature developed technologies for power production from renewable energy resources are now available in the form of micro and mini hydro plants, biomass pyrolysis and gasification units, wind aerogenerators and photovoltaic arrays. If Australia is to move towards a sustainable energy society, renewable energy resources must be utilized on a widespread scale as soon as possible. There are large niche markets for renewable energy resource based equipment in Australia, as well as immense market opportunities in the neighbouring fast growing economies in Asia. Key issues to be addressed in terms of implementing major renewable energy programs in the region on a large scale include identification and encouragement of reliable markets, and mass production of high quality reliable products. (author). 10 refs

  1. Factors influencing future oil and gas prospects in the Arctic

    International Nuclear Information System (INIS)

    The article explores oil and natural gas development in the Arctic. While several commentators have argued that an increase in Arctic petroleum production in the years to come will follow directly from an increased demand for energy, our study finds that oil and natural gas production in the Arctic is dependent on a range of variables. By using climate-driven changes as a baseline, we examine spill-over effects and conditions that are important for further Arctic hydrocarbon production. Using the available literature from different scientific fields, this article provides a broad and nuanced perspective on the much debated question of whether or not the Arctic will become a region driven by oil and gas production. - Highlights: ► We study Arctic oil and gas activity. ► We consider climate changes, economic conditions, and political institutions. ► Increased Arctic activity is conditioned on several factors. ► Climate changes, energy prices, energy demand, and political incentives drives Arctic activity.

  2. Integration of energy efficient technologies in UK supermarkets

    International Nuclear Information System (INIS)

    The purpose of this paper is twofold: to determine if the integration of energy efficient technologies in UK supermarkets can determine consumer behaviour, and to establish if such activities can help satisfying the environmental elements of the clients corporate social responsibilities (CSR) in an attempt to create a competitive advantage. A literature review of existing material considered the history and drivers of sustainability, the types of energy efficient technologies and factors concerning CSR and consumer behaviour in relation to the supermarket industry. Interviews with 15 senior store managers were recorded and transcribed. The opinions of the senior store managers were then sought and analysed using qualitative research software NVivo software. Validity of the data was achieved at a later stage through workshops. The results of this paper suggested that there is a definite lack of awareness and knowledge amongst customers regarding energy efficient technologies. From the findings, it was further established that the key driver for retailers who integrate energy efficient technologies is fiscal incentives, although it was suggested some retailers use CSR strategies to report there are environmental achievements it was ultimately found that cost savings were the primary driver. - Highlights: • The effect of sustainability towards consumer behaviour was explored. • Majority of consumers are unaware of energy efficient technologies. • Energy efficient technologies do not determine or create shifts in paradigm in consumer actions. • Stores are driven to integrate energy efficient technologies more by government legislation. • Participants were clear in making the point that their image and reputation was based on trust

  3. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  4. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  5. Energy technologies and the environment: environmental information handbook

    International Nuclear Information System (INIS)

    This manual draws together information on the environmental consequences of energy technologies that will be in use in the United States during the next 20 years. We hope it will prove useful to planners, policymakers, legislators, researchers, and environmentalists. The information on environmental issues, control technologies, and energy production and conservation processes should also be a convenient starting point for deeper exploration. Published references are given for the statements, data, and conclusions so that the interested reader can obtain more detailed information where necessary. Environmental aspects of energy technologies are presented in a form suitable for government and public use and are intended to assist decisionmakers, researchers, and the public with basic information and references that can be relied upon through changing policies and changing world energy prices

  6. Arctic Environmental Data Directory

    International Nuclear Information System (INIS)

    The Arctic Environmental Data Directory (AEDD) is being developed in cooperation with the US Global Change Research Plan. The AEDD Working Group, with members from US and Canadian agencies and academia, have described more than 300 Arctic data sets in a subset of an online data directory maintained by the US Geological Survey (USGS), ESDD (the Earth Science Data Directory). Through various links known as the Inter-operable Directory, the contents of AEDD are made available to scientists who use the NASA, NOAA, NSF and USGS data directories. Thus, scientists studying global change have access to Arctic data, and scientists studying the Arctic have access to global change data. The AEDD Working Group has sponsored development of a prototype Compact Disc Read Only Memory (CDROM) containing the indexed contents of the AEDD. Named Arctic Data Interactive (ADI), the disc was developed for use on Apple Macintosh and IBM PC-compatible computers, and uses a graphical and intuitive hypermedia user interface. The disc also contains portions of an Arctic Bibliography prepared in concert with the Polar Library Colloquy, sample full-text articles with illustrations, and selected data sets, including tabular data, text, and imagery. The ADI prototype is prepared as a model for organizing, presenting and distributing large quantities of Arctic and global change data and information to the science community. It is intended to be the first series of CDROMs with a consistent graphic design and user interface to place Arctic data and information on the desktop. The data are packaged with a powerful set of intuitive tools to navigate through and preview data sets from many disciplines and institutions. AEDD and ADI are sponsored by the Inter-agency Arctic Research Policy Committee and the Inter-agency Working Group on Data Management for Global Change, with guidance from the US Arctic Research Commission

  7. Solar energy: state of the art, technological bottlenecks

    International Nuclear Information System (INIS)

    First Japan then Germany and now most westernized countries have put into effect measures and regulations favoring the development of solar energy and solar industry. Today solar energy is full fledged and is engaged into a race toward lower costs and better performance. The study shows that if the pace of progress is maintained solar energy will be competitive by 2020. This evolution will rely more on a continuous flux of innovations than on a series of abrupt technological breakthroughs. (A.C.)

  8. Market Structure and the Penetration of Alternative Energy Technologies

    OpenAIRE

    Tsur, Yacov; Zemel, Amos

    2009-01-01

    Energy market prices ignore external effects, hence miss-allocate energy generation between (polluting) fossil fuels and (clean) solar technologies. Correcting the failure requires understanding the market allocation forces at hand. An important feature of solar energy is that its cost of supply is predominantly due to upfront investments in capital infrastructure (rather than to the actual supply rate) and this feature has far reaching implications for the market allocation outcome. Studying...

  9. Overview of European innovation activities in marine energy technology

    OpenAIRE

    CORSATEA TEODORA; MAGAGNA DAVIDE

    2014-01-01

    This report aims at providing an overview of the research capabilities for innovation activities in marine energy within Europe in 2011. The sector features intense product innovation, embodied by development of diverse ocean energy devices, which is dominant in the early stages, when the market is not yet well defined. Overall, the mobilization of financial resources for wave and tidal energy gathers only 10 % of the aggregated (public and private) investment in mature technology (wind techn...

  10. Overview of European innovation activities in marine energy technology

    OpenAIRE

    CORSATEA TEODORA; MAGAGNA DAVIDE

    2013-01-01

    This report aims at providing an overview of the research capabilities for innovation activities in marine energy within Europe in 2011. The sector features intense product innovation, embodied by development of diverse ocean energy devices, which is dominant in the early stages, when the market is not yet well defined. Overall, the mobilization of financial resources for wave and tidal energy gathers only 10 % of the aggregated (public and private) investment in mature technology (wind techn...

  11. Regulatory instruments for deployment of clean energy technologies

    OpenAIRE

    Ignacio J. Pérez-Arriaga

    2010-01-01

    Loyola de Palacio Energy Policy Chair This paper previously appeared as Working Paper of the MIT Center for Energy and Environmental Policy Research (MIT CEEPR WP 09-009, July 2009) Answering to the formidable challenge of climate change calls for a quick transition to a future economy with a drastic reduction in GHG emissions. And this in turn requires the development and massive deployment of new low-carbon energy technologies as soon as possible. Although many of these te...

  12. Meaningful Field Trip in Education of Renewable Energy Technologies

    OpenAIRE

    Hasan Said Tortop

    2013-01-01

    Renewable energy sources, in terms of countries‟ obtaining their energy needs from clean and without harming the environment is becoming increasingly important. This situation also requires improving the quality of science education will be given in this field. In this activity, in a field trip to the center for the renewable energy resources technologies, the application of learning cycle model appropriate for constructivist approach is shown. In the example of solar chimney activity accordi...

  13. Capacity building in renewable energy technologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, Ingvar

    2010-09-15

    The renewable energy sources are expected to provide 20-40% of the world primary energy in 2050, depending on scenarios. A key element in the mitigation of climate change is capacity building in renewable energy technologies in the developing countries, where the main energy use growth is expected. An innovative training programme for geothermal energy professionals developed in Iceland is an example of how this can be done effectively. In 1979-2009, 424 scientists/engineers from 44 developing countries have completed the 6 month courses. In many countries in Africa, Asia, C-America, and E-Europe, UNU-GTP Fellows are among the leading geothermal specialists.

  14. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  15. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  16. Renewable energy in Russia: markets, development and technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, E. [Stockholm Environment Inst., Boston, MA (United States)

    1999-07-01

    Five potential markets in Russia offer commercial opportunities for renewable energy that are nearly cost-competitive with conventional forms of energy--grid-connected electricity from wind power, electricity for villages and small settlements from hybrid wind-diesel and biomass, district heating for buildings from biomass, hot water for buildings from solar thermal, and electricity and heat from geothermal. Over the last several decades the Soviet Union conducted research and development on several forms of renewables energy. Technological infrastructure, scientific and technical knowledge, engineering and technical skills, and factories and equipment are all well developed assets. But the translation of these assets into commercial renewable energy technologies and markets is a problem because associated market-oriented skills and institutions are still lacking. Many barriers also exist, including lack of information and demonstration experience, lack of long-term commercial financing, a perceived climate of high investment risk, technology acceptance, some direct and indirect energy price subsidies (most energy prices have risen to market levels), utility monopolies and the absence of operational regulatory frameworks for independent power producers, and historical enterprise specialisation. Market intermediation is very important for renewable-energy investments and technology transfer, providing the knowledge, information, skills, services, financing, and analysis that is necessary to overcome barriers. Joint ventures with foreign multinational corporations represent another important means for overcoming barriers, one that take advantage of Russian technological capabilities. Four case studies illustrate the most prominent examples of renewable energy technology transfer with Russia, Ukraine, and the Baltic States during the period 1992-1996. (Author)

  17. VTT Energy`s new gasification and pyrolysis technology programme

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [IMEC, Leuven (Belgium)

    1997-12-31

    The publicly funded gasification and pyrolysis research activities of the Technical Research Centre of Finland (VTT) have been integrated into three-year programme, known as PROGAS, to promote Finnish gasification and pyrolysis R and D and improve contacts with companies that utilize these technologies. The programme will focus on applied technical research and on process and equipment development carried out with industry

  18. High-Tc superconductors energy technology uses

    International Nuclear Information System (INIS)

    The present state of the fabrication of long superconducting strips of high current-carrying capacities in liquid nitrogen is described with emphasis on Bi (2223) and Bi (2212) compounds. Prototypes, e.g. cables, current limiters, switches, or transformers, can be developed at 77 K in the case of small magnetic fields. Small test magnets for high-field generation have been tested successfully at 4.2 K. The systems' anisotropy still limits energy storage uses to T ∼ 20 K. In Switzerland and at the international level, great efforts go into investigations of materials which can increase operating temperatures to 77 K. (orig.)

  19. 78 FR 31997 - Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp...

    Science.gov (United States)

    2013-05-28

    ... COMMISSION Greatmat Technology Corp., Kentucky USA Energy, Inc., Solar Energy Ltd., and Visiphor Corp., Order... lack of current and accurate information concerning the securities of Solar Energy Ltd. because it has... concerning the securities of Kentucky USA Energy, Inc. because it has not filed any periodic reports...

  20. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t