WorldWideScience

Sample records for archean barberton greenstone

  1. Petrochronology in constraining early Archean Earth processes and environments: Barberton greenstone belt, South Africa

    Science.gov (United States)

    Grosch, Eugene

    2017-04-01

    Analytical and petrological software developments over the past decade have seen rapid innovation in high-spatial resolution petrological techniques, for example, laser-ablation ICP-MS, secondary ion microprobe (SIMS, nano-SIMS), thermodynamic modelling and electron microprobe microscale mapping techniques (e.g. XMapTools). This presentation will focus on the application of petrochronology to ca. 3.55 to 3.33 billion-year-old metavolcanic and sedimentary rocks of the Onverwacht Group, shedding light on the earliest geologic evolution of the Paleoarchean Barberton greenstone belt (BGB) of South Africa. The field, scientific drilling and petrological research conducted over the past 8 years, aims to illustrate how: (a) LA-ICP-MS and SIMS U-Pb detrital zircon geochronology has helped identify the earliest tectono-sedimentary basin and sediment sources in the BGB, as well as reconstructing geodynamic processes as early as ca. 3.432 billion-years ago; (b) in-situ SIMS multiple sulphur isotope analysis of sulphides across various early Archean rock units help to reconstruct atmospheric, surface and subsurface environments on early Archean Earth and (c) the earliest candidate textural traces for subsurface microbial life can be investigated by in-situ LA-ICP-MS U-Pb dating of titanite, micro-XANES Fe-speciation analysis and metamorphic microscale mapping. Collectively, petrochronology combined with high-resolution field mapping studies, is a powerful multi-disciplinary approach towards deciphering petrogenetic and geodynamic processes preserved in the Paleoarchean Barberton greenstone belt of South Africa, with implications for early Archean Earth evolution.

  2. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  3. Microfacies of mappable Archean biomats, Moodies Group, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Gamper, Antonia; Heubeck, Christoph; Ohnemueller, Frank; Walsh, Maud

    2010-05-01

    The ca. 3.22 Ga-old Moodies Group, Barberton Mountain Land, South Africa, arguably includes the world's oldest regionally mappable biofacies. There, abundant smooth, wavy, domal or cuspate, interwoven or parallel-stratified laminae of isotopically light kerogen (Noffke et al. 2006) in shallow-water or coastal environments show a microtopography of several cm, deform cohesively, trap and bind grains, and were surficially rapidly silicified. In order to investigate the microfacies and habitat of these extensive biomats, we measured stratigraphic sections, sampled for petrography and composition, and documented sedimentary structures throughout. Seven stratigraphic sections allow the reconstruction of a coastal depositional system with an thickness of approx. 240 m along an > 11 km long outcrop belt. The system can be subdivided in (from base to top deepening) terrestrial coastal, low-angle shoreline, subtidal and shoreface facies. Biomats are most densely (mm- to cm-) spaced in the shoreface unit whereas they are least common in the basal terrestrial unit in which single-pebble trains and thin gravel conglomerates occur. Biomats (mean 4 mm thick) reach their greatest individual thickness (up to 0,8 cm) and dominate the spectrum of sedimentary structures in the subtidal unit where they form black, internally laminated chert bands. Most chert bands overlie lenses of elongate, well-sorted, coarse-grained sandstone but are in turn sharply overlain by medium- and fine-grained sandstone, suggesting cyclic current activity. Clustered or regularly spaced (sub-)vertical fluid escape structures penetrate and ductily deform densely spaced interwoven biomats. They occur most widely in the shoreface facies, show a mean height of 49 cm, are commonly offset horizontally, and reach up to 230 cm. The margins of several shallow (max. 1 m deep) and up to 8 m wide channels erosively truncate wrinkled biomats of the terrestrial coastal facies. Channel fill includes dominant medium- to

  4. Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains

    Directory of Open Access Journals (Sweden)

    Nicola McLoughlin

    2009-09-01

    Full Text Available In the Barberton Scientific Drilling Program (BSDP we successfully completed three drill holes in 2008 across strategically selected rock formations in the early Archean Barberton Greenstone Belt, South Africa. This collaborative project’s goal is to advance understanding of geodynamic and biogeochemical processes of the young Earth. The program aims to better define and characterize Earth’s earliest preserved ocean crust shear zones and microbial borings in Archean basaltic glass, and to identify biogeochemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work will address the question of earliest plate tectonics in the Archean, the δ18O composition, the redox state and temperature of Archean seawater, and the origin of life question.

  5. Migmatitic rocks southwest of the Barberton greenstone belt

    International Nuclear Information System (INIS)

    Robb, L.J.; Anhaeusser, C.R.

    1981-01-01

    A geologic survey was done on the migmatitic rocks southwest of the Barberton greenstone belt. A table is given on the chemical analyses of components from migmatic outcrops in this area, as well as on the chemical analyses of some selected rock types found in greenstone xenoliths, together with leuco-biotite tomalite/tronomjemite gneisses in the area surrounding the Boesmanskop syenite pluton. Isotope dating was also used in the survey

  6. Two distinct origins for Archean greenstone belts

    Science.gov (United States)

    Smithies, R. Hugh; Ivanic, Tim J.; Lowrey, Jack R.; Morris, Paul A.; Barnes, Stephen J.; Wyche, Stephen; Lu, Yong-Jun

    2018-04-01

    Applying the Th/Yb-Nb/Yb plot of Pearce (2008) to the well-studied Archean greenstone sequences of Western Australia shows that individual volcanic sequences evolved through one of two distinct processes reflecting different modes of crust-mantle interaction. In the Yilgarn Craton, the volcanic stratigraphy of the 2.99-2.71 Ga Youanmi Terrane mainly evolved through processes leading to Th/Yb-Nb/Yb trends with a narrow range of Th/Nb ('constant-Th/Nb' greenstones). In contrast, the 2.71-2.66 Ga volcanic stratigraphy of the Eastern Goldfields Superterrane evolved through processes leading to Th/Yb-Nb/Yb trends showing a continuous range in Th/Nb ('variable-Th/Nb' greenstones). Greenstone sequences of the Pilbara Craton show a similar evolution, with constant-Th/Nb greenstone evolution between 3.13 and 2.95 Ga and variable-Th/Nb greenstone evolution between 3.49 and 3.23 Ga and between 2.77 and 2.68 Ga. The variable-Th/Nb trends dominate greenstone sequences in Australia and worldwide, and are temporally associated with peaks in granite magmatism, which promoted crustal preservation. The increasing Th/Nb in basalts correlates with decreasing εNd, reflecting variable amounts of crustal assimilation during emplacement of mantle-derived magmas. These greenstones are typically accompanied in the early stages by komatiite, and can probably be linked to mantle plume activity. Thus, regions such as the Eastern Goldfields Superterrane simply developed as plume-related rifts over existing granite-greenstone crust - in this case the Youanmi Terrane. Their Th/Nb trends are difficult to reconcile with modern-style subduction processes. The constant-Th/Nb trends may reflect derivation from a mantle source already with a high and constant Th/Nb ratio. This, and a lithological association including boninite-like lavas, basalts, and calc-alkaline andesites, all within a narrow Th/Nb range, resembles compositions typical of modern-style subduction settings. These greenstones are very

  7. The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.

    2015-02-01

    In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.

  8. Applications of high resolution airborne magnetic and radiometric data in the Barberton Greenstone Belt of South Africa

    International Nuclear Information System (INIS)

    Moore, C.

    1994-01-01

    We investigated the data obtained from a geophysical survey of the Greenstone Belt in the Barberton mountain land in the Transvaal, South Africa. A geological map is derived from the airborne magnetic and radiometric survey which differs significantly from the published geological map, particularly in the eastern are of the survey. There is no evidence contained within the geological data to suggest that the Greenstone Belt extends to a depth greater that 3 kilometers. The major geological constituents of the Barberton mountain land displays distinctive and diagnostic radiometric signatures, enabling accurate lithologic discrimination. 63 refs

  9. Detrital Zircon Geochronology of Sedimentary Rocks of the 3.6 - 3.2 Ga Barberton Greenstone Belt: No Evidence for Older Continental Crust

    Science.gov (United States)

    Drabon, N.; Lowe, D. R.; Byerly, G. R.; Harrington, J.

    2017-12-01

    The crustal setting of early Archean greenstone belts and whether they formed on or associated with blocks of older continental crust or in more oceanic settings remains a major issue in Archean geology. We report detrital zircon U-Pb age data from sandstones of the 3.26-3.20 Ga Fig Tree and Moodies Groups and from 3.47 to 3.23 Ga meteorite impact-related deposits in the 3.55-3.20 Ga Barberton greenstone belt (BGB), South Africa. The provenance signatures of these sediments are characterized by zircon age peaks at 3.54, 3.46, 3.40, 3.30, and 3.25 Ga. These clusters are coincident either with the ages of major episodes of felsic to intermediate igneous activity within and around the belt or with the ages of thin felsic tuffs reflecting distant volcanic activity. Only 15 of the reported 3410 grains (old zircons could represent felsic rocks in older, unexposed parts of the BGB sequence, but are too few to provide evidence for a continental source. This finding offers further evidence that the large, thick, high-standing, highly evolved blocks of continental crust with an andesitic bulk composition that characterize the Earth during younger geologic times were scarce in the early Archean.

  10. High but balanced sedimentation and subsidence rates (Moodies Group, Barberton Greenstone Belt), followed by basin collapse: Implication for Archaean tectonics

    Science.gov (United States)

    Heubeck, Christoph; Lowe, Donald R.; Byerly, Gary R.

    2010-05-01

    top of the underlying Fig Tree Group (Schoongezicht Fm.; Byerly et al., 1996), implying that ca. 2000m of Moodies sandstones and subordinate siltstones and conglomerates were deposited in not more than a few (0-6) Ma. Their comparatively low degree of facies variation and lithological change implies a balance between rates of sediment supply and of subsidence, creating thick stacked units. Ferruginous shales and thin BIFs of the upper Moodies Group suggest that background 'Fig-Tree-style' sedimentation continued during Moodies time but was mostly overwhelmed by the apparently brief but massive influx of medium- to coarse-grained quartzose sediment. Because two progressive unconformities, marking Moodies basin uplift and onset of renewed overall BGB shortening, occur only 50 m above this dated unit, they are likely of a similar age and imply that dominant NW-SE-directed shortening in the BGB began shortly after 3230+-6 Ma. The combination of these new data with published information thus suggest that the Moodies Basin formed after 3225+-6 Ma (i.e., at the earliest at 3231) but was already largely filled and began to be deformed by 3231+-6 (i.e., at the latest by 3225). Moodies deposition thus happened geologically nearly instantaneously following the end of Fig Tree volcanism, took very little time and deposited large volumes of sediments on a rapidly subsiding basement just prior to large-scale BGB deformation. REFERENCES Byerly, G.R., Kroner, A., Lowe, D.R., Todt W., Walsh, M.M., 1996, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the Upper Onverwacht and Fig Tree groups: Precambrian Research, 78, p. 125-138. Eriksson, K.A., 1979, Marginal marine depositional processes from the Archaean Moodies Group, Barberton Mountain Land, South Africa: Evidence and significance: Precambrian Res., 8, p. 153-182. Heubeck, C. and Lowe, D.R., 1994, Depositional and tectonic setting of the Archaean

  11. Depositional environment of the Onverwacht sedimentary rocks Barberton greenstone belt, South Africa

    Science.gov (United States)

    Paris, I. A.

    The Onverwacht Group is the basal part of the ca 3.5 Ga succession forming the Barberton greenstone belt. It comprises a volcanic pile overlain by a thin layer of volcaniclastic sediments which, due to silicification, are extremely well preserved. There has been a controversy as to how and in what environment these sediments were formed, different sets of data being presented to reach opposite conclusions. The Onverwacht Group has been extensively repeated tectonically and here for the first time, sediments from different structural levels are studied together. Three separate facies have been recognised, a distal and proximal turbidite facies and a subaerial facies. Deposition of Onverwacht Group sedimentary rocks occurred in an oceanic basin characterised by the presence of emergent volcanic islands. After eruption, material was deposited both subaerially and in a shallow submarine environment on the volcanic slopes and, as a result of pyroclastic flow, in the deeper parts of the basin.

  12. Evidence for Microbial Activity in ~3.5 Ga Pillow Basalts From the Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Muehlenbachs, K.; Banerjee, N. R.; Furnes, H.; Staudigel, H.; de Wit, M.

    2004-05-01

    We have discovered biosignatures in the formerly glassy rims of pillow lavas from the Mesoarchean Barberton Greenstone Belt (BGB) in South Africa. Over the last decade, bioalteration of basaltic glass in pillow lavas and volcaniclastic rocks has been well documented from in-situ oceanic crust and well-preserved Phanerozoic ophiolites. Much of the debate regarding the biogenicity of purported microfossils of early life centers on the interpretation of the host rocks' protoliths. To date, most protoliths have been interpreted to be of sedimentary origin. Some workers have proposed alternate origins for these substrates, including hydrothermal and even volcanic derivation, to cast doubt on their putative biogenicity. Hence studies documenting evidence for early life have proven to be controversial. Here we document evidence for microbial activity in ~3.5 Ga subaqueous volcanic rocks that represent a new, unambiguous geological setting in the search for early life on Earth. The BGB magmatic sequence is dominated by mafic to ultramafic pillow lavas, sheet flows, and intrusions interpreted to represent 3480- to 3220-million-year-old oceanic crust and island arc assemblages. The BGB pillow lavas are exceptionally well-preserved and represent unequivocal evidence that these rocks were erupted in a subaqueous environment. The formerly glassy rims of the BGB pillow lavas contain micron-sized, microbially generated, tubular structures consisting of titanite. These structures are interpreted to have formed during microbial etching of the originally glassy pillow rims and were subsequently mineralized by titanite during greenschist facies seafloor hydrothermal alteration. Overlapping metamorphic and magmatic dates from the pillow lavas suggest this process occurred soon after eruption of the pillow lavas on the seafloor. X-ray mapping has revealed the presence of carbon along the margins of the tubular structures. Disseminated carbonates within the microbially altered BGB

  13. A petrological study of Paleoarchean rocks of the Onverwacht Group: New insights into the geologic evolution of the Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Grosch, E. G.; Mcloughlin, N.; Abu-Alam, T. S.; Vidal, O.

    2012-12-01

    This study presents a multi-disciplinary petrological approach applied to surface samples and a total of 800 m of scientific drill core that furthers our understanding of the geologic evolution of the ca. 3.5 to 3.2 Ga Onverwacht Group of the Barberton greenstone belt (BGB), South Africa. Detrital zircon grains in coarse (diamictite) to fine-grained clastic sedimentary rocks of the Noisy formation (drill core KD2a) that unconformably overlies the volcanic ca. 3472 Ma Hooggenoeg Formation, are investigated by laser ablation LA-ICP-MS to constrain their 207Pb/206Pb ages for depositional age and provenance. A wide range in 207Pb/206Pb ages between ca. 3600 and 3430 Ma is reported, corresponding to surrounding TTG plutons and the ca.3667-3223 Ma Ancient Gneiss Complex. The youngest detrital zircon grain identified has an age of 3432 ± 10 Ma. Given the short time interval for a major change in geologic environment between ca. 3472 Ma and ca. 3432 Ma, it is argued here, that the Noisy formation is the earliest tectonic basin in the BGB, which developed during major tectonic uplift at ca. 3432 Ma. In the overlying ca. 3334 Ma Kromberg type-section, application of a chlorite thermodynamic multi-equilibrium calculation, dioctahedral mica hydration-temperature curve and pseudosection modelling, indicates a wide range in metamorphic conditions from sub-greenschist to the uppermost greenschist facies across the Kromberg type-section. A central mylonitic fuchsite-bearing zone, referred to as the Kromberg Section Mylonites, records at least two metamorphic events: a high-T, low-P (420 ± 30oC, sedimentary sequence contains detrital and diagenetic pyrites with a significant variation in Δ33S of -0.62 to +1.4‰ and δ34SCDT between -7.00 and +12.6‰ in the upper turbidite unit, to more narrow isotopic ranges with magmatic-atmospheric values in the underlying polymictitic diamictite. A sedimentary quartz-pyrite vein in the diamictite records the largest range and most negative

  14. A basin on an unstable ground: Correlation of the Middle Archaean Moodies Basin, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ohnemueller, Frank; Heubeck, Christoph; Kirstein, Jens; Gamper, Antonia

    2010-05-01

    The 3.22 Ga-old Moodies Group, representing the uppermost part of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), is the oldest well-exposed, relatively unmetamorphosed, quartz-rich sedimentary unit on Earth. Moodies facies (north of the Inyoka Fault) were thought to be largely of alluvial, fluvial, deltaic or shallow-marine origin (Anhaeusser, 1976; Eriksson, 1980; Heubeck and Lowe, 1994) and in its upper part syndeformational. However, units can only locally be correlated, and the understanding of the interplay between Moodies sedimentation and deformation is thus limited. We mapped and measured Moodies units in the northern BGB. They partly consist of extensive turbiditic deepwater deposits, including graded bedding, flame structures, and slumped beds, interbedded with jaspilites. These contrast with shallow-water environments, south-facing progressive unconformities and overlying alluvial-fan conglomerates along the northern margin of the Saddleback Syncline further south. The palaeogeographic setting in which late BGB deformation was initiated therefore appears complex and cannot be readily explained by a simple southward-directed shortening event. In order to constrain Moodies basin setting before and during late-Moodies basin collapse, we correlated ~15 measured sections in the northern and central BGB. Most units below the Moodies Lava (MdL, ca. 3230.6+-6 Ma) can be correlated throughout although facies variations are apparent. Above the Moodies Lava, coarse-grained units can only be correlated through the Eureka Syncline and the Moodies Hills Block but not with the Saddleback Syncline. Fine-grained and jaspilitic units can be correlated throughout the northern BGB. Moodies below-wavebase deposition occurred largely north of the Saddleback Fault. The observations are consistent with a pronounced basin compartmentalization event following the eruption of the MdL which appeared to have blanketed most of the Moodies basin(s) in middle Moodies

  15. Geological and geochemical characteristics of the Heerenveen and Mpuluzi batholiths south of the Barberton greenstone belt and preliminary thoughts on their petrogenesis

    International Nuclear Information System (INIS)

    Anhaeusser, C.R.; Robb, L.J.

    1982-01-01

    The Archaean granitic terrane south and south-west of the Barberton greenstone belt consists predominantly of an older suite of tonalitic and trondhjemitic gneisses into which have been emplaced two large multi-component granitoid bodies known as the Heerenveen and Mpuluzi batholiths. Although geochronologic and Sr-isotopic studies demonstrate that there is little distinction between the ages and initial ratios of the various phases associated with these batholiths, each body displays contrasting textural and geochemical characteristics. The oldest phase is represented by coarse porphyritic granitic rocks into which is intruded a medium-to-fine-grained homogeneous granodioritic phase. Both phases are components of a bimodal association that is, in turn, intruded by a third phase which includes medium-grained pink or grey granodiorite and adamellite dykes feeding a homogeneous sheet-like carapace over-lying the coarser porphyritic granites. A fourth phase, consisting predominantly of potassic migmatites and gneisses, occurs in the areas rimming the batholiths and represents the product of interaction between the batholith magmas and components of the pre-existing crust in the region. Geochemically, the Heerenveen batholith has trondhjemitic affinities whereas the Mpuluzi batholith consists predominantly of potassic granites. Together with the Nelspruit batholith north of the Barberton greenstone belt the three granitic bodies show a progression in actual values of K 2 O, Na 2 O, Rb, and Sr with the Nelspruit body having chemical characteristics intermediate between the two

  16. The rheological behavior of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Ledevin, M.; Arndt, N.; Simionovici, A.

    2014-05-01

    A 100 m-thick complex of near-vertical carbonaceous chert dikes marks the transition from the Mendon to Mapepe Formations (3260 Ma) in the Barberton Greenstone Belt, South Africa. Fracturing was intense in this area, as shown by the profusion and width of the dikes (ca. 1 m on average) and by the abundance of completely shattered rocks. The dike-and-sill organization of the fracture network and the upward narrowing of some of the large veins indicate that at least part of the fluid originated at depth and migrated upward in this hydrothermal plumbing system. Abundant angular fragments of silicified country rock are suspended and uniformly distributed within the larger dikes. Jigsaw-fit structures and confined bursting textures indicate that hydraulic fracturing was at the origin of the veins. The confinement of the dike system beneath an impact spherule bed suggests that the hydrothermal circulations were triggered by the impact and located at the external margin of a large crater. From the geometry of the dikes and the petrography of the cherts, we infer that the fluid that invaded the fractures was thixotropic. On one hand, the injection of black chert into extremely fine fractures is evidence for low viscosity at the time of injection; on the other hand, the lack of closure of larger veins and the suspension of large fragments in a chert matrix provide evidence of high viscosity soon thereafter. The inference is that the viscosity of the injected fluid increased from low to high as the fluid velocity decreased. Such rheological behavior is characteristic of media composed of solid and colloidal particles suspended in a liquid. The presence of abundant clay-sized, rounded particles of silica, carbonaceous matter and clay minerals, the high proportion of siliceous matrix and the capacity of colloidal silica to form cohesive 3-D networks through gelation, account for the viscosity increase and thixotropic behavior of the fluid that filled the veins. Stirring and

  17. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics?

    Science.gov (United States)

    Kerrich, Robert; Polat, Ali

    2006-03-01

    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  18. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    Science.gov (United States)

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.

  19. An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa

    Science.gov (United States)

    Layer; Kroner; McWilliams

    1996-08-16

    The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.

  20. Audio-magnetotelluric investigation of sulfide mineralization in Proterozoic-Archean greenstone belts of Eastern Indian Craton

    Science.gov (United States)

    Singh, Shailendra; Maurya, Ved P.; Singh, Roshan K.; Srivastava, Shalivahan; Tripathi, Anurag; Adhikari, P. K.

    2018-04-01

    Greenstone belts are well known for gold occurrences at different regions of the world. The Dhanjori basin in the eastern Singhbhum region shows major characteristics of a rifted greenstone belt. Initially, we conducted 14 audio-magnetotelluric (AMT) measurements for a profile of ˜ 20 km in the frequency range of 1 kHz to 10 Hz over this rather complex geologic environment covering Dhanjori Volcanics (DhV) and Kolhan Group (KG). Subsequently, gravity and magnetic surveys were also conducted over this AMT profile. The purpose of the survey was to identify and map conductive features and to relate them to metallogeny of the area along with the mapping of the basement of Dhanjori basin. The strike analysis showed N30°W strike for DhV for all the frequencies and for sites over KG domain in the frequency range of 100-10 Hz, but for KG domain, the obtained strike in 1 kHz to 100 Hz is N45°E. As the combination of transverse electric (TE), transverse magnetic (TM) and tipper (Tzy) can recover the electrical signature in complex geological environment, we discuss the conductivity model obtained from TE+TM+Tzy only. The inversion was carried for the regional profile with 14 sites and for 7 sites over KG domain. Conductivity model shows two well resolved conductors, one each in KG and Quartz Pebble Conglomerate Dhanjori (QPCD) domains respectively showing common linked concordant features between these regional and KG profiles. The conductors are interpreted as sulfide mineralization linked with QPCD group of rocks which may host gold. These conductors are also horizontally disposed due to the intrusive younger Mayurbhanj Granite. These intrusives correlate well with the gravity modeling as well. The thickness of the Dhanjori basin at the central is about 3.0 km, similar to that from gravity modeling. The conductivity model also indicates the presence of shallow conductors, but could not be resolved due to lack of high frequency data. However, the results from the close

  1. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

    Science.gov (United States)

    Brengman, Latisha A.; Fedo, Christopher M.

    2018-04-01

    We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7-2.96, EuSN/EuSN∗ = 0.84-1.72, Y/Ho = 25.20-27.41, LaSN/LaSN∗ = 0.97-1.29, and Zr/Hf = 38.38-42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33-2.89, EuSN/EuSN∗ 1.33-2.5, Y/Ho = 23.94-30, LaSN/LaSN∗ 0.93-1.34, and Zr/Hf = 40-70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62-2.88, EuSN/EuSN∗ 1.30-7.15, LaSN/LaSN∗ 1.02-1.86, Y/Ho = 25.56-55, and Zr/Hf = 35-50). We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We

  2. SHRIMP U-Pb zircon dating of Archean core complex formatio and pancratonic strike-slip deformation in the East Pilbara Granite-Greenstone Terrain

    NARCIS (Netherlands)

    Zegers, T.E.; Nelson, D.R.; Wijbrans, J.R.; White, S.H.

    2001-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb dating of zircons from granitic rocks in the East Pilbara Granite-Greenstone Terrain has provided time constraints for main tectonic events in the Shaw Granitoid Complex and has shown that deformation was intricately related to granitoid

  3. Magmatism and Tectonics in the Meso-Archean Pongola Supergroup, South Africa

    Science.gov (United States)

    Wilson, Allan

    2013-04-01

    The Pongola Supergroup is one of the most extensive and well preserved volcano-sedimentary successions emplaced in a continental setting in the Meso-Archean (c. 2.95 Ga). It contrasts with both the older (Barberton type c.3.5 Ga) and younger (Belingwe type c.2.7 Ga) greenstone belts in southern Africa in that the sequence has not undergone the strong horizontal compressional tectonics typically related to greenstone belt-TTG environments. However, it is appropriate to compare this sequence with rocks of the Barberton greenstone belt by which the final phase of deposition preceded that of the juxtaposed Pongola basin with a relatively small time interval. The Pongola succession, which commenced with the first major magmatic event after the Barberton greenstone belt, overlies granitoids and remnants of greenstone belts in SE South Africa and in SW Swaziland. Formation was not in a continental rift environment but most likely in a marginal epicontinental basin with syn-depositional subsidence in a half-graben fault system in the type area. The Pongola rocks occur in two domains related to a NW-trending central basement high in the Kaapvaal Craton and achieving a maximum thickness of 8 km in the northern areas. The lower section (Nsuze group 3.7 km thick) is made up mainly of lavas and pyroclastic rocks and the upper section (Mozaan Group 4.3 km thick) is aranaceous sediments and argillites with a thick volcanic unit observed in the south-eastern facies. Chemical affinities of the lavas include tholeiite and calc-alkaline over the compositional range of basalt to rhyolite. There is a preponderance of andesites in the compositional array. The preservation of these rocks gives insight into the range of volcanic processes that took place at this stage of Earth history and in some areas it is possible to identify eruptions from a single source over several kilometres, as well as feeder-dyke systems to the lava flows. Simultaneous eruption of contrasting magmas from several

  4. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    Science.gov (United States)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and sedimentary sulfides (δ34S = +8 to -23‰). We propose that the Hooggenoeg sulfides probably formed during early fluid-rock-microbe interaction involving sulfate-reducing microbes (c.f. Rouxel et al. 2008). The pillow lavas were then metamorphosed, the glass transformed to a greenschist facies assemblage and titanite growth encapsulated the microbial sulfides. In summary, the extreme sulfur isotope fractionations reported here independently point towards the potential involvement of microbes in the alteration of Archean volcanic glass. In situ sulfur isotope analysis of basalt-hosted sulfides may provide an alternative approach to investigating the existence of an Archean sub-seafloor biosphere that does not require the mineralization of early microbial microborings with organic linings.

  5. U/Pb (SHRIMP), 207Pb/206Pb, Rb/Sr, Sm/Nd e K/Ar geochronology of granite-greenstone terrains of Gaviao Block: implications for the Proterozoic and Archean evolution of Sao Francisco Craton, Brazil

    International Nuclear Information System (INIS)

    Leal, Luiz Rogerio Bastos

    1998-01-01

    The Gaviao Block (GB) in the northern portion of the Sao Francisco Craton-Northeast of Brazil, constitutes one of the oldest Archean fragments of the South American Platform Archean crust. GB underwent several events of juvenile accretion and reworking of continental crust along its evolutionary history, notably between the Archean and the Paleoproterozoic. 207 Pb/ 206 Pb isotopic analyses were carried out in two zircons populations from strongly migmatized TTG terranes found in the proximity of Brumado: the first population (7 crystals) is taken as representative of the crystallization period of the TTG terranes at 3300 ± 45 Ma; the second (2 crystals) represents the age of the first even of metamorphism/migmatization at 2910 ± 10 Ma. 207 Pb/ 206 Pb analyses in zircons from an outcrop of non-migmatized TTG in the area yielded a 3202 ± 15 Ma age (4 crystals), interpreted to be the crystallization period of the gneiss protolith. Sm/Nd analyses on the TTG rocks of the Brumado region yielded T DM model ages varying between 3.26 and 3.36 Ga and ε Nd (t) between -3.5 and +0.7. These data suggest the occurrence of juvenile accretions to the continental crust during the Archean, with differential involvement of crustal materials. The geochemical data of rare earth elements corresponding to the TTG terranes revealed moderate LRRE contents (La N =83,5), low HREE contents (La N =2,5) and a fairly fractionated pattern (La/Yb) N =34, besides lack of negative Eu anomaly, showing that these rocks have similar compositions to those TTG terranes of cratonic continents, as well as some Archean rocks from CSF (e.g. Sete Voltas, Boa Vista). Finally, the youngest ages present in GB rocks (ca. 1.2-0.45 Ga) represent the role played by tectono thermal events, which produced partial or total rejuvenation of the Rb/Sr and K/Ar isotopic systems during the Espinhaco and Brasiliano cycles. In particular, K/Ar ages illustrate the effect of younger regional cooling episodes related to the

  6. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  7. Coexistence of enriched and modern-like 142Nd signatures in Archean igneous rocks of the eastern Kaapvaal Craton, southern Africa

    Science.gov (United States)

    Schneider, Kathrin P.; Hoffmann, J. Elis; Boyet, Maud; Münker, Carsten; Kröner, Alfred

    2018-04-01

    The short-lived 146Sm-142Nd isotope system is an important tool for tracing Hadean crust-mantle differentiation processes and constraining their imprint on much younger rocks from Archean cratons. We report the first comprehensive set of high-precision 142Nd analyses for granitoids and amphibolites of the Ancient Gneiss Complex (AGC; Swaziland) and the oldest metavolcanic units of the Barberton Greenstone Belt (BGB; South Africa). The investigated samples span an age range from 3.66 Ga to 3.22 Ga and are representative of major geological units of the AGC and the lower Onverwacht Group of the BGB. Measured samples yielded μ142Nd values in the range from -8 ppm to +3 ppm relative to the JNdi-1 terrestrial standard, with typical errors smaller than 4.4 ppm. The distribution of the μ142Nd values for these 17 measured samples is bimodal with ten samples showing a tendency towards slightly negative μ142Nd anomalies, whereas seven samples have 142Nd similar to the terrestrial reference. The only confidently resolvable μ142Nd anomalies were found in a 3.44 Ga Ngwane Gneiss sample and in amphibolites of the ca. 3.45 Ga Dwalile Greenstone Remnant, revealing μ142Nd values ranging from - 7.9 ± 4.4 to - 6.1 ± 4.3 ppm. The μ142Nd deficits do not correlate with age, lithological unit, or sample locality. Instead, our results reveal that two distinct mantle domains were involved in the formation of the AGC crust. The two reservoirs can be distinguished by their μ142Nd signatures. Mantle-derived rocks tapped the enriched reservoir with negative μ142Nd at least until 3.46 Ga, whereas the granitoids preserved a negative μ142Nd signature that formed by incorporation of older AGC crust at least until 3.22 Ga. The oldest gneisses with no μ142Nd anomaly are up to 3.64 Ga in age, indicating that a modern terrestrial 142Nd reservoir was already present by early Archean times.

  8. Apartheid's Alcatraz: the Barberton prison complex during the early ...

    African Journals Online (AJOL)

    The purpose of this two-part article is to examine in detail the public discourse surrounding the Barberton Prison Complex during the early 1980s, at the height of the apartheid era. The prisons within the Barberton Prison Complex were notorious as being among the most punitive of the many prisons within apartheid South ...

  9. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil)

    Science.gov (United States)

    Peucat, J. J.; Mascarenhas, J. F.; Barbosa, J. S. F.; de Souza, S. L.; Marinho, M. M.; Fanning, C. M.; Leite, C. M. M.

    2002-07-01

    Felsic metavolcanics associated with supracrustal rocks provide U-Pb zircon and Sm-Nd TDM ages of approximately 3.3 Ga, which establish an Archean age of the Mundo Novo greenstone belt. A granodioritic gneiss from the Mairi complex, located on the eastern boundary of the Mundo Novo greenstone belt, exhibits a zircon evaporation minimum age of 3.04 Ga and a Nd model age of 3.2 Ga. These results constrain the occurrence of at least three major geological units in this area: the Archean Mundo Novo greenstone belt, the Archean Mairi gneisses, and the adjoining Paleoproterozoic (<2.1 Ga) Jacobina sedimentary basin. The Jacobina basin follows the same trend as the Archean structure, extending southward to the Contendas-Mirante belt, in which a similar Archean-Paleoproterozoic association appears. We postulate that during the Paleoproterozoic in the eastern margin of the Gavião block, these Archean greenstone belts constituted a zone of weakness along which a late-stage orogenic sedimentary basin developed.

  10. An overview of the lithological and geochemical characteristics of the Mesoarchean (ca. 3075) Ivisaartoq greenstone belt, southern West Greenland

    DEFF Research Database (Denmark)

    Polat, A.; Frei, Robert; Appel, P.W.U.

    2008-01-01

    Archean greenstone belts in the area. The Ivisaartoq greenstone belt is the largest Mesoarchean supracrustal lithotectonic assemblage in the Nuuk region. The belt contains well-preserved primary magmatic structures including pillow lavas, volcanic breccias, and cumulate (picrite) layers. It also includes...... depleted initial Nd isotopic signatures ( Nd = +4.2 to +5.0) than gabbros, diorites, and tholeiitic basalts ( Nd = +0.3 to +3.1), consistent with a strongly depleted mantle source. In some areas gabbros include up to 15 cm long white inclusions (xenoliths). These inclusions are composed primarily (>90...

  11. Physical volcanology of the mafic segment of the subaqueous New Senator caldera, Abitibi greenstone belt, Quebec, Canada

    International Nuclear Information System (INIS)

    Moore, Lyndsay N; Mueller, Wulf U

    2008-01-01

    Archean calderas provide valuable insight into internal geometries of subaqueous calderas. The New Senator caldera, Abitibi greenstone belt, Canada, is an Archean example of a subaqueous nested caldera with a basal stratigraphy dominated by gabbro-diorite dykes and sills, ponded magmas and basalt and andesite lava flows. The aim of our study is to focus on the use of physical volcanology to differentiate between the various mafic units found at the base of the New Senator caldera. Differentiation between these various mafic units is important from an exploration point of view because in modern subaqueous summit calders (e.g. Axial Seamount) margins of ponded magmas are often sites of VMS formation.

  12. Physical volcanology of the mafic segment of the subaqueous New Senator caldera, Abitibi greenstone belt, Quebec, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lyndsay N; Mueller, Wulf U [Universite du Quebec a Chicoutimi, 555 boul. du l' Universite, Chicoutimi, Quebec, G7H2B1 (Canada)], E-mail: lyndsay.moore@uqac.ca

    2008-10-01

    Archean calderas provide valuable insight into internal geometries of subaqueous calderas. The New Senator caldera, Abitibi greenstone belt, Canada, is an Archean example of a subaqueous nested caldera with a basal stratigraphy dominated by gabbro-diorite dykes and sills, ponded magmas and basalt and andesite lava flows. The aim of our study is to focus on the use of physical volcanology to differentiate between the various mafic units found at the base of the New Senator caldera. Differentiation between these various mafic units is important from an exploration point of view because in modern subaqueous summit calders (e.g. Axial Seamount) margins of ponded magmas are often sites of VMS formation.

  13. Geochemistry of the Bossoroca greenstone belt, Southernmost Brazil

    International Nuclear Information System (INIS)

    Koppe, J.C.; Hartmann, L.A.

    1988-01-01

    The Bossoroca greenstone belt is situated in the center of the State of Rio Grande do Sul and has a north-south extension of 18 Km and an east-west of 12 Km. It comprises two sequences. The lower Arroio Lajeadinho Sequence is made up of ultramafic schists and serpentinites, besides amphibolite, meta basalts and mafic meta-volcanoclastic rocks and banded iron-formation; some chert and graphitic rocks also occur. The upper Campestre Sequence is made up of meta volcanoclastic rocks of basaltic to rhyolitic composition with predominance of andesite. They are N A 2 O-rich (5.0 wt%), K 2 O-poor (0.8 wt%), with high Na/K ratios. The REE patterns are rather flat, with small negative Eu anomaly, similar to andesite from Archean or younger greenstone belts. The major and trace elements in samples from the Campestre Sequence were determined by X-ray fluorescence analysis and the rare earth elements by induced coupled plasma. (author)

  14. Geological, geochemical and isotopic characteristics of the Archaean Kaap Valley pluton, Barberton mountain land, South Africa

    International Nuclear Information System (INIS)

    Robb, L.J.; Barton, J.M. Jr.; Kable, E.J.D.; Wallace, R.C.

    1984-01-01

    The Kaap Valley pluton consists predominantly of a homogeneous weakly foliated, hornblende-bearing tonalite. It is among the oldest granitoid bodies yet recognized in the environs of the Barberton greenstone belt, yielding 207 Pb/ 206 Pb mineral ages of about 3300 Ma and a Rb-Sr whole rock isochron age of about 3500 Ma. The Kaap Valley pluton is distinctive in many respects. Whereas all other gneiss plutons in the area are characterized by a trondhjemitic bulk composition with mafic mineralogies dominated by biotite, the Kaap Valley pluton is tonalitic in bulk composition with hornblende (plus minus minor biotite) as its major mafic phase. In this paper, the results of a detailed geological, geochemical and Pb-isotopic study of the Kaap Valley pluton are presented. Questions relating to the origin of the body are considered, with an emphasis on the formation of a tonalitic magma which is more mafic than those typically encountered in the region. Although exposure does not permit a detailed structural study of the gneiss pluton consideration is given to its mode of emplacement

  15. Greenstone: uso actual en Argentina

    Directory of Open Access Journals (Sweden)

    Marcela Fushimi

    2018-04-01

    Full Text Available Este trabajo presenta las características e historia del software para crear y gestionar bibliotecas digitales Greenstone, desarrollado inicialmente por la Universidad de Waikato, Nueva Zelandia en 1997. En primer lugar, se describe la comunidad de usuarios a nivel global, focalizando en el uso actual que el software ha alcanzado en Argentina: la cantidad de implementaciones disponibles, su evolución, el tipo, tamaño y variedad de los desarrollos existentes, así como su aplicación a la gestión de repositorios digitales de ciencia y tecnología en el ámbito de las instituciones científicas, tecnológicas y de educación superior en Argentina. En segundo lugar, se detallan las acciones llevadas a cabo a partir de la creación del Centro Nacional de Promoción de Greenstone en Argentina en 2009. Datos recabados en encuestas realizadas permitieron observar que las razones predominantes para elegir esta plataforma fueron, entre otras, su facilidad de instalación y configuración, su bajo nivel de requerimiento tecnológico, la generalizada escasez de recursos humanos dedicados a esta actividad, y la complejidad que presentaban los softwares alternativos existentes en ese momento. A lo largo de estos 8 años, tanto los repositorios digitales como los sistemas que los soportan evolucionaron drásticamente, modificando el escenario actual. Paralelamente, en 2016 la nueva versión mayor de Greenstone implementó una reingeniería completa del software para su adaptación a las tecnologías en uso: XML, XSLT, Web-services y Java. Como consecuencia de esto, la comunidad de desarrollo local se plantea nuevos desafíos para la migración de las bibliotecas digitales y repositorios implementados con versiones anteriores.

  16. Apartheid's Alcatraz: the Barberton prison complex during the early ...

    African Journals Online (AJOL)

    By analysing a large number of reports dealing with events at Barberton during the period in question, in both English and Afrikaans language newspapers, as well as in both politically conservative and politically liberal newspapers, this article attempts to capture both the "smell" and the "feel" of what it was like to be ...

  17. U/Pb (SHRIMP), {sup 207}Pb/{sup 206}Pb, Rb/Sr, Sm/Nd e K/Ar geochronology of granite-greenstone terrains of Gaviao Block: implications for the Proterozoic and Archean evolution of Sao Francisco Craton, Brazil; Geocronologia U/Pb (SHRIMP), {sup 207}Pb/{sup 206}Pb, Rb/Sr, Sm/Nd e K/Ar dos terrenos granito-greenstone do Bloco do Gaviao: implicacoes para a evolucao arqueana e proterozoica do craton do Sao Francisco, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Luiz Rogerio Bastos

    1998-07-01

    The Gaviao Block (GB) in the northern portion of the Sao Francisco Craton-Northeast of Brazil, constitutes one of the oldest Archean fragments of the South American Platform Archean crust. GB underwent several events of juvenile accretion and reworking of continental crust along its evolutionary history, notably between the Archean and the Paleoproterozoic. {sup 207}Pb/{sup 206}Pb isotopic analyses were carried out in two zircons populations from strongly migmatized TTG terranes found in the proximity of Brumado: the first population (7 crystals) is taken as representative of the crystallization period of the TTG terranes at 3300 {+-} 45 Ma; the second (2 crystals) represents the age of the first even of metamorphism/migmatization at 2910 {+-} 10 Ma. {sup 207} Pb/{sup 206} Pb analyses in zircons from an outcrop of non-migmatized TTG in the area yielded a 3202 {+-} 15 Ma age (4 crystals), interpreted to be the crystallization period of the gneiss protolith. Sm/Nd analyses on the TTG rocks of the Brumado region yielded T{sub DM} model ages varying between 3.26 and 3.36 Ga and {epsilon}{sub Nd}{sup (t)} between -3.5 and +0.7. These data suggest the occurrence of juvenile accretions to the continental crust during the Archean, with differential involvement of crustal materials. The geochemical data of rare earth elements corresponding to the TTG terranes revealed moderate LRRE contents (La{sub N}=83,5), low HREE contents (La{sub N}=2,5) and a fairly fractionated pattern (La/Yb){sub N}=34, besides lack of negative Eu anomaly, showing that these rocks have similar compositions to those TTG terranes of cratonic continents, as well as some Archean rocks from CSF (e.g. Sete Voltas, Boa Vista). Finally, the youngest ages present in GB rocks (ca. 1.2-0.45 Ga) represent the role played by tectono thermal events, which produced partial or total rejuvenation of the Rb/Sr and K/Ar isotopic systems during the Espinhaco and Brasiliano cycles. In particular, K/Ar ages illustrate the

  18. High Ni in Archean tholeiites

    Science.gov (United States)

    Arndt, Nicholas T.

    1991-03-01

    Archean tholeiites generally have higher Ni, Co. Cr and Fe than most younger tholeiites with similar MgO contents. These characteristics cannot be attributed to high T or P batch melting in the Archean mantle, because, although such melts are enriched in siderophile elements, they have higher MgO than normal tholeiites. As primary melts fractionate to lower MgO, they lose Ni, Co and Cr. Nor can the differences between Archean and younger tholeiites be attributed to secular variation in mantle compositions because Archean komatiites have Ni, Co, Cr contents similar to modern (Gorgona) komatiites. It is suggested that the high siderophile element content of Archean tholeiites results from mixing of either komatiitic with basaltic magmas, as might occur in an ascending, melting mantle plume or column, or of komatiite and more evolved rocks, as may take place when komatiite encounters and assimilates crustal rocks.

  19. Stages of material transformations of Archean-Proterozoic rocks (Central-Karelian domain)

    International Nuclear Information System (INIS)

    Vinogradov, V.I.; Buyakajte, M.I.; Kolodyazhnyj, S.Yu.; Leonov, M.G.; Orlov, S.Yu.

    2001-01-01

    The age of the Archean-Proterozoic rocks from the south-east part of the Central-Karelian domain was determined by the method of Rb-Sr dating. It was ascertained that the age of the least tectonized rocks of granite-greenstone Archean foundation makes up 2800±70 mln. years at initial strontium isotopic ratio of 0.7022±0.0007. Gneisses of mainly plagiogranite composition, their age 1930±118 mln. years and strontium isotopic ratio 0.7170±0.0026, constitute the second group of the rocks. It is shown that isotopic age defined for the two groups of rocks agrees well with major geological events on the Baltic shield and planet as a whole [ru

  20. Evidence for 3.3-billion-year-old oceanic crust in the Barberton greenstone belt, South Africa

    Czech Academy of Sciences Publication Activity Database

    Grosch, E. G.; Sláma, Jiří

    2017-01-01

    Roč. 45, č. 8 (2017), 695-698 ISSN 0091-7613 Institutional support: RVO:67985831 Keywords : volcanic rocks * subduction zone * mountain land * evolution * geochemistry * constraints * komatiites * Kaapvaal * mantle * craton Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 4.635, year: 2016

  1. An Archean Biosphere Initiative

    Science.gov (United States)

    Anbar, A. D.; Boyd, E. S.; Buick, R.; Claire, M.; DesMarais, D.; Domagal-Goldman, D.; Eigenbrode, J.; Erwin, D.; Freeman, K.; Hazen, R.; hide

    2011-01-01

    The search for life on extrasolar planets will necessarily focus on the imprints of biolgy on the composition of planetary atmospheres. The most notable biological imprint on the modern terrestrial atmosphere is the presence of 21 % O2, However, during most of the past 4 billion years, life and the surface environments on Earth were profoundly different than they are today. It is therefore a major goal of the astrobiology community to ascertain how the O2 content of the atmosphere has varied with time. and to understand the causes of these variations. The NAI and NASA Exobiology program have played critical roles in developing our current understanding of the ancient Earth's atmosphere, supporting diverse observational, analytical, and computational research in geoscience, life science, and related fields. In the present incarnation of the NAI, ongoing work is investigating (i) variations in atmospheric O2 in the Archean to the Cambrian, (ii) characterization of the redox state of the oceans shortly before, during and after the Great Oxidation Event (GOE), and (iii) unraveling the complex connections between environmental oxygenation, global climate, and the evolution of life.

  2. U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones

    Science.gov (United States)

    Manikyamba, C.; Said, Nuru; Santosh, M.; Saha, Abhishek; Ganguly, Sohini; Subramanyam, K. S. V.

    2018-05-01

    Phanerozoic boninites record enrichments of U over Th, giving Th/U: 0.5-1.6, relative to intraoceanic island arc tholeiites (IAT) where Th/U averages 2.6. Uranium enrichment is attributed to incorporation of shallow, oxidized fluids, U-rich but Th-poor, from the slab into the melt column of boninites which form in near-trench to forearc settings of suprasubduction zone ophiolites. Well preserved Archean komatiite-tholeiite, plume-derived, oceanic volcanic sequences have primary magmatic Th/U ratios of 4.4-3.6, and Archean convergent margin IAT volcanic sequences, having REE and HFSE compositions similar to Phanerozoic IAT equivalents, preserve primary Th/U of 4-3.6. The best preserved Archean boninites of the 3.0 Ga Olondo and 2.7 Ga Gadwal greenstone belts, hosted in convergent margin ophiolite sequences, also show relative enrichments of U over Th, with low average Th/U ∼3 relative to coeval IAT, and Phanerozoic counterparts which are devoid of crustal contamination and therefore erupted in an intraoceanic setting, with minimal contemporaneous submarine hydrothermal alteration. Later enrichment of U is unlikely as Th-U-Nb-LREE patterns are coherent in these boninites whereas secondary effects induce dispersion of Th/U ratios. The variation in Th/U ratios from Archean to Phanerozoic boninites of greenstone belts to ophiolitic sequences reflect on genesis of boninitic lavas at different tectono-thermal regimes. Consequently, if the explanation for U enrichment in Phanerozoic boninites also applies to Archean examples, the implication is that U was soluble in oxygenated Archean marine water up to 600 Ma before the proposed great oxygenation event (GOE) at ∼2.4 Ga. This interpretation is consistent with large Ce anomalies in some hydrothermally altered Archean volcanic sequences aged 3.0-2.7 Ga.

  3. Zircon U-Pb ages of Guyana greenstone-gneiss terrane

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, A.K. (Cornell Univ., Ithaca, NY (USA)); Olszewski, W.J. Jr. (New Hampshire Univ., Durham (USA))

    1982-04-01

    Isotopic U-Pb studies of zircons collected from weathered metagreywackes of the Barama-Mazaruni Supergroup of northern Guyana, South America, demonstrate an age of origin of ca. 2250 Ma. This is the best estimate for the age of the associated metavolcanic rocks. Zircons from weathered gneiss of the Bartica complex, adjacent to the volcanic-sedimentary belts, yield a similar age. The contiguous greenstone-gneiss terrane of eastern Venezuela is also of similar age and comparable greenstone-gneiss terranes of eastern Suriname and French Guiana are probably also of this age. Continental crust formation of a style closely comparable to that of the Canadian Archean occurred on a very widespread scale in the Lower Proterozoic of the Guiana shield. The lead losses from the weathered zircons are comparable to those from zircons from fresh rock from the adjacent terrane of Venezuela, and the advantages of field concentration from numerous saprolite exposures warrant use of such material in future geochronological studies of the region.

  4. Geochemistry of metavolcanic rocks in the Archean Greenstone Belt of Identidade, SE Para, Brazil

    International Nuclear Information System (INIS)

    Souza, Zorano S.

    1995-01-01

    The paper discusses the geochemistry of the ultramafic and mafic volcanic rocks of the Identidade belt (IDB), in order to present hypothesis about their possible sources and magmatic evolution. The chemical data were obtained by ICP method. The analytical errors are less then 5% for major elements, less than 10% for the minor ones, and around 5% for trace elements. Save additional data from the meta ultramafic rocks of the Seringa belt, situated 100 km to the west of the IDB, were also considered. The XLFRAC program was employed for fractional crystallization modelling of major elements. For trace element modelling the equations of fractional crystallization and equilibrium partial melting were applied, using an unpublished program written in Pascal. 10 figs. 8 tabs

  5. The 3.26-3.24 Ga Barberton asteroid impact cluster: Tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia

    Science.gov (United States)

    Glikson, Andrew; Vickers, John

    2006-01-01

    The location in the Barberton Greenstone Belt (Kaapvaal Craton) of ∼3.26-3.24 Ga asteroid impact ejecta units at, and immediately above, a sharp break between a > 12 km-thick mafic-ultramafic volcanic crust (Onverwacht Group ∼3.55-3.26 Ga, including the ∼3.298 > 3.258 Ga Mendon Formation) and a turbidite-felsic volcanic rift-facies association (Fig Tree Group ∼3.258-3.225 Ga), potentially represents the first documented example of cause-effect relations between extraterrestrial bombardment and major tectonic and igneous events [D.R. Lowe, G.R. Byerly, F. Asaro, F.T. Kyte, Geological and geochemical record of 3400 Ma old terrestrial meteorite impacts, Science 245 (1989) 959-962; D.R. Lowe, G.R. Byerly, F.T. Kyte, A. Shukolyukov, F. Asaro, A. Krull, Spherule beds 3.47-3.34 Ga-old in the Barberton greenstone belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution, Astrobiology 3 (2003) 7-48; A.Y. Glikson, The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 ± 0.1 Ga bombardment of the Earth-Moon system, J. Geodyn. 32 (2001) 205-229]. Here we correlate this boundary with a contemporaneous break and peak magmatic and faulting events in the Pilbara Craton, represented by the truncation of a 3.255-3.235 Ga-old volcanic sequence (Sulphur Springs Group-SSG) by a turbidite-banded iron formation-felsic volcanic association (Pincunah Hill Formation, basal Gorge Creek Group). These events are accompanied by ∼3.252-3.235 Ga granitoids (Cleland plutonic suite). The top of the komatiite-tholeiite-rhyolite sequence of the SSG is associated with a marker chert defined at 3.238 ± 3-3.235 ± 3 Ga, abruptly overlain by an olistostrome consisting of mega-clasts of felsic volcanics, chert and siltstone up to 250 × 150 m-large, intercalated with siliciclastic sedimentary rocks and felsic volcanics (Pincunah Hill Formation-basal Gorge

  6. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  7. The Archaen volcanic facies in the Migori segment, Nyanza greenstone belt, Kenya: stratigraphy, geochemistry and mineralisation

    Science.gov (United States)

    Ichang'l, D. W.; MacLean, W. H.

    The Migori segment is an 80 by 20 km portion of the Nyanza greenstone belt which forms the northern part of the Archean Tanzanian Craton in western Kenya, northern Tanzania and southeastern Uganda. It consists of two volcanic centres, each with central, proximal and distal volcanic facies, comprising the Migori Group, the Macalder and Lolgorien Subgroups, and eleven volcano-sedimentary formations. The centres are separated by a basin of tuffs and greywacke turbidites. The volcanics are bimodal mafic basalt and dolerite ( Zr/Y = 3.8 - 6.5, La N/Yb N = 1.0 - 2.4) , and felsic calc-alkaline dacite-rhyolite ( Zr/Y = 10 - 21, La N/Yb N = 19 - 42 ) and high-K dacite ( Zr/Y = 9 - 16, La N/Yb N = 21 - 22 ). Felsic units form approximately three-fourths of the volcanic stratigraphy. Basalts, calc-alkaline dacites and rhyolites were deposited in a submarine environment, but the voluminous high-K dacites were erupted subaerially. The turbidites contain units of iron-formations. Granitic intrusions are chemically continuous with the high-K dacites. The felsic volcanics are anologous to those found at modern volcanic arc subduction settings involving continental crust. The Macalder ZnCuAuAg volcanogenic massive sulphide deposits is in central facies basalts-greywacke-rhyolite. Gold mineralisation occurs in proximal facies tuffs and iron formation, and in oblique and semi-conformable quartz veins. Greenstones in the Nyanza belt are dominated by calc-alkaline felsic volcanics in constrast to the komatiite-tholeiitic basalt volcanism in the Kaapvaal Craton of South Africa, and a mixture of the two types in the Zimbabwe Craton.

  8. Geotectonic evolution of granitoid-greenstone belts from Crixas, Guarinos, Pilar de Goias - Hidrolina (Goias), Brazil

    International Nuclear Information System (INIS)

    Montalvao, R.M.G. de.

    1985-01-01

    The area in discussion, in a geologic context, constitutes one of the most interesting and complex, within the South American Platform, in Brazilian territory, over which granitoid-greenstone belts are outstanding. The Goiano Complex is the oldest unit in the geologic column herein adopted and composed largely of granitoids, gneiss and migmatites, in the amphibolite facies. Dated samples of the complex have shown two isochrones of Rb/Sr reference, the oldest one is 2.926 +- 65 m.y. and the 87 Sr/ 86 Sr initial ratio of 0.7001 and the youngest on of 2.471 + 20 m.y. and 87 Sr/ 86 Sr initial ratio of 0.701. Although the initial ratios data of the Rb/Sr isochron, as well as the parameters in the Pb/Pb analyses may indicate material of mantle source, it may be interpreted, with the help of field data, that the youngest values may indicate the reworking of crustal sialic rocks formed 2.925 +- 65 m.y. ago (oldest isochron), with primitive material contribution. Before such reworking volcanic-sedimentary sequence was deposited over the already formed sialic crust, and it is denominated Pilar de Goias Supergroup which characterizes the Greenstone Belts in the region. The Archean age for the supergroup was evident through the age results of its ultramafic rocks, showing 2.600 m.y. isochron age, with Sm/Nd methods. Besides the geochronology and field studies, basic information for the construction of the geologic column herein presented, there has been done petrographic and litho geochemical studies, both in the Goiano Complex and Pilar de Goias Supergroup, as for the Pilar de Goias Supergroup, the studies were concentrated on its mafic-ultramafic rocks. (author)

  9. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    Science.gov (United States)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  10. Evidence for and implications of an Early Archean terrestrial impact record

    International Nuclear Information System (INIS)

    Lowe, D.R.; Byerly, G.R.

    1988-01-01

    Early Archean, 3.5 to 3.2 Ga, greenstone sequences in South Africa and Western Australia contain a well-preserved record of early terrestrial meteorite impacts. The main impact-produced deposits are layers, 10 cm to over 1 m thick, composed largely of sand-sized spherules, 0.1 to 4 mm in diameter. The beds studied to date show an assemblage of features indicating formation by the fall of debris from impact-generated ejecta clouds. Some presented data effectively rule out normal magmatic or sedimentary processes in the origin of these units and provide substantial support for an origin by large impacts on the early earth. The presence of at least four, remarkably thick, nearly pure spherule layers suggests that smaller-scale impact deposits may be even more abundant in these sequences. The existence of a well-preserved Archean terrestrial impact record suggests that a direct source of evidence is available regarding a number of important aspects of early earth history

  11. Rubidium-strontium ages from the Oxford Lake-Knee Lake greenstone belt, northern Manitoba

    International Nuclear Information System (INIS)

    Clark, G.S.; Cheung, S.-P.

    1980-01-01

    Rb-Sr whole-rock ages have been determined for rocks from the Oxford Lake-Knee Lake-Gods Lake geenstone belt in the Superior Province of northeastern Manitoba. The age of the Magill Lake Pluton is 2455 +- 35 Ma(lambda 87 Rb = 1.42 x 10 -11 yr -1 ), with an initial 87 Sr/ 86 Sr ratio of 0.7078 +- 0.0043. This granite stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism. The age of the Bayly Lake Pluton is 2424 +- 74 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7029 +- 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed. The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 +- 125 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7014 +- 0.0009. The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granite intrusion in the area. The age for the Hayes River Group volcanic rocks is consistent with Rb-Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province. (auth)

  12. Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust

    Science.gov (United States)

    Hamilton, Warren B.

    2013-12-01

    This review evaluates and rejects the currently dominant dogmas of geodynamics and geochemistry, which are based on 1950s-1970s assumptions of a slowly differentiating Earth. Evidence is presented for evolution of mantle, crust, and early Moho that began with fractionation of most crustal components, synchronously with planetary accretion, into mafic protocrust by ~ 4.5 Ga. We know little about Hadean crustal geology (> 3.9 Ga) except that felsic rocks were then forming, but analogy with Venus, and dating from the Moon, indicate great shallow disruption by large and small impact structures, including huge fractionated impact-melt constructs, throughout that era. The mantle sample and Archean (preserved Archean crust to its base, and of the thick mafic volcanic rocks erupted on that crust. Lower TTG crust, kept mobile by its high radioactivity and by insulating upper crust, rose diapirically into the upper crust as dense volcanic rocks sagged synformally. The mobile lower crust simultaneously flowed laterally to maintain subhorizontal base and surface, and dragged overlying brittler granite-and-greenstone upper crust. Petrologically required garnet-rich residual protocrust incrementally delaminated, sank through low-density high-mantle magnesian dunite, and progressively re-enriched upper mantle, mostly metasomatically. Archean and earliest Proterozoic craton stabilization and development of final Mohos followed regionally complete early delamination of residual protocrust, variously between ~ 2.9 and 2.2 Ga. Where some protocrust remained, Proterozoic basins, filled thickly by sedimentary and volcanic rocks, developed on Archean crust, beneath which delamination of later residual protocrust continued top-down enrichment of upper mantle. That reenrichment enabled modern-style plate tectonics after ~ 600 Ma, with a transition regime beginning ~ 850 Ma.

  13. U-Pb detrital zircon ages of the upper metasedimentary sequences in the region of the Guarinos Greenstone Belt, Goiás, Brazil; Idades U-Pb de zircão detrítico da sequência metassedimentar superior na região do Greenstone Belt de Guarinos, Goiás

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alex Joaquim Choupina Andrade; Simões, Luiz Sérgio Amarante, E-mail: jqchoupina@hotmail.com, E-mail: lsimoes@rc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Rio Claro, SP (Brazil). Programa de Pós-Graduação em Geociências e Meio Ambiente

    2017-07-15

    At the north portion of the Archean Block of Goiás occur two greenstone belts (Guarinos and Pilar de Goiás) covered by a younger meta sedimentary sequence, attributed by different authors to the Araxá Group and by other to the Serra da Mesa/Serra Dourada and, by other writers, simply as Mesoproterozoic Sequence. Although there are lithostratigraphic similarities between the Araxá and Serra da Mesa groups, most recent studies have shown that the evolution of basins and their sedimentation ages have peculiarities that differentiate one from the other. This work presents geochronological data of U-Pb on detrital zircon grains obtained by laser ablation method (LA-MC-ICP-MS) in quartzite samples. The youngest zircon has the age of 1405 ± 10 Ma, marking the maximum depositional age and indicating source area. The samples have a higher frequency of Paleoproterozoic zircons, between 1796 and 2472 Ma and the oldest populations of mesoneoarchean age between 2672 and 3112 Ma. Whereas the Paleoproterozoic to Archean zircons can be derived from the rocks that form the Archean Block of Goiás, the mesoproterozoic source is still uncertain, perhaps this source can be related to the Goiás Tin Province rocks. (author)

  14. Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga

    NARCIS (Netherlands)

    Biggin, A.J.; Wit, M.J. de; Langereis, C.G.; Zegers, T.E.; Voute, S.; Dekkers, M.J.; Drost, K.

    2011-01-01

    Palaeomagnetic data from the Palaeoarchaean Era (3.2–3.6 Ga) have the potential to provide us with a great deal of information about early conditions within, and processes affecting, the Earth's core, mantle, and surface environment. Here we present new data obtained from some of the oldest

  15. Synchrotron Radiation X-Ray Fluorescence nanoanalyses of the metallome of a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa.

    Science.gov (United States)

    Hubert, A.; Lemelle, L.; Salome, M.; Cloetens, P.; Westall, F.; Simionovici, A.

    2012-04-01

    Combining in situ nanometer-scale techniques on the fossilized Josefsdal Chert Microbial Biofilm (JCMB) reveals a distinct vertical structural and compositional organisation: the lower part is calcified as aragonite, while the upper non-calcified kerogenous layer is characterised by up to 1% sulphur [1]. The in situ analysis of all the metals as a group represents a useful microbial fingerprint [2] and we will continue to explore it. Synchrotron Radiation X-Ray Fluorescence maps of high spatial resolution (Conference Proceedings, 1221, 131-138. 4. Bleuet P., et al., 2008. App. Phys. Lett., 92, 213111-1-3. 5. Golosio B., et al., 2003. Appl. Phys., 94, 145-157. 6. M. Haschke, 2003. PhD dissertation, T.U. Berlin. 7. Simionovici A. S., et al., 2010. Proceedings of the Meteoritical Society Conference, N.Y., USA. 8. Solé V.A., et al., 2006, Elsevier, 62, 63-68.

  16. Archean and proterozoic continental crust in South America: Main building events

    International Nuclear Information System (INIS)

    Fuck, R.A; Brito Neves, B.B; Pimentel, M.M

    2001-01-01

    Available geochronological data reveal that the first building blocks of the South American continental crust were set up in the early Paleoarchean, ca. 3.4-3.5 Ga ago, although the presence of components as old as 3.7 Ga is indicated by Nd TDM model ages. The oldest rocks so far recognized are exposed in northeast Brazil and Uruguay. In the Sao Jose do Campestre block, Rio Grande do Norte, 3.45 Ga old tonalite, migmatized and intruded by granitoids between 3.3 and 3.0 Ga, is part of the basement to the Borborema Province (Dantas et al. 1998). In Bahia 3.42 Ga old tonalitic grey gneisses of Sete Voltas, Boa Vista, and Mairi form the basement of the Gaviao block, within the core of the Sao Francisco Craton (Nutman and Cordani, 1993, Martin et al., 1997). The Paleoarchean TTG suites as well as greenstone remnants of unknown age were involved in crust accretion events between 3.1 and 3.3 Ga ago (Teixeira et al. 2000 and references therein), which are also recorded in Campo Belo and Uaua (Teixeira et al., 1998, Oliveira et al., 1999), as attested by TTG intrusions and the ca. 3.1 Ga Pium-hi greenstone belt of W Minas Gerais (Machado and Schrank 1989). Microcontinents then formed were involved in deformation, metamorphism, and migmatization around 2.8-3.0 Ga ago, probably during amalgamation events. Widespread granite-greenstone associations in the Quadrilatero Ferrifero and other areas represent new crust built during the very important Neoarchean Rio das Velhas cycle, ca. 2.7-2.8 Ga ago (Machado and Carneiro 1992, Machado et al. 1992). Layered mafic-ultramafic and granite intrusions ca. 2.5-2.7 Ga old are recorded all over the Sao Francisco Craton, including the high-grade terrain of southern Bahia, formed during the late Archean Jequie Cycle (Teixeira et al. 2000 and references therein). Similar intrusions are recorded in many basement areas within Neoproterozoic fold belts (au)

  17. Formation of the Archean crust of the ancient Vodlozero domain (Baltic shield)

    Science.gov (United States)

    Arestova, N. A.; Chekulaev, V. P.; Lobach-Zhuchenko, S. B.; Kucherovskii, G. A.

    2015-03-01

    The available geological, petrological, and isotopic data on Archean rocks of the Baltic shield are used to analyze the formation of the crust of the ancient Vodlozero domain. This made it possible to reveal the succession of endogenic processes in different parts of the domain and correlate them between each other. Several stages of magmatic processes reflecting changes in magma-generation environments are definable in the crust formation. The earliest stages of magmatism (3.24 and 3.13-3.15 Ga) are mostly represented by rocks of the tonalite-trondhjemite-granodiorite association. The next stage of endogenic activity (3020-2900 Ma) was marked by the formation of volcanics of the komatiite-basalt and andesite-dacite associations constituting greenstone belts in marginal parts of the Vodlozero domain and basic dikes accompanied by layered pyroxenite-norite-diorite intrusion in its central part. These basic bodies crossing earlier tonalities were formed in extension settings related to the formation of the mantle plume, which is confirmed by the rock composition. This stage culminated in the formation of trondhjemites at margins of greenstone structure. The next stage of endogenic activity commenced at 2890-2840 Ma by the emplacement of high-magnesian gabbro and diorite dikes in the western margin of the domain, where they cross rocks of the tonalitetrondhjemite association. This stage was marked by the formation of intermediate-acid subvolcanic bodies and dikes as well as basite intrusions including the layered and differentiated Semch intrusion, the largest one in the Vodlozero domain. The stage culminated at approximately 2850 Ma in the emplacement of tonalities of the limited distribution being represented by the Shilos massif in the north of the domain and Shal'skii massif on the eastern shore of Lake Onega. The important stage in the geological history of the Vodlozero domain is the formation of the intracratonic Matkalakhta greenstone belt at approximately 2

  18. Granite-hosted molybdenite mineralization from Archean ...

    Indian Academy of Sciences (India)

    2013). The Bundelk- hand Tectonic Zone has now been established as an Archean ... The molybdenite is only encountered in geochemical analysis. (f) Mo vein is ...... Collins W J, Beams S D, White A J R and Chappell B W. 1982 Nature and ...

  19. Venus and the Archean Earth: Thermal considerations

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus

  20. Geology and geophysics of the Vila Nova Greenstone Belt, northeastern portion of the Amazonian Craton, Amapa, Brazil; Geologia e geofisica do greenstone belt Vila Nova, porcao NE do Craton Amazonico, Amapa, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Borghetti, Cristiano; Philipp, Ruy Paulo, E-mail: cborghetti@terra.com.br, E-mail: ruy.philipp@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2017-01-15

    A few outcrops and strong weathering conditions prevail in the region of the Vila Nova Greenstone Belt in the southeastern Amapa (Brazil). This paper describes the use of airborne geophysical data for geological and structural analysis during geological mapping. This integration aims to improve the geological and tectonic understanding of this portion of the Amazonian Craton. The magnetometric and gamma-spectrometric qualitative interpretation of the images took place in a Geographic Information System (GIS) environment. Recognition of magnetometric and gamma-ray spectrometric units present in the study area was based on the hierarchical classification of polygons outlined by visual interpretation. The major geological domains and the structural patterns were defined by integration of geophysical data, geological mapping and petrographic analysis. The results allowed the recognition of Archean basement rocks composed of orthogneisses and granitoids of the Tumucumaque Complex, the metavolcano-sedimentary rocks of the Vila Nova Complex and Paleoproterozoic granite massifs. The integration of geophysical and field data resulted in the increase of the geological mapping definition, highlighting the importance of this methodology for recognition of complex structural and lithological fabrics in areas of difficult access and scarce fresh rock outcrops. (author)

  1. The auriferous placer at Mount Robert, Pietersburg Greenstone belt

    International Nuclear Information System (INIS)

    Saager, R.; Muff, R.

    1986-01-01

    The Mount Robert gold placer near Potgietersrus occurs in coarse, matrix-supported conglomerates of the Uitkyk Formation within the Pietersburg greenstone belt. Sedimentological and mineralogical investigations indicate that the conglomerates and the ore minerals were derived from a greenstone provenance, and that they were deposited in a braided river environment within a rapidly subsiding trough. Lack of sedimentological concentration of the heavy minerals is considered to be the main reason for the low and erratic gold grades encountered (usually below 1 g/t) and, thus, the failure of all past mining ventures. The mineralogical composition of the Mount Robert ore closely resembles that of the Witwatersrand deposits. However, uraninite is absent, probably as a result of its complete removal by weathering processes. Remaining small uranium concentrations can still be detected within the conglomerates where they occur associated with grains of carbonaceous matter, leucoxene aggregates, and secondary iron-hydroxides. U3O8 values found in the conglomerates are given

  2. The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization

    Science.gov (United States)

    Konnunaho, J. P.; Hanski, E. J.; Bekker, A.; Halkoaho, T. A. A.; Hiebert, R. S.; Wing, B. A.

    2013-12-01

    Archean komatiites host important resources of Ni, Cu, Co, and PGE, particularly in Western Australia and Canada. In Finland, several small, low-grade sulfide deposits have been found in komatiites, including the ca. 2.8 Ga Vaara deposit in the Archean Suomussalmi greenstone belt. It occurs in the central part of the serpentinized olivine cumulate zone of a komatiitic extrusive body and is composed of disseminated interstitial sulfides consisting of pyrite, pentlandite, millerite, violarite, and chalcopyrite accompanied by abundant magnetite. Although currently subeconomic, the mineralization is interesting due to the very high chalcophile element contents of the sulfide fraction (38 wt% Ni, 3.4 wt% Cu, 0.7 wt% Co, 22.4 ppm Pd, and 9.5 ppm Pt). The sulfides occur in relatively Cr-poor olivine cumulates suggesting involvement of a chromite-undersaturated magma. The parental magma was an Al-undepleted komatiite with an estimated MgO content of at least 24 wt%. In contrast to the common komatiite types in the eastern Finland greenstone belts, the Vaara rocks are moderately enriched in LREE relative to MREE, suggesting that crustal contamination played an important role in the genesis of the Vaara deposit. Multiple sulfur isotope data reveal considerable mass-independent sulfur isotope fractionation both in country rock sedimentary sulfides (Δ33S ranges from -0.50 to +2.37 ‰) and in the Vaara mineralization (Δ33S ranges from +0.53 to +0.66 ‰), which provides strong evidence for incorporation of crustal sulfur. Extensive replacement of interstitial sulfides by magnetite and the presence of millerite- and violarite-bearing, pyrrhotite-free sulfide assemblages indicate significant post-magmatic, low-temperature hydrothermal oxidation of the primary magmatic pyrrhotite-pentlandite-chalcopyrite assemblages and associated sulfur loss that led to a significant upgrading of the original metal tenors of the Vaara deposit.

  3. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include...... weathering on climate). Selective alteration of δD in Isua rocks to values of -130 to -100‰ post-dates ca. 3.55Ga Ameralik dikes, but may be associated with a poorly defined 2.6-2.8Ga metamorphic event that is coincident with the amalgamation of the “Kenorland supercontinent.”...

  4. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...

  5. Heat flow and heat generation in greenstone belts

    Science.gov (United States)

    Drury, M. J.

    1986-01-01

    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.

  6. Pb-Pb and U-Pb zircon ages of archean syntetocnic granites of the Carajas metallogenic province, northern Brazil

    International Nuclear Information System (INIS)

    Barros, Carlos Eduardo de Mesquita; Sardinha, Alex Souza; Barbosa, Jaime dos Passos de Oliveira; Krimski, Robert; Macambira, Moacir Jose Buenano

    2001-01-01

    The Carajas Metallogenic Province is located in the southeastern Amazonian Craton. It has been divided in two domains, the southernmost comprises the Rio Maria region and the northernmost corresponds to Caraj region (Souza et al. 1996). The former domain is made up of Archean greenstone sequences (2,97 Ga), TTG (2,9 Ga) and calc-alkaline granitoids (2,87 Ga) (Macambira and Lafon 1995, Leite et al. 1999, Althoff et al. 2000). The Carajas block is constituted of minor mafic granulites (3,00 Ga) and quartzofeldspathic gneisses (2,81 Ga), metavolcanosedimentary sequences (2,76 Ga) and granites (2,76 to 2,56 Ga) (Machado et al. 1991; Huhn et al. 1999, Pidgeon et al. 2000). Widespread anorogenic A-type granites are found in both areas (Docegeo 1988; Dall'Agnol et al. 1994). In the last two decades several authors (Lindenamyer et al. 1994, Barros and Barbey 1998, Huhn et al. 1999 and others) have emphasized the role of the Archean granite magmatism in the tectonicthermal evolution in the Carajas Province. In this paper we discuss the tectonic significance of the Pb- Pb and U-Pb ages obtained in some granitoids from the Carajas region. The Estrela Granite Complex and the granitoids located to the north of Parauapebas were dated by Pb- Pb evaporation zircon method (cf. Kober 1987). Data are presented considering 2σ ∼ . The Pb corrections have been done in the basis of the evolution model of Pb in double stage (cf. Stacey and Kramers 1975). U-Pb zircon method (cf. Krogh 1973, Stacey and Kramers 1975, Parrish 1987, Ludwuig 1999), recently put on routine in the Para-Iso laboratories, was employed to date the granite from the Serra do Rabo area. Analyses were carried on the Finnigan Mat 262 spectrometer (au)

  7. The magmatic model for the origin of Archean Au-quartz vein ore systems: an assessment of the evidence

    International Nuclear Information System (INIS)

    Spooner, E.T.C.

    1991-01-01

    The magmatic model for the origin of Archean Au-quartz vein ore systems suggests that Au was derived by partition between silicate (± sulphide) melts of certain compositions and H 2 O-CO 2 -NaCl magmatic fluids. Supporting evidence includes partial/structural geological relationships, timing relationships, H and C isotope geochemistry, probable primary Au enrichment in the Lamaque stocks, and fluid inclusion volatile geochemistry. Evidence is currently negative with respect to various within- and sub-greenstone belt metamorphic/deep crustal fluid models for primary Au mineralization; however a U-Pb age for vein stage 3 sphene from the Camflo deposit, Quebec which is ∼ 55-60 Ma younger than the host stock at 2685-2680 Ma indicates dissolution/reprecipitation of Au by late, (?) upper crustal saline fluids. Evidence is accumulating that epithermal-meso thermal Au-Ag mineralization in island arc and cordilleran settings may also have been magmatically derived ± high level fluid mixing from calc-alkaline, shoshonitic and other igneous compositions. (author)

  8. On the photosynthetic potential in the very Early Archean oceans.

    Science.gov (United States)

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  9. 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle

    Science.gov (United States)

    Puchtel, Igor S.; Blichert-Toft, Janne; Touboul, Mathieu; Walker, Richard J.

    2018-05-01

    While the isotopically heterogeneous nature of the terrestrial mantle has long been established, the origin, scale, and longevity of the heterogeneities for different elements and isotopic systems are still debated. Here, we report Nd, Hf, W, and Os isotopic and highly siderophile element (HSE) abundance data for the Boston Creek komatiitic basalt lava flow (BCF) in the 2.7 Ga Abitibi greenstone belt, Canada. This lava flow is characterized by strong depletions in Al and heavy rare earth elements (REE), enrichments in light REE, and initial ε143Nd = +2.5 ± 0.2 and intial ε176Hf = +4.2 ± 0.9 indicative of derivation from a deep mantle source with time-integrated suprachondritic Sm/Nd and Lu/Hf ratios. The data plot on the terrestrial Nd-Hf array suggesting minimal involvement of early magma ocean processes in the fractionation of lithophile trace elements in the mantle source. This conclusion is supported by a mean μ142Nd = -3.8 ± 2.8 that is unresolvable from terrestrial standards. By contrast, the BCF exhibits a positive 182W anomaly (μ182W = +11.7 ± 4.5), yet is characterized by chondritic initial γ187Os = +0.1 ± 0.3 and low inferred source HSE abundances (35 ± 5% of those estimated for the present-day Bulk Silicate Earth, BSE). Collectively, these characteristics are unique among Archean komatiite systems studied so far. The deficit in the HSE, coupled with the chondritic Os isotopic composition, but a positive 182W anomaly, are best explained by derivation of the parental BCF magma from a mantle domain characterized by a predominance of HSE-deficient, differentiated late accreted material. According to the model presented here, the mantle domain that gave rise to the BCF received only ∼35% of the present-day HSE complement in the BSE before becoming isolated from the rest of the convecting mantle until the time of komatiite emplacement at 2.72 Ga. These new data provide strong evidence for a highly heterogeneous Archean mantle in terms of absolute

  10. An investigation of the Archean climate using the NCAR CCm

    International Nuclear Information System (INIS)

    Jenkins, G.S.

    1991-01-01

    The Archean (2.5 to 3.8 billion years ago) is of interest climatically, because of the 'Faint-Young Sun Paradox', which can be characterized by the Sun's reduced energy output. This lower energy output leads to a frozen planet if the climate existed as it does today. But, the geologic record shows that water was flowing at the earth's surface 3.8 billion years ago. Energy Balance Models (EBMs) and one-dimensional radiative-convective (1DRC) models predict a frozen planet for this time period, unless large carbon dioxide (CO2) concentrations exist in the Archean atmosphere. The goal is to explore the Archean climate with the National Center for Atmospheric Research (NCAR), Community Climate Model (CCM). The search for negative feedbacks to explain the 'Faint-Young Sun Paradox' is the thrust of this study. This study undertakes a series of sensitivity simulations which first explores individual factors that may be important for the Archean. They include rotation rate, lower solar luminosity, and land fraction. Then, these climatic factors along with higher CO2 concentrations are combined into a set of experiments. A faster rotation rate may have existed in the Archean. The faster rotation rate simulations show warmer globally averaged surface temperatures that are caused by a 20 percent decrease in the total cloud fraction. The smaller cloud fraction is brought about by dynamical changes. A global ocean is a possibility for the Archean. A global ocean simulation predicts 4 K increase in global mean surface temperatures compared to the present-day climate control

  11. Archean komatiite volcanism controlled by the evolution of early continents.

    Science.gov (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  12. Where are uranium and thorium stored in the Archean basement

    Energy Technology Data Exchange (ETDEWEB)

    Schwinner, R

    1949-01-01

    The author advances a theory which makes it possible to predict where prospecting for new deposits of uranium and thorium should prove successful. According to this theory, such deposits occur chiefly where the equatorial and the meridional branches of the oldest primitive rock systems cross one another. An outline of the earth's Archean basement is included.

  13. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  14. Evolution of Hutti-Maski greenstone belt of the Eastern Dharwar ...

    Indian Academy of Sciences (India)

    53

    the Hutti-Maski greenstone belt have been studied by several workers (Iyer and Vasudev. 32. 1979 ..... In the present case it is clear that there is overgrowth of garnet on a. 246 core grain. ...... Mg) phase relations; Am. Jour. Science, 276 ...

  15. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  16. The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the northern Kaapvaal Craton, South Africa

    Science.gov (United States)

    Vanreenen, D. D.; Barton, J. M., Jr.; Roering, C.; Vanschalkwyk, J. C.; Smit, C. A.; Debeer, J. D.; Stettler, E. H.

    1986-01-01

    High-grade gneiss terranes and low-grade granite-greenstone terranes are well known in several Archaean domains. The geological relationship between these different crustal regions, however, is still controversial. One school of thought favors fundamental genetic differences between high-grade and low-grade terranes while others argue for a depth-controlled crustal evolution. The detailed examination of well-exposed Archaean terranes at different metamorphic grades, therefore, is not only an important source of information about the crustal levels exposed, but also is critical to the understanding of the possible tectonic and metamorphic evolution of greenstone belts with time. Three South African greenstone belts are compared.

  17. NanoSIMS analysis of Archean fossils and biomarkers

    International Nuclear Information System (INIS)

    Kilburn, M.R.; Wacey, D.

    2008-01-01

    The study of fossils and biomarkers from Archean rocks is of vital importance to reveal how life arose on Earth and what we might expect to find on other planets such as Mars. The Cameca NanoSIMS 50 has the unique ability to measure stable isotopes and map biologically relevant elements at the micron-scale, in situ. This makes it the perfect tool for testing the biogenicity of a range of putative biomarkers from early Archean rocks (∼3.50 billion-year-old). NanoSIMS has been used to investigate ambient inclusion trails (AITs) in a 3.43 Ga beach sand deposit from the Pilbara craton, Western Australia. Chemical maps of the light elements necessary for life (C, N and O) and several transition metals commonly associated with biological processing (Ni, Zn and Fe), coupled with 13 C/ 12 C isotope ratios from carbonaceous linings, strongly suggest a biological component in the formation of AITs

  18. Hazy Archean Earth as an Analog for Hazy Earthlike Exoplanets

    Science.gov (United States)

    Arney, Giada; Meadows, Victoria; Domagal-Goldman, Shawn; Claire, Mark; Schwieterman, Edward

    2015-01-01

    Hazy exoplanets may be common (Bean et al. 2010, Sing et al. 2011, Kreidberg et al 2014), and in our solar system, Venus and Titan have photochemically-produced hazes. There is evidence that Earth itself had a hydrocarbon haze in the Archean (Zerkle et al. 2012, Domagal-Goldman et al. 2008) with important climatic effects (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Wolf and Toon 2012). We use a 1D coupled photochemical-climate model and a line-by-line radiative transfer model to investigate the climactic and spectral impacts of a fractal hydrocarbon haze on Archean Earth. The haze absorbs significantly at shorter wavelengths and can strongly suppress the Rayleigh scattering tail, a broadband effect that would be remotely detectable at low spectral resolution at wavelengths less than 0.5 μm. Hazes may have a more significant impact on transit transmission spectra. Using the transit transmission radiative transfer model developed by Misra et al. (2014) to generate hazy Archean spectra, we find that even a thin hydrocarbon haze masks the lower atmosphere from the visible into the near infrared where the haze optical depth exceeds unity. The transit transmission spectra we generate for hazy Archean Earth are steeply sloped like the Titan solar occultation spectrum observed by Robinson et al. (2014). Thick hazes can also cool the planet significantly: for example, the thick fractal haze generated around Archean Earth with 0.3% CH4, 1% CO2 and 1 ppm C2H6 cools the planet from roughly 290 K without the haze to below freezing with the haze. Finally, we investigate the impact of host star spectral type on haze formation, comparing the hazes generated around a solar-type star to those generated at an Earth analog planet around the M dwarf AD Leo. Our results indicate hazes around M dwarfs for the same initial atmospheric composition may be thinner due to decreased UV photolysis of methane and other hydrocarbons needed for haze formation. Earthlike

  19. The geological record of life 3500 Ma ago: Coping with the rigors of a young earth during late accretion

    Science.gov (United States)

    Lowe, Donald R.

    1989-01-01

    Thin cherty sedimentary layers within the volcanic portions of the 3,500 to 3,300 Ma-old Onverwacht and Fig Tree Groups, Barberton Greenstone belt, South Africa, and Warrawoona Group, eastern Pilbara Block, Western Australia, contain an abundant record of early Archean life. Five principal types of organic and probably biogenic remains and or structures can be identifed: stromatolites, stromatolite detritus, carbonaceous laminite or flat stromalite, carbonaceous detrital particles, and microfossils. Early Archean stromatolites were reported from both the Barberton and eastern Pilbara greenstone belts. Systematic studies are lacking, but two main morphological types of stromatolites appear to be represented by these occurrences. Morphology of the stromalites is described. Preserved early Archean stromatolites and carbonaceous matter appear to reflect communities of photosynthetic cyanobacteria inhabiting shallow, probably marine environments developed over the surfaces of low-relief, rapidly subsiding, simatic volcanic platforms. The overall environmental and tectonic conditions were those that probably prevailed at Earth's surface since the simatic crust and oceans formed sometime before 3,800 Ma. Recent studies also suggest that these early Archean sequences contain layers of debris formed by large-body impacts on early Earth. If so, then these early bacterial communities had developed strategies for coping with the disruptive effects of possibly globe-encircling high-temperature impact vapor clouds, dust blankets, and impact-generated tsunamis. It is probable that these early Archean biogenic materials represent organic communities that evolved long before the beginning of the preserved geological record and were well adapted to the rigors of life on a young, volcanically active Earth during late bombardment. These conditions may have had parallels on Mars during its early evolution.

  20. Scheelite distribution a long of amphibolitic belt from greenstone belt Barbacena, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Pereira, R.M.; Alexandre, C.A.

    1990-01-01

    In the middle southern portion of the Minas Gerais state a 60 Km long and 12 Km wide tungsten belt was discovered, and related to the amphibolitic rocks of the Barbacena Greenstone. Tungsten, present as scheelite, is associated with amphibolites, amphibole schists and amphibole gneisses, with chemical characteristics indicating an igneous origin. Chemical analyses on pan concentrates by I.C.P. showed high values on lead, tin, yttrium, lanthanum, cerium and zirconium, and average values for zinc and copper. The scheelite mineralization is probably strata bound and has a possible submarine exhalative origin. (author)

  1. The electrical lithosphere in Archean cratons: examples from Southern Africa

    Science.gov (United States)

    Khoza, D. T.; Jones, A. G.; Muller, M. R.; Webb, S. J.

    2011-12-01

    The southern African tectonic fabric is made up of a number Archean cratons flanked by Proterozoic and younger mobile belts, all with distinctly different but related geological evolutions. The cratonic margins and some intra-cratonic domain boundaries have played major roles in the tectonics of Africa by focusing ascending magmas and localising cycles of extension and rifting. Of these cratons the southern extent of the Congo craton is one of the least-constrained tectonic boundaries in the African tectonic architecture and knowledge of its geometry and in particular the LAB beneath is crucial for understanding geological process of formation and deformation prevailing in the Archean and later. In this work, which forms a component of the hugely successful Southern African MagnetoTelluric Experiment (SAMTEX), we present the lithospheric electrical resistivity image of the southern boundary of the enigmatic Congo craton and the Neoproterozoic Damara-Ghanzi-Chobe (DGC) orogenic belt on its flanks. Magnetotelluric data were collected along profiles crossing all three of these tectonic blocks. The two dimensional resistivity models resulting from inverting the distortion-corrected responses along the profiles all indicate significant lateral variations in the crust and upper mantle structure along and across strike from the younger DGC orogen to the older adjacent craton. The are significant lithospheric thickness variations from each terrane. The The Moho depth in the DGC is mapped at 40 km by active seismic methods, and is also well constrained by S-wave receiver function models. The Damara belt lithosphere, although generally more conductive and significantly thinner (approximately 150 km) than the adjacent Congo and Kalahari cratons, exhibits upper crustal resistive features interpreted to be caused by igneous intrusions emplaced during the Gondwanan Pan-African magmatic event. The thinned lithosphere is consistent with a 50 mW.m-2 steady-state conductive

  2. Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization

    Science.gov (United States)

    Kwelwa, S. D.; Sanislav, I. V.; Dirks, P. H. G. M.; Blenkinsop, T.; Kolling, S. L.

    2018-03-01

    The Geita Greenstone Belt is a late Archean greenstone belt located in the Tanzania Craton, trending approximately E-W and can be subdivided into three NW-SE trending terrains: the Kukuluma Terrain to the east, the Central Terrain in the middle and the Nyamullilima Terrain in the west. The Kukuluma Terrain, forms a NW-SE trending zone of complexly deformed sediments, intruded by the Kukuluma Intrusive Complex which, contains an early-syntectonic diorite-monzonite suite and a late-syntectonic granodiorite suite. Three gold deposits (Matandani, Kukuluma and Area 3W) are found along the contact between the Kukuluma Intrusive Complex and the sediments. A crystal tuff layer from the Kukuluma deposits returned an age of 2717 ± 12 Ma which can be used to constrain maximum sedimentation age in the area. Two granodiorite dykes from the same deposit and a small granodiorite intrusion found along a road cut yielded zircon ages of 2667 ± 17 Ma, 2661 ± 16 Ma and 2663 ± 11 Ma respectively. One mineralized granodiorite dyke from the Matandani deposit has an age of 2651 ± 14 Ma which can be used to constrain the maximum age of the gold mineralization in the area. The 2717 Ma crystal tuff has zircon grains with suprachondritic 176Hf/177Hf ratios (0.28108-0.28111 at 2717 Ma) and positive (+1.6 to +2.6) εHf values indicating derivation from juvenile mafic crust. Two of the granodiorite samples have suprachondritic 176Hf/177Hf ratios (avg. 0.28106 and 0.28107 at 2663 and 2651 Ma respectively) and nearly chondritic εHf values (avg. -0.5 and -0.3 respectively). The other two granodiorite samples have chondritic 176Hf/177Hf ratios (avg. 0.28104 and 0.28103 at 2667 and 2661 Ma respectively) and slightly negative εHf values (avg. -1.1 and -1.5 respectively). The new zircon age and isotope data suggest that the igneous activity in the Kukuluma Terrain involves a significant juvenile component and occurred within the 2720 to 2620 Ma period which, is the main period of crustal growth

  3. Alteration of submarine volcanic rocks in oxygenated Archean oceans

    Science.gov (United States)

    Ohmoto, H.; Bevacqua, D.; Watanabe, Y.

    2009-12-01

    Most submarine volcanic rocks, including basalts in diverging plate boundaries and andesites/dacites in converging plate boundaries, have been altered by low-temperature seawater and/or hydrothermal fluids (up to ~400°C) under deep oceans; the hydrothermal fluids evolved from shallow/deep circulations of seawater through the underlying hot igneous rocks. Volcanogenic massive sulfide deposits (VMSDs) and banded iron formations (BIFs) were formed by mixing of submarine hydrothermal fluids with local seawater. Therefore, the behaviors of various elements, especially of redox-sensitive elements, in altered submarine volcanic rocks, VMSDs and BIFs can be used to decipher the chemical evolution of the oceans and atmosphere. We have investigated the mineralogy and geochemistry of >500 samples of basalts from a 260m-long drill core section of Hole #1 of the Archean Biosphere Drilling Project (ABDP #1) in the Pilbara Craton, Western Australia. The core section is comprised of ~160 m thick Marble Bar Chert/Jasper Unit (3.46 Ga) and underlying, inter-bedded, and overlying submarine basalts. Losses/gains of 65 elements were quantitatively evaluated on the basis of their concentration ratios against the least mobile elements (Ti, Zr and Nb). We have recognized that mineralogical and geochemical characteristics of many of these samples are essentially the same as those of hydrothermally-altered modern submarine basalts and also those of altered volcanic rocks that underlie Phanerozoic VMSDs. The similarities include, but are not restricted to: (1) the alteration mineralogy (chlorite ± sericite ± pyrophyllite ± carbonates ± hematite ± pyrite ± rutile); (2) the characteristics of whole-rock δ18O and δ34S values; (3) the ranges of depletion and enrichment of Si, Al, Mg, Ca, K, Na, Fe, Mn, and P; (4) the enrichment of Ba (as sulfate); (5) the increases in Fe3+/Fe2+ ratios; (6) the enrichment of U; (7) the depletion of Cr; and (8) the negative Ce anomalies. Literature data

  4. Geostable molecules and the Late Archean 'Whiff of Oxygen'

    Science.gov (United States)

    Summons, R. E.; Illing, C. J.; Oduro, H. D.; French, K. L.; Ono, S.; Hallmann, C.; Strauss, H.

    2012-12-01

    exhibits a 'MIF' signal that is significantly amplified compared to co-occurring pyrite sulfur. Limited isotopic exchange between the organic and inorganic sulfur pools suggests Archean origin of these organic sulfur compounds. We also report new results from the 2012 Agouron Pilbara drilling project. Anbar A.D. et al. A whiff of oxygen before the great oxidation event. Science 317, 1903-1906. (2007). Bosak T. et al., Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl. Acad. Sci. USA 106:10939-10943 (2009). Kopp, R.E. et al.,The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102: 11131-11136 (2005). Waldbauer J.R. et al., Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Research 169, 28-47 (2008). Waldbauer J.R. et al., 2011. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proceedings of the National Academy of Sciences (USA) 108, 13409-13414

  5. Geological and geophysical characterization of the Rio das Velhas greenstone belt

    International Nuclear Information System (INIS)

    Araujo Vieira, Marcelo de; Silva, Sergio Lima da

    1995-01-01

    In order to obtain larger information about the high potentiality of the Greenstone belt Rio das Velhas, it has been, nowadays, the object of various geological research works, among then, the Detailed Geophysical Airborne Survey of the Rio das Velhas Project (DNPM/Mining Companies Partnership) and the Geological Mapping in the scale of 1:25.000 (DNPM/CPRM). Such initiatives have brought, by themselves, valuable contributions for better knowledge of the region. In this context, this study shows a proposal of integration of geological and geophysical data, as much quantitative as qualitative, with the aim at the maximum advantage of the obtained data for the next prospecting and geological mapping works. (author). 6 refs., 2 figs., 1 tab

  6. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    Science.gov (United States)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  7. Cooling age of the Birimian juvenile crust in West Africa. U-Pb, Rb-Sr and K-Ar data on the 2.1 Ga granite-greenstone terrains from SW-Niger

    International Nuclear Information System (INIS)

    Lama, C.; Dautel, D.; Zimmermann, J.L.; Cheilletz, A.; Pons, J.

    1994-01-01

    A comparison between zircon U-Pb, whole-rock Rb-Sr and biotite-amphibole K-Ar data on Birimian granite-greenstone terrains from SW-Niger indicates that the youngest granitic plutons were emplaced at 2.115 ± 5 Ma and that both the plutons and the surrounding greenstones yield cooling ages around 2.118 Ma. The age similarity between the end of the plutonism and the cooling of plutons and surrounding greenstone further suggests rapid cooling at the end of the plutonic event and, thus, corroborates a model of greenstone metamorphism linked to the thermal effect of the plutons. (authors)

  8. In search of Archean basement from Rio Maria region, southeastern of Para State

    International Nuclear Information System (INIS)

    Macambira, M.B.; Lancelot, J.

    1991-01-01

    The Rio Maria Region, southeastern part of the Amazonian craton (Brazil), displays a typical Archaean granite-greenstone association intruded by Proterozoic granites. The greenstone is crosscut by Archaean granitoids, such as the Rio Maria granodiorite. Clear field contacts between the Xingu gneisses and the granodiorite are lacking, making it difficult to determine the stratigraphic sequence. U-Pb data for zircons from the Xingu gneiss and the Rio Maria granodiorite provide upper intercept ages of 2971 +30/ -28 Ma and 2874 +9/ -10 Ma respectively on the Concordia diagram. 2.97 Ga is the most ancient age ever obtained on zircons from gneisses of the Amazonian craton. It provides an upper limit for the beginning of the continental crust formation in this part of the craton. (author)

  9. Geological Sulfur Isotopes Indicate Elevated OCS in the Archean Atmosphere, Solving the Faint Young Sun Paradox

    DEFF Research Database (Denmark)

    Ueno, Yuichiro; Johnson, Matthew Stanley; Danielache, Sebastian Oscar

    2009-01-01

    Distributions of sulfur isotopes in geological samples would provide a record of atmospheric composition if the mechanism producing the isotope effects could be described quantitatively. We determined the UV absorption spectra of 32SO2, 33SO2, and 34SO2 and use them to interpret the geological re......-rich, reducing Archean atmosphere. The radiative forcing, due to this level of OCS, is able to resolve the faint young sun paradox. Further, the decline of atmospheric OCS may have caused the late Archean glaciation....

  10. Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: An overview

    Directory of Open Access Journals (Sweden)

    Li Tang

    2018-05-01

    Full Text Available Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts (GGB were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton (NCC are correlated to the amalgamation of microblocks welded by 2.75–2.6 Ga and ∼2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks (basalt and dacite interlayered with minor komatiites and calc-alkalic volcanic rocks (basalt, andesite and felsic rock. The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE (K, Rb, Sr, Ba and LREE, and depletion of HFSE (Nb, Ta, Th, U, Ti and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these, together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75–2.60 Ga TTG rocks, komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcano-sedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60–2.48 Ga, followed by metamorphism at 2.52–2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite (Dongwufenzi GGB, sanukitoid (Dongwufenzi GGB and Western Shandong GGB, BIF (Zunhua GGB and VMS deposit (Hongtoushan-Qingyuan-Helong GGB have closer connection to a combined

  11. Interferometric seismic imaging around the active Lalor mine in the Flin Flon greenstone belt, Canada

    Science.gov (United States)

    Roots, Eric; Calvert, Andrew J.; Craven, Jim

    2017-10-01

    Seismic interferometry, which recovers the impulse response of the Earth by cross-correlation of ambient noise recorded at sets of two receivers, has found several applications, including the generation of virtual shot gathers for use in seismic reflection processing. To evaluate the effectiveness of this passive recording technique in mineral exploration in a hard-rock environment, 336 receivers recorded 300 h of ambient noise over the volcanogenic massive sulphide deposit of the recently discovered Lalor mine in the Canadian Flin Flon greenstone belt. A novel time-domain beamforming algorithm was developed to search for individual source locations, demonstrating that the vast majority of noise originated from the mine and ventilation shafts of the Lalor mine. The results of the beamforming were utilized in conjunction with frequency-wavenumber filtering to remove undesirable, mostly monochromatic surface wave noise originating from nearby sources. Virtual shot gathers were generated along three receiver lines, each of which was processed as a separate 2-D reflection line. Two of the resulting unmigrated reflection profiles are compared against coincident dipmoveout-stacked data from a larger, coincident 3-D dynamite seismic survey that was also acquired over the Lalor mine in 2013. Using knowledge of the local geology derived from numerous boreholes, coherent events recovered in the passive reflection profiles are inferred to be either spurious arrivals or real reflections, some of which can be interpreted in terms of geological contacts, indicating the future potential of passive recording surveys in hard rock settings.

  12. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    Science.gov (United States)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  13. Diversity in the Archean Biosphere: New Insights from NanoSIMS

    Science.gov (United States)

    Oehler, Dorothy Z.; Robert, François; Walter, Malcolm R.; Sugitani, Kenichiro; Meibom, Anders; Mostefaoui, Smail; Gibson, Everett K.

    2010-05-01

    The origin of organic microstructures in the ˜3 Ga Farrel Quartzite is controversial due to their relatively poor state of preservation, the Archean age of the cherts in which they occur, and the unusual spindle-like morphology of some of the forms. To provide more insight into the significance of these microstructures, nano-scale secondary ion mass spectrometry (NanoSIMS) maps of carbon, nitrogen, sulfur, silicon, and oxygen were obtained for spheroidal and spindle-shaped constituents of the Farrel Quartzite assemblage. Results suggest that the structures are all bona fide ˜3 Ga microfossils. The spindles demonstrate an architecture that is remarkable for 3 Ga organisms. They are relatively large, robust, and morphologically complex. The NanoSIMS element maps corroborate their complexity by demonstrating an intricate, internal network of organic material that fills many of the spindles and extends continuously from the body of these structures into their spearlike appendages. Results from this study combine with previous morphological and chemical analyses to argue that the microstructures in the Farrel Quartzite comprise a diverse assemblage of Archean microfossils. This conclusion adds to a growing body of geochemical, stromatolitic, and morphological evidence that indicates the Archean biosphere was varied and well established by at least ˜3 Ga. Together, the data paint a picture of Archean evolution that is one of early development of morphological and chemical complexity. The evidence for Archean evolutionary innovation may augur well for the possibility that primitive life on other planets could adapt to adverse conditions by ready development of diversity in form and biochemistry.

  14. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    Science.gov (United States)

    Gangopadhyay, Amitava; Sproule, Rebecca A.; Walker, Richard J.; Lesher, C. Michael

    2005-11-01

    Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/ 188Os ratios >1 were reset at ˜2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks. Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (D Ossolid/liquid) for the Dundonald rocks is ˜3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/ 188Os ratios (Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.

  15. Reconstruction of the Paleoproterozoic deeper ocean environment: Preliminary Report of the Ghana Birimian Greenstone Belt Drilling Project (GHB)

    Science.gov (United States)

    Kiyokawa, S.; Yoshimaru, S.; Miki, T.; Sakai, S.; Ikehara, M.; Yamaguchi, K. E.; Ito, T.; Onoue, T.; Takehara, M.; Tetteh, G. M.; Nyame, F. K.

    2016-12-01

    The Paleoproterozoic Era are one of the most rapid environmental change when the earth surface environment was affected by formation of continents and increasing atmospheric oxygen levels. Major oxidation of Great Oxidation Event (GOE) are reported this ages (eg. Holland, 2006; Condie, 2001; Lyons et al., 2014). The nature of deep sea environments at this time have not been clearly identified and oceanic sediments are mostly involved in subduction. The Paleoproterozoic Birimian Greenstone Belt is an ophiolitic volcaniclastic sequence in Ghana, with depositional age of over 2.3-2.2 Ga (Petersson et al., 2016). Detail research was conducted of the Ashanti (Axim-Konongo) Belt of the Birimian Greenstone Belt along the coast near Cape Three Points area. Very thick volcaniclastic and organic-rich sedimentary rocks, which we now refer to as the Cape Three Points Group, crop out in the lower part of the Birimian Greenstone Belt. Stratigraphically, three unit identified; the lower portion contains thick vesicular volcaniclastic rocks, the middle portion is made up of laminated volcaniclastics and black shale, and the upper portion dominated by fine laminated volcaniclastics with more black shale sequence. Continuous core drilling from Dec 3-12th 2015 of the upper part of the sequence intersected saprolite to a depth of 30m and fresh, well preserved stratigraphy with graded bedding and lamination to a depth of 195m. Half cut cores show well laminated organic rich black shale and relative carbonate rich layers with very fine pyrite grains. SHRIMP age data from a porphyry intrusion into this sequence indicate an age of 2250 Ma. Carbon isotope analysis shows δ13C = -43 to -37‰ for black shale with the very light isotope values for cyanobacterial signature.The fining-upward sequences, well laminated bed and black shales and REE data suggest this sequence situated partly silent stagnant with volcanic activity ocean floor environment around an oceanic island arc condition.

  16. First data on Sm-Nd isotope systematics of the Kholodnikansk greenstone belt metavolcanites, the Southern Aldan shield

    International Nuclear Information System (INIS)

    Lavrik, S.N.; Mishkin, M.A.; Moiseenko, V.G.; Zhuravlev, D.Z.

    2002-01-01

    The age of the Kholodnikansk greenstone metavolcanites, located in the south of the Southern Aldan shield, is determined through the method of the Sm-Nd dating with the purpose of studying its earth crust constituent segments formation. The obtained metavolcanites isochronous age, equal to 2.41±0.08 billion years testifies to the fact, that the processes of the early proterozoic activation (2.2-2.4 billion years ago) were manifested not only within the limits of the Central-Aldan complex but also in the south of the Aldan shield [ru

  17. Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania

    Directory of Open Access Journals (Sweden)

    Shimba D. Kwelwa

    2018-04-01

    Full Text Available Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and intrusive diorite. The geological evolution of the deposits involved three separate stages: (1 an early stage of syn-sedimentary extensional deformation (D1 around 2715 Ma; (2 a second stage involving overprinting ductile folding (D2–4 and shearing (D5–6 events during N-S compression between 2700 and 2665 Ma, coeval with the emplacement of the Kukuluma Intrusive Complex; and (3 a final stage of extensional deformation (D7 accommodated by minor, broadly east-trending normal faults, preceded by the intrusion of felsic porphyritic dykes at ~2650 Ma. The geometry of the ore bodies at Kukuluma and Matandani is controlled by the distribution of magnetite-rich meta-ironstone, near the margins of monzonite-diorite bodies of the Kukuluma Intrusive Complex. The lithological contacts acted as redox boundaries, where high-grade mineralization was enhanced in damage zones with higher permeability, including syn-D3 hydrothermal breccia, D2–D3 fold hinges, and D6 shears. The actual mineralizing event was syn-D7, and occurred in an extensional setting that facilitated the infiltration of mineralizing fluids. Thus, whilst gold mineralization is late-tectonic, ore zone geometries are linked to older structures and lithological boundaries that formed before gold was introduced. The deformation-intrusive history of the Kukuluma and Matandani deposits is near identical to the geological history of the world-class Nyankanga and Geita Hill deposits in the central part of the Geita Greenstone Belt. This similarity suggests that the geological history of much of the greenstone belt is similar. All major gold deposits in the Geita Greenstone Belt lack close proximity to crustal-scale shear zones; they are associated

  18. Metamorphic fluid flow in the northeastern part of the 3.8-3.7 Ga Isua Greenstone Belt (SW Greenland): A re-evalution of fluid inclusion evidence for early Archean seafloor-hydrothermal systems

    DEFF Research Database (Denmark)

    Heijlen, Wouter; Appel, P. W. U.; Frezzotti, M. L.

    2006-01-01

    . In most quartz crystals, however, recrystallization obliterated such early fluid inclusion assemblages and left graphite and carbonate as solid inclusions in recrystallized grains. Intragranular fluid inclusion trails in the recrystallized grains of breccia cementing and crosscutting quartz veins have CO2...... density (ranging from 48.0 to > 105.3 cm(3)/Mol) and metastable H2O NaCl(-other salt?) brines (similar to 28 eq. wt% NaCl). Finally, the youngest fluid inclusion assemblages are found in non-luminescent secondary quartz and contain low-density CH4 (molar volume > 105.33 cm(3)/Mol) and low-salinity H2O.......5-2 kbar. The quartz globules in the pillow fragments only contain sporadic CH4(+H-2) and brine inclusions, corresponding with the late generations present in the cementing and crosscutting veins. We argue that due to the large extent of static recrystallization in quartz globules in the pillow breccia...

  19. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    Energy Technology Data Exchange (ETDEWEB)

    Ashwal, L.D.; Morgan, P.; Kelley, S.A.; Percival, J.A.

    1987-10-01

    We have measured concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100 km transect of the Superior Province of the Canadian Shield, from the Michipicoten (Wawa) greenstone belt, near Wawa, Ontario, through a domal gneiss terrane of amphibolite grade, to the granulite belt of the Kapuskasing Structural Zone, near Foleyet. (orig./SHOE).

  20. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO 2 . Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability

  1. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  2. Reconciling "Whiffs" of O2 with the Archean MIF S Record: Insights from Sulfide Oxidation Experiments

    Science.gov (United States)

    Johnson, A.; Reinhard, C. T.; Romaniello, S. J.; Greaney, A. T.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2016-12-01

    The Archean-Proterozoic transition is marked by the first appreciable accumulation of O2 in Earth's oceans and atmosphere at 2.4 billion years ago (Ga). However, this Great Oxidation Event (GOE) is not the first evidence for O2 in Earth's surface environment. Paleoredox proxies preserved in ancient marine shales (Mo, Cr, Re, U) suggest transient episodes of oxidative weathering before the GOE, perhaps as early as 3.0 Ga. One marine shale in particular, the 2.5 Ga Mount McRae Shale of Western Australia, contains a euxinic interval with Mo enrichments up to 50 ppm. This enrichment is classically interpreted as the result of oxidative weathering of sulfides on the continental surface. However, prior weathering models based on experiments suggested that sulfides require large amounts of O2 [>10-4 present atmospheric level (PAL) pO2] to produce this weathering signature, in conflict with estimates of Archean pO2 from non-mass-dependent (NMD) sulfur isotope anomalies (molybdenite from 3 - 700 nM O2 (equivalent at equilibrium to 10-5 - 10-3 PAL) to measure oxidation kinetics as a function of the concentration of dissolved O2. We measured rates by injecting oxygenated water at a steady flow rate and monitoring dissolved O2 concentrations with LUMOS sensors. Our data extend the O2 range explored in pyrite oxidation experiments by three orders of magnitude and provide the first rates for molybdenite oxidation at O2 concentrations potentially analogous to those characteristic of the Archean atmosphere. Our results show that pyrite and molybdenite oxidize significantly more rapidly at lower O2 levels than previously thought. As a result, our revised weathering model demonstrates that the Mo enrichments observed in late Archean marine shales are potentially attainable at extremely low atmospheric pO2 values (e.g., <10-5 PAL), reconciling large sedimentary Mo enrichments with co-occurring NMD sulfur isotope anomalies.

  3. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    Science.gov (United States)

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  4. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    Science.gov (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  5. Mobility of nutrients and trace metals during weathering in the late Archean

    Science.gov (United States)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  6. Controls on Atmospheric O2: The Anoxic Archean and the Suboxic Proterozoic

    Science.gov (United States)

    Kasting, J. F.

    2015-12-01

    Geochemists have now reached consensus that the Archean atmosphere was mostly anoxic, that a Great Oxidation Event (GOE) occurred at around 2.5 Ga, and that the ensuing Proterozoic atmosphere was consistently oxidized [1,2]. Evidence for this broad-scale change in atmospheric composition comes from a variety of sources, most importantly from multiple sulfur isotopes [3,4]. The details of both the Archean and Proterozoic environments remain controversial, however, as does the underlying cause of the GOE. Evidence of 'whiffs' of oxygen during the Archean [5] now extend back as far as 3.0 Ga, based on Cr isotopes [6]. This suggests that O2 was being produced by cyanobacteria well before the GOE and that the timing of this event may have been determined by secular changes in O2 sinks. Catling et al. [7] emphasized escape of hydrogen to space, coupled with progressive oxidation of the continents and a concomitant decrease in the flux of reduced gases from metamorphism. But hydrogen produced by serpentinization of seafloor could also have been a controlling factor [8]. Higher mantle temperatures during the Archean should have resulted in thicker, more mafic seafloor and higher H2 production; decreasing mantle temperatures during the Proterozoic should have led to seafloor more like that of today and a corresponding decrease in H2 production, perhaps by enough to trigger the GOE. Once the atmosphere became generally oxidizing, it apparently remained that way during the rest of Earth's history. But O2 levels in the mid-Proterozoic could have been as low at 10-3 times the Present Atmospheric Level (PAL) [9]. The evidence, once again, is based on Cr isotopes. Possible mechanisms for maintaining such a 'suboxic' Proterozoic atmosphere will be discussed. Refs: 1. H. D. Holland, Geochim. Cosmochim. Acta 66, 3811 (2002). 2. H. D. Holland, Philosophical Transactions of the Royal Society B-Biological Sciences 361, 903 (Jun 29, 2006). 3. J. Farquhar, H. Bao, M. Thiemans, Science

  7. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    Science.gov (United States)

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  8. Field and geochemical characterisitics of the Mesoarchean (~3075 ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in a supra-subduction oceanic crust

    DEFF Research Database (Denmark)

    Polat, A.; Appel, P.W.U.; Frei, Robert

    2006-01-01

    -enriched, near-flat HREE, and HFSE (especially Nb)-depleted trace element patterns, indicating a subduction zone geochemical signature. Ultramafic pillows and cumulates display large positive initial eNd values of + 1.3 to + 5.0, consistent with a strongly depleted mantle source. Given the geological...... similarities between the Ivisaartoq greenstone belt and Phanerozoic forearc ophiolites, we suggest that the Ivisaartoq greenstone belt represents Mesoarchean supra-subduction zone oceanic crust....... assemblage is interpreted as relict epidosite. The stage II metasomatic assemblage occurs as concordant discontinuous layered calc-silicate bodies to discordant calc-silicate veins commonly associated with shear zones. The stage II metasomatic assemblage consists mainly of diopside...

  9. Archean Age Fossils from Northwestern Australia (Approximately 3.3 to 3.5 GA, Warrawoona Group, Towers Formation)

    Science.gov (United States)

    Smith, Penny A. Morris

    1999-01-01

    Archean aged rocks from the Pilbara Block area of western Australia (Warrawoona Group, Towers Formation, -3.3-3.5 Ga) contain microfossils that are composed of various sizes of spheres and filaments. The first descriptions of these microfossils were published in the late 1970's (Dunlop, 1978; Dunlop, et. al., 1978). The authenticity of the microfossils is well established. The small size of the microfossils prevents isotope dating, at least with the present technology. Microbiologists, however, have established guidelines to determine the authenticity of the Archean aged organic remains (Schopf, Walter, 1992).

  10. Geochemistry and geochronology of the Archean and palaeo-Proterozoic formations of southern Cameroon (Ntem group, Congo craton)

    International Nuclear Information System (INIS)

    Rchameni, R.

    1997-01-01

    The aim of this work is to understand the crustal evolution of the NW margin of the Congo craton using structural, petrography, isotopic, geochemical and geochronological studies of the Archean and palaeo-Proterozoic formations of the Ntem group of southern Cameroon. The synthesis of these studies allows to propose a diapir-type gravity model linked with the genesis of granitoids to explain the geodynamical evolution of this part of the craton during the Archean. A convergence model with the collision of the Congo and Sao-Francisco cratons and with crust thickening followed by a relaxation phase is proposed for the palaeo-Proterozoic. (J.S.)

  11. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    Science.gov (United States)

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  12. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: Implications for the origin, evolution, and tectonic setting

    Science.gov (United States)

    Verma, Sanjeet K.; Oliveira, Elson P.; Silva, Paola M.; Moreno, Juan A.; Amaral, Wagner S.

    2017-07-01

    The Neoarchean Rio das Velhas and Pitangui greenstone belts are situated in the southern São Francisco Craton, Minas Gerais, Brazil. These greenstone belts were formed between ca. 2.79-2.73 Ga, and consist mostly of mafic to ultramafic volcanics and clastic sediments, with minor chemical sediments and felsic volcanics that were metamorphosed under greenschist facies. Komatiites are found only in the Rio das Velhas greenstone belt, which is composed of high-MgO volcanic rocks that have been identified as komatiites and high-Mg basalts, based on their distinctive geochemical characteristics. The Rio das Velhas komatiites are composed of tremolite + actinolite + serpentine + albite with a relict spinifex-texture. The Rio das Velhas komatiites have a high magnesium content ((MgO)adj ≥ 28 wt.%), an Al-undepleted Munro-type [(Al2O3/TiO2)adj and (CaO/Al2O3)adj] ratio ranging from 27 to 47 and 0.48 to 0.89, relatively low abundances of incompatible elements, a depletion of light rare earth elements (LREE), a pattern of non-fractionated heavy rare- earth elements (HREE), and a low (Gd/Yb)PM ratio (≤ 1.0). Negative Ce anomalies suggest that alteration occurred during greenschist facies metamorphism for the komatiites and high-Mg basalts. The low [(Gd/Yb)PM 18] and high HREE, Y, and Zr content suggest that the Rio das Velhas komatiites were derived from the shallow upper mantle without garnet involvement in the residue. The chemical compositions [(Al2O3/TiO2)adj, (FeO)adj, (MgO)adj, (CaO/Al2O3)adj, Na, Th, Ta, Ni, Cr, Zr, Y, Hf, and REE] indicate that the formation of the komatiites, high-Mg basalts and basalts occurred at different depths and temperatures in a heterogeneous mantle. The komatiites and high-Mg basalts melted at liquidus temperatures of 1450-1550 °C. The Pitangui basalts are enriched in the highly incompatible LILE (large-ion lithophile elements) relative to the moderately incompatible HFS (high field strength) elements. The Zr/Th ratio ranging from 76 to

  13. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton

    Directory of Open Access Journals (Sweden)

    Ju-Quan Zhang

    2018-03-01

    Full Text Available The Wutai greenstone belt in central North China Craton (NCC hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation (BIF, meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ∼2.5–2.3 Ga and the third one at ∼1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows. (1 ∼2.6–2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite (TTG magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean. (2 ∼2.5–2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization. (3 ∼2.2–2.1 Ga: extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits. (4 ∼2.2–2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region. (5 ∼1.95–1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.

  14. Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    Science.gov (United States)

    Oehler, D. Z.; Robert, F.; Walter, M. R.; Sugitani, K.; Meibom, A.; Mostefaoui, S.; Gibson, E. K.

    2010-01-01

    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms.

  15. Triassic rejuvenation of unexposed Archean-Paleoproterozoic deep crust beneath the western Cathaysia block, South China

    Science.gov (United States)

    Li, Xi-Yao; Zheng, Jian-Ping; Xiong, Qing; Zhou, Xiang; Xiang, Lu

    2018-01-01

    Jurassic (ca. 150 Ma) Daoxian basalts from the western Cathaysia block (South China) entrained a suite of deep-seated crustal xenoliths, including felsic schist, gneiss and granulite, and mafic two-pyroxene granulite and metagabbro. Zircon U-Pb-Hf isotopic, whole-rock elemental and Sr-Nd-Pb isotopic compositions have been determined for these valuable xenoliths to reveal the poorly-known, unexposed deep crust beneath South China. Detrital zircons from the garnet-biotite schists show several populations of ages at 0.65-0.5 Ga, 1.1-0.75 Ga, 1.6-1.4 Ga, 1.8-1.7 Ga, 2.5-2.4 Ga, 2.8 Ga, and 3.5 Ga, representing a multi-sourced, meta-sedimentary origin with deposition time at the early Cambrian. One mafic granulite contains zircons with concordant U-Pb ages of Neoarchean ( 2520 Ma), as well as Hf model ages of 2.8-2.6 Ga and positive εHf(t) values (up to 6.3), suggesting an accretion of juvenile crust in Neoarchean, probably as the main framework of the lower crust. Geochemical and geochronological evidence shows the mafic granulite and metagabbro were produced by underplating of magmas derived from the depleted asthenosphere and mixed with EM2-type materials during the Late Triassic (205-196 Ma). This magmatic underplating also resulted in the widespread metamorphism of the mafic lower crust and felsic middle crust (e.g., the felsic granulite and gneiss) at 202-201 Ma. We suggest the existence of a highly evolved Archean-Paleoproterozoic basement beneath the western Cathaysia block, which experienced episodic accretion and reworking and the strong rejuvenation during the Triassic. A three-layered structure of the lower crust could exist beneath the Daoxian area during the Jurassic time: its upper layer is an evolved Archean-Paleoproterozoic basement; the middle hybrid layer represents a mixture of Archean-Paleoproterozoic basement with newly accreted/reworked Proterozoic to Phanerozoic materials; and the deeper layer consists of mafic granulites derived from the

  16. Sulfur MIF, Organic Haze, and the Gaia Hypothesis in the Archean

    Science.gov (United States)

    Domagal-Goldman, S.; James, K. F.

    2006-05-01

    The presence of mass-independent fractionation (MIF) of sulfur isotopes in Archean sedimentary rocks provides evidence for a low-O2 atmosphere prior to 2.4 Ga. Recent data suggest that S-MIF vanished transiently between ~3.2 Ga and 2.8 Ga. The absence of S-MIF after 2.4 Ga is commonly attributed to the rise of O2 in the atmosphere, as the presence of free O2 would have oxidized all sulfur species, thereby erasing any MIF created by atmospheric photochemistry. However, if free O2 did not appear in the atmosphere until 2.4 Ga, then why did S-MIF disappear transiently much earlier? Could S-MIF have been eliminated from the rock record without the presence of free atmospheric O2? We used a 1-dimensional photochemical model to demonstrate how this might have happened. Increasing the CH4/CO2 ratio in the model atmosphere results in the formation of organic haze. If the haze was sufficiently thick, it would have blocked out much of the solar UV radiation shortward of 220 nm that dissociates SO2 and SO, and thereby causes MIF. The haze should also have caused anti-greenhouse cooling and may have triggered the (putative) 2.8-Ga glaciations. Speculatively, an increase in CH4 at 3.0 Ga could have been caused by the evolution of methanogens, while a CH4 decrease at 2.7 Ga could correspond to the evolution of cyanobacteria. The presence of an optically thin organic haze between 2.4 and 2.7 Ga may explain the larger S-MIF values seen at this time, as compared to the early Archean. If such an organic haze existed, it could have resulted in a biologically-mediated negative feedback loop that stabilized the Archean climate. This feedback loop would have operated as follows: an increase in the biological CH4 flux would have led to an increase in haze thickness and a stronger anti-greenhouse effect, cooling the surface. The surface cooling would have caused a reduction of methanogen productivity, thus offsetting the original increase in the CH4 flux. Such stabilizing feedbacks

  17. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    Science.gov (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim

  18. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    Science.gov (United States)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  19. Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan

    Science.gov (United States)

    Yamasaki, Toru; Nanayama, Futoshi

    2018-03-01

    The Izanagi Plate is assumed to have underlain the western Panthalassa Ocean to the east of Eurasia, and to have been subducting under the Eurasian continent. Although the Izanagi Plate has been lost to subduction, the subduction complexes of the circum-Panthalassa continental margins provide evidence that subduction-related volcanism occurred within the Panthalassa Ocean, and not just along its margins. The Daimaruyama mass is a kilometer-sized allochthonous greenstone body in the Hiroo Complex in the southeastern part of the Nakanogawa Group in the southern Hidaka Belt, northern Japan. The Hiroo Complex is a subduction complex that formed within the Paleo-Kuril arc-trench system at 57-48 Ma. The Daimaruyama greenstones consist mainly of coarse volcaniclastic rocks with lesser amount of lava. Red bedded chert, red shale, and micritic limestone are also observed as blocks associated with the greenstones. The presence of Early Cretaceous (Aptian-Albian) radiolaria in red bedded cherts within the greenstones indicates that the Daimaruyama greenstones formed after this time. An integrated major and trace element geochemical dataset for whole-rocks and clinopyroxenes of the greenstones indicates a calc-alkaline magmatic trend with low TiO2 contents and increases in SiO2 and decreases in FeO* with increasing differentiation. Negative anomalies of Nb, Ta, and Ti in normal mid-ocean-ridge basalt type normalized patterns are interpreted as "arc-signatures". Using "rhyolite-MELTS", we conducted a numerical simulation of magmatic differentiation under conditions of 1.5 kbar and H2O = 3 wt% to reproduce the liquid line of descent of the Daimaruyama greenstones. Back-calculations of the equilibrium melt compositions from the trace element chemistry of the clinopyroxenes generally agree with the whole-rock rare earth element compositions of the Daimaruyama greenstones, therefore providing support for the conditions used for the rhyolite-MELTS calculations as well as the actual

  20. Source heterogeneity for the major components of ~3.7 Ga banded iron formations (Isua Greenstone Belt, Western Greenland)

    DEFF Research Database (Denmark)

    Frei, Robert; Polat, Ali

    2006-01-01

    of the protocrustal landmass (eNd(3.7 Ga)   + 1.6). The validity of two different and periodically interacting water masses (an essentially two-component mixing system) in the deposition of alternating iron- and silica-rich layers is also reflected by systematic trends in germanium (Ge)/silicon (Si) ratios....... These suggest that significant amounts of silica were derived from unexposed and/or destroyed mafic Hadean landmass, unlike iron which probably originated from oceanic crust following hydrothermal alteration by deep percolating seawater. Ge/Si distributional patterns in the early Archean Isua BIF are similar...... of the depositional environment and to the understanding of depositional mechanisms of these earliest chemical sediments. Rare earth element (REE)-yttrium (Y) patterns of the individual mesobands show features of modern seawater with diagnostic cerium (Ce/Ce ), presodymium (Pr/Pr ) and Y/holmium (Ho) anomalies. Very...

  1. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    Science.gov (United States)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  2. Evidence for crustal recycling during the Archean: the parental magmas of the stillwater complex

    International Nuclear Information System (INIS)

    McCallum, I.S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana, is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area

  3. Extreme Hf and light Fe isotopes in Archean komatiites - a remnant of very early mantle depletion?

    Science.gov (United States)

    Nebel, O.; Sossi, P.; Campbell, I. H.; Van Kranendonk, M. J.

    2014-12-01

    Hafnium isotope signatures in some Archean komatiites (ca. 3.5-3.0 billion years old) require a mantle source with a time-integrated Lu/Hf that exceeds average modern depleted mantle. Investigation of the timing and locus of parent-daughter fractionation in their mantle sources potentially constrains differentiation processes in the early Earth and their subsequent distribution and storage. In addition, they may help to constrain the Hf isotope evolution of the greater depleted mantle. In order to shed light on these processes, we discuss radiogenic Hf isotopes in conjunction with stable Fe isotope systematics in Archean komatiites from the Pilbara craton in Western Australia. Our findings indicate that, after careful evaluation of the effects of alteration, pristine samples are characterised by initial 176Hf/177Hf, which lie above the age-corrected depleted mantle, as a consequence of ancient melt extraction. Iron isotope systematics for these samples further point to a mantle source that is isotopically lighter than average modern depleted mantle, which is also consistent with melt-depletion. Taken together, these observations require a component of an old, super-depleted reservoir in the komatiite mantle source(s) that survived in the mantle for possibly hundreds of millions of years. The Lu/Hf of this refractory mantle appears to be complementary to, and therefore contemporaneous with, the first terrestrial crust, as preserved in Hadean (i.e., > 4 Ga) detrital zircon cores, which may indicate a causal relationship between them. We will discuss implications for very early mantle dynamics and the formation of very early mantle reservoirs.

  4. Empirical Records of Environmental Change across the Archean-Proterozoic Transition

    Science.gov (United States)

    Kaufman, A. J.

    2011-12-01

    Time-series geochemical analyses of scientific drill cores intersecting the Archean-Proterozoic transition suggest a coupling of environmental and biological change that culminated in the pervasive oxygenation of Earth's atmosphere and oceans. Elemental and multiple isotope measurements of sedimentary archives, including carbonate, shale, and banded iron-formation from Western Australia, South Africa, Brazil, and southern Canada, indicate important changes in the carbon, sulfur, and nitrogen cycles that monitor the redox state of the oceans and the cyanobacterial buildup of atmospheric oxygen and ozone. In response, continental weathering would have increased, resulting in the enhanced delivery of sulfate and nutrients to seawater, further stimulating photoautotrophic fluxes of oxygen to surface environments. The positive feedback may additionally be responsible for the decline of atmospheric methane and surface refrigeration, represented by a series of discrete ice ages beginning around 2.4 billion years ago, due to the loss of greenhouse capacity during a time of lower solar luminosity. While speculative, the linkage of surface oxidation with enhanced nutrient supply and development of stratospheric sunscreen soon after the Archean-Proterozoic boundary suggests that the earliest perturbation in the carbon cycle may be associated with the rapid expansion of single-celled eukaryotes. Both sterol synthesis in eukaryotes and aerobic respiration require significant levels of oxygen in the ambient environment. Hence, Earth's earliest ice age(s) and onset of a modern and far more energetic carbon cycle may have been directly related to the global expansion of cyanobacteria that released oxygen to the environment, and of eukaryotes that respired it.

  5. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    International Nuclear Information System (INIS)

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  6. Awareness for natural radiation potential zones in Archean Terrain of Chhattisgarh State

    International Nuclear Information System (INIS)

    Diwan, H.D.; Pande, S.K.

    2015-01-01

    In the environment, the natural radiations emitted by rocks and soils containing radioactive minerals, largely affected the human being in various aspects. The Chhattisgarh region characterized by the mineral of natural radiations with their relative distribution found in Granitic rocks of Archean age. Adjacent to Cratonic margins, exposures of outer fringes became suitable sites for radiation spread. It constituting towards the emission of radiation by the intrinsic content of minerals present in the host rock i.e. the terrestrial sources of radiation. The Archean terrain covers the surrounding areas of oval cup shaped sedimentary basin and it lies in the S.O.I. toposheet no. 64 G. H.I.K.L. To locate the marked potential zone for natural radiation, the investigation nearby aquatic component of main river and tributaries of Mahanadi river system is important. The presence of Granitic/ Pegmatite rocks at the boundaries of shield areas became promising areas for radiation generating mineral components. Occurrence in the potential zones expressed as lense shaped deposits or strips in dimension of IX1/2 with few hundred long belt. Presence of weathering of Uraninite minerals content remain yellow orange coloured impressions on the surface. In urban areas the background radiation in form of ionic radiation by the residential dwelling units accredates radiations. It needs awareness for Natural Radiation of under zones (NRPZ) in the region. To ensure the effective awareness programme, the area under consideration of natural radiation should take care of socially sustainable activities and spatio-temporal spread to motivate and implement various safety provisions. The model experiments can be sued from R and D point of view, also to alert the people to provide 'Safety, health and welfare of society'. (author)

  7. A reassessment of the Archean-Mesoproterozoic tectonic development of the southeastern Chhattisgarh Basin, Central India through detailed aeromagnetic analysis

    Science.gov (United States)

    Sridhar, M.; Ramesh Babu, V.; Markandeyulu, A.; Raju, B. V. S. N.; Chaturvedi, A. K.; Roy, M. K.

    2017-08-01

    We constrained the geological framework over polydeformed Paleoproterozoic Sonakhan Greenstone Belt and addressed the tectonic evolution of Singhora basin in the fringes of Bastar Craton, central India by utilizing aeromagnetic data interpretation, 2.5D forward modelling and 3D magnetic susceptibility inversions. The Sonakhan Greenstone Belt exposes volcano-sedimentary sequences of the Sonakhan Group within NNW-SSE to NW-SE trending linear belts surrounded by granite gneisses, which are unconformably overlain by sedimentary rocks of Chhattisgarh Basin. The orientations of aeromagnetic anomalies are coincident with geological trends and appear to correlate with lithology and geologic structure. Regional magnetic anomalies and lineaments reveal both NNW-SSE and NE-SW trends. Prominent E-W trending linear, high amplitude magnetic anomalies are interpreted as the Trans-Chhattisgarh Aeromagnetic Lineament (TCAL). NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active

  8. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 ± 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock δ 18 O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial 87 Sr/ 86 Sr (0.7033 ± 0.0042) calculated from the isochron intercept varies significantly. Calculated initial 87 Sr/ 86 Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock δ 18 O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial 87 Sr/ 86 Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite

  9. Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa

    Science.gov (United States)

    Watanabe, Yumiko; Naraoka, Hiroshi; Wronkiewicz, David J.; Condie, Kent C.; Ohmoto, Hiroshi

    1997-08-01

    The C, N, and S contents and VC and δ 13Cδ 34S values were analyzed for 100 shale samples from ten formations, 3.0 to 2.1 Ga in age, in the central and eastern regions of the Kaapvaal Craton, South Africa. The Kaapvaal shales are characterized by generally low contents of organic C (range 0.06-2.79 wt%, average 0.47 wt%), N (range facies). From the theoretical relationships between the H/C ratios of kerogen and organic C contents of shales, the original C contents of the Archean and Proterozoic shales from the Kaapvaal Craton are estimated to be on average ˜2 wt%. These values are similar to the average organic C content of modern marine sediments. This suggests that the primary organic productivity and the preservation of organic matter in the ocean during the period of 3.0 to 2.1 Ga were similar to those in the Phanerozoic era, provided the flux of clastic sediments to the ocean was similar. This would also imply that the rate of O 2 accumulation in the atmosphere-ocean system, which has equaled the burial rate of organic matter in sediments, has been the same since ˜3.0 Ga. The δ 34S values of bulk-rock sulfides (mostly pyrite) range from +2.7 to +7.4%‰ for seven sulfide-rich samples of ˜2.9 Ga to ˜2.6 Ga. These values are consistent with a suggestion by Ohmoto (1992) and Ohmoto et al. (1993) that most pyrite crystals in Archean shales were formed by bacterial reduction of seawater sulfate with δ 34S values between +2 and +10‰, and that the Archean seawater was sulfate rich. Changes in the δ 13C org values during maturation of kerogen were evaluated with theoretical calculations from the experimental data of Peters et al. (1981) and Lewan (1983), and from the observations by Simoneit et al. (1981) on natural samples. These evaluations suggest that the magnitudes of δ 13C org increase are much less than those estimated by Hayes et al. (1983) and Des Marais et al. (1992), and only about 2 to 3%‰ for the kerogens that decreased their H/C ratios from

  10. A summary of Rb-Sr isotope studies in the Archean Hopedale Block and the adjacent proterozoic Makkovik subprovince, Labrador

    International Nuclear Information System (INIS)

    Grant, N.K.; Hickman, M.H.; Marzano, M.S.; Ermanovics, I.F.

    1983-01-01

    Rb-Sr isotope study of thirteen whole-rock suites of Archean and Proterozoic rocks from Hopedale block and Makkovik Subprovince shows that the crustal history began about 3115 Ma ago. We tentatively recognize younger crustal segments that formed 2920 Ma ago, from which Kanairktok intrusives were derived at 2832 +- 178 Ma. In Makkovik Subprovince the Island Harbour granites range in age from 1843 +- 90 to 1794 +- 71 Ma. These ages overlap with the 1847 +-87 Ma age for Kanairktok shear zone mylonites. The Island Harbour granodiorites from inland localities to the southwest are contaminated with Archean rocks in Makkovik Subprovince and their initial 87 Sr/ 86 ratios imply a crustal contribution to their source. In contrast, the Island Harbour granites of Striped Island were derived from a mantle source. The sills of Striped Island are 1635 +- 47 Ma old. An undeformed northeast trending Kikkertavak dolerite dyke from Hopedale block is 1206 +- 120 Ma

  11. Deep-Time drilling in the Australian Archean: the Agouron Institute geobiological drilling project. (Invited)

    Science.gov (United States)

    Buick, R.

    2010-12-01

    The Agouron Institute has sponsored deep-time drilling across the South African Archean-Proterozoic boundary, investigating the rise of oxygen over an onshore-offshore environmental transect. It is now supporting a drilling program in the Australian Archean of the Pilbara Craton, addressing a similar theme but with the added goal of resolving controversy over the age and origin of hydrocarbon biomarker molecules in ancient kerogenous shales. As these have been claimed to provide evidence for the evolution of oxygenic photosynthesis long before the rise of atmospheric oxygen to persistently high levels during the ~2.3 Ga “Great Oxidation Event”, their syngenesis with their host shales is thus of critical importance for the interpretation of Earth’s early oxygenation history. During the first drilling season, 3 holes were drilled using techniques and equipment to minimize organic geochemical contamination (new drill-string components cleaned before drilling potentially biomarker-bearing rocks, pre-contamination of drilling fluid with a synthetic organic compound of similar geochemical characteristics to biomarkers, sterile cutting and storage of samples immediately upon retrieval from the core-barrel). The initial hole was a blank control for organic geochemistry, drilled into rocks too metamorphosed to retain biomarker molecules. These rocks, cherts, carbonates and pelites of the 3.52 Ga Coucal Formation, Coonterunah Group, have been metamorphosed to upper greenschist facies at temperatures near 500°C and so should have had any ancient soluble hydrocarbons destroyed. However, because they contain both carbonate and organic carbon, these rocks can instead provide isotopic information about the earliest evolution of biological metabolism as they possess residues of both the reactant and product sides of the carbon-fixation reaction. The second hole sampled an on-shore section of carbonates and kerogenous shales in the ~2.65 Ga Carawine Dolomite and Lewin Shale

  12. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  13. U-Pb SHRIMP ages of detrital zircons from Hiriyur formation in Chitradurga Greenstone belt and its implication to the Neoarchean evolution of Dharwar craton, South India

    International Nuclear Information System (INIS)

    Nasheeth, A.; Okudaira, T.; Horie, K.; Hokada, T.; Satish Kumar, M.

    2016-01-01

    We report newly obtained U-Pb SHRIMP ages of detrital zircons from metagreywackes in the Hiriyur Formation (Chitradurga Group, Dharwar Supergroup) from the central eastern part of the Chitradurga greenstone belt. U-Pb analyses yield three major Neoarchean age populations ranging from 2.70 - 2.54 Ga with some minor age population of Mesoarchean. The maximum age of deposition is constrained by the youngest detrital zircon population at 2546 Ma. This is the first report of the occurrence of supracrustal rocks less than 2.58 Ga in the central part of Chitradurga greenstone belt. Close evaluation of detrital ages with the published ages of surrounding igneous rocks suggest that the youngest detrital zircons might be derived from rocks of the Eastern Dharwar craton and the inferred docking of the western and eastern Dharwar cratons happened prior to the deposition of the Hiriyur Formation. The Chitradurga shear zone, dividing the Dharwar craton into western and eastern blocks, probably developed after the deposition. Furthermore, the lower intercept is interpreted as evidence for the Pan-African overprints in the study area. (author)

  14. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin

    Science.gov (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  15. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    Science.gov (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  16. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  17. Geological and Chemical Factors that Impacted the Biological Utilization of Cobalt in the Archean Eon

    Science.gov (United States)

    Moore, Eli K.; Hao, Jihua; Prabhu, Anirudh; Zhong, Hao; Jelen, Ben I.; Meyer, Mike; Hazen, Robert M.; Falkowski, Paul G.

    2018-03-01

    The geosphere and biosphere coevolved and influenced Earth's biological and mineralogical diversity. Changing redox conditions influenced the availability of different transition metals, which are essential components in the active sites of oxidoreductases, proteins that catalyze electron transfer reactions across the tree of life. Despite its relatively low abundance in the environment, cobalt (Co) is a unique metal in biology due to its importance to a wide range of organisms as the metal center of vitamin B12 (aka cobalamin, Cbl). Cbl is vital to multiple methyltransferase enzymes involved in energetically favorable metabolic pathways. It is unclear how Co availability is linked to mineral evolution and weathering processes. Here we examine important biological functions of Co, as well as chemical and geological factors that may have influenced the utilization of Co early in the evolution of life. Only 66 natural minerals are known to contain Co as an essential element. However, Co is incorporated as a minor element in abundant rock-forming minerals, potentially representing a reliable source of Co as a trace element in marine systems due to weathering processes. We developed a mineral weathering model that indicates that dissolved Co was potentially more bioavailable in the Archean ocean under low S conditions than it is today. Mineral weathering, redox chemistry, Co complexation with nitrogen-containing organics, and hydrothermal environments were crucial in the incorporation of Co in primitive metabolic pathways. These chemical and geological characteristics of Co can inform the biological utilization of other trace metals in early forms of life.

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Geochemical behavior under tropical weathering of the Barama-Mazaruni greenstone belt at Omai gold mine, Guiana Shield

    Energy Technology Data Exchange (ETDEWEB)

    Voicu, G. [Universite du Quebec a Montreal (Canada). Dept. des Sciences de la Terre et de l' Atmosphere; Omai Gold Mines, Georgetown (Guyana); Bardoux, M. [Universite du Quebec a Montreal (Canada). Dept. des Sciences de la Terre et de l' Atmosphere

    2002-07-01

    Mineralogical, petrographical, and geochemical studies of the weathering profile have been carried out at Omai Au mine, Guyana. The area is underlain by felsic to mafic volcanic and sedimentary rocks of the Barama-Mazaruni Supergroup, part of the Paleoproterozoic greenstone belts of the Guiana Shield. Tropical rainy climate has favoured extensive lateritization processes and formation of a deeply weathered regolith. The top of the weathering profile consists of lateritic gravel or is masked by the Pleistocene continental-deltaic Berbice Formation. Mineralogical composition of regolith consists mainly of kaolinite, goethite and quark, and subordinately sericite, feldspar, hematite, pyrite, smectite, heavy minerals, and uncommon mineral phases (nacrite, ephesite, corrensite, guyanaite). A specific feature of the weathering profile at Omai is the preservation of fresh hydrothermal pyrite in the saprolith horizon. Chemical changes during the weathering processes depend on various physicochemical and structural parameters. Consequently, the depth should not be the principal criterion for comparison purposes of the geochemical behavior within the weathering profile, but rather an index that measures the degree of supergene alteration that has affected each analyzed sample, independently of the depth of sampling. Thus, the mineralogical index of alteration (MIA) can provide more accurate information about the behavior of major and trace elements in regolith as opposed to unweathered bedrock. It can also aid in establishing a quantitative relationship between intensity of weathering and mobility (leaching or accumulation) of each element in each analyzed sample. At Omai, some major and trace elements that are commonly considered as immobile (ex: TiO{sub 2}, Zr, etc.) during weathering could become mobile in several rock types and cannot be used to calculate the mass and volume balance. In addition, due to higher ''immobile element'' ratios, the

  20. Generation of TTG rocks in the Archean: insight from numerical simulations

    Science.gov (United States)

    Rozel, Antoine; Golabek, Gregor; Gerya, Taras; Jain, Charitra; Tackley, Paul

    2017-04-01

    We study the creation of primordial continental crust (TTG rocks) for the first time employing fully self-consistent numerical models of thermochemical convection on a global scale. Starting from a pyrolytic bulk composition and an initially hot core, we first generate oceanic crust and depleted mantle. In our model, the basaltic material is both erupted at the surface and intruded at the base of the crust following a predefined partitioning. Second, we track the pressure-temperature conditions of the newly formed hydrated basalt and check if it matches the conditions necessary for the formation of primordial continental crust. We show that the "heat-pipe" model (assuming 100% eruption and no intrusion) proposed to be the main heat loss mechanism during the Archean epoch (Moore & Webb 2013) is not able to produce continental crust since it forms a cold and thick lithosphere. We systematically test various mechanical properties of the brittle domain (friction coefficients). Using our parameter study, we are also able to show that an intrusion fraction close to 70% (in agreement with [Crisp 1984]) combined with a friction coefficient of 0.2 products the expected amount of the three main petrological TTG compositions previously reported (Moyen 2011). This study represents a major step towards the production of self-consistent convection models able to generate the continental crust of the Earth. REFERENCES Crisp, J. A. (1984), Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research, 20(3-4), 177-211. Moore, W., and A. Webb (2013), Heat-pipe earth. Nature, 501, 501-505, doi:10.1038/nature12473. Moyen, J. (2011), The composite archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for archaean crustal growth. Lithos, 123, 21-36, doi: 10.1016/j.lithos.2010.09.015.

  1. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    Science.gov (United States)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  2. The extant shore platform stromatolite (SPS facies association: a glimpse into the Archean?

    Directory of Open Access Journals (Sweden)

    A. Smith

    2018-04-01

    Full Text Available Shore platform stromatolites (SPS were first noted at Cape Morgan on the south-east African seaboard. Since then they have been found growing discontinuously in rocky peritidal zones along the entire southern African seaboard. They have also been found on the southwest Australian coast, at Giant's Causeway in Northern Ireland, and more recently at Harris on the Scottish Hebridean Atlantic coast. In this paper SPS occurrence and SPS potential as analogues for Precambrian fossil stromatolites, as well as potential stromatolite occurrences in shore platform regions on Mars, are assessed. Sub-horizontal surfaces promote stromatolite development, while tufa develops on cliffs and steep rocky surfaces. Tufa and stromatolites are end members of a spectrum dictated by coastal topography. Extant SPS occur on well indurated shore platforms in high wave energy settings, often around or near headlands. They can be associated with boulder beaches, boulder ridges, storm swash terraces, coastal dunes, and peat bogs. In contrast to other extant stromatolites, SPS are produced primarily by mineral precipitation, although minor trapping and binding stromatolites do occur. From a geological perspective, SPS develop in mildly transgressive siliciclastic settings in various climatic and tidal regimes. We suggest that SPS could be preserved in the geological record as micritic lenses on palaeo-shore platform surfaces. SPS share many features with Precambrian stromatolites and are a valid modern analogue despite the widely different atmospheric and oceanic conditions of the Archean. We suggest that terraces associated with former oceanic or lacustrine flooding surfaces on Mars are potential targets in the search for palaeo-SPS on Mars.

  3. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    Science.gov (United States)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  4. On the metamorphic history of an Archaean granitoid greenstone terrane, East Pilbara, Western Australia, using the 40Ar/39Ar age spectrum technique

    International Nuclear Information System (INIS)

    Wijbrans, J.R.; McDougall, I.

    1987-01-01

    Age spectrum analyses of blue-green hornblendes from amphibolites from the Western Shaw Belt, East Pilbara, Western Australia, indicate an age of at least 3200 Ma for early regional metamorphism. Ages on hornblende and muscovite from the narrow contact zone with the adjacent Yule Batholith probably data updoming of the granitoid gneiss terranes at 2950 Ma. Hornblendes from within the Shaw Batholith and from a contact zone of a post-tectonic granitoid yield ages of 2840-2900 Ma, indicating either prolonged high temperatures within the granitoid gneiss terranes or a separate thermal pulse associated with the intrusion of post-tectonic granitoids. The preservation of very old hornblendes in a narrow greenstone belt surrounded by massive granitoid gneiss domes indicates that remarkable contrasts in metamorphic geotherms existed over short distances during the Late Archaean, suggesting that updoming occurred during a period of rapid tectonism. (orig.)

  5. On the metamorphic history of an Archaean granitoid greenstone terrane, East Pilbara, Western Australia, using the /sup 40/Ar//sup 39/Ar age spectrum technique

    Energy Technology Data Exchange (ETDEWEB)

    Wijbrans, J.R.; McDougall, I.

    1987-07-01

    Age spectrum analyses of blue-green hornblendes from amphibolites from the Western Shaw Belt, East Pilbara, Western Australia, indicate an age of at least 3200 Ma for early regional metamorphism. Ages on hornblende and muscovite from the narrow contact zone with the adjacent Yule Batholith probably data updoming of the granitoid gneiss terranes at 2950 Ma. Hornblendes from within the Shaw Batholith and from a contact zone of a post-tectonic granitoid yield ages of 2840-2900 Ma, indicating either prolonged high temperatures within the granitoid gneiss terranes or a separate thermal pulse associated with the intrusion of post-tectonic granitoids. The preservation of very old hornblendes in a narrow greenstone belt surrounded by massive granitoid gneiss domes indicates that remarkable contrasts in metamorphic geotherms existed over short distances during the Late Archaean, suggesting that updoming occurred during a period of rapid tectonism.

  6. 40Ar/39Ar incremental-release ages of biotite from a progressively remetamorphosed Archean basement terrane in southwestern Labrador

    International Nuclear Information System (INIS)

    Dallmeyer, R.D.

    1982-01-01

    Gneisses within Archean basement terrane adjacent to the southwestern portion of the Labrador Trough were variably retrograded during a regional metamorphism of Grenville age (ca. 1000 Ma). Bioties from non-retrograded segments of the gneiss terrane record 40 Ar/ 39 Ar plateau and isochron ages which date times of cooling following an episode of the Kenoran orogeny (2376-2391 Ma). A suite of gneiss samples displaying varying degrees of retrograde alteration was collected across the Grenville metamorphic gradient. Bioties in these samples show no petrographic evidence of retrograde alteration, however they do record internally discordant 40 Ar/ 39 Ar age spectra. Although the extent of internal discordance is variable, the overall character of the release patterns is similar with younger apparent ages recorded in intermediate-temperature gas fractions. The total-gas dates range from 2257+-27 Ma (northwest) to 1751+-23 Ma (southeast), suggesting that variable quantities of radiogenic argon were lost from the Archean biotites during Grenville metamorphism. The 'saddle-shaped' nature of the discordant spectra indicates that argon loss was not accomplished through single-stage, volume diffusion processes. (orig./ME)

  7. Re-appraisal of the Santa Rita Greenstone Belt stratigraphy, central Brazil, based on new U-Pb SHRIMP age and Sm-Nd data of felsic metavolcanic rocks

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Jost, Hardy; Fuck, Reinhardt Adolfo; Junges, Sergio Luiz; Armstrong, Richard; Resende, Marcelo Goncalves

    2000-01-01

    The Santa Rita greenstone belt represents one of the supracrustal belts of the Archaen terranes of Goias, central Brazil. The stratigraphic sequence of this greenstone belt comprises a lower of komatities and basalts and an upper metasedimentary unit made of carbonaceous schits, chert, iron formation and marble, unconformably overlain by clastic metasedimentary rocks. Felsic metavolcanics occur at the interface between the metabasalts and the upper metasedimentary pile. U-Pb SHRIMP age for zircons from the felsic metavolcanics reveal that it is not part of the Archaean sequence, but represents the product of mesoproterozoic (1580 ± 12 Ma) magmatic event. Sm-Nd isotopic data (initial e CHUR values between -10.5 and -14.9) and T DM values of 3.0 and 3.2 Ga, within the range of the surrounding TTG terranes, indicate that the original felsic magmas were produced by re-melting of Archaen crust. The data demonstrate that the Goias greenstone belt contains infolded and imbricated proterozoic rocks, as previously suggested by Sm-Nd isotopic analyses of some of the upper detrital metasedimentary rocks. (author)

  8. Re-appraisal of the Santa Rita Greenstone Belt stratigraphy, central Brazil, based on new U-Pb SHRIMP age and Sm-Nd data of felsic metavolcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio Martins; Jost, Hardy; Fuck, Reinhardt Adolfo; Junges, Sergio Luiz [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: marcio@unb.br; Armstrong, Richard [Australian National Univ., Canberra, ACT (Australia). Research School of Earth Sciences; Resende, Marcelo Goncalves [Universidade Catolica de Brasilia, DF (Brazil). Curso de Graduacao em Engenharia Ambiental

    2000-03-01

    The Santa Rita greenstone belt represents one of the supracrustal belts of the Archaen terranes of Goias, central Brazil. The stratigraphic sequence of this greenstone belt comprises a lower of komatities and basalts and an upper metasedimentary unit made of carbonaceous schits, chert, iron formation and marble, unconformably overlain by clastic metasedimentary rocks. Felsic metavolcanics occur at the interface between the metabasalts and the upper metasedimentary pile. U-Pb SHRIMP age for zircons from the felsic metavolcanics reveal that it is not part of the Archaean sequence, but represents the product of mesoproterozoic (1580 {+-} 12 Ma) magmatic event. Sm-Nd isotopic data (initial e{sub CHUR} values between -10.5 and -14.9) and T{sub DM} values of 3.0 and 3.2 Ga, within the range of the surrounding TTG terranes, indicate that the original felsic magmas were produced by re-melting of Archaen crust. The data demonstrate that the Goias greenstone belt contains infolded and imbricated proterozoic rocks, as previously suggested by Sm-Nd isotopic analyses of some of the upper detrital metasedimentary rocks. (author)

  9. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    Science.gov (United States)

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.

    2008-01-01

    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  10. Decreasing µ142Nd Variation in the Archean Convecting Mantle from 4.0 to 2.5 Ga: Heterogeneous Domain Mixing or Crustal Recycling?

    Science.gov (United States)

    Brandon, A. D.; Debaille, V.

    2014-12-01

    The 146Sm-142Nd (t1/2=68 Ma) chronometer can be used to examine silicate differentiation in the first 400 Ma of Earth history. Early fractionation between Sm and Nd is recorded in cratonic Archean rocks in their 142Nd/144Nd ratios that that deviate up to ±20 ppm, or μ142Nd - ppm deviation relative to the present-day convecting mantle at 0. These values likely record early extraction of incompatible trace element (ITE) enriched material with -μ142Nd, either as crust or late stage residual melt from a magma ocean, and resulting in a complimentary ITE depleted residual mantle with +μ142Nd. If this early-formed ITE-enriched material was re-incorporated rapidly back into the convecting mantle, both ITE-enriched and ITE-depleted mantle domains would have been established in the Hadean. Alternatively, if it was early-formed crust that remained stable it could have slowly eroded and progressively remixed into the convecting mantle as subducted sediment during the Archean. Each of these scenarios could potentially explain the decrease in the maximum variation in µ142Nd from ±20 at 4.0 Ga to 0 at 2.5 Ga [1,2,3]. In the scenario where these variations reflect mixing of mantle domains, this implies long mantle mixing times of greater than 1 Ga in the Archean in order to preserve the early-formed heterogeneities. This can be achieved in a stagnant lid tectonic regime in the Archean with sporadic and short subduction cycles [2]. This scenario would also indicate that mixing times in the convecting mantle were much slower than the previously proposed 100 Ma in the Hadean and Archean. In the alternative scenario, sediment with -µ142Nd was progressively mixed into the mantle via subduction in the Archean [3]. This scenario doesn't require slow mantle mixing times or a stagnant-lid regime. It requires crustal resident times of up to 750 Ma to maintain a steady supply of ancient sediment recycling over the Archean. Each of these scenarios evoke very contrasting conditions for

  11. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada

    Science.gov (United States)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  12. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton

    Science.gov (United States)

    Wang, Wei; Cawood, Peter A.; Liu, Shuwen; Guo, Rongrong; Bai, Xiang; Wang, Kang

    2017-09-01

    Accretionary orogens are major sites of modern continental growth, yet their role in the development of Archean continental crust remains enigmatic. Diverse granitoid suites from tonalite-trondhjemite-granodiorite (TTG) to potassic granitoids appeared during late Archean, representing a period of major continental formation and stabilization. In this study, whole-rock geochemical and zircon U-Pb and Lu-Hf isotopic data are reported for Neoarchean granitoid gneisses from the Northern Liaoning Terrane, northeastern North China Craton (NCC). Older granitoid gneisses ( 2592-2537 Ma) define three magmatic zones migrating from southeast to northwest, each showing a common magmatic evolution from high-pressure TTGs to medium-/low-pressure TTGs and potassic granitoids. They have depleted zircon ƐHf(t) of +0.5 to +8.7. Younger 2529-2503 Ma potassic granitoids and TTGs occur throughout the terrane, which are marked by variable zircon ƐHf(t) of -4.7 to +8.1, and are coeval with regional high-grade metamorphism. Petrogenetic modeling and changing Sr/Y and (La/Yb)N of the granitoids suggest that the crust experienced episodic thickening and thinning and became progressively evolved through development of potassic granitoids and sedimentary successions. The metavolcanic basement to the granitoids display tholeiitic to calc-alkaline affinities, together with the top-to-the-northwest thrusting and associated volcanogenic massive sulfide-type Cu-Zn deposits, suggesting cyclic crustal formation of Northern Liaoning within an accretionary orogen with a SE-dipping subduction polarity. Cyclic crustal thickening and thinning is related to tectonic switching from advancing to retreating relations between the downgoing and overriding plate. After 2530 Ma, this accretionary system accreted to the ancient continental nucleus of NCC (Anshan-Benxi Terrane), signifying final lithosphere stabilization.

  13. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton.

    Science.gov (United States)

    Ye, Hui; Wu, Chang-Zhi; Yang, Tao; Santosh, M; Yao, Xi-Zhu; Gao, Bing-Fei; Wang, Xiao-Lei; Li, Weiqiang

    2017-11-08

    Banded iron formations (BIFs) in Archean cratons provide important "geologic barcodes" for the global correlation of Precambrian sedimentary records. Here we report the first finding of late Archean BIFs from the Yangtze Craton, one of largest Precambrian blocks in East Asia with an evolutionary history of over 3.3 Ga. The Yingshan iron deposit at the northeastern margin of the Yangtze Craton, displays typical features of BIF, including: (i) alternating Si-rich and Fe-rich bands at sub-mm to meter scales; (ii) high SiO 2  + Fe 2 O 3total contents (average 90.6 wt.%) and Fe/Ti ratios (average 489); (iii) relative enrichment of heavy rare earth elements and positive Eu anomalies (average 1.42); (iv) and sedimentary Fe isotope compositions (δ 56 Fe IRMM-014 as low as -0.36‰). The depositional age of the BIF is constrained at ~2464 ± 24 Ma based on U-Pb dating of zircon grains from a migmatite sample of a volcanic protolith that conformably overlied the Yingshan BIF. The BIF was intruded by Neoproterozoic (805.9 ± 4.7 Ma) granitoids that are unique in the Yangtze Craton but absent in the North China Craton to the north. The discovery of the Yingshan BIF provides new constraints for the tectonic evolution of the Yangtze Craton and has important implications in the reconstruction of Pre-Nuna/Columbia supercontinent configurations.

  14. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: is this really Archean crust? REPLY

    Science.gov (United States)

    Premo, Wayne R.

    2010-01-01

    The comments from McGrew and Snoke are well received and their concerns for the interpretations in our paper (Premo et al., 2008), which questions the original contention that the Angel Lake orthogneiss is an Archean rock, are many and varied—all of which we will attempt to address. As they point out, this issue is an important one as this particular crustal exposure may delimit the southwestern extent of the Archean Wyoming province (Foster et al., 2006; Mueller and Frost, 2006), which has implications for the true crustal evolution of this region of the Great Basin and perhaps more importantly its relationship (if any) to the location of the world-class gold deposits of north-central Nevada (e.g., Howard, 2003).

  15. Decoding mass-independent fractionation of sulfur isotopes in modern atmosphere using cosmogenic 35S: A five-isotope approach and possible implications for Archean sulfur isotope records

    Science.gov (United States)

    Lin, M.; Thiemens, M. H.; Shen, Y.; Zhang, X.; Huang, X.; Chen, K.; Zhang, Z.; Tao, J.

    2017-12-01

    The signature of sulfur isotopic mass-independent fractionation (S-MIF) observed in Archean sediments have been interpreted as a proxy of the origins and evolution of atmospheric oxygen and early life on Earth [1]. Photochemistry of SOx in the short (negative Δ36S. After eliminating combustion impacts, the obtained Δ36S/Δ33S slope of -4.0 in the modern atmosphere is close to the Δ36S/Δ33S slope (-3.6) in some records from Paleoarchean [4], an era probably with active volcanism [5]. The significant role of volcanic OCS in the Archean atmosphere has been called for in terms of its ability to provide a continual SO2 high altitude source for photolysis [2]. The strong but previously underappreciated stratospheric signature of S-MIF in tropospheric sulfates suggests that a more careful investigation of wavelength-dependent sulfur isotopic fractionation at different altitudes are required. The combustion-induced negative Δ36S may be linked to recombination reactions of elemental sulfur [6], and relevant experiments are being conducted to test the isotope effect. Although combustion is unlikely in Archean, recombination reactions may occur in other previously unappreciated processes such as volcanism and may contribute in part to the heavily depleted 36S in some Paleoarchean records [5,7]. The roles of both photochemical and non-photochemical reactions in the variability of Archean S-MIF records require further analysis in the future. Refs: [1] Farquhar et al., Science 2000; [2] Shaheen et al., PNAS 2014; [3] Lin et al., PNAS 2016; [4] Wacey et al., Precambrian Res 2015; [5] Muller et al., PNAS 2016; [6] Babikov, PNAS 2017; [7] Shen et al., EPSL, 2009.

  16. Emplacement of pillow lavas from the ~ 2.8 Ga Chitradurga Greenstone Belt, South India: A physical volcanological, morphometric and geochemical perspective

    Science.gov (United States)

    Duraiswami, Raymond A.; Inamdar, Mustaqueem M.; Shaikh, Tahira N.

    2013-08-01

    The physical volcanology and morphometric analyses of pillowed lava flows from the Chitradurga basin of Chitradurga Greenstone Belt, South India have been undertaken. In the Chitradurga hills individual pillowed flows alternate with massive submarine sheet flows. The pillows from such flows are separated by chert and occur as spheroidal, elongated or reniform units that are devoid of vesicles, vesicle bands or pipe vesicles. The Mardihalli flow is exposed as a small elongated mound in the basin and consists of a massive core that is draped by pillows along the flow crest and flanks. The pillows from Mardihalli occur as spheroidal to elongate units with smooth, spalled or wrinkled surfaces with vesicular interiors. Repeated budding of larger pillows have produced a series of interconnected pillow units indicating fluid lava that was emplaced on steeply dipping flanks. Based on the morphological features the pillowed flows from the Chitradurga basin were emplaced at low effusion rates (≤ 5 m3/s). Pillows in these flows formed from low viscosity lavas that underwent negligible to moderate inflation due to rapid chilling. Sporadic occurrences of pillow breccias, hyaloclastite and chert breccias in the pillowed flow fields indicate disruption of pillows due to lava surges and slumping. It is envisaged that the Chitradurga basin witnessed distinct episodes of submarine tholeiite eruptions that produced pillowed lavas that variably interacted with sea water to produce geochemistries. The field and stratigraphic relationships of the volcanics and associated clastic sediments suggest that the pillow lavas were emplaced in a shallow marine marginal inter/back arc basin.

  17. Unravelling atmospheric photolysis and ocean redox chemistry from Paleoarchean pyrite : a multiple sulfur and iron stable isotope study

    NARCIS (Netherlands)

    Galić, A.

    2015-01-01

    This thesis brought together four individual studies on the geochemistry of three recently obtained drill cores from the Barberton Greenstone Belt, South Africa. These data were used to provide a synthesis of the iron and sulfur cycles in the Paleoarchean, with a particular focus on the nature and

  18. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    Science.gov (United States)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is

  19. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    Science.gov (United States)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global samples of depleted mantle, i.e. harzburgites and diamond inclusion suites. The Tanzanian ultra-depleted garnets form interconnecting networks ('necklaces') around grains of orthopyroxene, which is of key importance to their origin. This close spatial relationship of garnet and orthopyroxene together with the major, trace and REE contents of the ultra-depleted garnets, are consistent with an origin by isochemical exsolution. The significance of ultra-depleted low-Cr garnets has not previously been recognised in global suites of mantle xenoliths or diamond inclusions: they appear to have been overlooked, primarily

  20. Public Access to Digital Material; A Call to Researchers: Digital Libraries Need Collaboration across Disciplines; Greenstone: Open-Source Digital Library Software; Retrieval Issues for the Colorado Digitization Project's Heritage Database; Report on the 5th European Conference on Digital Libraries, ECDL 2001; Report on the First Joint Conference on Digital Libraries.

    Science.gov (United States)

    Kahle, Brewster; Prelinger, Rick; Jackson, Mary E.; Boyack, Kevin W.; Wylie, Brian N.; Davidson, George S.; Witten, Ian H.; Bainbridge, David; Boddie, Stefan J.; Garrison, William A.; Cunningham, Sally Jo; Borgman, Christine L.; Hessel, Heather

    2001-01-01

    These six articles discuss various issues relating to digital libraries. Highlights include public access to digital materials; intellectual property concerns; the need for collaboration across disciplines; Greenstone software for construction and presentation of digital information collections; the Colorado Digitization Project; and conferences…

  1. The provenance and Sm/Nd Model ages of siliciclastic supracrustal rocks of the Faina and Santa Rita Greenstone belts, Goias, Brazil

    International Nuclear Information System (INIS)

    Resende, Marcelo Goncalves; Jost, Hardy; Lima, Bruno Eustaquio Moreira; Teixeira, Alexandre de Amorim

    1999-01-01

    The Faina and Santa Rita greenstone belts are two N 60 deg C W trending synclinoria separated by a N 30 deg C E strike-slip fault and rest allochtonous on the adjacent Uva and Caicara granite-gneiss complexes. The belts are made up of lower metakomatiites, followed by metabasalts and thick metasedimentary sequences deposited under contrasting paleogeographic settings. In Faina, the sequence consists of two complete shelf cycles, the first resting on basalts by an erosional unconformity. In Santa Rita, the basalts give gradually place to carbonaceous metashales, unconformably overlain by metarhythmites. Provenance based on trace element geochemistry, mineral chemistry of chloride and muscovite, source-are modeling and REE elements indicate that protoliths of the first shelf cycle of Faina and the carbonaceous metashales of Santa Rita formed under the influence of a source area dominated by mafic ultramafic rocks, whilst during the sedimentation of the second shelf cycle and the metarhythmites of Santa Rita the source-area was dominated by TTG granitoids. Sm-Nd model ages of the lower sedimentary packages vary between 3.0 and 2.8 Ga and the upper between 2.7 and 2.6 Ga. These intervals coincide, respectively, with the estimated age of the underlying, and with the Sm-Nd, Rb-Sr e U-Pb ages of the main granitoids and gneisses of the adjacent complexes. The same data indicate that, during the sedimentation of the first shelf cycle of Faina and the carbonaceous metashales of Santa Rita, both basins had independent source-areas, but shared the same source during the upper sections. Weathering nature and intensity of the source-area calculated by means of geochemical a data suggest that the dramatic change of provenance from the lower to the upper sections is due to the shift from tectonically stable to unstable regimes, interpreted as resulting from the emergence of the island arc whose roots are represented by the adjacent granite-gneiss complexes. (author)

  2. Pb, Sr, and Nd isotopic compositions of a suite of Large Archean, igneous rocks, eastern Beartooth Mountains - Implications for crust-mantle evolution

    Science.gov (United States)

    Wooden, J. L.; Mueller, P. A.

    1988-01-01

    Compositionally diverse Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains (Montana and Wyoming) were studied and shown to have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial values lower than predicted for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. A model involving subduction of continental detritus and contamination of the overlying mantle is suggested.

  3. Variability in Rock Thermal Properties in the Late Archean Crust of the Kapuskasing Structural Zone and Implications for its Thermal Structure and Metamorphic History.

    Science.gov (United States)

    Merriman, J. D.; Whittington, A. G.; Hofmeister, A. M.

    2017-12-01

    The thermal properties of rocks such as internal heat production and thermal diffusivity (α) play a key role in determining the thermal structure of the lithosphere, and consequently, the rates and styles of metamorphism within the crust. Over the last decade, measurements of α using the method laser flash analysis have shown the ability of a rock to conduct heat can vary by as much as a factor of 5 between common rock types, and decrease by up to a factor of 10 for the same rock between 25-1000°C. Here we present a preliminary model for the variability in rock throughout the crust based on measurements of the α of a suite of 100 samples from late Archean crust exposed in and around the Kapuskasing Structural Zone in Ontario, Canada. Preliminary results suggest that α is controlled primarily by mineralogy, and can vary not only between different rock types as described above, but also within the same rock by a factor of 1.5 (or more). Thermal diffusivity results were combined with heat producing element concentrations measured with ICP-MS to create a thermal model of the Kapuskasing Structural Zone prior its uplift and exposure. To provide additional constraints for P-T conditions within the pre-uplift KSZ crust, a combination of trace-element and pseudosection thermobarometry was used to estimate metamorphic temperatures during an extended period of crustal stability at the end of the Archean. Preliminary results were compared to finite-difference numerical models of the steady-state geothermal gradient using heat production back-calculated to 2.6 Ga. Results suggest a minimum thickness of the continental lithosphere during the late Archean of at least 150 km. To test the response of the crust to the effects of large thermal events such as pluton emplacement, we also performed time-dependent models of the thermal structure of the pre-uplift KSZ crust. These models suggest that heat from thermal events in the upper and middle crust result in a more insulating

  4. Archean crustal growth of the Imataca complex, Amazonian craton: Evidence from U-Pb-Sm-Nd and Rb-Sr geochronology

    International Nuclear Information System (INIS)

    Tassinari, C.C.G.; Teixeira, W; Nutman, A.P; Szabo, G.; Mondin, M.; Sato, K; Santos, A.P; Siso, C.S

    2001-01-01

    The Archean Imataca Complex (IC), NW Amazonian Craton, forms a ENE-trending, fault-bounded block adjacent to the Paleoproterozoic Maroni-Itacai as magmatic arc (2.2 2.0 Ga) (Tassinari and Macambira, 1999). The IC rocks are complexely deformed, exhibiting elongated and symmetrical domes and thrusts combined with isoclinal folds. Transcurrent faults are also important, like the Guri Fault System - a zone of multiple faulting, shearing and mylonitization along the southeastern edge of the IC. In a pre-Pangean reconstruction using paleomagnetic data from rocks of the African counterpart, the Guri System is contiguous to the Sassandra (Ivory coast) and Zednes (Mauritaine) faults, in agreement also with the comparable geologic evolution between the NW Amazonian and the West Africa cratons, during the Archean and Late-Paleoproterozoic. The IC mainly composed of medium- to high grade quartz-feldspathic paragneiss, exhibits extensive mortar, augen, flaser and mylonitic textures. Calc-alkaline gneiss and granitoid rocks of igneous protolith are also present in the IC, as well as dolomitic marbles, orthopyroxene and magnetite quartzites, and BIFs that include huge ore deposits of Algoma type. Moreover, migmatite injections and anatexis (devoid of metasedimentary components) are widespread in the western part of Complex, the largest migmatite mass centered in Cerro La Ceiba. This paper reports zircon U-Pb SHRIMP, Sm-Nd and Rb-Sr isotopic data of different IC rocks in order to investigate their age and geological evolution within the tectonic framework of the Amazonian Craton (au)

  5. Geodynamic evolution of the West Africa between 2.2 and 2 Ga: the Archaean style of the Birimian greenstone belts and the sedimentary basins in northeastern Ivory-Coast

    International Nuclear Information System (INIS)

    Vidal, M.; Pouclet, A.; Delor, C.; Simeon, Y.; Alric, G.

    1996-01-01

    The litho-structural features of Palaeo-proterozoic terrains of northeastern Ivory-Coast, greenstones belts and then sedimentary basin Birimian), are similar to those of Archaean terrains. Their early deformation is only voluminal deformation due to granitoid intrusions, mainly between 2.2 and 2.16 Ga. The shortening deformation (main deformation) is expressed by right folds and transcurrent shear zones ca 2.1 Ga. Neither thrust deformation nor high pressure metamorphic assemblages are known. This pattern of flexible and hot crust, at least between 2.2 and 2.16 Ga, is pole apart to a collisional pattern, proposed for West African Craton by some authors. The Archaean/Palaeo-proterozoic boundary would not represent a drastic change of the geodynamic evolution of the crust. (authors). 60 refs., 5 figs., 6 photos

  6. Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount

    Science.gov (United States)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Miyazaki, Junichi; Shibuya, Takazo; Ueno, Yuichiro; Takai, Ken

    2018-06-01

    The identification of microbial activity under extreme conditions is important to define potential boundaries of the habitable and uninhabitable zones of terrestrial and extraterrestrial living forms. The subseafloor regimes of serpentinite seamounts in the Mariana Forearc are among the most extreme environments for life on earth owing to the widespread presence of highly alkaline fluids with pH values greater than 12. The potential activity of sulfate-reducing microorganisms has been suggested within the South Chamorro serpentinite seamounts on the basis of depletion of sulfate and enrichment of dissolved sulfide in pore water. However, the vertical distribution of sulfate-reducing microorganisms and the origin of sulfate are still uncertain. To address these issues, we analyzed quadruple sulfur isotopes of sulfide minerals and pore water sulfate in the upper 56 m of sedimentary sequences at the summit of the S. Chamorro Seamount and those of dissolved sulfate in upwelling fluids collected as deep as 202 mbsf (meters below the seafloor) in a cased hole near the summit of the same seamount. The depth profiles of the concentrations and the δ34S and Δ33S‧ values of sulfide minerals and pore water sulfate indicate microbial sulfate reduction as deep as 30 mbsf. Further, apparent isotopic fractionations (34ε) and exponents of mass dependent relationships (33λ) during sulfate reduction are estimated to be 62 ± 14‰ and 0.512 ± 0.002, respectively. The upwelling fluids show both the chlorine depletion relative to seawater and the negative δ15N values of ammonia (-4‰). Although these signatures point to dehydration of the subducting oceanic plate, the negative Δ33S‧ values of sulfate (-0.16‰ to -0.26‰ with analytical errors of ±0.01‰) are unlikely to originate from surrounding modern crusts. Instead, sulfate in the upwelling fluid likely possess non-mass-dependent (NMD) sulfur. Because NMD sulfur was produced primarily in the Archean atmosphere, our

  7. The provenance and Sm/Nd Model ages of siliciclastic supracrustal rocks of the Faina and Santa Rita Greenstone belts, Goias, Brazil; Proveniencia e idades modelo Sm/Nd das rochas siliciclasticas arqueanas dos greenstone belts de Faina e Santa Rita, Goias

    Energy Technology Data Exchange (ETDEWEB)

    Resende, Marcelo Goncalves [Universidade Catolica de Brasilia, DF (Brazil); Jost, Hardy [Brasilia Univ., DF (Brazil). Inst. de Geociencias; Lima, Bruno Eustaquio Moreira; Teixeira, Alexandre de Amorim

    1999-09-01

    The Faina and Santa Rita greenstone belts are two N 60 deg C W trending synclinoria separated by a N 30 deg C E strike-slip fault and rest allochtonous on the adjacent Uva and Caicara granite-gneiss complexes. The belts are made up of lower metakomatiites, followed by metabasalts and thick metasedimentary sequences deposited under contrasting paleogeographic settings. In Faina, the sequence consists of two complete shelf cycles, the first resting on basalts by an erosional unconformity. In Santa Rita, the basalts give gradually place to carbonaceous metashales, unconformably overlain by metarhythmites. Provenance based on trace element geochemistry, mineral chemistry of chloride and muscovite, source-are modeling and REE elements indicate that protoliths of the first shelf cycle of Faina and the carbonaceous metashales of Santa Rita formed under the influence of a source area dominated by mafic ultramafic rocks, whilst during the sedimentation of the second shelf cycle and the metarhythmites of Santa Rita the source-area was dominated by TTG granitoids. Sm-Nd model ages of the lower sedimentary packages vary between 3.0 and 2.8 Ga and the upper between 2.7 and 2.6 Ga. These intervals coincide, respectively, with the estimated age of the underlying, and with the Sm-Nd, Rb-Sr e U-Pb ages of the main granitoids and gneisses of the adjacent complexes. The same data indicate that, during the sedimentation of the first shelf cycle of Faina and the carbonaceous metashales of Santa Rita, both basins had independent source-areas, but shared the same source during the upper sections. Weathering nature and intensity of the source-area calculated by means of geochemical a data suggest that the dramatic change of provenance from the lower to the upper sections is due to the shift from tectonically stable to unstable regimes, interpreted as resulting from the emergence of the island arc whose roots are represented by the adjacent granite-gneiss complexes. (author)

  8. New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland

    DEFF Research Database (Denmark)

    Polat, A; Frei, Robert; Scherstén, Anders

    2010-01-01

    The Archean Fiskenæsset Complex, SW Greenland, consists of an association of ca. 550-meter-thick layered anorthosite, leucogabbro, gabbro, and ultramafic rocks (peridotite, pyroxenite, dunite, hornblendite). The complex was intruded by tonalite, trondhjemite, and granodiorite (TTG) sheets (now...... orthogneisses) during thrusting that was followed by several phases of isoclinal folding. The trace element systematics of the Fiskenæsset Complex and associated volcanic rocks are consistent with a supra-subduction zone geodynamic setting. The Fiskenæsset anorthosites, leucogabbros, gabbros and ultramafic...... rocks collectively yield an Sm–Nd errorchron age of 2973 ± 28 Ma (MSWD = 33), with an average initial eNd = + 3.3 ± 0.7, consistent with a long-term depleted mantle source. Regression of Pb isotope data define an age of 2945 ± 36 Ma (MSWD = 44); and the regression line intersects the average growth...

  9. Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    Science.gov (United States)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; hide

    2017-01-01

    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  10. Evolution of the Dharwar Craton: a terrain of early Archean crustal stability, long term orogenic cycles and large scale palaeobiological activity

    International Nuclear Information System (INIS)

    Srinivasan, R.; Naqvi, S.M.

    1988-01-01

    Traceable history of the Dharwar Craton goes back to approximately 3400 m.y. old tonalitic to trondhjemitic fundamental gneiss whose REE composition indicates its derivation from a preexisting basalt which apparently had very short time of crustal residence. The fundamental gneiss is preserved only as rare relicts in the vast gneissic complex of the Indian Peninsula (the Peninsular Gneiss), and as pebbles in the conglomerates of the Archean Dharwar sequence. Study of these relicts, shows evidence of a deformation episode prior to the deposition of the high- and low-grade Dharwar supracrustal sequence. The Dharwar supracrustal sequence is briefly described. Geochemistry of the volcanic and sedimentary rocks of the Dharwar supracrustal belts are examined

  11. New Sm/Nd and U/Pb geochronological constraints of the Archean to neoproterozoic evolution of the Amparo basement complex of the Central Ribeira Belt, Southeastern Brazil

    International Nuclear Information System (INIS)

    Fetter, A.H.; Hackspacher, P.C.; Ebbert, H.D; Dantas, E.L; Costa, A.C.D. da

    2001-01-01

    The Amparo Basement Complex is a distinctive collage of migmatitic tronjhemitetonalite- granodiorite (TTG) orthogneisses that represents the older basement exposures within the Central Ribeira Belt, a Late Neoproterozoic (ca. 600 Ma) collisional belt in southeastern Brazil. These basement gneisses are overlain by Mesoproterozoic to Neoproterozoic supracrustal sequences, and intruded by Neoproterozoic collisional granitoids. Pioneering Rb/Sr, Pb/Pb and K/Ar geochronological studies of the Amparo Complex, e.g. (Wernick et al., 1981; Wernick and Oliveira, 1986; Arthur, 1988; Tassinari, 1988; Campos Neto, 1991) provided some initial insights into the antiquity and geologic evolution of the complex, but little about the crustal evolution of the constituent gneisses. Furthermore, the susceptibility of these systems to partial isotopic resetting, left some doubt about the timing and true number of geologic events recorded by these polydeformed rocks. Recent Sm/Nd whole rock (Dantas et al., 2000) and new U/Pb single crystal zircon and monazite data obtained from the Amparo Complex, however, now furnish information on the crustal growth history of the basement and provide precise age constraints on the timing of events related to the geologic evolution of the complex. Based on these new data, it appears that the oldest rocks within the complex are polymigmatized tronjhemitic gneisses located near the town of Amparo. The oldest phase of this migmatite yields a U/Pb zircon age of 3,024 +/- 9 Ma. Sm/Nd data from this locale yields a Nd T(DM) model age of 3.28 Ga suggesting that the genesis of this crustal unit involved some input from yet older crust. Data from banded tonalitic gneisses collected ca. 50 km south of Amparo indicate that subsequent Archean crustal growth around the older core occurred around 2.77 Ga (U/Pb zircon age of 2,772 +/- 26 Ma. A Nd T(DM) model age of 3.02 Ga obtained from these tonalites also indicate enrichment from older crustal sources during their

  12. Archean and proterozoic in the West-European Hercynian chain: isotopic geochemistry (Sr-Nd-Pb) and U-Pb geochronology on zircons

    International Nuclear Information System (INIS)

    Guerrot, C.

    1989-01-01

    The first part of this research thesis reports the study of isotopic (Sr-Nd-Pb) geochemistry and U-Pb geochronology on zircons in the immersed granulites of the Bay of Biscay: U-Pb geochronology on zircons, Nd isotopic geochemistry, Sr isotopic geochemistry, common Pb, Rb-Sr, Sm-Nd and rare earth data on minerals, comparison with other European granulites, comparison with West-Africa, study of Archean and proterozoic in the Hercynian chain. The second part reports the study of the U-Pb geochronology on zircon in the Cadomian, and the third part addresses the Sr-Nd isotopic geochemistry of some Cadomian granitoid, and the crust contamination in different regions [fr

  13. Evidence of early Archean crust in northwest Gondwana, from U-Pb and Hf isotope analysis of detrital zircon, in Ediacaran surpacrustal rocks of northern Spain

    Science.gov (United States)

    Naidoo, Thanusha; Zimmermann, Udo; Vervoort, Jeff; Tait, Jenny

    2018-03-01

    The Mora Formation (Narcea Group) is one of the oldest Precambrian supracrustal successions in northern Spain. Here, we use U-Pb and in situ Hf isotope analysis on detrital zircon to determine its age and provenance. The youngest U-Pb dates constrain the maximum depositional age of the Mora Formation at 565 ± 11 Ma. Results indicate: (1) a dominant Ediacaran zircon population (33%; 565-633 Ma, Cadomian) within a spectrum of Neoproterozoic ages (40%; 636-996 Ma); and (2) smaller Mesoproterozoic (5%; 1004-1240 Ma), Palaeoproterozoic (11%; 1890-2476 Ma) and Archean (11%; 2519-3550 Ma) populations. Results here do not point to one specific cratonic source area; instead, detritus may have been derived from the West African craton and Amazonia, or even the concealed Iberian basement. The lack of 1.3-1.8 Ga grains suggests exclusion of the Sahara Craton as a major source, but this is not certain. This mixed composition favours a complex source history with reworking of detritus across terrane/craton boundaries. Hafnium isotope compositions indicate a range of crustal and juvenile sources, with initial ɛHf values between -15.8 and 11.1, and Hf model ages from 0.8 to 3.7 Ga. For Neoproterozoic zircons (80%), juvenile components (ɛHf(i) +10) may be related to Rodinia fragmentation and the onset of an active margin setting leading to the Cadomian orogeny. Palaeoproterozoic to Paleoarchean grains (20%) all have negative ɛHf values and Meso- to Eoarchean Hf model ages. This indicates an early (Archean) sialic crustal component for northwestern Gondwana.

  14. U-Pb and Pb-Pb study of the Murchison Greenstone Belt and of the Evander gold-bearing basin, South Africa. Implications for the evolution of the Kaapvaal craton

    International Nuclear Information System (INIS)

    Poujol, M.

    1997-01-01

    This study presents new U-Pb and Pb-Pb isotopic data for both the Central Rand Group from the Evander Goldfield and the Murchison Greenstone Belt (Republic of South Africa). The Evander Goldfield, where no previous isotopic data have been derived, is located in the eastern side of the Witwatersrand basin. The oldest age measured is ca. 3180 Ma, while the majority of detritus falls in the range 3050-2850 Ma. New growth of zircon (or isotopic resetting of older detritus) appears to have been associated with deposition of the Ventersdorp lavas at ca. 2.7 Ga. A small proportion of the pyrite, mainly extracted from unaltered sediments in the Kimberley Reef footwall, yields ages that are in excess of the minimum depositional age of the Witwatersrand Basin. Authigenic pyrite, as well as detrital grains from highly altered portions of the Kimberley Reef, define two main events. The Pb signature of the 2370 Ma event is probably associated with burial of the basin by the upper portion of the Transvaal sequence, and suggests circulation of highly radiogenic fluids. Isotopic signatures for the 2020 Ma event are probably related to Bushveld intrusion and/or Vredefort catastrophism, and appear to be associate with a fluid that was less radiogenic. The present study shows a number of new results which support a complex, multi-stage evolution and genesis of the Au-U deposits within the Witwatersrand Basin. The Murchison Greenstone Belt constitutes one of the world's largest antimony producing areas and also hosts gold, as well as volcanogenic massive sulfide Cu-Zn mineralization and emeralds. The goal of this study is to determine the age of the belt as well as the timing of mineralization and, also, to assess the potential role of granitoids in the ore-forming processes. The data identify an episode of greenstone formation between 3.09 Ga and 2.97 Ga. Three main magmatic events are identified at ca. 2.97, 2.82 and 2.68 Ga. Pyrites associated with both Sb-Au and Cu

  15. In situ dating of the oldest morphological traces of life on Earth

    Science.gov (United States)

    Fliegel, D.; McLoughlin, N.; Simonetti, A.; de Wit, M.; Furnes, H.

    2008-12-01

    Sea floor pillow basalts contain tubular and granular bioalteration micro textures in their glassy margins1,2 created by microbes etching the rock3,4, hypothetically to get access to nutrients and electrons donors5. The etched pits in the rock can be regarded as trace fossils6 that later become mineralized by titanite (CaTiSiO5). Such trace fossils are known from recent oceanic crust to some of the oldest preserved Archean ocean floor, in the Barberton greenstone belt (BGB), in S-Africa7. However, the antiquity of BGB trace fossils has been questioned by some since only the host rock was dated until now8. Here, we report for the first time in situ U-Pb radiometric dating of titanite mineralizing the BGB trace fossils using LA-MC-ICPMS. An U-Pb date of of approx. 3.15 ± 0.05 Ga (95.4 % confidence) for the titanite demonstrates the antiquity of the BGB trace fossils. This result confirms the BGB trace fossils as the oldest directly dated morphological trace of life on Earth. We will present addition data to reveal the mineralization of trace fossils by titanite, comparing the BGB trace fossils to other similar tubular titanite mineralized textures from different locations and younger ages. Our data confirms that a sub-oceanic biosphere was already established in the early Archean by at least 3.2 Ga. Further the results highlight the importance of the sub-ocean habitats for the development and possibly refuge for life on (early) Earth. 1. Furnes, H. et al. Bioalteration of basaltic glass in the oceanic crust. Geochemistry Geophysics Geosystems 2, (2001). 2. Staudigel, H. et al. 3.5 billion years of glass bioalteration: vulcanic rocks as a basis for microbial life. Earth-Science Reviews 89, 156-176 (2008). 3. Furnes, H. et al. Links Between Geological Processes, Microbial Activeties and Evolution of Life. Dilek, Y., Furnes, H. and Muehlenbachs, K. (eds.), pp. 1-68 (Springer,2008). 4. McLoughlin, N. et al. Current Developments in Bioerosion (Erlangen Earth Conference

  16. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses

    Science.gov (United States)

    Gregory, Daniel D.; Large, Ross R.; Halpin, Jacqueline A.; Steadman, Jeffery A.; Hickman, Arthur H.; Ireland, Trevor R.; Holden, Peter

    2015-01-01

    The well-preserved late Archean sedimentary rocks of the Fortescue and Hamersley Basins in Western Australia offer fascinating insights into early earth ocean chemistry prior to the Great Oxidation Event (GOE). In this study, we use a combination of whole rock geochemistry, LA-ICPMS trace element analysis of sedimentary pyrite and pyrrhotite and SHRIMP-SI sulfur isotope analyses to elucidate the chemical changes in these sedimentary rocks. These proxies are used to examine chemical conditions of the ocean during the late Archean. Two to three periods of oxygen enrichment prior to the deposition of banded iron formations (BIF) can be identified. One minor stage of general increase in whole rock enrichment factors and trace element content of pyrite is observed up stratigraphy in the Jeerinah Formation, Fortescue Basin and a more substantial stage is present in the Paraburdoo and Bee Gorge Members of the Wittenoom Formation, Hamersley Basin. Some of the trace element enrichments indicate organic matter burial flux (Ni, Cr, Zn, Co and Cu) which suggests an increase in biological productivity. If the increased biological activity reflects an increase in cyanobacteria activity then an associated increase in oxygen is likely to have occurred during the deposition of the Bee Gorge Member. An increase in atmospheric oxygen would result in continental weathering of sulfide and other minerals, increasing the trace element content of the water column via erosion and avoiding excessive depletion of trace elements due to drawdown in seawater. Since some of these trace elements may also be limiting nutrients (such as Mo and Se) for the cyanobacteria, the degree of biological productivity may have further increased due to the increasing amount of trace elements introduced by oxygenation in a positive feedback loop. These periods of increased productivity and oxygen rise stopped prior to the onset of BIF deposition in the Hamersley Basin. This may be due to the ocean reaching an

  17. The complex systematics of zircons in migmatitic gneisses: An example from an Archean migmatite along the Patos Shear Zone, Borborema Province, NE Brazil

    International Nuclear Information System (INIS)

    Costa, A.C.D; Hackspacher, P.C; Dantas, E.L; Fetter, A.H.

    2001-01-01

    The Northem Tectonic Domain Borborema Province, in Northeast of Brazil records a complex history of tectonic activity ranging from 3.4 Ga to 0.6 Ga (Brito Neves, 1995 and Dantas, 1996). U-Pb systematics of zircons from a migmatitic gneiss just north of the Patos Shear Zone provide an excellent example of the difficulties encountered using conventional single-grain U/Pb zircon geochronology in polydeformed gneiss terranes. Our conventional single grain zircon analyses of a migmatite yielded Archean ages between ca. 3.3 at 2.8 a, as well as some highly discordant Paleoproterozoic ages. Subsequent cathodoluminescence images of these zircon grains showed complex internal structures that possibly record up to 4 separate stages of zircon growth. With such internal complexity, is impossible resolve primary crystallization ages as well as the ages of subsequent overgrowth events using conventional single grain analyses. Such resolution will require analyses of the individual grain domains using the SHRIMP method (au)

  18. In search of ancient biomarkers: Using femtosecond - Laser Desorption Post Ionization - Mass Spectrometry (fs-LDPI-MS) to map organic compounds within ca. 2.7 Ga samples from the Abitibi greenstone belt, Ontario, Canada

    Science.gov (United States)

    Pasterski, M. J.; Barry, G.; Hanley, L.; Kenig, F. P. H.

    2016-12-01

    One of the major challenges within the field of organic geochemistry is to determine whether an observed biomarker signature was emplaced during sedimentation (indigenous), after sedimentation via the post-depositional migration of fluids (non-indigenous), or during sampling, storage, or analysis (contaminant). Current geochemical techniques (e.g. gas chromatography-mass spectrometry, GC-MS and GCxGC-MS) can effectively determine the composition and structure of the organic constituents of a sample. However, because of the multiple preparatory steps necessary prior to GC-MS analysis (sample crushing, solvent extraction, organic fraction separation) it is impossible to precisely determine the spatial relationship between the host sample and the organic molecules within. We used an MS imaging method developed by Prof. Luke Hanley at the University of Illinois at Chicago, femtosecond-laser desorption post ionization-MS (fs-LDPI-MS), to map the organics within previously characterized ca.2.7 billion year old (Ga) metasediments from the Abitibi greenstone belt near Timmins, ON, Canada. We then compared the MS images to petrographic observations that displayed the distribution of mineral species with well constrained mineralization ages as well as fluid inclusions within the samples. Fluid inclusions are formed during mineralization and have the ability to remain intact over long timescales (up to billions of years), protecting the fluids inside from the introduction of non-indigenous and contaminant biomarkers. Although migrating post-depositional fluids can remineralize sediments, fluid inclusions associated with secondary additions are focused along grain boundaries and microfractures (secondary inclusions), thus, inclusions which are located within grain boundaries can be considered primary and the age of their formation can be determined relative to the host rock. Preliminary results indicate that previously observed biomarkers may be linked to a series of

  19. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting

    Science.gov (United States)

    Stein, H.J.; Sundblad, K.; Markey, R.J.; Morgan, J.W.; Motuza, G.

    1998-01-01

    that the Re-Os isotopic system in pyrite has been reset on the millimeter scale and that the 21 ppt 187Os intercept reflects the in situ decay of 187Re during the ~160 to 170 m.y. interval from ~2778 Ma (time of molybdenite ± pyrite deposition) to ~2607 Ma (time of pyrite resetting). When the Re-Os data for molybdenites from the nearby Kivisuo prospect are plotted together with the Kuittila molybdenite and pyrite data, a well-constrained five-point isochron with an age of 2780 ± 8 Ma and a 187Os intercept (-2.4 ± 3.8 ppt) of essentially zero results (MSWD = 1.5). We suggest that the pyrite isochron age records a regional metamorphic and/or hydrothermal event, possibly the time of Au mineralization. A proposed Re-Os age of ~2607 Ma for Au mineralization is in good agreement with radiometric ages by other methods that address the timing of Archean Au mineralization in deposits worldwide (so-called 'late Au model'). Molybdenite, in contrast, provides a robust Re-Os chronometer, retaining its original formation age of ~2780 Ma, despite subsequent metamorphic disturbances in Archean and Proterozoic time.

  20. Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact – A Cr isotope perspective on the Sukinda valley ore district (Orissa, India)

    International Nuclear Information System (INIS)

    Paulukat, Cora; Døssing, Lasse N.; Mondal, Sisir K.; Voegelin, Andrea R.; Frei, Robert

    2015-01-01

    Highlights: • Cr in lateritic soil profiles in Sukinda valley are partly highly negatively fractionated. • Oxidative weathering and mining operations affect the Cr isotope composition of the local surface water. • Isotopically heavy Cr from land is probably preserved during its transport to the sea. • The environmental impact of toxic Cr(VI) can potentially be diminished by microbial mats. - Abstract: This study investigates Cr isotope fractionation during soil formation from Archean (3.1–3.3 Ga) ultramafic rocks in a chromite mining area in the southern Singhbhum Craton (Orissa, India). The Cr-isotope signatures of two studied weathering profiles, range from non-fractionated mantle values to negatively fractionated values as low as δ 53 Cr = −1.29 ± 0.04‰. Local surface waters are isotopically heavy relative to the soils. This supports the hypothesis that during oxidative weathering isotopically heavy Cr(VI) is leached from the soils to runoff. The impact of mining pollution is observed downstream from the mine where surface water Cr concentrations are significantly increased, accompanied by a shift to less positive δ 53 Cr values relative to upstream unpolluted surface water. A microbial mat sample indicates that microbes have the potential to reduce and immobilize Cr(VI), which could be a factor in controlling the hazardous impact of Cr(VI) on health and environment. The positive Cr isotope signatures of the Brahmani estuary and coastal seawater collected from the Bay of Bengal further indicate that the positively fractionated Cr isotope signal from the catchment area is preserved during its transport to the sea. Isotopically lighter Cr(VI) downstream from the mine is probably back-reduced to Cr(III) during riverine transport leading to similar Cr-isotope values in the estuary as observed upstream from the mine

  1. Single-zircon dating by stepwise Pb-evaporation constrains the Archean history of detrital zircons from the Jack Hills, Western Australia

    International Nuclear Information System (INIS)

    Kober, B.; Lippolt, H.J.; Pidgeon, R.T.

    1989-01-01

    Pb isotope analyses have been carried out on 42 zircon grains from a Western Australian metaconglomerate using stepwise Pb-evaporation directly in the ion source of a thermal ionization mass spectrometer. The metaconglomerate is from the Archean Jack Hills Metasedimentary Belt, and is known from ion microprobe (''SHRIMP'') analyses to contain a complex zircon population with ages between 4.2 Ga and 3.1 Ga. The same complex pattern of ages is found by the Pb evaporation studies. Five grains yielded minimum crystallization ages from 4.17 Ga to 4.07 Ga. The main population appears significantly younger, having been generated at about 3.55-3.3 Ga. The agreement between the two analytical approaches confirms the SHRIMP results and demonstrates the value of the stepwise-evaporation technique in determining the age patterns of mixing zircon populations. In many of the evaporative Pb isotope records the 207/206 ratios remained constant for all evaporation steps, which we interpret as evaporation from concordant zircon phases. However, for the majority of zircons 207/206 ratios increased with increasing evaporation temperature, and usually approached constant values during evaporation at the highest temperatures. This can be attributed to mixing of different radiogenic Pb components from either crystalline zircon phases of different ages or from domains of isotopically disturbed metamict zircon. Present results confirm > 4 Ga zircon ages in the metaconglomerate from the Hack Hills and substantiate formation of crust at a very early stage in the evolution of the earth. Results also confirm a major crust-forming event 3.55-3.3 Ga ago. (orig.)

  2. U Pb and Lu Hf isotope record of detrital zircon grains from the Limpopo Belt Evidence for crustal recycling at the Hadean to early-Archean transition

    Science.gov (United States)

    Zeh, Armin; Gerdes, Axel; Klemd, Reiner; Barton, J. M., Jr.

    2008-11-01

    Detrital zircon grains from Beit Bridge Group quartzite from the Central Zone of the Limpopo Belt near Musina yield mostly ages of 3.35-3.15 Ga, minor 3.15-2.51 Ga components, and numerous older grains grouped at approximately 3.4, 3.5 and 3.6 Ga. Two grains yielded concordant Late Hadean U-Pb ages of 3881 ± 11 Ma and 3909 ± 26 Ma, which are the oldest zircon grains so far found in Africa. The combined U-Pb and Lu-Hf datasets and field relationships provide evidence that the sedimentary protolith of the Beit Bridge Group quartzite was deposited after the emplacement of the Sand River Gneisses (3.35-3.15 Ga), but prior to the Neoarchean magmatic-metamorphic events at 2.65-2.60 Ga. The finding of abundant magmatic zircon detritus with concordant U-Pb ages of 3.35-3.15 Ga, and 176Hf/ 177Hf of 0.28066 ± 0.00004 indicate that the Sand River Gneiss-type rocks were a predominant source. In contrast, detrital zircon grains older than approximately 3.35 Ga were derived from the hinterland of the Limpopo Belt; either from a so far unknown crustal source in southern Africa, possibly from the Zimbabwe Craton and/or a source, which was similar but not necessarily identical to the one that supplied the Hadean zircons to Jack Hills, Western Australia. The Beit Bridge Group zircon population at >3.35 Ga shows a general ɛHf t increase with decreasing age from ɛHf 3.9Ga = -6.3 to ɛHf 3.3-3.1Ga = -0.2, indicating that Hadean crust older than 4.0 Ga ( TDM = 4.45-4.36 Ga) was rejuvenated during magmatic events between >3.9 and 3.1 Ga, due to a successive mixing of crustal rocks with mantle derived magmas. The existence of a depleted mantle reservoir in the Limpopo's hinterland is reflected by the ˜3.6 Ga zircon population, which shows ɛHf 3.6Ga between -4.6 and +3.2. In a global context, our data suggest that a long-lived, mafic Hadean protocrust with some tonalite-trondhjemite-granodiorite constituents was destroyed and partly recycled at the Hadean/Archean transition, perhaps

  3. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics

    Directory of Open Access Journals (Sweden)

    Emilio Saccani

    2015-07-01

    Full Text Available In this paper, a new discrimination diagram using absolute measures of Th and Nb is applied to post-Archean ophiolites to best discriminate a large number of different ophiolitic basalts. This diagram was obtained using >2000 known ophiolitic basalts and was tested using ∼560 modern rocks from known tectonic settings. Ten different basaltic varieties from worldwide ophiolitic complexes have been examined. They include two basaltic types that have never been considered before, which are: (1 medium-Ti basalts (MTB generated at nascent forearc settings; (2 a type of mid-ocean ridge basalts showing garnet signature (G-MORB that characterizes Alpine-type (i.e., non volcanic rifted margins and ocean-continent transition zones (OCTZ. In the Th-Nb diagram, basalts generated in oceanic subduction-unrelated settings, rifted margins, and OCTZ can be distinguished from subduction-related basalts with a misclassification rate <1%. This diagram highlights the chemical variation of oceanic, rifted margin, and OCTZ basalts from depleted compositions to progressively more enriched compositions reflecting, in turn, the variance of source composition and degree of melting within the MORB-OIB array. It also highlights the chemical contributions of enriched (OIB-type components to mantle sources. Enrichment of Th relative to Nb is particularly effective for highlighting crustal input via subduction or crustal contamination. Basalts formed at continental margin arcs and island arc with a complex polygenetic crust can be distinguished from those generated in intra-oceanic arcs in supra-subduction zones (SSZ with a misclassification rate <1%. Within the SSZ group, two sub-settings can be recognized with a misclassification rate <0.5%. They are: (1 SSZ influenced by chemical contribution from subduction-derived components (forearc and intra-arc sub-settings characterized by island arc tholeiitic (IAT and boninitic basalts; (2 SSZ with no contribution from subduction

  4. Stable isotope and fluid inclusion signatures of hydrothermal fluids in transcrustal fault zones: significance for orogenic, Archean lode-gold mineralization

    International Nuclear Information System (INIS)

    Neumayr, P.; Hagemann, S.G.; Groves, D.I.

    1999-01-01

    mil). Calculated d 18 O fluid compositions for quartz in the CTZ range from 8.0 to 10.3 per mil at 350 deg C (based on arsenopyrite and chlorite thermometry). Hydrogen isotopes from fluid inclusion waters trapped in quartz have a large variation from -62.5 per mil to -7.2 per mil in the CTZ fluids, whereas hydrogen in fluid inclusions in quartz in the second- and third-order shear zones shows a restricted range from -67.6 to -39.8 per mil. The oxygen isotope shift of about 2 per mil from the CTZ to the second- and third-order fault zones may be explained by two competing processes: 1) the hydrothermal fluids in the CTZ equilibrated, at least partially, with metasedimentary rocks in the footwall, and or 2) there was fractionation of oxygen isotopes during phase immiscibility of a combined H 2 O-CO 2 fluid. The preferential trapping of CO 2 -rich fluids in the CTZ, and H 2 O-rich fluids in the second- and third-order fault zones, therefore, could account for the shift in d 18 O. At present, the first process is preferred, because of the ubiquitous presence of the metasedimentary rocks in the footwall and the consistent d 18 O composition of the CTZ, even in hydrothermal quartz veins which contain significant H 2 O. The large variation in the hydrogen isotopes in fluid inclusions in quartz in the CTZ may be explained by late Archean and post-Archean reactivation of the CTZ and the introduction of fluids related to late-fractures fills, whereas apparently minor reactivation of the second- and third-order structures resulted in a restricted range of dD. Copyright (1999) Geological Society of Australia

  5. Photosynthesis in the Archean era.

    Science.gov (United States)

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  6. Zircon's Archean of the Ural

    International Nuclear Information System (INIS)

    Krasnobaev, A.A.; Cherednichenko, N.V.

    2005-01-01

    The age of zircons from metamorphic rocks of the Taratashsky complex located on the Western slope of the South Urals was determined by the methods of U-Pb isotope dating. The age values obtained suggest a two-stage model of the complex evolution at early stages of its existence. The age of 2913±133 mln. years identifies the age of granulite metamorphism, while the age 2127±65 mln. years indicates the period of the most intensive transformations of the rocks within the complex, which were accompanied by occurrence of high-temperature diaphthorites [ru

  7. Isotope age of the rare metal pegmatite formation in the Kolmozero-Voron'ya greenstone belt (Kola region of the Fennoscandian shield): U-Pb (TIMS) microlite and tourmaline dating

    Science.gov (United States)

    Kudryashov, Nikolay; Lyalina, Ludmila; Mokrushin, Artem; Zozulya, Dmitry; Groshev, Nikolay; Steshenko, Ekaterina; Kunakkuzin, Evgeniy

    2016-04-01

    The Kolmozero-Voron'ya greenstone belt is located in the central suture zone, which separates the Murmansk block from the Central-Kola and the Keivy blocks. The belt is represented by volcano-sedimentary rocks of Archaean age of 2.9-2.5 Ga. Rare metal pegmatites (Li, Cs with accessory Nb, Ta, and Be) occur among amphibolite and gabbroid intrusions in the northwestern and southeastern parts of the belt. According to the Rb-Sr data, the age of pegmatites was considered to be 2.7 Ga. Until recently there was no generally accepted point of view on the origin of pegmatites. Now we have isotopic data for a range of rock complexes that could pretend to be parental granites for the rare metal pegmatites. These are granodiorites with the zircon age of 2733±Ma, and microcline and tourmaline granites, which Pb-Pb isochronal age on tourmaline from the tourmaline granite located near the deposit is estimated to be 2520±70 Ma. The pegmatite field of the Vasin Myl'k deposit with the lepidolite--albite--microcline--spodumene--pollucite association is located among amphibolites in the northwestern part of the belt. The deposit is represented by subparallel low-angle zoned veins up to 220 m long and 5 m thick dipping in the southeastern direction at an angle of 10° too 30°. The minerals of the columbite--tonalite group from Vasin Myl'k deposit include microlite, simpsonite, and torolite, and are the oldest among different minerals represented by several generations in pegmatites under consideration. Zircons from the pegmatites are mostly represented by crystals with the structure affected by the action of fluids that put certain restrictions on its use as a geochronometer of the crystallization process. Microlite from the pegmatite taken from the dump of a prospecting drill hole was used for U--Pb (TIMS). The mineral is represented by 0.5--1.0 mm long euhedral octahedral crystals. It is brown in color, and transparent. The microlite crystals were preliminarily cleaned from

  8. Evolution of the Archean continental crust in the nucleus of the Yangtze block: Evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China

    Science.gov (United States)

    Qiu, Xiao-Fei; Ling, Wen-Li; Liu, Xiao-Ming; Lu, Shan-Song; Jiang, Tuo; Wei, Yun-Xu; Peng, Lian-Hong; Tan, Juan-Juan

    2018-04-01

    Archean Tonalite-Trondhjemite-Granodiorite (TTG) rocks are scattered within the Kongling high-grade metamorphic terrane (KHMT) in the northern South China block. A comprehensive geochronological and geochemical study is carried out on the Taoyuan granitic gneisses, a newly recognized TTG suite in the northwestern KHMT. This suite has long been regarded as a Mesoproterozoic magmatic pluton, but U-Pb zircon ages of 2994 ± 22 Ma and 2970 ± 15 Ma are obtained by LA-ICP-MS method in this study. The Taoyuan gneiss suite is trondhjemitic in composition, and has high SiO2 (67.80-74.93 wt.%), Na2O (5.11-5.81 wt.%) contents with Na2O/K2O ratios greater than unity, and low Ni (2.56-7.61 ppm), Cr (1.26-7.67 ppm), Yb (0.32-0.82 ppm) and Y (4.48-11.5 ppm) contents. Plots show large variation in La/Yb and Sr/Y ratios and pronounced depletion in Nb, Ta and Ti in the primitive mantle-normalized spiderdiagram. The gneiss suite also displays two-stage Nd model ages close to its crystallization age with corresponding εNd(t) values of -2.5 to +3.5. It is thus suggested that the Taoyuan gneisses, in fact, is part of the Archean Kongling basement complex. Geochemical evidence implies that the TTG rocks may be derived from partial melting of subducted oceanic crust from a garnetiferous amphibolite source with residual assemblage of garnet + amphibole + plagioclase. Our study further indicates that the nucleus of the Yangtze block might experience a juvenile continental crustal growth during Mesoarchean. We also suggest that the Yangtze block may have its own crustal evolutionary history independent from the North China craton and the Tarim block before Paleoproterozoic.

  9. Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton

    NARCIS (Netherlands)

    Abweny, Mohammad S.; van Ruitenbeek, Frank J A; de Smeth, Boudewijn; Woldai, Tsehaie; van der Meer, Freek D.; Cudahy, Thomas; Zegers, Tanja; Blom, Jan Kees; Thuss, Barbara

    This paper shows the results of Short-Wavelength Infrared (SWIR) spectroscopy investigations of volcanic rocks sampled from low-grade metamorphic greenstone belts of the Archean Pilbara Craton in Western Australia. From the reflectance spectra a range of spectrally active minerals were identified,

  10. Archean crustal evolution of the Narryer Gneiss Terrane, Western Australia, as revealed by the U-Pb age and Hf-isotope compositions of zircon from the granitic gneisses

    Science.gov (United States)

    Sylvester, P.; Souders, K.; Crowley, J. L.; Myers, J.

    2011-12-01

    The Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, is an important area for studies of early crustal evolution because of the preservation of (1) detrital zircons of Hadean to Archean age in the Jack Hills and Mt. Narryer metasedimentary belts, and (2) several widespread units of granitic gneisses emplaced between ca. 3.7 and 2.6 Ga. We have analyzed the U-Pb geochronology and Hf-isotope geochemistry of magmatic zircons from 38 samples of the granitic gneisses using laser ablation - (multicollector) - ICPMS. The sample suite is dominated by the Meeberrie gneiss, a banded quartz-microcline-oligoclase-biotite gneiss of monzogranite to granodiorite composition, and the Dugel gneiss, a leucocratic, pegmatite-layered syenogranite gneiss, but gneisses of dioritic to tonalitic composition, as well as less deformed granite sheets, are also represented. Magmatic zircons were identified on the basis of the preservation of oscillatory zoning in BSE and CL images, igneous Th/U ratios (>0.2), and concordant U-Pb isotopic systematics with low common Pb contents. The results indicate many of the gneisses are composed of the products of multiple magmatic events, as has been reported previously for samples of the Meeberrie gneiss (Kinny & Nutman, 1996, Precambrian Res. 78, 165-178). Major ages of magmatism preserved in the gneisses occurred at ca. 3685-3665 Ma, 3620-3565 Ma, 3495-3440 Ma, 3375-3330 Ma, and 3300-3260 Ma. The late granite sheets crystallized at 2710-2645 Ma. Hf-isotope compositions of the zircons trend to less radiogenic values with decreasing age, with ɛHf values of ca. 0 to -5 for 3.7-3.4 Ga gneisses, ca. -1 to -9 for 3.4-3.2 Ga gneisses and ca. -5 to -20 for the late granite sheets. The array of the Hf isotopic compositions with time for the entire sample set are fit well by a regression indicating a source reservoir with a 176Lu/177Hf of 0.022 extracted from the depleted mantle at 3.9 Ga. This suggests that the Narryer gneisses and late granite

  11. Reactivation of the Archean-Proterozoic suture along the southern margin of Laurentia during the Mazatzal orogeny: Petrogenesis and tectonic implications of ca. 1.63 Ga granite in southeastern Wyoming

    Science.gov (United States)

    Jones, Daniel S.; Barnes, Calvin G.; Premo, Wayne R.; Snoke, Arthur W.

    2013-01-01

    The presence of ca. 1.63 Ga monzogranite (the “white quartz monzonite”) in the southern Sierra Madre, southeastern Wyoming, is anomalous given its distance from the nearest documented plutons of similar age (central Colorado) and the nearest contemporaneous tectonic margin (New Mexico). It is located immediately south of the Cheyenne belt—a ca. 1.75 Ga Archean-Proterozoic tectonic suture. New geochronological, isotopic, and geochemical data suggest that emplacement of the white quartz monzonite occurred between ca. 1645 and 1628 Ma (main pulse ca. 1628 Ma) and that the white quartz monzonite originated primarily by partial melting of the Big Creek Gneiss, a modified arc complex. There is no evidence that mafic magmas were involved. Open folds of the ca. 1750 Ma regional foliation are cut by undeformed white quartz monzonite. On a regional scale, rocks intruded by the white quartz monzonite have experienced higher pressure and temperature conditions and are migmatitic as compared to the surrounding rocks, suggesting a genetic relationship between the white quartz monzonite and tectonic exhumation. We propose that regional shortening imbricated the Big Creek Gneiss, uplifting the now-exposed high-grade rocks of the Big Creek Gneiss (hanging wall of the thrust and wall rock to the white quartz monzonite) and burying correlative rocks, which partially melted to form the white quartz monzonite. This tectonism is attributed to the ca. 1.65 Ga Mazatzal orogeny, as foreland shortening spread progressively into the Yavapai Province. Mazatzal foreland effects have also been described in the Great Lakes region and have been inferred in the Black Hills of South Dakota. We suggest that the crustal-scale rheologic contrast across the Archean-Proterozoic suture, originally developed along the southern margin of Laurentia, and including the Cheyenne belt, facilitated widespread reactivation of that boundary during the Mazatzal orogeny. This finding emphasizes the degree to

  12. The U-Pb age of the Posselandia Diorite, Hidrolina, Goias State, Brazil

    International Nuclear Information System (INIS)

    Jost, Hardy; Pimentel, Marcio M.; Fuck, Reinhard A.; Danni, Jose C.M.

    1993-01-01

    The Posselandia Diorite intrudes Archean granite-greenstone terrains of the region of Hidrolina, Central Goias, Brazil. U-Pb radiometric determinations in two fractions of zircon crystals from the diorite yield an age of 2,146 ± 1,6 Ma, interpreted as the crystallization age of the intrusion. The lack of deformation in the intrusion demonstrates that consolidation of the granite-greenstone terrains in the Hidrolina-Pilar de Goias-Crixas area took place before 2,146 Ma. (author). 3 figs., 2 tabs

  13. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  14. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  15. Xenon Fractionation and Archean Hydrogen Escape

    Science.gov (United States)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  16. Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins

    Directory of Open Access Journals (Sweden)

    Maarten de Wit

    2018-05-01

    Full Text Available The Makhonjwa Mountains, traditionally referred to as the Barberton Greenstone Belt, retain an iconic Paleoarchean archive against which numerical models of early earth geodynamics can be tested. We present new geologic and structural maps, geochemical plots, geo- and thermo-chronology, and geophysical data from seven silicic, mafic to ultramafic complexes separated by major shear systems across the southern Makhonjwa Mountains. All reveal signs of modern oceanic back-arc crust and subduction-related processes. We compare the rates of processes determined from this data and balance these against plate tectonic and plume related models. Robust rates of both horizontal and vertical tectonic processes derived from the Makhonjwa Mountain complexes are similar, well within an order of magnitude, to those encountered across modern oceanic and orogenic terrains flanking Western Pacific-like subduction zones. We conclude that plate tectonics and linked plate-boundary processes were well established by 3.2–3.6 Ga. Our work provides new constraints for modellers with rates of a ‘basket’ of processes against which to test Paleoarchean geodynamic models over a time period close to the length of the Phanerozoic. Keywords: Paleoarchean, Barberton Greenstone Belt, Onverwacht Suite, Geologic bedrock and structural maps, Geochemistry and geophysics, Plate tectonics

  17. the origin of late archaean granitoids in the sukumaland greenstone

    African Journals Online (AJOL)

    Mgina

    melting at the base of a late Archaean thickened sub-arc basaltic crust. Melting to form the Suite 1 granitoids occurred in the eclogite stability field whereas Suite 2 formed by melting at shallower ... of TTG in terms of slab melting processes.

  18. A Geological Model for the Evolution of Early Continents (Invited)

    Science.gov (United States)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (Archean CFB were emplaced on flooded continents, Flament et al. (2008) proposed a theory for the hypsometry of the early Earth showing that, until the late Archean, most continents were flooded and Earth was largely a water world. From this, a model consistent with many of the peculiar attributes of Archean geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  19. Geology and geochronology of Mata Surrao granites - South-West of Rio Maria - Para State, Brazil

    International Nuclear Information System (INIS)

    Duarte, K.D.; Pereira, E.D.; Dall'Agnol, R.; Lafon, J.M.

    1991-01-01

    This paper summarize the preliminary data about a geological mapping on the scale 1:50.000 located at an area in the southeastern part of the Para State. The recognized units comprise the Mata Surrao granite, which is within the typical Archean Granite-Greenstone Terrain of Rio Maria, and has mainly a monzogranitic composition. Its foliation is restricted to the north and east borders. The mapped host rocks are represented by Tonalitic Ortho gneisses, Gneisses with Pegmatites, Migmatite Gneisses, both latter show different deformation rates. Rb/Sr on whole rock systematics had been applied for the Mata Surrao granite and yield an age of 2541 ± 74 Ma with Sr initial ratio of 0.71040 ± 343 (MSWD = 2.81). This data revealed another Archean granitic body (strictu sensu) related to the Rio Maria Granite-Greenstone Terrain. Such age can be interpreted either as the crystallization age of this granitic body, or a renewed one caused by the thermo tectonic event that affected the region at the end of Archean time. It can be deduced from the initial ratio that an important crustal contribution controlled the Mata Surrao granite genesis. (author)

  20. Mineral potential for incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites in the Islamic Republic of Mauritania (phase V, deliverable 87): Chapter Q in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Taylor, Cliff D.; Giles, Stuart A.

    2015-01-01

    Review of PRISM-I documents and the National inventory of mineral occurrences suggests that resources of U, Th, Nb, Ta, Be, rare earth elements (REEs) and fluorite are known in Mauritania and have been exploited in the past at the Bou Naga alkaline complex. Several different deposit types are indicated by the available data. Pegmatitic veins are recorded in several areas of the Archean and Paleoproterozoic portions of the Rgueïbat Shield and are prospective for resources of Li, Be, Nb, Ta, U, Th, and REEs. Over 150 beryl pegmatites are known in the Khnefissat and Inkebden areas of the Chami greenstone belt, and additional concentrations of pegmatites are known in the Guelb Nich Sud area of the Sebkhet Nich greenstone belt and in the northeastern part of the Amsaga Complex. Due to the small size of these deposits, they are unlikely to be economic unless additional value can be gained by processing contained minerals for their industrial uses.

  1. Four billion years of ophiolites reveal secular trends in oceanic crust formation

    Directory of Open Access Journals (Sweden)

    Harald Furnes

    2014-07-01

    Full Text Available We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimination systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%, linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%. The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74% of Mid-Ocean-Ridge type (MORB type, in contrast to the equal proportion of Rift/Continental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals, starting in late Paleo- to early Mesoproterozoic (ca. 2.0–1.8 Ga, exhibit an apparent decrease in the average values of incompatible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from Hadean/Archean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50

  2. Annual report July 1982 - June 1983

    International Nuclear Information System (INIS)

    1983-10-01

    This report covers the activities of the National Physical Research Laboratory for the period July 1982 - June 1983. Research was done in the fields of physics and earth and atmospheric sciences, including acoustics, national measuring standards and metrology, optical sciences, geochronology, geophysics and natural isotopes. A soundintensitometer was developed to get a perspective view of an optical system from any given angle. Work was started on a research program regarding infra-red roman distribution. Radiometric dating was done on the Taung tuff. Research was also done on various materials in the earth atmosphere, air pollution in the Transvaal Highveld area and the Archean greenstone belt

  3. Regional setting, distribution and genesis of surficial uranium deposits in calcretes and associated sediments in Western Australia

    International Nuclear Information System (INIS)

    Butt, C.R.M.; Mann, A.W.; Horwitz, R.C.

    1984-01-01

    Surficial uranium deposits in Western Australia are largely in the Yilgarn Block in areas of Archean granitoids and greenstones, and in the Gascoyne Province in Proterozoic granites and gneisses. The region has had a long weathering history marked by continuous planation developing a regolith up to 100 metres thick. The distribution of calcrete type uranium deposits is controlled by geologic as well as weathering, erosion and climatic factors. Valley, playa and terrace deposits are recognized. The principal known surficial uranium deposit, Yeelirrie, occurs in the Yilgarn block as a valley deposit. (author)

  4. Hinkler Well - Centipede uranium deposits

    International Nuclear Information System (INIS)

    Crabb, D.; Dudley, R.; Mann, A.W.

    1984-01-01

    The Hinkler Well - Centipede deposits are near the northeastern margin of the Archean Yilgarn Block on a drainage system entering Lake Way. Basement rocks are granitoids and greenstones. The rocks are deeply weathered and overlain by alluvism. Granitoids, the probable uranium source, currently contain up to 25 ppm uranium, in spite of the weathering. The host calcrete body is 33 km long and 2 km wide. Uranium up to 1000 ppm occurs in carnotite over a 15 km by 2.5 km area. (author)

  5. The fundamental structural framework of Goias state

    International Nuclear Information System (INIS)

    Hasui, Y.; Haralyi, N.L.E.

    1986-01-01

    The fundamental structural framework of the State of Goias is done by the Araguacema, Porangatu, Brasilia and Parana crustal blocks, linked through obduction zones at late Archean time. This first-order structure deduced from gravimetric and magnetic data is consistent with the distribution of granite-greenstone terrains high-grade terrains and associated supracrustals. This crustal geometry was modified by vertical shear zones and polycyclic faults, mostly of NW to WNW and NE to ENE trends, to which total displacements up to 200 km are related. Some isotope dating of the rocks are also presented. (author)

  6. Geologic evolution of iron quadrangle on archean and early proterozoic

    International Nuclear Information System (INIS)

    Machado, N.; Noce, C.M.; Ladeira, E.A.

    1989-01-01

    The preliminary results of U-Pb geochronology of iron quadrangle. Brazil are presented, using the Davis linear regression program for determining of intersection concordance-discord and for estimation the associate mistakes. (C.G.C.)

  7. Archean crustal evolution in the central Minto block, northern Quebec

    International Nuclear Information System (INIS)

    Skulski, T.; Percival, J.A.; Stern, R.A.

    1996-01-01

    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ( 2.83 Ga ε Nd +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by 2.76 Ga ε Nd +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ( 2.76 Ga ε Nd +1.6 to -0.1) including 2.78Ga ε Nd Nd 2.725Ga ε Nd - 1. 6). (author). 19 refs., 4 tabs., 5 figs

  8. Late Archean mineralised cyanobacterial mats and their modern analogs

    Science.gov (United States)

    Kazmierczak, J.; Altermann, W.; Kremer, B.; Kempe, S.; Eriksson, P. G.

    2008-09-01

    Abstract Reported are findings of Neoarchean benthic colonial coccoid cyanobacteria preserved as abundant remnants of mineralized capsules and sheaths visible in SEM images as characteristic patterns after etching highly polished carbonate rock platelets. The samples described herein were collected from the Nauga Formation at Prieska (Kaapvaal craton, South Africa). The stratigraphic position of the sampling horizon (Fig. 1) is bracketed by single zircon ages from intercalated tuffs, of 2588±6 Ma and 2549±7Ma [1]. The cyanobacteria-bearing samples are located within sedimentary sequence which begins with Peritidal Member displaying increasingly transgressive character, passing upward into the Chert Member and followed by the Proto-BIF Member and by the Naute Shale Member of the Nauga Formation successively. All three latter members were deposited below the fair weather wave base. As in our previous report [2], the samples are taken from lenses of massive micritic flat pebble conglomerate occurring in otherwise finely laminated siliceous shales intercalating with thin bedded platy limestone. This part of the Nauga Formation is about 30 m thick. The calcareous, cyanobacteria-bearing flat pebble conglomerate and thin intercalations of fine-grained detrital limestones embedded in the clayey sapropel-rich deposits are interpreted as carbonate sediments winnowed during stormy weather from the nearby located peritidal carbonate platform. The mass occurrence and exceptional preservation of mineralised cyanobacterial remains in the micritic carbonate (Mg-calcite) of the redeposited flat pebbles can be explained by their sudden burial in deeper, probably anoxic clay- and sapropel-rich sediments. When examined with standard petrographic optical microscopic technique, the micritic carbonates show rather obscure structure (Fig. 2a), whereas under the SEM, polished and slightly etched platelets of the same samples reveal surprisingly well preserved patterns (Fig. 2b,c) reminiscent of common sheaths (glycocalix), typical for coccoidal colonial (pseudoparenchymatous) entophysalidacean or pleurocapsalean cyanobacteria (Fig. 2d-f). The remains of the coccoid sheaths and capsules are visible as a system of rimmed subglobular or irregularly polygonal pits separated from adjacent pits by 2-3 μm thick walls. Microprobe analyses show that the interiors of the pits are composed of almost pure calcium carbonate whereas the rims and walls of calcium carbonate with high admixture of silicates (mostly Al-Fe clay-like silicates) and dolomite. High magnification images of rims and walls confirm the microprobe data indicating authigenic character of the minerals forming both the carbonate infilling the pits interiors (CaCO3) and their rims and walls (CaCO3 + Al-Fe silicates + dolomite). EPSC Abstracts, Vol. 3, EPSC2008-A-00493, 2008 European Planetary Science Congress, Author(s) 2008 It seems that carbonates were the first mineral phase filling the spaces remained after the plasmolysis of the cyanobacterial cell contents, whereas the formation of silicates within the exopolysaccharides forming the bulk of the sheaths and capsules was a later diagenetic process. Microprobe analyses of mineralised modern coccoid cyanobacterial mats forming tower-like structures in the highly alkaline Lake Van, Turkey [3,4] display a set of elements indicative for the presence of authigenic carbonate and silicate minerals which are almost identical with that occurring in the studied Neoarchean samples. Also the optical and SEM images of polished and etched platelets of permineralised Lake Van microbialites are strikingly similar (Fig. 2d-f). Similarly as in modern cyanobacterial and other microbial mats, the process of early post mortem mineralisation, in the case of the Nauga Formation, was most probably associated with the action of heterotrophic bacteria upon the dead cyanobacterial biomass. Heterotrophic bacteria occupying EPS layers of living and dead cyanobacterial cells have the ability to bind various ions and may serve as nucleation centres for a variety of minerals [5, 6]. These, often amorphous precursor mineral phases can be transformed, during later diagenesis, into authigenic carbonates, feldspar and phyllosilicates, as observed in the case of both Nauga Formation and Lake Van cyanobacterial sheaths and capsules. The early massive appearance of benthic coccoid cyanobacteria, as evidenced by the mineralised mats in the Neoarchean Nauga Formation, and their ability to produce fine-grained limestones, confirms the significant role of these micro organisms in the formation of vast deposits of marine micritic limestones, as suggested also for younger geologic ages [7, 8]. References [1] Altermann, W. and Nelson, D. R. (1998) Sed. Geol. 120, 225-256. [2] Kazmierczak, J. and Altermann, W. (2002) Science 298, 2351. [3] Kempe, S. et al. (1991) Nature 394, 605-608. [4] Kazmierczak, J. and Altermann, W. (2002) 16th Intern. Sed. Congr. Abstract Vol., 191. [5] Douglas, S. and Beveridge, T. J. (1998) FEMS Microbiol. Ecol. 26, 79-88. [6] Barker, W. W. and Banfield, J. F. (1998) Geomicrobiol. J. 15, 223-244. [7] Kazmierczak, J. et al. (1996) Acta Palaeont. Polonica 41, 319-338. [8] Altermann, W. et al. (2006) Geobiology 4, 147- 166.

  9. Archean crustal evolution in the central Minto block, northern Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Skulski, T; Percival, J A; Stern, R A [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ({sup 2.83} {sup Ga}{epsilon}{sub Nd} +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by <2.77 Ga conglomerates. Overlying the conglomerate is a more evolved ({sup 2.76} {sup Ga}{epsilon}{sub Nd} +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ({sup 2.76} {sup Ga}{epsilon}{sub Nd} +1.6 to -0.1) including <2.76 Ga rhyolitic tuff, pillowed andesites, and 2.76 Ga quartz-feldspar porphyry, and less abundant, depleted tholeiitic basalts (2.76 GaF-Nd +2.4). These are interlain with sedimentary rocks including banded iron-formation, quartzite, and metagreywacke. Calc-alkaline batholiths include 2.78 Ga pyroxene-bearing intermediate and felsic plutons ({sup 2.78Ga}{epsilon}{sub Nd} <+2.7) and younger, peraluminous tonalites ({epsilon}{sub Nd} <+1.3). Late, 2.73 Ga peraluminous granitoids are isotopically evolved ({sup 2.725Ga}{epsilon}{sub Nd} - 1. 6). (author). 19 refs., 4 tabs., 5 figs.

  10. Geochemistry of some banded iron-formations of the archean ...

    Indian Academy of Sciences (India)

    Diagenetic fluids from the sea floor sediments and river water might have played .... (in wt%) of the banded iron-formations of Archaean supracrustal belts (Iron Ore Group) of Jharkhand–Orissa region. Gandhamardan. Deo river section. H/1/1 H/1/2 H/1/3 H/1/4 H/1/5 .... indicate that contamination by pyroclastic debris.

  11. carbonaceous phyllite/graphitic schist in the Archean Kundarkocha

    Indian Academy of Sciences (India)

    rocks of noble metals (Meyers et al. 1990). Such complexes host gold deposits in North–East. Russia (Natalka, Mayskoe ..... carbonic phases using Laser Raman Spectrometry ... Graphite was formed by the reaction between CH4 and CO2.

  12. REE Geochemistry of ore zones in the Archean auriferous schist ...

    Indian Academy of Sciences (India)

    R. Narasimhan, Krishtel eMaging Solutions

    the fluids could be of higher temperature origin. The initial Nd ... of mantle CO2 along shear zones in the lower crust led to the ..... tors such as permeability and composition of pro- ...... Shenberger D M and Barnes H L 1989 Solubility of gold in ...

  13. Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds

    Science.gov (United States)

    Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.

    2014-01-01

    Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.

  14. ∼2.5 Ga late cratonisation events in Dharwar craton: insights from the gold mineralisation ages

    International Nuclear Information System (INIS)

    Srinivasa Sarma, D.; Ram Mohan, M.; McNaughton, Neal

    2013-01-01

    The history of volcanism, granitic magmatism, and gold mineralization is defined by U-Pb geochronology of magmatic zircons and hydrothermal monazite and xenotime respectively. The felsic volcanic host rocks from Hutti greenstone belt have a U-Pb zircon age of 258 ±7 Ma, about 40 m.y. older than the age of gold mineralization at 2547±10 Ma determined from hydrothermal monazite in the Hutti gold deposit. The syntectonic Kavital granitoid in the Hutti greenstone belt has a U-Pb zircon age of 2545±7 Ma, which overlaps with the timing of gold deposition and is consistent with structural interpretations. Zircon U-Pb ages for a felsic volcanic rock (2,588±10 Ma) and an intrusive granite (e''2,555±6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton. In situ U-Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522±6 Ma) and Ajjanahalli (2,520±9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The Hutti, Gadag and Ajjanahalli gold geochronology suggests that gold mineralization occurred throughout the Dharwar craton some 80 to 120 m.y. later than the major peak of Late Archean world-class orogenic gold mineralization in most other Archean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India. (author)

  15. Archaean wrench-fault tectonics in the Abitibi greenstone belt of Canada

    Science.gov (United States)

    Hubert, C.

    1986-01-01

    A tectonic model is proposed in which the southern Abitibi belt formed in a series of rift basins which dissected an earlier formed volcanic arc. Comparisons can be made with Phanerozoic areas such as, the Hokuroko basin of Japan, the Taupo volcanic zone of new Zealand and the Sumatra and Nicaragua volcanic arcs. In addition the identification of the major E - W thrust shears make it possible to speculate that the southern Abitibi belt comprises a collage of blocks of terrane which have been accreted against a more stable continental margin or microcontinent. If this interpretation is correct analogies can be made with the SW margin of the U.S.A. in which recently formed blocks of volcanic terrane are being accreted against its western margin.

  16. The Rooiwater complex and associated rocks, Murchison granitoid-greenstone terrane, Kaapvaal Craton

    International Nuclear Information System (INIS)

    Vearncombe, J.R.; Walsh, K.L.

    1987-01-01

    The greater than 2625 Ma Rooiwater Complex is a thick, on-end differentiated basic igneous body exposed along the northern margin of the Murchison schist belt. It is metamorphosed to amphibolite facies and regionally retrograded and hydrothermally altered. Metamorphosed anorthosite, gabbro, pyroxenite, sulphide-bearing gabbros, thick magnetite layers, and granites are compatible with the hypothesis that the Complex is a layered intrusion, tectonically rotated and intruded by younger, genetically unrelated granites. Increasing TiO 2 and decreasing V 2 O 3 contents southwards in the magnetites layers combined with a general southern disposition of differentiated hornblende granite suggest that the Rooiwater Complex faces south. Although the Rubbervale Formation is pervasively deformed and metamorphosed at the greenschist facies, field relations and isotopic and rare earth element data tentatively suggest that a genetic relationship exists, the Rubbervale Formation being a possible roof to the Rooiwater intrusion, being derived from the same or a similar undepleted magmatic source. A paucity of ultramafic cumulates and up to 1,5 km of hornblende granites may relate to a source magma more felsic than that of other layered intrusions. In order to determine model ages for the Eden pluton, the Free State hornblende granite, the Quagga quartz amphibolite, the Rubbervale formation, and the Novengilla gabbro-anorthosite series. Rb-Sr and Pb isotopic analyses were undertaken

  17. Early Archaean collapse basins, a habitat for early bacterial life.

    Science.gov (United States)

    Nijman, W.

    For a better definition of the sedimentary environment in which early life may have flourished during the early Archaean, understanding of the basin geometry in terms of shape, depth, and fill is a prerequisite. The basin fill is the easiest to approach, namely from the well exposed, low-grade metamorphic 3.4 - 3.5 Ga rock successions in the greenstone belts of the east Pilbara (Coppin Gap Greenstone Belt and North Pole Dome) in West Australia and of the Barberton Greenstone Belt (Buck Ridge volcano-sedimentary complex) in South Africa. They consist of mafic to ultramafic volcanic rocks, largely pillow basalts, with distinct intercalations of intermediate to felsic intrusive and volcanic rocks and of silicious sediments. The, partly volcaniclastic, silicious sediments of the Buck Ridge and North Pole volcano-sedimentary complexes form a regressive-transgressive sequence. They were deposited close to base level, and experienced occasional emersion. Both North Pole Chert and the chert of the Kittys Gap volcano-sedimentary complex in the Coppin Gap Greenstone Belt preserve the flat-and-channel architecture of a shallow tidal environment. Thickness and facies distribution appear to be genetically linked to systems, i.e. arrays, of syn-depositionally active, extensional faults. Structures at the rear, front and bottoms of these fault arrays, and the fault vergence from the basin margin towards the centre characterize the basins as due to surficial crustal collapse. Observations in the Pilbara craton point to a non-linear plan view and persistence for the basin-defining fault patterns over up to 50 Ma, during which several of these fault arrays became superposed. The faults linked high-crustal level felsic intrusions within the overall mafic rock suite via porphyry pipes, black chert veins and inferred hydrothermal circulations with the overlying felsic lavas, and more importantly, with the cherty sediments. Where such veins surfaced, high-energy breccias, and in the

  18. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Vennemann, T.W.; Kesler, S.E.; O' Neil, J.R. (Univ. of Michigan, Ann Arbor (United States))

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The [delta][sup 18]O values of quartz pebbles within any one sample typically vary by [approximately] 4[per thousand] or more, but occasionally by as much as 8[per thousand], even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting [delta][sup 18]O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with [delta][sup 18]O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., [delta][sup 18]O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low [delta][sup 18]O values of chert pebbles (9[per thousand] to 11.5[per thousand]) relative to those expected for Archean and Proterozoic marine cherts (commonly [ge] 17[per thousand]) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  19. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    International Nuclear Information System (INIS)

    Vennemann, T.W.; Kesler, S.E.; O'Neil, J.R.

    1992-01-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The δ 18 O values of quartz pebbles within any one sample typically vary by ∼ 4 per-thousand or more, but occasionally by as much as 8 per-thousand, even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting δ 18 O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with δ 18 O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., δ 18 O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low δ 18 O values of chert pebbles (9 per-thousand to 11.5 per-thousand) relative to those expected for Archean and Proterozoic marine cherts (commonly ≥ 17 per-thousand) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold

  20. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz

    Science.gov (United States)

    Marty, Bernard; Avice, Guillaume; Bekaert, David V.; Broadley, Michael W.

    2018-05-01

    Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon-argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5-3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless 40Ar. The low Cl-K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth.

  1. What is a craton? How many are there? How do they relate? And how did they form?

    Science.gov (United States)

    Bleeker, W.; Davis, B. W.

    2004-05-01

    What is a craton? A craton is a large, coherent domain of Earth's continental crust that has attained and maintained long-term stability, having undergone little internal deformation, except perhaps near its margins due to interaction with neighbouring terranes. Stable continental crust is an end product of intense magmatic, tectonic, and metamorphic reworking; hence, cratons consist of polydeformed and metamorphosed crystalline and metamorphic rocks (e.g., typically "granite-greenstone terrains" in the most ancient cratons). Reworked crust only becomes a craton once the cumulative tectonic, magmatic, and metamorphic reprocessing has self-organized the crust and underlying lithosphere into a stable density, compositional, and thermal profile. Major late-stage "granite bloom" events play a critical role in attaining such stable lithospheric profiles. Once above average stability has been reached, deformation will be concentrated in adjacent domains with weaker strength profiles. Significant rifting events, assisted by mantle plume activity and mafic dyke swarms, are then needed to break up cratonic lithosphere. Where cratons are exposed, they form "shields" dominated by crystalline and metamorphic rocks; where younger, weakly deformed cover overlies cratonic basement, these areas are referred to as "platforms". Shields and platforms are physiographic terms rather than tectonic entities. Another concept, related but not identical to cratons is that of "structural provinces" and the two are commonly confused. Perhaps there is a slight bias for Archean cratons with buoyant mantle keels to form relatively high-standing areas, thus forming shields. However, large parts of Archean cratons are buried underneath platformal cover. There is no strict age connotation to the term "craton", and implied age depends on context. In a context of mantle keels, diamonds and kimberlites, there often is an implicit tendency to equate cratons with stable crust of Archean age. Elsewhere

  2. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  3. Lithological architecture and petrography of the Mako Birimian greenstone belt, Kédougou-Kéniéba Inlier, eastern Senegal

    Science.gov (United States)

    Dabo, Moussa; Aïfa, Tahar; Gning, Ibrahima; Faye, Malick; Ba, Mamadou Fallou; Ngom, Papa Malick

    2017-07-01

    The new lithological and petrographic data obtained in the Mako sector are analyzed in the light of the geochemical data available in the literature. It consists of ultramaic, mafic rocks of tholeiitic affinities associated with intermediate and felsic rocks of calc-alkaline affinities and with intercalations of sedimentary rocks. The whole unit is intruded by Eburnean granitoids and affected by a greenschist to amphibolite facies metamorphism related to a high grade hydrothermalism. It consists of: (i) ultramafic rocks composed of a fractional crystallization succession of lherzolites, wehrlites and pyroxenites with mafic rock inclusions; (ii) layered, isotropic and pegmatitic metagabbros which gradually pass to metabasalts occur at the top; (iii) massive and in pillow metabasalts with locally tapered vesicles, completely or partially filled with quartzo-feldspathic minerals; (iv) quarzites locally overlying the mafic rocks and thus forming the top of the lower unit. This ultramafic-mafic lower unit presents a tholeiitic affinity near to the OIB or N-MORB. It represents the Mako Ophiolitic Complex (MOC), a lithospheric fragment of Birimian lithospheric crust. The upper unit is a mixed volcanic complex arranged in the tectonic corridors. From bottom to top it comprises the following: (i) andesitic, and (ii) rhyodacitic and rhyolitic lava flows and tuffs, respectively. They present a calc-alkaline affinity of the active margins. Three generations of Eburnean granitoids are recognized: (i) early (2215-2160 Ma); (ii) syn-tectonics (2150-2100 Ma) and post-tectonics (2090-2040 Ma). The lithological succession, geochemical and metamorphic characteristics of these units point to an ophiolitic supra-subduction zone.

  4. Rare earth chemistry of gold-bearing sedimentary carbonate horizons from the Abitibi Greenstone Belt, Ontario, Canada

    International Nuclear Information System (INIS)

    Gibson, I.L.; Roberts, R.G.; Reading, D.J.R.

    1984-01-01

    The ankerite, gold ore bodies of the Dome Mine, Timmins, Ontario are interflow units, 1 to 3 m thick in a sequence of tholeiitic basalts. The units consist of discontinuous layers of ferroan dolomite, chert and pyroclastic material, and laminations of iron sulfides, tourmaline, and graphite. They have been interpreted as sediments on the basis of their internal structure. Seven Rare Earth elements (REE) (Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb) were determined by instrumental neutron activation analysis, on 10 samples of carbonate material from the ankerite units. The chondrite normalized REE plots have relatively flat patterns with, in some cases, positive Europium anomalies. The flat patterns suggest that the fluids from which the carbonate precipitated was in equilibrium with volcanic rocks of tholeiitic and komatiitic composition. The positive Europium anomalies imply that the fluids were reducing at times. Such patterns are characteristic of Archaean sediments and also the precipitates associated with the discharge of hydrothermal solutions from vents on the East Pacific Rise

  5. Open-Source Tools for Enhancing Full-Text Searching of OPACs: Use of Koha, Greenstone and Fedora

    Science.gov (United States)

    Anuradha, K. T.; Sivakaminathan, R.; Kumar, P. Arun

    2011-01-01

    Purpose: There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text…

  6. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland

    DEFF Research Database (Denmark)

    Rizo, Hanika; Boyet, Maud; Blichert-Toft, Janne

    2013-01-01

    of the Greenland samples from a source formed in the Hadean. This mantle source is the oldest yet identified on Earth and therefore provides key information about the nature and evolution of early-differentiated reservoirs. In contrast, modern mantle-derived rocks from around the world do not have Nd-142 anomalies......The composition and evolution of the silicate Earth during Hadean/Eoarchean times are widely debated and largely unknown due to the sparse geological record preserved from Earth's infancy. The short-lived Sm-146-Nd-142 chronometer applied to 3.8-3.7 Ga old mantle-derived amphibolites from the Isua...... Supracrustal Belt (ISB) in southwest Greenland has revealed ubiquitous Nd-142 excesses in these rocks compared to modern samples and terrestrial Nd standards. Because the parent isotope, Sm-146, was extant only during the first few hundred million years of Solar System history, this implies derivation...

  7. Archean evolution of Enderby Land (Antarctica) and isotope-geochronological evidences for its ancient history

    International Nuclear Information System (INIS)

    Krylov, D.P.; Belyatskij, B.V.

    1987-01-01

    Revew of published isotope-geochronological data on Ender by Land (Antarctica), which is the region of highly metamorphic formations predominant development which includes ancient rock relicts, is presented. Three tectonic-thermal events present the Archeau evolution in the region. Correlation of isotope-geochronological (U-Pb, Rb-Sr, Sm-Nd) data with micro textural processing allows to estimate tectonic-thermal events age: 3000-3100 about 2900 and about 2500 million years. Metamorphism of 3000-3100 million years age has essentially modified all the isotope systems, while model calculations for evolution of U-Pb, Rb-Sr, Sm-Nd systems have shown that rocks primary formation accurred 3500-3900 million years ago

  8. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life

    OpenAIRE

    Waldbauer, Jacob R.; Newman, Dianne K.; Summons, Roger E.

    2011-01-01

    The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth’s evolution. Among the various geochemical proxies for the presence of O_2 in the environment, molecular fossils offer a unique record of O_2 where it was first produced and consumed by biology: in sunlit aquatic habitats. As steroid biosynthesis requires mo...

  9. Geochemistry of Precambrian carbonates - 3-shelf seas and non-marine environments of the Archean

    Science.gov (United States)

    Veizer, Jan; Clayton, R. N.; Hinton, R. W.; Von Brunn, Victor; Mason, T. R.

    1990-01-01

    Samples from the Pangola and Ventersdorp Supergroups (Kaapvaal Craton, South Africa) and from the Fortescue and Hamersley Groups (Pilbara Block, Australia) were analyzed, using XRF, AAS, and isotope-analysis techniques to investigate the mineralogical, chemical, and isotopic features of these representatives of contemporary shelf carbonates (Pangola and Hamersley samples) and nonmarine carbonates (the Ventersdorp and Fortescue samples). Results show that, mineralogically, the shelf carbonates are almost exclusively dolostones, while the lacustrine facies are predominantly limestones. Geological, trace-element, and oxygen-isotope results of the shelf carbonates suggest that their original mineralogy may have been aragonite, and that the Pangola dolostones may represent a direct dolomitization product of this precursor. By contrast, the stabilization of the Hamersley carbonates may have involved an additional step of transformation of a metastable precursor into limestone.

  10. Archean Isotope Anomalies as a Window into the Differentiation History of the Earth

    Science.gov (United States)

    Wainwright, A. N.; Debaille, V.; Zincone, S. A.

    2018-05-01

    No resolvable µ142Nd anomaly was detected in Paleo- Mesoarchean rocks of São Francisco and West African cratons. The lack of µ142Nd anomalies outside of North America and Greenland implies the Earth differentiated into at least two distinct domains.

  11. Abiotic Earth - Establishing a Baseline for Earliest Life, Data from the Archean of Western Australia

    Science.gov (United States)

    Lindsay, J. F.; Brasier, M. D.; McLoughlin, N.; Green, O. R.; Fogel, M.; McNamara, K. M.; Steele, A.; Mertzman, S. A.

    2003-01-01

    Stromatolitic structures preserved at two stratigraphic levels within the 3.47-3.43 Ga Warrawoona Group of Western Australia have been interpreted as some of "the least controversial evidence of early life on earth" and "the oldest firmly established biogenic deposits now known from the geologic record". The structures were said to have formed in a shallow sub-tidal to intertidal setting as part of an evaporite succession. In an extensive field program we have re-evaluated exposures of the Strelley Pool Chert from which stromatolites have been described and carried out detailed mapping and sampling of the Strelley Pool West site 13.7 km west of the type locality. Data from our ongoing program cast considerable doubt on the biogenic origins of the stromatolitic structures and on the nature of their depositional setting.

  12. The Upside-Down Biosphere: Evidence for the Partially Oxygenated Oceans During the Archean Eon

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2014-01-01

    This is a commentary on the preceding chapter by Ohmoto et al., in which it is suggested that oxygen concentrations have been high throughout Earth history. This is a contentious suggestion at odds with the prevailing view in the field, which contends that atmospheric oxygen concentrations rose from trace levels to a few percent of modern-day levels around 2.5 b.y. ago. This comment notes that many of the data sets cited by Ohmoto et al. as evidence for a relatively oxidized environment come from deep-ocean settings. This presents a possibility to reconcile some of these data and suggestions with the overwhelming evidence for an atmosphere free of oxygen at that time. Specifically, it is possible that deep-ocean waters were relatively oxidized with respect to certain redox pairs. These deep-ocean waters would have been more oxidized than surface waters, thus representing an "upside-down biosphere," as originally proposed 25 years ago by Jim Walker.

  13. Provenance and depositional age of the neoproterozoic volcanometasedimentary sequence in the Santa Terezinha region, Goias based on U-Pb single zircon and Sm-Nd isotope data

    International Nuclear Information System (INIS)

    Dantas, Elton Luiz; Jost, Hardy; Fuck, Reinhardt A.; Pimentel, Marcio Martins; Brod, Jose Affonso

    2001-01-01

    Some of the volcano-sedimentary sequences of the Tocantins Province have been considered to be formed during the evolution of a Neoproterozoic intra oceanic island arc system (Pimentel et al., 2000). However, the interpretation of supra crustal rocks of some areas of the central portions of the Goias Massif, such as the region of Santa Terezinha de Goias, is still controversial. These rocks have been considered either as part of the Archean greenstone belts or as Paleoproterozoic sequences (Ribeiro Filho 1981, Souza and Le Neto 1981, Machado et al.1981, Ribeiro Filho and Lacerda Filho 1985, Biondi and Pidevin 1994, Arantes et al. 1991) rather than an extension of the Neoproterozoic Mara Rosa magmatic arc (Viana et al.1995, Pimentel et al. 1997). An area of about 800 km 2 near the town of Santa Terezinha de Goias was recently mapped on a 1:25.000 scale (Jost et al. 2001). Its northern part consists of Proterozoic supra crustal rocks in tectonic contact with Archean rocks in the south. We present new Sm-Nd and U-Pb zircon data for the supra crustal rocks that crop out in the northern part of the area and discuss their provenance and depositional age (au)

  14. Lunar and Planetary Science XXXV: Astrobiology: Analogs and Applications to the Search for Life

    Science.gov (United States)

    2004-01-01

    The session "Astrobiology: Analogs and Applications to the Search for Life" included the folowing reports:The Search for Life on Mars Using Macroscopically Visible Microbial Mats (Stromatolites) in 3.5/3.3 Ga Cherts from the Pilbara in Australia and Barberton in South Africa as Analogues; Life in a Mars Analog: Microbial Activity Associated with Carbonate Cemented Lava Breccias from NW Spitsbergen; Groundwater-fed Iron-rich Microbial Mats in a Freshwater Creek: Growth Cycles and Fossilization Potential of Microbial Features; Episodic Fossilization of Microorganisms on an Annual Timescale in an Anthropogenically Modified Natural Environment: Geochemical Controls and Implications for Astrobiology; Proterozoic Microfossils and Their Implications for Recognizing Life on Mars; Microbial Alteration of Volcanic Glass in Modern and Ancient Oceanic Crust as a Proxy for Studies of Extraterrestrial Material ; Olivine Alteration on Earth and Mars; Searching for an Acidic Aquifer in the R!o Tinto Basin. First Geobiology Results of MARTE Project; In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment; Habitability of the Shallow Subsurface on Mars: Clues from the Meteorites; Mars Analog Rio Tinto Experiment (MARTE): 2003 Drilling Campaign to Search for a Subsurface Biosphere at Rio Tinto Spain; Characterization of the Organic Matter in an Archean Chert (Warrawoona, Australia); and The Solfatara Crater, Italy: Characterization of Hydrothermal Deposits, Biosignatures and Their Astrobiological Implication.

  15. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites

    Science.gov (United States)

    Nisbet, E. G.; Cheadle, M. J.; Arndt, N. T.; Bickle, M. J.

    1993-09-01

    The maximum potential temperature of the Archaean mantle is poorly known, and is best constrained by the MgO contents of komatiitic liquids, which are directly related to eruptive temperatures. However, most Archaean komatiites are significantly altered and it is difficult to assess the composition of the erupted liquid. Relatively fresh lavas from the SASKMAR suite, Belingwe Greenstone Belt, Zimbabwe (2.7 Ga) include chills of 25.6 wt.% MgO, and olivines ranging to Fo 93.6, implying eruption at around 1520°C. A chill sample from Alexo Township, Ontario (also 2.7 Ga) is 28 wt.% MgO, and associated olivines range to Fo 94.1, implying eruption at 1560°C. However, inferences of erupted liquids containing 32-33 wt.% MgO, from lavas in the Barberton Greenstone Belt, South Africa (3.45 Ga) and from the Perseverance Complex, Western Australia (2.7 Ga) may be challenged on the grounds that they contain excess (cumulate) olivine, or were enriched in Mg during alteration or metamorphism. Re-interpretation of olivine compositions from these rocks shows that they most likely contained a maximum of 29 wt.% MgO corresponding to an eruption temperature of 1580°C. This composition is the highest liquid MgO content of an erupted lava that can be supported with any confidence. The hottest modern magma, on Gorgona Island (0.155 Ga) contained 18-20% MgO and erupted at circa 1400°C. If 1580°C is taken as the temperature of the most magnesian known eruption, then the source mantle from which the liquids rose would have been at up to 2200°C at pressures of 18 GPa corresponding to a mantle potential temperature of 1900°C. These temperatures are in excess of the mantle temperatures predicted by secular cooling models, and thus komatiites can only be formed in hot rising convective jets in the mantle. This result requires that Archaean mantle jets may have been 300°C hotter than the Archaean ambient mantle temperature. This temperature difference is similar to the 200-300

  16. Identifying early Earth microfossils in unsilicified sediments

    Science.gov (United States)

    Javaux, Emmanuelle J.; Asael, Dan; Bekker, Andrey; Debaille, Vinciane; Derenne, Sylvie; Hofmann, Axel; Mattielli, Nadine; Poulton, Simon

    2013-04-01

    Renaut, 2007) or inside gaz bubbles (Brasier et al, 2009; Bengston et al., 2010); or as mobile hydrocarbon microspheres (Wanger et al, 2012). However, these processes cannot explain the formation of large recalcitrant (acid-resistant) hollow vesicles flattened in 2D parallel to bedding, with structurally preserved organic walls, and occurring in shallow-water shales. They do not occur in the right geological conditions, or do not produce the right taphonomy nor structurally preserved morphology; or the right chemistry (acid resistant kerogen, not bitumen); or the right size range and unimodal size distribution. Therefore the carbonaceous microstructures are interpreted as organic-walled microfossils of unknown biological origin (the definition of acritarchs, which may of prokaryotic or eukaryotic origin). In our study, ultrastructural analyzes by transmission electron microscopy provided a crucial test to evidence that large organic-walled vesicles from the 3.2 Ga Moodies Group were true microfossils and not just large kerogen particles (Javaux et al, 2010). This discovery showed that fine-grained siliciclastic window is an interesting target, not only for the proterozoic record, but also for archean paleobiology. Such study also suggests that aqueous fine-grained silicilastic or clay deposits from the Noachian on Mars should be high priority astrobiological targets. To improve the Archean record, siliciclastic sedimentary rocks from new cores recovered through the ICDP Barberton "peering into the cradle of life" will be investigated for discovering and characterizing traces of life (organics, microfossils, microbial mat structures) and their paleohabitat and preservation conditions. Analytical approaches will include in situ study by petrography, organics extraction, optical and electronic microscopy, Raman and FTIR microspectroscopy, pyrolysis, datings, stable isotope analyzes, and a range of redox proxies, in collaboration with partners from the ICDP Barberton project

  17. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  18. Domains of Archean mantle lithosphere deciphered by seismic anisotropy – inferences from the LAPNET array in northern Fennoscandia

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Vecsey, Luděk; Babuška, Vladislav

    2011-01-01

    Roč. 2, č. 2 (2011), s. 303-313 ISSN 1869-9510 R&D Projects: GA AV ČR IAA300120709 Institutional research plan: CEZ:AV0Z30120515 Keywords : Baltic Shield * continental lithosphere * teleseismic tomography Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  19. Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation

    DEFF Research Database (Denmark)

    Frei, Robert; Rosing, Minik; Stecher, Ole

    1999-01-01

    Pb stepwise leaching (PbSL) determinations on two magnetite-enriched fractions of a BIF sample from the northeastern part of the Isua supracrustal belt (West Greenland) yield an isochron of 3691 ± 22 Ma (MSWD = 0.4). In combination with previously published geochronological constraints for a mini...

  20. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    Science.gov (United States)

    Ashwal, L. D.; Morgan, P.; Kelley, S. A.; Percival, J. A.

    1987-01-01

    Concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100-km transect of the Superior Province of the Canadian Shield have been obtained. The relatively large variation in heat production found among the silicic plutonic rocks is shown to correlate with modal abundances of accessory minerals, and these variations are interpreted as premetamorphic. The present data suggest fundamental differences in crustal radioactivity distributions between granitic and more mafic terrains, and indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth.

  1. The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization

    Science.gov (United States)

    Fabricio-Silva, Wendell; Rosière, Carlos Alberto; Bühn, Bernhard

    2018-05-01

    Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548-600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak-Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.

  2. Geochronological data for lithostratigraphic complexes of a crystalline basement from the South regions of Minas Gerais and adjacent areas of the Sao Paulo state

    International Nuclear Information System (INIS)

    Kawashita, K.; Artur, A.C.; Wernick, E.

    1988-01-01

    New geochronological data (Rb/Sr, Pb/Pb) for the Amparo and Pinhal Complexes, southern State of Minas Gerais and adjacent areas of the State of Sao Paulo are presented and discussed with respect to other lithostratigraphic complexes which there occur. Among the different complexes considered, 4 are composed mainly by rock belonging to typical infrastructure associations. They are the Barcelona, the Guaxupe, the Amparo and the Pinhal complexes. The Barbacena Complex is a typical gray gneiss complex and geochronological data by different methods confirm its Archean age. The Guaxupe Complex is composed mainly by different types of charnockitic rocks and an Archean age is assumed on geotectonic basis due to its neighboring association with the gray gneiss/greenstone belt, a though confirming geochronological data are still missing, a normal feature in this type of mobile belts which generally show a complex, polycyling evolution. Geochronological data by different methods on diverse rock types indicates that the Amparo and Pinhal complexes are respectively of Lower an Upper proterozoic age. Geochronological, geological and petrographic data reveal that both complexes are composed mainly by 3 basic rock associations: a-mainly derived magmatic rocks including mafic/ultramafic ones as well as calc-alkaline, subalcaline and even alkaline granitoids; b-orthogneisses, migmatites and crustal granites derived by metamorphic processes acting on older, pre-existing rocks; corthogneisses and migmatites resulting from metamorphic processes acting on magmatic rocks intruded during the same tecto-metamorphic cycle during which its transformation took place. The results suggest a polycyclic evolution by successive tecto-metamorphic events which affected the older rocks of the considered are either by the reworking of enclosing rocks around pericratonic continental main magmatic arcs or by the remobilisation of older basement rocks during continental collisions. (author) [pt

  3. Using the Abitibi Greenstone Belt to Understand Martian Hydrothermal Systems and the Potential for Biosignature Preservation in High Temperature Aqueous Environments

    Science.gov (United States)

    Hurowitz, J.; Abelson, J.; Allwood, A.; Anderson, R.; Atkinson, B.; Beaty, D.; Bristow, T.; Ehlmann, B.; Eigenbrode, J.; Grotzinger, J.; hide

    2011-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 +/- 0.07% (+/- SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  4. Geochemical characteristics of gold bearing boninites and banded iron formations from Shimoga greenstone belt, India: Implications for gold genesis and hydrothermal processes in diverse tectonic settings

    Digital Repository Service at National Institute of Oceanography (India)

    Ganguly, S.; Manikyamba, C.; Saha, A.; Lingadevaru, M.; Santosh, M.; Rambabu, S.; Khelen, A.C.; Purushotham, D.; Linga, D.

    .437 12 0.112 0.836 80 2.663 2.5 0.032 1.214 59 1.283 1.25 0.012 0.973 07 2.018 2 0.010 0.500 39 0.417 0.32 0.009 2.227 99 2.416 2 0.000 0.017 68 0.288 0.6 0.002 0.684 03 0.966 1.5 0.005 0.475 08 0.178 0.2 0.002 0.898 75 1.341 1.25 0.013 0.972 59 0.224 0...

  5. Are oceanic plateaus sites of komatiite formation?

    Science.gov (United States)

    Storey, M.; Mahoney, J. J.; Kroenke, L. W.; Saunders, A. D.

    1991-04-01

    During Cretaceous and Tertiary time a series of oceanic terranes were accreted onto the Pacific continental margin of Colombia. The island of Gorgona is thought to represent part of the most recent, early Eocene, terrane-forming event. Gorgona is remarkable for the occurrence of komatiites of middle Cretaceous age, having MgO contents up to 24%. The geochemistry of spatially and temporally associated tholeiites suggests that Gorgona is an obducted fragment of the oceanic Caribbean Plateau, postulated by Duncan and Hargraves (1984) to have formed at 100 to 75 Ma over the Galapagos hotspot. Further examples of high-MgO oceanic lavas that may represent fragments of the Caribbean Plateau occur in allochthonous terranes on the island of Curaçao in the Netherlands Antilles and in the Romeral zone ophiolites in the southwestern Colombian Andes. These and other examples suggest that the formation of high-MgO liquids may be a feature of oceanic-plateau settings. The association of Phanerozoic komatiites with oceanic plateaus, coupled with thermal considerations, provides a plausible analogue for the origin of some komatiite-tholeiite sequences in Archean greenstone belts.

  6. Southern Brasilia Belt (SE Brazil): tectonic discontinuities, K-Ar data and evolution during the Neoproterozoic Brasiliano orogeny

    International Nuclear Information System (INIS)

    Valeriano, Claudio Morrison de; Teixeira, Wilson; Simoes, Luiz Sergio Amarante; Heilbron, Monica

    2000-01-01

    This paper focuses the tectonic evolution of the southern brasilia belt, with emphasis on the Furnas segment, along the 21 deg C S parallel. The uppermost structural unit (Passos Nappe - PN) comprises a highly deformed metasedimentary succession interpreted as a fragment of the Neoproterozoic passive margin of western Sao francisco craton. An inverted metamorphic gradient ranging from greensvhits to lower granulite facies of medium to high-pressure regime characterizes the PN as relict of a subduction zone. The External Domain display a complex imbrication of basement rocks (Archean Piumhi greenstones, a turbiditic gaywacke succession and a calc-alkaline granitoid suite) with undated siliciclast low-grade metasedimentary rocks. The Sao Francisco Craton (SFC) comprises pre-1.8 Ga basement rocks covered by anchimetamorphic Neoproterozoic carbonatic shallow marine platform deposits of the Bambui group. The Brasiliano thrust stacking generated a coarse clastic influx of molassic character on the foreland zone of Sao Francisco Craton, coeval with the exhumation of the External Domain thrust sheets. New K-Ar determinations on mineral separates are presented an interpreted among previous data. The SFC basement rocks display Paleo-to Meesoproterozoic cooling ages. The allochthonous units, in contrast, display K-Ar ages within the 560-675 Ma range. Brasiliano thrust stacking is therefore interpreted to have taken place onto a cold Sao Francisco craton foreland, in a thin-skinned style, as basement rocks were not heated enough to have their-K-ar systems reset during the allochthony. (author)

  7. Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation

    Science.gov (United States)

    Diekrup, David; Hannington, Mark D.; Strauss, Harald; Ginley, Stephen J.

    2018-05-01

    Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic-hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S-33S-34S-36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic-hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.

  8. Electrical structure and its implication across the lower- and upper-crustal settings of South India

    Science.gov (United States)

    Raval, U.

    1988-01-01

    Measurements of a large scale MMA experiment covering both the granulite and greenstone terrains of Archeans in the southern part of India is re-visited and re-analyzed. The induced field variations contain the signatures of crustal and subcrustal electrical conductivities, although substantially distorted by the sea-land interfaces and cenozoic sediments. However, through a selection of some reconnaissance profiles and temporal variations, an attempt is made to deduce whether: (1) significant differences exist between the electrical structures of the high and low grade complexes (i.e., if the electrical conductivity of the lower crust is due to minerological composition or is intrinsic to the positioning at depths greater than 15 km); (2) the probable seaward extension of the continental crust and its transition to oceanic type may also contribute (through intracrustal DC-like telluric sheets) to the induction field in addition to or rather than the sharply localized zones; (3) the observed parameters are indicative of a formal anisotropy and/or undulations in the deep crust; and (4) the postulate of relatively hotter Indian shield is reflected particularly with regard to differential metamorphism. In the last case, the crust-mantle coupling in this region - unlike other similar areas - seems to be markedly affected by the evolution of Ne-plate velocity field.

  9. Time constraint based on zircon dating for the Jacareacanga group (Tapajos province, Amazon craton, Brazil)

    International Nuclear Information System (INIS)

    Almeida, M.E.; Ferreira, A.L; Macambira, M.J.B.; Sachett, C.R

    2001-01-01

    During long time the Jacareacanga meta-volcano sedimentary sequence have been interpreted as Archean greenstone belt terrain. However, recent data are indicating younger U-Pb ages about 2.1 Ga. In the Tapajos Province (Amazon Craton), the Cuiu-Cuiu Complex (2.00-2.03 Ga), Creporizao granitoids (1.99-1.96 Ga) and Jacareacanga Group are the oldest rocks. The Jacareancaga Group is composed by quartzmica schists, quartzites, ferruginous quartzite, metachert, and minor talc-tremolite-chlorite schist, actinolite-epidote schist, hornfels, metargilites and metawackes metamorphosed in low to medium-grade conditions. The aim of the present paper is to estabilish the maximum age of Jacareacanga sedimentation and identify probable sources in Espirito Santo region (Espirito Santo muscovite-biotite schist). In this research, similar and new results are obtained by zircon evaporation methodology. This research shows geochronological data about the Espirito Santo muscovite-biotite schist related to Jacareacanga Group (Ferreira et al., 2000) in Tapajos Province (Amazon Craton). The area is located near Amazonas and Para States boundary (Northern Brazil) and the sample was obtained at Espirito Santo (garimpo) small-scale gold mine (06 o 00min.48seg.S,58 o 08min.17seg.W) (au)

  10. Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar craton, India: Implications for early mantle heterogeneity

    Directory of Open Access Journals (Sweden)

    J.M. Maya

    2017-05-01

    Full Text Available Spinifex-textured, magnesian (MgO >25 wt.% komatiites from Mesoarchean Banasandra greenstone belt of the Sargur Group in the Dharwar craton, India were analysed for major and trace elements and 147,146Sm-143,142Nd systematics to constrain age, petrogenesis and to understand the evolution of Archean mantle. Major and trace element ratios such as CaO/Al2O3, Al2O3/TiO2, Gd/Yb, La/Nb and Nb/Y suggest aluminium undepleted to enriched compositional range for these komatiites. The depth of melting is estimated to be varying from 120 to 240 km and trace-element modelling indicates that the mantle source would have undergone multiple episodes of melting prior to the generation of magmas parental to these komatiites. Ten samples of these komatiites together with the published results of four samples from the same belt yield 147Sm-143Nd isochron age of ca. 3.14 Ga with an initial ɛNd(t value of +3.5. High precision measurements of 142Nd/144Nd ratios were carried out for six komatiite samples along with standards AMES and La Jolla. All results are within uncertainties of the terrestrial samples. The absence of 142Nd/144Nd anomaly indicates that the source of these komatiites formed after the extinction of 146Sm, i.e. 4.3 Ga ago. In order to evolve to the high ɛNd(t value of +3.5 by 3.14 Ga the time-integrated ratio of 147Sm/144Nd should be 0.2178 at the minimum. This is higher than the ratios estimated, so far, for mantle during that time. These results indicate at least two events of mantle differentiation starting with the chondritic composition of the mantle. The first event occurred very early at ∼4.53 Ga to create a global early depleted reservoir with superchondritic Sm/Nd ratio. The source of Isua greenstone rocks with positive 142Nd anomaly was depleted during a second differentiation within the life time of 146Sm, i.e. prior to 4.46 Ga. The source mantle of the Banasandra komatiite was a result of a differentiation event that occurred

  11. Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils

    Science.gov (United States)

    Wacey, David; Saunders, Martin; Kong, Charlie

    2018-04-01

    SPF in the East Strelley greenstone belt. We find that the majority of previously illustrated microfossils from this greenstone belt possess multiple features that are consistent with a biological interpretation and are unlikely to be volcanogenic, but at least one previously illustrated specimen is here reinterpreted as volcanic in origin. The importance of this work is that it serves to highlight the common occurrence of volcanogenic microstructures resembling biological fossils (i.e. pseudo-fossils) in Archean environments that are habitable for life. Such structures have until now been largely overlooked in the assessment of putative Precambrian microfossils. Our data show that tephra-derived microstructures should be considered as a null hypothesis in future evaluations of potential signs of life on the early Earth, or on other planets.

  12. Generalized hypothesis of the origin of the living-matter simplest elements, transformation of the Archean atmosphere, and the formation of methane-hydrate deposits

    International Nuclear Information System (INIS)

    Ostrovskii, Viktor E; Kadyshevich, Elena A

    2007-01-01

    The original hydrate hypothesis of the origin of living-matter simplest elements (LMSEs), i.e., the 'Life Origination Hydrate hypothesis,' abbreviated as the LOH hypothesis, is discussed. It includes notions of the interdependence and interconditionality of processes leading to the life origin, to the transformation of the primary atmosphere, and to the underground methane-hydrate formation. Saturation of the young earth's crust with nebular hydrogen is taken into consideration for the first time. The origin of LMSEs is regarded as a result of regular and thermodynamically caused inevitable chemical transformations and of the universal physical and chemical laws. According to the LOH hypothesis, LMSEs originated repeatedly and, maybe, are now originating from methane (or other simple hydrocarbons), niter, and phosphate within boundary layers of the solid phases of the hydrates of the simplest hydrocarbons. It is assumed that the phenomenon of monochirality of nucleic acids is caused by geometric features of the structure matrix. (reviews of topical problems)

  13. Generalized hypothesis of the origin of the living-matter simplest elements, transformation of the Archean atmosphere, and the formation of methane-hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskii, Viktor E [L. Ya. Karpov Institute of Physical Chemistry, Moscow (Russian Federation); Kadyshevich, Elena A [A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2007-02-28

    The original hydrate hypothesis of the origin of living-matter simplest elements (LMSEs), i.e., the 'Life Origination Hydrate hypothesis,' abbreviated as the LOH hypothesis, is discussed. It includes notions of the interdependence and interconditionality of processes leading to the life origin, to the transformation of the primary atmosphere, and to the underground methane-hydrate formation. Saturation of the young earth's crust with nebular hydrogen is taken into consideration for the first time. The origin of LMSEs is regarded as a result of regular and thermodynamically caused inevitable chemical transformations and of the universal physical and chemical laws. According to the LOH hypothesis, LMSEs originated repeatedly and, maybe, are now originating from methane (or other simple hydrocarbons), niter, and phosphate within boundary layers of the solid phases of the hydrates of the simplest hydrocarbons. It is assumed that the phenomenon of monochirality of nucleic acids is caused by geometric features of the structure matrix. (reviews of topical problems)

  14. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajas iron-ore district, Brazil

    DEFF Research Database (Denmark)

    Cabral, A. R.; Creaser, R. A.; Naegler, T.

    2013-01-01

    The 250-300-m-thick Carajas Formation in the Carajas mineral province, northern Brazil, consists of banded iron formation (including giant high-grade iron-ore deposits) and minor black shale, overlying a thick pile (2-3 km) of about 2.75-Ga-old metabasalt. Carbonaceous shale with pyrite-and local...

  15. Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact – A Cr isotope perspective on the Sukinda valley ore district (Orissa, India)

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Døssing, Lasse Nørbye; Mondal, Sisir K.

    2015-01-01

    to negatively fractionated values as low as δ53Cr = −1.29 ± 0.04‰. Local surface waters are isotopically heavy relative to the soils. This supports the hypothesis that during oxidative weathering isotopically heavy Cr(VI) is leached from the soils to runoff. The impact of mining pollution is observed downstream...... in controlling the hazardous impact of Cr(VI) on health and environment. The positive Cr isotope signatures of the Brahmani estuary and coastal seawater collected from the Bay of Bengal further indicate that the positively fractionated Cr isotope signal from the catchment area is preserved during its transport...

  16. Neodymium and strontium isotopic stratigraphy of the neo-archean Rio Jacare Sill-Bahia, Brazil and its relation to PGE mineralization

    International Nuclear Information System (INIS)

    Brito, Reinaldo S.C de; Pimentel, Marcio M.; Nilson, Ariplinio A.; Gioia, Simone M

    2001-01-01

    Platinum-Group Elements (PGE) deposition in magma chambers is generally accepted as being triggered by sulphur immiscibility via sulfidasation and/or felsification of magmas. These processes can be related to fractional crystallization, and mixing of batches of magmas, crustal contamination or by the combination of these process. Important isotopic studies have been carried out by many authors such as Lambert (1989) and Marcantonio (1995) in the Stillwater Complex, Kruger and Marsh (1989) and Cawthorn (1996) in the Bushveld Complex. Those works set out to understand the role of isotopic changes in the genesis of PGE deposits from JM and Merensky Reefs, respectively. They attributed those PGE mineralizations to isotopically constrained mixing/contamination episodes associated to subtle changes in steady vertical fractionation trends. This work presents stratigraphycally-plotted Nd and Sr isotopic data together with evidence of mineral and whole rock geochemistry disturbance in smooth fractionations trends of the Rio Jacare Sill. Data interpretation suggest the sill was formed via fractional crystallisation and mixing of at least three magma batches, combined with some degree of host rocks assimilation. Isotopic changes were also related to PGE anomalies associated with transitional facies formed during such mixing episodes (au)

  17. Boninitic metavolcanic rocks and island arc tholeiites from the Older Metamorphic Group (OMG) of Singhbhum Craton, eastern India: Geochemical evidence for Archean subduction processes

    Digital Repository Service at National Institute of Oceanography (India)

    Manikyamba, C.; Ray, J.; Ganguly, S.; Singh, M.R.; Santosh, M.; Saha, A.; Satyanarayanan, M.

    a dent that th for high deg stability fie mantle plu or komatiit tial melting to explain 1999). It ha ally hot man magma tha eration of regime corr tions canno In the mod drating oce cases, subd wedge to g at depths ∼ boninites re Therefore...

  18. Identification of Zones and Areal Extent of Weathered Crystalline Basement in the Archean-Lower Proterozoic Crust of the South Tatar Arch

    Directory of Open Access Journals (Sweden)

    N.B. Amelchenko

    2017-08-01

    Full Text Available Based on the data of geophysical surveys and deep drilling the depth to the crystalline basement and its weathered upper layer at the eastern flank of the South Tartar Arch varies from 1650 to 2500 m. Against the ongoing depletion of hydrocarbon reserves in the Paleozoic reservoirs of the region the basement becomes a promising exploration target. However the study of its architecture, composition and areal extent is largely hindered by so far very limited coring in this interval. In previous research correlation of core data and wireline logs was used for petrophysical characterization and identification of zones in a vertical profile of the upper weathered layer of the basement in the deep parametric test wells 50 Novournyak and 2000 Tyimazy with most complete core recovery. These characterization criteria have been utilized for analysis of 750 deep wells drilled in Bashkortostan within the South Tatar Arch which is bounded in the south by the Serafimovsko-Baltaevskiy Graben. In 340 wells based on wireline and production logs the upper weathered layer of the basement revealed certain distinct features of vertical zonation. The analysis resulted in thickness maps for Zone B and combined thickness maps for Zones B + C where the weathered basement is characterized by two morphological types – linear-areal and linear-fractured. The findings support the initial assumption that the obtained petrophysical characteristics may be applied to identify the weathered crystalline basement in wells with no core.

  19. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    Science.gov (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  20. A geological synthesis of the Precambrian shield in Madagascar

    Science.gov (United States)

    Tucker, Robert D.; Roig, J.Y.; Moine, B.; Delor, C.; Peters, S.G.

    2014-01-01

    Available U–Pb geochronology of the Precambrian shield of Madagascar is summarized and integrated into a synthesis of the region’s geological history. The shield is described in terms of six geodynamic domains, from northeast to southwest, the Bemarivo, Antongil–Masora, Antananarivo, Ikalamavony, Androyan–Anosyan, and Vohibory domains. Each domain is defined by distinctive suites of metaigneous rocks and metasedimentary groups, and a unique history of Archean (∼2.5 Ga) and Proterozoic (∼1.0 Ga, ∼0.80 Ga, and ∼0.55 Ga) reworking. Superimposed within and across these domains are scores of Neoproterozoic granitic stocks and batholiths as well as kilometer long zones of steeply dipping, highly strained rocks that record the effects of Gondwana’s amalgamation and shortening in latest Neoproterozoic time (0.560–0.520 Ga). The present-day shield of Madagascar is best viewed as part of the Greater Dharwar Craton, of Archean age, to which three exotic terranes were added in Proterozoic time. The domains in Madagascar representing the Greater Dharwar Craton include the Antongil–Masora domain, a fragment of the Western Dharwar of India, and the Neoarchean Antananarivo domain (with its Tsaratanana Complex) which is broadly analogous to the Eastern Dharwar of India. In its reconstructed position, the Greater Dharwar Craton consists of a central nucleus of Paleo-Mesoarchean age (>3.1 Ga), the combined Western Dharwar and Antongil–Masora domain, flanked by mostly juvenile “granite–greenstone belts” of Neoarchean age (2.70–2.56 Ga). The age of the accretionary event that formed this craton is approximately 2.5–2.45 Ga. The three domains in Madagascar exotic to the Greater Dharwar Craton are the Androyan–Anosyan, Vohibory, and Bemarivo. The basement to the Androyan–Anosyan domain is a continental terrane of Paleoproterozoic age (2.0–1.78 Ga) that was accreted to the southern margin (present-day direction) of the Greater Dharwar Craton in pre

  1. Crustal structural survey for the state of Minas Gerais, Brazil, utilizing geophysical and geological information

    International Nuclear Information System (INIS)

    Haralyi, N.L.E.; Hasui, Y.; Mioto, J.A.; Hamza, V.M.

    1985-01-01

    Gravity, Magnetic (airborne, Magnet and Magsat), heat flow and seismicity available data for the state of Minas Gerais and adjacent regions is here analyzed, discussed and integrated with geologic information. The Late Archean crustal structure is defined as blocks of granite-greenstone separated by belts of high-grade terrains. The belts in eastern and southern Minas Gerais represent the lower parts of the Vitoria, Sao Paulo and Parana Blocks, which were up thrusted over the Brasilia Block through low-angle ductile simple shear Zones. That regional structure is cut and somewhat displaced by NW, ENE, NE and Ns fault sets. These faults are mostly related to the Transamazonian Event, and their geological expression appears to be as high-angle ductile simple shear zones. The development of the Middle/upper proterozoic folded sequences, the incidence of the Brasiliano/Uruacuano thermo tectonic events and the geometry of the Sao Francisco Craton were highly influenced by the preexistent weakness zones. The high-grade terrains, the borders of the Brasilia Block and the Transamazonian lineaments have been preferentially affected. The tectono-magmatic manifestations of the Wealdenian Reactivation, related to the opening of the Atlantic Ocean, occurred mostly among the uplifted zones (Alto Paranaiba Uplift) that developed partially until the rift stage (Mantiqueira Uplift). These processes clearly reveal the influence of the old structures of the state of Minas Gerais. The Mantiqueira Uplift presents a more accentuated seismic activity and thermal flow regime than the neighboring regions, so corresponding to the present less stable area of Minas Gerais. (DJM) [pt

  2. Compositional Variation of Tourmaline from the Paleoproterozoic Bhukia Gold Prospect of Aravalli Supergroup, Western India: Implications for the Provenance and Gold Metallogeny

    Science.gov (United States)

    Mukherjee, R.; Venkatesh, A. S.; Fareeduddin, F.

    2016-12-01

    Bhukia is a unique gold prospect in terms of its host lithologies such as albitite and carbonates with respect to greenstone hosted Archean gold deposits from India. Tourmaline occurs along with apatite, magnetite, graphite, chalcopyrite and gold-sulfide association in Bhukia gold prospect preserve geochemical record of changing physico-chemical conditions during its growth. Tourmalinization is one of the distinct hydrothermal alterations present in the study area. Chemical composition of two varieties of tourmalines presents as significant amounts within albitite and carbonate rocks from Bhukia gold prospect. EPMA analysis of two varieties of tourmalines viz. 1) rounded to sub-rounded, euhedral, green colored tourmalines and 2) elongated, zoned, brown colored tourmalines unlocks their chemical compositions as well as variations from core to rim. In some albitite litho-units, tourmaline occurs as major constituents (>15%), present as layers, termed as tourmalinites. Al-Fe-Mg and Na/ (Na+Ca) vs Fe/ (Fe+Mg) suggests that tourmalines from the Bhukia gold prospect are Mg-rich dravite to Fe-rich schrol in composition. Tourmalines present within the albitite rocks show variations in iron and sodium content from core to rim whereas similarity exist from core to rim in case of carbonate rocks. Presence of albite confirms the role of Na-rich fluids during the formation of tourmalines. Tourmalines present in Bhukia gold prospect is mainly influenced by boron influx and the source may be boron bearing hydrothermal fluid or boron bearing minerals. Dewatering of original un-metamorphosed rock during progressive metamorphism may remove boron from the metasedimentary rocks. Due to the mobile nature of boron, it dispersed and mixed with hydrothermal fluids and alumina that is required for the formation of the tourmaline might have been leached from metasedimentary rocks present in Bhukia gold prospect. Presence of hydrothermal alterations such as tourmalinization and albitization

  3. Petrography and geochemistry of five granitic plutons from south central Uruguay: contribution to the knowledge of the Piedra Alta terrane

    International Nuclear Information System (INIS)

    Preciozzi, F.

    2005-01-01

    Granitoid rocks in south-central Uruguay are largely concentrated in three east-west trending metamorphic belts, known as (from south to north) the Montevideo Belt, the San José Belt and the Arroyo Grande Belt. These belts are separated from one another by intervening bands of gneisses of granitic composition. The whole assemblage, the gneisses as well as the metamorphic belts and their associated granites, collectively constitute the Piedra Alta Terrane. Five of these granite plutons, two from the San José Belt and three from the Arroyo Grande Belt, have been studied in some detail and the chemical composition of 86 samples (major elements as well as a selected suite of trace elements) have been determined. These data, as well as Rb-Sr isotopic data, show that these plutons are typically composite in nature, and that the various units range in age from 1900 Ma to 2500 Ma. The older ages were obtained from the main units of the plutons themselves whereas the younger ages are from late dykes which were emplaced into the plutons and which are clearly not related to them. The plutons are predominantly, but not exclusively, of calc-alkaline affinity and are typically synorogenic whereas the dykes are post-orogenic and are either calc-alkaline or alkaline in composition. These data have been incorporated into a tectonic model for the Piedra Alta Terrane which is considerably different from that heretofore proposed. The essential features of the geological history of the area are: 1) development of an older ''basement'' of granitic gneisses 2) deposition, upon or adjacent to this gneisses basement, of a typical Archean greenstone belt assemblage (no komatiites so far reported) 3) Paleo-proterozoic metamorphism, followed by syn-tectonic to post-tectonic intrusion of the plutonic rocks 4) major tectonic dislocation(s) associated with the Transamazonian orogeny 5) dyke emplacement (post-orogenic to anorogenic) following the Transamazonian orogeny

  4. Variation of stable silicon isotopes. Analytical developments and applications in Precambrian geochemistry

    International Nuclear Information System (INIS)

    Abraham, Kathrin

    2010-01-01

    The work presented in this thesis predominantly deals with bulk-rock measurements of silicon stable isotopes on a Multi Collector-ICP-MS. Analyses were performed in cooperation with the Royal Museum for Central Africa, Belgium. The first section describes how the first analysis of δ 30 Si on a conventional Nu PlasmaTM Multi-Collector ICP-MS instrument can be enabled by the elimination of 14N16O interference overlying the 30Si peak. The determination of δ 30 Si was rendered possible owing to new instrumental upgrades that facilitate the application of a higher mass resolution. The careful characterisation of appropriate reference materials is indispensable for the assessment of the accuracy of a measurement. The determination of U.S. Geological Survey (USGS) reference materials represents the second objective of this section. The analysis of two Hawaiian standards (BHVO-1 and BHVO-2) demonstrates precise and accurate δ 30 Si determinations and provides cross-calibration data as a quality control for other laboratories. The second section focuses on coupled silicon-oxygen isotopic evidences for the origin of silicification in mafic volcanic rocks of the Barberton Greenstone Belt, South Africa. In contrast to the modern Earth, silicification of near-surface layers, including chert formation, were widespread processes on the Precambrian ocean floor, and demonstrate the ubiquity of extreme silica mobilization in the early Earth. This section outlines the investigation of silicon and oxygen isotopes on three different stratigraphic sections of variably silicified basalts and overlying bedded cherts from the 3.54 Ga, 3.45 Ga and 3.33 Ga Theespruit, Kromberg and Hooggenoeg Formations, respectively. Silicon isotopes, oxygen isotopes and the variable SiO 2 -contents demonstrate a positive correlation with silicification intensity in all three sections, with varying gradients of δ 30 Si vs. δ 18 O arrays for different sections. Seawater has been regarded as the most

  5. Variation of stable silicon isotopes. Analytical developments and applications in Precambrian geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Kathrin

    2010-05-28

    The work presented in this thesis predominantly deals with bulk-rock measurements of silicon stable isotopes on a Multi Collector-ICP-MS. Analyses were performed in cooperation with the Royal Museum for Central Africa, Belgium. The first section describes how the first analysis of δ{sup 30}Si on a conventional Nu PlasmaTM Multi-Collector ICP-MS instrument can be enabled by the elimination of 14N16O interference overlying the 30Si peak. The determination of δ{sup 30}Si was rendered possible owing to new instrumental upgrades that facilitate the application of a higher mass resolution. The careful characterisation of appropriate reference materials is indispensable for the assessment of the accuracy of a measurement. The determination of U.S. Geological Survey (USGS) reference materials represents the second objective of this section. The analysis of two Hawaiian standards (BHVO-1 and BHVO-2) demonstrates precise and accurate δ{sup 30}Si determinations and provides cross-calibration data as a quality control for other laboratories. The second section focuses on coupled silicon-oxygen isotopic evidences for the origin of silicification in mafic volcanic rocks of the Barberton Greenstone Belt, South Africa. In contrast to the modern Earth, silicification of near-surface layers, including chert formation, were widespread processes on the Precambrian ocean floor, and demonstrate the ubiquity of extreme silica mobilization in the early Earth. This section outlines the investigation of silicon and oxygen isotopes on three different stratigraphic sections of variably silicified basalts and overlying bedded cherts from the 3.54 Ga, 3.45 Ga and 3.33 Ga Theespruit, Kromberg and Hooggenoeg Formations, respectively. Silicon isotopes, oxygen isotopes and the variable SiO{sub 2}-contents demonstrate a positive correlation with silicification intensity in all three sections, with varying gradients of δ{sup 30}Si vs. δ{sup 18}O arrays for different sections. Seawater has been

  6. Geochemistry of granitoid rocks from the western Superior Province: Evidence for 2- and 3-stage crustal evolution models

    Science.gov (United States)

    Beakhouse, G. P.; errane) are discussed.

    1986-01-01

    The Superior Province is divisible into subprovinces that can be classified as greenstone-tonalite, paragneiss, or batholitic terranes and are distinguished by differences in lithologic proportions, metamorphic grade, and structural style. The origin and significance of contrasting geochemical characteristics of plutonic rocks from the Winnipeg River subprovince (a batholithic terrane) and the Wabigoon subprovince (a greenstone-tonalite terrane) are discussed.

  7. Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source

    Science.gov (United States)

    Mueller, Andreas G.

    2015-02-01

    The Kalgoorlie district in the Archean Yilgarn Craton, Western Australia, comprises two world-class gold deposits: Mt Charlotte (144 t Au produced to 2013) in the northwest and the Golden Mile (1,670 t Au) in the southeast. Both occur in a folded greenschist-facies gabbro sill adjacent to the Golden Mile Fault (D2) in propylitic alteration associated with porphyry dikes. At Mt Charlotte, a shear array of fault-fill veins within the Golden Mile Fault indicates sinistral strike-slip during Golden Mile-type pyrite-telluride mineralization. The pipe-shaped Charlotte quartz vein stockwork, mined in bulk more than 1 km down plunge, is separated in time by barren D3 thrusts from Golden Mile mineralization and alteration, and occurs between two dextral strike-slip faults (D4). Movement on these faults generated an organized network of extension and shear fractures opened during the subsequent infiltration of high-pressure H2S-rich fluid at 2,655 ± 13 Ma (U-Pb xenotime). Gold was deposited during wall rock sulphidation in overlapping vein selvages zoned from deep albite-pyrrhotite (3 g/t Au) to upper muscovite-pyrite assemblages (5 g/t Au bulk grade). Chlorite and fluid inclusion thermometry indicate that this kilometre-scale zonation is due to fluid cooling from 410-440 °C at the base to 350-360 °C at the top of the orebody, while the greenstone terrane remained at 250 °C ambient temperature and at 300 MPa lithostatic pressure. The opened fractures filled with barren quartz and scheelite during the retrograde stage (300 °C) of the hydrothermal event. During fracture sealing, fluid flux was periodically restricted at the lower D3 thrust. Cycles of high and low up-flow, represented by juvenile H2O-CO2 and evolved H2O-CO2-CH4 fluid, respectively, are recorded by the REE and Sr isotope compositions of scheelite oscillatory zones. The temperature gradient measured in the vein stockwork points to a hot (>600 °C) fluid source 2-4 km below the mine workings, and several

  8. The Glória quartz-monzodiorite: isotopic and chemical evidence of arc-related magmatism in the central part of the Paleoproterozoic Mineiro belt, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Ciro A. Ávila

    2006-09-01

    Full Text Available The Glória quartz-monzodiorite, one of the mafic plutons of the Paleoproterozoic Mineiro belt, is intrusive into banded gneisses, amphibolites, schists and phyllites of the Rio das Mortes greenstone belt, in the southern portion of the São Francisco Craton, State of Minas Gerais, Brazil. The Glória quartz-monzodiorite yields a SHRIMP U-Pb zircon age of 2188 ± 29 Ma, suggesting a tectonic relationship with the pre-collisional phase of the Mineiro belt. According to the Nd isotopic evidence (epsilonNd(T = -3.4; T DM = 2.68 Ga the original magmas was formed by a mixture among Archean crustal material and Paleoproterozoic juvenile magma. The Glória quartz-monzodiorite shows metaluminous and calc-alkaline tendency with intermediate K content, comparable to that of volcanic-arc rocks. The primary mineralogical assemblage was partly modified by metamorphism, dated between 2131-2121 Ma in nearby coeval plutons. Such metamorphism is significantly older than the reported metamorphic episodes of the Mineiro belt in the Quadrilátero Ferrífero region (2059-2041 Ma in the eastern portion of the study area. This evidence, together with chemical and isotopic data from other mafic and felsic plutons coeval with the Glória quartz-monzodiorite, indicate a tectonic and magmatic migration within the Mineiro belt from west to east.O Quartzo Monzodiorito Glória é um corpo plutônicomáfico associado à evolução Paleoproterozóica do Cinturão Mineiro. Este é intrusivo em gnaisses bandados, anfibolitos, xistos e filitos do Greenstone Belt Rio das Mortes, na porção sudeste do Cráton São Francisco, Estado de Minas Gerais, Brasil. Este corpo possui idade de cristalização SHRIMP (em zircão de 2188 ± 29 Ma, enquanto os isótopos de Nd (épsilonNd(T = -3,4; T DM = 2,68 Ga apontam que sua fonte magmática envolveumaterial juvenil paleoproterozóico contaminada por protólitos arqueanos. As rochas do Quartzo Monzodiorito Glória são metaluminosas, c

  9. Exotic minerals in 3500 million year old rocks: evidence for large meteorite impacts

    International Nuclear Information System (INIS)

    Byerly, G.R.; Lowe, D.R.; Asaro, F.

    1988-01-01

    A relatively small area of mountainous terrain in southern Africa provides scientists from all over the world a look at what the surface of the earth was like three and a half billion years ago. The Barberton Mountains lie astride the borders of the Republic of South Africa, Mozambique, and the Kingdom of Swaziland. The discovery of several widely distributed deposits that were likely formed by major terrestrial impacts of large extraterrestrial bodies during this early period of earth's history is reported. The Barberton impact deposits are being studied by electron microscopy. The impact deposits were examined for minerals that show the effects of shock metamorphism or compositions unusual in terrestrial rocks

  10. Cursory search for carbonates suitable for developing dry underground storage space in the midcontinent, U.S.A

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1975-01-01

    This search for carbonate strata for possible use as nuclear waste repository was prompted by studies of two sites: a deep limestone mine near Barberton, Ohio, and near-surface drift limestone mines near Kansas City, Missouri. Geomorphology, bedrock geology, tectonics and seismicity, and hydrology of the two sites are discussed. It is concluded that the geology of the Barberton site probably offers the greater potential for dry storage over a longer duration of time. Carbonate rocks in North America are evaluated briefly using the criteria just developed, and areas in the midcontinent warranting further study are identified. 26 figures

  11. Formation of cratonic lithosphere: An integrated thermal and petrological model

    Science.gov (United States)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  12. Testing the reliability of information extracted from ancient zircon

    Science.gov (United States)

    Kielman, Ross; Whitehouse, Martin; Nemchin, Alexander

    2015-04-01

    Studies combining zircon U-Pb chronology, trace element distribution as well as O and Hf isotope systematics are a powerful way to gain understanding of the processes shaping Earth's evolution, especially in detrital populations where constraints from the original host are missing. Such studies of the Hadean detrital zircon population abundant in sedimentary rocks in Western Australia have involved analysis of an unusually large number of individual grains, but also highlighted potential problems with the approach, only apparent when multiple analyses are obtained from individual grains. A common feature of the Hadean as well as many early Archaean zircon populations is their apparent inhomogeneity, which reduces confidence in conclusions based on studies combining chemistry and isotopic characteristics of zircon. In order to test the reliability of information extracted from early Earth zircon, we report results from one of the first in-depth multi-method study of zircon from a relatively simple early Archean magmatic rock, used as an analogue to ancient detrital zircon. The approach involves making multiple SIMS analyses in individual grains in order to be comparable to the most advanced studies of detrital zircon populations. The investigated sample is a relatively undeformed, non-migmatitic ca. 3.8 Ga tonalite collected a few kms south of the Isua Greenstone Belt, southwest Greenland. Extracted zircon grains can be combined into three different groups based on the behavior of their U-Pb systems: (i) grains that show internally consistent and concordant ages and define an average age of 3805±15 Ma, taken to be the age of the rock, (ii) grains that are distributed close to the concordia line, but with significant variability between multiple analyses, suggesting an ancient Pb loss and (iii) grains that have multiple analyses distributed along a discordia pointing towards a zero intercept, indicating geologically recent Pb-loss. This overall behavior has

  13. Cyclical Fault Permeability in the Lower Seismogenic Zone: Geological Evidence

    Science.gov (United States)

    Sibson, R. H.

    2005-12-01

    Syntectonic hydrothermal veining is widespread in ancient fault zones exhibiting mixed brittle-ductile behavior that are exhumed from subgreenschist to greenschist environments. The hydrothermal material (predominantly quartz ± carbonate) commonly occurs as fault-veins developed along principal slip surfaces, with textures recording intermittent deposition, sometimes in the form of repeated episodes of brecciation and recementation. Systematic sets of extension veins with histories of incremental dilation often occur in adjacent wallrocks. Conspicuous for their size and continuity among these fault-hosted vein systems are mesozonal Au-quartz lodes, which are most widespread in Archean granite-greenstone belts but also occur throughout the geological record. Most of these lode gold deposits developed at pressures of 1-5 kbar and temperatures of 200-450°C within the lower continental seismogenic zone. A notable characteristic is their vertical continuity: many `ribbon-texture' fault veins with thicknesses of the order of a meter extend over depth ranges approaching 2 km. The largest lodes are usually hosted by reverse or reverse- oblique fault zones with low finite displacement. Associated flat-lying extension veins in the wallrock may taper away from the shear zones over tens or hundreds of meters, and demonstrate repeated attainment of the ~lithostatic fluid overpressures needed for hydraulic extension fracturing. Where hosted by extensional-transtensional fault systems, lode systems tend to be less well developed. Mesozonal vein systems are inferred to be the product of extreme fault-valve behavior, whereby episodic accumulation of pore-fluid pressure to near-lithostatic values over the interseismic period leads to fault rupture, followed by postseismic discharge of substantial fluid volumes along the freshly permeable rupture zone inducing hydrothermal precipitation that seals the fracture permeability. Aqueous mineralizing fluids were generally low

  14. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: implications for genetic models

    Science.gov (United States)

    Pollard, Peter J.; Taylor, Roger G.; Peters, Lisa; Matos, Fernando; Freitas, Cantidiano; Saboia, Lineu; Huhn, Sergio

    2018-05-01

    40Ar-39Ar dating of biotite from IOCG and granite-related Cu-Au deposits in the Carajás Mineral Province provides evidence for the timing of mineralization and constraints on genetic models of ore formation. Ages of biotite from greisen and quartz-rich vein and breccia deposits, Alvo 118—1885 ± 4 Ma, Breves—1886 ± 5 Ma, Estrela—1896 ± 7 Ma, and Gameleira—1908 ± 7 Ma, demonstrate the close temporal relationship between Cu-Au mineralization and subjacent A-type granites. Mineralization is hosted within granite cupolas (Breves) or in vein/breccia systems emanating from the cupolas (Estrela and Gameleira), consistent with a genetic relationship of mineralization to the B-Li-F-rich granites. Plateau and minimum ages of biotite from IOCG deposits, including Igarapé Bahia, Cristalino, Corta Goela, and GT34, range from 2537 ± 6 Ma to 2193 ± 4 Ma. The 40Ar-39Ar age of biotite from Igarapé Bahia (2537 ± 6 Ma) is similar to a previous SHRIMP 207Pb-206Pb age for monazite of 2575 ± 12 Ma when the uncertainties in the respective analyses and standards are taken into account. The age spectrum for biotite from Cristalino shows increasing ages for successive steps, consistent with post-crystallization Ar loss, and the age of 2388 ± 5 Ma for the last three steps is considered a minimum age for Cu-Au mineralization. The age of biotite from the GT34 prospect (2512 ± 7 Ma) coincides with a previously identified period of basement reactivation and may indicate the formation of Cu-Au mineralization at this time or resetting of biotite from an older mineralization event at this time. At Corta Goela, within the Canaã Shear Zone, the biotite age of 2193 ± 4 Ma lies between the ages of IOCG (2.57-2.76 Ga) and granite-related Cu-Au ( 1.88 Ga) deposits elsewhere in the Carajás district but is similar to previously reported 40Ar-39Ar ages for amphibole from Sossego, possibly indicating that mineralization at both Sossego and Corta Goela was affected by a thermal event at this time. The Paleoproterozoic Cu-Au deposits are commonly hosted within Neoarchean IOCG alteration systems and the common occurrence of potassic alteration (especially biotite) in both types of deposits means that special care is required in interpreting the paragenesis of alteration in both types of deposits. The Paleoproterozoic Cu-Au deposits are reduced, and sulfur- and quartz-rich deposits lacking in major amounts of iron oxides and are therefore unlike IOCG deposits. Instead, they share many characteristics in common with widespread Paleoproterozoic Sn-W deposits in the Amazon Craton, including close spatial and temporal relationships with reduced A-type B-Li-F granites, and the occurrence of greisen and quartz-rich vein/breccia systems within and above granite cupolas. The occurrence of sericitic alteration in the Paleoproterozoic Cu-Au deposits is not evidence for an upward transition to sericitic alteration in IOCG deposits in the Carajás Mineral Province.

  15. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook-Austral islands, suggest an Archean source component in the mantle transition zone

    Science.gov (United States)

    Nebel, Oliver; Arculus, Richard J.; van Westrenen, Wim; Woodhead, Jon D.; Jenner, Frances E.; Nebel-Jacobsen, Yona J.; Wille, Martin; Eggins, Stephen M.

    2013-07-01

    Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with μ = 238U/204Pb), and exhibit unique Hf-Nd isotopic characteristics, defined as ΔɛHf, deviant from a terrestrial igneous rock array that includes all other OIB types. Here we combine new Hf isotope data with previous Nd-Pb isotope measurements to assess the coupled, time-integrated Hf-Nd-Pb isotope evolution of the most extreme HIMU location (Mangaia, French Polynesia). In comparison with global MORB and other OIB types, Mangaia samples define a unique trend in coupled Hf-Nd-Pb isotope co-variations (expressed in 207Pb/206Pb vs. ΔɛHf). In a model employing subducted, dehydrated oceanic crust, mixing between present-day depleted MORB mantle (DMM) and small proportions (˜5%) of a HIMU mantle endmember can re-produce the Hf-Nd-Pb isotope systematics of global HIMU basalts (sensu stricto; i.e., without EM-1/EM-2/FOZO components). An age range of 3.5 to 3 Gyr and implies that OIB chemistry can be used to test geodynamic models.

  16. Major, trace and platinum group element (PGE) geochemistry of Archean Iron Ore Group and Proterozoic Malangtoli metavolcanic rocks of Singhbhum Craton, Eastern India: Inferences on mantle melting and sulphur saturation history

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, M.R.; Manikyamba, C.; Ray, J.; Ganguly, S.; Santosh, M.; Saha, A.; Rambabu, S.; Sawant, S.S.

    .86 0.90 0.84 3.93 0.87 0.86 0.86 0.85 0.91 Y 26.1 26.4 29.7 25.8 26.8 26.6 26.3 29.0 26.2 29.3 La 20.17 20.32 21.84 19.45 20.18 20.06 20.17 20.93 20.10 21.38 Ce 42.56 43.25 45.28 41.55 43.10 42.44 42.95 42.48 42.59 44.13 Pr 3.79 3.88 4.24 3.78 3.86 3....82 3.86 4.05 3.84 4.11 Nd 19.56 19.92 21.82 19.38 20.18 19.88 19.84 21.25 19.82 21.16 Sm 4.23 4.39 4.76 4.27 4.44 4.41 4.42 4.66 4.34 4.57 Eu 1.43 1.17 1.25 1.08 1.27 1.21 1.17 1.30 1.23 1.21 Gd 5.47 5.66 6.02 5.34 5.56 5.46 5.47 5.82 5.59 5.85 Tb 0...

  17. Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite

    Science.gov (United States)

    Ionov, Dmitri A.; Doucet, Luc S.; Xu, Yigang; Golovin, Alexander V.; Oleinikov, Oleg B.

    2018-03-01

    The Obnazhennaya kimberlite in the NE Siberian craton hosts a most unusual cratonic xenolith suite, with common rocks rich in pyroxenes and garnet, and no sheared peridotites. We report petrographic and chemical data for whole rocks (WR) and minerals of 20 spinel and garnet peridotites from Obnazhennaya with Re-depletion Os isotope ages of 1.8-2.9 Ga (Ionov et al., 2015a) as well as 2 pyroxenites. The garnet-bearing rocks equilibrated at 1.6-2.8 GPa and 710-1050 °C. Some xenoliths contain vermicular spinel-pyroxene aggregates with REE patterns in clinopyroxene mimicking those of garnet. The peridotites show significant scatter of Mg# (0.888-0.924), Cr2O3 (0.2-1.4 wt.%) and high NiO (0.3-0.4 wt.%). None are pristine melting residues. Low-CaO-Al2O3 (≤0.9 wt.%) dunites and harzburgites are melt-channel materials. Peridotites with low to moderate Al2O3 (0.4-1.8 wt.%) usually have CaO > Al2O3, and some have pockets of calcite texturally equilibrated with olivine and garnet. Such carbonates, exceptional in mantle xenoliths and reported here for the first time for the Siberian mantle, provide direct evidence for modal makeover and Ca and LREE enrichments by ephemeral carbonate-rich melts. Peridotites rich in CaO and Al2O3 (2.7-8.0 wt.%) formed by reaction with silicate melts. We infer that the mantle lithosphere beneath Obnazhennaya, initially formed in the Mesoarchean, has been profoundly modified. Pervasive inter-granular percolation of highly mobile and reactive carbonate-rich liquids may have reduced the strength of the mantle lithosphere leading the way for reworking by silicate melts. The latest events before the kimberlite eruption were the formation of the carbonate-phlogopite pockets, fine-grained pyroxenite veins and spinel-pyroxene symplectites. The reworked lithospheric sections are preserved at Obnazhennaya, but similar processes could erode lithospheric roots in the SE Siberian craton (Tok) and the North China craton, where ancient melting residues and reworked garnet-bearing peridotites are absent. The modal, chemical and Os-isotope compositions of the Obnazhennaya xenoliths produced by reaction of refractory peridotites with melts are very particular (high Ca/Al, no Mg#-Al correlations, highly variable Cr, low 187Os/188Os, continuous modal range from olivine-rich to low-olivine peridotites, wehrlites and websterites) and distinct from those of fertile lherzolites in off-craton xenoliths and peridotite massifs. These features argue against the concept of 'refertilization' of cratonic and other refractory peridotites by mantle-derived melts as a major mechanism to form fertile to moderately depleted lherzolites in continental lithosphere. The Obnazhennaya xenoliths represent a natural rock series produced by 'refertilization', but include no rocks equivalent in modal, major and trace element to the fertile lherzolites. This study shows that 'refertilization' yields broad, continuous ranges of modal and chemical compositions with common wehrlites and websterites that are rare among off-craton xenoliths.

  18. 75 FR 16513 - B&C Corporation, JR Engineering Division, Including B&C Distribution Center, Including On-Site...

    Science.gov (United States)

    2010-04-01

    ... Engineering Division, Including B&C Distribution Center, Including On-Site Leased Workers From B&C Services... occurred during the relevant time period at the B&C Distribution Center, Inc. of the B&C Corporation, JR Engineering Division, Barberton, Ohio. The B&C Distribution Center provides distribution and logistical...

  19. Apartheid's Alcatraz

    African Journals Online (AJOL)

    MJM Venter

    Upon their arrival at Barberton, it was alleged that the prisoners were .... City Press spoke of a "horrifying tale of alleged brutality in one of the country's few ...... London 1974). Maharaj Reflections in Prison. Maharaj M Reflections in Prison: Voices from the South African Liberation. Struggle (University of Massachusetts Press ...

  20. Interaction between felsic granitoids and basic dykes in ...

    Indian Academy of Sciences (India)

    37

    Many workers gave detailed petrographical and geochemical data of the ... greenstone complex (Malviya et al., 2006; Kumar et al., 2013; Singh and ...... Mafic rock shows lobate shape pointing towards granitoids (marked by the white arrows);.

  1. Interaction of coeval felsic and mafic magmas from the Kanker ...

    Indian Academy of Sciences (India)

    R Elangovan

    2017-10-05

    Oct 5, 2017 ... relationship with the Sonakhan greenstone belt. In this study, we ... Field relationships and petrography ... fractures of the porphyritic granite (figures 3e and 4c). ..... geochronology of the Precambrians of Bhandara–Drug,.

  2. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    29

    understand their petrogenesis and tectonic setting. .... crystallize from magmas with temperatures significantly higher than those of other intracrustal ...... blanketing by greenstone belt volcanic rocks, crustal thickening and hot subduction or a. 1.

  3. Geologic setting of the St. Catherine basement rocks, Sinai, Egypt

    OpenAIRE

    Abdel Maksoud, M. A. [محمد علي عبدالمقصود; Khalek, M. L. Abdel; Oweiss, K. A.

    1993-01-01

    St. Catherine area, some 900 km in size, is dominated by basement rocks Encompassing old continental gneisses, metasediments, greenstone belt, calc-alkaline granites (G-II-granites), rift-related volcanics (RV), and anorogenic within plate granites (G-III-granites). The greenstone belt is composed of subduction-related volcanics (SV) intercalated with metasediments. These volcanics split into older group (moderately metamorphosed) and younger group (slightly metamorphosed). The calc-alkaline ...

  4. Metasomatized and hybrid rocks associated with a Palaeoarchaean layered ultramafic intrusion on the Johannesburg Dome, South Africa

    Science.gov (United States)

    Anhaeusser, Carl R.

    2015-02-01

    The Johannesburg Dome occurs as an inlier of Palaeoarchaean-Mesoarchaean granitic rocks, gneisses and greenstones in the central part of the Kaapvaal Craton, South Africa. In the west-central part of the dome a large greenstone remnant is surrounded and intruded by ca. 3114 Ma porphyritic granodiorites. Referred to locally as the Zandspruit greenstone remnant, it consists of a shallow-dipping ultramafic complex comprised of a number of alternating layers of harzburgite and pyroxenite. The ultramafic rocks are metamorphosed to greenschist grade and have largely been altered to serpentinite and amphibolite (tremolite-actinolite). In the granite-greenstone contact areas the porphyritic granodiorite has partially assimilated the greenstones producing a variety of hybrid rocks of dioritic composition. The hybrid rocks contain enclaves or xenoliths of greenstone and, in places, orbicular granite structures. Particularly noteworthy is an unusual zone of potash-metasomatized rock, occurring adjacent to the porphyritic granodiorite, consisting dominantly of biotite and lesser amounts of carbonate, quartz and sericite. Large potash-feldspar megacrysts and blotchy aggregated feldspar clusters give the rocks a unique texture. An interpretation placed on these rocks is that they represent metasomatized metapyroxenites of the layered ultramafic complex. Field relationships and geochemical data suggest that the rocks were influenced by hydrothermal fluids emanating from the intrusive porphyritic granodiorite. The adjacent greenstones were most likely transformed largely by the process of infiltration metasomatism, rather than simple diffusion, as CO2, H2O as well as dissolved components were added to the greenstones. Element mobility appears to have been complex as those generally regarded as being immobile, such as Ti, Y, Zr, Hf, Ta, Nb, Th, Sc, Ni, Cr, V, and Co, have undergone addition or depletion from the greenstones. Relative to all the rocks analyzed from the greenstones

  5. Fossil Microorganisms in Archaean

    Science.gov (United States)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  6. A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion

    Science.gov (United States)

    Abouchami, Wafa; Boher, Muriel; Michard, Annie; Albarede, Francis

    1990-10-01

    environments. Back-arc or low-Ti continental flood basalts provide a marginally good agreement but still face some difficulties. Oceanic flood basalts similar to those which form oceanic plateaus (e.g. in the Nauru basin) and later accreted to continents as allochtonous terranes represent the most acceptable modern analogue of many Proterozoic basalts. It is suggested that deep plumes piercing young lithosphere can generate huge amounts of tholeiites in a short time. Birimian basalts, like many Early Proterozoic basalts, may also be viewed as recent equivalents of the Archean greenstone belts. The modern komatiite of Gorgona Island is suggested to fit this model of intraplate volcanism. Although the 2.1 Ga magmatic event in West Africa has gone virtually unnoticed in the literature, it extends over several thousand kilometers and compares with the distribution of mantle-derived magmatic activity in other major orogenic provinces (e.g. Superior). It shows that the growth rate of continents cannot be extrapolated from the data obtained solely from the best studied continents (North America, Europe, Australia). If such large crustal segments were overlooked, a spurious pattern of episodic activity of the mantle could arise.

  7. Nd isotopes, U-Pb single grain and SHRIMP zircon ages from basement rocks of the Tocantin Province

    International Nuclear Information System (INIS)

    Fuck, R.A.; Dantas, E.L.; Pimentel, M.M.; Junges, S.L.; Moraes, R

    2001-01-01

    Large areas of the northern part of the Brasilia Belt, Tocantins Province, central Brazil, are underlain by basement granite-gneiss terrain and associated volcano-sedimentary sequences, as well as felsic and mafic-ultramafic intrusions. The basement rocks are covered by the late Paleoproterozoic-Mesoproterozoic rift-related Arai and Natividade groups and intruded by 1.77 to 1.58 Ga an orogenic granites of the Goias Tin Province (Pimentel and Botelho, 2001). To the southwest they are un conformably overlain by the low-grade late Proterozoic Paranoa Group, whereas to the east they are in faulted contact with the Neoproterozoic Bambui Group at the western edge of the Sao Francisco Craton. To the north they are covered by Phanerozoic sediments of the Parnaiba and Sanfranciscana basins. Despite their large extension, granite-gneiss and associated supracrustals of SE Tocantins and NE Goias are still poorly known. Previous regional Rb-Sr and K-Ar isotopic studies indicated dominant early Proterozoic ages and late Proterozoic cooling ages (Hasui, et al. 1980, Fernandes et al. 1982). More detailed studies in the Almas-Dianopolis area (Costa, 1984) came up with similar results, although the region was interpreted as underlain by Archean granite-greenstone terrain, following previous suggestions by Costa et al. (1976). Recent work recognized the presence of two suites of deformed granitoids (Cruz and Kuyumjian, 1996, 1998). The oldest suite intruded the supracrustals and comprises hornblende-bearing tonalite gneiss, with minor trondhjemite, granodiorite, and quartz diorite. The younger suite comprises oval shaped biotite-bearing tonalite, trondhjemite, and granodiorite intrusions. Both suites display low-K calc-alkaline affinity, the younger being more Al-rich. Both are interpreted as TTG suites and were dated at 2,2 Ga using U-Pb SHRIMP (Cruz et al 2000). In the Porto Nacional area, Gorayeb et al. (2000) determined single zircon Pb-evaporation ages of 2.15 Ga in granulites

  8. Earth's earliest biosphere: Its origin and evolution

    International Nuclear Information System (INIS)

    Schopf, J.W.

    1983-01-01

    Some of the subjects discussed are related to the early biogeologic history, the nature of the earth prior to the oldest known rock record, the early earth and the Archean rock record, the prebiotic organic syntheses and the origin of life, Precambrian organic geochemistry, the biochemical evolution of anaerobic energy conversion, the isotopic inferences of ancient biochemistries, Archean stromatolites providing evidence of the earth's earliest benthos, Archean microfossils, the geologic evolution of the Archean-Early Proterozoic earth, and the environmental evolution of the Archean-Early Proterozoic earth. Other topics examined are concerned with geochemical evidence bearing on the origin of aerobiosis, biological and biochemical effects of the development of an aerobic environment, Early Proterozoic microfossils, the evolution of earth's earliest ecosystems, and geographic and geologic data for processed rock samples. Attention is given to a processing procedure for abiotic samples and calculation of model atmospheric compositions, and procedures of organic geochemical analysis

  9. Report of investigation on underground limestone mines in the Ohio region

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Mine located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio

  10. The 3.1 Ga Nuggihalli chromite deposits, Western Dhawar craton (India)

    DEFF Research Database (Denmark)

    Mukherjee, Ria; Mondal, Sisir K.; Frei, Robert

    2012-01-01

    The Nuggihalli greenstone belt is part of the older greenstone belts (3.4 - 3.0 Ga) in the Western Dharwar Craton, southern India. This greenstone sequence consists of conformable metavolcanic and metasedimentary supracrustal rock assemblages that belong to the Sargur Group. Sill-like ultramafic......-mafic plutonic bodies are present within these supracrustal rocks (schist rocks) which are in turn enclosed by tonalite-trondhjemite-granodiorite gneiss (TTG). The sill-like ultramafic-mafic rocks are cumulates derived from a high-Mg parental magma that are represented by chromitite-hosted serpentinite...... and tremolite-chlorite-actinolite- schist (altered peridotite), anorthosite, pyroxenite, and gabbro hosting magnetite bands. The first whole-rock Sm-Nd data for the peridotite anorthosite- pyroxenite-gabbro unit has been obtained yielding an age of 3125 ± 120 Ma (MSWD = 1.3) which is similar to reported ages...

  11. Metallogenetic systems associated with granitoid magmatism in the Amazonian Craton: An overview of the present level of understanding and exploration significance

    Science.gov (United States)

    Bettencourt, Jorge Silva; Juliani, Caetano; Xavier, Roberto P.; Monteiro, Lena V. S.; Bastos Neto, Artur C.; Klein, Evandro L.; Assis, Rafael R.; Leite, Washington Barbosa, Jr.; Moreto, Carolina P. N.; Fernandes, Carlos Marcello Dias; Pereira, Vitor Paulo

    2016-07-01

    The Amazonian Craton hosts world-class metallogenic provinces with a wide range of styles of primary precious, rare, base metal, and placer deposits. This paper provides a synthesis of the geological database with regard to granitoid magmatic suites, spatio temporal distribution, tectonic settings, and the nature of selected mineral deposits. The Archean Carajás Mineral Province comprises greenstone belts (3.04-2.97 Ga), metavolcanic-sedimentary units (2.76-2.74 Ga), granitoids (3.07-2.84 Ga) formed in a magmatic arc and syn-collisional setting, post-orogenic A2-type granites as well as gabbros (ca. 2.74 Ga), and anorogenic granites (1.88 Ga). Archean iron oxide-Cu-Au (IOCG) deposits were synchronous or later than bimodal magmatism (2.74-2.70 Ga). Paleoproterozoic IOCG deposits, emplaced at shallow-crustal levels, are enriched with Nb-Y-Sn-Be-U. The latter, as well as Sn-W and Au-EGP deposits are coeval with ca. 1.88 Ga A2-type granites. The Tapajós Mineral Province includes a low-grade meta-volcano-sedimentary sequence (2.01 Ga), tonalites to granites (2.0-1.87 Ga), two calc-alkaline volcanic sequences (2.0-1.95 Ga to 1.89-1.87 Ga) and A-type rhyolites and granites (1.88 Ga). The calc-alkaline volcanic rocks host epithermal Au and base metal mineralization, whereas Cu-Au and Cu-Mo ± Au porphyry-type mineralization is associated with sub-volcanic felsic rocks, formed in two continental magmatic arcs related to an accretionary event, resulting from an Andean-type northwards subduction. The Alta Floresta Gold Province consists of Paleoproterozoic plutono-volcanic sequences (1.98-1.75 Ga), generated in ocean-ocean orogenies. Disseminated and vein-type Au ± Cu and Au + base metal deposits are hosted by calc-alkaline I-type granitic intrusions (1.98 Ga, 1.90 Ga, and 1.87 Ga) and quartz-feldspar porphyries (ca. 1.77 Ga). Timing of the gold deposits has been constrained between 1.78 Ga and 1.77 Ga and linked to post-collisional Juruena arc felsic magmatism (e.g., Col

  12. Principal types of precambrian uranium-gold deposits and their metallogenetic characteristics in China

    International Nuclear Information System (INIS)

    Liang Liang; Zhong Zhiyun.

    1988-01-01

    Principal types of Precambrian uranium-gold deposits are follows: paleo-conglomerate uranium-deposit, stratified or strata-bound uranium-gold deposit, unconformity-related uranium deposit (no or seldem gold) and greenstone gold deposit. The main types of gold deposits in China is greenstone one which is characterized by later age, high grade metamorphism and a large time difference between diagenesis of host rocks and gold metallogenesis. Gold deposits are spatially distributed in the uplift area, whereas uranium deposits are distributed in the downfaulted belt. Furthermore, both uranium and gold deposits are controlled by regional fractures

  13. Building a cooperative digital libary with open source software - the case of CLACSO in Latin America

    OpenAIRE

    Babini, Dominique

    2006-01-01

    Description of why and how the Latin American Social Science Council (CLACSO-Consejo Latinoamericano de Ciencias Sociales) has developed a cooperative digital library with open source Greenstone software, to build digital collections for its member institutes in 21 countries of Latin America and the Caribbean

  14. What Doesn't Kill You Makes You Weaker: Prenatal Pollution Exposure and Educational Outcomes

    Science.gov (United States)

    Sanders, Nicholas J.

    2012-01-01

    I examine the impact of prenatal total suspended particulate (TSP) exposure on educational outcomes using county-level variation in the timing and severity of the industrial recession of the early 1980s as a shock to ambient TSPs (similar to Chay and Greenstone 2003b). I then instrument for pollution levels using county-level changes in relative…

  15. Rb–Sr and Sm–Nd isotope systematics and geochemical studies on ...

    Indian Academy of Sciences (India)

    assimilation of Mesoarchean continental crust (>3.3 Ga) as evident from their initial .... suggested that a mylonitized zone on the eastern margin of the Chidradurga greenstone belt formed ..... due to fractional crystallization or accumulation of ...... Petrol. 107 279–292. Balakrishnan S, Rajamani V and Hanson G 1999 U–Pb.

  16. Application of Open Source Software (OSS) in library operations ...

    African Journals Online (AJOL)

    The paper discussed the features, strength and weaknesses of CDS/ ISIS, KOHA, Greenstone and NewGenlib as the four types of OSS which were considered among the best that can handle content and bibliographic data management and are commonly applied in Nigeria especially among institutions of higher learning.

  17. The geochemistry of banded iron formations in the sukumaland ...

    African Journals Online (AJOL)

    The geochemistry of banded iron formations in the sukumaland greenstone belt of Geita, northern Tanzania: evidence for mixing of hydrothermal and clastic ... the hydrothermal deposits have been contaminated, by up to 20% by weight, with detrital material having a composition similar to modern deep-sea pelagic clays.

  18. Download this PDF file

    African Journals Online (AJOL)

    Owner

    1 Introduction. The Prestea gold belt is situated at the southern end of the Ashanti volcanic greenstone gold belt, which is the most prominent of five evenly spaced, parallel running and NE trending sedimentary- volcanic belts found in the Birimian of Ghana (Fig. 1). It is about 8 km wide and 50 km long and stretches.

  19. Preliminary report on the Nelson and Radovan copper prospects, Nizina district, Alaska

    Science.gov (United States)

    Sainsbury, C.J.

    1952-01-01

    Renewed copper exploration by Alaska Copper Mines, Incorporated, at the Nelson and Radovan prospects, Nizina district, Alaska, led the Geological Survey in 1951 to map in detail the Nelson fault block, and to re-examine the old workings. In addition, two new prospects were studied. The Nelson fault block is cut by many dominantly strike-slip faults of small displacement, and by bedding faults. Slickensided chalcocite shows post-mineral movement, and chalcocite veinlet in a filled solution cavity indicates that some of the chalcocite is secondary, perhaps very recent. Structural relations indicate two overthrust faults cut the block. The Radovan Greenstone prospect shows massive chalcocite, up to 3 feet wide, in a silicified, epidotized fault zone in the Nikolai greenstone. Ore indicated by surface exposures may amount to 450 tons of chalcocite. The Radovan Low-Contact prospect is on a continuation of the same fault approximately 3 miles southwest of the Greenstone prospect, and 150 feet above the contact of the Nikolai greenstone and the overlying Chitistone limestone. Limonite staining is widespread in bedding planes and small faults near the fault zone; mineralization in the fault zone consists of pyrite, chalcocite, bornite, malachite, realgar, orpiment and stibnite. The sulphides in the fault zone, plus the widespread silicification and epidotization indicate a strong zone of hydrothermal activity which merits extensive prospecting.

  20. Caloplaca subpallida (Teloschistaceae, a lichen species new to Poland: distribution, ecology and taxonomic affinities

    Directory of Open Access Journals (Sweden)

    Katarzyna Szczepańska

    2013-03-01

    Full Text Available Caloplaca subpallida is reported from basic and altered ultrabasic rocks (i.e. basalt, greenstone, and serpentinite at nine sites in SW Poland. A detailed description of the species and a discussion on its taxonomic affinities are provided.

  1. Application software packages for library operations and services in ...

    African Journals Online (AJOL)

    Purposive sampling was used to select 218 subjects from five Federal Universities where Library Automation have begun. Analysis and discussions were made. Findings revealed that all Universities studied are making use of KOHA, Virtua, E-LIB and Dspace and Greenstone to manage their digital Information resources.

  2. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    29

    marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly ...... Lu-Hf and Sm-Nd isotope systematics of Archean komatiites; Earth Planet. ..... Association Commission on New Minerals and Mineral Names; Can.

  3. Le craton ouest-africain et le bouclier guyanais: un seul craton au Protérozoïque inférieur?

    Science.gov (United States)

    Caen-Vachette, Michelle

    Geochronological and paleomagnetism data for southern West African craton and Guyana shield in South America, are concordant and suggest the existence of a large unit grouping them during Archean and Lower Proterozoic times. The paleomagnetism data allow to put on a single line, the Zednes (Mauritania), Sassandra (Ivory Coast) and Guri (Venezuela) fault zones, the mylonites of which were dated 1670 Ma. This age reflects the end of the eburnean-transamazonian shearing tectonic, which affected the large West Africa-Guyana unit. This line separates the western Archean domain from the eastern lower Proterozoic one; thence it is possible to correlate the Sasca (Ivory Coast) and Pastora (Venezuela) areas. Archean relics have been found in mobile pan-african-bresiliano zones which surround the Precambrian cratons; this fact suggests the existence of still more extended Archean craton than defined above.

  4. Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton

    Directory of Open Access Journals (Sweden)

    Biswajit Mishra

    2018-05-01

    Full Text Available Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include (1 the famous Kolar mine and the world class Hutti deposit; (2 small mines at Hira-Buddini, Uti, Ajjanahalli, and Guddadarangavanahalli; (3 prospects at Jonnagiri; and (4 old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous (H2O + CO2 ± CH4 + NaCl ore fluids, which precipitated gold and altered the host rocks in a narrow P–T window of 0.7–2.5 kbar and 215–320 °C. While the calculated fluid O- and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs. magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite

  5. Nd-Sr isotopic and geochemical systematics in Cambrian boninites and tholeiites from Victoria, Australia

    Science.gov (United States)

    Nelson, D. R.; Crawford, A. J.; McCulloch, M. T.

    1984-11-01

    Rocks with boninitic affinities have been recognised in a number of “ophiolites”, including the Cambrian Heathcote and Mt Wellington Greenstone Belts of Victoria. Boninites and high-Mg andesites from the Heathcote Greenstone Belt show a restricted range of initial ɛ Nd values of between +3.3 to +5.8. Extremely refractory boninites from the Mt Wellington Greenstone Belt have ɛ Nd ranging from +1.3 to -9. Ti/Zr is positively correlated with Sm/Nd with the Heathcote lavas generally possessing greater depletion of Ti and enrichment of Zr relative to the middle and heavy REE with increasing LREE/HREE. These data are consistent with the generation of boninites by partial melting of refractory peridotite following invasion by LREE- and Zr-enriched, low ɛ Nd fluids. Tholeiites overlying the boninites in both greenstone belts have flat REE patterns and ɛ Nd˜+5, lower than that anticipated for lavas derived from depleted MORB source reservoirs in the Cambrian, suggesting that their source was also contaminated by a LREE-enriched, low ɛ Nd component similar to that involved in the generation of the Howqua boninites. The added components have characteristics compatible with their derivation from subducted altered oceanic crust and/or from wet subducted sediments. The identification of boninites and other low-Ti lavas in the Victorian greenstone belts is strong evidence for island arc development in southeastern Australia during the Lower Cambrian and provides further support for a subduction-related origin for many ophiolites.

  6. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    International Nuclear Information System (INIS)

    Arndt, N.T.; Chauvel, C.; Jochum, K.P.; Gruau, G.; Hofmann, A.W.

    1988-01-01

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona

  7. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    Science.gov (United States)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    1988-01-01

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  8. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    Science.gov (United States)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  9. The role of spurious correlation in the development of a komatiite alteration model

    Science.gov (United States)

    Butler, John C.

    1986-11-01

    Procedures for detecting alterations in komatiites are described. The research of Pearson (1897) on spurious correlation and of Chayes (1949, 1971) on ratio correlation is reviewed. The equations for the ratio correlation procedure are provided. The ratio correlation procedure is applied to the komatiites from Gorgona Island and the Barberton suite. Plots of the molecular proportion ratios of (FeO + MgO)/TiO2 versus SiO2/TiO2, and correlation coefficients for the komatiites are presented and analyzed.

  10. An investigation of the impurities in native gold by neutron-activation analysis

    International Nuclear Information System (INIS)

    Erasmus, C.S.; Sellschop, J.P.F.; Hallbauer, D.K.; Novak, E.

    1980-01-01

    Instrumental and radiochemical methods of neutron-activation analysis, developed for the determination of major, minor, and trace impurities in native gold, are described. The gold was obtained from Witwatersrand reefs and from deposits in the Barberton area. It was extracted by decomposition of the ore in cold hydrofluoric acid. Quantitative results are presented for 14 elements found in native gold, and the significance of these elements in relation to the distribution of gold is discussed. The results suggest that there are geochemical differences in native gold from various reefs and deposits

  11. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry

    Science.gov (United States)

    Greenough, John D.; McDivitt, Jordan A.

    2018-04-01

    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  12. The planet beyond the plume hypothesis

    Science.gov (United States)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  13. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    Science.gov (United States)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  14. Precambrian uranium deposits as a possible source of uranium for the European Variscan deposits

    International Nuclear Information System (INIS)

    Mineeva, I.G.; Klochkov, A.S.

    2002-01-01

    The Precambrian uranium deposits have been studied on the territory of Baltic and Ukrainian shields. The primary Early Proterozoic complex Au-U deposits originated in granite-greenstone belts as a result of their evolution during continental earth crust formation by prolonged rift genesis. The greenstone belts are clues for revealing ancient protoriftogenic structures. The general regularities of uranium deposition on Precambrian shields are also traceable in Variscan uranium deposits from the Bohemian massif. The Variscan period of uranium ore formation is connected with a polychronous rejuvenation of ancient riftogenous systems and relatively younger processes of oil and gas formation leading to the repeated mobilization of U from destroyed Proterozoic and Riphean uranium deposits. (author)

  15. Regional geologic characteristics of uranium ores and assessment of metallogenetic potentials in the central part of Eastern Liaoning Province

    International Nuclear Information System (INIS)

    Wang Wenguang; Tao Quan; Zhang Shouben

    1997-10-01

    Regional geologic characteristics, metallogenetic conditions and prospects of uranium ores in the central part of the Eastern Liaoning Province of North China is studied systematically. It demonstrates that the Archaean basement of the study area consists of a special type of granite-greenstone belts in China. It is called the granite-greenstone belts of the Liaoning-model, in which the granitic rocks are mainly migmatitic granite and granite-gneiss of migmatitic genesis. The greenstone belts in this area have undergone strong metamorphism. Large amounts of Precambrian geochronological studies have been made with U-Pb isotopic method on zircon; and a new Precambrian geologic time scale has been established. It is also proved that multistage activation of the Early Precambrian basement and the proto-platform took place in Early Proterozoic. Emphases are laid on uranium and thorium abundances and their variations as well as primary uranium contents of rocks in the granite-greenstone terrain and those of the Lower Proterozoic. At the same time, uraninite as accessory mineral in granitic rocks is found to exist more or less. Early Precambrian strata and many kinds of mineral deposits occurring in the strata are in origin chiefly of syngenetic hot brine sedimentation and of submarine extrusive gas-hydrothermal sedimentation superimposed by metamorphism. Metallogenetic features and models of various types of uranium deposits are studied emphatically and compared with similar large deposits abroad. In addition, overall synthetical appraisals are made for this area; and on this basis, prospecting directions and favourable sections of uranium metallization are suggested. (4 refs., 4 tabs.)

  16. Paleozoic stratigraphy and tectonics in northernmost Nevada: Implications for the nature of the Antler orogeny

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, K.B. (Geological Survey, Denver, CO (United States)); Ehman, K.D. (Exxon Production Research Co., Houston, TX (United States)); Repetski, J.E.; Stamm, R.G.; Wardlaw, B.R. (Geological Survey, Reston, VA (United States))

    1993-04-01

    Recent mapping and revised ages have clarified geologic relations in northern Nevada. In the Bull Run Mountains-Copper Mountains area, Proterozoic quartzite, phyllite, marble, and greenstone are overlain successively, depositionally, and nearly concordantly by the Cambrian Prospect Mountain Quartzite, Pioche Shale, and Eldorado Dolomite; the Cambrian to Ordovician Tennessee Mountain Formation composed of limestone, siltstone, and greenstone; the Ordovician Valmy Formation composed of a lower member of greenstone, limestone, mudstone, and chert, and an upper member of quartzite and argillite; and, disconformably by a Mississippian sequence of interbedded conglomerate, limestone, siltstone, and greenstone. The Prospect Mountain, Pioche, and Eldorado form a relatively shallow-water, shelf sequence containing trilobites and displaying cross-bedding, ooliths, oncolites, and fenestral fabric. The overlying Tennessee Mountain and Valmy are devoid of such features and contain many black, finely laminated, and graded strata, suggesting a deeper-water environment. This upper Proterozoic to Permian sequence is interpreted as indicating: (1) increased tectonic subsidence or sea-level rise in the latter part of the Cambrian; (2) elevation above sea level and erosion of Devonian, Silurian, and Upper Ordovician rocks in earliest Mississippian; (3) subsidence below sea level in later Early Mississippian; (4) elevation above sea level with sporadic, moderate deformation, and local, deep erosion in medial Pennsylvanian; (5) subsidence below sea level in medial Pennsylvanian or later; (6) intermittent eruption of basic volcanics peaking in Early Ordovician and again in Mississippian. The disconformable relation between the Valmy Formation and overlying Mississippian strata indicates that the Antler orogeny of earliest Mississippian age, here consisted primarily of uplift and deep erosion. Evidence of strong Early Mississippian folding and contractional faulting is not apparent.

  17. A Study of Olmec Serpentinite: exchange, production, distribution, and consumption during the Early and Middle Formative period in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Olaf Jaime-Riverón

    2009-09-01

    Full Text Available This article presents recent results of our analysis of the operative sequence of production and consumption of Olmec greenstone artefacts. It documents the multi-disciplinary approach taken to the kinds of manufacturing techniques used by the Olmecs, the quarries where they extracted raw materials, and the contexts in which they sometimes buried their tools. This project uses implement petrography, energy dispersive spectrum (EDS, neutron activation analysis (NAA, and particle-induced X-ray emission (PIXE.

  18. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  19. PALEOARCHEAN MAFIC ROCKS OF THE SOUTHWESTERN SIBERIAN CRATON: PRELIMINARY GEOCHRONOLOGY AND GEOCHEMICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2017-01-01

    Full Text Available The Siberian craton consists of Archean blocks, which were welded up into the same large unit by ca 1.9 Ga [Gladkochub et al., 2006; Rojas-Agramonte et al., 2011]. The history of the constituent Archean blocks is mosaic because of limited number of outcrops, insufficient sampling coverage because of their location in remote regions and deep forest and difficulties with analytical studies of ancient rocks, which commonly underwent metamorphic modifications and secondary alterations. In this short note, we report data on discovery of unusual for Archean mafic rocks of ultimate fresh appearance. These rocks were discovered within southwestern Siberian craton in a region near a boundary between Kitoy granulites of the Sharyzhalgai highgrade metamorphic complex and Onot green-schist belt (Fig. 1. Here we present preliminary data on geochronology of these rocks and provide their geochemical characterization.

  20. Geology and Geochemistry of the Poco de Fora region-Curaca river valley-Bahia-Brazil

    International Nuclear Information System (INIS)

    Figueiredo, M.C.H. de.

    1976-01-01

    In the Poco de Fora region level rocks of light metamorphism, from Caraiba group, corresponding to: - a meta-sedimentar sequence from Lower Pre-cambrian (Archean) - maphic-ultramaphic bodies with Fe and Cu sulphides of volcanogenic origin, and - sienitic ortho-gneiss. Geological, petrographic, geochemistry and geochronological studies were done. The sienitic-intrusion, from the upper crust, occur during the Archean-beginning of the Proterozoic. All the region was re-mobilized, and the sienitic was metamorphosed during Transamazonic Orogeny (2.200 to 1.800 m.y.). (C.D.G.) [pt

  1. Anorthosites: Classification, mythology, trivia, and a simple unified theory

    Science.gov (United States)

    Ashwal, Lewis D.

    1988-01-01

    An overview was presented of anorthosites. They were classified into six types: (1) Archean megacrystic, (2) Proterozoic massif-type, (3) stratiform, (4) oceanic, (5) inclusions, and (6) extraterrestrial. Some of the anorthosite mythology was discussed, such as the existence of a distinct, catastrophic anorthosite event in the late Proterozoic, the misconception that anorthosite is a major constituent of the lower continental crust, and the misconception that Archean anorthosites represent metamorphosed equivalents of mafic layered intrusions such as Bushveld or Stillwater. A general statement was offered about the origin of all anorthosites: They are cumulates of plagioclase from mantle-derived basaltic magmas.

  2. The Blind River uranium deposits: the ores and their setting

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1976-01-01

    The Matinenda Formation (basal Huronian) comprises northward-derived arkose, quartzite, and pyritic, uraniferous oligomictic conglomerate that contains 75 percent of Canada's uranium reserves. The conglomerate beds occur in southeasterly striking zones controlled by basement topography down-sedimentation from radioactive Archean granite. The mineralization is syngenetic, probably placer. Drab-coloured rocks, uranium and sulphide mineralization, and a post-Archean regolith formed under reducing conditions, suggest a reducing environment. Sedimentary features indicate deposition in fast-flowing shallow water, and possibly a cold climate. (author)

  3. Archaean TTG of Vodlozero Terrain, Fennoscandian Shield

    Science.gov (United States)

    Chekulaev, Valery; Arestova, Natalia

    2014-05-01

    The Vodlozero terrain is the largest (about 270*240 km) early Archaean fragment of Fennoscandian Shield and composes its eastern part. The granitoids of TTG suite are predominant component of the terrain. The greenstone belts are placed along the margins of the terrain. Several stages of TTG formation can be distinguished in Achaean crust history. (1) The oldest TTG are trondhjemites and tonalities with age of 3240 Ma. They contain rare and small amphibolite inclusions of the same age. These TTG are characterized by high Sr (av. 412 ppm), Sr/Y (70), (La/Yb)n (54) and low Y (av. 7 ppm), Yb (0.32 ppm) and Nb (4 ppm). It was shown (Lobach-Zhuchenko et al., 2000), that the source of these TTG could be basic rocks, having composition similar with TH1 by K.Condie. (2) The tonalities and granodiorites with age of 3150 Ma are disposed near greenstone belts and contain compared to TTG of the first group less Sr (av. 250 ppm), Sr/Y (22), (La/Yb)n (18) and more K, Rb (av. 70 ppm), Ba (470 ppm), Y (11 ppm),Yb (1.16 ppm). TTG of both groups have identical T(DM)Nd (3250-3400 Ma) and differences in composition is evidently connected with lower level of source melting of the second group and also with K-metasomatism. The volcanics of the greenstone belts have age 3020 - 2940 Ma. Dykes of gabbro-amphibolites and andesites with the same age and composition cut TTG of the first and the second groups. The age of the third TTG group is about 2900 Ma ago. These rocks form leucosoma of migmatites within TTG of the second group. The composition of the third TTG and Nd isotope data suppose their origin by the melting of ancient TTG crust simultaneously with greenstone belt emplacement. The fourth TTG group with age 2780-2850 Ma forms a small intrusions, cutting older TTG and greenstone rocks. Their composition is similar to 3150 Ma TTG. Nd isotope data indicate that these TTG have younger (about 2850 Ma) source. Thus there are four TTG groups formed into interval more 400 Ma. The age and

  4. Continental lithospheric evolution: Constraints from the geochemistry of felsic volcanic rocks in the Dharwar Craton, India

    Science.gov (United States)

    Manikyamba, C.; Ganguly, Sohini; Saha, Abhishek; Santosh, M.; Rajanikanta Singh, M.; Subba Rao, D. V.

    2014-12-01

    Felsic magmatism associated with ocean-ocean and ocean-continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt-andesite-dacite-rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb-Ta, Zr-Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with

  5. 400-MWe Consolidated Nuclear Steam System (CNSS). 1200-MWt Phase 2A interim studies

    International Nuclear Information System (INIS)

    1978-09-01

    The Phase 2A interim studies of the Consolidated Nuclear Steam System (CNSS) consisted of a number of separate task studies addressing the design concepts developed during the Phase 1 study reported in BAW--1445. The purpose of the interim studies was to better establish overall concept feasibility from both a hardware and economic standpoint, to make modification and additions to the design where appropriate, and to understand and reduce the technical risks in critical areas of the design. The work on these task studies included input from Barberton, Mt. Vernon, and the Alliance Research Center as well as United Engineers and Constructors (UE and C). The UE and C work was carried out under a separate DOE contract

  6. A review of the sedimentology of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting

    Science.gov (United States)

    Eriksson, P. G.; Schreiber, U. M.; van der Neut, M.

    The sedimentary rocks of the Early Proterozoic Pretoria Group form the floor rocks to teh 2050 M.a. Bushveld Complex. An overall alluvial fan-fan-delta - lacustrine palaeoenvironmental model is postulated for the Pretoria Group. This model is compatible with a continental half-graben tectonic setting, with steep footwall scarps on the southern margin and a lower gradient hanging wall developed to the north. The latter provided much of the basin-fill detritus. It is envisaged that the southern boundary fault system migrated southwards by footwall collapse as sedimentation continued. Synsedimentary mechanical rifting, associated with alluvial and deltaic sedimentation (Rooihoogte-Strubenkop Formations) was followed by thermal subsidence, with concomitant transgressive lacustrine deposition (Daspoort-Magaliesberg Formations). The proposed half-graben basin was probably related to the long-lived Thabazimbi-Murchison and Sugarbush-Barberton lineaments, which bound the preserved outcrops of the Pretoria Group.

  7. 400-MWe Consolidated Nuclear Steam System (CNSS). 1200-MWt Phase 2A interim studies. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The Phase 2A interim studies of the Consolidated Nuclear Steam System (CNSS) consisted of a number of separate task studies addressing the design concepts developed during the Phase 1 study reported in BAW--1445. The purpose of the interim studies was to better establish overall concept feasibility from both a hardware and economic standpoint, to make modification and additions to the design where appropriate, and to understand and reduce the technical risks in critical areas of the design. The work on these task studies included input from Barberton, Mt. Vernon, and the Alliance Research Center as well as United Engineers and Constructors (UE and C). The UE and C work was carried out under a separate DOE contract.

  8. The Behaviour of Chromium Isotopes during the Oxidative Weathering of Ultramafic Rocks

    DEFF Research Database (Denmark)

    Paulukat, Cora Stefanie; Døssing, Lasse Nørbye; Mondal, Sisir K.

    The chromium isotope system has been proven to be a redox-sensitve proxy in ancient and modern environmental studies (e.g. [1], [2]). In this study we investigated Cr isotope fractionation during soil formation from Archean (3.1-3.3 Ga) ultramafic rocks, intruded into metamorphic rocks of the Iron...

  9. The lithospheric mantle below southern West Greenland

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Waight, Tod Earle; Pearson, D. Graham

    2009-01-01

    Geothermobarometry of primarily garnet lherzolitic xenoliths from several localities in southern West Greenland is applied to address the diamond potential, pressure and temperature distribution and the stratigraphy of the subcontinental lithospheric mantle ~600 Ma ago. The samples are from kimbe...... into the reworked Archean North of the Naqssugtoqidian deformation front....

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The style of subduction was flat subduction, which was most common in the Archean. The rare earth patterns and the multi-element diagrams with marked enrichment in LILE and negative anomalies for Ba, P and Ti of the granitoids of both the cratons indicate interaction between slab derived melts and the mantle wedge.

  11. Archaen to Recent aeolian sand systems and their sedimentary record

    DEFF Research Database (Denmark)

    Rodríguez-López, Juan Pedro; Clemmensen, Lars B; Lancaster, Nick

    2014-01-01

    The sedimentary record of aeolian sand systems extends from the Archean to the Quaternary, yet current understanding of aeolian sedimentary processes and product remains limited. Most preserved aeolian successions represent inland sand-sea or dunefield (erg) deposits, whereas coastal systems are ...

  12. Millennia of magmatism recorded in crustal xenoliths from alkaline provinces in Southwest Greenland

    DEFF Research Database (Denmark)

    Smit, Matthijs; Waight, Tod Earle; Nielsen, Troels

    2016-01-01

    Neoproterozoic alkaline provinces in West Greenland: 1)Sarfartôq, which overlies Archean ultra-depleted SCLM and yielded ultra-deep mineral indicators, and 2)Sisimiut, where the SCLM is refertilized and deep xenoliths (>120km) are lacking. We focused on the rare and understudied crustal xenoliths, which preserve...

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c.2.5Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 ...

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R Srinivasan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 57-65. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments ...

  16. Geology [Chapter 4

    Science.gov (United States)

    E. A. Rochette

    1994-01-01

    The Medicine Bow Mountains have a core of Precambrian rocks. They contain the boundary, the Cheyenne Belt, between the Wyoming Province to the NW and the accreted Proterozoic continental crust to the SE (Karlstrom and Houston 1984). The Wyoming Province consists of Archean rocks that are locally intruded and (or) overlain by rocks of Proterozoic age, including the...

  17. Planetary biology and microbial ecology. Biochemistry of carbon and early life

    Science.gov (United States)

    Margulis, L. (Editor); Nealson, K. H. (Editor); Taylor, I. (Editor)

    1983-01-01

    Experiments made with cyanobacteria, phototrophic bacteria, and methanogenic bacteria are detailed. Significant carbon isotope fractionation data is included. Taken from well documented extant microbial communities, this data provides a basis of comparison for isotope fractionation values measured in Archean and Proterozoic (preCambrian) rocks. Media, methods, and techniques used to acquire data are also described.

  18. Identification of major sources controlling groundwater chemistry ...

    Indian Academy of Sciences (India)

    The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To iden- tify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Abstract. The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 ...

  20. ICS International Chronostratigraphic Chart 2016/04

    NARCIS (Netherlands)

    Cohen, K.M.|info:eu-repo/dai/nl/185633374; Finney, S.C.; Gibbard, P.L.

    Units of all ranks are in the process of being defined by Global Boundary Stratotype Section and Points (GSSP) for their lowerboundaries, including those of the Archean and Proterozoic, long defined by Global Standard Stratigraphic Ages (GSSA). Charts and detailed information on ratified GSSPs are

  1. ICS International Chronostratigraphic Chart 2017/02

    NARCIS (Netherlands)

    Cohen, K.M.|info:eu-repo/dai/nl/185633374; Harper, D.A.T.; Gibbard, P.L.

    Units of all ranks are in the process of being defined by Global Boundary Stratotype Section and Points (GSSP) for their lowerboundaries, including those of the Archean and Proterozoic, long defined by Global Standard Stratigraphic Ages (GSSA). Charts and detailed information on ratified GSSPs are

  2. ICS International Chronostratigraphic Chart 2015/01

    NARCIS (Netherlands)

    Cohen, K.M.|info:eu-repo/dai/nl/185633374; Finney, S.C.; Gibbard, P.L.

    Units of all ranks are in the process of being defined by Global Boundary Stratotype Section and Points (GSSP) for their lower boundaries, including those of the Archean and Proterozoic, long defined by Global Standard Stratigraphic Ages (GSSA). Charts and detailed information on ratified GSSPs are

  3. Lu-Hf and Sm-Nd garnet geochronology

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik E.; Mezger, Klaus

    2013-01-01

    To investigate the systematics of the 176Lu–176Hf and 147Sm–143Nd garnet chronometers, we performed REE and isotope analyses on garnet crystals of different size (0.55–3.1 mm radius) from a single granulite specimen (Archean Pikwitonei Granulite Domain, Manitoba, Canada). The Lu–Hf dates are simi...

  4. A lithospheric perspective on structure and evolution of Precambrian cratons

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2012-01-01

    The purpose of this chapter is to provide a summary of geophysical data on the structure of the stable continental lithosphere and its evolution since the Archean. Here, the term lithosphere is used to define the outer layer of the Earth which includes the crust and uppermost mantle, forms the ro...

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 2 ... It follows that concentrations of these particle-active elements must have varied in the past with ... REE geochemistry of ore zones in the Archean auriferous schist belts of the eastern ... Estimation of source parameters of Chamoli Earthquake, India.

  6. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh

    2015-01-01

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  7. Trace-element geochemistry of metabasaltic rocks from the Yukon-Tanana Upland and implications for the origin of tectonic assemblages in east-central Alaska

    Science.gov (United States)

    Dusel-Bacon, C.; Cooper, K.M.

    1999-01-01

    We present major- and trace- element geochemical data for 27 amphibolites and six greenstones from three structural packages in the Yukon-Tanana Upland of east-central Alaska: the Lake George assemblage (LG) of Devono-Mississippian augen gneiss, quartz-mica schist, quartzite, and amphibolite; the Taylor Mountain assemblage (TM) of mafic schist and gneiss, marble, quartzite, and metachert; and the Seventymile terrane of greenstone, serpentinized peridotite, and Mississippian to Late Triassic metasedimentary rocks. Most LG amphibolites have relatively high Nb, TiO2, Zr, and light rare earth element contents, indicative of an alkalic to tholeiitic, within-plate basalt origin. The within-plate affinities of the LG amphibolites suggest that their basaltic parent magmas developed in an extensional setting and support a correlation of these metamorphosed continental-margin rocks with less metamorphosed counterparts across the Tintina fault in the Selwyn Basin of the Canadian Cordillera. TM amphibolites have a tholeiitic or calc-alkalic composition, low normalized abundances of Nb and Ta relative to Th and La, and Ti/V values of the proximity of the arc and marginal basin to continental crust. The arc geochemistry of TM amphibolites is consistent with a model in which the TM assemblage includes arc rocks generated above a west-dipping subduction zone outboard of the North American continental margin in mid-Paleozoic through Triassic time. The ocean-floor or within-plate basalt geochemistry of the Seventymile greenstones supports the correlation of the Seventymile terrane with the Slide Mountain terrane in Canada and the hypothesis that these oceanic rocks originated in a basin between the continental margin and an arc to the west.

  8. Rock-geological, tectonic and geophysical studies of the area of VOXNA and the therein situated characteristic area of SVARTBOBERGET

    International Nuclear Information System (INIS)

    Tiren, S.A.; Eriksson, L.; Henkel, H.

    1981-12-01

    The area the size of which is 500 km 2 , is situated in the district of Gaevleborg. The rock consists mainly of migmatic and gneissic granite. Greenstone and diabase are accessory constituents. The fracture zones are oriented in the direction NNW-SSE. Svartboberget is in the central part of a downfolded migmatite and forms a part of a rock which is poorly fractured. The water flow in the minor fracture zones is low and the small tension fractures are dominant in the NNE-SSW direction. Geophysical estimates give the thickness of migmatite to 500 m. (G.B.)

  9. Brazil Geological Basic Survey Program: special project of mineral resources, soils and vegetation maps for the region of Grande Carajas Program - Mineral resources sub project - Serra dos Carajas - Sheet SB.22-Z-A - Para State

    International Nuclear Information System (INIS)

    Araujo, O.J.B. de; Maia, R.G.N.

    1991-01-01

    The geologic landscape at Serra dos Carajas Sheet encloses portions of Southern Para granite-greenstone terrain, Itacaiunas and Araguaia Belts as well as Proterozoic litho-structural components. It shows medium magnetic relief and low radiometric levels due to meta mafic-ultramafic sequences and the high Na granitoids intrusions. The Proterozoic components are represented by a series of anorogenic granitic intrusions shown by distinctive aero gamaspectrometric anomalies. The well known metallogenetic characteristics includes gold, iron, manganese, nickel and aluminium mines and/or deposits and several mineral occurrences mainly chromium, tin, copper, and zinc. (author)

  10. Implanted of Pb-Pb methodology in whole rock: examples of use in Carajas Mineral Province, Para State

    International Nuclear Information System (INIS)

    Rodrigues, Elizabeth Maria Soares.

    1992-01-01

    This work presents the first data obtained by Pb-Pb systematics in whole rock and separated minerals. The Pb isotopic compositions of samples were determined by mass spectrometry. The average analytical errors of the ratios 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 209 Pb were 0.10%, 0.12% and 0.15%, respectively. The age calculation in the 207 Pb/ 204 Pb x 206 Pb/ 204 Pb diagram was obtained by York (1969) and Ludwig (1900). In order to verify the efficiency of the implanted methodology, 5 rocks from of the Carajas Mineral Province and Sao Felix do Xingu Region were dated. The Velho Guilherme granite, intrusive into the granite-greenstone terrains of Tucuma Region (PA), provided a Pb-Pb crystallization age (11 WR,2 FELD) of 1874 ± 15 Ma with MSWD = 1.53 and μ 1 = 8.9 ± 0.07 (single stage). The Granulitic rocks of Pium complex (Catete area), located at the SW of Serra dos Carajas, provided a Pb-Pb age of 3044 ± 64 Ma with MSWD = 28.72 and μ 1 = 9.2 ± .58. In the Rio Maria Region, Mata Surrao monzogranite which cross cut the gneiss basement and associated to the greenstone belts, defined a crystallization Pb-Pb (8 WR) age of 2876 ± 10 Ma with MSWD = 3.71 and μ 1 = 8.2 ± 0.11. In the same region, the Metabasalts of the Identidade greenstone belt, (Andorinhas supergroup), showed a Pb-Pb age in whole rock (7 samples) of 3400 ± 109 Ma with MSWD = 7.97 and μ 1 = 9.6 ± 1.44. Five whole rock samples from metadacites, located in the central part of the Identidade greenstone, provided a crystallization age of 2944 ± 88 Ma with MSWD 31.52 and μ 1 = 8.2 ± .70. The results obtained in this work emphasize the high potentiality of the Pb-Pb method of dating to obtain crystallization ages of Precambrian rocks. (author). 69 refs., 23 figs., 12 tabs

  11. Lake Austin uranium deposit, Western Australia

    International Nuclear Information System (INIS)

    Heath, A.G.; Deutscher, R.L.; Butt, C.R.M.

    1984-01-01

    The Lake Austin uranium deposit is a calcrete type deposit in the Yilgarn Block, near Cue, in a catchment area of granitoids and greenstones. The uranium is in valley fill and the sediments of the Lake Austin playa. The mineralization occurs over 1 to 6 meter thickness close to the water table in calcrete overlying clays and/or weathered bedrock. The principal uranium mineral is carnotite. Waters in nearby channels have an uranium content of over 30 ppb. The chloride content of the water increases downstream in the nearby drainages, as does the uranium and vanadium content. (author)

  12. Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid

    DEFF Research Database (Denmark)

    Barnes, S.J.; Makovicky, E.; Makovicky, M.

    1996-01-01

    of the system. There is a positive correlation between the partition coefficients and sulfur content of the monosulfide solid solution and between the partition coefficients and the sulfur content of the liquid. In sulfur-saturated and sulfur-over-saturated experimental systems, the metals behave in a manner...... (Alexo, Abitibi Greenstone Belt) and a zoned tholeiite-related ore (Oktyabr'sky, Noril'sk region, Siberia). In both cases, the experimental partition coefficients numerically model the composition zones of the actual ores. This supports the model of fractional crystallization of a monosulfide solid...

  13. The contribution of remote sensing to an understanding of the geology of Gabon

    International Nuclear Information System (INIS)

    Bassot, J.P.

    1988-01-01

    A major remote-sensing operation involving radar imagery and airbone magnetism and spectrometry has been successfully conducted in Gabon. The three methods used give complementary results. Lateral radar imagery and radiometry (U, K, Th) have supplied much new information on the Upper and Lower Proterozoic, but in areas affected by intense peneplanation and lateritisation they are less effective. Conversely, Airbone magnetism gives a deeper vision into the ground: particularly it revealed that the extent of greenstone belts had been significantly underestimated on existing geological maps. In addition, the trends in these belts have given a new insight into late Archaean tectonics in northern Gabon [fr

  14. Alternative model for the Great Oxidation Event

    Science.gov (United States)

    Bekker, A.

    2014-12-01

    Transition from the Archean, largely anoxic atmosphere and ocean to the Proterozoic oxidizing surface conditions has been inferred in Zimbabwe from the geochemical and geological evidence as early as 1927. Subsequent studies provided additional support for this interpretation, bracketed the transition between 2.45 and 2.32 Ga, and suggested temporal and cause-and-effect relationship with a series of the early Paleoproterozoic ice ages (including 4 discrete events). Recently recognized transient oxidation events of the Archean add texture to this pattern, but do not change it. The rise of atmospheric oxygen requires a misbalance between oxygen sinks and sources and most attention was focused on sinks. In contrast, change in oxygen supply related to low organic productivity in Archean oceans with limited nutrient contents are considered here. Although carbon isotope values of carbonates and organic carbon indicate substantial relative burial rate of organic carbon during the Archean, most of the earlier buried organic matter at that time was recycled to sediments during continental weathering, implying very low productivity and burial of 'new' organic carbon. Low contents of redox-sensitive elements, such as Mo, Cu, Zn, and V, in Archean seawater could have kept organic productivity and oxygen production at low levels. The GOE was immediately preceded by deposition of giant iron formations, accounting for more than 70% of world iron resources, and worldwide emplacement of a number of LIPs between 2.5 and 2.45 Ga, indicating enhanced delivery of nutrients and redox-sensitive elements to the oceans via submarine hydrothermal processes and continental weathering under CO2- and SO2-rich atmosphere and associated terrestrial acidic runoff. This enhanced emplacement of LIPs has been linked with the growth of continental crust, emergence of the first supercontinent, and mantle overturn at the Archean-Proterozoic boundary. The GOE could have thus been triggered by enhanced

  15. Early tectonic history of the Marymia Inlier and correlation with the Archaean Yilgarn Craton, Western Australia

    International Nuclear Information System (INIS)

    Bagas, L.

    1999-01-01

    The Archaean granite-greenstone rocks of the Marymia Inlier outcrop within Proterozoic rocks forming the Capricorn Orogen. Five major deformation events are recognised in the rocks of the Plutonic Well and Baumgarten greenstone belts. The first two events were Late Archaean and synchronous with major epithermal gold mineralisation in the belts. Palaeoproterozoic extensional faulting was probably related to the early stages of the Capricorn Orogeny. The fourth event records a compressional phase of the Capricorn Orogeny associated with greenschist-facies metamorphism, whereas the last major event involved wrench faulting associated with minor folding. The Archaean tectonic history, rock types and timing of mineralisation strongly suggest that the Marymia Inlier is part of the Yilgarn Craton, and that each of the provinces in the craton experienced the same geological history since 2.72 Ga. The inlier is now interpreted to include two components, one is the eastern or northern extension of either the Narryer Terrane. Murchison Province or Southern Cross Province, and the other is the northwestern extension of the Eastern Goldfields Province. The Jenkin Fault, which was active in Proterozoic times, separates these two components. Copyright (1999) Blackwell Science Pty Ltd

  16. The Archaean Granny Smith gold deposit, western Australia: age and Pb-isotope tracer studies

    International Nuclear Information System (INIS)

    Ojala, V.J.; McNaughton, N.J.; Groves, D.I.; Ridley, J.R.; Fanning, C.M.

    1997-01-01

    The Granny Smith gold deposits are situated within a greenstone sequence in the Laverton-Leonora area of the Northeastern Goldfields Province of the Archaean Yilgarn Block, Western Australia. The greenstone sequence (U-Pb zircon age of 2677±6 Ma, felsic pyroclastic rock) was intruded by the Granny Smith Granodiorite at 2665±4 Ma. Gold mineralisation is located along a reactivated N-S Stricking, thrust which wraps around the granitoid intrusion, and within the granitoid intrusion. Initial lead-isotope compositions of the Granny Smith Granodiorite and ore-fluid Pb, estimated from K-feldspar and galena and lead tellurides, respectively, are slightly different. Calculations based on Pb isotope data for the host rocks, and the U-Pb zircon age of the Granny Smith Granodiorite, suggest that ore-fluid Pb was derived from a source with a similar initial lead-isotopic composition to the source of the Granny Smith Granodiorite but about 30 million years after the intrusion of the granitoid. The Pb-isotope data for granitoids of the Northeastern Goldfields fall in a distinct field different to that of the granitoids of the Norseman area and those from Kambalda to Menzies. (authors)

  17. Graphite-(Mo,W)S2 intergrowth as a palaeoenvironmental proxy in metasedimentary rocks

    Science.gov (United States)

    Cabral, Alexandre Raphael; Zeh, Armin; da Silva Viana, Nívea Cristina; Schirmer, Thomas; Lehmann, Bernd

    2017-12-01

    Molybdenum enrichment in pristine organic-C-rich sedimentary rocks forms the basis for inferring the presence of dissolved oxygen in seawater. Organic matter removes dissolved hexavalent Mo from seawater where anoxic and euxinic conditions are attained. However, it is unknown whether this Mo-based proxy is retained under metamorphic conditions where organic C is no longer preserved. Here, we describe aggregates of graphite and molybdenite (MoS2) containing up to 21 mass per cent of W as tungstenite (WS2) in solid solution. These aggregates are disseminated in a sulfide-rich Mn-silicate-carbonate rock (queluzite), metamorphosed under amphibolite-facies conditions within the Archaean Barbacena greenstone belt in Minas Gerais, Brazil. Our finding indicates that: (i) W is, like Mo, a palaeoenvironmental proxy; (ii) the W proxy is sensitive to high fS2/fO2 environments; (iii) both Mo and W proxies survive amphibolite-facies overprint as (Mo,W)S2 intergrown with graphite. Archaean greenstones are potential candidates for storing palaeoenvironmental information as (Mo,W)S2-graphite intergrowths.

  18. A palaeomagnetic perspective of Precambrian tectonic styles

    Science.gov (United States)

    Schmidt, P. W.; Embleton, B. J. J.

    1986-01-01

    The considerable success derived from palaeomagnetic studies of Phanerozoic rocks with respect to the tectonic styles of continental drift and plate tectonics, etc., have not been repeated by the many palaeomagnetic studies of Precambrian rocks. There are 30 years of research with results covering the major continents for Precambrian times that overlap considerably yet there is no concensus. There is good evidence that the usual assumptions employed by palaeomagnetism are valid for the Precambrian. The exisence of magnetic reversals during the Precambrian, for instance, is difficult to explain except in terms of a geomagnetic field that was predominantly dipolar in nature. It is a small concession to extend this notion of the Precambrian geomagnetic field to include its alignment with the Earth's spin axis and the other virtues of an axial geocentric dipole that characterize the recent geomagnetic field. In terms of greenstone terranes it is obvious that tectonic models postulated to explain these observations are paramount in understanding Precambrian geology. What relevance the current geographical relationships of continents have with their Precambrian relationships remains a paradox, but it would seem that the ensialic model for the development of greenstone terranes is favored by the Precambrian palaeomagnetic data.

  19. An Archaean Tonalite-Trondhjemite-Granodiorite Association of the Kursk Block (Voronezh Massif): Composition, Age, and Correlation with the Ukrainian Shield

    Science.gov (United States)

    Savko, K. A.; Samsonov, A. V.; Larionov, A. N.; Korish, E. Kh.; Bazikov, N. S.

    2018-01-01

    Framing of the Archaean greenstone belts of the Kursk Block (KB) of the East Sarmatia preserves rocks of the TTG association: those do not form massifs with distinct boundaries, but occur as fields gradually transiting into gneisses and migmatites. According to Sm-Nd isotope-geochemical data, the TTG are characterized by positive values of ɛNd(2960) = +0.3…+1.6 and protolith model ages of T Nd( DM) = 3100-3200 Ma. Magmatic protoliths of the Kursk Block TTG were formed about 2960 Ma by melting from a juvenile basite source. These age estimates are significantly younger than heterochronous (3.19, 3.13 and 3.07 Ga) TTGs of the Middle Dnieper granite-greenstone terrane. On the other hand, the similarity of ɛNd(T) implies a single source of their protoliths. Consequently, the KB TTGs, apparently, are a result of transformation of an older sial crust preserved within the Middle Dnieper Block.

  20. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga).......Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  1. Termination of BIF deposition in the Paleoproterozoic: the Tongwane Formation, South Africa

    OpenAIRE

    Schroeder, Stefan; Warke, Matthew

    2016-01-01

    The Tongwane Formation (~2.4 Ga) conformably overlies banded iron formations (BIF; Penge Iron Formation) on the Kaapvaal Craton, South Africa. As such, it provides a unique window into depositional processes and environmental conditions in the aftermath of major Archean-Paleoproterozoic BIF deposition, and on the eve of irreversible environmental oxygenation in the Great Oxidation Event (GOE, ~2.35 Ga). This study presents the first sedimentological and bulk-rock geochemical characterization ...

  2. A Novel Workflow for Geothermal Prospectively Mapping Weights-of-Evidence in Liaoning Province, Northeast China

    OpenAIRE

    Xuejia Sang; Linfu Xue; Jiwen Liu; Liang Zhan

    2017-01-01

    Geological faults are highly developed in the eastern Liaoning Province in China, where Mesozoic granitic intrusions and Archean and Paleoproterozoic metamorphic rocks are widely distributed. Although the heat flow value in eastern Liaoning Province is generally low, the hot springs are very developed. It is obvious that the faults have significant control over the distribution of hot springs, and traditional methods of spatial data analysis such as WofE (weight of evidence) usually do not ta...

  3. The Pale Orange Dot: Spectral Effects of a Hazy Early Earth

    Science.gov (United States)

    Arney, G. N.; Meadows, V. S.; Domagal-Goldman, S. D.; Claire, M.; Schwieterman, E.

    2014-12-01

    Increasing evidence suggests Archean Earth had a photochemical hydrocarbon haze similar to Titan's (Zerkle et al. 2012), with important climate implications (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Domagal-Goldman et al. 2008, Wolf and Toon 2012). Observations also suggest hazy exoplanets are common (Sing et al. 2011, Kreidberg et al 2014), so hazy planet spectra will be relevant to future exoplanet spectral characterization missions. Here, we consider the implications of hydrocarbon aerosols on the spectrum of Archean Earth, examining the effect of a haze layer on the detectability of spectral features from putative biosignatures and the Rayleigh scattering slope. We also examine haze's impact on the spectral energy distribution at the planetary surface, which may be important to the co-evolution of life with its environment. Because the atmospheric pressure and haze particle composition of the Archean Earth are poorly constrained, we test the impact of atmospheric pressure and particle density on haze formation. Our study uses a modified version of the 1-D photochemical code developed originally by Kasting et al. (1979) to generate a fractal haze in the model Archean atmosphere. The 1-D line-by-line fully multiple scattering Spectral Mapping Atmospheric Radiative Transfer Model (SMART) (Meadows and Crisp 1996) is then used to generate synthetic spectra of early Earth with haze. We find (Fig 1) that haze scattering significantly depletes the radiation at short wavelengths, strongly affecting the spectral region of the Rayleigh slope, a broadband change in spectral shape detectable at low spectral resolution. At the surface, the spectral energy distribution is shifted towards longer wavelengths, which may be important to photosynthetic life. Thus, the haze may have significant effects on biology, which in turn produces the methane that leads to haze formation, creating feedback loops between biology and the planet.

  4. Under an Orange Sky: The Many Implications of Organic Haze for Earthlike Planets

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Wolf, Eric; Schwieterman, Edward W.; Charnay, Benjamin; Claire, Mark; Hebrard, Eric

    2015-11-01

    Geochemical evidence suggests Archean Earth was intermittently enshrouded in an organic haze resulting from methane photolysis. Hazy exoplanets may be common, and hazes can significantly impact the environment of habitable planets. Earth is frequently studied as an analog for habitable exoplanets, and Archean Earth is the most alien planet we have geochemical data for. We have used 1D photochemical-climate and radiative transfer simulations to examine the climate, surface radiation environment, and spectra of Archean Earth with fractal hydrocarbon haze. We find that haze would have strongly impacted Earth’s climate, lowering the planetary surface temperature by 20-30 K. However, this cooling can be countered by concentrations of greenhouses gases consistent with geochemical constraints. For example, an atmosphere with 2% CO2, 0.37% CH4 and a self-consistent hydrocarbon haze has a globally averaged surface temperature of 274 K, which GCM models have shown is consistent with a large open ocean fraction (Charnay et al 2013). The cooling from haze means that there exists a “hazy habitable zone” closer to the star than the traditional habitable zone boundaries. Our results suggest that the hazy habitable zone can extend to the distance of Venus. An organic haze produces strong, remotely detectable spectral features, especially at wavelengths DNA, and it is blocked by ozone in the modern atmosphere. Organic hazes may therefore benefit surface biospheres on Earth and similar exoplanets. Finally, assuming geochemical constraints on the Archean atmospheric composition, we show that abiotic levels of methane flux to the atmosphere are insufficient to form an organic haze. For Earthlike exoplanets, organic haze may therefore be a novel type of spectral biosignature.

  5. Surficial clay mineral distribution on the southwestern continental margin of India: Evidence of input from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Gujar, A.R.

    LATERITE 3922 MIOCENE SANDSTONE (~) ARCHEANS ( GRANITE GNEISS I' --J CHARNOKITES ~ KHONOALITES) ~J 3940 -t- -4- -t- -t- ~ .. t Jr -4- + + + + Jr -t- Jr + Jr -t- -t- 4- -t- 4- Jre" + -t- + 4- + -t-.. + + 4- WADGE BANK INDIA -~ + + + + *4 t... et al., 1990). In the southern region, the shelf is marked by a low gradient physiographic feature, i.e. Wadge Bank (gradient 1:756), which has considerably enhanced the width of the shelf. The shelf break is shallowest in this region...

  6. Excess hafnium-176 in meteorites and the early Earth zircon record

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Connelly, James; Thrane, Kristine

    2012-01-01

    The long-lived Lu-to- Hf decay system is a powerful tool to understand ancient chemical fractionation events associated with planetary differentiation. Detrital Hadean zircons (>3.8 Gyr) from the Jack Hills metasedimentary belt of Western Australia record extremely enriched Hf-isotope signals sug...... crust prior to ~4.4 Gyr. This new view suggests continuous juvenile crustal growth and recycling throughout the Hadean and Archean eras, perhaps analogous to modern plate tectonics....

  7. The tectonic evolution of Southern part of the Sao Francisco Craton

    International Nuclear Information System (INIS)

    Teixeira, W.

    1986-01-01

    The potentiality of geochronology when it is applied to the geologic context of craton basement of archean areas is shown. Samples from southern part of the Sao Francisco Craton, in Brazil, were collected for petrographic analysis and geochronological data interpretation. The set of radiometric determinations was obtained by K-Ar, Rb-Sr, Pb-Pb and U-Pb methods. (M.C.K.) [pt

  8. Exploration for uranium in a tropical country: a case history in the Central African Republic

    International Nuclear Information System (INIS)

    Molina, P.

    1983-01-01

    A total-count aerial radiometric survey carried out in the Central African Republic, in a wet tropical environment, led to the discovery of several anomalies, which were found to be bound to laterites overlying in Archean, quarzite-micaschist metamorphic series. Ground verification included several techniques: regional photogeology, radiometry and stream sediment geochemistry. Each anomalous spot was studied in detail by radiometric and geochemical grids, local topographic study and trenching through the lateritic profile. (author)

  9. Polycyclic evolution of the Quadrilatero Ferrifero: an analysis based on the actual knowledge of the U-Pb geochronology and Sm-Nd isotopic geochemistry

    International Nuclear Information System (INIS)

    Carneiro, Mauricio Antonio; Noce, Carlos Mauricio; Teixeira, Wilson

    1995-01-01

    The tectonic evolution of the Quadrilatero Ferrifero region, based on geochronological U-Pb, Pb-Pb, Sm-Nd, Rb-Sr e K-Ar data, is characterized by several processes of crustal growth, which began in Middle Archean. The Lower Archean geological evolution of the Quadrilatero Ferrifero was finished by the Rio de Velhas tectono-thermal event around 2,78 Ga. After this, during the proterozoic era, three tectono-sedimentary cycles took place on this Lower Archean crustal fragment, whose products are represented by the meta sedimentary sequences of the Minas Supergroup, Itacolomi Group and Espinhaco Supergroup. The Transamazonico Event (ca. 2,0 Ga) ended the geological evolution of Minas Supergroup, but its geological records did not have the same size imprints throughout region. Many places, such as the Bonfim Metamorphic Complex, were not affected by this tectonic event. Later tectonic event. Later tectonic events (e.g. Brasiliano) had even more discrete geological occurred during the Proterozoic era, when many sedimentary basins developed (e.g. Espinhaco and Sao Francisco basins). (author)

  10. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  11. Blind River uranium deposits: the ores and their setting

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1981-01-01

    In the Blind River area, Proterozoic clastic sedimentary and minor volcanic rocks (Huronian Supergroup) unconformably overlie and transgress northward over dominantly granitic Archean terrane (2500 million years) and are intruded by Nipissing Diabase (2150 million years). Later deformations and metamorphic events are recognized. The Matinenda Formation (basal Huronian) comprises northward-derived arkose, quartzite, and pyritic, uraniferous oligomictic conglomerates, which contain 75 percent of Canada's uranium reserves. Historic grades approximate 2 pounds U 3 O 8 /ton (1 kilogram/metric ton), but lower grade material can be mined with increasing price. Some thorium and rare earths have been marketed. The conglomerate beds lie in southeasterly striking zones controlled by basement topography down-sedimentation from radioactive Archean granite. Distribution of monazite relative to uraninite and brannerite and the presence of uranium values in overlying polymictic conglomerates, which truncate the ore beds, indicate that the mineralization is syngenetic, probably placer. The role of penecontemporaneous mafic volcanics is problematical, but these could have been a source for sulphur in the pyrite. Drab-coloured rocks, uranium and sulphide mineralization, and a post-Archean regolith formed under reducing conditions all suggest a reducing environment. Sedimentary features indicate deposition in fast-flowing shallow water and possibly a cold climate. In the upper Huronian (Lorrain Formation), a monazite and iron oxide assemblage associated with red beds suggests a change to oxidizing conditions

  12. Redox State of the Neoarchean Earth Environment

    Science.gov (United States)

    Zerkle, Aubrey L.; Claire, Mark W.; Domagal-Goldman, Shawn; Farquhar, James; Poulton, Simon W.

    2011-01-01

    A Titan-like organic haze has been hypothesized for Earth's atmosphere prior to widespread surface oxygenation approx.2.45 billion years ago (Ga). We present a high-resolution record of quadruple sulfur isotopes, carbon isotopes, and Fe speciation from the approx.2.65-2.5 Ga Ghaap Group, South Africa, which suggest a linkage between organic haze and the biogeochemical cycling of carbon, sulfur, oxygen, and iron on the Archean Earth. These sediments provide evidence for oxygen production in microbial mats and localized oxygenation of surface waters. However, this oxygen production occurred under a reduced atmosphere which existed in multiple distinct redox states that correlate to changes in carbon and sulfur isotopes. The data are corroborated by photochemical model results that suggest bi-stable transitions between organic haze and haze-free atmospheric conditions in the Archean. These geochemical correlations also extend to other datasets, indicating that variations in the character of anomalous sulfur fractionation could provide insight into the role of carbon-bearing species in the reducing Archean atmosphere.

  13. Lower precambrian of the Keivy Terrane, Northeastern Baltic Shield: A stratigraphic succession or a collage of tectonic sheets?

    Science.gov (United States)

    Balagansky, V. V.; Raevsky, A. B.; Mudruk, S. V.

    2011-03-01

    The Keivy Terrane in the northeastern Baltic Shield appreciably differs from the adjacent tectonic blocks. In the northwestern part of this terrane (the Serpovidny Range), an outlier of Paleoproterozoic supracrustal rocks called the Serpovidny structure is surrounded by Archean (?) Keivy high-alumina paraschists. As follows from structural and magnetic data, the Paleoproterozoic rocks are deformed into a tight sheath fold 8 × 2 km in size at the surface and 5 km in length along the sheath axis. Faults parallel to the boundaries of the layers and locally cutting them off at an acute angle are involved in folding as well. The outer boundaries of the Serpovidny structure are tectonic. This structure is complementary to a larger tectonic lens composed of the Keivy mica schists. It is concluded that all of the supracrustal rocks of the Serpovidny Range are in fact tectonic sheets and lenses deformed into sheath folds. The literature data show that kilometer-scale sheath folds occur throughout the Keivy paraschist belt and most likely were formed owing to thrusting of the Murmansk Craton onto the Keivy Terrane in the south-southwestern direction. Foliation and lineation related to thrusting have been established in the Archean silicic metavolcanics and peralkaline granites occupying the most part of the terrane. In contrast, the granitoids and gabbroanorthosites of the Archean basement, which form a block 90 × 20 km in the southwestern Keivy Terrane, were not affected by Paleoproterozoic deformation. In other words, a detached assembly of tectonic sheets composed of the upper and middle crustal rocks that underwent deformation at the initial stage of the Paleoproterozoic Lapland-Kola Orogeny and the Archean basement, which is free of this deformation, are distinguished. The depth of detachment is estimated at 20-25 km. The detachment of the upper and middle crust in the Keivy Terrane and its position in the structure of the Baltic Shield are consistent with a

  14. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  15. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on new SHRIMP U-Pb data, part 1: central-eastern border of Sao Francisco Craton in Bahia state, Brazil

    International Nuclear Information System (INIS)

    Silva, Luiz Carlos da; Pimentel, Marcio; Jost, Hardy; Armstrong, Richard

    2002-01-01

    This paper discusses new U-Pb SHRIMP zircon data for 12 key-exposures of several geological units exposed at the eastern border of the Sao Francisco Craton. The samples represent mostly Archean basement units within the Paleoproterozoic Eastern Bahia Belt (Orogen). Samples were collected along several E-W tran sects trying to more accurately assess the areal distribution of the Archean polycyclic basement of the Sao Francisco Craton and to identify the limits of Paleoproterozoic metamorphic overprint resulting from the development of the Eastern Bahia Orogen. Owing to the polycyclic evolution and/or high grade metamorphic conditions which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. Except for one unit (sample LH 44), which present crystallization age of ca 3000 Ma - interpreted, therefore, as the eastern extension of the Serrinha Craton - the others are ascribed to two major age groups at ca. 2870-2500 Ma and ca. 2200?-2030 Ma. The former group includes ortho gneisses with crystallization ages between ca. 2870-2500 Ma, which have been mapped and interpreted, in its major extension, as juvenile Paleoproterozoic arc (Itabuna and Salvador-Curaca belts/domains). The new data presented in this study, however, indicate that these ortho gneisses represent a multi-episodic collage of primitive Archean orogenic arcs, which gave rise to the Archean basement of that part of the Sao Francisco Craton. All the investigated zircon populations were extensively recrystallized at ca. 2080-2050 Ma as a result of

  16. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Wilson [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mail: wteixeir@usp.br; Avila, Ciro Alexandre [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Museu Nacional. Dept. de Geologia e Paleontologia]. E-mail: avila@mn.ufrj.br; Nunes, Luciana Cabral [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias]. E-mail: luciana@igc.usp.br

    2008-07-01

    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K{sub 2}O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 {+-} 9 Ma, whereas the Lajedo granodiorite yields 2208 {+-} 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low {sup 87}Sr/{sup 86}Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 {+-} 2 Ma), Brumado

  17. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    International Nuclear Information System (INIS)

    Teixeira, Wilson; Avila, Ciro Alexandre; Nunes, Luciana Cabral

    2008-01-01

    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K 2 O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 ± 9 Ma, whereas the Lajedo granodiorite yields 2208 ± 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low 87 Sr/ 86 Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 ± 2 Ma), Brumado de Baixo

  18. Rare earth element and strontium isotopic study of seamount-type limestones in Mesozoic accretionary complex of Southern Chichibu Terrane, central Japan. Implication for incorporation process of seawater REE into limestones

    International Nuclear Information System (INIS)

    Tanaka, Kazuya; Miura, Noriko; Asahara, Yoshihiro; Kawabe, Iwao

    2003-01-01

    Ishimaki and Tahara limestones occur as exotic blocks juxtaposed in the Mesozoic (Jurassic) accretionary complex of Southern Chichibu Terrane in eastern Aichi Prefecture, central Japan. They are supposed to be of the seamount-type limestone, since they have no terrigenous materials and are intimately associated with greenstones. REE (rare earth elements) and Sr isotopic studies for the limestones have been made in order to know their geochemical characteristics, ages and origins. Their 87 Sr/ 86 Sr ratios, when referred to the seawater 87 Sr/ 86 Sr curve and relevant geological data, suggest that Ishimaki and Tahara limestones are the late Permian and the Carboniferous to the Early Permian, respectively. Two greenstone fragments found inside the Ishimaki limestone block and one greenstone sample associated with Tahara limestone block, resemble the Hawaiian alkali basalt in the their REE and Y patterns. This is supporting the idea that the limestone blocks may be parts of reef limestones on ancient volcanic seamounts. All the limestone samples, except three unusual Tahara ones, show seawater REE and Y signatures in their chondrite-normalized patterns. Their REE/Ca ratios, however, are 10 2 -10 4 times as high as those ratios of modern biogenic carbonates like corals and the seawater. Accordingly, seawater REE and Y were incorporated into the limestones, when originally biogenic carbonates transformed into inorganic calcite and its secondary growths occurred in diagenesis in contact with sufficient seawater. This view is favored by the reported REE partition experiment between calcite overgrowths and seawater solution. The seawater Ce anomaly as a function of water depth in the modern ocean is a key to infer the water depth of the REE and Y incorporation. The Ce anomalies given by log (Ce/Ce*) for about a half of Ishimaki samples and most of Tahara ones are between -0.5 and -0.2, which are compatible with the shallow water origin. Another half of Ishimaki samples

  19. Depth and degree of melting of komatiites

    Science.gov (United States)

    Herzberg, Claude

    1992-04-01

    High pressure melting experiments have permitted new constraints to be placed on the depth and degree of partial melting of komatiites. Komatiites from Gorgona Island were formed by relatively low degrees of pseudoinvariant melting involving L + Ol + Opx + Cpx + Gt on the solidus at 40 kbar, about 130 km depth. Munro-type komatiites were separated from a harzburgite residue (L + Ol + Opx) at pressures that were poorly constrained, but were probably around 50 kbar, about 165 km depth; the degree of partial melting was less than 40 percent. Secular variations in the geochemistry of komatiites could have formed in response to a reduction in the temperature and pressure of melting with time. The 3.5 Ga Barberton komatiites and the 2.7 Ga Munro-type komatiities could have formed in plumes that were hotter than the present-day mantle by 500 deg and 300 deg, respectively. When excess temperatures are this size, melting is deeper and volcanism changes from basaltic to momatiitic. The komatiities from Gorgona Island, which are Mesozoic in age, may be representative of komatiities that are predicted to occur in oceanic plateaus of Cretaceous age throughout the Pacific (Storey et al., 1991).

  20. New evidence on the composition of mineral grains of native gold

    International Nuclear Information System (INIS)

    Erasmus, C.S.; Sellschop, J.P.F.; Watterson, J.I.W.

    1987-01-01

    The nuclear analytical techniques of instrumental neutron activation and radiochemical neutron activation have been applied to the analysis of native gold from the Precambrian Witwatersrand Sequence and from the Archaen deposits in the Barberton Mountain Land, Murchison Range and Pietersburg region in South Africa. A total of 15 elements were determined in the samples of native gold, namely: scandium, iron, cobalt, nickel, copper, zinc, zirconium, silver, antimony, tellurium, cerium, europium, ytterbium, mercury and thorium. Of these the silver and mercury were determined by the instrumental procedure and the copper was determined after extraction with diethyl dithiocarbamate. The other elements were determined from long-lived isotopes after the removal of silver by dissolution of the gold and precipitation of the silver as silver iodide. The most significant result of this work is the discovery that mercury occurs at the percentage level in native gold from the Witwatersrand (between 1 and 5%), demonstrating the power of the nuclear method in comparison with conventional methods such as optical spectroscopy and the electron microprobe, which had failed to make this discovery. (author)

  1. Stratigraphy, tectonic and ore potential of pre-cambrian unities from Serro region-MG (Mato Grosso quadrangle)

    International Nuclear Information System (INIS)

    Assis, L.C. de.

    1982-01-01

    Geological and stratigraphic elements of the Proterozoic units of the Serro region, Mato Grosso Quadrangle, show the absence of the faciological transition between the Espinhaco Group and the Minas Supergroup. Occurs in this region is a lithostratigraphical sequence of four distinct units: the Crystalline Basement; the Volcano-Sedimentary Sequence of Serro; the Minas Supergroup. The ore potential of the region includes: quartz veins, within the Galho do Miguel Formation; diamond, within the Sopa conglomerates; gold, in alluvial deposits and remobilized in quartz veins of the Sopa-Brumadinho Formation; bauxite, in the metabasics; uranium in the metaconglomerates of Moeda Formation; iron, in Caue Formation; chromium, gold and base metals in the Volcano-Sedimentary Sequence of Serro. Emphasis is given to the characterization of the Volcano-Sedimentary Sequence of Serro and its mineralization that is characterized as a stratiform massif with important volcano-sedimentary contribution, possible, a greenstone belt, with high gold-bearing potential. (author)

  2. Geochemical variability in the green stone belts of Goias (Brazil): the Hidrolina and Crixas sequences

    International Nuclear Information System (INIS)

    Rivalenti, G.; Mazzucchelli, M.; Finatti, C.; Girardi, V.A.V.; Candia, M.A.F.; Correia, C.T.; Coltorti, M.; Siena, F.

    1990-01-01

    The greenstone belts of Crixas and Hidrolina of Goias, Brazil are dismembered components of the same body or of originally adjacent belts. Their tectono-metamorphic history and stratigraphy is similar, as well as their igneous components (meta-komatiites, meta-basalts and felsic meta-volcanics). Chemically, they differ for the CaO and Al 2 O 3 versus MgO trends and for the behaviour of many incompatible and compatible trace elements (Cr, Ni, Ti, Sc, Y, Zr, P). The difference in the trace element behaviour has been mainly attributed to a compositional and modal heterogeneity of the mantle source, which was probably spinel-richer at Crixas than at Hidrolina. The X-ray fluorescence analytical methods employed for major and trace elements determinations on the 120 Crixas samples were the same as used at Hidrolina. (author)

  3. Geochemical evidence for subduction in the early Archaean from quartz-carbonate-fuchsite mineralization, Isua Supracrustal Belt, West Greenland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Quartz, carbonate and fuchsite (chromian muscovite) is a common metasomatic assemblage observed in orogenic gold systems, both in Phanerozoic convergent margin settings, and within supracrustal and greenstone belts of Precambrian rocks. Geologic and geochemical observations in younger orogenic...... systems suggest that ore-forming metasomatic fluids are derived from subduction-related devolitilization reactions, implying that orogenic Au-deposits in Archaean and Proterozoic supracrustal rock suites are related to subduction-style plate tectonics beginning early in Earth history. Justification...... with Phanerozoic orogenic deposits and that this type of metasomatism is a unique result of subduction-related processes. Fuchsite from the ISB has a δ18O and δD of 7.7 to 17.9‰ and -115 to -61‰, respectively. δ18O of quartz from the same rocks is between 10.3 and 18.6‰. Muscovite-quartz oxygen isotope thermometry...

  4. Geologic evolution of the SE.23 Sheet - Belo Horizonte, MG, Brazil

    International Nuclear Information System (INIS)

    Pereira, A.D.C.; Fonseca, E.G. da; Braz, E.R.C.

    1987-01-01

    The aim of this paper is to present a synthesis of the geologic evolution in the Belo Horizonte Sheet comprising an area about 281.210 Km 2 . Rb-Sr and K-Ar isotope dating methods are used for age estimation of geologic deposits. The geologic evolution of the cratonic area is reflected by a stable central nucleus surrounded by marginal orogenic belts. In the central area were recognized greenstone belts structures involved by granite terrains and bordered by a granulitic region. The framework of the Sao Francisco Craton involves events of metamorphism, granitogenesis, sedimentary, volcanism and plutonism developed in the Early to Late Proterozoic. The stratigraphic column is complemented by Late Jurassic-Early Cretaceous continental deposits belonging to Parana-Basin. (M.V.M.)

  5. A reconnaissance Rb-Sr, Sm-Nd, U-Pb, and K-Ar study of some host rocks and ore minerals in the West Shasta Cu- Zn district, California ( USA).

    Science.gov (United States)

    Kistler, R.W.; McKee, E.H.; Futa, K.; Peterman, Z.E.; Zartman, R.E.

    1985-01-01

    The Copley Greenstone, Balaklala Rhyolite, and Mule Mountain stock in the West Shasta Cu-Zn district, California, have Rb-Sr, Sm-Nd, U-Pb, and K-Ar systematics that indicate they are a cogenetic suite of ensimatic island-arc rocks about 400 Ma. Pervasive alteration and mineralization of these rocks, for the most part, was syngenetic and the major component of the mineralizing fluid was Devonian seawater. K-Ar ages of quarz-sericite concentrates from ore horizons and Rb-Sr systematics of a few rock and ore specimens record a later thermal and mineralizing event in the district of about 260 Ma. Contamination of some rocks with pelagic sediments is indicated by the Sm-Nd data. -Authors

  6. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  7. A NASA/University Joint Venture in Space Science (JOVE)

    Science.gov (United States)

    Vaughn, Danny M.

    1997-01-01

    Several papers have been given to national level meeting and a paper has been published in an international journal. Several additional papers have been co-author by students. The initial research project on the Atchafalaya Delta seems to have died in part due to a transfer of the NASA colleague to another location and subsequent reassigment to another job title. I have continued to include credit to NASA for many of my papers presented and published: A major debris flow along the Wasatch front in Northern Ogden; Spatial and volumetric changes in the Atchafalaya delta, Louisiana; An analysis of prehistoric Greenstone artifact in northern Alabama; An assessment of surfacing algorithm; Analysis of georeferencing algorithms to assess spatial accuracy.

  8. Automatic Encoding and Language Detection in the GSDL

    Directory of Open Access Journals (Sweden)

    Otakar Pinkas

    2014-10-01

    Full Text Available Automatic detection of encoding and language of the text is part of the Greenstone Digital Library Software (GSDL for building and distributing digital collections. It is developed by the University of Waikato (New Zealand in cooperation with UNESCO. The automatic encoding and language detection in Slavic languages is difficult and it sometimes fails. The aim is to detect cases of failure. The automatic detection in the GSDL is based on n-grams method. The most frequent n-grams for Czech are presented. The whole process of automatic detection in the GSDL is described. The input documents to test collections are plain texts encoded in ISO-8859-1, ISO-8859-2 and Windows-1250. We manually evaluated the quality of automatic detection. To the causes of errors belong the improper language model predominance and the incorrect switch to Windows-1250. We carried out further tests on documents that were more complex.

  9. Geochemical studies of granitic rocks of Kallur area, Manvi Taluk, Raichur district, Karnataka (India).

    Science.gov (United States)

    Raghavendra, N R; Reddy, R Purushottam; Nijagunappa, R

    2011-01-01

    The geochemical data is much widely used in establishing the overall chemical relation existing between the different rock types with their parentage. A major impetus for this shift comes not only from the need to understand and quantify better the spatial and temporal evolution, with emphasis on the younger greenstone belts (Kallur copper formations), but also from the recognition that such knowledge could form the basis for the sustainable development of our natural resources. In addition, the recurrence of natural hazards has reinforced the need to learn more about the mechanics and to develop predictive modeling with advanced technical tools. This paper is emphasizing on Granodiorites of Kallur area of Manvi Taluk, Raichur District to substantiate the classical approaches of exploration and data gathering through quantitative methods of data processing and interpretation. The trilinear diagram indicates that the granites are rich in Potash and Soda. This clearly indicates that Granites are fairly rich in K2O than Na2O.

  10. Isotopic and chemical evidence for three accretionary magmatic arcs ( 1.79 - 1.42 Ga) in the SW Amazon Craton, Mato Grosso State, Brazil

    International Nuclear Information System (INIS)

    Geraldes, Mauro Cesar; Teixeira, Wilson; Schmus, William Randall van

    2000-01-01

    Twenty-one U/Pb ages of granitoids in the SW Amazon craton define three crustal accretionary events during the Paleo-and Mesoproterozoic that represent significant portions of the Rio Negro-Juruena Province and the Rondonian/San Ignacio province. Two events refer to the Rio Negro-Juruena province: The Alto Jauru greenstone belt comprises acid volcanics and tonalite to granite gneisses with U/Pb ages from 1790 to 1750 Ma. Sm/Nd isotopic data (e N -d (t) from +2.6 to +2.2 and T DM from 2.0 to 1.80 Ga) indicate a volcanic arc with juvenile signatures for these units. The second event (Cachoeirinha arc) comprises granites to tonalites with U/Pb ages from 1580 to 1530 Ma. Sm/Nd results. (author)

  11. 40Ar/39Ar constraints on the timing and history of amphibolite facies gold mineralisation in the Southern Cross area, Western Australia

    International Nuclear Information System (INIS)

    Napier, R.W.; Guise, P.G.; Rex, D.C.

    1998-01-01

    The Southern Cross Greenstone Belt in Western Australia contains structurally controlled, hydrothermal gold deposits which are thought to have formed at or near the peak of amphibolite facies regional metamorphism during the Late Archaean. Although the geological features of deposits in the area are well documented. conflicting genetic models and ore-fluid sources have been used to explain the observed geological data. This paper presents new 40 Ar/ 39 Ar data which suggest that the thermal history of the Southern Cross area after the peak of regional metamorphism was more complex than has previously been suggested. After the main gold mineralisation event prior to ca 2620 Ma, the 40 Ar/ 39 Ar ages from amphiboles and biotites sampled from the alteration selvages of gold-bearing veins indicate that temperatures remained elevated in the region of 500 deg C for between 20 and 70 million years. These amphiboles and biotites from individual deposits yield ages that are in good agreement with one another to a high precision. implying increased cooling rates after the long period of elevated temperatures. Along the Southern Cross Greenstone Belt. however. amphibole-biotite pairs from the alteration selvages of gold-bearing quartz veins. while remaining in good agreement with one another, vary between deposits from ca 2560 Ma to ca 2440 Ma. Amphiboles from metabasalts that are associated with regional metamorphism and not hydrothermal alteration contain numerous exsolution lamellae that reduce the effective closure temperature of the amphiboles and yield geologically meaningless ages. These age relationships show that the thermal history of the area did not follow a simple cooling path and the area may have been tectonically active for a long period after the main gold mineralisation event before ca 2620 Ma. Such data may provide important constraints on subsequent genetic modelling of gold mineralisation and metamorphism. Copyright (1998) Blackwell Science Asia

  12. Mineral potential for nickel, copper, platinum group elements(PGE), and chromium deposits hosted in ultramafic rocks in the Islamic Republic of Mauritania (phase V, deliverable 67): Chapter G in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Taylor, Cliff D.; Marsh, Erin; Anderson, Eric D.

    2015-01-01

    PRISM-I summary documents mention the presence of mafic-ultramafic igneous intrusive rocks in several areas of Mauritania and a number of chromium (Cr) and copper-nickel (Cu-Ni (±Co, Au)) occurrences associated with them. Permissive geologic settings generally include greenstone belts of any age, layered mafic-ultramafic and unlayered gabbro-anorthosite intrusive complexes in cratonic settings, ophiolite complexes, flood basalt provinces, and fluid-rich shear zones cutting accumulations of mafic-ultramafic rocks. Regions of Mauritania having these characteristics that are discussed in PRISM-I texts include the Mesoarchean greenstone belts of the TasiastTijirit terrane in the southwestern Rgueïbat Shield, two separate layered ultramafic complexes in the Amsaga Complex west of Atar, serpentinized metadunites in Mesoarchean rocks of the Rgueïbat Shield in the Zednes map sheet, several lateritized annular mafic-ultramafic complexes in the Paleoproterozoic northwestern portion of the Rgueïbat Shield, and the serpentinized ophiolitic segments of the Gorgol Noir Complex in the axial portion of the southern Mauritanides. Bureau de Recherches Géologiques et Minières (BRGM) work in the “Extreme Sud” zone also suggests that small copper occurrences associated with the extensive Jurassic microgabbroic intrusive rocks in the Taoudeni Basin of southeastern Mauritania could have potential for magmatic Cu-Ni (PGE, Co, Au) sulfide mineralization. Similarly, Jurassic mafic intrusive rocks in the northeastern Taoudeni Basin may be permissive. Known magmatic Cu-Ni deposits of these types in Mauritania are few in number and some uncertainty exists as to the nature of several of the more important ones.

  13. Gold, iron and manganese in central Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Wilson Scarpelli

    Full Text Available ABSTRACT: Greenstone belts with deposits of gold, iron and manganese are common in the Paleoproterozoic Maroni-Itacaiunas Tectonic Province of the Guiana Shield. In Brazil, in the State of Amapá and northwest of Pará, they are represented by the Vila Nova Group, constituted by a basal unit of metabasalts, covered by metasediments of clastic and chemical origin. The basal metasediments, the Serra do Navio Formation, are made of a cyclothem with lenses of manganese marbles at the top of each cycle. Under the intense weathering of the Amazon, these lenses were oxidized to large deposits of high-grade manganese oxides. The exploitation of these oxides left behind the manganese carbonates and low-grade oxides. The overlaying Serra da Canga Formation presents a calcium and magnesium domain grading to an iron domain with banded silicate and oxide iron formations, mined for iron ores. Overlapping structures and superposed metamorphic crystallizations indicate two phases of dynamothermal metamorphism, the first one with axis to north-northeast and the second one to northwest, with an intermediate phase of thermal metamorphism related to syntectonic granitic intrusions. Shears oriented north-south, possibly formed during the first dynamothermal metamorphism and reactivated in the second, are ideal sites for hydrothermalism and gold mineralization, which is greater when occurs in iron formation and carbonate-bearing rocks, as it happened at the Tucano mine. Layered mafic-ultramafic intrusions in the greenstones represent a potential for chromite and platinum group elements. Pegmatites are source of cassiterite and tantalite exploited from alluvial deposits.

  14. An Integrated Geochronological, Petrological, Geochemical and Paleomagnetic Study of Paleoproterozoic and Mesoproterozoic Mafic Dyke Swarms in the Nain Craton, Labrador

    Science.gov (United States)

    Sahin, Tugce

    The Nain craton comprises the western, Labrador segment of the larger North Atlantic craton (NAC) which exposes Early through Late Archean gneisses. The NAC is bounded on all sides by Paleoproterozoic collisional orogens that involved either considerable structural reworking (Torngat-Nagssugtoqidian-Lewisian) or the accretion of juvenile arc magmas (Ketilidian-Makkovik). The NAC remains poorly understood compared to other Archean crustal blocks now dispersed globally. Compounding this problem is a lack of reliable paleomagnetic poles for NAC units that predate its assembly into the supercontinent Laurentia by ca. 1800 Ma, which could be used to test neighboring relationships with other cratonic fragments. In order to understand the history of the NAC as part of a possible, larger supercontinent, the record of mafic dyke swarms affecting the craton, particularly those that postdate the Late Archean terrane assembly, were examined in this study. Diabase or gabbroic dyke swarms are invaluable in such studies because their geometries offer possible locus points, they often have a punctuated emplacement and precisely datable crystallization histories, and they have cooling histories and oxide mineralogy amenable to recovering robust paleopoles. Coastal Labrador exposes a number of mafic dykes, some of which are demonstrably Paleoproterozoic (e.g. 2235 Ma Kikkertavak dykes; 2121 Ma Tikkigatsiagak dykes) or Mesoproterozoic (e.g. 1280-1270 Ma Nain and Harp dykes) in age (U-Pb; baddeleyite or zircon). The southern half of the Nain craton (Hopedale block) in particular preserves a rich array of mafic dykes. Dyke cross-cutting relationships are numerous and relatively well exposed, permitting multiple opportunities for paleomagnetic field tests (e.g. baked contact). The results presented here allow understanding of the tectonic evolution of the NAC with implications for strengthened Labrador-Greenland correlations, and testing possible Paleoproterozoic supercontinent

  15. Lithosphere structure in Madagascar as revealed from receiver functions and surface waves analysis.

    Science.gov (United States)

    Rindraharisaona, E. J.; Tilmann, F. J.; Yuan, X.; Dreiling, J.; Priestley, K. F.; Barruol, G.; Wysession, M. E.

    2017-12-01

    The geological history of Madagascar makes it an ideal place to study the lithospheric structure and its evolution. It comprises Archean to Proterozoic units on the central eastern part, which is surrounded by a Triassic to Jurassic basin formation in the west and Cretaceous volcanics along the coasts. Quaternary volcanic rocks have been embedded in crystalline and sedimentary rocks. The aim of the present work is to characterize the crustal structure and determine the imprint of the dominant geodynamic events that have affected Madagascar: the Pan-African orogeny, the breakup of Gondwanaland and Neogene tectonic activity. From 2011 to 2014 different temporary seismic arrays were deployed in Madagascar. We based the current study mostly on SELASOMA project, which is composed of 50 seismic stations that were installed traversing southern Madagascar from the west to the east, sampling the different geological units. To measured seismic dispersion curves, one a wide period ranges using ambient noise, Rayleigh and Love surface waves. To compute the average crustal Vp/Vs ratio internal crustal structure and discontinuities in the mantle, we use both P- and S-waves receiver functions. To better resolve of the crustal structure, we jointly inverted P-wave receiver functions and Rayleigh wave group velocity.The crustal extension during the Carboniferous to Cenozoic has thinned the igneous crust down to 15 km in the western Morondava basin by removing much of the lower crust, while the thickness of the upper crust is nearly identical in the sedimentary basin and under Proterozoic and Archaean rocks of the eastern two thirds of Southern Madagascar. In general, the Archean crust is thicker than the Proterozoic, because mafic component is missing in the Proterozoic domain while it forms the bottom of the Archean crust. The lithosphere thickness in the southern part of Madagascar is estimated to be between 90 and 125 km.

  16. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Flower, M.F.J.; Edgar, D.E.

    1984-01-01

    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose and migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (non-foliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio. 84 references, 4 figures, 3 tables

  17. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Edgar, D.E.; Flower, M.F.J.

    1984-01-01

    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline (medium- to coarse-grained igneous and high-grade metamorphic) rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose an migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (nonfoliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio

  18. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data

    Science.gov (United States)

    Bedrosian, Paul A.; Feucht, Daniel W.

    2014-01-01

    The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca–Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath–Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.

  19. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.

    Science.gov (United States)

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2012-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

  20. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  1. Metamorphic history and age of aluminous gneisses of the Belomorian belt of the Baltic shield

    International Nuclear Information System (INIS)

    Bibikova, E.V.; Borisova, E.Yu.; Makarov, V.A.; Drugova, G.M.

    1997-01-01

    Metamorphic conditions and age are determined for the early metamorphic stage of aluminous gneisses in the Chupa nappe in the Belomorian Mobile Belt. The granulite-facies metamorphic conditions during Late Archean time are determined based on the composition of garnet and biotie from the metapelites. The early metamorphic stage was dated at 2860 ± 30 Ma based on the U-Pb systematics of granulitic zircon from the metapelites. The U-Pb isotopic system of the zircon was strongly affected by Svecogennian metamorphism (at 1750 Ma). The geodynamic evolution of the Belomorian Mobile Belt is discussed in light of the data of this work

  2. Preliminary evidence for a Hercynian age of the Versoyen complex, western Alps; Evidence preliminaire d'un age Hercynian pour le complexe du Versoyen, Alpes occidentales

    Energy Technology Data Exchange (ETDEWEB)

    Scharer, U. [Paris-7 Univ., Lab. de Geochronologie, UMR 7578, 75 (France); Cannic, S.; Lapierre, H. [Universite Joseph-Fourier, Lab. de Geologie des Chaines Alpines, Upres A5025, Institut Dolomieu, Grenoble I, 38 (France)

    2000-03-01

    To date the magmatic event that generated the Versoyen mafic complex, four fractions of zircon from a cross-cutting leuco-gabbro dike, has been analyzed by the U-Pb method, defining a regression line that intercepts the concordia curve at 309 {+-} 6 (2 {sigma}) Ma and 3 240 {+-} 34 Ma. These two ages can be interpreted to date, respectively, emplacement of the leuco-gabbro into the Versoyen complex, and the age of inherited Archean zircon cores, present in the newly formed crystals. The age of 309 Ma suggests that both Versoyen mafic magmatism and subsequent eclogite facies metamorphism belong to the Hercynian, and not the Alpine orogenic cycle. (authors)

  3. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres.

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S

    2018-03-01

    Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS 2 , OCS, CH 3 SH, and CH 3 SCH 3 ), photochemistry involving these gases can drive haze formation at lower CH 4 /CO 2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH 4 /CO 2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH 4 /CO 2 ∼ 0.2, but at 30× the organic sulfur flux, the CH 4 /CO 2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH 4 /CO 2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH 4 and CO 2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO 2 feature at 1.57 μm, likely the most accessible CO 2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth

  4. Interpretation of the chemical compositions of the cumulates of the gabro-anorthositic massif of Piau River - Bahia State

    International Nuclear Information System (INIS)

    Cruz, M.J.M.; Demange, M.; Fonteilles, M.

    1989-01-01

    The Rio Piau gabbroic and anorthositic complex is an Archean layered body; intrusive in the charnokitic and enderbitic terrains of the Jequie nucleous (Sao Francisco Craton, Bahia State, Brazil). The geochemical data of the Rio Piau massif consists of two magmatic series, better identified by REE, titanium, phosphorous, niobium and gallium contents. These two magmatic series show an evolution following the typical tholeiitic and several types of cumulatic rocks. The evolution of each magmatic series is made up by differentiation and accumulation, from basic terms (MgO = 10%) up to intermediate terms (MgO = 2%) and shows an evolution similar to the Skaergaard trends. (author) [pt

  5. Geochemistry of rare earths elements from ferriferous formations of the Serpentina's range, Conceicao do Mato Dentro, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Dossin, T.M.; Dossin, I.A.; Dardenne, M.A.

    1987-01-01

    The banded iron formations of the Serpentina's Range constitute the aim of this report. Their stratigraphy and geochemistry are suggestive that deposits formed under epicontinental basin environments of Lake Superior type. Their mineralogy is essentially represented by hematite and magnetite, locally with siderite and ankerite. Rare earth elements data from the iron formations of the are show Eu and Ce anomalies relatively the other elements, which is interpreted as a response to intermediate oxigenation levels of atmosphere and hidrosphere between the Archean and the Upper Proterozoic. (author) [pt

  6. The role of biology in planetary evolution: cyanobacterial primary production in low?oxygen Proterozoic oceans

    OpenAIRE

    Hamilton, Trinity L.; Bryant, Donald A.; Macalady, Jennifer L.

    2015-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well?preserved rocks from the Archean (4.0 to 2.5?Gyr ago) and Proterozoic (2.5 to 0.5?Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and m...

  7. the First Earthlings

    Institute of Scientific and Technical Information of China (English)

    KarenWright

    2003-01-01

    For today's civilized world,with its dotcoms, sitcoms. ATMs,and ATVs.the first 3.5 billion years of life on Earth are a bit of an emharrassment.It was only a few hundred million years ago that trilobites prowled the seas, More primitive life subscribed to two or three basic lifestyles: algal mat spineless worm, or bacterial blob. Before that, in the Archean Eon more than 2. 5 billion years ago-well, that kind of life is what Lysol is for.

  8. Strange attractors, spiritual interlopers and lonely wanderers: The search for pre-Pangean supercontinents

    Directory of Open Access Journals (Sweden)

    Joseph G. Meert

    2014-03-01

    A second possibility is that our views of older supercontinents are shaped by well-known connections documented for the most recent supercontinent, Pangea. It is intriguing that three of the four ‘lonely wanderers’ (Tarim, North China, South China did not unite until just before, or slightly after the breakup of Pangea. The fourth ‘lonely wanderer’, the Kalahari (and core Kaapvaal craton has a somewhat unique Archean-age geology compared to its nearest neighbors in Gondwana, but very similar to that in western Australia.

  9. The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography

    Science.gov (United States)

    Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.

    2017-12-01

    The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was

  10. The emerald deposits of ultramafic rocks of Capoeirana and Belmont, State of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Abreu Machado, G.; Schorscher, H.

    1998-01-01

    The emerald deposits of Capoeirana and Belmont, State of Minas Gerais (MG), Brazil, occur vithin an area comprising a deeply weathered Archean Metavulcano-Sedimentary Sequence (SVS) in tectonic contact with the Borrachudos Metagranitoids (GB) and Fluorite bearing Foliated Metagranitoids (MGF). The SVS is formed by intercalation s of ultramafic schists and amphibolites, basic to intermediate amphibolites, vulcanoclastic, metapelitic and calcsilicate schists and gneisses, banded iron formation and metacherts. The metaultramafic rocks include minor chromitite cumulates and occur at the base of the SVS. When metasomatized in the shear zones adjoining GB and MGF they host emerald mineralizations. (author)

  11. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  12. Lateral heterogeneity and vertical stratification of cratonic lithospheric keels: a case study of the Siberian craton

    DEFF Research Database (Denmark)

    Artemieva, Irina; Cherepanova, Yulia; Herceg, Matija

    2014-01-01

    by regional xenolith P-T arrays,lithosphere density heterogeneity as constrained by free-board and satellite gravity data, and the non-thermalpart of upper mantle seismic velocity heterogeneity based on joint analysis of thermal and seismic tomography data.Density structure of the cratonic lithosphere...... and strongly depleted lithospheric mantle of the Archean nuclei, particularly below the Anabar shield.Since we cannot identify the depth distribution of density anomalies, we complement the approach by seismicdata. An analysis of temperature-corrected seismic velocity structure indicates strong vertical...

  13. The Penokean orogeny in the Lake Superior region

    Science.gov (United States)

    Schulz, K.J.; Cannon, W.F.

    2007-01-01

    The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine-Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine-Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations). A thick succession of arc-derived turbidites constitutes most of the foreland basin-fill along with lesser volcanic rocks. In the southern fold and thrust belt tectonic thickening resulted in high-grade metamorphism of the sediments by 1830 Ma. At this same time, a suite of post-tectonic plutons intruded the deformed sedimentary sequence and accreted arc terranes marking the end of the Penokean orogeny. The Penokean orogen was strongly overprinted by younger tectonic and thermal events, some of which were previously ascribed to the Penokean. Principal among these was a

  14. Paleoproterozoic source contributions to the Sao Roque Group sedimentation: LA-MC-ICPMS U-Pb dating and Sm-Nd systematics of clasts from metaconglomerates of the Boturuna Formation

    Energy Technology Data Exchange (ETDEWEB)

    Henrique-Pinto, Renato; Janasi, Valdecir de Assis; Tassinari, Colombo Celso Gaeta [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Simonetti, Antonio [University of Notre Dame, South Bend (United States). Dept. of Civil Engineering and Geological Sciences; Heaman, Larry Michael, E-mail: renatohp@usp.br, E-mail: vajanasi@usp.br, E-mail: ccgtassi@usp.br, E-mail: antonio.simonetti.3@nd.edu, E-mail: larry.heaman@ualberta.ca [University of Alberta, Edmonton (Canada). Dept. of Earth and Atmospheric Sciences

    2012-12-15

    The Sao Roque Group is characterized by volcano-sedimentary sequences, in which deposition probably started in the late Paleoproterozoic. U-Pb dating by LA-MC-ICPMS of zircons extracted from predominantly equigranular monzogranites clasts from Morro Doce and Morro do Polvilho regions, yield paleoproterozoic ages of 2199 {+-}8.5 Ma and 2247 {+-}13 Ma, respectively. These represent the ages for the main source of granite for the metaconglomerates from the Boturuna Formation (basal unit of Sao Roque Group). Its polycyclic history is reinforced by the presence of inherited Archean zircons (2694 {+-}29 Ma) found within the clasts. Moreover, these clasts have also been affected by the Neoproterozoic overprinting event as indicated by their lower intercept Concordia ages. Sm-Nd isotope data for the main clast varieties from the Morro Doce metaconglomerates yield T{sub DM} ages of 2.6 to 2.7 Ga, demonstrating that these granites are the recycling products of an Archean crustal component. The metaconglomerate arkosean framework yields slightly lower {epsilon}{sub Nd(t)} values than those for the clasts, indicating that a younger and/or more primitive source also contributed to the Boturuna Formation. (author)

  15. Origin of sandstone-hosted uranium deposits, Frome Embayment, South Australia

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1985-01-01

    The formation of sandstone-hosted uranium deposits in the Frome Embayment of South Australia is largely a result of tectonic events possibly as old as the Archean. Uranium deposits of several types and ages in the region demonstrate the importance of uranium enrichment in the source area. Mobile zones around the Archean terrane of the Gawler block have been the locus of intermittent tectonic activity from Early Proterozoic to recent time. Vein-type uranium deposits in basement source rocks are concentrated in these zones, because they favor deep crustal partial melting and ascent of Na-rich granitic magmas and hydrothermal solutions. Relatively stable areas bordered by mobile zones, are important for the formation of sandstone-hosted uranium deposits because they act as platforms for terrigenous sedimentation from the surrounding, uplifted, uranium-rich basement rocks. Wet, subtropical conditions prevailing at the time of uplift aided rapid erosion and subaerial deposition of channel sands with intermixed organic detritus. Later uplift accompanied by erosion of the recently deposited sands in the headwater area caused increased recharge of oxygenated uraniferous ground water, which led to the formation of geochemical-cell roll-front type deposits like those in the Wyoming basins. Subsequent arid conditions helped preserve the deposits. (author)

  16. Uranium occurrences of the Thunder Bay-Nipigon-Marathon area

    International Nuclear Information System (INIS)

    Scott, J.F.

    1987-01-01

    During the 1981, 1982 and 1983 field seasons an inventory of all known uranium occurrences in the North Central Region of Ontario was undertaken. Three major categories of uranium occurrences were identified: uranium associated with the rocks of the Quetico Subprovince; uranium associated with the Proterozoic/Archean unconformity; and uranium associated with alkalic and carbonatite rocks of Late Precambrian age. Occurrences associated with the Quetico Belt are in white, albite-quartz-muscovite pegmatites. Occurrences associated with the Proterozoic/Archean unconformity are usually of high gradee (up to 12% U 3 O 8 ), nearly always hematized and are related to fault or shear zones proximal to the unconformity. Although of high grade, many of the unconformity related occurrences are very narrow (<1 m). Alkalic and carbonatite rocks of Late Precambrian age are an important source of uranium but possible metallurgical problems might downgrade their potential. The Quetico Subprovince is anomalously high in background uranium, and therefore contains important source rocks for uranium. Areas that have the highest potential for uranium deposits in the North Central Region are the Nipigon Basin area, and the areas underlain by the Gunflint and Rove Formations. All the high grade vein-type uranium deposits related to the unconformity are found within the Nipigon Basin. 126 refs

  17. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  18. Thermodynamic dissipation theory for the origin of life

    Science.gov (United States)

    Michaelian, K.

    2011-03-01

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere and, thus, facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight on the surface of Archean seas. The resulting heat could then be efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that penetrated the dense early atmosphere and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and diurnal temperature cycling of the Archean sea-surface.

  19. Evolutionary and geologic consequences of organic carbon fixing in the primitive anoxic ocean

    Science.gov (United States)

    Berry, W. B. N.; Wilde, P.

    1983-03-01

    Steps leading to development of the modern photic-based marine food web are postulated as the result of modifications of the environment, enhanced by the activity of Archean sulfur chemoautotrophs. Such organisms (Anoxium) evolved in an anoxic ocean prior to 3.9 × 109 yr ago at Archean analogs of modern oceanic hydrothermal vents. At this time geothermal energy was more readily available to organisms than photic energy, given atmospheric conditions at the surface similar to Venus, where intensity is low and only middle and red visible wavelengths penetrate the cloudy CO2-rich atmosphere. Competition for the reduced sulfur developed due to oxidation and loss of sulfur to sediments. Consequently, evolutionary advantage shifted to Anoxium isolates that could use alternate energy sources such as light to supplement the diminished supplies of reduced sulfur. Initially, photo-sulfur organisms evolved similar to modern purple bacteria that absorb in the red visible spectra. Subsequent carbon fixing and oxidation improved both the quantity and range of light reaching the ocean surface. This permitted absorption in the blue visible range so that water splitting was now feasible, releasing free oxygen and accelerating oxidation. Eventually, reducing environments became restricted, completing the shift in the principal marine carbon-fixing activity from anoxic chemoautotrophic to aerobic photosynthetic organisms.

  20. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.

    2013-01-01

    Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle.......Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce...... such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact...

  1. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust

    Science.gov (United States)

    Ushikubo, Takayuki; Kita, Noriko T.; Cavosie, Aaron J.; Wilde, Simon A.; Rudnick, Roberta L.; Valley, John W.

    2008-08-01

    In situ Li analyses of 4348 to 3362 Ma detrital zircons from the Jack Hills, Western Australia by SIMS reveal that the Li abundances (typically 10 to 60 ppm) are commonly over 10,000 times higher than in zircons crystallized from mantle-derived magmas and in mantle-derived zircon megacrysts (typically Jack Hills zircons also have fractionated lithium isotope ratios ( δ7Li = - 19 to + 13‰) about five times more variable than those recorded in primitive ocean floor basalts (2 to 8‰), but similar to continental crust and its weathering products. Values of δ7Li below - 10‰ are found in zircons that formed as early as 4300 Ma. The high Li compositions indicate that primitive magmas were not the source of Jack Hills zircons and the fractionated values of δ7Li suggest that highly weathered regolith was sampled by these early Archean magmas. These new Li data provide evidence that the parent magmas of ancient zircons from Jack Hills incorporated materials from the surface of the Earth that interacted at low temperature with liquid water. These data support the hypothesis that continental-type crust and oceans existed by 4300 Ma, within 250 million years of the formation of Earth and the low values of δ7Li suggest that weathering was extensive in the early Archean.

  2. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Science.gov (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  3. Tectonic-thermal evolution from the northeast region of Minas Gerais and South of Bahia

    International Nuclear Information System (INIS)

    Litwinski, N.

    1985-01-01

    The northeast region of Minas Gerais and South Bahia are centered to the east of 42 0 00 ' WGr, between parallels 15 0 and 18 0 . Its tectonic-thermal evolution is presented here with the support of stratigraphy/lithology, structural analysis, petrography, petrochemistry, regional metamorphism/retro metamorphism and radio chronology. It is pointed out that the evolution occurred in a mobile belt initiating its history in the terminal Archean up to Inferior Proterozoic. The northeast of the region attained crustal stability during 1700 My up to 1800 My (Sao Francisco Craton) meanwhile the rest of the zone kept mobilized till upper proterozoic times. Radio chronological studies suggest for the post tectonic granitic rocks, ages from the brasiliano cycle as well as for those pre-existing rocks which suffered isotopic regeneration and metamorphose in that same cycle an original age from Archean to inferior proterozoic times, except for those which are situated in the northeast part of the region. Petrochemical data point to an origin from sedimentary processes for the majority of the metamorphosed rocks in this region. (author)

  4. Precambrian crustal history of the Nimrod Group, central Transantarctic Mountains

    International Nuclear Information System (INIS)

    Goodge, J.W.; Fanning, C.M.

    2002-01-01

    High-grade metamorphic and igneous rocks of the Nimrod Group represent crystalline basement to the central Transantarctic Mountains. Despite metamorphism and penetrative deformation during the Ross Orogeny, they preserve a deep record of Precambrian geologic history in this sector of the East Antarctic shield. A review of available U-Pb geochronometric data reveals multiple geologic events spanning 2.5 b.y. of Archean to Early Paleozoic time, including: (1) juvenile Archean crust production by magmatism between 3150 and 3000 Ma; (2) crustal stabilisation and metamorphism between 2955 and 2900 Ma; (3) ultra-metamorphism or anatexis at c. 2500 Ma; (4) deep-crustal metamorphism and magmatism between 1720 and 1730 Ma, redefining the Nimrod Orogeny; (5) post-1700 Ma sedimentation; and (6) basement reactivation involving high-grade metamorphism, magmatism, and penetrative deformation during the Ross Orogeny between 540 and 515 Ma. A strong regional metamorphic and deformational Ross overprint, dated by U-Pb and Ar thermochronology, had pronounced thermomechanical effects on the basement assemblage, yet rocks of the Nimrod Group retain robust evidence of their Precambrian ancestry. The zircon U-Pb record therefore demonstrates that primary crustal lithosphere of the East Antarctic shield extends to the central Transantarctic Mountains, and that it has undergone multiple episodes of reactivation culminating in the Ross Orogeny. (author). 48 refs., 2 figs., 1 tab

  5. Age of the emerald mineralization from the Itabira-Nova Era District, Minas Gerais, Brazil, based on LA-ICP-MS geochronology of cogenetic titanite

    Directory of Open Access Journals (Sweden)

    Hanna Jordt-Evangelista

    Full Text Available ABSTRACT: In the Itabira-Nova Era Emerald District, southeast Brazil, gemological emerald is extracted from underground mines found in schist-type deposits at the contact zone of the Archean Metavolcanosedimentary Sequence of the Guanhães Complex and Paleoproterozoic anorogenic granites of the Borrachudos Suite. Schist-type deposits are commonly generated by reactions enhanced by deformation and heat during regional metamorphism. The age of the mineralization in the region has been a matter of debate for decades: Ages ranging from the Archean to the Neoproterozoic are mentioned in the literature. In the mineralized zone from the Piteiras mine fluorine-aluminum-bearing titanite is found in metamafic rocks. The fluorine content was probably derived from the Borrachudos granites and pegmatites like the beryllium for emerald, thus both minerals could have been generated during the same event. U-Pb titanite geochronology via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS was performed on a thin section of a phlogopite-plagioclase-hornblende schist from the Piteiras mine. The determined age of 576 ± 7 Ma is also the probable age for emerald generation during the Brasiliano cycle, which was the only tectonometamorphic event postdating the intrusion of the granites. This event provided heat and fluids necessary for reactions between the Be- and the Cr-bearing rocks, thus enabling the formation of emeralds.

  6. Fossil Record of Precambrian Life on Land

    Science.gov (United States)

    Knauth, Paul

    2000-01-01

    The argument that the earth's early ocean was up to two times modern salinity was published in 'Nature' and presented at the 1998 Annual Meeting of the Geological Society of America in Toronto. The argument is bolstered by chemical data for fluid inclusions in Archean black smokers. The inclusions were 1.7 times the modern salinity causing the authors to interpret the parent fluids as evaporite brines (in a deep marine setting). I reinterpreted the data in terms of the predicted value of high Archean salinities. If the arguments I presented are on track, early life was either halophilic or non-marine. Halophiles are not among the most primitive organisms based on RNA sequencing, so here is an a priori argument that non-marine environments may have been the site of most early biologic evolution. This result carries significant implications for the issue of past life on Mars or current life on the putative sub-ice oceans on Europa and possibly Callisto. If the Cl/H2O ratio on these objects is similar to that of the earth, then oceans and oceanic sediments are probably not the preferred sites for early life. On Mars, this means that non-marine deposits such as caliche in basalt may be an overlooked potential sample target.

  7. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability

    Science.gov (United States)

    Grimm, R. E.; Marchi, S.

    2018-03-01

    Intense bombardment is considered characteristic of the Hadean and early Archean eons, yet some detrital zircons indicate that near-surface water was present and thus at least intervals of clement conditions may have existed. We investigate the habitability of the top few kilometers of the subsurface by updating a prior approach to thermal evolution of the crust due to impact heating, using a revised bombardment history, a more accurate thermal model, and treatment of melt sheets from large projectiles (>100 km diameter). We find that subsurface habitable volume grows nearly continuously throughout the Hadean and early Archean (4.5-3.5 Ga) because impact heat is dissipated rapidly compared to the total duration and waning strength of the bombardment. Global sterilization was only achieved using an order of magnitude more projectiles in 1/10 the time. Melt sheets from large projectiles can completely resurface the Earth several times prior to ∼4.2 Ga but at most once since then. Even in the Hadean, melt sheets have little effect on habitability because cooling times are short compared to resurfacing intervals, allowing subsurface biospheres to be locally re-established by groundwater infiltration between major impacts. Therefore the subsurface is always habitable somewhere, and production of global steam or silicate-vapor atmospheres are the only remaining avenues to early surface sterilization by bombardment.

  8. Earthquake rupture at focal depth, part II: mechanics of the 2004 M2.2 earthquake along the Pretorius Fault, TauTona Mine, South Africa

    Science.gov (United States)

    Heesakkers, V.; Murphy, S.; Lockner, D.A.; Reches, Z.

    2011-01-01

    We analyze here the rupture mechanics of the 2004, M2.2 earthquake based on our observations and measurements at focal depth (Part I). This event ruptured the Archean Pretorius fault that has been inactive for at least 2 Ga, and was reactivated due to mining operations down to a depth of 3.6 km depth. Thus, it was expected that the Pretorius fault zone will fail similarly to an intact rock body independently of its ancient healed structure. Our analysis reveals a few puzzling features of the M2.2 rupture-zone: (1) the earthquake ruptured four, non-parallel, cataclasite bearing segments of the ancient Pretorius fault-zone; (2) slip occurred almost exclusively along the cataclasite-host rock contacts of the slipping segments; (3) the local in-situ stress field is not favorable to slip along any of these four segments; and (4) the Archean cataclasite is pervasively sintered and cemented to become brittle and strong. To resolve these observations, we conducted rock mechanics experiments on the fault-rocks and host-rocks and found a strong mechanical contrast between the quartzitic cataclasite zones, with elastic-brittle rheology, and the host quartzites, with damage, elastic–plastic rheology. The finite-element modeling of a heterogeneous fault-zone with the measured mechanical contrast indicates that the slip is likely to reactivate the ancient cataclasite-bearing segments, as observed, due to the strong mechanical contrast between the cataclasite and the host quartzitic rock.

  9. NASA-OAI HPCCP K-12 Program

    Science.gov (United States)

    1994-01-01

    The NASA-OAI High Performance Communication and Computing K- 12 School Partnership program has been completed. Cleveland School of the Arts, Empire Computech Center, Grafton Local Schools and the Bug O Nay Ge Shig School have all received network equipment and connections. Each school is working toward integrating computer and communications technology into their classroom curriculum. Cleveland School of the Arts students are creating computer software. Empire Computech Center is a magnet school for technology education at the elementary school level. Grafton Local schools is located in a rural community and is using communications technology to bring to their students some of the same benefits students from suburban and urban areas receive. The Bug O Nay Ge Shig School is located on an Indian Reservation in Cass Lake, MN. The students at this school are using the computer to help them with geological studies. A grant has been issued to the friends of the Nashville Library. Nashville is a small township in Holmes County, Ohio. A community organization has been formed to turn their library into a state of the art Media Center. Their goal is to have a place where rural students can learn about different career options and how to go about pursuing those careers. Taylor High School in Cincinnati, Ohio was added to the schools involved in the Wind Tunnel Project. A mini grant has been awarded to Taylor High School for computer equipment. The computer equipment is utilized in the school's geometry class to computationally design objects which will be tested for their aerodynamic properties in the Barberton Wind Tunnel. The students who create the models can view the test in the wind tunnel via desk top conferencing. Two teachers received stipends for helping with the Regional Summer Computer Workshop. Both teachers were brought in to teach a session within the workshop. They were selected to teach the session based on their expertise in particular software applications.

  10. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton

    International Nuclear Information System (INIS)

    Silva, Luiz Carlos da; Pimentel, Marcio; Armstrong, Richard; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos; Carneiro, Mauricio Antonio

    2002-01-01

    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  11. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 2: orogeno Aracuai, cinturao mineiro e craton Sao Francisco Meridional

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: luizcarlos@aneel.gov.br; Leite, Carlos Augusto; Vieira, Valter Salino; Silva, Marcio Antonio da; Paes, Vinicius Jose de Castro; Cardoso Filho, Joao Moraes [Companhia de Pesquisas de Recursos Minerais (CPRM), Belo Horizonte, MG (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias. Centro de Pesquisa Manuel Teixeira da Costa; Carneiro, Mauricio Antonio [Ouro Preto Univ., MG (Brazil). Dept. de Geologia

    2002-12-15

    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  12. Platinum Group Elements (PGE) geochemistry of komatiites and boninites from Dharwar Craton, India: Implications for mantle melting processes

    Science.gov (United States)

    Saha, Abhishek; Manikyamba, C.; Santosh, M.; Ganguly, Sohini; Khelen, Arubam C.; Subramanyam, K. S. V.

    2015-06-01

    High MgO volcanic rocks having elevated concentrations of Ni and Cr are potential hosts for platinum group elements (PGE) owing to their primitive mantle origin and eruption at high temperatures. Though their higher PGE abundance is economically significant in mineral exploration studies, their lower concentrations are also valuable geochemical tools to evaluate petrogenetic processes. In this paper an attempt has been made to evaluate the PGE geochemistry of high MgO volcanic rocks from two greenstone belts of western and eastern Dharwar Craton and to discuss different mantle processes operative at diverse geodynamic settings during the Neoarchean time. The Bababudan greenstone belt of western and Gadwal greenstone belt of eastern Dharwar Cratons are dominantly composed of high MgO volcanic rocks which, based on distinct geochemical characteristics, have been identified as komatiites and boninites respectively. The Bababudan komatiites are essentially composed of olivine and clinopyroxene with rare plagioclase tending towards komatiitic basalts. The Gadwal boninites contain clinopyroxene, recrystallized hornblende with minor orthopyroxene, plagioclase and sulphide minerals. The Bababudan komatiites are Al-undepleted type (Al2O3/TiO2 = 23-59) with distinctly high MgO (27.4-35.8 wt.%), Ni (509-1066 ppm) and Cr (136-3036 ppm) contents. These rocks have low ΣPGE (9-42 ppb) contents with 0.2-2.4 ppb Iridium (Ir), 0.2-1.4 ppb Osmium (Os) and 0.4-4.4 ppb Ruthenium (Ru) among Iridium group PGE (IPGE); and 1.4-16.2 ppb Platinum (Pt), 2.8-19 ppb Palladium (Pd) and 0.2-9.8 ppb Rhodium (Rh) among Platinum group PGE (PPGE). The Gadwal boninites are high-Ca boninites with CaO/Al2O3 ratios varying between 0.8 and 1.0, with 12-24 wt.% MgO, 821-1168 ppm Ni and 2307-2765 ppm Cr. They show higher concentration of total PGE (82-207 ppb) with Pt concentration ranging from 13 to 19 ppb, Pd between 65 and 180 ppb and Rh in the range of 1.4-3 ppb compared to the Bababudan komatiites. Ir

  13. The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: Constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates

    Science.gov (United States)

    Gleeson, S. A.; Smith, M. P.

    2009-10-01

    We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide-apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10 -3 and δ 37Cl values from -3.1‰ to -1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu-Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10 -3 and δ 37Cl values from -5.6‰ to -1.3‰. Finally, the Cu-Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10 -3 and δ 37Cl values that range from -2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰. The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide-apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ 37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ 37Cl values would be significantly larger. The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.

  14. Asteroids and Archaean crustal evolution: Tests of possible genetic links between major mantle/crust melting events and clustered extraterrestrial bombardments

    Science.gov (United States)

    Glikson, A. Y.

    1992-01-01

    Since the oldest intact terrestrial rocks of ca. 4.0 Ga and oldest zircon xenocrysts of ca. 4.3 Ga measured to date overlap with the lunar late heavy bombardment, the early Precambrian record requires close reexamination vis a vis the effects of megaimpacts. The identification of microtektite-bearing horizons containing spinals of chondritic chemistry and Ir anomalies in 3.5-3.4-Ga greenstone belts provides the first direct evidence for large-scale Archaean impacts. The Archaean crustal record contains evidence for several major greenstone-granite-forming episodes where deep upwelling and adiabatic fusion of the mantle was accompanied by contemporaneous crustal anatexis. Isotopic age studies suggest evidence for principal age clusters about 3.5, 3.0, and 2.7 (+/- 0.8) Ga, relics of a ca. 3.8-Ga event, and several less well defined episodes. These peak events were accompanied and followed by protracted thermal fluctuations in intracrustal high-grade metamorphic zones. Interpretations of these events in terms of internal dynamics of the Earth are difficult to reconcile with the thermal behavior of silicate rheologies in a continuously convecting mantle regime. A triggering of these episodes by mantle rebound response to intermittent extraterrestrial asteroid impacts is supported by (1) identification of major Archaean impacts from microtektite and distal ejecta horizons marked by Ir anomalies; (2) geochemical and experimental evidence for mantle upwelling, possibly from levels as deep as the transition zone; and (3) catastrophic adiabatic melting required to generate peridotitic komatites. Episodic differentiation/accretion growth of sial consequent on these events is capable of resolving the volume problem that arises from comparisons between modern continental crust and the estimated sial produced by continuous two-stage mantle melting processes. The volume problem is exacerbated by projected high accretion rates under Archaean geotherms. It is suggested that

  15. Pulling Back the Veil: The Characterization and Habitability of Enshrouded Worlds

    Science.gov (United States)

    Arney, Giada Nicole

    habitability, I compared the production of fractal organic haze on Archean Earth-analog planets around several spectral types of stars: the sun at 2.7 billion years ago and at present day; the highly flaring M3.5V dwarf AD Leo; the M4V dwarf GJ 876; a modeled quiescent M dwarf; the K2V star epsilon Eridani; and the F2V star sigma Bootis. In my simulations, planets orbiting stars with the highest or lowest UV fluxes did not form haze. Low UV-stars are unable to drive the photochemistry needed for haze formation. High UV stars generate photochemical oxygen radicals that halt the buildup of this haze. Hazes can impact planetary habitability via UV shielding and surface cooling, but this cooling seems unimportant for hazy M dwarf planets because the bulk of the M dwarf spectral energy arrives at longer infrared wavelengths where organic hazes are relatively transparent. I simulated hazy planet spectra for these exoplanet-analogs in reflected light, thermal emission, and transit transmission and found that the spectral features of organic hazes should be detectable with future telescopes. For 10 transits of a hypothetical Archean-analog planet orbiting GJ 876 observed by the James Webb Space Telescope (JWST) over 0.8-14 mum, haze, methane and carbon dioxide are detectable assuming photon-limited noise levels. For direct imaging of a planet at 10 pc using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a shortwave haze absorption feature would be strongly detectable at >12 sigma in 200 hours. The impact of haze on planetary habitability and spectra are crucial to consider for future characterization of terrestrial exoplanets. Haze in the Archean could even have impacted the evolution of photosynthetic pigments because the spectrum of light reaching the planet's surface would have been reddened. I explore the consequences of this and show the spectrum of photons at the Earth's surface beneath a haze. In addition to haze, other types of UV shields would

  16. Osmium Isotope Compositions of Komatiite Sources Through Time

    Science.gov (United States)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os

  17. Detrital zircons from samples of five Neo proterozoic sandstone units deposited on Uruguay and Argentina: about evolution of paleographic Rio de la Plata craton

    International Nuclear Information System (INIS)

    Gaucher, C.; Poire, D.G.; Pamoukaghlian, K.; Gomez Peral, L.; Finney, S.; Valencia, V.; Blanco, G.

    2007-01-01

    We report U-Pb ages of detrital zircons from samples of five Neoproterozoic sandstone units deposited on the Rio de la Plata Craton (RPC) in Uruguay and Argentina. Quartz-arenites of the Piedras de Afilar Formation show typical Transamazonian ages, with peaks at 2.00-2.07, 1.87 and 1.78 Ga. However, the most important zircon population is Mesoproterozoic, showing maxima at 1.49, 1.35, 1.25 and 1.0 Ga. Zircons recovered from two sandstone levels in the Arroyo del Soldado Group (Yerbal and Cerros San Francisco formations) are mostly Archean in age, with maxima at 3.2 and 2.7 Ga. Palaeoproterozoic zircons are also prominent in this unit, with peaks at 2.45 and 2.18, with the latter a typical Transamazonian age. Two samples from the Sierras Bayas Group in Tandilia (Argentina) show different age spectra. Sandstones of the Villa Monica Formation show a unimodal zircon population of Transamazonian age (peak at 2.13 Ga). Sandstones of the Cerro Largo Formation are characterized by a dominant Transamazonian zircon population (peaks at 2.15, 2.0 and 1.79), but also important Archean-lowermost Palaeoproterozoic (3.33, 2.99, 2.7, 2.47 Ga) and Mesoproterozoic peaks (1.55, 1.23 and 1.06). The abundance of Mesoproterozoic detrital zircons is surprising. A proto-Andean, Mesoproterozoic belt is suggested as the source of the Mesoproterozoic detritus. Archean rocks of the RPC crop out only in the Nico Perez Terrane in Uruguay, suggesting that the Nico Perez Terrane was much closer to Tandilia than it is today. The sinistral reactivation of the Sarandi del Yi Shear Zone in the Cambrian, as a result of tangential collision of the Cuchilla Dionisio-Pelotas Terrane, may explain this observations. The absence of Neoproterozoic zircons shows that the studied units were deposited in a stable continental margin opening to the East and South. These Neoproterozoic basins had obviously no contribution whatsoever from Brasiliano-Pan African belts, supporting the idea of Cambrian terrane

  18. A Closer Earth and the Faint Young Sun Paradox: Modification of the Laws of Gravitation or Sun/Earth Mass Losses?

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2013-10-01

    Full Text Available Given a solar luminosity LAr = 0.75L0 at the beginning of the Archean 3.8 Ga ago, where L0 is the present-day one, if the heliocentric distance, r, of the Earth was rAr = 0.956r0, the solar irradiance would have been as large as IAr = 0.82I0. It would have allowed for a liquid ocean on the terrestrial surface, which, otherwise, would have been frozen, contrary to the empirical evidence. By further assuming that some physical mechanism subsequently displaced the Earth towards its current distance in such a way that the irradiance stayed substantially constant over the entire Archean from 3.8 to 2.5 Ga ago, a relative recession per year as large as r˙/r ≈3.4 × 10−11 a−1 would have been required. Although such a figure is roughly of the same order of magnitude of the value of the Hubble parameter 3.8 Ga ago HAr = 1.192H0 = 8.2 × 10−11 a−1, standard general relativity rules out cosmological explanations for the hypothesized Earth’s recession rate. Instead, a class of modified theories of gravitation with nonminimal coupling between the matter and the metric naturally predicts a secular variation of the relative distance of a localized two-body system, thus yielding a potentially viable candidate to explain the putative recession of the Earth’s orbit. Another competing mechanism of classical origin that could, in principle, allow for the desired effect is the mass loss, which either the Sun or the Earth itself may have experienced during the Archean. On the one hand, this implies that our planet should have lost 2% of its present mass in the form of eroded/evaporated hydrosphere. On the other hand, it is widely believed that the Sun could have lost mass at an enhanced rate, due to a stronger solar wind in the past for not more than ≈ 0.2–0.3 Ga.

  19. Syn-extensional plutonism and peak metamorphism in the albion-raft river-grouse creek metamorphic core complex

    Science.gov (United States)

    Strickland, A.; Miller, E.L.; Wooden, J.L.; Kozdon, R.; Valley, J.W.

    2011-01-01

    The Cassia plutonic complex (CPC) is a group of variably deformed, Oligocene granitic plutons exposed in the lower plate of the Albion-Raft River- Grouse Creek (ARG) metamorphic core complex of Idaho and Utah. The plutons range from granodiorite to garnet-bearing, leucogranite, and during intrusion, sillimanite- grade peak metamorphism and ductile attenuation occurred in the country rocks and normal-sense, amphibolite-grade deformation took place along the Middle Mountain shear zone. U-Pb zircon geochronology from three variably deformed plutons exposed in the lower plate of the ARG metamorphic core complex revealed that each zircon is comprised of inherited cores (dominantly late Archean) and Oligocene igneous overgrowths. Within each pluton, a spread of concordant ages from the Oligocene zircon overgrowths is interpreted as zircon recycling within a long-lived magmatic system. The plutons of the CPC have very low negative whole rock ??Nd values of -26 to -35, and initial Sr values of 0.714 to 0.718, consistent with an ancient, crustal source. Oxygen isotope ratios of the Oligocene zircon overgrowths from the CPC have an average ??18O value of 5.40 ?? 0.63 permil (2SD, n = 65) with a slight trend towards higher ??18O values through time. The ??18O values of the inherited cores of the zircons are more variable at 5.93 ?? 1.51 permil (2SD, n = 29). Therefore, we interpret the plutons of the CPC as derived, at least in part, from melting Archean crust based on the isotope geochemistry. In situ partial melting of the exposed Archean basement that was intruded by the Oligocene plutons of the CPC is excluded as the source for the CPC based on field relationships, age and geochemistry. Correlations between Ti and Hf concentrations in zircons from the CPC suggest that the magmatic system may have become hotter (higher Ti concentration in zircon) and less evolved (lower Hf in zircon concentration) through time. Therefore, the CPC represents prolonged or episodic magmatism

  20. The birth, growth and ageing of the Kaapvaal subcratonic mantle

    Science.gov (United States)

    Brey, Gerhard P.; Shu, Qiao

    2018-06-01

    The Kaapvaal craton and its underlying mantle is probably one of the best studied Archean entity in the world. Despite that, discussion is still vivid on important aspects. A major debate over the last few decades is the depth of melting that generated the mantle nuclei of cratons. Our new evaluation of melting parameters in peridotite residues shows that the Cr2O3/Al2O3 ratio is the most useful pressure sensitive melting barometer. It irrevocably constrains the pressure of melting (melt separation) to less than 2 GPa with olivine (ol), orthopyroxene (opx) and spinel (sp) as residual phases. Garnet (grt) grows at increasing pressure during lithosphere thickening and subduction via the reaction opx + sp → grt + ol. The time of partial melting is constrained by Re-depletion model ages (TRD) mainly to the Archean (Pearson and Wittig 2008). However, only 3% of the ages are older than 3.1 Ga while crustal ages lie mainly between 3.1 to 2.8 Ga for the W- and 3.7 to 2.8 Ga for the E-block. Many TRD-ages are probably falsified by metasomatism and the main partial melting period was older than 3.1 Ga. Also, Nd- and Hf- model ages of peridotitic lithologies from the W-block are 3.2 to 3.6 Ga old. The corresponding very negative ɛNd (-40) and ɛHf values (-65) signal the presence of subducted crustal components in these old mantle portions. Subducted components diversify the mantle in its chemistry and thermal structure. Adjustment towards a stable configuration occurs by fluid transfer, metasomatism, partial melting and heat transfer. Ages of metasomatism from the Lu-Hf isotope system are 3.2 Ga (Lace), 2.9 Ga (Roberts Victor) and 2.62 Ga (Finsch) coinciding with the collision of cratonic blocks, the growth of diamonds, metamorphism of eclogites and of Ventersdoorp magmatism. The cratonic lithosphere was stabilized thermally by the end of the Archean and cooled since then with a rate of 0.07 °C/Ma.

  1. Paleocene Picrites of Davis Strait: Products of a Plume or Plates?

    Science.gov (United States)

    Beutel, E. K.; Clarke, D. B.

    2017-12-01

    Voluminous, subaerial, ultra-depleted, 62 Ma, primary picritic lavas occur on both sides of Davis Strait separating Baffin Island and West Greenland. Temporally, the picrites are coeval with the initiation of sea-floor spreading in Labrador Sea and Baffin Bay around 62 Ma. Petrogenetically, the chemical characteristics of these picrites (MgO = 18-21 wt. %; K2O = 0.01-0.20 wt. %; 87Sr/86Sri ≈ 0.7030; ɛNdi ≈ +5.2-8.6; 3He/4He ≤ 49.5RA) demand only derivation by partial melting of highly depleted subcontinental lithospheric mantle (SCLM) at a pressure of 4 GPa, followed by rapid ascent to the surface, but do not necessarily require high temperatures or high degrees of partial melting. Tectonically, these picrites formed in thick Archean and Paleoproterozoic cratonic terranes during Paleogene rifting between Greenland and North America. Structurally, the picrites are related to the major intersection of a NNW suture zone under Baffin Bay and the E-W trending Paleoproterozoic Nagssugtoqidian Fold Belt. During the late Mesozoic, ENE extension created normal faulted basins quasi-parallel with the NNW suture and thinned the mantle lithosphere. Elastic finite element models and present day studies of crustal extension show that the thicker Nagssugtoqidian Fold Belt underwent less thinning and extension than the NNW suture zone in the Archean Rae craton. These extensional disparities occur at the orthogonal intersection of pre-existing E-W trending strike-slip faults in the thicker Nagssugtoqidian Fold Belt with the NNW thinned Archean suture zone, and likely resulted in the formation of one or more pull-apart basins. Because the strike-slip faults are ancient suture zones, trans-tension within these suture zones easily reached 120 km, creating not only decompression melting in the SCLM, but also a pathway for the picritic melts to rapidly reach the surface. Such a purely tectonic model requires no spatially or temporally improbable deep mantle plume for generation of

  2. Metamorphism of the northern Liaoning Complex: Implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton

    Directory of Open Access Journals (Sweden)

    Kam Kuen Wu

    2013-05-01

    Full Text Available As one of the areas where typical late Archean crust is exposed in the Eastern Block of the North China Craton, the northern Laioning Complex consists principally of tonalitic-trondhjemitic-granodioritic (TTG gneisses, massive granitoids and supracrustal rocks. The supracrustal rocks, named the Qingyuan Group, consist of interbedded amphibolite, hornblende granulite, biotite granulite and BIF. Petrological evidence indicates that the amphibolites experienced the early prograde (M1, peak (M2 and post-peak (M3 metamorphism. The early prograde assemblage (M1 is preserved as mineral inclusions, represented by actinotite + hornblende + plagioclase + epidote + quartz + sphene, within garnet porphyroblasts. The peak assemblage (M2 is indicated by garnet + clinopyroxene + hornblende + plagioclase + quartz + ilmenite, which occur as major mineral phases in the rock. The post-peak assemblage (M3 is characterized by the garnet + quartz symplectite. The P–T pseudosections in the NCFMASHTO system constructed by using THERMOCALC define the P–T conditions of M1, M2 and M3 at 490–550 °C/<4.5 kbar, 780–810 °C/7.65–8.40 kbar and 630–670 °C/8.15–9.40 kbar, respectively. As a result, an anticlockwise P–T path involving isobaric cooling is inferred for the metamorphic evolution of the amphibolites. Such a P–T path suggests that the late Archean metamorphism of the northern Liaoning Complex was related to the intrusion and underplating of mantle-derived magmas. The underplating of voluminous mantle-derived magmas leading to metamorphism with an anticlockwise P–T path involving isobaric cooling may have occurred in continental magmatic arc regions, above hot spots driven by mantle plumes, or in continental rift environments. A mantle plume model is favored because this model can reasonably interpret many other geological features of late Archean basement rocks from the northern Liaoning Complex in the Eastern Block of

  3. Fossil imprints of the Pan-African collision process revealed by seismic anisotropy in southern Madagasca

    Science.gov (United States)

    Tilmann, F. J.; Rindraharisaona, E. J.; Reiss, M. C.; Dreiling, J.; Rumpker, G.; Yuan, X.; Giese, J.; Priestley, K. F.; Wysession, M. E.; Barruol, G.; Rambolamanana, G.

    2017-12-01

    In the assembly of Pangaea during the Proterozoic Pan-African Orogeny and later rifting and break-up of Gondwanaland, Madagascar occupied a central position, sandwiched between East Africa and India-Seychelles. Today, its metamorphic terranes still bear witness to the collision process. In the SELASOMA project we have deployed a seismic array in southern Madagascar in order to determine the imprint of these events onto the present day-crustal structure. 25 broadband and 23 SP stations were deployed for a period of 1-2 years. We present an overview of the results of several studies (receiver functions, ambient noise surface wave analysis, SKS splitting) constraining the isotropic and anisotropic crustal structure of southern Madagascar based on this deployment, supplemented by permanent stations and the contemporaneous MACOMO and RHUM-RUM deployments. The upper and middle crust of the Archean and Proterozoic provinces is overall quite similar, but a remarkable difference is that the Archean crust shows clear signs of underplating; we surmise that the Proterozoic crust was lost in the Pan-African collision. Both horizontal (from shear-wave splitting) and radial (SH/SV from Love and Rayleigh discrepancy) anisotropy shows evidence of collisional processes. A 150 km-wide zone of anomalous splitting measurements (deviating from the APM-parallel fast directions in most of Madagascar) in the region, where several major fossil shear zones have been mapped, can be explained as a zone of extensive coherent deformation within the crust; fast directions here align with the dominant strike of the major fossil shear zones. Negative radial anisotropy (i.e., SV faster than SH) in the mid-crust, likewise interpreted to have been formed by the collision, highlights the likely role of vertical shearing, presumably caused by extensive folding. In the lower crust, however, positive radial anisotropy is found in most of the Proterozoic and Archean terranes, which, analogous to the

  4. Environmental Consequences of Big Nasty Impacts on the Early Earth

    Science.gov (United States)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 2.5 billion years, the biggest of which were approximately30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid

  5. Electromagnetic evidence of high angle convergence between the Congo and Kalahari cratons in southern Africa

    Science.gov (United States)

    Khoza, D. T.; Jones, A. G.; Muller, M. R.; Miensopust, M. P.; Webb, S. J.; Share, P.

    2010-12-01

    The southern African tectonic fabric is made up of a number Archean cratons flanked by Proterozoic and younger mobile belts, all with distinctly different but related geological evolutions. The cratonic margins and some intra-cratonic domain boundaries have played major roles in the tectonics of Africa by focusing ascending magmas and localising cycles of extension and rifting. Of these cratons the southern extent of the Congo craton is one of the least-constrained tectonic boundaries in the African tectonic architecture and knowledge of its geometry is crucial for understanding geological process of formation and deformation prevailing in the Archean and later. In this work, which forms a component of the hugely successful Southern African MagnetoTelluric Experiment (SAMTEX), we present the first-ever lithospheric electrical resistivity image of the southern boundary of the enigmatic Congo craton and the Neoproterozoic Damara-Ghanzi-Chobe (DGC) orogenic belt on its flanks. The DGC belt is highly complex and records the transpressive collision between the Congo to the north and Kalahari craton to the south. Magnetotelluric data were collected along a profile crossing all three of these tectonic blocks. The two-dimensional resistivity models resulting from inverting the distortion-corrected responses along the profiles all indicate significant lateral variations in the crust and upper mantle structure along and across strike from the younger DGC orogen to the older adjacent craton. The Moho depth in the DGC is mapped at 40 km by active seismic methods, and is also well constrained by S-wave receiver function models. The Damara belt lithosphere, although generally more conductive and significantly thinner (approximately 150 km) than the adjacent Congo and Kalahari cratons, exhibits upper crustal resistive features interpreted to be caused by igneous intrusions emplaced during the Gondwanan Pan-African magmatic event. The thinned lithosphere is consistent with a 50 m

  6. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.

    Science.gov (United States)

    Wilson, A H; Shirey, S B; Carlson, R W

    2003-06-19

    Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.

  7. Research on the construction of knowledge base for institutes

    International Nuclear Information System (INIS)

    Yang Ru

    2014-01-01

    Knowledge base (KB in short) is very important for institutes. It can train employees to improve their ability of work. It can supply more information to directors for making right decisions, and can help constructing learning organization to promote innovation. Institutes possess several information systems, but there are some problems such as inadequate use of documents, and connotative knowledge isn't described and communicated. KB of institute is based on programs. It stress integrity, secrecy of programs and authorized access. Libraries have abilities to construct KB, since it's the center of information for the institute. KB of institute includes: KB of training, communion of technique issues, KB of department, personal KB, KB of specialists. Because of low cost many institutes adopt softwares of free codes such as: DSpace, EPrints, Fedodra, CDSware, Greenstone. KB systems are choosed by institutes, depending on types of knowledge, ability of technique, fund and so on. KB is constructed by collecting, sorting, describing key knowledge, connecting, accessing, updating and innovating. Program KB of different places and majors will unite in the future. (author)

  8. The Yeelirrie calcrete uranium deposit, Western Australia

    International Nuclear Information System (INIS)

    Cameron, E.

    1984-01-01

    The Yeelirrie deposit, between Wiluna and Sandstone, lies in the Yilgarn block, in a catchment area of deeply weathered granites and greenstones. The host calcretes are a 1 to 1.5 km wide valley-fill in a long established drainage system, and are developed over a 85 km long distance. The calcretes are either earthy or procellaneous with voids. The deposit is sheetlike, some 9 km long and 5 to 1.5 km wide, averaging 3 m thick and is 4 to 8 meters below the surface, and immediately below the water table. The deposit has 52,500 tonnes of U 3 O 8 at an average grade of 0.15% U 3 O 8 . Carnotite is the only uranium mineral. Water movement in the area is largely subsurface in the calcrete, which is a good aquifer. Uranium concentrations of 100 to 450 ppb are found in the calcrete ground waters compared to background values of 5 to 10 ppb. (author)

  9. Mineral Potential in India Using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) Data

    Science.gov (United States)

    Oommen, T.; Chatterjee, S.

    2017-12-01

    NASA and the Indian Space Research Organization (ISRO) are generating Earth surface features data using Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) within 380 to 2500 nm spectral range. This research focuses on the utilization of such data to better understand the mineral potential in India and to demonstrate the application of spectral data in rock type discrimination and mapping for mineral exploration by using automated mapping techniques. The primary focus area of this research is the Hutti-Maski greenstone belt, located in Karnataka, India. The AVIRIS-NG data was integrated with field analyzed data (laboratory scaled compositional analysis, mineralogy, and spectral library) to characterize minerals and rock types. An expert system was developed to produce mineral maps from AVIRIS-NG data automatically. The ground truth data from the study areas was obtained from the existing literature and collaborators from India. The Bayesian spectral unmixing algorithm was used in AVIRIS-NG data for endmember selection. The classification maps of the minerals and rock types were developed using support vector machine algorithm. The ground truth data was used to verify the mineral maps.

  10. Bismuth-silver mineralization in the Sergozerskoe gold occurrence

    Directory of Open Access Journals (Sweden)

    Kalinin A. A.

    2017-03-01

    Full Text Available Bismuth-silver mineralization attendant to gold mineralization in the Sergozerskoe gold occurrence has been studied in detail. Bi-Ag mineralization is connected with diorite porphyry dykes, which cut volcanic-sedimentary Lopian complexes of the Strel'ninsky greenstone belt – hornblendite and actinolite-chlorite amphibolites, biotite and bi-micaceous gneisses. Distribution of Bi-Ag mineralization similar to gold mineralization is controlled by 80 m thick zone of silicification. Bi minerals are found in brecciated diorite porphyry. Bismuth-silver mineralization includes native metals (bismuth, electrum, silver, tellurides (hedleyite, hessite, selenides (ikunolite, sulfides and sulfosalts of Bi and Ag (matildite, lillianite, eckerite, jalpaite, prustite, acanthite, a few undiagnosed minerals. All Bi and Ag minerals associate with galena. Composition of mineralization evolved from early to late stages of development, depending on intensity of rock alteration. The earliest Bi-Ag minerals were native bismuth and hedleyite formed dissemination in galena, and electrum with 30-45 mass.% Au. Later native bismuth was partly substituted by silver and bismuth sulfosalts and bismuth sulfides. The latest minerals were low-temperature silver sulfides eckerite, jalpaite, and acanthite, which were noted only in the most intensively altered rocks. As soon as the process of formation of Bi-Ag mineralization is the same as formation of gold, findings of bismuth-silver mineralization can serve as a positive exploration sign for gold in the region.

  11. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  12. Thoughts about uranium-bearing quartz-pebble conglomerates: a summary of ideas presented at the workshop

    International Nuclear Information System (INIS)

    Skinner, B.J.

    1981-01-01

    A summation of papers given at the Workshop on the Genesis of Uranium- and Gold-Bearing Precambrian Quartz-Pebble Conglomerates held at Golden, Colorado, on October 13-15, 1975, is presented. Seven pertinent topics, chosen by the author, are compiled from the several papers and are critically discussed. The time of formation of these deposits is between 3- and 2-billion years ago. The uraniferous conglomerates appear to be of fluvial origin and the known uranium reserves are plotted along an idealized fluviatile system. The source areas for the placers are related to 3 billion year old granites, greenstones and metamorphic rocks of the cratons - these most probably were located paleogeographically in a polar region. The role of diagenesis in the formation of uranium ores is discussed with respect to oxygen content of Precambrian atmospheres and of subsurface waters. The effect of subsequent metamorphism and recrystallization upon indigenous pyrites and kerogen is related. Finally characteristics of known uranium deposits are correlated to suggest a strategy to be employed while prospecting for undiscovered uranium ores. (DT)

  13. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  14. Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns

    Science.gov (United States)

    Wiemer, Daniel; Schrank, Christoph E.; Murphy, David T.; Wenham, Lana; Allen, Charlotte M.

    2018-05-01

    During the early Archaean, the Earth was too hot to sustain rigid lithospheric plates subject to Wilson Cycle-style plate tectonics. Yet by that time, up to 50% of the present-day continental crust was generated. Preserved continental fragments from the early Archaean have distinct granite-dome/greenstone-keel crust that is interpreted to be the result of a gravitationally unstable stratification of felsic proto-crust overlain by denser mafic volcanic rocks, subject to reorganization by Rayleigh-Taylor flow. Here we provide age constraints on the duration of gravitational overturn in the East Pilbara Terrane. Our U-Pb ages indicate the emplacement of 3,600-3,460-million-year-old granitoid rocks, and their uplift during an overturn event ceasing about 3,413 million years ago. Exhumation and erosion of this felsic proto-crust accompanied crustal reorganization. Petrology and thermodynamic modelling suggest that the early felsic magmas were derived from the base of thick ( 43 km) basaltic proto-crust. Combining our data with regional geochronological studies unveils characteristic growth cycles on the order of 100 million years. We propose that maturation of the early crust over three of these cycles was required before a stable, differentiated continent emerged with sufficient rigidity for plate-like behaviour.

  15. Cooperation and tensions in multiethnic corporate societies using Teotihuacan, Central Mexico, as a case study.

    Science.gov (United States)

    Manzanilla, Linda R

    2015-07-28

    In this paper, I address the case of a corporate society in Central Mexico. After volcanic eruptions triggered population displacements in the southern Basin of Mexico during the first and fourth centuries A.D., Teotihuacan became a multiethnic settlement. Groups from different backgrounds settled primarily on the periphery of the metropolis; nevertheless, around the core, intermediate elites actively fostered the movement of sumptuary goods and the arrival of workers from diverse homelands for a range of specialized tasks. Some of these skilled craftsmen acquired status and perhaps economic power as a result of the dynamic competition among neighborhoods to display the most lavish sumptuary goods, as well as to manufacture specific symbols of identity that distinguished one neighborhood from another, such as elaborate garments and headdresses. Cotton attire worn by the Teotihuacan elite may have been one of the goods that granted economic importance to neighborhood centers such as Teopancazco, a compound that displayed strong ties to the Gulf Coast where cotton cloth was made. The ruling elite controlled raw materials that came from afar whereas the intermediate elite may have been more active in providing other sumptuary goods: pigments, cosmetics, slate, greenstone, travertine, and foreign pottery. The contrast between the corporate organization at the base and top of Teotihuacan society and the exclusionary organization of the neighborhoods headed by the highly competitive intermediate elite introduced tensions that set the stage for Teotihuacan's collapse.

  16. A review of the geology and major economic mineral provinces of Southern Africa

    International Nuclear Information System (INIS)

    Van Biljon, W.J.

    1982-01-01

    The sequences that are considered to contain the oldest rocks (3500 Ma), the greenstone belts, are surrounded and intruded by granitic rocks. Within these granitic terranes, ages of up to 3800 Ma have been obtained. These formations together constitute the basement complex in Southern Africa. Deposits of gold, antimony, copper, lead, zinc, and tin are found in these rocks. Around 2000 Ma ago in the Bushveld Complex with its enormous deposits of chromium, platinum, and vanadium was intruded into the sedimentary sequences in the central Transvaal. Overlying the Namaqualand gneisses, volcano-sedimentary sequences were deposited in South West Africa/Namibia. These sequences were deformed and metamorphosed some 500 to 700 Ma ago along the Damara Belt. Deposits of copper, lead, zinc, vanadium, and tin, as well as a large uranium deposit, exist within this belt. Around 500 Ma ago, sedimentary rocks were deposited in a sea along the southern edge of the present continent. These rocks were deformed into the Cape Fold Belt. Further north, the above-mentioned rocks were followed by the sedimentary and volcanic rocks of the Karoo Sequence, which contain not only all the major coal deposits of Southern Africa, but also deposits of uranium and fireclay

  17. Geochronology of granitoids and gnaisses from the Rio Maria, Mata Geral farm and Itacaiunas river regions, southern Para, Brazil

    International Nuclear Information System (INIS)

    Montalvao, R.M.G. de; Tassinari, C.C.G.; Bezerra, P.E.L.; Prado, P.

    1984-01-01

    Granitoids and gneisses occurring at Rio Maria, Mata Geral farm and Itacaiunas river regions, southern Para, underwent radiometric age determinations by Rb/Sr method using conventional isochrons. Results obtained from the Rio Maria and Mata Geral farm regions allowed te establishment of a reference 2,600 my Rb/Sr isochron with an initial Sr 87 /Sr 86 ratio of 0.7009. This result resembles the one obtained for granitoids and gneisses hosting rocks of the Serra do Inaja greenstone belt, located some what south of this area, which yielded, in Rb/Sr isochron, a radiometric age of 2,696 + - 79 my with an initial Sr 87 /Sr 86 ratio of 0.701. Results obtained from the Itacaiunas river region allowed for the establishment of a Rb/Sr referential isochron of 2,480 + - 40 my wth an initial Sr 87 /.Sr 86 ratio of 0.7072. Due to low initial ratios, it is suggested that the rocks from the Rio Maria, Mata Geral farm and Serra do Inaja regions formed from Mafic crust or superior mantle reworking, while those from the Itacaiunas river region, due to a high initial ratio, result from reworking at high crustal levels. (Author) [pt

  18. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    Science.gov (United States)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  19. U-Pb and Sm-Nd preliminary geochronologic data on the Yaounde series, Cameroon: re-interpretation of the granulitic rocks as the suture of a collision in the ''Centrafrican'' belt

    International Nuclear Information System (INIS)

    Schmus, W.R. Van; Penaye, J.; Toteu, S.F.; Nzenti, J.P.

    1993-01-01

    U-Pb on zircons and Sm-Nd on whole-rock analyses have been applied on the schists, micaschists and granulitic gneisses of the Yaounde series. The results fix the granulitic metamorphism in the Yaounde series at 620±10 Ma and the deposition of the series during the Upper Proterozoic. In addition, another remnant of Lower Proterozoic basement, previously recognized in northern Cameroon, has been identified at Kekem northwest of the Yaounde series. The Yaounde granulitic unit is re-interpreted as the suture of a Pan-African collision between a passive margin (Archean Congo craton and its Birrimian Nyong cover) to the south and an intensive granitized active margin (dismembered eburnian basement and Upper Proterozoic series) to the north. (author). 14 refs., 4 figs

  20. Petrology and geochemistry of the marbles and calcosilicated rocks from Ipira, Bahia - Brazil

    International Nuclear Information System (INIS)

    Oliveira, M.A.F.T. de.

    1976-01-01

    This work explains a study of marbles and diopsitites from Serra das Panelas, Ipira, Bahia, Brazil. Petrographic analysis, chemistry some elements, trace elements and rare earths, isotopic analysis of Strontium, carbon and oxigen, and geochronological determinations were done. The ages founded correspond to Transamazonic Orogenetic cicle, with Archean age, confirmed by the 18 O values found, which give to marble, ages about 2.500 my. The mineralogy and the texture give to marble an invulgar aspect, making a confusion with carbonate. The petrochemical data and the geochemistry of 13 C and 18 O isotopes showed that the marble and diopsitites was formed from the old marine carbonates. The geochemistry of rare earth suggests a strong correlation with carbonitic and alkaline rocks. An hybrid origem to this rocks is proposed. (C.D.G.) [pt

  1. On the age of the Onverwacht Group, Swaziland sequence, South Africa. [radioactive dating of stratified igneous rocks

    Science.gov (United States)

    Jahn, B.-M.; Shih, C.-Y.

    1974-01-01

    Some rocks of the Onverwacht Group, South Africa, have been analyzed for Rb and Sr concentrations and Sr isotopic composition. These rocks include volcanic rocks, layered ultramafic differentiates and cherty sediments. Whole rock data indicate that the Rb-Sr isotopic systems in many samples were open and yield no reasonable isochron relationships. However, the data of mineral separates from a basaltic komatiite define a good isochron of 3.50 (plus or minus .2) b.y. with an initial Sr-87/Sr-86 ratio of 0.70048 plus or minus 5. The orthodox interpretation of this age is the time of the low grade metamorphism. It is reasonable to assume that the age of 3.50 b.y. might also represent the time of initial Onverwacht volcanism and deposition. The initial Sr-87/Sr-86 ratio obtained above is important to an understanding of the Sr isotopic composition of the Archean upper mantle.

  2. Litho stratigraphy of precambrian rocks in middle Xingu river basin -Altamira, Para state, Brazil

    International Nuclear Information System (INIS)

    Santos, M.V. dos; Sousa Filho, E.E. dos; Tassinari, C.C.G.

    1988-01-01

    The basement rocks from the Xingu river is divided into five litho stratigraphic units. They are broadly characterized by domains of ortho and para gneisses, volcano-sedimentary sequences, migmatites and by syntectonic and latetectonic granitoids. In addition acid to intermediate volcanics (Iriri formation) and several sub-volcanic granitic plutons (Maloquinha suite) also occur within the investigated area, as well as basic intrusions and minor arenous sediments covers, slightly metamorphosed. Geochronological studies carried out on the basement rocks and on the volcanics demonstrates an geologic evolution restricted to the trans Amazonian cycle (2.1 - 1.9 Ga). Sr isotopic evolution (high initial 87 Sr/ 86 Sr ratios) suggest that strong reworking of crustal material occurred at this time, in association with the tectonic evolution of the Maroni-Itacaiunas mobile belt related to the lower proterozoic, which borders the northern and northerneast part of the Archean central Amazonian province. (author)

  3. Evolution of the solar constant

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales

  4. Geochemistry and source of iron-formation from Guanhaes group, Guanhaes district, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Sad, J.H.G.; Chiodi Filho, C.; Magalhaes, J.M.M.; Carelos, P.M.

    1990-01-01

    The Guanhaes district is underlain by metavolcano-sedimentary rocks of the Guanhaes Group, emplaced over an older Archean basement and intruded by granitic bodies. The Guanhaes Group is composed of pelitic, mafic and ultramafic schists at the base; silicate and carbonate facies iron-formation, calcarious schists, calcsilicates rocks and quartzites at the median portion and para-gneisses (meta-graywacks) at the top. Geochemistry of iron-formation suggest a hydrothermal affinity comparable to the hydrothermal sediments flanking East Pacific Rise. Paragenetic studies indicates that the rocks were submited to two metamorphic processes: one of regional character (high-amphibolite facies) and one of themal character (pyroxene-hornfels facies). Chemical analysis, as X-ray and optic spectrography, atomic absorption and plasma spectrography are presented. (author)

  5. Multiple S and O isotope constraints on O2 at 2.25 Ga

    Science.gov (United States)

    Killingsworth, B.; Sansjofre, P.; Philippot, P.; Thomazo, C.; Cartigny, P.; Lalonde, S.

    2017-12-01

    The composition of Earth's atmosphere around the time of the Great Oxidation Event (GOE) at the Archean-Proterozoic boundary is of great interest for reconstructing the redox evolution of the Earth. Sulfate has been shown to be a valuable recorder of isotopic signals of atmospheric O2 but its records are sparse around the time of the GOE. To constrain O2 around the GOE, we have measured quadruple sulfur and triple oxygen isotopes of sulfate from barite in sedimentary drill core from the Turee Creek Group, Australia from 2.25 Ga. A combined sulfur and oxygen approach for estimating the triple oxygen isotope composition of O2 at 2.25 Ga will be presented and its implications for the Paleoproterozoic atmosphere will be discussed.

  6. Pluton emplacement and magmatic arc construction: A model from the Patagonian batholith

    Science.gov (United States)

    Bruce, Robert; Nelson, Eric; Weaver, Stephen

    1988-01-01

    A model of batholithic construction in Andean arcs and its applicability to possibly similar environments in the past is described. Age and compositional data from the Patagonian batholith of southern Chile show a long history of magmatism in any given area (total age range is 15 to 157 Ma), but different regions appear to have different magmatic starting ages. Furthermore, mafic rocks seem to be the oldest components of any given region. An assembly line model involving semicontinuous magmatism and uplift was outlined, which has implications for other terranes: uplift rates will be proportional to observed ranges in age, and total uplift will be proportional to the age of the oldest pluton in any given area. It is suggested that misleading results would be obtained if only small areas of similar terranes in the Archean were available for study.

  7. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  8. Finite-frequency P-wave tomography of the Western Canada Sedimentary Basin: Implications for the lithospheric evolution in Western Laurentia

    Science.gov (United States)

    Chen, Yunfeng; Gu, Yu Jeffrey; Hung, Shu-Huei

    2017-02-01

    The lithosphere beneath the Western Canada Sedimentary Basin has potentially undergone Precambrian subduction and collisional orogenesis, resulting in a complex network of crustal domains. To improve the understanding of its evolutionary history, we combine data from the USArray and three regional networks to invert for P-wave velocities of the upper mantle using finite-frequency tomography. Our model reveals distinct, vertically continuous high (> 1%) velocity perturbations at depths above 200 km beneath the Precambrian Buffalo Head Terrane, Hearne craton and Medicine Hat Block, which sharply contrasts with those beneath the Canadian Rockies (Medicine Hat Block (200 km). These findings are consistent with earlier theories of tectonic assembly in this region, which featured distinct Archean and Proterozoic plate convergences between the Hearne craton and its neighboring domains. The highly variable, bimodally distributed craton thicknesses may also reflect different lithospheric destruction processes beneath the western margin of Laurentia.

  9. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  10. Average contents of uranium and thorium in the most important types of rocks of the Ukrainian shield

    International Nuclear Information System (INIS)

    Belevtsev, Ya.N.; Egorov, Yu.P.; Titov, V.K.; Sukhinin, A.M.; Grechishnikova, Z. M.; Zayats, V.B.; Tikhonenko, V.A.; Zhukova, A.M.

    1975-01-01

    The data given concern uranium and thorium contents in the most important rock types of the Ukraina shield. The smallest quantities of uranium are characteristic for the vulcanic rocks of basic and ultrabasic rocks. Archean formations, whose source materials were mainly basic and ultrabasic vulcanites, are marked by this low uranium content. The highest uranium content is observed in the clastogenic rocks of low Proterozoic. The average uranium content is observed in silty argellite rocks represented by crystal slates and paragneissis. Rheomorphic and metasomatic granites and granosyenites of low and middle Proterozoic are also characterized by an increased content of uranium. The platform precipitation rocks of high Proterozoic possess a relatively low uranium content. Thorium concentrations with low thorium-uranium proportions in granites, syenites and granosyenites prove their enrichment in uranium

  11. Middle proterozoic supra crustal and brazilian orogeny in the southeast Ceara state: a mono cyclic evolution

    International Nuclear Information System (INIS)

    Sa, J.M.; Bezerra, F.H.R.; Freitas Macedo, M.H. de; Pereira, R.

    1988-01-01

    The Oros belt is situated in the southeastern part of Ceara state, Brazil, and geologically pertains to the Borborema province. This belt comprises a volcano-sedimentary sequence of middle proterozoic age resting unconformably upon basement of Archean/low proterozoic age. In the geological map of Ceara state, this belt displays an elongate shape towards N-S, turning to ENE-WSW in the south, and reaches 12 km wide in the central park. This paper describes the relationships between the country rocks and the supra crustal sequence, as well as the plutonic intrusions and their tectonic metamorphic evolution. New Rb-Sr whole-rock dates are presented which are very important to separate anorogenic and syn-orogenic granites. (author)

  12. Use of Sr and Pb isotopes in gneissic-migmatic rocks in Itacambira-Barrocao, MG, Brazil

    International Nuclear Information System (INIS)

    Siga Junior, O.; Cordani, U.G.; Basei, M.A.S.; Kawashita, K.

    1987-01-01

    This work tries to show the potential of the Rb-Sr, Pb-Pb and K-Ar methods applied to basic geological mapping. The different interpretative values of these methodologies contribute to the understanding of the tectonic processes developed in the southeastern border of the Sao Francisco Craton. The Rb-Sr and Pb-Pb isotopic data for the gneissic-migmatitic unit of this sector indicates their generation during the Archean (-2.7 Ga) and Early Proterozoic (-2.1 Ga.). The high (Sr 87 /Sr 86 ) and μ 1 values also suggest an origin through reworking of older crustal rocks. The K-Ar data (and one fission track age) allow the thermal history of this domain to be delineated and suggest a vertical tectonic in the Late Brazilian Cycle, putting side by side blocks formed in different depths. (M.V.M.)

  13. Study on thermal history and oil-generated environment from well CC1

    International Nuclear Information System (INIS)

    Xia Yuliang; Zhu Jiechen; Zheng Maogong

    1997-01-01

    U-Pb isotope geochronological study of core samples implies that the sedimentary strata are derived from North-China ancient land and the age of the hidden granite derived from the remelted Archean rocks with lower crust signature is 99 Ma. Fluid inclusion investigation indicates that the Ordovician carbonate rocks are rich in organic matters and should be a better set of oil-generated rocks and reservoir. Based on fission track analysis of apatites from different depths and the paleo-geothermal variation, the authors suggest that there be at least three oil-generated stages. The range of annealing belt of apatite tracks and the paleo-geothermal gradient in this well are 1700-3900 m (roughly corresponding to oil-generated belt) and 3.1 degree C/100 m respectively after Tertiary sedimentation

  14. Geochronological synthesis of Bahia state and the crustal evolution, based in evolution diagram of Sr and initial rate of Sr87/Sr86

    International Nuclear Information System (INIS)

    Sato, K.

    1986-01-01

    The crustal evolution of the ancient terrains of the State of Bahia, Brazil, is attempted with the aid of Sr isotopic results as natural tracers. Some Nd and Pb isotopic data are also available, and support the main conclusions based on Sr evolution diagrams. The analysis of the Sr evolution diagrams shows that the Archean Terrains are mainly formed by accretion from mantle-derived material, but crustal reworking is indicated by the high initial 87 Sr/ 86 Sr value of the Jequie Complex. The Transamazonian mobile belt include both types of materials, but the 87 Sr/ 86 Sr value, generally lower than those of the Jequie Complex, markes improbable a direct derivation. During Middle and Late Proterozoic, the continental crust was already well consolidated, and reworking of crustal material predominated within the Espinhaco and Brasiliano folded systems [pt

  15. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  16. Origin of the Early Sial Crust and U-Pb Isotope-Geochemical Heterogeneity of the Earth's Mantle

    Science.gov (United States)

    Mishkin, M. A.; Nozhkin, A. D.; Vovna, G. M.; Sakhno, V. G.; Veldemar, A. A.

    2018-02-01

    It is shown that presence of the Early Precambrian sial crust in the Indo-Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd-Hf and U-Pb isotopes in modern basalts. The U-Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo-Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo-Atlantic segment.

  17. A mesoproterozoic iron formation

    DEFF Research Database (Denmark)

    Canfield, Donald E; Zhang, Shuichang; Wang, Huajian

    2018-01-01

    formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify....... Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic......-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition....

  18. THE RECENT STRUCTURE AND THE ASSUMED HISTORY OF FORMATION OF THE CRUST IN THE SOUTH-EASTERN SEGMENT OF THE NORTH ASIAN CRATON ALONG REFERENCE PROFILE 3-DV

    Directory of Open Access Journals (Sweden)

    E. Yu. Goshko

    2014-01-01

    Full Text Available The article presents results of specialized processing of the deep seismic profile along a part of Reference Profile 3-DV which crosses the Aldan-Stanovoi shield in the meridian direction and goes across its buried northern slope. The study is aimed at determining frequency-energy characteristics of the seismic wave field which are related to physical conditions of geological features of the crust. Based on analysis and interpretation of the dynamic profiles, it is possible to reveal and contour the Archean cores of consolidation of the Aldan shield and its buried continuation that is covered by sediments of the Middle Lena monocline and to input new facts in the proposed geodynamic model showing formation of the crust in the south-eastern segment of the North Asian craton.

  19. Abundances of chemical elements in granitoids of different geological ages and their characteristics in China

    Directory of Open Access Journals (Sweden)

    Changyi Shi

    2011-04-01

    Full Text Available Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited samples, which includes that of 70 elements, is analyzed according to geological age — Archeozoic (Ar, Proterozoic (Pt, Eopaleozoic (Pz1, Neopaleozoic (Pz2, Mesozoic (Mz, and Cenozoic (Cz — and three major compositional varieties, e.g. alkali-feldspar granite, syenogranite and adamellite. Petrochemical parameters, trace-element content and rare-earth element (REE distributions of the different rock types and geological ages are characterized, and change tendencies through Archean to Cenozoic time are recorded. The comprehensive analytical data presented here has not been previously published. This significant data set can be used as fundamental information in studies of basic China geology, magma petrogenesis, ore exploration and geochemistry.

  20. Classification of Uranium deposits

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1978-01-01

    A listing of the recognized types of uranium mineralization shows nineteen determinable types out of which only six can be classified as of economic significance at present: Oligomiitic quartz pebble conglomerates, sandstone types, calcretes, intra-intrusive types, hydrothermal veins, veinlike types. The different types can be genetically related to prevalent geological environments, i.e. 1. the primary uranium occurrences formed by endogenic processes, 2. the secondary derived from the primary by subsequent exogenic processes, 3. the tertiary occurrences are assumed to be formed by endogenic metamorphic processes, although little is known about the behaviour of the uranium during the metamorphosis and therefore the metallogenesis of this tertiary uranium generation is still vague. A metallotectonic-geochronologic correlation of the uranium deposits shows a distinct affinity of the uranium to certain geological epochs: The Upper Archean, Lower Proterozoic, the Hercynian and, in a less established stage, the Upper Proterozoic. (orig.) 891 HP/orig. 892 MKO [de

  1. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    with no or low quality heat flow data. This analysis requires knowledge oflithosphere age globally.A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg 1 deg grid forms the basis forthe statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publicationsfor data quality, and corrected for paleo-temperature effects where needed. These data are supplemented bycratonic geotherms based on xenolith data.Since heat flow measurements cover not more than half...

  2. Abiotic synthesis of porphyrins and other oligopyrroles on the early Earth and Earth-like planets

    Science.gov (United States)

    Fox, S.; Strasdeit, H.

    2013-09-01

    It is generally accepted that abiotically formed amino acids existed on Earth in the late Hadean and early Archean (four billion years ago). They were mainly dissolved in a salty primordial ocean. At that time, volcanic islands were much more abundant than today. It is therefore reasonable to assume that, at hot volcanic coasts, amino acids could have been thermally transformed into other organic molecules. Based on this scenario, we conducted laboratory experiments that simulated the interaction between amino acid-containing sea water and hot lava. In these experiments, a large number of different volatile products were formed, among them pyrroles. It was also possible to obtain porphyrins and other oligopyrroles from pyrroles under simulated conditions of primordial volcanic islands. All experiments were conducted under plausible prebiotic conditions. Our results reveal an abiotic pathway to possible precursors of oligopyrrole-type biomolecules, such as heme and chlorophylls.

  3. Gold, uranium and thorium in zones of greenschist displacement metamorphism

    International Nuclear Information System (INIS)

    Gavrilenko, B.V.; Savitskij, A.V.; Titov, V.V.

    1987-01-01

    Distribution of gold, uranium (bar and mobile) and thorium in 15 zones of greenschist dislocated metamorphism in different structures of the Karelo-Kola region carried out by geologic formations of the Early-Archean-Late-Proterozoic age has been studied. More than 200 samples of well core from 0-200 m depths have been analyzed. The results obtained testify to the increase of gold, uranium and less thorium content in zones of green-schist dislocated metamorphism in comparison with the enclosing rocks 1.4-3.1 times. The variation coefficient of gold, uranium and thorium content in green-schist dislocated tectonites increases 1.5-2.9 times. The correlation coefficient of Au/U mob. pair is +0.69, and Au/U bar pair -+0.87. Essential correlation between concentrations of all three elements in enclosing rocks is absent

  4. The role of impacts in the history of the early earth

    Science.gov (United States)

    French, Bevan M.

    1991-01-01

    The significant conclusions of a conference called 'Meteorite Impact and the Early Earth' are reported including data which support the notion that extraterrestrial impacts greatly influenced the development of the earth. The cratering of other planetary surfaces is discussed, and the energy added by meteorite impacts is characterized. The primary effects of large impacts are set forth in terms of atmospheric, oceanic, and biological considerations which suggest that the ramifications would have been significant. Contentious issues include the variation of impact rate with time in the early universe, the interpretation of the record of intense bombardment in the lunar highlands, and the effects related to alternative scenarios. Directions of future study are mentioned including the identification of terrestrial impact structures, conducting searches in the Archean, and assessing ancient impact rates.

  5. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS.

    Science.gov (United States)

    Markey, R; Stein, H; Morgan, J

    1998-03-01

    The technique described in this paper represents the modification and combination of two previously existing methods, alkaline fusion and negative thermal ion mass spectrometry (NTIMS). We have used this technique to analyze repeatedly a homogeneous molybdenite powder used as a reference standard in our laboratory. Analyses were made over a period of 18 months, using four different calibrations of two different spike solutions. The age of this standard reproduces at a level of +/-0.13%. Each individual age analysis carries an uncertainty of about 0.4% that includes the uncertainty in the decay constant for (187)Re. This new level of resolution has allowed us to recognize real differences in ages for two grain-size populations of molybdenite from some Archean samples.

  6. Density heterogeneity of the cratonic lithosphere

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina

    2015-01-01

    Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean-Proterozoic Siberian craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2...... the base of the CBL is at a 180 km depth. The uncertainty of density model is density structure of the Siberian lithospheric mantle with a strong...... correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. 'Pristine' cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8-3.0% (and SPT density of 3.29-3.33 t/m3...

  7. The occurrence of rare earth elements in some Finnish mires

    Directory of Open Access Journals (Sweden)

    Yliruokanen, I.

    1995-12-01

    Full Text Available The content of the more abundant rare earths (RE (Y, La, Ce, Pr, Nd and Sm in the ash of 399 peat samples from 26 Finnish mires was determined by X-ray fluorescence spectrometry. The content of all rare earths (La-Lu, Y in 29 samples was also determined by spark source mass spectrometry. The median RE contents in peat ashes from areas where the bedrock consists of rapakivi granite, granite or archean gneiss are reported. Detailed data concerning the individual mires are also presented. The highest RE contents were found in samples from rapakivi granite areas where a strong negative Eu anomaly was also observed. The RE contents were in general highest at the basal peat layers.

  8. Molecular relics from chemical evolution and the origin of life

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1994-04-01

    The main hypothesis proposed in this work intends to remove the difficulty that arises from the conjecture that the RNA world may have left molecular relics that may still be extant in the angiosperms. We discuss whether it is possible to envisage a possible evolutionary pathway of the RNA replicators spanning the vast time span separating the first appearance of the angiosperms, late in the Mesozoic era (the Lower Cretaceous), from the most likely suberas in which the RNA world may have occurred, namely the Hadean/Early Archean. In order to address this question we suggest that through horizontal gene transfer, as well as through a series of symbiosis of the precursor cell of the land plants, the genes of the replicases (RNA-directed RNA polymerases) associated with putative DNA-independent RNA replicators may have been transferred vertically, eventually becoming specific to the angiosperms. (author). Refs, 7 tabs

  9. Contribution on the Northeastern Minas Gerais geologic-geochronologic study, Brazil

    International Nuclear Information System (INIS)

    Siga Junior, O.; Cordani, U.G.; Basei, M.A.S.; Teixeira, W.; Kawashita, K.

    1987-01-01

    This work demonstrates the potential of integrated Rb-Sr, K-Ar, and U-Pb determinations, when applied to basic regional geology. The different interpretative values of these methodologies contribute to the understanding of the tectonic processes developed in the south-eastern border of the Sao Francisco Craton (northeastern Minas Gerais). The Brazilian Orogenic Cycle is characterized in the area by the Salinas metasediments and the gneissic-migmatitic rocks of the eastern sector. Rb-Sr and U-Pb data indicate the generation of most or even all of these rocks in the 660-570 Ma, interval. No indications of ancient terrains were obtained, and previous ideas of a pervasive reworking of an Archean or Lower Proterozoic crust must be discarded. The K-Ar analyses indicate a crustal level in which temperature remained above 250 O C until at least 480 Ma. (author)

  10. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  11. Mantle Flow Implications across Easter and Southern Africa from Shear Wave Splitting Measurements

    Science.gov (United States)

    Ramirez, C.; Nyblade, A.; Bagley, B. C.; Mulibo, G. D.; Tugume, F.; Wysession, M. E.; Wiens, D.; van der Meijde, M.

    2015-12-01

    In this study, we present new shear wave splitting results from broadband seismic stations in Botswana and Namibia, and combine them with previous results from stations in Kenya, Uganda, Tanzania, Malawi, Zambia, South Africa, Mozambique, Zimbabwe, and Angola to further examine the pattern of seismic anisotropy across southern Africa. The new results come from stations in northern Namibia and Botswana, which help to fill in large gaps in data coverage. Our preliminary results show that fast polarization directions overall trend in a NE orientation. The most noticeable measurements that deviate from this pattern are located around the Archean Tanzania Craton in eastern Africa. The general NE pattern of fast polarization directions is attributed to mantle flow linked to the African superplume. Smaller scale variations from this general direction can be explained by shape anisotropy in the lithosphere in magmatic regions in the East African rift system and to fossil anisotropy in the Precambrian lithosphere.

  12. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    Science.gov (United States)

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a

  13. Characteristics of the crystalline basement beneath the Ordos Basin: Constraint from aeromagnetic data

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2015-05-01

    Full Text Available Aeromagnetic anomaly zonation of the Ordos Basin and adjacent areas was obtained by processing high-precision and large-scale aeromagnetic anomalies with an approach of reduction to the pole upward continuation. Comparative study on aeromagnetic and seismic tomography suggests that aeromagnetic anomalies in this area are influenced by both the magnetic property of the rock and the burial depth of the Precambrian crystalline basement. Basement depth might be the fundamental control factor for aeromagnetic anomalies because the positive and negative anomalies on the reduction to the pole-upward-continuation anomaly maps roughly coincide with the uplifts and depressions of the crystalline basement in the basin. The results, together with the latest understanding of basement faults, SHRIMP U-Pb zircon dating of metamorphic rock and granite, drilling data, detrital zircon ages, and gravity data interpretation, suggest that the Ordos block is not an entirety of Archean.

  14. Sharp at any Age: Moho boundary thickness estimates along a trans-sect through 2 Ga of tectonic history.

    Science.gov (United States)

    Servali, A.; Levin, V. L.; VanTongeren, J. A.

    2015-12-01

    In this study we evaluate crustal thickness and Moho sharpness beneath seismic stations in three different tectonic units of the North American continent: the Archean Superior Province, the Proterozoic Grenville Province, and the Paleozoic Appalachian Orogen. Our analysis involves two steps. First, for each site, we produce P-to-S receiver functions (RFs) organized by backazimuth and epicentral distance, and use them to identify the phase most likely representing a conversion from the Moho. Second, we construct averaged RFs for groups of telesismic events located in a similar geographic region, which we employ to examine shapes of Moho P-to-S converted phases in time series with maximum frequencies increasing from 0.25Hz to 2-3 Hz. At some sites we observe a progressive narrowing of a simple Moho converted phase with an increase in frequency, typical of a vertically instantaneous boundary, while at others the converted phase becomes progressively more complex, typical of a diffuse Moho. Thus, we adopt this difference in converted wave shape dependence on increasing frequency as a measure of Moho thickness. Our estimates of Moho thickness range from less than 300 m to over 2 km, with some locations showing evidence for multiple converting boundaries in the 35-50 km depth range. In this study we define "sharp" Moho at those sites where its vertical thickness is less than 1 km. Our results show that sharp Moho is universal in the Archean terranes regardless of surface lithology, likely due to higher Moho temperatures facilitating wide-spread delamination of dense lower crustal rocks. While a sharp Moho is not unique to the Superior Province, all Grenville and Appalachians sites where we find sharp Moho are in regions of granitic plutonism, suggesting a possible general association with reworking and density sorting of the crustal material (e.g. volcanic arc).

  15. Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Arney, Giada N.; Meadows, Victoria S.; Tovar, Guadalupe; Schwieterman, Edward [University of Washington Astronomy Department, Box 351580, U.W. Seattle, WA 98195 (United States); Domagal-Goldman, Shawn D.; Deming, Drake; Robinson, Tyler D. [NASA Astrobiology Institute Virtual Planetary Laboratory, Box 351580, U.W. Seattle, WA 98195 (United States); Wolf, Eric T., E-mail: giada.n.arney@nasa.gov [University of Colorado at Boulder Laboratory for Astrophysics and Space Physics, 1234 Innovation Drive, Boulder, CO 80303 (United States)

    2017-02-10

    Hazes are common in known planetary atmospheres, and geochemical evidence suggests that early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zones of several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), ϵ Eridani (K2V), and σ Boötis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze because of the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs, whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope , haze makes gaseous absorption features at wavelengths < 2.5 μ m 2–10 σ shallower than a haze-free planet, and methane and carbon dioxide are detectable at >5 σ . A haze absorption feature can be detected at 5 σ near 6.3 μ m, but a higher signal-to-noise ratio is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 pc using a coronagraphic 10 m class ultraviolet–visible–near-infrared telescope, a UV–blue haze absorption feature would be strongly detectable at >12 σ in 200 hr.

  16. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investiga