WorldWideScience

Sample records for archaeo-eukaryotic gins proteins

  1. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication.

    Science.gov (United States)

    Joshi, Kiranmai; Shah, Varun Jayeshkumar; Maddika, Subbareddy

    2016-12-01

    In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  3. An OmpA family protein, a target of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius, controls acetic acid fermentation.

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-07-01

    Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including "Gluconacetobacter polyoxogenes." In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane beta-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid.

  4. An OmpA Family Protein, a Target of the GinI/GinR Quorum-Sensing System in Gluconacetobacter intermedius, Controls Acetic Acid Fermentation▿ †

    Science.gov (United States)

    Iida, Aya; Ohnishi, Yasuo; Horinouchi, Sueharu

    2008-01-01

    Via N-acylhomoserine lactones, the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius NCI1051, a gram-negative acetic acid bacterium, represses acetic acid and gluconic acid fermentation. Two-dimensional polyacrylamide gel electrophoretic analysis of protein profiles of strain NCI1051 and ginI and ginR mutants identified a protein that was produced in response to the GinI/GinR regulatory system. Cloning and nucleotide sequencing of the gene encoding this protein revealed that it encoded an OmpA family protein, named GmpA. gmpA was a member of the gene cluster containing three adjacent homologous genes, gmpA to gmpC, the organization of which appeared to be unique to vinegar producers, including “Gluconacetobacter polyoxogenes.” In addition, GmpA was unique among the OmpA family proteins in that its N-terminal membrane domain forming eight antiparallel transmembrane β-strands contained an extra sequence in one of the surface-exposed loops. Transcriptional analysis showed that only gmpA of the three adjacent gmp genes was activated by the GinI/GinR quorum-sensing system. However, gmpA was not controlled directly by GinR but was controlled by an 89-amino-acid protein, GinA, a target of this quorum-sensing system. A gmpA mutant grew more rapidly in the presence of 2% (vol/vol) ethanol and accumulated acetic acid and gluconic acid in greater final yields than strain NCI1051. Thus, GmpA plays a role in repressing oxidative fermentation, including acetic acid fermentation, which is unique to acetic acid bacteria and allows ATP synthesis via ethanol oxidation. Consistent with the involvement of gmpA in oxidative fermentation, its transcription was also enhanced by ethanol and acetic acid. PMID:18487322

  5. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis.

    Science.gov (United States)

    Nagata, Mariko; Ishino, Sonoko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki; Ishino, Yoshizumi

    2017-10-13

    The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function

    Science.gov (United States)

    Miller, Justin M.; Enemark, Eric J.

    2015-01-01

    In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring. PMID:26539061

  7. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM.

    Science.gov (United States)

    Xu, Yuli; Gristwood, Tamzin; Hodgson, Ben; Trinidad, Jonathan C; Albers, Sonja-Verena; Bell, Stephen D

    2016-11-22

    The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome.

  8. Insights into the Initiation of Eukaryotic DNA Replication.

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  9. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes.

    Science.gov (United States)

    Nillegoda, Nadinath B; Stank, Antonia; Malinverni, Duccio; Alberts, Niels; Szlachcic, Anna; Barducci, Alessandro; De Los Rios, Paolo; Wade, Rebecca C; Bukau, Bernd

    2017-05-15

    Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

  11. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    in proteins is currently lacking. We have therefore analyzed the occurrence and occupancy of phosphorylated sites (~ 100,281) in a large set of eukaryotic proteins (~ 22,995). Phosphorylation probability was found to be much higher in both the  termini of protein sequences and this is much pronounced...... maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins.......Many recent high throughput technologies have enabled large-scale discoveries of new phosphorylation sites and phosphoproteins. Although they have provided a number of insights into protein phosphorylation and the related processes, an inclusive analysis on the nature of phosphorylated sites...

  12. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...

  13. Pilot scale cotton gin trash energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Harp, S.L. [Oklahoma State Univ., Stillwater, OK (United States)

    1993-12-31

    During the summer of 1992 a 520,000 kcal/h (2,064,400 Btu/hr) biomass combustor was installed at a cotton gin in southwestern Oklahoma. The gin has a capacity of approximately 35 bales per hour. Each bale of cotton ginned weighs about 227 kg (500 lb) and produces about 68 kg (150 lb) of trash. Therefore, this gin produces about 52,360 kg (115,500 lb) of trash per day during a typical ginning season. Approximately 2 million kg (4 million lb) of gin trash are produced at this site each year. Cotton must first be dried to about 3-5% moisture content before the ginning process is begun. To accomplish this at this gin, two six million Btu/hour direct fired gas heaters are used to heat air for drying the cotton. The biomass combustor was installed to operate in parallel with one of the heaters to supply heated air for the drying process. A pneumatic conveying system was installed to intercept a portion of the gin trash and divert it to the burner. The burner was operated during the 1992 ginning season, which lasted from September through November, with few problems.

  14. The RecJ2 protein in the thermophilic archaeon Thermoplasma acidophilum is a 3'-5' exonuclease that associates with a DNA replication complex.

    Science.gov (United States)

    Ogino, Hiromi; Ishino, Sonoko; Kohda, Daisuke; Ishino, Yoshizumi

    2017-05-12

    RecJ/cell division cycle 45 (Cdc45) proteins are widely conserved in the three domains of life, i.e. in bacteria, Eukarya, and Archaea. Bacterial RecJ is a 5'-3' exonuclease and functions in DNA repair pathways by using its 5'-3' exonuclease activity. Eukaryotic Cdc45 has no identified enzymatic activity but participates in the CMG complex, so named because it is composed of Cdc45, minichromosome maintenance protein complex (MCM) proteins 2-7, and GINS complex proteins (Sld5, Psf11-3). Eukaryotic Cdc45 and bacterial/archaeal RecJ share similar amino acid sequences and are considered functional counterparts. In Archaea, a RecJ homolog in Thermococcus kodakarensis was shown to associate with GINS and accelerate its nuclease activity and was, therefore, designated GAN ( G INS- a ssociated n uclease); however, to date, no archaeal RecJ·MCM·GINS complex has been isolated. The thermophilic archaeon Thermoplasma acidophilum has two RecJ-like proteins, designated TaRecJ1 and TaRecJ2. TaRecJ1 exhibited DNA-specific 5'-3' exonuclease activity, whereas TaRecJ2 had 3'-5' exonuclease activity and preferred RNA over DNA. TaRecJ2, but not TaRecJ1, formed a stable complex with TaGINS in a 2:1 molar ratio. Furthermore, the TaRecJ2·TaGINS complex stimulated activity of TaMCM ( T. acidophilum MCM) helicase in vitro , and the TaRecJ2·TaMCM·TaGINS complex was also observed in vivo However, TaRecJ2 did not interact with TaMCM directly and was not required for the helicase activation in vitro These findings suggest that the function of archaeal RecJ in DNA replication evolved divergently from Cdc45 despite conservation of the CMG-like complex formation between Archaea and Eukarya. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP

    DEFF Research Database (Denmark)

    Sheppard, Carol; Blombach, Fabian; Belsom, Adam

    2016-01-01

    Little is known about how archaeal viruses perturb the transcription machinery of their hosts. Here we provide the first example of an archaeo-viral transcription factor that directly targets the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the temperate Acidianus...

  16. Energy usage for cotton ginning in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, S.A. [MARA Univ. of Technology, Shah Alam (Malaysia). Faculty of Applied Sciences; Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture; Chen, G.; Baillie, C.; Symes, T. [Southern Queensland Univ., Toowoomba, QLD (Australia). National Centre for Engineering in Agriculture

    2010-07-01

    This paper reported on a study that evaluated the energy consumption of cotton gins used in Australia. The average electricity use is 52.3 kWh per bale. In practicality, the electricity consumption for different gins is correlated linearly with the bale numbers produced. The cost of electricity is therefore important in cotton ginning operations. The power factor in all the gins monitored in this study was greater than 0.85. The study showed that the use of gas dryers was highly influenced by the cotton moisture and regulated drying temperature. In general, electricity and gas consumption comprised 61 and 39 per cent of total energy use respectively. The study showed that 60.38 kg of carbon dioxide are emitted for ginning each bale of cotton. This paper described a newly developed method for monitoring the energy performance in cotton gins. Detailed monitoring and analysis carried out at 2 gin sites revealed that electricity consumption is not influenced much by changes in trash content in the module, degree of moisture and lint quality. However, the cotton variety influences the energy consumption. Cotton handling constituted nearly 50 per cent of the power used in both gins.

  17. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  18. Arranging eukaryotic nuclear DNA polymerases for replication: Specific interactions with accessory proteins arrange Pols α, δ, and ϵ in the replisome for leading-strand and lagging-strand DNA replication.

    Science.gov (United States)

    Kunkel, Thomas A; Burgers, Peter M J

    2017-08-01

    Biochemical and cryo-electron microscopy studies have just been published revealing interactions among proteins of the yeast replisome that are important for highly coordinated synthesis of the two DNA strands of the nuclear genome. These studies reveal key interactions important for arranging DNA polymerases α, δ, and ϵ for leading and lagging strand replication. The CMG (Mcm2-7, Cdc45, GINS) helicase is central to this interaction network. These are but the latest examples of elegant studies performed in the recent past that lead to a much better understanding of how the eukaryotic replication fork achieves efficient DNA replication that is accurate enough to prevent diseases yet allows evolution. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  19. ProteinHistorian: tools for the comparative analysis of eukaryote protein origin.

    Directory of Open Access Journals (Sweden)

    John A Capra

    Full Text Available The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies, find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to integrate these approaches into their analysis pipelines. ProteinHistorian's modular, extensible design facilitates the integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32 eukaryotic genomes are

  20. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  1. Cotton gin electrical energy use trends and 2009 audit results

    Science.gov (United States)

    Cotton gin energy costs have risen more than other operating costs. Energy audits were conducted in twenty US cotton gins representing a range of capacities in six states. The average participating saw gin used 39.5 kWh to process a bale. The average roller gin used 62.6 kWh. Gins have become la...

  2. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13 C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13 C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13 C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  3. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  4. The Cost of Ginning Cotton - 2007 Survey Results

    Science.gov (United States)

    The 2007 United States cotton crop was 18.7 million running bales, 11 percent below 2006 production. This crop was gathered from 10.2 million acres, which yielded a record high 879 pounds per acre and was ginned with 806 operating gins, averaging over 23,000 bales per gin. There has been a yearly ...

  5. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement

    Science.gov (United States)

    Petojevic, Tatjana; Pesavento, James J.; Costa, Alessandro; Liang, Jingdan; Wang, Zhijun; Berger, James M.; Botchan, Michael R.

    2015-01-01

    DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2–7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2–7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2–7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel. PMID:25561522

  6. EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases.

    Science.gov (United States)

    Wang, Yongbo; Liu, Zexian; Cheng, Han; Gao, Tianshun; Pan, Zhicheng; Yang, Qing; Guo, Anyuan; Xue, Yu

    2014-01-01

    We present here EKPD (http://ekpd.biocuckoo.org), a hierarchical database of eukaryotic protein kinases (PKs) and protein phosphatases (PPs), the key molecules responsible for the reversible phosphorylation of proteins that are involved in almost all aspects of biological processes. As extensive experimental and computational efforts have been carried out to identify PKs and PPs, an integrative resource with detailed classification and annotation information would be of great value for both experimentalists and computational biologists. In this work, we first collected 1855 PKs and 347 PPs from the scientific literature and various public databases. Based on previously established rationales, we classified all of the known PKs and PPs into a hierarchical structure with three levels, i.e. group, family and individual PK/PP. There are 10 groups with 149 families for the PKs and 10 groups with 33 families for the PPs. We constructed 139 and 27 Hidden Markov Model profiles for PK and PP families, respectively. Then we systematically characterized ∼50,000 PKs and >10,000 PPs in eukaryotes. In addition, >500 PKs and >400 PPs were computationally identified by ortholog search. Finally, the online service of the EKPD database was implemented in PHP + MySQL + JavaScript.

  7. [Structure and evolution of the eukaryotic FANCJ-like proteins].

    Science.gov (United States)

    Wuhe, Jike; Zefeng, Wu; Sanhong, Fan; Xuguang, Xi

    2015-02-01

    The FANCJ-like protein family is a class of ATP-dependent helicases that can catalytically unwind duplex DNA along the 5'-3' direction. It is involved in the processes of DNA damage repair, homologous recombination and G-quadruplex DNA unwinding, and plays a critical role in maintaining genome integrity. In this study, we systemically analyzed FNACJ-like proteins from 47 eukaryotic species and discussed their sequences diversity, origin and evolution, motif organization patterns and spatial structure differences. Four members of FNACJ-like proteins, including XPD, CHL1, RTEL1 and FANCJ, were found in eukaryotes, but some of them were seriously deficient in most fungi and some insects. For example, the Zygomycota fungi lost RTEL1, Basidiomycota and Ascomycota fungi lost RTEL1 and FANCJ, and Diptera insect lost FANCJ. FANCJ-like proteins contain canonical motor domains HD1 and HD2, and the HD1 domain further integrates with three unique domains Fe-S, Arch and Extra-D. Fe-S and Arch domains are relatively conservative in all members of the family, but the Extra-D domain is lost in XPD and differs from one another in rest members. There are 7, 10 and 2 specific motifs found from the three unique domains respectively, while 5 and 12 specific motifs are found from HD1 and HD2 domains except the conserved motifs reported previously. By analyzing the arrangement pattern of these specific motifs, we found that RTEL1 and FANCJ are more closer and share two specific motifs Vb2 and Vc in HD2 domain, which are likely related with their G-quadruplex DNA unwinding activity. The evidence of evolution showed that FACNJ-like proteins were originated from a helicase, which has a HD1 domain inserted by extra Fe-S domain and Arch domain. By three continuous gene duplication events and followed specialization, eukaryotes finally possessed the current four members of FANCJ-like proteins.

  8. Evolution of pH buffers and water homeostasis in eukaryotes: homology between humans and Acanthamoeba proteins.

    Science.gov (United States)

    Baig, Abdul M; Zohaib, R; Tariq, S; Ahmad, H R

    2018-02-01

    This study intended to trace the evolution of acid-base buffers and water homeostasis in eukaryotes. Acanthamoeba castellanii  was selected as a model unicellular eukaryote for this purpose. Homologies of proteins involved in pH and water regulatory mechanisms at cellular levels were compared between humans and A. castellanii. Amino acid sequence homology, structural homology, 3D modeling and docking prediction were done to show the extent of similarities between carbonic anhydrase 1 (CA1), aquaporin (AQP), band-3 protein and H + pump. Experimental assays were done with acetazolamide (AZM), brinzolamide and mannitol to observe their effects on the trophozoites of  A. castellanii.  The human CA1, AQP, band-3 protein and H + -transport proteins revealed similar proteins in Acanthamoeba. Docking showed the binding of AZM on amoebal AQP-like proteins.  Acanthamoeba showed transient shape changes and encystation at differential doses of brinzolamide, mannitol and AZM.  Conclusion: Water and pH regulating adapter proteins in Acanthamoeba and humans show significant homology, these mechanisms evolved early in the primitive unicellular eukaryotes and have remained conserved in multicellular eukaryotes.

  9. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  10. Protein N-myristoylation in Escherichia coli: Reconstitution of a eukaryotic protein modification in bacteria

    International Nuclear Information System (INIS)

    Duronio, R.J.; Jackson-Machelski, E.; Heuckeroth, R.O.; Gordon, J.I.; Olins, P.O.; Devine, C.S.; Yonemoto, W.; Slice, L.W.; Taylor, S.S.

    1990-01-01

    Protein N-myristoylation refers to the covalent attachment of a myristoyl group (C14:0), via amide linkage, to the NH 2 -terminal glycine residue of certain cellular and viral proteins. Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes this cotranslational modification. The authors have developed a system for studying the substrate requirements and biological effects of protein N-myristoylation as well as NMT structure-activity relationships. Expression of the yeast NMT1 gene in Escherichia coli, a bacterium that has no endogenous NMT activity, results in production of the intact 53-kDa NMT polypeptide as well as a truncated polypeptide derived from proteolytic removal of its NH 2 -terminal 39 amino acids. By using a dual plasmid system, N-myristoylation of a mammalian protein was reconstituted in E. coli by simultaneous expression of the yeast NMT1 gene and a murine cDNA encoding the catalytic (C) subunit of cAMP-dependent protein kinase (PK-A). A major advantage of the bacterial system over eukaryotic systems is the absence of endogenous NMT and substrates, providing a more straightforward way of preparing myristoylated, analog-substituted, and nonmyristoylated forms of a given protein for comparison of their structural and functional properties. The experimental system may prove useful for recapitulating other eukaryotic protein modifications in E. coli so that structure-activity relationships of modifying enzymes and their substrates can be more readily assessed

  11. The N-terminal region of eukaryotic translation initiation factor 5A signals to nuclear localization of the protein

    International Nuclear Information System (INIS)

    Parreiras-e-Silva, Lucas T.; Gomes, Marcelo D.; Oliveira, Eduardo B.; Costa-Neto, Claudio M.

    2007-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitous protein of eukaryotic and archaeal organisms which undergoes hypusination, a unique post-translational modification. We have generated a polyclonal antibody against murine eIF5A, which in immunocytochemical assays in B16-F10 cells revealed that the endogenous protein is preferentially localized to the nuclear region. We therefore analyzed possible structural features present in eIF5A proteins that could be responsible for that characteristic. Multiple sequence alignment analysis of eIF5A proteins from different eukaryotic and archaeal organisms showed that the former sequences have an extended N-terminal segment. We have then performed in silico prediction analyses and constructed different truncated forms of murine eIF5A to verify any possible role that the N-terminal extension might have in determining the subcellular localization of the eIF5A in eukaryotic organisms. Our results indicate that the N-terminal extension of the eukaryotic eIF5A contributes in signaling this protein to nuclear localization, despite of bearing no structural similarity with classical nuclear localization signals

  12. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    Science.gov (United States)

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  14. A set of ligation-independent in vitro translation vectors for eukaryotic protein production

    Directory of Open Access Journals (Sweden)

    Endo Yaeta

    2008-03-01

    Full Text Available Abstract Background The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. Results We designed four ligation independent cloning (LIC vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Conclusion Four newly

  15. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  16. Hearing impairment among workers exposed to excessive levels of noise in ginning industries

    Directory of Open Access Journals (Sweden)

    Kamalesh J Dube

    2011-01-01

    Full Text Available Cotton ginning workers have a risk of hearing loss due to excessive noise levels at the workplace environment. In this study, estimates of typical sound levels prevailing at the workplace environment and its effects on hearing ability of the exposed workers were made among cotton ginning workers. Data on self-reported health status was collected by a questionnaire survey at 10 cotton ginning industries located at Jalgaon district of Maharashtra state, India. The cotton ginning workers were exposed to continuous noise levels between 89 and 106 dBA. The hearing ability of the subjects was accessed by pure tone audiometry. The results of audiometry show mild, moderate and moderately severe degree of hearing impairment among the cotton ginning workers. The data generated during the study show that hearing loss was significantly associated with period of exposure to the workplace noise (P <0.0001. The prevalence of audiometric hearing impairment defined as a threshold average greater than 25 dB hearing level was 96% for binaural low-frequency average, 97% for binaural mid frequency average and 94% for binaural high-frequency average in the cotton ginning workers. We recommend the compulsory use of personal protective equipment like ear plug by the cotton ginning workers at the workplace environment. A regular maintenance of ginning and pressing machineries will avoid the emission of excessive noise at the workplace environment of cotton gins. A regular periodic medical examination is necessary to measure the impact of workplace noise on the health of cotton ginning workers.

  17. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...

  18. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  19. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  20. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family.

    Science.gov (United States)

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-08-27

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog-paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Changes in cotton gin energy consumption apportioned by ten functions

    Science.gov (United States)

    The public is concerned about air quality and sustainability. Cotton producers, gin owners and plant managers are concerned about rising energy prices. Both have an interest in cotton gin energy consumption trends. Changes in cotton gins’ energy consumption over the past fifty years, a period of ...

  2. Functional and evolutionary characterization of Ohr proteins in eukaryotes reveals many active homologs among pathogenic fungi.

    Science.gov (United States)

    Meireles, D A; Domingos, R M; Gaiarsa, J W; Ragnoni, E G; Bannitz-Fernandes, R; da Silva Neto, J F; de Souza, R F; Netto, L E S

    2017-08-01

    Ohr and OsmC proteins comprise two subfamilies within a large group of proteins that display Cys-based, thiol dependent peroxidase activity. These proteins were previously thought to be restricted to prokaryotes, but we show here, using iterated sequence searches, that Ohr/OsmC homologs are also present in 217 species of eukaryotes with a massive presence in Fungi (186 species). Many of these eukaryotic Ohr proteins possess an N-terminal extension that is predicted to target them to mitochondria. We obtained recombinant proteins for four eukaryotic members of the Ohr/OsmC family and three of them displayed lipoyl peroxidase activity. Further functional and biochemical characterization of the Ohr homologs from the ascomycete fungus Mycosphaerella fijiensis Mf_1 (MfOhr), the causative agent of Black Sigatoka disease in banana plants, was pursued. Similarly to what has been observed for the bacterial proteins, we found that: (i) the peroxidase activity of MfOhr was supported by DTT or dihydrolipoamide (dithiols), but not by β-mercaptoethanol or GSH (monothiols), even in large excess; (ii) MfOhr displayed preference for organic hydroperoxides (CuOOH and tBOOH) over hydrogen peroxide; (iii) MfOhr presented extraordinary reactivity towards linoleic acid hydroperoxides (k=3.18 (±2.13)×10 8 M -1 s -1 ). Both Cys 87 and Cys 154 were essential to the peroxidase activity, since single mutants for each Cys residue presented no activity and no formation of intramolecular disulfide bond upon treatment with hydroperoxides. The pK a value of the Cys p residue was determined as 5.7±0.1 by a monobromobimane alkylation method. Therefore, eukaryotic Ohr peroxidases share several biochemical features with prokaryotic orthologues and are preferentially located in mitochondria. Copyright © 2017. Published by Elsevier B.V.

  3. Functional and evolutionary characterization of Ohr proteins in eukaryotes reveals many active homologs among pathogenic fungi

    Directory of Open Access Journals (Sweden)

    D.A. Meireles

    2017-08-01

    Full Text Available Ohr and OsmC proteins comprise two subfamilies within a large group of proteins that display Cys-based, thiol dependent peroxidase activity. These proteins were previously thought to be restricted to prokaryotes, but we show here, using iterated sequence searches, that Ohr/OsmC homologs are also present in 217 species of eukaryotes with a massive presence in Fungi (186 species. Many of these eukaryotic Ohr proteins possess an N-terminal extension that is predicted to target them to mitochondria. We obtained recombinant proteins for four eukaryotic members of the Ohr/OsmC family and three of them displayed lipoyl peroxidase activity. Further functional and biochemical characterization of the Ohr homologs from the ascomycete fungus Mycosphaerella fijiensis Mf_1 (MfOhr, the causative agent of Black Sigatoka disease in banana plants, was pursued. Similarly to what has been observed for the bacterial proteins, we found that: (i the peroxidase activity of MfOhr was supported by DTT or dihydrolipoamide (dithiols, but not by β-mercaptoethanol or GSH (monothiols, even in large excess; (ii MfOhr displayed preference for organic hydroperoxides (CuOOH and tBOOH over hydrogen peroxide; (iii MfOhr presented extraordinary reactivity towards linoleic acid hydroperoxides (k=3.18 (±2.13×108 M−1 s−1. Both Cys87 and Cys154 were essential to the peroxidase activity, since single mutants for each Cys residue presented no activity and no formation of intramolecular disulfide bond upon treatment with hydroperoxides. The pKa value of the Cysp residue was determined as 5.7±0.1 by a monobromobimane alkylation method. Therefore, eukaryotic Ohr peroxidases share several biochemical features with prokaryotic orthologues and are preferentially located in mitochondria. Keywords: Ohr/OsmC, Thiol-dependent peroxidases, Phylogeny

  4. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  5. Cotton gin trash in the western United States: Resource inventory and energy conversion characterization

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.G.; Quinn, M.W.; Whittier, J.P. [NEOS Corp., Lakewood, CO (United States); Cohen, T.M.; Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (United States); Craig, J.D. [Cratech Inc., Tahoka, TX (United States); Swanson, D.S.; Morgan, G. [Western Regional Biomass Energy Program, Golden, CO (United States)

    1993-12-31

    The disposal of wastes associated with the processing of cotton is posing increasing problems for cotton gin operators in the western United States. Traditional disposal methods, such as open-air incineration and landfilling are no longer adequate due to increasing environmental concerns. This paper evaluates the technical, economic and environmental feasibility for cotton gin trash to serve as an energy resource. Cotton gin trash has been quantified, by county, in the five cotton-growing states of the western United States. The energy conversion technology that appears to offer the most promise is gasification. An economic evaluation model has been developed that will allow gin operators to analyze their own situation to determine the profitability of converting gin trash to energy.

  6. 7 CFR 319.8-9 - Hull fiber and gin trash.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hull fiber and gin trash. 319.8-9 Section 319.8-9 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION... Importation and Entry of Cotton and Covers § 319.8-9 Hull fiber and gin trash. (a) Entry of hull fiber will be...

  7. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components.

    Science.gov (United States)

    Fagerlund, Robert D; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2015-09-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. © 2015 Fagerlund et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Work health and safety in cotton ginning industry: a survey of practices in australia

    International Nuclear Information System (INIS)

    Soomro, N.

    2015-01-01

    This survey focuses on the WH and S (Work Health and Safety) practices in Australia and relates them with those in Pakistan. It also highlights the planned areas of work required on WH and S in cotton ginning industry of Pakistan. This article is one a series of research studies that will inform a broader approach development. The aim of the survey was to design a standardized health and safety Act for cotton ginning industry of Pakistan and to help ginners meet their due industry obligations under the model WH and S Act. The first component of the research study survey was to review the relevant Australian work and safety model as this provides a framework to protect the health, safety and welfare of all employees at work and of other people who might be affected by the job. The second aspect of the research study survey concerned site visits to cotton gins with the support of Australian Centre for Agricultural Health and Safety, Moree, NSW. During these visits the existing ginning process in terms of WH and S were reviewed. Informal interviews were also conducted with Gin Managers and Ginning Experts regarding WH and S in the Australian cotton ginning industry. (author)

  9. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  10. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Nicola Vitulo

    2007-01-01

    Full Text Available The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confi rming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals fi ve distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.

  11. A microcultura de um ginásio de treinamento de ginástica artística feminina de alto rendimento

    OpenAIRE

    Mauricio dos Santos de Oliveira

    2014-01-01

    No esporte podemos identificar microculturas constituídas por um grupo de pessoas que compartilham valores, crenças, padrões de comportamentos e um sistema de símbolos, verbal e não verbal, que os distingue do meio cultural dominante. O ginásio é o espaço no qual as microculturas de Ginástica Artística (GA) estão resguardadas e mantém a preeminência das tradições que constituem, em âmbito maior, a macrocultura da modalidade. Nesse ambiente há uma teia de significados, supostamente compartilha...

  12. Overflow system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  13. Unloading system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  14. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  15. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Directory of Open Access Journals (Sweden)

    Cutler Sean R

    2007-06-01

    Full Text Available Abstract Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*, the ER-retention signal (K/HDEL*, the ER-retrieval signal for membrane bound proteins (KKxx*, the prenylation signal (CC* and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists

  16. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  17. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.

    Science.gov (United States)

    Langston, Lance D; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E; Finkelstein, Jeff; Yao, Nina Y; Indiani, Chiara; O'Donnell, Mike E

    2014-10-28

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.

  18. Sparse "1"3C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins

    International Nuclear Information System (INIS)

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A.; Ladizhansky, Vladimir; Brown, Leonid S.; Wang, Shenlin

    2016-01-01

    We demonstrate a novel sparse "1"3C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically "1"3C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  19. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    Ogawa, Tomoko

    1994-01-01

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  20. Mote cleaner system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  1. Combined mote system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  2. Mote trash system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  3. Cyclone robber system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  4. Master trash system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  5. Battery condenser system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...

  6. Battery condenser system total particulate emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. Characterization of cotton gin PM10 emissions based on EPA stack sampling methodologies and particle size distributions

    Science.gov (United States)

    A project to characterize cotton gin emissions in terms of stack sampling was conducted during the 2008 through 2011 ginning seasons. The impetus behind the project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. EPA AP-42 emission factors ar...

  8. Generalized INverse imaging (GIN): ultrafast fMRI with physiological noise correction.

    Science.gov (United States)

    Boyacioğlu, Rasim; Barth, Markus

    2013-10-01

    An ultrafast functional magnetic resonance imaging (fMRI) technique, called generalized inverse imaging (GIN), is proposed, which combines inverse imaging with a phase constraint-leading to a less underdetermined reconstruction-and physiological noise correction. A single 3D echo planar imaging (EPI) prescan is sufficient to obtain the necessary coil sensitivity information and reference images that are used to reconstruct standard images, so that standard analysis methods are applicable. A moving dots stimulus paradigm was chosen to assess the performance of GIN. We find that the spatial localization of activation for GIN is comparable to an EPI protocol and that maximum z-scores increase significantly. The high temporal resolution of GIN (50 ms) and the acquisition of the phase information enable unaliased sampling and regression of physiological signals. Using the phase time courses obtained from the 32 channels of the receiver coils as nuisance regressors in a general linear model results in significant improvement of the functional activation, rendering the acquisition of external physiological signals unnecessary. The proposed physiological noise correction can in principle be used for other fMRI protocols, such as simultaneous multislice acquisitions, which acquire the phase information sufficiently fast and sample physiological signals unaliased. Copyright © 2012 Wiley Periodicals, Inc.

  9. Mote cyclone robber system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  10. Combined lint cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  11. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Laura eGomez-Valero

    2011-10-01

    Full Text Available Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic-like proteins, many of which have been shown to modulate host cell functions to the pathogen's advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.

  12. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    OpenAIRE

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Although fluoride is plentiful in the environment and is commonly used at high concentrations in oral hygiene products, little has been known about how biological systems overcome the toxic effects of this anion. We demonstrate that a protein called FEX in many fungi is essential for cell survival in the presence of high fluoride concentrations. The protein is required for the rapid expulsion of cytoplasmic fluoride, indicating that many eukaryotic species that carry FEX genes likely avoid fl...

  13. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  14. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

    KAUST Repository

    Lengsfeld, Bettina M.; Berry, Kayla N.; Ghosh, Sharmistha; Takahashi, Masateru; Francis, Nicole J.

    2012-01-01

    Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

  15. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

    KAUST Repository

    Lengsfeld, Bettina M.

    2012-09-17

    Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

  16. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    Science.gov (United States)

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  17. ArchaeoGRID, the Archaeology on the e-Infrastructures

    International Nuclear Information System (INIS)

    Pelfer, G.; Cechini, R.; Pelfer, P. G.; Politi, A.

    2007-01-01

    It is well known that in archaeology large use is done of digital technologies and computer applications for data acquisition, storage, analysis and visualization. The approach of modern archaeology to the study of the evolution of ancient human societies is based on the acquisition and analysis of many types of data. The amount of information coming from the archaeology and the other connected sciences and human ties that need to be stored and made available for analysis are increasing at a very large extent. Such data must, however, be analyzed if they are to become valuable information and knowledge. The data analysis use advanced methods developed in mathematics, informatics, physics, geology, biology, ecology, anthropology and in other natural and human sciences. The inevitable result of this is an exponential increase of the amount and complexity of information that must be acquired, transferred, stored, processed and analyzed. From another, side natural disasters, wars and terrorism created enormous damages to the archaeological heritage and in many case destroyed definitively all information about ancient civilizations. It is urgent a long term project for acquiring, storing and preserving at least the archaeological information. The paper presents the EGEE- II ArchaeoGRID project that, using GRID technologies developed at CERN and in other laboratories, is developing a grid able to fit the very challenging requests of contemporary archaeology. (Author)

  18. Geosciences Information Network (GIN): A modular, distributed, interoperable data network for the geosciences

    Science.gov (United States)

    Allison, M.; Gundersen, L. C.; Richard, S. M.; Dickinson, T. L.

    2008-12-01

    A coalition of the state geological surveys (AASG), the U.S. Geological Survey (USGS), and partners will receive NSF funding over 3 years under the INTEROP solicitation to start building the Geoscience Information Network (www.geoinformatics.info/gin) a distributed, interoperable data network. The GIN project will develop standardized services to link existing and in-progress components using a few standards and protocols, and work with data providers to implement these services. The key components of this network are 1) catalog system(s) for data discovery; 2) service definitions for interfaces for searching catalogs and accessing resources; 3) shared interchange formats to encode information for transmission (e.g. various XML markup languages); 4) data providers that publish information using standardized services defined by the network; and 5) client applications adapted to use information resources provided by the network. The GIN will integrate and use catalog resources that currently exist or are in development. We are working with the USGS National Geologic Map Database's existing map catalog, with the USGS National Geological and Geophysical Data Preservation Program, which is developing a metadata catalog (National Digital Catalog) for geoscience information resource discovery, and with the GEON catalog. Existing interchange formats will be used, such as GeoSciML, ChemML, and Open Geospatial Consortium sensor, observation and measurement MLs. Client application development will be fostered by collaboration with industry and academic partners. The GIN project will focus on the remaining aspects of the system -- service definitions and assistance to data providers to implement the services and bring content online - and on system integration of the modules. Initial formal collaborators include the OneGeology-Europe consortium of 27 nations that is building a comparable network under the EU INSPIRE initiative, GEON, Earthchem, and GIS software company ESRI

  19. 1st stage mote system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was f...

  20. 2nd stage mote system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  1. Battery condenser system total particulate emission factors and rates for cotton gins: Method 17

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  2. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  3. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    International Nuclear Information System (INIS)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S.

    2011-01-01

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13 C, 15 N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13 C and 15 N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  4. ngLOC: software and web server for predicting protein subcellular localization in prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    King Brian R

    2012-07-01

    Full Text Available Abstract Background Understanding protein subcellular localization is a necessary component toward understanding the overall function of a protein. Numerous computational methods have been published over the past decade, with varying degrees of success. Despite the large number of published methods in this area, only a small fraction of them are available for researchers to use in their own studies. Of those that are available, many are limited by predicting only a small number of organelles in the cell. Additionally, the majority of methods predict only a single location for a sequence, even though it is known that a large fraction of the proteins in eukaryotic species shuttle between locations to carry out their function. Findings We present a software package and a web server for predicting the subcellular localization of protein sequences based on the ngLOC method. ngLOC is an n-gram-based Bayesian classifier that predicts subcellular localization of proteins both in prokaryotes and eukaryotes. The overall prediction accuracy varies from 89.8% to 91.4% across species. This program can predict 11 distinct locations each in plant and animal species. ngLOC also predicts 4 and 5 distinct locations on gram-positive and gram-negative bacterial datasets, respectively. Conclusions ngLOC is a generic method that can be trained by data from a variety of species or classes for predicting protein subcellular localization. The standalone software is freely available for academic use under GNU GPL, and the ngLOC web server is also accessible at http://ngloc.unmc.edu.

  5. 2nd stage lint cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  6. 1st stage lint cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. Ginés Pérez y su O Crux

    Directory of Open Access Journals (Sweden)

    Climent, José

    2002-12-01

    Full Text Available The exact names attributed to Ginés Pérez were never at all clear. His first appointment to the Cathedral in Valencia complicated matters even more when he was referred to with the Christian name of what appeared to be "Juan", which only added to the confusion as it lead us to believe that he was the only candidate to apply for that position. Today, however, we now know his true and full names: he was called Ginés Pérez de la Parra. We also know, for the first time, the exact date of his death. The quality of his compositions not only contributed to their popularity but gave rise to the works of other composers being attributed to him. The authorship of the majority of his compositions are considered anonymous, though they can be located in diverse archives. Even so, we cannot find a single copy of the O Crux attributed to his name, despite the numerous copies and their variants that abound in Region of Valencia.El nombre de Ginés Pérez nunca ha tenido la claridad de debía. Su primer nombramiento en la catedral de Valencia ya lo confunde añadiéndole el “Juan” lo que ya siembra confusión, además de sugerirnos que, posiblemente, fue llamado para ocupar el puesto sin oposición. Hoy conocemos toda su filiación: Ginés Pérez de la Parra, así como la fecha de su muerte, totalmente equivocada hasta ahora. La valía de sus composiciones motivó, además de la difusión de su obra, la atribución de composiciones de otros autores. La mayor parte de sus composiciones constan como "anónimos", si bien pueden encontrarse en distintos archivos. Del presente O crux, sin embargo, no hemos podido encontrar ninguna copia con su nombre, pese a las múltiples copias, con sus variantes, existentes en la Comunidad Valenciana.

  8. Crystallization and preliminary crystallographic studies of the W2 domain of Drosophila melanogaster eukaryotic translation initiation factor 5C domain-containing protein

    International Nuclear Information System (INIS)

    Zhao, Hui; Wang, Hong; Liu, Huihui; Teng, Maikun; Li, Xu

    2012-01-01

    The crystallization and preliminary crystallographic studies of the carboxy-terminal domain of D. melanogaster eukaryotic translation initiation factor 5C domain-containing protein are reported. The Drosophila melanogaster eukaryotic translation initiation factor 5C domain-containing protein (ECP) is composed of two independently folded domains which belong to the basic leucine-zipper and W2 domain-containing protein (BZW) family. Based on the sequence similarity between the C-terminal W2 domain of ECP and some eukaryotic translation initiation factors (such as eIF2B∊, eIF4γ, eIF5 etc.), ECP has been speculated to participate in the translation initiation process. Structural information on the C-terminal W2 domain of ECP would be helpful in understanding the specific cellular function of this protein. Here, the W2 domain of ECP was expressed and crystallized. Crystals grown by the hanging-drop vapour-diffusion method diffracted to 2.70 Å resolution and belonged to space group I4, with unit-cell parameters a = b = 81.05, c = 57.44 Å. The Matthews coefficient suggested that there was one molecule per asymmetric unit in the crystal

  9. Victory Gin Lane. Starvation and Beverages in Orwell’s Nineteen Eighty-Four

    Directory of Open Access Journals (Sweden)

    Paolo Caponi

    2015-05-01

    Full Text Available Gin is an ubiquitous presence in the domestic and urban scenery of Nineteen Eighty-Four (1949. For a population mercilessly hungered, it represents a handy and cheap commodity item providing a fluid opportunity for social aggregation. Victory Gin, served “in handless chine mugs” (53, is part of the workers’ staple diet at the Ministry of Truth, and is sold “at ten cents the large nip” from the small bar (actually, “a mere hole in the wall”, 51 in the canteen; served with cloves, it is the “speciality” (79 of that disreputable place which is the Chestnut Tree Café, where Winston Smith once spotted three fallen-out-of-favor members of the Inner Party – Jones, Aaronson and Rutherford – drink it silently after their release from Oceania prison camps (79. As is typical of the fate of spirits in literature, gin also serves as self-medication and can fuel a kind of inner escapism. It is to make the world “look more cheerful” that Winston gulps it down “like a dose of medicine”, and only after the “shock” of swallowing it can he squeeze himself into his alcove and begin his diary (7; gin clears out Winston’s stomach (53, and is the ultima ratio against that prescient “dull ache” in his belly (105; 106 that originates after bumping into “the girl with dark hair” (later: Julia one evening outside Mr. Charrington’s shop.

  10. Eukaryotic ribosome display with in situ DNA recovery.

    Science.gov (United States)

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  11. An emergency brake for protein synthesis The integrated stress response is able to rapidly shut down the synthesis of proteins in eukaryotic cells.

    Czech Academy of Sciences Publication Activity Database

    Hronová, Vladislava; Valášek, Leoš

    2017-01-01

    Roč. 6, APR 25 (2017), s. 1-3, č. článku e27085. ISSN 2050-084X Institutional support: RVO:61388971 Keywords : synthesis of proteins * eukaryotic cells * eIF2 Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 7.725, year: 2016

  12. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    Science.gov (United States)

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  13. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-01-01

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination

  14. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    OpenAIRE

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for ...

  15. 3rd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  16. 2nd stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  17. 1st stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  18. Graph theoretic analysis of protein interaction networks of eukaryotes

    Science.gov (United States)

    Goh, K.-I.; Kahng, B.; Kim, D.

    2005-11-01

    Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.

  19. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome

    Science.gov (United States)

    Costa, Alessandro; Renault, Ludovic; Swuec, Paolo; Petojevic, Tatjana; Pesavento, James J; Ilves, Ivar; MacLellan-Gibson, Kirsty; Fleck, Roland A; Botchan, Michael R; Berger, James M

    2014-01-01

    The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3′ single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase. DOI: http://dx.doi.org/10.7554/eLife.03273.001 PMID:25117490

  20. The SH2 Domain–Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes

    Science.gov (United States)

    Liu, Bernard A.; Shah, Eshana; Jablonowski, Karl; Stergachis, Andrew; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks. PMID:22155787

  1. Ginásio Clube Português (GCP) : measuring customer satisfaction in services industry

    OpenAIRE

    Alves, Guilherme Fernandes Rito

    2015-01-01

    The objective of this thesis is to measure and analyze the customer satisfaction level in Ginásio Clube Português, by understanding the key determinants and consequences of customer satisfaction. After an exponential growth both in revenues and in number of clients between 1998 and 2011, Ginásio Clube Português is losing competitive edge due to the increasing competition in the high-end and low-cost markets as well as due to the effects of the economic downturn. Aiming to en...

  2. Evolutionary Pattern of N-Glycosylation Sequon Numbers  in Eukaryotic ABC Protein Superfamilies

    Directory of Open Access Journals (Sweden)

    R. Shyama Prasad Rao

    2010-02-01

    Full Text Available Many proteins contain a large number of NXS/T sequences (where X is any amino acid except proline which are the potential sites of asparagine (N linked glycosylation. However, the patterns of occurrence of these N-glycosylation sequons in related proteins or groups of proteins and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT have been positively selected—against the recent findings of only threonine specific Darwinian selection of sequons in proteins. The occurrence of sequons was positively correlated with the frequency of sequon specific amino acids and negatively correlated with proline and the NPS/T sequences. Further, the NPS/T sequences were significantly higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective.

  3. Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E

    NARCIS (Netherlands)

    Oers, van M.M.; Veken, van der L.T.J.N.; Vlak, J.M.; Thomas, A.A.M.

    2001-01-01

    The cDNA sequence of eukaryotic translation initiation factor eIF4E was derived from a Spodoptera frugiperda cDNA library. Eight tryptophan residues, typical for eIF4E, are strictly conserved in the encoded 210 amino acid protein. A polyclonal antiserum detected a 26 kDa protein in lepidopteran cell

  4. A rapid screening method to monitor expression of various recombinant proteins from prokaryotic and eukaryotic expression systems using MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Jebanathirajah, J.A.; Andersen, S.; Blagoev, B.

    2002-01-01

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive...

  5. Economics of oversized cyclones in the cotton ginning industry

    Science.gov (United States)

    Cost of reducing pollution to meet increasingly stringent air quality standards particularly for the U.S. cotton ginning industry is rising overtime. Most industry participants use cyclones to control air pollutants. These cyclones have no moving parts and their initial investment costs are relative...

  6. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication.

    Science.gov (United States)

    Damiani, María Teresa; Gambarte Tudela, Julián; Capmany, Anahí

    2014-09-01

    Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane-bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab-controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re-direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti-chlamydial therapy. © 2014 John Wiley & Sons Ltd.

  7. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    Science.gov (United States)

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  8. Resolução temporal: desempenho de escolares no teste GIN - Gaps-in-noise Temporal resolution: performance of school-aged children in the GIN - Gaps-in-noise test

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ramos do Amaral

    2010-12-01

    Full Text Available A habilidade auditiva denominada resolução temporal consiste no tempo mínimo necessário para resolver eventos acústicos, sendo fundamental para a compreensão de fala, e pode ser avaliada por testes de detecção de gaps, dentre eles o teste GIN - Gaps In Noise. OBJETIVO: Verificar o desempenho da resolução temporal em crianças sem queixas auditivas e/ou dificuldades escolares, no teste GIN, considerando-se o gênero masculino e feminino e a faixa etária de 8, 9 e 10 anos. FORMA DO ESTUDO: Coorte contemporânea com corte transversal prospectivo. MATERIAL E MÉTODO: O teste GIN foi aplicado em 75 escolares, reunidos em três grupos por faixa etária. RESULTADOS: Não foram encontradas diferenças significantes em relação às variáveis orelha e faixa etária. O gênero masculino obteve desempenho levemente melhor do que o feminino em relação apenas à porcentagem de acertos. CONCLUSÃO: A média do limiar de detecção de gaps e porcentagem de acertos foram calculados independente das variáveis orelha, gênero e faixa etária, sendo encontrados os valores de 4,7ms e 73,6%. Baseado no critério de intervalo de confiança 95% como corte para normalidade, os valores do limiar de detecção de gap e porcentagem de acertos foram 6,1ms e 60%, respectivamente.Time resolution hearing skill is the minimum time necessary to solve acoustic events, which is fundamental for speech understanding, and which may be assessed by gap-detection tests, such as the Gaps-in-noise test (GIN. AIM: the purpose of this study was to verify the performance of time processing ability in children with no hearing and/or education difficulties by applying the GIN test in both genders and ages from 8 to 10 years. STUDY DESIGN: a prospective cross-sectional contemporary cohort. MATERIAL AND METHOD: The GIN test was applied to 75 school-aged children separated into three groups by age. RESULTS: The findings showed no statistical differences among age groups or ears

  9. Interplay of noncoding RNAs, mRNAs, and proteins during the growth of eukaryotic cells

    International Nuclear Information System (INIS)

    Zhdanov, V. P.

    2010-01-01

    Numerous biological functions of noncoding RNAs (ncRNAs) in eukaryotic cells are based primarily on their ability to pair with target mRNAs and then either to prevent translation or to result in rapid degradation of the mRNA-ncRNA complex. Using a general model describing this scenario, we show that ncRNAs may help to maintain constant mRNA and protein concentrations during the growth of cells. The possibility of observation of this effect on the global scale is briefly discussed.

  10. EVALUATION OF GIN WASTE AS A GROWING SUBSTRATE, ENRICHED WITH DIFFERENT VOLUME PERCENTAGE OF THE WHEAT BRAN FOR CULTIVATION OF OYSTER MUSHROOM (PLEUROTUS OSTREATUS

    Directory of Open Access Journals (Sweden)

    M. M. Akhtar

    2016-08-01

    Full Text Available Pleurotusostreatus mushroom was cultivated on cotton gin waste amended with wheat bran in order to judge its growth potential. Two substrates (cotton gin waste and wheat bran were employed alone and with different combinations. Experiment consisted of four treatments T0 (100 % cotton gin waste, T1(97% cotton gin waste + 3% wheat bran, T2(94% cotton gin waste + 6% wheat bran and T3(91% cotton gin waste + 9% wheat bran. Data about time needed for commencement of spawn run, time needed for completion of mycelial growth, time needed for initiation of pinheads, time needed for harvesting of 1st, 2nd and 3rd flush, fresh weight of 1st, 2nd and 3rd flush harvested, total yield, pH of mushroom, total soluble solids of mushroom, acidity and ascorbic acid contents, reducing sugars, non-reducing sugars and total sugars of mushroom, total nitrogen, phosphorus and potassium contents of mushroom was recorded. T0 (100 % cotton gin waste performed better as compared to other treatments.

  11. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  12. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  13. Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus

    Science.gov (United States)

    Goswami, Kasturi; Arora, Jasmine; Saha, Swati

    2015-01-01

    The typical archaeal MCM exhibits helicase activity independently in vitro. This study characterizes MCM from the euryarchaeon Picrophilus torridus. While PtMCM hydrolyzes ATP in DNA-independent manner, it displays very poor ability to unwind DNA independently, and then too only under acidic conditions. The protein exists stably in complex with PtGINS in whole cell lysates, interacting directly with PtGINS under neutral and acidic conditions. GINS strongly activates MCM helicase activity, but only at low pH. In consonance with this, PtGINS activates PtMCM-mediated ATP hydrolysis only at low pH, with the amount of ATP hydrolyzed during the helicase reaction increasing more than fifty-fold in the presence of GINS. While the stimulation of MCM-mediated helicase activity by GINS has been reported in MCMs from P.furiosus, T.kodakarensis, and very recently, T.acidophilum, to the best of our knowledge, this is the first report of an MCM helicase demonstrating DNA unwinding activity only at such acidic pH, across all archaea and eukaryotes. PtGINS may induce/stabilize a conducive conformation of PtMCM under acidic conditions, favouring PtMCM-mediated DNA unwinding coupled to ATP hydrolysis. Our findings underscore the existence of divergent modes of replication regulation among archaea and the importance of investigating replication events in more archaeal organisms. PMID:25762096

  14. Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase

    OpenAIRE

    Huerta, Carlos; Borek, Dominika; Machius, Mischa; Grishin, Nick V.; Zhang, Hong

    2009-01-01

    Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme FAD and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different set of active site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from a pathogenic yeast Candida glabrata...

  15. Modernity rejected? Marketing schnapps gin in West Africa, 1945 ...

    African Journals Online (AJOL)

    During the 1950s and 1960s, advertising for a diverse range of products, ... why African consumers rejected the claim that schnapps gin was „modern‟, and why ... used and interpreted on a day-to-day level during the decolonisation era. ... on marketing and consumption of imported commodities in twentieth-century Africa.

  16. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  17. Protein-protein interactions within the ensemble, eukaryotic V-ATPase, and its concerted interactions with cellular machineries.

    Science.gov (United States)

    Balakrishna, Asha Manikkoth; Manimekalai, Malathy Sony Subramanian; Grüber, Gerhard

    2015-10-01

    The V1VO-ATPase (V-ATPase) is the important proton-pump in eukaryotic cells, responsible for pH-homeostasis, pH-sensing and amino acid sensing, and therefore essential for cell growths and metabolism. ATP-cleavage in the catalytic A3B3-hexamer of V1 has to be communicated via several so-called central and peripheral stalk units to the proton-pumping VO-part, which is membrane-embedded. A unique feature of V1VO-ATPase regulation is its reversible disassembly of the V1 and VO domain. Actin provides a network to hold the V1 in proximity to the VO, enabling effective V1VO-assembly to occur. Besides binding to actin, the 14-subunit V-ATPase interacts with multi-subunit machineries to form cellular sensors, which regulate the pH in cellular compartments or amino acid signaling in lysosomes. Here we describe a variety of subunit-subunit interactions within the V-ATPase enzyme during catalysis and its protein-protein assembling with key cellular machineries, essential for cellular function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  19. Battery condenser system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...

  20. Non-AUG translation: a new start for protein synthesis in eukaryotes.

    Science.gov (United States)

    Kearse, Michael G; Wilusz, Jeremy E

    2017-09-01

    Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans -acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states. © 2017 Kearse and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  1. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    Science.gov (United States)

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-05

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.

  2. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  3. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.

    Directory of Open Access Journals (Sweden)

    Ajeet Mandal

    Full Text Available The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro and/or PPG (Pro-Pro-Gly-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids, only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.

  4. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  5. Segorbe, ¿un topónimo de origen arqueo-indoeuropeo? = Segorbe, a place name of archaeo-indoeuropean origin?

    Directory of Open Access Journals (Sweden)

    Carlos Jordán Cólera

    2014-12-01

    Full Text Available Tras una revisión crítica de la propuesta tradicional de considerar Segorbe como procedente del topónimo celta Segobriga, el autor propone hacerlo proceder de una forma arqueo-indoeuropea *Suburbi(s. Desde ella se pueden explicar perfectamente, las primeras formas testimoniadas del topónimo en las fuentes árabes. Las formas en latín y lenguas romances serían fruto de una re-etimologización interesada.After a critical review of the traditional interpretation of Segorbe as a Celtic place-name (Segobriga, the author proposes an archaeo-Indo-European origin: *suburbi(s. Thus, the earliest forms of the name, attested in Arab sources, can be explained perfectly. The forms in Latin and Romance languages would be then the result of a interested re-etymologization.

  6. Theoretical bases of rotation dynamics of raw materials poller with s ratify consideration for saw gin processing of cotton

    International Nuclear Information System (INIS)

    Saidov, Kh.; Babaeva, A.Kh.

    2005-01-01

    In this paper is examined motion of raw materials rollers on the base of a stratify models. Foe every layers of the rollers are determined dynamical influences for saw gin processing of cotton. It is noticed that in the gin processing of cotton the second layer of cotton roller plagues an important role

  7. 29 CFR 780.806 - Exempt ginning limited to first processing.

    Science.gov (United States)

    2010-07-01

    ... cottonseed, is not exempt under section 13(b)(15). It is not first processing of the seed cotton; rather, it... 29 Labor 3 2010-07-01 2010-07-01 false Exempt ginning limited to first processing. 780.806 Section... AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT...

  8. ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2008-11-01

    Full Text Available Abstract Background The expansion of raw protein sequence databases in the post genomic era and availability of fresh annotated sequences for major localizations particularly motivated us to introduce a new improved version of our previously forged eukaryotic subcellular localizations prediction method namely "ESLpred". Since, subcellular localization of a protein offers essential clues about its functioning, hence, availability of localization predictor would definitely aid and expedite the protein deciphering studies. However, robustness of a predictor is highly dependent on the superiority of dataset and extracted protein attributes; hence, it becomes imperative to improve the performance of presently available method using latest dataset and crucial input features. Results Here, we describe augmentation in the prediction performance obtained for our most popular ESLpred method using new crucial features as an input to Support Vector Machine (SVM. In addition, recently available, highly non-redundant dataset encompassing three kingdoms specific protein sequence sets; 1198 fungi sequences, 2597 from animal and 491 plant sequences were also included in the present study. First, using the evolutionary information in the form of profile composition along with whole and N-terminal sequence composition as an input feature vector of 440 dimensions, overall accuracies of 72.7, 75.8 and 74.5% were achieved respectively after five-fold cross-validation. Further, enhancement in performance was observed when similarity search based results were coupled with whole and N-terminal sequence composition along with profile composition by yielding overall accuracies of 75.9, 80.8, 76.6% respectively; best accuracies reported till date on the same datasets. Conclusion These results provide confidence about the reliability and accurate prediction of SVM modules generated in the present study using sequence and profile compositions along with similarity search

  9. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  10. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  11. From Survey to Education: How Augmented Reality Can Contribute to the Study and Dissemination of Archaeo-astronomy

    Science.gov (United States)

    Schiavottiello, N.

    2009-08-01

    The study and practice of archaeo-astronomy comprehend disciplines such as archaeology, positional astronomy, history and the studies of locals mythology as well as technical survey theory and practice. The research often start with an archaeological survey in order to record possible structural orientation of a particular monument towards specific cardinal directions. In a second stage theories about the visible orientations and possible alignments of a specific structure or part of a structure are drawn; often achieved with the use of some in house tools. These tools sometimes remain too ``esoteric'' and not always user friendly, especially if later they would have to be used for education purposes. Moreover they are borrowed from tools used in other disciplines such us astronomical, image processing and architectural software, thus resulting in a complicate process of trying to merge data that should instead be born in the same environment at the first place. Virtual realities have long entered our daily life in research, education and entertainment; those can represent natural models because of their 3D nature of representing data. However on an visual interpretation level what they often represent are displaced models of the reality, whatever viewed on personal computers or with ``immersive'' techniques. These can result very useful at a research stage or in order to show concepts that requires specific point of view, however they often struggle to explore all our senses to the mere detriment of our vision. A possible solution could be achieved by simply visiting the studied site, however when visiting a particular place it is hard to visualize in one simple application environment, all previously pursued analysis. This is necessary in order to discover the meaning of a specific structure and to propose new theories. Augmented reality in this sense could bridge the gap that exist when looking at this particular problem. This can be achieved with the creation

  12. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  13. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  14. A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor.

    Directory of Open Access Journals (Sweden)

    Crystal M Botham

    2008-05-01

    Full Text Available Infection with the human gastric pathogen Helicobacter pylori is associated with a spectrum of diseases including gastritis, peptic ulcers, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. The cytotoxin-associated gene A (CagA protein of H. pylori, which is translocated into host cells via a type IV secretion system, is a major risk factor for disease development. Experiments in gastric tissue culture cells have shown that once translocated, CagA activates the phosphatase SHP-2, which is a component of receptor tyrosine kinase (RTK pathways whose over-activation is associated with cancer formation. Based on CagA's ability to activate SHP-2, it has been proposed that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder (Gab adaptor protein, which normally activates SHP-2. We have developed a transgenic Drosophila model to test this hypothesis by investigating whether CagA can function in a well-characterized Gab-dependent process: the specification of photoreceptors cells in the Drosophila eye. We demonstrate that CagA expression is sufficient to rescue photoreceptor development in the absence of the Drosophila Gab homologue, Daughter of Sevenless (DOS. Furthermore, CagA's ability to promote photoreceptor development requires the SHP-2 phosphatase Corkscrew (CSW. These results provide the first demonstration that CagA functions as a Gab protein within the tissue of an organism and provide insight into CagA's oncogenic potential. Since many translocated bacterial proteins target highly conserved eukaryotic cellular processes, such as the RTK signaling pathway, the transgenic Drosophila model should be of general use for testing the in vivo function of bacterial effector proteins and for identifying the host genes through which they function.

  15. 100 Years of Cotton Production, Harvesting and Ginning Systems Engineering: 1907 - 2007

    Science.gov (United States)

    The American Society of Agricultural and Biological Engineers (ASABE) celebrated its centennial year during 2007. As part of the ASABE centennial, the authors were asked to describe agricultural engineering accomplishments in U.S. cotton production, harvesting and ginning over the past 100 years. ...

  16. Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    International Nuclear Information System (INIS)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-01-01

    Highlights: • ABCD proteins classifies based on with or without NH 2 -terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH 2 -terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH 2 -terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH 2 -terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH 2 -terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH 2 -terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH 2 -terminal H0 motif in organelle targeting is widely conserved in living organisms

  17. Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light.

    Science.gov (United States)

    Taxis, Christof

    2017-01-01

    In eukaryotic cells, virtually all regulatory processes are influenced by proteolysis. Thus, synthetic control of protein stability is a powerful approach to influence cellular behavior. To achieve this, selected target proteins are modified with a conditional degradation sequence (degron) that responds to a distinct signal. For development of a synthetic degron, an appropriate sensor domain is fused with a degron such that activity of the degron is under control of the sensor. This chapter describes the development of a light-activated, synthetic degron in the model organism Saccharomyces cerevisiae. This photosensitive degron module is composed of the light-oxygen-voltage (LOV) 2 photoreceptor domain of Arabidopsis thaliana phototropin 1 and a degron derived from murine ornithine decarboxylase (ODC). Excitation of the photoreceptor with blue light induces a conformational change that leads to exposure and activation of the degron. Subsequently, the protein is targeted for degradation by the proteasome. Here, the strategy for degron module development and optimization is described in detail together with experimental aspects, which were pivotal for successful implementation of light-controlled proteolysis. The engineering of the photosensitive degron (psd) module may well serve as a blueprint for future development of sophisticated synthetic switches.

  18. Lesões desportivas na ginástica artística: estudo a partir de morbidade referida

    OpenAIRE

    Hoshi,Rosangela Akemi; Pastre,Carlos Marcelo; Vanderlei,Luiz Carlos Marques; Netto Júnior,Jayme; Bastos,Fábio do Nascimento

    2008-01-01

    INTRODUÇÃO: Os níveis de exigência biomecânica devidos ao alto grau de dificuldade na realização de gestos fazem da ginástica artística (GA) uma modalidade com elevado risco de lesões. Assim, é necessário que os aspectos a elas relacionados sejam controlados. OBJETIVO: Analisar a ocorrência de lesões na Ginástica Artística, associando-as a fatores de risco específicos da modalidade e do atleta, a partir de inquérito de morbidade referida. MÉTODOS: Foram entrevistados 54 ginastas, recrutados a...

  19. Prospective systematic review registration: perspective from the Guidelines International Network (G-I-N).

    Science.gov (United States)

    Van der Wees, Philip; Qaseem, Amir; Kaila, Minna; Ollenschlaeger, Guenter; Rosenfeld, Richard

    2012-02-09

    Clinical practice and public health guidelines are important tools for translating research findings into practice with the aim of assisting health practitioners as well as patients and consumers in health behavior and healthcare decision-making. Numerous programs for guideline development exist around the world, with growing international collaboration to improve their quality. One of the key features in developing trustworthy guidelines is that recommendations should be based on high-quality systematic reviews of the best available evidence. The review process used by guideline developers to identify and grade relevant evidence for developing recommendations should be systematic, transparent and unbiased. In this paper, we provide an overview of current international developments in the field of practice guidelines and methods to develop guidelines, with a specific focus on the role of systematic reviews. The Guidelines International Network (G-I-N) aims to stimulate collaboration between guideline developers and systematic reviewers to optimize the use of available evidence in guideline development and to increase efficiency in the guideline development process. Considering the significant benefit of systematic reviews for the guideline community, the G-I-N Board of Trustees supports the international prospective register of systematic reviews (PROSPERO) initiative. G-I-N also recently launched a Data Extraction Resource (GINDER) to present and share data extracted from individual studies in a standardized template. PROSPERO and GINDER are complementary tools to enhance collaboration between guideline developers and systematic reviewers to allow for alignment of activities and a reduction in duplication of effort.

  20. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    Science.gov (United States)

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  1. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    Science.gov (United States)

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  2. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Directory of Open Access Journals (Sweden)

    Fujita Naoya

    2011-01-01

    Full Text Available Abstract Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  3. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant - others:GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  4. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  5. Eukaryotic evolutionary transitions are associated with extreme codon bias in functionally-related proteins.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins--perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair--a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function--which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins--perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor--which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation.

  6. Prospective systematic review registration: perspective from the Guidelines International Network (G-I-N

    Directory of Open Access Journals (Sweden)

    Van der Wees Philip

    2012-02-01

    Full Text Available Abstract Clinical practice and public health guidelines are important tools for translating research findings into practice with the aim of assisting health practitioners as well as patients and consumers in health behavior and healthcare decision-making. Numerous programs for guideline development exist around the world, with growing international collaboration to improve their quality. One of the key features in developing trustworthy guidelines is that recommendations should be based on high-quality systematic reviews of the best available evidence. The review process used by guideline developers to identify and grade relevant evidence for developing recommendations should be systematic, transparent and unbiased. In this paper, we provide an overview of current international developments in the field of practice guidelines and methods to develop guidelines, with a specific focus on the role of systematic reviews. The Guidelines International Network (G-I-N aims to stimulate collaboration between guideline developers and systematic reviewers to optimize the use of available evidence in guideline development and to increase efficiency in the guideline development process. Considering the significant benefit of systematic reviews for the guideline community, the G-I-N Board of Trustees supports the international prospective register of systematic reviews (PROSPERO initiative. G-I-N also recently launched a Data Extraction Resource (GINDER to present and share data extracted from individual studies in a standardized template. PROSPERO and GINDER are complementary tools to enhance collaboration between guideline developers and systematic reviewers to allow for alignment of activities and a reduction in duplication of effort.

  7. Camps 2.0: exploring the sequence and structure space of prokaryotic, eukaryotic, and viral membrane proteins.

    Science.gov (United States)

    Neumann, Sindy; Hartmann, Holger; Martin-Galiano, Antonio J; Fuchs, Angelika; Frishman, Dmitrij

    2012-03-01

    Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ∼1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/. Copyright © 2011 Wiley Periodicals, Inc.

  8. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  9. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    Science.gov (United States)

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  10. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Teste GIN: detecção de gap em crianças com desvio fonológico Noise test: gap detection in children with phonological deviation

    Directory of Open Access Journals (Sweden)

    Elaine Feltre Assis

    2012-01-01

    Full Text Available OBJETIVO: investigar a resolução temporal: detecção de gaps em crianças com desvios fonológicos por meio do teste GIN e relacionar o grau do desvio fonológico com desempenho no teste GIN. MÉTODO: 6 indivíduos, de ambos os gêneros, 5 meninos e 1 menina, com idade entre 10 e 11 anos, com diagnóstico de desvio fonológico, em atendimento na clínica-escola do curso de Fonoaudiologia da FEAD de Belo Horizonte/MG, todos com ausência de perda auditiva e problemas neurológicos e/ou cognitivos. Os participantes foram submetidos ao Teste GIN, em intensidade de 50dB acima do limiar. RESULTADOS: das 06 crianças avaliadas, 5 (83,33% encontram-se alteradas e apenas 1 (16,67% obteve valores dentro do padrão de normalidade. Apesar da pequena amostra, viu-se que 83,33% das crianças com desvio fonológico tiveram limiares do GIN aquém do esperado para faixa etária. Porém não foi possível estabelecer uma relação direta entre grau de classificação do desvio fonológico e o baixo desempenho obtido no teste GIN, no qual apenas 1 criança com desvio médio moderado apresentou pior desempenho no teste GIN. CONCLUSÃO: crianças com desvio fonológico podem apresentar alteração no processamento temporal.PURPOSE: to investigate the temporal resolution, as for: gaps detection in children with phonological deviation through noise test and related with the degree of phonological performance in noise test. METHOD: 6 patients of both genders, five boys and one girl, aged between 10 and 11 year-old with phonological disorder' diagnosis in attendance at the school clinic of the Speech Therapy course (FEAD Belo Horizonte / MG, all with no hearing loss and no neurological and / or cognitive problems. The subjects underwent the GIN test at intensity of 50dB above the threshold. RESULTS: from the 6 evaluated children, 5 (83.33% had abnormal responses at gin test and only one (16.67% had values within the normal range. Despite the small sample, it was

  12. Teste GIN: detecção de gap em crianças com desvio fonológico Noise test: gap detection in children with phonological deviation

    Directory of Open Access Journals (Sweden)

    Elaine Feltre Assis

    2013-02-01

    Full Text Available OBJETIVO: investigar a resolução temporal: detecção de gaps em crianças com desvios fonológicos por meio do teste GIN e relacionar o grau do desvio fonológico com desempenho no teste GIN. MÉTODO: 6 indivíduos, de ambos os gêneros, 5 meninos e 1 menina, com idade entre 10 e 11 anos, com diagnóstico de desvio fonológico, em atendimento na clínica-escola do curso de Fonoaudiologia da FEAD de Belo Horizonte/MG, todos com ausência de perda auditiva e problemas neurológicos e/ou cognitivos. Os participantes foram submetidos ao Teste GIN, em intensidade de 50dB acima do limiar. RESULTADOS: das 06 crianças avaliadas, 5 (83,33% encontram-se alteradas e apenas 1 (16,67% obteve valores dentro do padrão de normalidade. Apesar da pequena amostra, viu-se que 83,33% das crianças com desvio fonológico tiveram limiares do GIN aquém do esperado para faixa etária. Porém não foi possível estabelecer uma relação direta entre grau de classificação do desvio fonológico e o baixo desempenho obtido no teste GIN, no qual apenas 1 criança com desvio médio moderado apresentou pior desempenho no teste GIN. CONCLUSÃO: crianças com desvio fonológico podem apresentar alteração no processamento temporal.PURPOSE: to investigate the temporal resolution, as for: gaps detection in children with phonological deviation through noise test and related with the degree of phonological performance in noise test. METHOD: 6 patients of both genders, five boys and one girl, aged between 10 and 11 year-old with phonological disorder' diagnosis in attendance at the school clinic of the Speech Therapy course (FEAD Belo Horizonte / MG, all with no hearing loss and no neurological and / or cognitive problems. The subjects underwent the GIN test at intensity of 50dB above the threshold. RESULTS: from the 6 evaluated children, 5 (83.33% had abnormal responses at gin test and only one (16.67% had values within the normal range. Despite the small sample, it was

  13. Battery condenser system PM2.5 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....

  14. HupB Is a Bacterial Nucleoid-Associated Protein with an Indispensable Eukaryotic-Like Tail

    Directory of Open Access Journals (Sweden)

    Joanna Hołówka

    2017-11-01

    Full Text Available In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing, we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC to the terminus (ter of the mycobacterial chromosome (numbers of binding sites decreased toward ter. We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.

  15. 3D quantitative interpretation of archaeo-magnetic data: Adaptation of aero-magnetic interpretation techniques for archaeological purposes

    Science.gov (United States)

    Cheyney, S.; Hill, I. A.; Linford, N.; Fishwick, S.; Leech, C.

    2011-12-01

    High-resolution total-field magnetic data can be collected rapidly and relatively cheaply over large archaeological sites due to recent advances in data collection. However, interpretation of these datasets still generally comprises a sequence of data correction and filtering operations prior to a 2D visual interpretation based on pattern recognition. In contrast, current developments in aero-magnetic interpretation have led to several tools for identifying location, shape and depth information of anomalous sources. These methods often fail when directly applied to archaeo-magnetic data, due to the particular noise content typical in very near-surface surveys. Here techniques are explored that allow these aero-magnetic interpretation tools to be applied to archaeological problems, without the need for extensive, often biased user input. It is shown that full 3D quantitative interpretation of the subsurface is possible from just the magnetic data alone. Inversion of magnetic data is increasingly being applied to aero-magnetic surveys to produce 3D models of the subsurface magnetisation. Typically, an objective function is minimised in order to create a smooth distribution of magnetisation away from a reference model (or halfspace if no a-priori information is available). Often, although a good fit to the observed values may be obtained, the final model will be non-unique and biased by the reference model. Testing of synthetic data shows that when archaeo-magnetic datasets are inverted without applying a-priori information, large discrepancies between the true and modelled depths can occur. Where no a-priori information is available, information regarding the horizontal location of sources can be obtained from derivative-based methods such as the absolute horizontal gradient, tilt-angle and theta-map. Using pseudogravity data with these techniques, overcomes the problem of noise amplification that has previously hampered archaeological uses of these techniques. Depth

  16. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  17. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  18. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  19. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  20. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  1. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  2. The GIN legal problems of multi-parties at the drill site

    International Nuclear Information System (INIS)

    Case, C.W.

    1991-01-01

    The presence of multiple parties working at a drilling site complicates the application of the environmental laws, rules and regulations. A critical decision prior to any physical activities needs to be made as to which person (i.e., company, partnership) will be charged with the obligation of being the designated Generator of hazardous waste for that site. This critical decision is dictated by the refusal of the EPA to assign more than one EPA Generator Identification Number (GIN) to a single drilling site. The decision as to which member of the multiple parties presence at the drill site will obtain the GIN has liability ramifications when a mistake is made in the cleanup of spilled hazardous waste or hazardous substances; an improper situation arises as to the transportation, storage, treatment and disposal of hazardous waste; the waste is improperly classified, or the biennial reporting of hazardous waste activities does not occur. Liability issues arise that go far beyond the ordinary contractual disputes seen in the past arising from drilling activities, with liability in some situations well in excess of any damage claims normally allowed under common law or statutory law in the State of Texas for non-environmental disputes. This paper reviews the liabilities and responsibilities of oil and gas drillers under the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation and Liability Act

  3. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  4. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  5. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    Science.gov (United States)

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  6. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Science.gov (United States)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  7. Production of Human Papilloma Virus Type 16 E6 Oncoprotein as a Recombinant Protein in Eukaryotic Cells

    Science.gov (United States)

    Mirshahabi, H; Soleimanjahi, H; Pourpak, Z; Meshkat, Z; Hassan, ZM

    2012-01-01

    Background Cervical cancer is one of the most important and widespread cancer which affects women. There are several causes of cervical cancer; among them HPV types 16 and 18 are the most prominent ones which are recurrent and persistent infections. These genotypes are currently about 70% of cervical cancer causes in developing countries. Due to the importance of these viruses in cervical cancer, we pioneered the production of Human Papilloma Virus type16 E6 oncoprotein as a recombinant protein in order to develop a vaccine. Two HPV oncoproteins, E6 and E7, are consistently expressed in HPV-associated cancer cells and are responsible for malignant transformation. These oncogenic proteins represent ideal target antigens for developing vaccine and immunotherapeutic strategies against HPV-associated neoplasm. Methods In the present study, the cloned E6-oncoprotein of HPV16 in pTZ57R/T-E6 vector was used to produce professional expression vector. The target gene was subcloned in a eukaryotic expression vector. The pcDNA3-E6 vector was propagated in E.coli strain DH5α and transfected into CHO cells 72 hours post-transfection. Results The transfected cells were harvested; mRNA detection and the interest protein production were confirmed by western blot analysis using specific anti E6 monoclonal antibody. Conclusion HPV16-E6 target protein recognized by specific antibody could be an appropriate form of protein, which can be used for further studies. Due to potential effect of this protein, its DNA construction can be used for DNA vaccine in future studies. PMID:25780534

  8. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    Science.gov (United States)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  9. A simulated approach to estimating PM10 and PM2.5 concentrations downwind from cotton gins

    Science.gov (United States)

    Cotton gins are required to obtain operating permits from state air pollution regulatory agencies (SAPRA), which regulate the amount of particulate matter that can be emitted. Industrial Source Complex Short Term version 3 (ISCST3) is the Gaussian dispersion model currently used by some SAPRAs to pr...

  10. A review of the effects of ginning practices on cotton fibre and yarn properties and processing performance

    CSIR Research Space (South Africa)

    Sanderson, KW

    1985-08-01

    Full Text Available Over the years, since the first formal cotton ginning experiments were conducted by the United State department of agriculture in 1962, a large volume of literature, from research papers to popular articles, has been published on the effect...

  11. How and why DNA barcodes underestimate the diversity of microbial eukaryotes.

    Directory of Open Access Journals (Sweden)

    Gwenael Piganeau

    Full Text Available BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become

  12. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  13. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes

    Science.gov (United States)

    Forterre, Patrick

    2017-01-01

    The eocyte hypothesis, in which Eukarya emerged from within Archaea, has been boosted by the description of a new candidate archaeal phylum, “Lokiarchaeota”, from metagenomic data. Eukarya branch within Lokiarchaeota in a tree reconstructed from the concatenation of 36 universal proteins. However, individual phylogenies revealed that lokiarchaeal proteins sequences have different evolutionary histories. The individual markers phylogenies revealed at least two subsets of proteins, either supporting the Woese or the Eocyte tree of life. Strikingly, removal of a single protein, the elongation factor EF2, is sufficient to break the Eukaryotes-Lokiarchaea affiliation. Our analysis suggests that the three lokiarchaeal EF2 proteins have a chimeric organization that could be due to contamination and/or homologous recombination with patches of eukaryotic sequences. A robust phylogenetic analysis of RNA polymerases with a new dataset indicates that Lokiarchaeota and related phyla of the Asgard superphylum are sister group to Euryarchaeota, not to Eukarya, and supports the monophyly of Archaea with their rooting in the branch leading to Thaumarchaeota. PMID:28604769

  14. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  15. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.......Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces......, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1...

  16. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    Science.gov (United States)

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  17. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  18. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  19. Reflexões sobre o trabalho do psicólogo do esporte em uma academia de ginástica

    Directory of Open Access Journals (Sweden)

    Livia Gomes Viana-Meireles

    2015-11-01

    Full Text Available http://dx.doi.org/10.5007/2175-8042.2015v27n46p171 O presente estudo buscou desenvolver uma reflexão sobre a prática do psicólogo do esporte dentro de uma academia de ginástica a partir do relato de experiência de estágio em psicologia. Foi realizada uma pesquisa com alunos e professores que possibilitou a contextualização do ambiente da academia e o planejamento das atividades a serem realizadas. A experiência de estágio possibilitou o início de uma reflexão sobre o campo de atuação do psicólogo do esporte nas academias de ginástica apontando ricas possibilidades para ações e intervenções em diferentes contextos que envolvam atividade física.

  20. “Ginasticando”: parcerias e possibilidades da Ginástica na comunidade

    Directory of Open Access Journals (Sweden)

    PRISCILA LOPES

    2016-06-01

    Full Text Available O Projeto de Extensão “Ginasticando” tem como meta disseminar a Ginástica em Diamantina, MG. Tendo início em 2011, teve seus objetivos e metodologias modificadas de acordo com as demandas da região, diagnosticadas por meio de estudos e pesquisas na área da Educação Física escolar. Os principais resultados alcançados até o momento apontam para a necessidade de continuidade do projeto no sentido de contribuir para a ampliação do repertório de práticas corporais vivenciadas no ambiente escolar.

  1. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    prokaryotic genome. Based on a protein alignment we could group the P5 ATPases into two subfamilies, P5A and P5B that, based on the number of negative charges in conserved trans-membrane segment 4, are likely to have different ion specificities. P5A ATPases are present in all eukaryotic genomes sequenced so......Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...

  2. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  3. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  4. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  5. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes.

    Science.gov (United States)

    Novák, Lukáš; Zubáčová, Zuzana; Karnkowska, Anna; Kolisko, Martin; Hroudová, Miluše; Stairs, Courtney W; Simpson, Alastair G B; Keeling, Patrick J; Roger, Andrew J; Čepička, Ivan; Hampl, Vladimír

    2016-10-06

    Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

  6. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia.

    Science.gov (United States)

    Zhang, Yan-Qiong; Chen, Dong-Liang; Tian, Hai-Feng; Zhang, Bao-Hong; Wen, Jian-Fan

    2009-10-01

    Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.

  7. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  8. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): A nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...

  9. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.

    Science.gov (United States)

    Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A

    2012-01-03

    Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.

  10. Development of cotton gin PM10 emission factors for EPA’s AP-42-DUPLICATE DO NOT USE

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  11. Imagens da prática profissional em academias de ginástica na cidade do Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Andrade Coelho Filho

    2010-05-01

    Full Text Available O objetivo deste estudo é fornecer subsídios aos cursos de educação física, aproximando a formação profissional do campo de atuação em academias de ginástica. Através da análise de discurso, descrevemos e interpretamos a maneira como o profissional apresenta a si mesmo e a sua prática às outras pessoas, os meios pelos quais dirige e regula a impressão que formam a seu respeito e as atividades que pode ou não realizar. Os resultados confirmam que a prática do profissional de ginástica em academia vive momentos de tensão e impasse, o que implica a urgência de reformular a formação para essa prática nos cursos de graduação e de pós-graduação em educação física

  12. The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function

    Science.gov (United States)

    Brosius, Jürgen

    2014-01-01

    Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery. PMID:25081515

  13. An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage

    Directory of Open Access Journals (Sweden)

    Stuart Gary W

    2004-12-01

    Full Text Available Abstract Background Eukaryotic whole genome sequences are accumulating at an impressive rate. Effective methods for comparing multiple whole eukaryotic genomes on a large scale are needed. Most attempted solutions involve the production of large scale alignments, and many of these require a high stringency pre-screen for putative orthologs in order to reduce the effective size of the dataset and provide a reasonably high but unknown fraction of correctly aligned homologous sites for comparison. As an alternative, highly efficient methods that do not require the pre-alignment of operationally defined orthologs are also being explored. Results A non-alignment method based on the Singular Value Decomposition (SVD was used to compare the predicted protein complement of nine whole eukaryotic genomes ranging from yeast to man. This analysis resulted in the simultaneous identification and definition of a large number of well conserved motifs and gene families, and produced a species tree supporting one of two conflicting hypotheses of metazoan relationships. Conclusions Our SVD-based analysis of the entire protein complement of nine whole eukaryotic genomes suggests that highly conserved motifs and gene families can be identified and effectively compared in a single coherent definition space for the easy extraction of gene and species trees. While this occurs without the explicit definition of orthologs or homologous sites, the analysis can provide a basis for these definitions.

  14. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

    Science.gov (United States)

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong

    2017-11-30

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

  15. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  16. [Eukaryotic expression of Leptospira interrogans lipL32/1-ompL1/1 fusion gene encoding genus-specific protein antigens and the immunoreactivity of expression products].

    Science.gov (United States)

    Yan, Jie; Zhao, Shou-feng; Mao, Ya-fei; Ruan, Ping; Luo, Yi-hui; Li, Shu-ping; Li, Li-wei

    2005-01-01

    To construct the eukaryotic expression system of L.interrogans lipL32/1-ompL1/1 fusion gene and to identify the immunoreactivity of expression products. PCR with linking primer was used to construct the fusion gene lipL32/1-ompL1/1. The P.pastoris eukaryotic expression system of the fusion gene, pPIC9K-lipL32/1-ompL1/1-P. pastorisGS115, was constructed after the fusion gene was cloned and sequenced. Colony with phenotype His(+)Mut(+) was isolated by using MD and MM plates and His(+) Mut(+) transformant with high resistance to G418 was screened out by using YPD plate. Using lysate of His(+) Mut(+) colony with high copies of the target gene digested with yeast lyase as the template and 5'AOX1 and 3'AOX1 as the primers, the target fusion gene in chromosome DNA of the constructed P. pastoris engineering strain was detected by PCR. Methanol in BMMY medium was used to induce the target recombinant protein rLipL32/1-rOmpL1/1 expression. rLipL32/1-rOmpL1/1 in the medium supernatant was extracted by using ammonium sulfate precipitation and Ni-NTA affinity chromatography. Output and immunoreactivity of rLipL32/1-rOmpL1/1 were measured by SDS-PAGE and Western blot methods, respectively. Amplification fragments of the obtained fusion gene lipL32/1-ompL1/1 was 1794 bp in size. The homogeneity of nucleotide and putative amino acid sequences of the fusion gene were as high as 99.94 % and 100 %, respectively, compared with the sequences of original lipL32/1 and ompL1/1 genotypes. The constructed eukaryotic expression system was able to secrete rLipL32/1-rOmpL1/1 with an output of 10 % of the total proteins in the supernatant, which located the expected position after SDS-PAGE. The rabbit anti-rLipL32/1 and anti-rOmpL1/1 sera could combine the expressed rLipL32/1-rOmpL1/1. An eukaryotic expression system with high efficiency in P.pastoris of L.interrogans lipL32/1-ompL1/1 fusion gene was successfully constructed in this study. The expressed fusion protein shows specific

  17. Per preparare la ripresa: Progetto europeo GI-N2K, “Geographic Information – Need to Know”

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2014-02-01

    Full Text Available The GI-N2K project, coordinated by the Katholieke Universiteit Leuven, which began in October 2013, and formed by an international consortium of 31 partners (25  countries is funded by the Erasmus Lifelong Learning Programme, aims to reformulate  the Body of Knowledge in the field of Geographic Information Science and  Technology.

  18. Non-contact image processing for gin trash sensors in stripper harvested cotton with burr and fine trash correction

    Science.gov (United States)

    This study was initiated to provide the basis for obtaining online information as to the levels of the various types of gin trash. The objective is to provide the ginner with knowledge of the quantity of the various trash components in the raw uncleaned seed cotton. This information is currently not...

  19. Ginástica geral na escola: uma proposta metodológica General gymnastics at school: A methodological propositon Gimnasia general en la escuela: Una propuesta metodológica

    Directory of Open Access Journals (Sweden)

    2006-11-01

    Full Text Available Este trabalho tem por objetivo discutir a Ginástica como conteúdo da Educação Física escolar, por meio da Ginástica geral como proposta metodológica. Tal proposta tem como perspectiva a integração das diversas manifestações gímnicas e os outros componentes da cultura corporal, sendo sua principal característica a ausência da competição. PALAVRAS-CHAVE: ginástica – ginástica geral – educação física escolar. This study aims at discussing gym classes as a part of school physical education, using General Gymnastics as a methodological approach. Such an approach has the perspective of integrating the several gymnastic manifestations to the other components of body culture, with the lack of competition as its main feature. KEY WORDS: gym – general gymnastics – physical education in schools. Este trabajo tiene por objetivo discutir la Gimnasia como contenido de la Educación Física escolar, por medio de la Gimnasia general como propuesta metodológica. Tal propuesta tiene como perspectiva la integración de diversas manifestaciones gímnicas y los otros componentes de la cultura corporal, siendo su principal característica la ausencia de la competencia. PALABRAS-CLAVE: gimnasia – gimnasia general – educación física escolar.

  20. ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation

    CSIR Research Space (South Africa)

    Mtwisha, L

    2007-02-01

    Full Text Available ) and the Typha pollen D7 protein was found to stabilise sugar glasses in an in vitro system (Wolkers et al. 2001). The cupin family of proteins comprises a wide variety of proteins from both prokaryotes and eukaryotes and includes the seed storage proteins...–268. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275, 5668–5674. doi: 10.1074/jbc.275...

  1. A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization

    Directory of Open Access Journals (Sweden)

    Melanie L. Hutton

    2017-06-01

    Full Text Available The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as “lipid rafts.” Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248 with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01. HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05, and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05. Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.

  2. Origins of robustness in translational control via eukaryotic translation initiation factor (eIF) 2.

    Science.gov (United States)

    Khan, Mohammad Farhan; Spurgeon, Sarah; von der Haar, Tobias

    2018-05-14

    Phosphorylation of eukaryotic translation initiation factor 2 (eIF2) is one of the best studied and most widely used means for regulating protein synthesis activity in eukaryotic cells. This pathway regulates protein synthesis in response to stresses, viral infections, and nutrient depletion, among others. We present analyses of an ordinary differential equation-based model of this pathway, which aim to identify its principal robustness-conferring features. Our analyses indicate that robustness is a distributed property, rather than arising from the properties of any one individual pathway species. However, robustness-conferring properties are unevenly distributed between the different species, and we identify a guanine nucleotide dissociation inhibitor (GDI) complex as a species that likely contributes strongly to the robustness of the pathway. Our analyses make further predictions on the dynamic response to different types of kinases that impinge on eIF2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    Science.gov (United States)

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The amino terminal end determines the stability and assembling capacity of eukaryotic ribosomal stalk proteins P1 and P2.

    Science.gov (United States)

    Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G

    2011-05-01

    The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.

  5. In vitro Assays for Eukaryotic Leading/Lagging Strand DNA Replication.

    Science.gov (United States)

    Schauer, Grant; Finkelstein, Jeff; O'Donnell, Mike

    2017-09-20

    The eukaryotic replisome is a multiprotein complex that duplicates DNA. The replisome is sculpted to couple continuous leading strand synthesis with discontinuous lagging strand synthesis, primarily carried out by DNA polymerases ε and δ, respectively, along with helicases, polymerase α-primase, DNA sliding clamps, clamp loaders and many other proteins. We have previously established the mechanisms by which the polymerases ε and δ are targeted to their 'correct' strands, as well as quality control mechanisms that evict polymerases when they associate with an 'incorrect' strand. Here, we provide a practical guide to differentially assay leading and lagging strand replication in vitro using pure proteins.

  6. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.

    Science.gov (United States)

    Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S

    1998-02-01

    RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.

  7. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    Science.gov (United States)

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Mohsen Shanbeh

    2011-01-01

    Full Text Available One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV% of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.

  9. Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes.

    Directory of Open Access Journals (Sweden)

    Matteo Ramazzotti

    Full Text Available Nine human neurodegenerative diseases, including Huntington's disease and several spinocerebellar ataxia, are associated to the aggregation of proteins comprising an extended tract of consecutive glutamine residues (polyQs once it exceeds a certain length threshold. This event is believed to be the consequence of the expansion of polyCAG codons during the replication process. This is in apparent contradiction with the fact that many polyQs-containing proteins remain soluble and are encoded by invariant genes in a number of eukaryotes. The latter suggests that polyQs expansion and/or aggregation might be counter-selected through a genetic and/or protein context. To identify this context, we designed a software that scrutinize entire proteomes in search for imperfect polyQs. The nature of residues flanking the polyQs and that of residues other than Gln within polyQs (insertions were assessed. We discovered strong amino acid residue biases robustly associated to polyQs in the 15 eukaryotic proteomes we examined, with an over-representation of Pro, Leu and His and an under-representation of Asp, Cys and Gly amino acid residues. These biases are conserved amongst unrelated proteins and are independent of specific functional classes. Our findings suggest that specific residues have been co-selected with polyQs during evolution. We discuss the possible selective pressures responsible of the observed biases.

  10. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  11. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    Science.gov (United States)

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  12. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  13. How natural a kind is "eukaryote?".

    Science.gov (United States)

    Doolittle, W Ford

    2014-06-02

    Systematics balances uneasily between realism and nominalism, uncommitted as to whether biological taxa are discoveries or inventions. If the former, they might be taken as natural kinds. I briefly review some philosophers' concepts of natural kinds and then argue that several of these apply well enough to "eukaryote." Although there are some sticky issues around genomic chimerism and when eukaryotes first appeared, if we allow for degrees in the naturalness of kinds, existing eukaryotes rank highly, higher than prokaryotes. Most biologists feel this intuitively: All I attempt to do here is provide some conceptual justification. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Interaction of Prevotella intermedia strain 17 leucine-rich repeat domain protein AdpF with eukaryotic cells promotes bacterial internalization.

    Science.gov (United States)

    Sengupta, Dipanwita; Kang, Dae-Joong; Anaya-Bergman, Cecilia; Wyant, Tiana; Ghosh, Arnab K; Miyazaki, Hiroshi; Lewis, Janina P

    2014-06-01

    Prevotella intermedia is an oral bacterium implicated in a variety of oral diseases. Although internalization of this bacterium by nonphagocytic host cells is well established, the molecular players mediating the process are not well known. Here, the properties of a leucine-rich repeat (LRR) domain protein, designated AdpF, are described. This protein contains a leucine-rich region composed of 663 amino acid residues, and molecular modeling shows that it folds into a classical curved solenoid structure. The cell surface localization of recombinant AdpF (rAdpF) was confirmed by electron and confocal microscopy analyses. The recombinant form of this protein bound fibronectin in a dose-dependent manner. Furthermore, the protein was internalized by host cells, with the majority of the process accomplished within 30 min. The internalization of rAdpF was inhibited by nystatin, cytochalasin, latrunculin, nocodazole, and wortmannin, indicating that microtubules, microfilaments, and signal transduction are required for the invasion. It is noteworthy that preincubation of eukaryotic cells with AdpF increased P. intermedia 17 internalization by 5- and 10-fold for HeLa and NIH 3T3 fibroblast cell lines, respectively. The addition of the rAdpF protein was also very effective in inducing bacterial internalization into the oral epithelial cell line HN4, as well as into primary cells, including human oral keratinocytes (HOKs) and human umbilical vein endothelial cells (HUVECs). Finally, cells exposed to P. intermedia 17 internalized the bacteria more readily upon reinfection. Taken together, our data demonstrate that rAdpF plays a role in the internalization of P. intermedia 17 by a variety of host cells.

  15. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  16. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    Science.gov (United States)

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  17. Avaliação do equilíbrio estático e dinâmico de idosas praticantes de hidroginástica e ginástica

    OpenAIRE

    Almeida, Ana Paula Pessoa Veloso de; Veras, Renato Peixoto; Doimo, Leonice Aparecida

    2010-01-01

    Este estudo avaliou o equilíbrio estático e dinâmico e valências motoras relacionadas em idosas praticantes de ginástica e hidroginástica. Participaram 31 mulheres na modalidade hidroginástica (GH, 69,32 ± 6,57 anos) e 28 na ginástica (GG; 65,57 ± 7,67 anos), com no mínimo seis meses de prática e frequência mínina de três vezes na semana. Foram realizadas medidas de estatura (cm), peso (kg) e circunferências de cintura, quadril e abdome (cm) e cálculos do índice de massa corporal (IMC) e rela...

  18. Construction and expression of eukaryotic expression vectors of full-length, amino-terminus and carboxyl-terminus Raf gene

    Directory of Open Access Journals (Sweden)

    Zhuomin WANG

    2008-06-01

    Full Text Available Background and objective Raf is a key molecule in the Ras-Raf-MEK-ERK signal transduction pathway and is highly activated in different human carcinomas. However, its biological functions and regulation mechanisms are still unclear. The aims of this study were to construct eukaryotic expression vectors with Raf full encoding region, truncated amino-terminus and carboxyl-terminus, respectively. Methods Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were constructed by gene recombination technique and confirmed by restriction enzyme analysis and DNA sequencing. Furthermore, the expression of these fusion proteins was detected by western blot in transient transfected 293T cells. Results The sequences and open reading frames of these three vectors were completely consistent with experimental design. All target proteins can be detected in 293T cells. Conclusion Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were successfully constructed and can be expressed in 293T cells.

  19. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  20. A recepção da ginástica sueca em Portugal nas primeiras décadas do século XX: conformidades e dissensões culturais e políticas

    Directory of Open Access Journals (Sweden)

    Luís Miguel Carvalho

    2015-06-01

    Full Text Available O artigo aborda a presença persistente da "ginástica sueca" como referente principal da educação física em contexto escolar em Portugal, nas primeiras décadas do século XX, e as recepções distintas de que foi alvo. Numa primeira parte, o texto centra-se na compreensão da centralidade adquirida pela "ginástica sueca", em múltiplos contextos geopolíticos, no contexto da consolidação do projeto da escola de massas. Numa segunda parte, o texto documenta e analisa algumas deslocações interpretativas ocorridas na recepção da "ginástica sueca" em Portugal, entre 1920 e 1940, bem como os realinhamentos educativos, sociais e políticos que acompanharam esses conflitos sobre a sua "correta" mobilização para o contexto escolar português.

  1. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes

    Directory of Open Access Journals (Sweden)

    Tiessen Axel

    2012-02-01

    Full Text Available Abstract Background The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Results Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa and archaeal (283 aa proteins are significantly smaller (33-40% on average. Average protein sizes in different phylogenetic groups were: Alveolata (628 aa, Amoebozoa (533 aa, Fornicata (543 aa, Placozoa (453 aa, Eumetazoa (486 aa, Fungi (487 aa, Stramenopila (486 aa, Viridiplantae (392 aa. Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Conclusions Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs. There is a negative correlation between average protein size and total number of

  2. Morphological and ecological complexity in early eukaryotic ecosystems.

    Science.gov (United States)

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  3. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-01-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  4. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  5. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  6. Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

    International Nuclear Information System (INIS)

    Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi

    2011-01-01

    Based on the molecular architecture revealed by electron cryo-tomography, the mechanism of the bending motion of eukaryotic flagella/cilia is discussed. Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed

  7. Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic proteasomes-origin of intrinsic degradation signals.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh Gautam

    Full Text Available Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a origin and identification of an intrinsic degradation signal in the substrate, b identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably

  8. A framework for classification of prokaryotic protein kinases.

    Directory of Open Access Journals (Sweden)

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  9. The eukaryotic genome is structurally and functionally more like a social insect colony than a book.

    Science.gov (United States)

    Qiu, Guo-Hua; Yang, Xiaoyan; Zheng, Xintian; Huang, Cuiqin

    2017-11-01

    Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.

  10. Eukaryotes first: how could that be?

    Science.gov (United States)

    Mariscal, Carlos; Doolittle, W Ford

    2015-09-26

    In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier 'progenotic' period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through 'streamlining'. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested. © 2015 The Author(s).

  11. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2011-09-01

    Full Text Available Abstract Background The Mre11/Rad50 complex and the homologous SbcD/SbcC complex in bacteria play crucial roles in the metabolism of DNA double-strand breaks, including DNA repair, genome replication, homologous recombination and non-homologous end-joining in cellular life forms and viruses. Here we investigated the amino acid sequence of the Mimivirus R555 gene product, originally annotated as a Rad50 homolog, and later shown to have close homologs in marine microbial metagenomes. Results Our bioinformatics analysis revealed that R555 protein sequence is constituted from the fusion of an N-terminal Mre11-like domain with a C-terminal Rad50-like domain. A systematic database search revealed twelve additional cases of Mre11/Rad50 (or SbcD/SbcC fusions in a wide variety of unrelated organisms including unicellular and multicellular eukaryotes, the megaplasmid of a bacterium associated to deep-sea hydrothermal vents (Deferribacter desulfuricans and the plasmid of Clostridium kluyveri. We also showed that R555 homologs are abundant in the metagenomes from different aquatic environments and that they most likely belong to aquatic viruses. The observed phyletic distribution of these fusion proteins suggests their recurrent creation and lateral gene transfers across organisms. Conclusions The existence of the fused version of protein sequences is consistent with known functional interactions between Mre11 and Rad50, and the gene fusion probably enhanced the opportunity for lateral transfer. The abundance of the Mre11/Rad50 fusion genes in viral metagenomes and their sporadic phyletic distribution in cellular organisms suggest that viruses, plasmids and transposons played a crucial role in the formation of the fusion proteins and their propagation into cellular genomes.

  12. Primary structures of ribosomal proteins from the archaebacterium Halobacterium marismortui and the eubacterium Bacillus stearothermophilus.

    Science.gov (United States)

    Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M

    1991-06-01

    Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.

  13. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    Science.gov (United States)

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  14. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  15. The origin of the eukaryotic cell

    Science.gov (United States)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  16. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  17. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities.

    Science.gov (United States)

    Ray, Ann; Schwartz, Nika; de Souza Santos, Marcela; Zhang, Junmei; Orth, Kim; Salomon, Dor

    2017-11-01

    Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Targeted amino-terminal acetylation of recombinant proteins in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew Johnson

    2010-12-01

    Full Text Available One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.

  19. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Characterization of Anti-Citrinin Specific ScFvs Selected from Non-Immunized Mouse Splenocytes by Eukaryotic Ribosome Display.

    Directory of Open Access Journals (Sweden)

    Haiwei Cheng

    Full Text Available Single chain variable fragments (scFvs against citrinin (CIT were selected from a scFv library constructed from the splenocytes of non-immunized mice by an improved eukaryotic ribosome display technology in this study. Bovine serum albumin (BSA/ CIT-BSA and ovalbumin (OVA/ CIT-OVA were used as the antigens to select specific anti-CIT scFvs. Eukaryotic in situ RT-PCR method was used to recover the selected mRNA after every affinity selection. After six rounds of ribosome display, expression vector pTIG-TRX carrying specific scFv DNAs were constructed and transformed into Escherichia coli BL21 (DE3 for protein expression. Thirteen positive clones were selected out of which three (designated 23, 68 and 109 showed high binding activity and specificity to CIT by indirect ELISA, while no clone showed binding activity with carrier proteins. The three scFvs showed high specificity to CIT and the cross reactivity with other mycotoxins was below 0.01% as determined by indirect competitive ELISA. These specific scFvs offer a potential novel immunoassay method for CIT residues. This study confirmed the effectiveness of the improved eukaryotic ribosome display system and could be used as a reference for the selection of scFvs specific to other small molecules using ribosome display.

  1. Eukaryote-like Ser/Thr protein kinase PrkA modulates sporulation via regulating the transcriptional factor σ(K) in Bacillus subtilis.

    Science.gov (United States)

    Yan, Jinyuan; Zou, Wei; Fang, Juan; Huang, Xiaowei; Gao, Feng; He, Zeying; Zhang, Keqin; Zhao, Ninghui

    2015-01-01

    Protein kinase A (PrkA), also known as AMP-activated protein kinase, functions as a serine/threonine protein kinase (STPK), has been shown to be involved in a variety of important biologic processes, including pathogenesis of many important diseases in mammals. However, the biological functions of PrkA are less known in prokaryote cells. Here, we explored the function of PrkA as well as its underlying molecular mechanisms using the model bacterium Bacillus subtilis168. When PrkA is inhibited by 9-β-D-arabinofuranosyladenine (ara-A) in the wild type strain or deleted in the ΔprkA mutant strain, we observed sporulation defects in B. subtilis 168, suggesting that PrkA functions as a sporulation-related protein. Transcriptional analysis using the lacZ reporter gene demonstrated that deletion of prkA significantly reduced the expression of the transcriptional factor σ(K) and its downstream genes. Complementation of sigK gene in prkA knockout mutant partially rescued the phenotype of ΔprkA, further supporting the hypothesis that the decreased σ(K) expression should be one of the reasons for the sporulation defect resulting from prkA disruption. Finally, our data confirmed that Hpr (ScoC) negatively controlled the expression of transcriptional factor σ(K), and thus PrkA accelerated sporulation and the expression of σ(K) by suppression of Hpr (ScoC). Taken together, our study discovered a novel function of the eukaryotic-like STPK PrkA in spore development as well as its underlying molecular mechanism in B. subtilis.

  2. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    International Nuclear Information System (INIS)

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  3. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  4. Structural insights and ab initio sequencing within the DING proteins family

    International Nuclear Information System (INIS)

    Elias, Mikael; Liebschner, Dorothee; Gotthard, Guillaume; Chabriere, Eric

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated

  5. Structural insights and ab initio sequencing within the DING proteins family

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Mikael, E-mail: mikael.elias@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Liebschner, Dorothee [CRM2, Nancy Université (France); Gotthard, Guillaume; Chabriere, Eric [AFMB, Université Aix-Marseille II (France)

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated.

  6. Compositional patterns in the genomes of unicellular eukaryotes.

    Science.gov (United States)

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  7. Conservation and Variability of Meiosis Across the Eukaryotes.

    Science.gov (United States)

    Loidl, Josef

    2016-11-23

    Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.

  8. Exposição a fungos dos trabalhadores dos ginásios com piscina

    OpenAIRE

    Viegas, Carla Sofia Costa

    2010-01-01

    RESUMO - Os trabalhadores dos ginásios com piscinas apresentam maior prevalência de lesões fúngicas, como a Tinea pedis e a onicomicose, devido às características intrínsecas da sua actividade profissional, pois apresentam mais horas por dia de exposição à contaminação fúngica das superfícies. Esta situação verifica-se não só por serem os que mais frequentam os locais possíveis de estarem contaminados, como é o caso de balneários, vestiários e zona envolvente às piscinas, mas t...

  9. Eukaryotic Cell Panorama

    Science.gov (United States)

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  10. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  11. Características sócio-culturais de práticas ginásticas e futebolísticas no sul do brasil ao final do século XX

    OpenAIRE

    BRUNO, Giancarlo Bazarele Machado; Universidade Federal de Pelotas

    2013-01-01

    Com entrevistas, observações, quantificações e metragens, estudou-se as academias de Ginástica e os locais de Futsal e de Soccer em Pelotas/RS. Um total de 1.570 praticantes, 44,8 alunos/academia, 97 % mulheres, praticavam principalmente Ginástica Localizada, Aeróbica e Step, em 35 locais, área média de 205,4 m2. Pertenciam à iniciativa privada 91,4%, e as restantes a clubes sociais. A maior freqüência era no período antes do verão e entrel7:00 e 22:00 horas. O custo médio, para exercitação d...

  12. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  13. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  14. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    Science.gov (United States)

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  15. A novel protein expression system-PichiaPink™- and a protocol for ...

    African Journals Online (AJOL)

    Pichia pastoris is a eukaryote and has many of the advantages of higher eukaryotic expression systems, such as protein processing, protein folding, and the availability of posttranslational modifications. It is as easy to manipulate as Escherichia coli or Saccharomyces cerevisiae. However, some serious and unavoidable ...

  16. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane; Kuo, Alan; Brueggeman, Andrew; Dunigan, David D.; Gurnon, James; Ladunga, Istvan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Proschold, Thomas; Salamov, Asaf; Schmutz, Jeremy; Weeks, Donald; Tamada, Takashi; Lomsadze, Alexandre; Borodovsky, Mark; Claverie, Jean-Michel; Grigoriev, Igor V.; Van Etten, James L.

    2012-02-13

    Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.

  17. Synthesis of eukaryotic lipid biomarkers in the bacterial domain

    Science.gov (United States)

    Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.

    2017-12-01

    Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.

  18. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.

    Science.gov (United States)

    Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel

    2016-12-01

    Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  19. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins

    Directory of Open Access Journals (Sweden)

    Obed Ramírez-Sánchez

    2016-12-01

    Full Text Available Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa, average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81 aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt]. Streptophyta have on average only ∼5.7 exons of medium size (∼230 nt. Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400 nt. Among subcellular compartments, membrane proteins are the largest (∼520 aa, whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240 aa. Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.

  20. Functional display of proteins, mutant proteins, fragments of proteins and peptides on the surface of filamentous (bacterio) phages: A review

    NARCIS (Netherlands)

    Pannekoek, H.; van Meijer, M.; Gaardsvoll, H.; van Zonneveld, A. J.

    1995-01-01

    Cytoplasmic expression of complex eukaryotic proteins inEscherichia coli usually yields inactive protein preparations. In some cases, (part) of the biological activity can be recovered by rather inefficient denaturation-renaturation procedures. Recently, novel concepts have been developed for the

  1. New role for Cdc14 phosphatase: localization to basal bodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella.

    Directory of Open Access Journals (Sweden)

    Audrey M V Ah-Fong

    Full Text Available Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar β-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.

  2. Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2018-03-03

    Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

  3. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  4. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  5. Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery.

    Science.gov (United States)

    Nedelcu, Aurora M

    2009-03-01

    Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes--from ligands and receptors to executors of PCD--was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae--used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors.

  6. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    Science.gov (United States)

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  7. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  8. An isoform of eukaryotic initiation factor 4E from Chrysanthemum morifolium interacts with Chrysanthemum virus B coat protein.

    Directory of Open Access Journals (Sweden)

    Aiping Song

    Full Text Available BACKGROUND: Eukaryotic translation initiation factor 4E (eIF4E plays an important role in plant virus infection as well as the regulation of gene translation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe the isolation of a cDNA encoding CmeIF(iso4E (GenBank accession no. JQ904592, an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso4E and the Chrysanthemum virus B coat protein (CVBCP. Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso4E with other reported plant eIF(iso4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso4E belongs to the eIF(iso4E subfamily of the eIF4E family. CmeIF(iso4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. CONCLUSIONS/SIGNIFICANCE: These results inferred that CmeIF(iso4E as the cap-binding subunit eIF(iso4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial.

  9. Ninguém é de ferro: a construção da corporeidade em uma academia de ginástica feminina de um bairro popular em João Pessoa

    OpenAIRE

    Lira, Manuella Ribeiro Barbosa

    2014-01-01

    A pesquisa que se segue tem como eixo central a construção do corpo feminino na atual sociedade, a partir do desenvolvimento de uma experiência etnográfica em uma academia de ginástica só para mulheres, localizada em um bairro popular da cidade de João Pessoa, no período entre os meses de dezembro de 2012 a dezembro de 2013. Os objetivos do estudo são investigar de que maneira o corpo é construído nas práticas e nos discursos da academia de ginástica só para mulheres, quais os ...

  10. Eukaryotic cell flattening

    Science.gov (United States)

    Bae, Albert; Westendorf, Christian; Erlenkamper, Christoph; Galland, Edouard; Franck, Carl; Bodenschatz, Eberhard; Beta, Carsten

    2010-03-01

    Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field to total internal reflection fluorescence microscopy. In this talk, we will discuss traditional overlay techniques, and more modern, microfluidic based flattening, which provides a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method.

  11. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  12. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  13. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  14. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  15. Comparative Genomics of Eukaryotes.

    NARCIS (Netherlands)

    Noort, V. van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  16. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  17. Molecular Dynamics Investigation of Cl− and Water Transport through a Eukaryotic CLC Transporter

    OpenAIRE

    Cheng, Mary Hongying; Coalson, Rob D.

    2012-01-01

    Early crystal structures of prokaryotic CLC proteins identified three Cl– binding sites: internal (Sint), central (Scen), and external (Sext). A conserved external GLU (GLUex) residue acts as a gate competing for Sext. Recently, the first crystal structure of a eukaryotic transporter, CmCLC, revealed that in this transporter GLUex competes instead for Scen. Here, we use molecular dynamics simulations to investigate Cl– transport through CmCLC. The gating and Cl–/H+ transport cycle are inferre...

  18. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Silke Leimkühler

    2017-01-01

    Full Text Available Modifications of transfer RNA (tRNA have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT. Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.

  19. Intermediate filament protein evolution and protists.

    Science.gov (United States)

    Preisner, Harald; Habicht, Jörn; Garg, Sriram G; Gould, Sven B

    2018-03-23

    Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity. © 2018 Wiley Periodicals, Inc.

  20. AUG is the only initiation codon in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, F; McKnight, G; Stewart, J W

    1980-01-01

    An analysis of mutants of the yeast Saccharomyces cerevisiae indicates that AUG is the sole codon capable of initiating translation of iso-1-cytochrome c. This result with yeast and the sequence results of numerous eukaryotic genes indicate that AUG is the only initiation codon in eukaryotes; in contrast, results with Escherichia colia and bacteriophages indicate that both AUG and GUG are initiation codons in prokaryotes. The difference can be explained by the lack of the t/sup 6/ A hypermodified nucleoside (N-(9-(..beta..-D-ribofuranosyl)purin-6-ylcarbamoyl)threonine) in prokaryotic initiator tRNA and its presence in eukaryotic initiator tRNA.

  1. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  2. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    Science.gov (United States)

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  3. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  4. Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    S. Andrei Anghel

    2017-12-01

    Full Text Available Members of the evolutionarily conserved Oxa1/Alb3/YidC family mediate membrane protein biogenesis at the mitochondrial inner membrane, chloroplast thylakoid membrane, and bacterial plasma membrane, respectively. Despite their broad phylogenetic distribution, no Oxa1/Alb3/YidC homologs are known to operate in eukaryotic cells outside the endosymbiotic organelles. Here, we present bioinformatic evidence that the tail-anchored protein insertion factor WRB/Get1, the “endoplasmic reticulum (ER membrane complex” subunit EMC3, and TMCO1 are ER-resident homologs of the Oxa1/Alb3/YidC family. Topology mapping and co-evolution-based modeling demonstrate that Get1, EMC3, and TMCO1 share a conserved Oxa1-like architecture. Biochemical analysis of human TMCO1, the only homolog not previously linked to membrane protein biogenesis, shows that it associates with the Sec translocon and ribosomes. These findings suggest a specific biochemical function for TMCO1 and define a superfamily of proteins—the “Oxa1 superfamily”—whose shared function is to facilitate membrane protein biogenesis.

  5. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function

    Directory of Open Access Journals (Sweden)

    Hofmann Kay

    2002-09-01

    Full Text Available Abstract Background Three macromolecular assemblages, the lid complex of the proteasome, the COP9-Signalosome (CSN and the eIF3 complex, all consist of multiple proteins harboring MPN and PCI domains. Up to now, no specific function for any of these proteins has been defined, nor has the importance of these motifs been elucidated. In particular Rpn11, a lid subunit, serves as the paradigm for MPN-containing proteins as it is highly conserved and important for proteasome function. Results We have identified a sequence motif, termed the MPN+ motif, which is highly conserved in a subset of MPN domain proteins such as Rpn11 and Csn5/Jab1, but is not present outside of this subfamily. The MPN+ motif consists of five polar residues that resemble the active site residues of hydrolytic enzyme classes, particularly that of metalloproteases. By using site-directed mutagenesis, we show that the MPN+ residues are important for the function of Rpn11, while a highly conserved Cys residue outside of the MPN+ motif is not essential. Single amino acid substitutions in MPN+ residues all show similar phenotypes, including slow growth, sensitivity to temperature and amino acid analogs, and general proteasome-dependent proteolysis defects. Conclusions The MPN+ motif is abundant in certain MPN-domain proteins, including newly identified proteins of eukaryotes, bacteria and archaea thought to act outside of the traditional large PCI/MPN complexes. The putative catalytic nature of the MPN+ motif makes it a good candidate for a pivotal enzymatic function, possibly a proteasome-associated deubiquitinating activity and a CSN-associated Nedd8/Rub1-removing activity.

  6. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands

    Directory of Open Access Journals (Sweden)

    Leo Veenman

    2016-06-01

    Full Text Available The 18 kDa translocator protein (TSPO is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.

  7. David and Goliath: chemical perturbation of eukaryotes by bacteria.

    Science.gov (United States)

    Ho, Louis K; Nodwell, Justin R

    2016-03-01

    Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.

  8. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  9. Identification and characterization of insect-specific proteins by genome data analysis

    Directory of Open Access Journals (Sweden)

    Clark Terry

    2007-04-01

    Full Text Available Abstract Background Insects constitute the vast majority of known species with their importance including biodiversity, agricultural, and human health concerns. It is likely that the successful adaptation of the Insecta clade depends on specific components in its proteome that give rise to specialized features. However, proteome determination is an intensive undertaking. Here we present results from a computational method that uses genome analysis to characterize insect and eukaryote proteomes as an approximation complementary to experimental approaches. Results Homologs in common to Drosophila melanogaster, Anopheles gambiae, Bombyx mori, Tribolium castaneum, and Apis mellifera were compared to the complete genomes of three non-insect eukaryotes (opisthokonts Homo sapiens, Caenorhabditis elegans and Saccharomyces cerevisiae. This operation yielded 154 groups of orthologous proteins in Drosophila to be insect-specific homologs; 466 groups were determined to be common to eukaryotes (represented by three opisthokonts. ESTs from the hemimetabolous insect Locust migratoria were also considered in order to approximate their corresponding genes in the insect-specific homologs. Stress and stimulus response proteins were found to constitute a higher fraction in the insect-specific homologs than in the homologs common to eukaryotes. Conclusion The significant representation of stress response and stimulus response proteins in proteins determined to be insect-specific, along with specific cuticle and pheromone/odorant binding proteins, suggest that communication and adaptation to environments may distinguish insect evolution relative to other eukaryotes. The tendency for low Ka/Ks ratios in the insect-specific protein set suggests purifying selection pressure. The generally larger number of paralogs in the insect-specific proteins may indicate adaptation to environment changes. Instances in our insect-specific protein set have been arrived at through

  10. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Science.gov (United States)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to

  11. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Directory of Open Access Journals (Sweden)

    Venturi Maria L

    2004-01-01

    Full Text Available Abstract Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i animals are more closely related to fungi than to plants, (ii red algae are closer to plants than to animals or fungi, (iii choanoflagellates are closer to animals than to fungi or plants, (iv diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v diplomonads are basal to other eukaryotes (including alveolates and euglenozoans. Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene and concatenated (supergene. Different time estimation methods yielded similar results (within 5%: vertebrate-arthropod (964 million years ago, Ma, Cnidaria-Bilateria (1,298 Ma, Porifera-Eumetozoa (1,351 Ma, Pyrenomycetes-Plectomycetes (551 Ma, Candida-Saccharomyces (723 Ma, Hemiascomycetes-filamentous Ascomycota (982 Ma, Basidiomycota-Ascomycota (968 Ma, Mucorales-Basidiomycota (947 Ma, Fungi-Animalia (1,513 Ma, mosses-vascular plants (707 Ma, Chlorophyta-Tracheophyta (968 Ma, Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma, Plantae-Animalia (1,609 Ma, Alveolata-plants+animals+fungi (1,973 Ma, Euglenozoa-plants+animals+fungi (1,961 Ma, and Giardia-plants+animals+fungi (2,309 Ma. By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10

  12. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  13. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    Science.gov (United States)

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  14. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  15. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  16. Novel core promoter elements and a cognate transcription factor in the divergent unicellular eukaryote Trichomonas vaginalis.

    Science.gov (United States)

    Smith, Alias J; Chudnovsky, Lorissa; Simoes-Barbosa, Augusto; Delgadillo-Correa, Maria G; Jonsson, Zophonias O; Wohlschlegel, James A; Johnson, Patricia J

    2011-04-01

    A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5' untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif.

  17. Novel Core Promoter Elements and a Cognate Transcription Factor in the Divergent Unicellular Eukaryote Trichomonas vaginalis▿

    Science.gov (United States)

    Smith, Alias J.; Chudnovsky, Lorissa; Simoes-Barbosa, Augusto; Delgadillo-Correa, Maria G.; Jonsson, Zophonias O.; Wohlschlegel, James A.; Johnson, Patricia J.

    2011-01-01

    A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5′ untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif. PMID:21245378

  18. Production cross sections and isomeric ratios for sup(110m)In/sup(110g)In formed in Cd (d,xn) reactions

    International Nuclear Information System (INIS)

    Herreros Usher, Oscar; Maceiras de Jefimowicz, Elena; De la Vega Vedoya, Mario; Jorge Nassiff, Sonia

    1980-01-01

    Excitation functions and isomeric cross sections ratios have been measured for the 110 Cd (d,2n) and 111 Cd (d,3n) reactions in which the isomeric pair sup(110m)In/sup(110g)In is produced. Activation method was employed and the irradiations were performed at the synchrocyclotron of the Comision Nacional de Energia Atomica, Argentina, with an incident energy of 27.MeV. (author) [es

  19. Tubulinlike protein from Spirochaeta bajacaliforniensis

    Science.gov (United States)

    Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.

    1987-01-01

    Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophyiscal interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with antitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacterial in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstrom microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers

  20. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.

    Directory of Open Access Journals (Sweden)

    Coralie Damon

    Full Text Available Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica and spruce (Picea abies forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60% and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides, sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin and glycoside hydrolases represented 0.5% (beech soil-0.8% (spruce soil of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus

  1. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com)....

  2. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  3. Archaeal “Dark Matter” and the Origin of Eukaryotes

    Science.gov (United States)

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  4. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    International Nuclear Information System (INIS)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-01-01

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  5. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  6. Early stages in the biogenesis of eukaryotic β-barrel proteins.

    Science.gov (United States)

    Jores, Tobias; Rapaport, Doron

    2017-09-01

    The endosymbiotic organelles mitochondria and chloroplasts harbour, similarly to their prokaryotic progenitors, β-barrel proteins in their outer membrane. These proteins are encoded on nuclear DNA, translated on cytosolic ribosomes and imported into their target organelles by a dedicated machinery. Recent studies have provided insights into the import into the organelles and the membrane insertion of these proteins. Although the cytosolic stages of their biogenesis are less well defined, it is speculated that upon their synthesis, chaperones prevent β-barrel proteins from aggregation and keep them in an import-competent conformation. In this Review, we summarize the current knowledge about the biogenesis of β-barrel proteins, focusing on the early stages from the translation on cytosolic ribosomes to the recognition on the surface of the organelle. © 2017 Federation of European Biochemical Societies.

  7. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore......, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1–independent subpathways of MMR is not known. This review summarizes recent literature...

  8. Battery condenser system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  9. The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins.

    Science.gov (United States)

    Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin

    2015-03-24

    Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside

  10. O Modelo de Carga Externa em Ginástica Artística Feminina de Alto Rendimento. A estrutura e as tendências evolutivas dos exercícios de competiçãoem Paralelas Assimétricas.

    OpenAIRE

    Ferreirinha, José

    2011-01-01

    Embora a Ginástica Artística seja muitas vezes referida como uma modalidade associada a grandes volumes e intensidades de treino, são escassos os dados objectivamente mensurados que fundamentem tais referências. Ao nível da carga externa, apenas são feitas algumas referências que caracterizam as sessões de treino, na sua duração, frequência e quantidades de elementos e exercícios efectuados. A Federação Internacional de Ginástica também tem efectuado relatórios após as grandes competições int...

  11. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  12. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods...

  13. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  14. Protein moonlighting in parasitic protists.

    Science.gov (United States)

    Ginger, Michael L

    2014-12-01

    Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies.

  15. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  16. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for d...

  17. Chlamydia trachomatis Mip-like protein

    DEFF Research Database (Denmark)

    Lundemose, AG; Rousch, DA; Birkelund, Svend

    1992-01-01

    venereum (LGV) biovar) is presented. The sequence shows high similarity to the legionella Mip protein and its C-terminal region, like that of the legionella Mip, has high amino acid similarity to eukaryotic and prokaryotic FK506-binding proteins. The chlamydial mip-like gene was detected by polymerase...

  18. Eukaryotic systematics: a user's guide for cell biologists and parasitologists.

    Science.gov (United States)

    Walker, Giselle; Dorrell, Richard G; Schlacht, Alexander; Dacks, Joel B

    2011-11-01

    Single-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.

  19. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups".

    Science.gov (United States)

    Hampl, Vladimir; Hug, Laura; Leigh, Jessica W; Dacks, Joel B; Lang, B Franz; Simpson, Alastair G B; Roger, Andrew J

    2009-03-10

    Nearly all of eukaryotic diversity has been classified into 6 suprakingdom-level groups (supergroups) based on molecular and morphological/cell-biological evidence; these are Opisthokonta, Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Excavata. However, molecular phylogeny has not provided clear evidence that either Chromalveolata or Excavata is monophyletic, nor has it resolved the relationships among the supergroups. To establish the affinities of Excavata, which contains parasites of global importance and organisms regarded previously as primitive eukaryotes, we conducted a phylogenomic analysis of a dataset of 143 proteins and 48 taxa, including 19 excavates. Previous phylogenomic studies have not included all major subgroups of Excavata, and thus have not definitively addressed their interrelationships. The enigmatic flagellate Andalucia is sister to typical jakobids. Jakobids (including Andalucia), Euglenozoa and Heterolobosea form a major clade that we name Discoba. Analyses of the complete dataset group Discoba with the mitochondrion-lacking excavates or "metamonads" (diplomonads, parabasalids, and Preaxostyla), but not with the final excavate group, Malawimonas. This separation likely results from a long-branch attraction artifact. Gradual removal of rapidly-evolving taxa from the dataset leads to moderate bootstrap support (69%) for the monophyly of all Excavata, and 90% support once all metamonads are removed. Most importantly, Excavata robustly emerges between unikonts (Amoebozoa + Opisthokonta) and "megagrouping" of Archaeplastida, Rhizaria, and chromalveolates. Our analyses indicate that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.

  20. Construction and identification of eukaryotic expression vector of pcDNA3-UHRF1

    International Nuclear Information System (INIS)

    Li Xinli; Zhu Ran; Zhu Wei; Fan Saijun; Meng Qinghui

    2011-01-01

    Objective: To generate eukaryotic expression vector of pcDNA3-UHRF1(ubiquitin-like, containing PHD and RING finger domains 1, UHRF1) and testify its expression in breast cancer cells MDA-MB-231. Methods: A 2.3 kb cDNA fragment was amplified from the total RNA of the human breast cancer cells MCF-7 by the RT-PCR method and was cloned into the plasmid pcDNA3. The vector was identified by the double digestion with restriction enzymes Kpn I and Xho I and was sequenced. The cDNA of UHRF1 was transfected into human breast cancer cells MDA-MB-231 by Lipofactamin2000. The positive clones were selected by G418. The expression of the UHRF1 was detected by RT-PCR and Western blot analysis. Results: The recombinant eukaryotic expression vector pcDNA3-UHRF1 was digested with Kpn I and BamH I, and the electrophoresis of the digested products showed two fragments; 2.3kb fragment of UHRF1 and 5.4 kb fragment of pcDNA3, and the sequence inserted was identical to the published sequence. The MDA-MB-231 cells transfected with the pcDNA3-UHRF1 plasmid expressed a high level of the UHRF1 mRNA and protein. Conclusion: The recombinant eukaryotic cell expression vector of pcDNA3-UHRF1 is constructed successfully. The recombinant plasmid pcDNA3-UHRF1 can provide a very useful tool and lay an important foundation for the research on the function of UHRF1. (authors)

  1. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Crystal structure of an eIF4G-like protein from Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bitto, Eduard; Bingman, Craig A.; McCoy, Jason G.; Wesenberg, Gary E.; Phillips, Jr., George N. (UW)

    2012-04-18

    The gene LOC 91917 Danio rerio (zebrafish) encodes a protein annotated in the UniProt knowledgebase as the middle domain of eukaryotic initiation factor 4G domain containing protein b (MIF4Gdb). Its molecular weight is 25.8 kDa, and it comprises 222 amino acid residues. BLAST searches revealed homologues of D. rerio MIF4Gdb in many eukaryotes including humans. The homologue sand MIF4Gdb were identified as members of the Pfam family, MIF4G (PF2854), which is named after the middle domain of eukaryotic initiation factor 4G (eIF4G). eIF4G is a component of eukaryotic translational initiation complex, and contains binding sites for other initiation factors, suggesting its critical role in translational initiation. The MIF4G domain also occurs in several other proteins involved in RNA metabolism, including the Nonsense-mediated mRNA decay 2 protein (NMD2/UPF2), and the nuclear cap-binding protein 80-kDa subunit (CBP80). Sequence and structure analysis of the MIF4G domains in many proteins indicate that the domain assumes an all helical fold and has tandem repeated motifs. The zebrafish protein described here has homology to domains of other proteins variously referred to as NIC-containing proteins (NMD2, eIF4G, CBP80). The biological function of D. rerio MIF4Gdb has not yet been experimentally characterized, and the annotation is based on amino acid sequence comparison. D. rerio MIF4Gdb did not share more than 25% sequence identity with any protein for which the three-dimensional structure is known and was selected as a target for structure determination by the Center for Eukaryotic Structural Genomics (CESG). Here, they report the crystal structure of D. rerio MIF4Gdb (UniGene code Dr.79360, UniProt code Q5EAQ1, CESG target number GO.79294).

  3. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.

  4. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability...

  5. Gonococcal attachment to eukaryotic cells

    International Nuclear Information System (INIS)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    1983-01-01

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with [ 3 H]- and [ 14 C]adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture

  6. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development.

    Science.gov (United States)

    Shima, Naoko; Pederson, Kayla D

    2017-08-01

    DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CpLEA5, the Late Embryogenesis Abundant Protein Gene from Chimonanthus praecox, Possesses Low Temperature and Osmotic Resistances in Prokaryote and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Yiling Liu

    2015-11-01

    Full Text Available Plants synthesize and accumulate a series of stress-resistance proteins to protect normal physiological activities under adverse conditions. Chimonanthus praecox which blooms in freezing weather accumulates late embryogenesis abundant proteins (LEAs in flowers, but C. praecox LEAs are little reported. Here, we report a group of five LEA genes of C. praecox (CpLEA5, KT727031. Prokaryotic-expressed CpLEA5 was employed in Escherichia coli to investigate bioactivities and membrane permeability at low-temperature. In comparison with the vacant strains, CpLEA5-containing strains survived in a 20% higher rate; and the degree of cell membrane damage in CpLEA5-containing strains was 55% of that of the vacant strains according to a conductivity test, revealing the low-temperature resistance of CpLEA5 in bacteria. CpLEA5 was also expressed in Pichia pastoris. Interestingly, besides low-temperature resistance, CpLEA5 conferred high resistance to salt and alkali in CpLEA5 overexpressing yeast. The CpLEA5 gene was transferred into Arabidopsis thaliana to also demonstrate CpLEA5 actions in plants. As expected, the transgenic lines were more resistant against low-temperature and drought while compared with the wild type. Taken together, CpLEA5-conferred resistances to several conditions in prokaryote and eukaryotes could have great value as a genetic technology to enhance osmotic stress and low-temperature tolerance.

  8. Getting out : protein traffic in prokaryotes

    NARCIS (Netherlands)

    Pugsley, A.P; Francetic, O; Driessen, A.J.M.; de Lorenzo, V.

    Protein secretion systems in prokaryotes are increasingly shifting from being considered as experimental models for 'more complex' processes (i.e. eukaryotes) to being a major source of key biological questions in their own right. The pathways by which proteins move between compartments or insert

  9. Protein degradation and protection against misfolded or damaged proteins

    Science.gov (United States)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  10. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N.; Vanwetswinkel, Sophie; Van de Water, Karen; Nuland, Nico A. J. van, E-mail: nvnuland@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2012-03-15

    Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, {Delta}{chi}. For most nuclei, the PCSs back-calculated from the {Delta}{chi} tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches-clustered around G41, N52, and A81-exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.

  11. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy

    International Nuclear Information System (INIS)

    Volkov, Alexander N.; Vanwetswinkel, Sophie; Van de Water, Karen; Nuland, Nico A. J. van

    2012-01-01

    Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, Δχ. For most nuclei, the PCSs back-calculated from the Δχ tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches—clustered around G41, N52, and A81—exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.

  12. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    Science.gov (United States)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  13. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.

    Science.gov (United States)

    Dulmage, Keely A; Todor, Horia; Schmid, Amy K

    2015-09-08

    In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. Histones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode

  14. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Moniot, Sebastien; Elias, Mikael; Kim, Donghyo; Scott, Ken; Chabriere, Eric

    2007-01-01

    Crystallization of DING protein from P. fluorescens is reported. A complete data set was collected to 1.43 Å resolution. PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P2 1 ), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8 Å, α = 90, β = 116.7, γ = 90°. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43 Å resolution data set has been collected

  15. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    Science.gov (United States)

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  16. Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

    Science.gov (United States)

    Mahlab, Shelly; Linial, Michal

    2014-01-01

    Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation

  17. Waggawagga-CLI: A command-line tool for predicting stable single α-helices (SAH-domains, and the SAH-domain distribution across eukaryotes.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAH-domains function as rigid connectors and constant force springs between structural domains, and can provide contact surfaces for protein-protein and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are monomeric and stable in polar solutions, characteristics which distinguish them from coiled-coil domains and intrinsically disordered regions. Although the number of reported SAH-domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic genomes are still missing. Here, we present Waggawagga-CLI, a command-line tool for predicting and analysing SAH-domains in protein sequence datasets. Using Waggawagga-CLI we predicted SAH-domains in 24 datasets from eukaryotes across the tree of life. SAH-domains were predicted in 0.5 to 3.5% of the protein-coding content per species. SAH-domains are particularly present in longer proteins supporting their function as structural building block in multi-domain proteins. In human, SAH-domains are mainly used as alternative building blocks not being present in all transcripts of a gene. Gene ontology analysis showed that yeast proteins with SAH-domains are particular enriched in macromolecular complex subunit organization, cellular component biogenesis and RNA metabolic processes, and that they have a strong nuclear and ribonucleoprotein complex localization and function in ribosome and nucleic acid binding. Human proteins with SAH-domains have roles in all types of RNA processing and cytoskeleton organization, and are predicted to function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskeletal protein binding. Waggawagga-CLI allows the user to adjust the stabilizing and destabilizing contribution of amino acid interactions in i,i+3 and i,i+4 spacings, and provides extensive flexibility for user-designed analyses.

  18. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins?

    Science.gov (United States)

    Luévano-Martínez, Luis Alberto

    2012-04-05

    Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    Science.gov (United States)

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  20. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    Science.gov (United States)

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  1. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  2. The ancient Virus World and evolution of cells

    Directory of Open Access Journals (Sweden)

    Dolja Valerian V

    2006-09-01

    with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data. Conclusion The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history. Reviewers W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.

  3. Insight into eukaryotic topoisomerase II-inhibiting fused heterocyclic compounds in human cancer cell lines by molecular docking.

    Science.gov (United States)

    Taskin, T; Yilmaz, S; Yildiz, I; Yalcin, I; Aki, E

    2012-01-01

    Etoposide is effective as an anti-tumour drug by inhibiting eukaryotic DNA topoisomerase II via establishing a covalent complex with DNA. Unfortunately, its wide therapeutic application is often hindered by multidrug resistance (MDR), low water solubility and toxicity. In our previous study, new derivatives of benzoxazoles, benzimidazoles and related fused heterocyclic compounds, which exhibited significant eukaryotic DNA topoisomerase II inhibitory activity, were synthesized and exhibited better inhibitory activity compared with the drug etoposide itself. To expose the binding interactions between the eukaryotic topoisomerase II and the active heterocyclic compounds, docking studies were performed, using the software Discovery Studio 2.1, based on the crystal structure of the Topo IIA-bound G-segment DNA (PDB ID: 2RGR). The research was conducted on a selected set of 31 fused heterocyclic compounds with variation in structure and activity. The structural analyses indicate coordinate and hydrogen bonding interactions, van der Waals interactions and hydrophobic interactions between ligands and the protein, as Topo IIA-bound G-segment DNA are responsible for the preference of inhibition and potency. Collectively, the results demonstrate that the compounds 1a, 1c, 3b, 3c, 3e and 4a are significant anti-tumour drug candidates that should be further studied.

  4. Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    2016-06-01

    Full Text Available Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro-and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds.

  5. Multiple roles of genome-attached bacteriophage terminal proteins

    International Nuclear Information System (INIS)

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-01-01

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer

  6. Multiple roles of genome-attached bacteriophage terminal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  7. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot...

  8. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  9. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  10. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  12. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    Science.gov (United States)

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  13. Uniting sex and eukaryote origins in an emerging oxygenic world.

    Science.gov (United States)

    Gross, Jeferson; Bhattacharya, Debashish

    2010-08-23

    Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation

  14. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

    NARCIS (Netherlands)

    Speijer, Dave; Lukeš, Julius; Eliáš, Marek

    2015-01-01

    Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to

  16. Crystal structure of Homo sapiens protein LOC79017

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N. (UW)

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  17. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology.

    Science.gov (United States)

    Liljeruhm, Josefine; Funk, Saskia K; Tietscher, Sandra; Edlund, Anders D; Jamal, Sabri; Wistrand-Yuen, Pikkei; Dyrhage, Karl; Gynnå, Arvid; Ivermark, Katarina; Lövgren, Jessica; Törnblom, Viktor; Virtanen, Anders; Lundin, Erik R; Wistrand-Yuen, Erik; Forster, Anthony C

    2018-01-01

    Coral reefs are colored by eukaryotic chromoproteins (CPs) that are homologous to green fluorescent protein. CPs differ from fluorescent proteins (FPs) by intensely absorbing visible light to give strong colors in ambient light. This endows CPs with certain advantages over FPs, such as instrument-free detection uncomplicated by ultra-violet light damage or background fluorescence, efficient Förster resonance energy transfer (FRET) quenching, and photoacoustic imaging. Thus, CPs have found utility as genetic markers and in teaching, and are attractive for potential cell biosensor applications in the field. Most near-term applications of CPs require expression in a different domain of life: bacteria. However, it is unclear which of the eukaryotic CP genes might be suitable and how best to assay them. Here, taking advantage of codon optimization programs in 12 cases, we engineered 14 CP sequences (meffRed, eforRed, asPink, spisPink, scOrange, fwYellow, amilGFP, amajLime, cjBlue, meffBlue, aeBlue, amilCP, tsPurple and gfasPurple) into a palette of Escherichia coli BioBrick plasmids. BioBricks comply with synthetic biology's most widely used, simplified, cloning standard. Differences in color intensities, maturation times and fitness costs of expression were compared under the same conditions, and visible readout of gene expression was quantitated. A surprisingly large variation in cellular fitness costs was found, resulting in loss of color in some overnight liquid cultures of certain high-copy-plasmid-borne CPs, and cautioning the use of multiple CPs as markers in competition assays. We solved these two problems by integrating pairs of these genes into the chromosome and by engineering versions of the same CP with very different colors. Availability of 14 engineered CP genes compared in E. coli , together with chromosomal mutants suitable for competition assays, should simplify and expand CP study and applications. There was no single plasmid-borne CP that combined

  18. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  19. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1 and 2 (ITS2 amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index and alpha diversity (Shannon diversity differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis

  20. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  1. The multi-replication protein A (RPA) system--a new perspective.

    Science.gov (United States)

    Sakaguchi, Kengo; Ishibashi, Toyotaka; Uchiyama, Yukinobu; Iwabata, Kazuki

    2009-02-01

    Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.

  2. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle

    Science.gov (United States)

    Feng, Liang; Campbell, Ernest B.; Hsiung, Yichun; MacKinnon, Roderick

    2011-01-01

    CLC proteins transport Cl− ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl− ion channels, while others are secondary active transporters that exchange Cl− ions and H+ with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 Å resolution. Cytoplasmic CBS domains are strategically positioned to regulate the ion transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate changes conformation and suggests a basis for 2:1 Cl−/H+ exchange and a simple mechanistic connection between CLC channels and transporters. PMID:20929736

  3. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.

    Science.gov (United States)

    Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva

    2018-01-01

    All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.

  4. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  5. Therapeutic intervention based on protein prenylation and associated modifications

    NARCIS (Netherlands)

    Gelb, M.H.; Brunsveld, L.; Hrycyna, C.A.; Michaelis, S.; Tamanoi, F.

    2006-01-01

    In eukaryotic cells, a specific set of proteins are modified by C-terminal attachment of 15-carbon farnesyl groups or 20-carbon geranylgeranyl groups that function both as anchors for fixing proteins to membranes and as molecular handles for facilitating binding of these lipidated proteins to other

  6. Patent gastrointestinal nematode infections in organically and conventionally pastured dairy cows and their impact on individual milk and fertility parameters.

    Science.gov (United States)

    May, Katharina; Brügemann, Kerstin; König, Sven; Strube, Christina

    2017-10-15

    Infections with gastrointestinal nematodes (GIN) can lead to production losses and impacts on product quality in affected cows, which has mainly been demonstrated during deworming experiments or via herd-level measurements. Here, a field study was carried out to explore the association between GIN infection status and milk production as well as fertility parameters in individual dairy cows. Different selection lines of Black and White cows were included in the study, which were distributed among 17 small and medium-sized organic and conventional German grassland farms. Faecal samples of 1166 dairy cows were examined twice, in July and September 2015. Nematode eggs were found in the faeces of 473 (40.6%) cows. As expected, strongylid eggs (Trichostrongylidae or Oesophagostomum and Bunostomum spp., respectively) were the predominant morphotype, followed by Strongyloides papillosus and Capillaria spp. eggs. In July, cows kept under organic conditions had a significantly lower GIN prevalence in comparison to cows kept on conventional farms. Faecal egg counts were generally low, with the highest value in September and an arithmetic mean of 11.3 eggs per gram faeces (EPG) for all observations. The relationships between GIN infection status and milk yield (kg milk/cow/day), milk protein content (%) and milk fat content (%) for each first test-day record after parasitological assessment were estimated by using linear mixed models. Milk protein content was estimated 0.05% lower in GIN positive compared to GIN negative cows, whereas no significant effect on milk yield or milk fat content was observed. The impact of GIN infection status on success in first insemination (SFI) was estimated by using a threshold model. No significant association was demonstrated between GIN infection status and SFI. Unexpectedly, the fertility parameter days from calving-to-first-service (CTFS) showed a significantly shorter average interval in GIN positive cows. However, these data on

  7. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast.

    Directory of Open Access Journals (Sweden)

    Nina V Romanova

    2013-10-01

    Full Text Available DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.

  8. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation

    Directory of Open Access Journals (Sweden)

    Andreas eWachter

    2012-05-01

    Full Text Available Alternative precursor mRNA splicing is a widespread phenomenon in multicellular eukaryotes and represents a major means for functional expansion of the transcriptome. While several recent studies have revealed an important link between splicing regulation and fundamental biological processes in plants, many important aspects, such as the underlying splicing regulatory mechanisms, are so far not well understood. Splicing decisions are in general based on a splicing code that is determined by the dynamic interplay of splicing-controlling factors and cis-regulatory elements. Several members of the group of heterogeneous nuclear ribonucleoprotein (hnRNP proteins are well-known regulators of splicing in animals and the comparatively few reports on some of their plant homologues revealed similar functions. This also applies to polypyrimidine tract-binding proteins (PTBs, a thoroughly investigated class of hnRNP proteins with splicing regulatory functions in both animals and plants. Further examples from plants are auto- and cross-regulatory splicing circuits of glycine-rich RNA-binding proteins (GRPs and splicing enhancement by oligouridylatebinding proteins. Besides their role in defining splice site choice, hnRNP proteins are also involved in multiple other steps of nucleic acid metabolism, highlighting the functional versatility of this group of proteins in higher eukaryotes.

  9. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  10. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  11. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  12. Eukaryotic acquisition of a bacterial operon

    Science.gov (United States)

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  13. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    Science.gov (United States)

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  14. Pix proteins and the evolution of centrioles.

    Science.gov (United States)

    Woodland, Hugh R; Fry, Andrew M

    2008-01-01

    We have made a wide phylogenetic survey of Pix proteins, which are constituents of vertebrate centrioles in most eukaryotes. We have also surveyed the presence and structure of flagella or cilia and centrioles in these organisms, as far as is possible from published information. We find that Pix proteins are present in a vast range of eukaryotes, but not all. Where centrioles are absent so are Pix proteins. If one considers the maintenance of Pix proteins over evolutionary time scales, our analysis would suggest that their key function is to make cilia and flagella, and the same is true of centrioles. Moreover, this survey raises the possibility that Pix proteins are only maintained to make cilia and flagella that undulate, and even then only when they are constructed by transporting ciliary constituents up the cilium using the intraflagellar transport (IFT) system. We also find that Pix proteins have become generally divergent within Ecdysozoa and between this group and other taxa. This correlates with a simplification of centrioles within Ecdysozoa and a loss or divergence of cilia/flagella. Thus Pix proteins act as a weathervane to indicate changes in centriole function, whose core activity is to make cilia and flagella.

  15. Transtorno alimentar e variáveis comportamentais relacionadas ao excercício físico em academia de ginástica

    OpenAIRE

    Weis, Andréia

    2013-01-01

    Resumo: O objetivo do estudo foi analisar variáveis comportamentais relacionadas ao exercício físico (compromisso ao exercício físico, modalidades praticadas, objetivos para prática e características de treinamento) em pessoas com transtorno alimentar frenquentadoras de uma academia de ginástica de Balneário Camboriú - SC. Participaram da pesquisa 239 indivíduos, sendo 139 mulheres (32,2, ±11,0 anos) e 100 homens (31,4, ±13,1 anos). Os sujeitos responderam o Teste de Atitudes Alimentares (EAT...

  16. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  17. Amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui.

    Science.gov (United States)

    Hatakeyama, T; Hatakeyama, T

    1990-07-06

    The complete amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui were determined. Protein HL30 was found to be acetylated at its N-terminal amino acid and shows homology to the eukaryotic ribosomal proteins YL34 from yeast and RL31 from rat. Protein HmaL5 was homologous to the protein L5 from Escherichia coli and Bacillus stearothermophilus as well as to YL16 from yeast. HmaL5 shows more similarities to its eukaryotic counterpart than to eubacterial ones.

  18. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    Science.gov (United States)

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  19. Impacto do beneficiamento sobre o número de neps e quantidade de impurezas da fibra do algodão Ginning impact on the number of neps and amount of cotton fiber contaminants

    Directory of Open Access Journals (Sweden)

    Odilon R. R. F. da Silva

    2010-01-01

    Full Text Available Objetivou-se, neste trabalho, estudar o efeito do beneficiamento sobre o conteúdo de impurezas, pó e o número de neps na pluma, em 12 algodoeiras do Estado de Mato Grosso. O experimento consistiu de uma combinação fatorial de cinco etapas de beneficiamento do algodão em 12 algodoeiras em delineamento inteiramente casualizado com quatro repetições. Amostras de algodão foram coletadas nas seguintes etapas: a no desmanche do fardão; b antes do descaroçamento; c logo após o descaroçamento; d na bica, sem o uso do limpador tipo serrilha; e na bica, após a limpeza da pluma, utilizando-se o limpador tipo serrilha. Em todas as etapas se retiraram quatro amostras padrão de pluma com massa de 350 g a fim de serem analisadas mediante o instrumento AFIS (Advanced Fiber Information System para determinação do conteúdo de impurezas e poeira e o número de neps da fibra. Os resultados indicam que os processos de prelimpeza do algodão em caroço e limpeza da pluma reduzem o conteúdo de impurezas e da poeira do algodão enquanto, juntamente com o descaroçamento, esses processos aumentaram o número de neps da fibra do algodão. A utilização do limpador de pluma tipo serrilha com manta contínua aumenta a eficiência de limpeza da pluma, porém ocasiona incrementos significativos no número de neps.The purpose of this work was to study the ginning effect on the amount of cotton contaminants, dust and neps in cotton fiber, in 12 industries in the Mato Grosso State. The experiment consisted of a factorial combination over five stages of ginning and 12 cotton industries using a randomized design with four replications. Some samples of cotton were collected in the following phases: a in the bale dismantling; b before the ginning; c right after ginning; d into the covered lint slide not using the saw lint cleaner; and e into the covered lint slide, after cleaning process using the saw lint cleaner system. Over all stages four standard samples of

  20. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    Science.gov (United States)

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-07-01

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Extensionando “saúdes”, produzindo sociabilidades: o projeto "ginástica para comunidade" da Universidade Federal do Rio Grande

    OpenAIRE

    Freitas, Gustavo da Silva; Nunes, Giovana Valente; Teixeira, Juliana Cotting

    2014-01-01

    Trabalho apresentado no 31º SEURS - Seminário de Extensão Universitária da Região Sul, realizado em Florianópolis, SC, no período de 04 a 07 de agosto de 2013 - Universidade Federal de Santa Catarina. O Projeto “Ginástica para a Comunidade” está em ação há mais de dezesseis anos tendo sido criado por iniciativa de professores de Educação Física da Universidade Federal do Rio Grande (FURG), motivados em se integrar à comunidade numa ação de extensão. Com diferentes propósitos e formatos ao ...

  2. Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle

    International Nuclear Information System (INIS)

    Feng, Liang; Campbell, Ernest B.; Hsiung, Yichun; MacKinnon, Roderick

    2010-01-01

    CLC proteins transport chloride (Cl - ) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl - ion channels, whereas others are secondary active transporters that exchange Cl - ions and protons (H + ) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl - /H + exchange and a simple mechanistic connection between CLC channels and transporters.

  3. A Common Ca2+-Driven Interdomain Module Governs Eukaryotic NCX Regulation

    Science.gov (United States)

    Giladi, Moshe; Sasson, Yehezkel; Fang, Xianyang; Hiller, Reuben; Buki, Tal; Wang, Yun-Xing; Hirsch, Joel A.; Khananshvili, Daniel

    2012-01-01

    Na+/Ca2+ exchanger (NCX) proteins mediate Ca2+-fluxes across the cell membrane to maintain Ca2+ homeostasis in many cell types. Eukaryotic NCX contains Ca2+-binding regulatory domains, CBD1 and CBD2. Ca2+ binding to a primary sensor (Ca3-Ca4 sites) on CBD1 activates mammalian NCXs, whereas CALX, a Drosophila NCX ortholog, displays an inhibitory response to regulatory Ca2+. To further elucidate the underlying regulatory mechanisms, we determined the 2.7 Å crystal structure of mammalian CBD12-E454K, a two-domain construct that retains wild-type properties. In conjunction with stopped-flow kinetics and SAXS (small-angle X-ray scattering) analyses of CBD12 mutants, we show that Ca2+ binding to Ca3-Ca4 sites tethers the domains via a network of interdomain salt-bridges. This Ca2+-driven interdomain switch controls slow dissociation of “occluded” Ca2+ from the primary sensor and thus dictates Ca2+ sensing dynamics. In the Ca2+-bound conformation, the interdomain angle of CBD12 is very similar in NCX and CALX, meaning that the interdomain distances cannot account for regulatory diversity in NCX and CALX. Since the two-domain interface is nearly identical among eukaryotic NCXs, including CALX, we suggest that the Ca2+-driven interdomain switch described here represents a general mechanism for initial conduction of regulatory signals in NCX variants. PMID:22768191

  4. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  5. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  6. Architecture of eukaryotic mRNA 3′-end processing machinery

    Science.gov (United States)

    Hill, Chris H.; Easter, Ashley D.; Emsley, Paul; Degliesposti, Gianluca; Gordiyenko, Yuliya; Santhanam, Balaji; Wolf, Jana; Wiederhold, Katrin; Dornan, Gillian L.; Skehel, Mark; Robinson, Carol V.; Passmore, Lori A.

    2018-01-01

    Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3′ ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four β propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3′-end processing. PMID:29074584

  7. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    Science.gov (United States)

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role

  8. Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2α and eIF2B1 and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats

    Directory of Open Access Journals (Sweden)

    Philippe A. Melas

    2018-03-01

    Full Text Available Summary: Reduced eukaryotic Initiation Factor 2 (eIF2α phosphorylation (p-eIF2α enhances protein synthesis, memory formation, and addiction-like behaviors. However, p-eIF2α has not been examined with regard to psychoactive cannabinoids and cross-sensitization. Here, we find that a cannabinoid receptor agonist (WIN 55,212-2 mesylate [WIN] reduced p-eIF2α in vitro by upregulating GADD34 (PPP1R15A, the recruiter of protein phosphatase 1 (PP1. The induction of GADD34 was linked to ERK/CREB signaling and to CREB-binding protein (CBP-mediated histone hyperacetylation at the Gadd34 locus. In vitro, WIN also upregulated eIF2B1, an eIF2 activator subunit. We next found that WIN administration in vivo reduced p-eIF2α in the nucleus accumbens of adolescent, but not adult, rats. By contrast, WIN increased dorsal striatal levels of eIF2B1 and ΔFosB among both adolescents and adults. In addition, we found cross-sensitization between WIN and cocaine only among adolescents. These findings show that cannabinoids can modulate eukaryotic initiation factors, and they suggest a possible link between p-eIF2α and the gateway drug properties of psychoactive cannabinoids. : Melas et al. show that psychoactive cannabinoids modulate levels of two eukaryotic initiation factors (eIF2α and eIF2B1 known to be involved in protein synthesis, memory formation, and drug sensitivity. Cannabinoid modulation of eIF2α in vivo is only observed in adolescent animals, and is associated with cross-sensitization to cocaine. Keywords: drug use, addiction, cannabis, marijuana, cocaine, epigenetics, eIF2a, CREB, GADD34, gateway drugs

  9. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma-70 and sigma-54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  10. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  11. Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Albers, S.-V.; Jonuscheit, M.; Dinkelaker, S.; Urich, T.; Kletzin, A.; Tampé, R.; Driessen, A.J.M.; Schleper, C.

    Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for

  12. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    Science.gov (United States)

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  13. Molecular Characterization and Analysis of a Novel Protein Disulfide Isomerase-Like Protein of Eimeria tenella

    OpenAIRE

    Han, Hongyu; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Jiang, Lianlian; Wang, Yange; Li, Liujia; Wu, Youlin; Huang, Bing

    2014-01-01

    Protein disulfide isomerase (PDI) and PDI-like proteins are members of the thioredoxin superfamily. They contain thioredoxin-like domains and catalyze the physiological oxidation, reduction and isomerization of protein disulfide bonds, which are involved in cell function and development in prokaryotes and eukaryotes. In this study, EtPDIL, a novel PDI-like gene of Eimeria tenella, was cloned using rapid amplification of cDNA ends (RACE) according to the expressed sequence tag (EST). The EtPDI...

  14. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.

    Science.gov (United States)

    Baumann, P; Jackson, S P

    1996-06-25

    Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.

  15. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2011-01-01

    A recent study of transcription regulation in Drosophila embryonic development revealed a complex non-monotonic dependence of gene expression on the distance between binding sites of repressor and activator proteins at the corresponding enhancer cis-regulatory modules (Fakhouri et al 2010 Mol. Syst. Biol. 6 341). The repressor efficiency was high at small separations, low around 30 bp, reached a maximum at 50–60 bp, and decreased at larger distances to the activator binding sites. Here, we propose a straightforward explanation for the distance dependence of repressor activity by considering the effect of the presence of a nucleosome. Using a method that considers partial unwrapping of nucleosomal DNA from the histone octamer core, we calculated the dependence of activator binding on the repressor–activator distance and found a quantitative agreement with the distance dependence reported for the Drosophila enhancer element. In addition, the proposed model offers explanations for other distance-dependent effects at eukaryotic enhancers. (communication)

  16. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  17. What can we infer about the origin of sex in early eukaryotes?

    NARCIS (Netherlands)

    Speijer, Dave

    2016-01-01

    Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible

  18. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy.

    Science.gov (United States)

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-04-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.

  19. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    DEFF Research Database (Denmark)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea....... Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H....../hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae...

  20. Solution Structure of Archaeoglobus fulgidis Peptidyl-tRNA Hydrolase(Pth2) Provides Evidence for an Extensive Conserved Family of Pth2 Enzymes in Archaea, Bacteria and Eukaryotes.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Robert; Mirkovic, Nebojsa; Goldsmith-Fischman, Sharon; Acton, Thomas; Chiang, Yiwen; Huang, Yuanpeng; Ma, LiChung; Rajan, Paranji K.; Cort, John R.; Kennedy, Michael A.; Liu, Jinfeng; Rost, Burkhard; Honig, Barry; Murray, Diana; Montelione, Gaetano

    2005-11-01

    The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6 kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed b-sheet consisting of four parallel and anti-parallel b-strands, where the a-helices sandwich the b-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii and Sulfolobus solfataricus, reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Database but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.

  1. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  2. Pix proteins and the evolution of centrioles.

    Directory of Open Access Journals (Sweden)

    Hugh R Woodland

    Full Text Available We have made a wide phylogenetic survey of Pix proteins, which are constituents of vertebrate centrioles in most eukaryotes. We have also surveyed the presence and structure of flagella or cilia and centrioles in these organisms, as far as is possible from published information. We find that Pix proteins are present in a vast range of eukaryotes, but not all. Where centrioles are absent so are Pix proteins. If one considers the maintenance of Pix proteins over evolutionary time scales, our analysis would suggest that their key function is to make cilia and flagella, and the same is true of centrioles. Moreover, this survey raises the possibility that Pix proteins are only maintained to make cilia and flagella that undulate, and even then only when they are constructed by transporting ciliary constituents up the cilium using the intraflagellar transport (IFT system. We also find that Pix proteins have become generally divergent within Ecdysozoa and between this group and other taxa. This correlates with a simplification of centrioles within Ecdysozoa and a loss or divergence of cilia/flagella. Thus Pix proteins act as a weathervane to indicate changes in centriole function, whose core activity is to make cilia and flagella.

  3. Gerenciamento de custos para tomada de decisão - estudo em academia de musculação e ginástica

    OpenAIRE

    Góes, Dhiandra Amabille Simões

    2014-01-01

    Artigo – Trabalho de Conclusão de Curso apresentado à Fundação Universidade Federal de Rondônia – UNIR – Câmpus Prof. Francisco Gonçalves Quiles como requisito parcial para a obtenção do grau em Bacharel em Ciências Contábeis. Orientadora Profa. Me. Liliane Maria Nery Andrade o presente artigo apresenta os resultados de uma pesquisa de campo, exploratória e aplicada realizada em uma academia de ginástica localizada no município de Cacoal - RO. O objetivo da pesquisa foi identificar a deman...

  4. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  5. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  6. An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH

    OpenAIRE

    Yu Tang; Yuantai Wu; Sarah E. Herlihy; Francisco J. Brito-Aleman; Jose H. Ting; Chris Janetopoulos; Richard H. Gomer; Scott D. Emr

    2018-01-01

    In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum. AprA is a chemorepellent for and inhibits the proliferation of D. discoideum. We previously found that cells sense AprA using G proteins...

  7. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  8. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  9. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists.

    Science.gov (United States)

    Jagus, Rosemary; Bachvaroff, Tsvetan R; Joshi, Bhavesh; Place, Allen R

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in "text-book" model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.

  10. How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Olivier Hyrien

    2016-08-01

    Full Text Available DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs, the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC, they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  11. An overview on the small heat shock proteins | Mahmood | African ...

    African Journals Online (AJOL)

    In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress.

  12. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  13. Metodologia do ensino de ginástica: novos olhares, novas perspectivas Gym teaching methodology: new approaches, new perspectives Metodología de enseñanza de la gimnasia: Nuevos horizontes, nuevas perspectivas

    Directory of Open Access Journals (Sweden)

    2006-11-01

    Full Text Available Este artigo busca sistematizar uma proposta metodológica para o ensino da Ginástica escolar e comunitária, que vem sendo construída a partir de experiências realizadas junto aos projetos de ensino, pesquisa e extensão vinculados ao Grupo de Estudo, Pesquisa e Experimentação em Ginástica(GEPEGIN, da Faculdade de Educação Física da UFG. A proposta indica alguns princípios, conteúdos e estratégias de ação que possam contribuir para o processo de formação humana crítica, na tentativa de apontar uma nova perspectiva para o ensino, a prática e o conhecimento da Ginástica. PALAVRAS-CHAVE: metodologia da ginástica – formação humana – linguagem corporal. This article aims at systematizing a methodological approach for the teaching of gym in schools and communities, which is being built from the experiences held with teaching, research, and extension (community-bound projects linked to GEPEGIN - the Study, Research, and Gym Experimentation Group, from the Physical Education Department at UFG - the Federal University of Goias. This approach indicates some principles, contents, and strategies for action that might contribute to the process of human education in a critical way, in an attempt to point towards a new perspective for the teaching, the practice, and the knowledge of Gymnastics. KEY-WORDS: gymnastics methodology – human education – body language. Este artículo busca sistematizar una propuesta metodológica para la enseñanza de la Gimnasia escolar y comunitaria, que viene siendo construida a partir de experiencias realizadas junto a los proyectos de enseñanza, pesquisa y extensión vinculados al Grupo de Estudio, Pesquisa y Experimentación en Gimnasia (GEPEGIN, de la Facultad de Educación Física de la UFG. La propuesta indica algunos principios, contenidos y estrategias de acción que puedan contribuir para el proceso de formación humana crítica, intenta señalar una nueva perspectiva para la ense

  14. In Silico screening for functional candidates amongst hypothetical proteins

    DEFF Research Database (Denmark)

    Desler, Claus; Suravajhala, Prashanth; Sanderhoff, May

    2009-01-01

    eukaryotes. With the general belief that the majority of hypothetical proteins are the product of pseudogenes, it is essential to have a tool with the ability of pinpointing the minority of hypothetical proteins with a high probability of being expressed. RESULTS: Here, we present an in silico selection...

  15. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  16. An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH.

    Science.gov (United States)

    Tang, Yu; Wu, Yuantai; Herlihy, Sarah E; Brito-Aleman, Francisco J; Ting, Jose H; Janetopoulos, Chris; Gomer, Richard H

    2018-02-13

    In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum AprA is a chemorepellent for and inhibits the proliferation of D. discoideum We previously found that cells sense AprA using G proteins, suggesting the existence of a G protein-coupled AprA receptor. To identify the AprA receptor, we screened mutants lacking putative G protein-coupled receptors. We found that, compared to the wild-type strain, cells lacking putative receptor GrlH ( grlH¯ cells) show rapid proliferation, do not have large numbers of cells moving away from the edges of colonies, are insensitive to AprA-induced proliferation inhibition and chemorepulsion, and have decreased AprA binding. Expression of GrlH in grlH¯ cells ( grlH¯/grlH OE ) rescues the phenotypes described above. These data indicate that AprA signaling may be mediated by GrlH in D. discoideum IMPORTANCE Little is known about how eukaryotic cells can count themselves and thus regulate the size of a tissue or density of cells. In addition, little is known about how eukaryotic cells can sense a repellant signal and move away from the source of the repellant, for instance, to organize the movement of cells in a developing embryo or to move immune cells out of a tissue. In this study, we found that a eukaryotic microbe uses G protein-coupled receptors to mediate both cell density sensing and chemorepulsion. Copyright © 2018 Tang et al.

  17. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction

  18. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes.

    Science.gov (United States)

    Sommers, Pacifica; Darcy, John L; Gendron, Eli M S; Stanish, Lee F; Bagshaw, Elizabeth A; Porazinska, Dorota L; Schmidt, Steven K

    2018-01-01

    Ice-lidded cryoconite holes on glaciers in the Taylor Valley, Antarctica, provide a unique system of natural mesocosms for studying community structure and assembly. We used high-throughput DNA sequencing to characterize both microbial eukaryotic communities and bacterial communities within cryoconite holes across three glaciers to study similarities in their spatial patterns. We expected that the alpha (phylogenetic diversity) and beta (pairwise community dissimilarity) diversity patterns of eukaryotes in cryoconite holes would be related to those of bacteria, and that they would be related to the biogeochemical gradient within the Taylor Valley. We found that eukaryotic alpha and beta diversity were strongly related to those of bacteria across scales ranging from 140 m to 41 km apart. Alpha diversity of both was significantly related to position in the valley and surface area of the cryoconite hole, with pH also significantly correlated with the eukaryotic diversity. Beta diversity for both bacteria and eukaryotes was significantly related to position in the valley, with bacterial beta diversity also related to nitrate. These results are consistent with transport of sediments onto glaciers occurring primarily at local scales relative to the size of the valley, thus creating feedbacks in local chemistry and diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Genome-scale prediction of proteins with long intrinsically disordered regions.

    Science.gov (United States)

    Peng, Zhenling; Mizianty, Marcin J; Kurgan, Lukasz

    2014-01-01

    Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/. Copyright © 2013 Wiley Periodicals, Inc.

  20. El Manuscrito Cerramientos y trazas de montea de Ginés Martínez de Aranda

    Directory of Open Access Journals (Sweden)

    Calvo López, José

    2009-03-01

    Full Text Available Ginés Martínez de Aranda, master mason in the cathedrals of Cádiz and Santiago de Compostela during the late 16th century, wrote a manuscript, Cerramientos y trazas de montea, concerning geometrical problems in stone construction. This article deals with the copy of Cerramientos in the Servicio Histórico Militar (Madrid, its copyist, dating, the existence of an earlier version and whether or not Aranda intended to publish it. Also examined are the connections between Cerramientos and other Spanish stonecutting texts of the period, such as those by Alonso de Vandelvira, Cristóbal de Rojas, Alonso de Guardia or Juan de Portor y Castro. Finally, an assessment is made of Martínez de Aranda’s original contributions to European stonecutting literatura.

    El arquitecto y cantero baezano Ginés Martínez de Aranda, que trabajó a finales del siglo XVI y ejerció la maestría de las catedrales de Cádiz y Santiago de Compostela, compuso un manuscrito llamado Cerramientos y trazas de montea, que trata de los problemas geométricos de la construcción pétrea. El artículo analiza la copia del manuscrito conservada en el Servicio Histórico Militar de Madrid, la identidad del copista, la fecha de la primera redacción de la obra y la de la copia conservada, y el destino de la obra; a continuación, se estudia la relación del manuscrito con otras obras españolas de cantería, en especial las de Alonso de Vandelvira, Cristóbal de Rojas, Alonso de Guardia y Juan de Portor y Castro, para finalizar tratando diversas aportaciones originales de Aranda a la literatura europea de la cantería.

  1. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  2. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...

  3. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    Science.gov (United States)

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached...

  5. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions.

    Science.gov (United States)

    Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2012-04-01

    Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.

  7. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  8. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Wu M

    2013-10-01

    Full Text Available Min Wu,1 Aruna Kalyanasundaram,2 Jie Zhu1 1Laboratory of Biomechanics and Engineering, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; 2College of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA Abstract: Mitochondria serve as energy-producing organelles in eukaryotic cells. In addition to providing the energy supply for cells, the mitochondria are also involved in other processes, such as proliferation, differentiation, information transfer, and apoptosis, and play an important role in regulation of cell growth and the cell cycle. In order to achieve these functions, the mitochondria need to move to the corresponding location. Therefore, mitochondrial movement has a crucial role in normal physiologic activity, and any mitochondrial movement disorder will cause irreparable damage to the organism. For example, recent studies have shown that abnormal movement of the mitochondria is likely to be the reason for Charcot–Marie–Tooth disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and schizophrenia. So, in the cell, especially in the particular polarized cell, the appropriate distribution of mitochondria is crucial to the function and survival of the cell. Mitochondrial movement is mainly associated with the cytoskeleton and related proteins. However, those components play different roles according to cell type. In this paper, we summarize the structural basis of mitochondrial movement, including microtubules, actin filaments, motor proteins, and adaptin, and review studies of the biomechanical mechanisms of mitochondrial movement in different types of cells. Keywords: mitochondrial movement, microtubules, actin filaments, motor proteins, adaptin

  9. Cross-species complementation of bacterial- and eukaryotic-type cardiolipin synthases

    Directory of Open Access Journals (Sweden)

    Petra Gottier

    2017-11-01

    Full Text Available The glycerophospholipid cardiolipin is a unique constituent of bacterial and mitochondrial membranes. It is involved in forming and stabilizing high molecular mass membrane protein complexes and in maintaining membrane architecture. Absence of cardiolipin leads to reduced efficiency of the electron transport chain, decreased membrane potential, and, ultimately, impaired respiratory metabolism. For the protozoan parasite Trypanosoma brucei cardiolipin synthesis is essential for survival, indicating that the enzymes involved in cardiolipin production represent potential drug targets. T. brucei cardiolipin synthase (TbCLS is unique as it belongs to the family of phospholipases D (PLD, harboring a prokaryotic-type cardiolipin synthase (CLS active site domain. In contrast, most other eukaryotic CLS, including the yeast ortholog ScCrd1, are members of the CDP-alcohol phosphatidyl­ transferase family. To study if these mechanistically distinct CLS enzymes are able to catalyze cardiolipin production in a cell that normally expresses a different type of CLS, we expressed TbCLS and ScCrd1 in CLS-deficient yeast and trypanosome strains, respectively. Our results show that TbCLS complemented cardiolipin production in CRD1 knockout yeast and partly restored wild-type colony forming capability under stress conditions. Remarkably, CL remodeling appeared to be impaired in the transgenic construct, suggesting that CL production and remodeling are tightly coupled processes that may require a clustering of the involved proteins into specific CL-synthesizing domains. In contrast, no complementation was observed by heterologous expression of ScCrd1 in conditional TbCLS knockout trypanosomes, despite proper mitochondrial targeting of the protein.

  10. Prática da ginástica laboral por trabalhadores das indústrias do Rio Grande do Sul, Brasil Stretching programs among industrial workers from the state of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Luana Callegaro Rossato

    2013-03-01

    Full Text Available O presente estudo identificou a prevalência e os fatores associados à prática de ginástica laboral por trabalhadores da indústria no Estado do Rio Grande do Sul, Brasil. Realizou-se análise secundária dos dados de um estudo de delineamento transversal, com amostra probabilística de 2.265 trabalhadores, de ambos os sexos. O instrumento de pesquisa foi o questionário autoadministrado "Estilo de vida e hábitos de lazer dos trabalhadores das indústrias brasileiras", previamente validado. A variável dependente foi a prática de ginástica laboral, definida pela resposta positiva à questão: "Você participa do programa de ginástica na empresa (ginástica laboral?". Foram coletadas informações demográficas, socioeconômicas, comportamentais e relacionadas à saúde, como potenciais fatores associados. Na análise de dados, empregou-se o teste Qui-quadrado de Pearson e o modelo de regressão de Poisson com variância robusta, nas análises bruta e ajustada, respectivamente. A prática de ginástica laboral foi referida por 40,3% dos respondentes (IC95%: 38,2; 42,3, sendo mais prevalente nos trabalhadores do sexo feminino, com maiores níveis de escolaridade, naqueles mais ativos no lazer e que relatavam menores intensidades de esforço no trabalho. Não se observou associação da variável dependente com idade, estado civil, renda familiar bruta, tabagismo, autopercepção de saúde e autopercepção do nível de estresse. Programas de ginástica laboral devem desenvolver estratégias de promoção da saúde que priorizem subgrupos de trabalhadores menos envolvidos, em especial, indivíduos do sexo masculino e com menor escolaridade. Desse modo, será possível reduzir as disparidades, beneficiando trabalhadores, independentemente de suas características sociodemográficas, a melhores condições saúde e bem-estar no ambiente das indústrias.We evaluated the prevalence and factors associated with participation on stretching programs

  11. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Gao, Shangzhi; Nguyen, Nam Ninh; Fan, Mengyuan; Jin, Jingjing; Liu, Bing; Zhao, Liang; Xiong, Geng; Tan, Min; Li, Shijun; Wong, Limsoon

    2014-04-08

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both

  13. Protein-Injection Machines in Bacteria.

    Science.gov (United States)

    Galán, Jorge E; Waksman, Gabriel

    2018-03-08

    Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution.

    Science.gov (United States)

    Inaba, Kazuo

    2015-01-01

    The motility of eukaryotic cilia and flagella is modulated in response to several extracellular stimuli. Ca(2+) is the most critical intracellular factor for these changes in motility, directly acting on the axonemes and altering flagellar asymmetry. Calaxin is an opisthokont-specific neuronal calcium sensor protein first described in the sperm of the ascidian Ciona intestinalis. It binds to a heavy chain of two-headed outer arm dynein in a Ca(2+)-dependent manner and regulates 'asymmetric' wave propagation at high concentrations of Ca(2+). A Ca(2+)-binding subunit of outer arm dynein in Chlamydomonas reinhardtii, the light chain 4 (LC4), which is a Ca(2+)-sensor phylogenetically different from calaxin, shows Ca(2+)-dependent binding to a heavy chain of three-headed outer arm dynein. However, LC4 appears to participate in 'symmetric' wave propagation at high concentrations of Ca(2+). LC4-type dynein light chain is present in bikonts, except for some subclasses of the Excavata. Thus, flagellar asymmetry-symmetry conversion in response to Ca(2+) concentration represents a 'mirror image' relationship between Ciona and Chlamydomonas. Phylogenetic analyses indicate the duplication, divergence, and loss of heavy chain and Ca(2+)-sensors of outer arm dynein among excavate species. These features imply a divergence point with respect to Ca(2+)-dependent regulation of outer arm dynein in cilia and flagella during the evolution of eukaryotic supergroups.

  15. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    Background: Post-translational phosphorylation is one of the most common protein modifications. Phosphoserine, threonine and tyrosine residues play critical roles in the regulation of many cellular processes. The fast growing number of research reports on protein phosphorylation points to a gener...

  16. Visualizing Patterns of Marine Eukaryotic Diversity from Metabarcoding Data Using QIIME.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-01-01

    PCR amplification followed by deep sequencing of homologous gene regions is increasingly used to characterize the diversity and taxonomic composition of marine eukaryotic communities. This approach may generate millions of sequences for hundreds of samples simultaneously. Therefore, tools that researchers can use to visualize complex patterns of diversity for these massive datasets are essential. Efforts by microbiologists to understand the Earth and human microbiomes using high-throughput sequencing of the 16S rRNA gene has led to the development of several user-friendly, open-source software packages that can be similarly used to analyze eukaryotic datasets. Quantitative Insights Into Microbial Ecology (QIIME) offers some of the most helpful data visualization tools. Here, we describe functionalities to import OTU tables generated with any molecular marker (e.g., 18S, COI, ITS) and associated metadata into QIIME. We then present a range of analytical tools implemented within QIIME that can be used to obtain insights about patterns of alpha and beta diversity for marine eukaryotes.

  17. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA–protein interactions

    Science.gov (United States)

    Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S.

    2012-01-01

    Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA–protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes. PMID:22332141

  18. Hipotensão pós-exercício em idosas hipertensas controladas, após uma aula de ginástica localizada

    OpenAIRE

    Silva, Natal da

    2012-01-01

    O presente estudo teve como objetivo avaliar a Hipotensão pós-exercício em idosas hipertensas com pressão arterial controlada por medicamentos anti-hipertensivos, em uma aula de ginástica localizada de intensidade moderada de acordo com a escala de Borg. Para tanto, a amostra foi composta por 13 idosas ativas do CCI (Centro de Convivência do Idoso) do Recanto das Emas/DF, as quais foram aplicadas um questionário contendo 10 questões, com o intuito de conhecer a vida pregressa do indivíduo em ...

  19. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  20. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha.

    Science.gov (United States)

    Hong, Mi-Na; Nam, Ky-Youb; Kim, Kyung Kon; Kim, So-Young; Kim, InKi

    2016-05-01

    By environmental stresses, cells can initiate a signaling pathway in which eukaryotic translation initiation factor 2-alpha (eIF2-α) is involved to regulate the response. Phosphorylation of eIF2-α results in the reduction of overall protein neogenesis, which allows cells to conserve resources and to reprogram energy usage for effective stress control. To investigate the role of eIF2-α in cell stress responses, we conducted a viability-based compound screen under endoplasmic reticulum (ER) stress condition, and identified 1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate (AMC-01) and its derivatives as eIF2-α-inactivating chemical. Molecular characterization of this signaling pathway revealed that AMC-01 induced inactivation of eIF2-α by phosphorylating serine residue 51 in a dose- and time-dependent manner, while the negative control compounds did not affect eIF2-α phosphorylation. In contrast with ER stress induction by thapsigargin, phosphorylation of eIF2-α persisted for the duration of incubation with AMC-01. By pathway analysis, AMC-01 clearly induced the activation of protein kinase RNA-activated (PKR) kinase and nuclear factor-κB (NF-κB), whereas it did not modulate the activity of PERK or heme-regulated inhibitor (HRI). Finally, we could detect a lower protein translation rate in cells incubated with AMC-01, establishing AMC-01 as a potent chemical probe that can regulate eIF2-α activity. We suggest from these data that AMC-01 and its derivative compounds can be used as chemical probes in future studies of the role of eIF2-α in protein synthesis-related cell physiology.

  1. Fluidized bed gasification of high tonnage sorghum, cotton gin trash and beef cattle manure: Evaluation of synthesis gas production

    International Nuclear Information System (INIS)

    Maglinao, Amado L.; Capareda, Sergio C.; Nam, Hyungseok

    2015-01-01

    Highlights: • High tonnage sorghum, cotton gin trash and beef cattle manure were characterized and gasified in a fluidized bed reactor. • Biomass gasification at 730 °C and ER = 0.35 produced synthesis gas with an average energy content of 4.19 MJ Nm −3 . • Synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. • Optimum hydrogen production on HTS gasification was achieved at 780 °C temperature and ER of 0.4. - Abstract: Fluidized bed gasification using high-tonnage sorghum, cotton gin trash and beef cattle manure was performed in a pilot scale bubbling fluidized bed reactor equipped with the necessary feedback control system. Characterization of biomass showed that the high-tonnage sorghum had the highest energy and carbon content of 19.58 MJ kg −1 and 42.29% wt , respectively among the three feed stocks. At 730 °C reaction temperature and equivalence ratio of 0.35, comparable yields of methane, nitrogen and carbon dioxide (within ± 1.4% vol ) were observed in all three feed stocks. The gasification system produced synthesis gas with an average heating value of 4.19 ± 0.09 MJ Nm −3 and an average yield of 1.98 ± 0.1 Nm 3 kg −1 of biomass. Carbon conversion and gasification efficiencies indicated that most of the carbon was converted to gaseous products (85% average ) while 48% average of the energy from the biomass was converted into combustible gas. The production of hydrogen was significantly affected by the biomass used during gasification. The synthesis gas heating value and yield were relatively constant at reaction temperatures from 730 °C to 800 °C. Utilizing high-tonnage sorghum, the optimum hydrogen production during gasification was achieved at a reaction temperature of 780 °C and an equivalence ratio of 0.40.

  2. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    reproduction-related divergence and specialization of species-specific functions within their genus. Conclusions Our phylogenetic studies provide evolutionary insight into the ferlin gene family. We highlight the existence of ferlin-like proteins throughout eukaryotic evolution, from unicellular phytoplankton and apicomplexan parasites, through to humans. We characterise the preservation of ferlin structural motifs, not only of C2 domains, but also the more poorly characterised ferlin-specific motifs representing the DysF, FerA and FerB domains. Our data suggest an ancient role of ferlin proteins, with lessons from vertebrate biology and human disease suggesting a role relating to vesicle fusion and plasma membrane specialization.

  3. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  4. Crystallization and preliminary X-ray characterization of the eukaryotic replication terminator Reb1-Ter DNA complex.

    Science.gov (United States)

    Jaiswal, Rahul; Singh, Samarendra K; Bastia, Deepak; Escalante, Carlos R

    2015-04-01

    The Reb1 protein from Schizosaccharomyces pombe is a member of a family of proteins that control programmed replication termination and/or transcription termination in eukaryotic cells. These events occur at naturally occurring replication fork barriers (RFBs), where Reb1 binds to termination (Ter) DNA sites and coordinates the polar arrest of replication forks and transcription approaching in opposite directions. The Reb1 DNA-binding and replication-termination domain was expressed in Escherichia coli, purified and crystallized in complex with a 26-mer DNA Ter site. Batch crystallization under oil was required to produce crystals of good quality for data collection. Crystals grew in space group P2₁, with unit-cell parameters a = 68.9, b = 162.9, c = 71.1 Å, β = 94.7°. The crystals diffracted to a resolution of 3.0 Å. The crystals were mosaic and required two or three cycles of annealing. This study is the first to yield structural information about this important family of proteins and will provide insights into the mechanism of replication and transcription termination.

  5. Molecular detection of eukaryotes in a single human stool sample from Senegal.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available BACKGROUND: Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. METHODOLOGY/PRINCIPAL FINDING: In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%, corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2% corresponded to 9 different species of plants; 59 sequences (6% belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5% were related to human 18S rRNA sequences. CONCLUSION: Our results revealed a complex eukaryotic community in the volunteer's gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease.

  6. Avaliação da qualidade de vida em funcionários praticantes de ginástica holística em empresa

    OpenAIRE

    Fernanda Fonseca dos Santos Lopes; Zelia Zilda Lourenço de Camargo Bittencourt

    2012-01-01

    Introdução: A qualidade de vida na empresa é um importante recurso de promoção de saúde, e pode ser desenvolvida a partir da pratica de atividades físicas. O exercício físico é uma forma de lazer e de restaurar a saúde dos efeitos da rotina estressante do trabalho, proporcionando condições de melhor desempenho e produtividade. A Ginástica Holística atua através da sensibilização e da tomada de consciência, de modo a levar o sujeito a uma melhor utilização do seu potencial perceptivo, sensoria...

  7. Functionality of system components: Conservation of protein function in protein feature space

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Ussery, David; Brunak, Søren

    2003-01-01

    well on organisms other than the one on which it was trained. We evaluate the performance of such a method, ProtFun, which relies on protein features as its sole input, and show that the method gives similar performance for most eukaryotes and performs much better than anticipated on archaea......Many protein features useful for prediction of protein function can be predicted from sequence, including posttranslational modifications, subcellular localization, and physical/chemical properties. We show here that such protein features are more conserved among orthologs than paralogs, indicating...... they are crucial for protein function and thus subject to selective pressure. This means that a function prediction method based on sequence-derived features may be able to discriminate between proteins with different function even when they have highly similar structure. Also, such a method is likely to perform...

  8. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  9. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  10. Fluoride export (FEX) proteins from fungi, plants and animals are 'single barreled' channels containing one functional and one vestigial ion pore

    Science.gov (United States)

    Berbasova, Tetyana; Nallur, Sunitha; Sells, Taylor; Smith, Kathryn D.; Gordon, Patricia B.; Tausta, Susan Lori

    2017-01-01

    The fluoride export protein (FEX) in yeast and other fungi provides tolerance to fluoride (F-), an environmentally ubiquitous anion. FEX efficiently eliminates intracellular fluoride that otherwise would accumulate at toxic concentrations. The FEX homolog in bacteria, Fluc, is a ‘double-barreled’ channel formed by dimerization of two identical or similar subunits. FEX in yeast and other eukaryotes is a monomer resulting from covalent fusion of the two subunits. As a result, both potential fluoride pores are created from different parts of the same protein. Here we identify FEX proteins from two multicellular eukaryotes, a plant Arabidopsis thaliana and an animal Amphimedon queenslandica, by demonstrating significant fluoride tolerance when these proteins are heterologously expressed in the yeast Saccharomyces cerevisiae. Residues important for eukaryotic FEX function were determined by phylogenetic sequence alignment and functional analysis using a yeast growth assay. Key residues of the fluoride channel are conserved in only one of the two potential fluoride-transporting pores. FEX activity is abolished upon mutation of residues in this conserved pore, suggesting that only one of the pores is functional. The same topology is conserved for the newly identified FEX proteins from plant and animal. These data suggest that FEX family of fluoride channels in eukaryotes are ‘single-barreled’ transporters containing one functional pore and a second non-functional vestigial remnant of a homologous gene fusion event. PMID:28472134

  11. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ

    1997-01-01

    Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...

  12. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    DEFF Research Database (Denmark)

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA repli...

  13. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding

    NARCIS (Netherlands)

    Hageman, Jurre; Vos, Michel J.; van Waarde, Maria A. W. H.; Kampinga, Harm H.

    2007-01-01

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are

  14. Large-scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe.

    Science.gov (United States)

    Necci, Marco; Piovesan, Damiano; Tosatto, Silvio C E

    2016-12-01

    Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large-scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence-based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures. © 2016 The Protein Society.

  15. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  16. Modulation of protein synthesis by polyamines.

    Science.gov (United States)

    Igarashi, Kazuei; Kashiwagi, Keiko

    2015-03-01

    Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis. © 2015 International Union of Biochemistry and Molecular Biology.

  17. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  18. Cloning, expression, purification, and characterisation of the HEAT-repeat domain of TOR from the thermophilic eukaryote Chaetomium thermophilum.

    Science.gov (United States)

    Robinson, Graham C; Vegunta, Yogesh; Gabus, Caroline; Gaubitz, Christl; Thore, Stéphane

    2017-05-01

    The Target of Rapamycin Complex is a central controller of cell growth and differentiation in eukaryotes. Its global architecture has been described by cryoelectron microscopy, and regions of its central TOR protein have been described by X-ray crystallography. However, the N-terminal region of this protein, which consists of a series of HEAT repeats, remains uncharacterised at high resolution, most likely due to the absence of a suitable purification procedure. Here, we present a robust method for the preparation of the HEAT-repeat domain, utilizing the thermophilic fungus Chaetomium thermophilum as a source organism. We describe construct design and stable expression in insect cells. An efficient two-step purification procedure is presented, and the purified product is characterised by SEC and MALDI-TOF MS. The methods described pave the way for a complete high-resolution characterisation of this elusive region of the TOR protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    Science.gov (United States)

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae....

  1. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M

    1988-01-01

    A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as w...

  2. Mapping and characterizing N6-methyladenine in eukaryotic genomes using single molecule real-time sequencing.

    Science.gov (United States)

    Zhu, Shijia; Beaulaurier, John; Deikus, Gintaras; Wu, Tao; Strahl, Maya; Hao, Ziyang; Luo, Guanzheng; Gregory, James A; Chess, Andrew; He, Chuan; Xiao, Andrew; Sebra, Robert; Schadt, Eric E; Fang, Gang

    2018-05-15

    N6-methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes, however, methods for high resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes, and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single nucleotide and single molecule resolution. For human lymphoblastoid cells (hLCLs), joint analyses of SMRT sequencing and independent sequencing data suggest that putative m6dA events are enriched in the promoters of young, full length LINE-1 elements (L1s). These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes. Published by Cold Spring Harbor Laboratory Press.

  3. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities.

    Science.gov (United States)

    Baker, Brett J; Tyson, Gene W; Goosherst, Lindsey; Banfield, Jillian F

    2009-04-01

    Microscopic eukaryotes are known to have important ecosystem functions, but their diversity in most environments remains vastly unexplored. Here we analyzed an 18S rRNA gene library from a subsurface iron- and sulfur-oxidizing microbial community growing in highly acidic (pH morphological characterization. Results revealed that the populations vary significantly with the habitat and no group is ubiquitous. Surprisingly, many of the eukaryotic lineages (with the exception of the APC) are closely related to neutrophiles, suggesting that they recently adapted to this extreme environment. Molecular analyses presented here confirm that the number of eukaryotic species associated with the acid mine drainage (AMD) communities is low. This finding is consistent with previous results showing a limited diversity of archaea, bacteria, and viruses in AMD environments and suggests that the environmental pressures and interplay between the members of these communities limit species diversity at all trophic levels.

  4. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  5. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    Science.gov (United States)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  6. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes.

    Science.gov (United States)

    Isson, Terry T; Love, Gordon D; Dupont, Christopher L; Reinhard, Christopher T; Zumberge, Alex J; Asael, Dan; Gueguen, Bleuenn; McCrow, John; Gill, Ben C; Owens, Jeremy; Rainbird, Robert H; Rooney, Alan D; Zhao, Ming-Yu; Stueeken, Eva E; Konhauser, Kurt O; John, Seth G; Lyons, Timothy W; Planavsky, Noah J

    2018-06-05

    The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records. © 2018 John Wiley & Sons Ltd.

  7. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  9. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  10. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  11. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    Science.gov (United States)

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  12. An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii

    DEFF Research Database (Denmark)

    Nielsen, Jesper S; Bøggild, Andreas; Andersen, Christian B F

    2007-01-01

    The Sm and Sm-like proteins are conserved in all three domains of life and have emerged as important players in many different RNA-processing reactions. Their proposed role is to mediate RNA-RNA and/or RNA-protein interactions. In marked contrast to eukaryotes, bacteria appear to contain only one...... diameter of the archaeal Hfq hexamer is significantly smaller than its bacterial counterparts. Functional analysis reveals that Escherichia coli and M. jannaschii Hfqs display very similar biochemical and biological properties. It thus appears that the archaeal and bacterial Hfq proteins are largely...

  13. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  14. Sphingolipid trafficking and protein sorting in epithelial cells

    NARCIS (Netherlands)

    Slimane, TA; Hoekstra, D

    2002-01-01

    Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an

  15. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    Science.gov (United States)

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  17. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    species but also from accidental contamination from the genome of eukaryotic host cells. The latter scenario generally occurs in the case of host-associated metagenomes, e.g. microbes living in human gut. In such cases, one needs to identify and remove contaminating host DNA sequences, since the latter sequences will ...

  18. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  19. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  20. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen

    Directory of Open Access Journals (Sweden)

    Takishita Kiyotaka

    2012-02-01

    Full Text Available Abstract Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes. Reviewers This article was reviewed by Eric Bapteste and Eugene Koonin.

  1. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  2. Cytoplasmic Dynein Is Required for the Spatial Organization of Protein Aggregates in Filamentous Fungi

    Directory of Open Access Journals (Sweden)

    Martin J. Egan

    2015-04-01

    Full Text Available Eukaryotes have evolved multiple strategies for maintaining cellular protein homeostasis. One such mechanism involves neutralization of deleterious protein aggregates via their defined spatial segregation. Here, using the molecular disaggregase Hsp104 as a marker for protein aggregation, we describe the spatial and temporal dynamics of protein aggregates in the filamentous fungus Aspergillus nidulans. Filamentous fungi, such as A. nidulans, are a diverse group of species of major health and economic importance and also serve as model systems for studying highly polarized eukaryotic cells. We find that microtubules promote the formation of Hsp104-positive aggregates, which coalesce into discrete subcellular structures in a process dependent on the microtubule-based motor cytoplasmic dynein. Finally, we find that impaired clearance of these inclusions negatively impacts retrograde trafficking of endosomes, a conventional dynein cargo, indicating that microtubule-based transport can be overwhelmed by chronic cellular stress.

  3. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    Science.gov (United States)

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  4. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  5. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  6. Gastrointestinal nematode infection does not affect selection of tropical foliage by goats in a cafeteria trial.

    Science.gov (United States)

    Ventura-Cordero, J; González-Pech, P G; Jaimez-Rodriguez, P R; Ortíz-Ocampo, G I; Sandoval-Castro, C A; Torres-Acosta, J F J

    2017-01-01

    It is important to determine whether gastrointestinal nematodes (GINs) affect foliage choice of goats leading to confirm the expression of a self-medication behavior. This study investigated the effect of GIN infection on tropical foliage selection by goats. During experimental stage 1 (10 days), goats had a natural mixed GIN infection, and at stage 2 (10 days), goats were treated with effective anthelmintics to maintain them free of GIN infection. During stage 1 the twelve adult goats (32 ± 2.3 kg live weight [LW]) were assigned to three groups (n = 4) according to their initial GIN infection status: HI group, with fecal egg count (FEC) between 1450 and 2150 eggs per g/feces (EPG); MI group, medium FEC (592-1167 EPG); and the NI group, free from GIN infection. Fresh foliage of four tropical plants were offered to goats ad libitum for 1 h daily: Gymnopodium floribundum (high condensed tannin [CT] content, 37-40 %), Mimosa bahamensis (medium CT content, 16-17 %), Leucaena leucocephala (low CT content, 3-5 %), and Viguiera dentata (negligible CT content, 0.6-0.9 %). Jacobs' selection indexes (JSIs) were estimated for the experimental foliage based on dry matter (DM), CT, or crude protein (CP) intake. During both study stages, individual fecal egg counts were estimated. The JSI patterns of different plant species, based on DM, CT, or CP, were similar irrespective of infection level during stage 1 (HI, MI, and NI) or no GIN infection (stage 2). Thus, irrespective of GIN infection, goats actively selected M. bahamensis (high CT, low CP content) and V. dentata (negligible CT, high CP content) but avoided G. floribundum (high CT, low CP content) and L. leucocephala (medium CT and high CP content). Thus, natural GIN infection did not influence goats' foliage selection.

  7. Comparative evolutionary analysis of protein complexes in E. coli and yeast

    Directory of Open Access Journals (Sweden)

    Ranea Juan AG

    2010-02-01

    Full Text Available Abstract Background Proteins do not act in isolation; they frequently act together in protein complexes to carry out concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than yeast, where little experimental data has been available. Results We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to study differences in the evolution of complexes between these two species. We show that substantial differences exist in how complexes have evolved between these organisms. A previously proposed model of complex evolution identified complexes with cores of interacting homologues. We support findings of the relative importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions. Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes. These were identified in both yeast and E. coli and we present evidence that these too may represent complex cores in yeast but not those of E. coli. Conclusions Our results suggest that there are differences in the way protein complexes have evolved in E. coli and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli. Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in general, in both E. coli and yeast, homologous domains are used in different complexes.

  8. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies...... have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding...... yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells....

  9. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes.

    Science.gov (United States)

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2014-01-01

    The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.

  10. Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins

    International Nuclear Information System (INIS)

    Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice; Brunori, Maurizio; Arceci, Massimo; Bozzoni, Irene; Laneve, Pietro; Caffarelli, Elisa

    2006-01-01

    Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potential drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3 1 21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution

  11. Conservación preventiva para objetos arqueológicos históricos en contextos urbanos

    OpenAIRE

    Frazzi, Patricia

    2002-01-01

    This article pretends to demonstrate that preventive conservation of archaeo­logical objects from historical periods is possible, at rather low costs, if in the precise moment, the right decisions are taken. This article pretends to demonstrate that preventive conservation of archaeo­logical objects from historical periods is possible, at rather low costs, if in the precise moment, the right decisions are taken. Este trabalho pretende demonstrar que a conservação preventiva de objetos a...

  12. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    Science.gov (United States)

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P cycle arrest ( P ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that eukaryotic initiation factor 5A2 might function in carcinogenesis of cervical carcinoma through an RhoA/ROCK-dependent manner.

  13. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    Science.gov (United States)

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  15. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants

    OpenAIRE

    Pires, Nuno; Dolan, Liam

    2009-01-01

    Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms. Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa (rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown. In this study, we use wh...

  16. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  17. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  18. Avaliação dos benefícios da ginástica localizada sobre a postura e a flexibilidade de mulheres na terceira idade

    OpenAIRE

    Lima,Hélia Cristina Oliveira; Aguiar,Jaina Bezerra de; Paredes,Paulo Fernando Machado; Gurgel,Luilma Albuquerque

    2010-01-01

    Desvios posturais e redução na flexibilidade são alterações observadas com o avançar da idade, podendo desencadear dor e dificuldades de movimentação. Este estudo buscou avaliar a influência de um programa de ginástica, de dois meses de duração, sobre a postura e flexibilidade de idosas institucionalizadas (n = 10, 60-75 anos). A postura foi avaliada através do uso de simetrógrafo, fotografias e do teste de equilíbrio sagital pélvico, e a flexibilidade através do teste de sentar e alcançar. C...

  19. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses.

    Science.gov (United States)

    Duprat, Anne; Caranta, Carole; Revers, Frédéric; Menand, Benoît; Browning, Karen S; Robaglia, Christophe

    2002-12-01

    An Arabidopsis thaliana line bearing a transposon insertion in the gene coding for the isozyme form of the plant-specific cap-binding protein, eukaryotic initiation factor (iso) 4E (eIF (iso) 4E), has been isolated. This mutant line completely lacks both eIF(iso)4E mRNA and protein, but was found to have a phenotype and fertility indistinguishable from wild-type plants under standard laboratory conditions. In contrast, the amount of the related eIF4E protein was found to increase in seedling extracts. Furthermore, polysome analysis shows that the mRNA encoding eIF4E was being translated at increased levels. Given the known interaction between cap-binding proteins and potyviral genome-linked proteins (VPg), this plant line was challenged with two potyviruses, Turnip mosaic virus (TuMV) and Lettuce mosaic virus (LMV) and was found resistant to both, but not to the Nepovirus, Tomato black ring virus (TBRV) and the Cucumovirus, Cucumber mosaic virus (CMV). Together with previous data showing that the VPg-eIF4E interaction is necessary for virus infectivity and upregulates genome amplification, this shows that the eIF4E proteins are specifically recruited for the replication cycle of potyviruses.

  20. Extreme Diversity of Diplonemid Eukaryotes in the Ocean

    Czech Academy of Sciences Publication Activity Database

    Flegontova, Olga; Flegontov, Pavel; Malviya, S.; Audic, S.; Wincker, P.; de Vargas, C.; Bowler, C.; Lukeš, Julius; Horák, Aleš

    2016-01-01

    Roč. 26, č. 22 (2016), s. 3060-3065 ISSN 0960-9822 R&D Projects: GA ČR GPP506/12/P931; GA ČR(CZ) GA14-23986S Institutional support: RVO:60077344 Keywords : virus-sized particles * microbial eukaryotes * sea-floor * phytoplankton * communities * euglenozoa * dispersal * ecosystem Subject RIV: EG - Zoology Impact factor: 8.851, year: 2016