WorldWideScience

Sample records for archaeal pab87 peptidase

  1. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases

    OpenAIRE

    Tjalsma, Harold; Bolhuis, Albert; Roosmalen, Maarten L. Van; Wiegert, Thomas; Schumann, Wolfgang; Broekhuizen, Cees P.; Quax, Wim J.; Venema, Gerard; Bron, Sierd; van Dijl, Jan Maarten

    1998-01-01

    Approximately 47% of the genes of the Gram-positive bacterium Bacillus subtilis belong to paralogous gene families. The present studies were aimed at the functional analysis of the sip gene family of B. subtilis, consisting of five chromosomal genes, denoted sipS, sipT, sipU, sipV, and sipW. All five sip genes specify type I signal peptidases (SPases), which are actively involved in the processing of secretory preproteins. Interestingly, strains lacking as many as four of these SPases could b...

  2. Archaeal extrachromosomal genetic elements

    DEFF Research Database (Denmark)

    Wang, Haina; Peng, Nan; Shah, Shiraz Ali;

    2015-01-01

    viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered...

  3. Archaeal DNA replication.

    Science.gov (United States)

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed. PMID:25421597

  4. Extracellular peptidases from Deinococcus radiodurans.

    Science.gov (United States)

    Dalmaso, Gabriel Z L; Lage, Claudia A S; Mazotto, Ana Maria; Dias, Edilma Paraguai de Souza; Caldas, Lucio Ayres; Ferreira, Davis; Vermelho, Alane B

    2015-09-01

    The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism.

  5. Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV

    DEFF Research Database (Denmark)

    Bjelke, Jais R; Christensen, Jesper; Nielsen, Per F;

    2006-01-01

    the peptide hormones glucagon-like peptide-1, glucagon-like peptide-2, neuropeptide Y and peptide YY with marked kinetic differences compared with dipeptidyl peptidase IV. Inhibition of dipeptidyl peptidases IV, 8 and 9 using the well-known dipeptidyl peptidase IV inhibitor valine pyrrolidide resulted...

  6. Archaeal viruses of the sulfolobales

    DEFF Research Database (Denmark)

    Erdmann, Susanne; Garrett, Roger Antony

    2015-01-01

    Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an environm......Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2...... in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs...

  7. An essential signal peptide peptidase identified in an RNAi screen of serine peptidases of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Catherine X Moss

    Full Text Available The serine peptidases of Trypanosoma brucei have been viewed as potential drug targets. In particular, the S9 prolyl oligopeptidase subfamily is thought to be a good avenue for drug discovery. This is based on the finding that some S9 peptidases are secreted and active in the mammalian bloodstream, and that they are a class of enzyme against which drugs have successfully been developed. We collated a list of all serine peptidases in T. brucei, identifying 20 serine peptidase genes, of which nine are S9 peptidases. We screened all 20 serine peptidases by RNAi to determine which, if any, are essential for bloodstream form T. brucei survival. All S9 serine peptidases were dispensable for parasite survival in vitro, even when pairs of similar genes, coding for oligopeptidase B or prolyl oligopeptidase, were targeted simultaneously. We also found no effect on parasite survival in an animal host when the S9 peptidases oligopeptidase B, prolyl oligopeptidase or dipeptidyl peptidase 8 were targeted. The only serine peptidase to emerge from the RNAi screen as essential was a putative type-I signal peptide peptidase (SPP1. This gene was essential for parasite survival both in vitro and in vivo. The growth defect conferred by RNAi depletion of SPP1 was rescued by expression of a functional peptidase from an RNAi resistant SPP1 gene. However, expression of catalytically inactive SPP1 was unable to rescue cells from the SPP1 depleted phenotype, demonstrating that SPP1 serine peptidase activity is necessary for T. brucei survival.

  8. Shaping the Archaeal Cell Envelope

    NARCIS (Netherlands)

    Ellen, Albert F.; Zolghadr, Behnam; Driessen, Arnold M. J.; Albers, Sonja-Verena

    2010-01-01

    Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface st

  9. Archaeal virus-host interactions

    NARCIS (Netherlands)

    Quax, T.E.F.

    2013-01-01

      The work presented in this thesis provides novel insights in several aspects of the molecular biology of archaea, bacteria and their viruses. Three fundamentally different groups of viruses are associated with the three domains of life. Archaeal viruses are characterized by a particularly

  10. Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea

    Directory of Open Access Journals (Sweden)

    Maria Ines Giménez

    2015-02-01

    Full Text Available The function of membrane proteases range from general house-keeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.

  11. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  12. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  13. The UCSC Archaeal Genome Browser: 2012 update

    OpenAIRE

    Chan, Patricia P.; Holmes, Andrew D.; Smith, Andrew M.; Tran, Danny; Lowe, Todd M.

    2011-01-01

    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of ...

  14. The UCSC Archaeal Genome Browser: 2012 update.

    Science.gov (United States)

    Chan, Patricia P; Holmes, Andrew D; Smith, Andrew M; Tran, Danny; Lowe, Todd M

    2012-01-01

    The UCSC Archaeal Genome Browser (http://archaea.ucsc.edu) offers a graphical web-based resource for exploration and discovery within archaeal and other selected microbial genomes. By bringing together existing gene annotations, gene expression data, multiple-genome alignments, pre-computed sequence comparisons and other specialized analysis tracks, the genome browser is a powerful aggregator of varied genomic information. The genome browser environment maintains the current look-and-feel of the vertebrate UCSC Genome Browser, but also integrates archaeal and bacterial-specific tracks with a few graphic display enhancements. The browser currently contains 115 archaeal genomes, plus 31 genomes of viruses known to infect archaea. Some of the recently developed or enhanced tracks visualize data from published high-throughput RNA-sequencing studies, the NCBI Conserved Domain Database, sequences from pre-genome sequencing studies, predicted gene boundaries from three different protein gene prediction algorithms, tRNAscan-SE gene predictions with RNA secondary structures and CRISPR locus predictions. We have also developed a companion resource, the Archaeal COG Browser, to provide better search and display of arCOG gene function classifications, including their phylogenetic distribution among available archaeal genomes.

  15. Protein Adaptations in Archaeal Extremophiles

    Directory of Open Access Journals (Sweden)

    Christopher J. Reed

    2013-01-01

    Full Text Available Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  16. Archaeal Nitrification in Hot Springs

    Science.gov (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  17. Peptidase Activities of Tripeptidyl Peptidase Ⅰ(TPP Ⅰ): Exopeptidase and Endopeptidase

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The defect of TPP Ⅰ causes a disease, late infantile neuronal ceroid lipofuscinosis(LINCL, CLN2). To investigate the bio-activity of tripeptidyl peptidase Ⅰ(TPP Ⅰ) from rat kidneys, the effects of digestion of angiotensin Ⅱ(Ang Ⅱ) and a synthetic endo-type substrate(Gly1-Lys-Pro-Iie-Pro5-Phe-Phe-Arg-Leu-Lys10) via TPP Ⅰ were analyzed by HPLC and TOF-MS. The data suggest that the degradation rate of Ang Ⅱ can reach 18.2% by the rat TPP Ⅰ and DRV(Asp-Arg-Val) can be released from N-termini of Ang Ⅱ within 16 h. In addition, the synthetic endo-type substrate is cleaved at the same position between Phe6 and Phe7. Accordingly, TPP Ⅰ shows two kinds of peptidase activities. One is a tripeptidyl peptidase activity and the other is a pepstatin insensitive carboxyl endopeptidase activity. Tripeptidyl peptidase activity and pepstatin insensitive carboxyl endopeptidase activity seem to be dual phases of one enzyme, TPP Ⅰ.

  18. Hyperthermophilic Archaeal Viruses as Novel Nanoplatforms

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch

    ; attachment, alignment, and fusion. Upon infection, the intracellular replication cycle lasts 8 h at which point the virus particles are released as spindle-shaped tailless particles. Chapter II builds on the replication and purification methods in Chapter I to study the interaction between the two...... nanoplatforms than mammalian viruses because they cannot proliferate in humans and hence are less likely to trigger adverse effects. Another group of viruses that fits this criterion is archaeal viruses yet their potential remains untapped. As a group, archaeal viruses offer distinct advantages such as unique...

  19. Environmental shaping of sponge associated archaeal communities.

    Directory of Open Access Journals (Sweden)

    Aline S Turque

    Full Text Available BACKGROUND: Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. CONCLUSION/SIGNIFICANCE: The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition

  20. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    Science.gov (United States)

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-01-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  1. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    Science.gov (United States)

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  2. Dipeptidyl peptidase expression during experimental colitis in mice

    DEFF Research Database (Denmark)

    Yazbeck, Roger; Sulda, Melanie L; Howarth, Gordon S;

    2010-01-01

    We have previously demonstrated that inhibition of dipeptidyl peptidase (DP) activity partially attenuates dextran sulfate sodium (DSS) colitis in mice. The aim of this study was to further investigate the mechanisms of this protection.......We have previously demonstrated that inhibition of dipeptidyl peptidase (DP) activity partially attenuates dextran sulfate sodium (DSS) colitis in mice. The aim of this study was to further investigate the mechanisms of this protection....

  3. Niche specialization of terrestrial archaeal ammonia oxidizers

    OpenAIRE

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Robert I. Griffiths; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were...

  4. TBP Domain Symmetry in Basal and Activated Archaeal Transcription

    OpenAIRE

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2008-01-01

    The TATA-box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in th...

  5. Cathepsin K: a unique collagenolytic cysteine peptidase.

    Science.gov (United States)

    Novinec, Marko; Lenarčič, Brigita

    2013-09-01

    Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation. PMID:23629523

  6. Archaeal CRISPR-based immune systems

    DEFF Research Database (Denmark)

    Garrett, Roger A; Vestergaard, Gisle Alberg; Shah, Shiraz Ali

    2011-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage...... of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence...... of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems....

  7. P1 peptidase – a mysterious protein of family Potyviridae

    Indian Academy of Sciences (India)

    Jana Rohožková; Milan Navrátil

    2011-03-01

    The Potyviridae family, named after its type member, Potato virus Y (PVY), is the largest of the 65 plant virus groups and families currently recognized. The coding region for P1 peptidase is located at the very beginning of the viral genome of the family Potyviridae. Until recently P1 was thought of as serine peptidase with RNA-binding activity and with possible influence in cell-to-cell viral spreading. This N-terminal protein, among all of the potyviruses, is the most divergent protein: varying in length and in its amino acid sequence. Nevertheless, P1 peptidase in many ways is still a mysterious viral protein. In this review, we would like to offer a comprehensive overview, discussing the proteomic, biochemical and phylogenetic views of the P1 protein.

  8. A Method for Identification of Selenoprotein Genes in Archaeal Genomes

    Institute of Scientific and Technical Information of China (English)

    Mingfeng Li; Yanzhao Huang; Yi Xiao

    2009-01-01

    The genetic codon UGA has a dual function: serving as a terminator and encoding selenocysteine. However, most popular gene annotation programs only take it as a stop signal, resulting in misannotation or completely missing selenoprotein genes. We developed a computational method named Asec-Prediction that is specific for the prediction of archaeal selenoprotein genes. To evaluate its effectiveness, we first applied it to 14 archaeal genomes with previously known selenoprotein genes, and Asec-Prediction identified all reported selenoprotein genes without redundant results. When we applied it to 12 archaeal genomes that had not been researched for selenoprotein genes, Asec-Prediction detected a novel selenoprotein gene in Methanosarcina acetivorans. Further evidence was also collected to support that the predicted gene should be a real selenoprotein gene. The result shows that Asec-Prediction is effective for the prediction of archaeal selenoprotein genes.

  9. Structure and Cell Biology of Archaeal Virus STIV

    OpenAIRE

    Fu, Chi-yu; Johnson, John E.

    2012-01-01

    Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interaction...

  10. The first crystal structure of the peptidase domain of the U32 peptidase family.

    Science.gov (United States)

    Schacherl, Magdalena; Montada, Angelika A M; Brunstein, Elena; Baumann, Ulrich

    2015-12-01

    The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins from Helicobacter and Salmonella. The first crystal structure analysis of a U32 catalytic domain from Methanopyrus kandleri (gene mk0906) reveals a modified (βα)8 TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to a Strep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands. PMID:26627657

  11. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    Science.gov (United States)

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS.

  12. Human Serum Induces Streptococcal C5a Peptidase Expression ▿

    OpenAIRE

    Gleich-Theurer, Ute; Aymanns, Simone; Haas, Gregor; Mauerer, Stefanie; Vogt, Julia; Spellerberg, Barbara

    2009-01-01

    Streptococcus agalactiae is a major pathogen in humans and animals. Virulence factors are often associated with mobile genetic elements, and their expression can be modulated by host factors. S. agalactiae harbors the genes for C5a peptidase (scpB) and Lmb on a composite transposon structure which is absent in many bovine isolates. To investigate whether these genes participate in the adaptation to human hosts, we determined the influence of human and bovine serum on the promoter activity of ...

  13. Stability and kinetic studies on recombinant pyroglutamyl peptidase I and two mutant forms

    OpenAIRE

    Mtawae, Karima

    2005-01-01

    This thesis investigates the kinetic and stability characteristics of recombinant human brain pyroglutamyl peptidase PAPI, an omega exopeptidase which cleaves pyroglutamic acid from the N-terminus of peptides and proteins. Three classes of pyroglutamyl peptidase have been found in a variety of bacteria, plant, animal, and human tissues; the first class includes the bacterial and animal type 1, pyroglutamyl peptidase I. The genes encoding bacterial PAPI have been cloned and characterized previ...

  14. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  15. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  16. Molecular characterisation of recombinant human pyroglutamyl peptidase (type I)

    OpenAIRE

    Vaas, Paul-Roman

    2005-01-01

    Pyroglutamyl Peptidase I (PAP1, EC 3.4.19.3) hydrolytically cleaves pyroglutamic acid (pGlu) from the N-terminal of most pGlu-peptides. In higher organisms Thyrothropin Releasing Hormone is a notable biologically active substrate of PAP1. The sequence of human PAP1 was obtained from GenBank at NCBI (www.ncbi.nlm.nih.gov). Using suitable primers cDNA was synthesised using RNA isolated from a human cell line. Functionally active recombinant human PAP1 was expressed in Escherichia coli. To facil...

  17. Membrane Topology of the Streptomyces lividans Type I Signal Peptidases

    OpenAIRE

    Geukens, Nick; Lammertyn, Elke; Van Mellaert, Lieve; Schacht, Sabine; Schaerlaekens, Kristien; Parro, Victor; Bron, Sierd; Engelborghs, Yves; Mellado, Rafael P.; Anné, Jozef

    2001-01-01

    Most bacterial membranes contain one or two type I signal peptidases (SPases) for the removal of signal peptides from export proteins. For Streptomyces lividans, four different type I SPases (denoted SipW, SipX, SipY, and SipZ) were previously described. In this communication, we report the experimental determination of the membrane topology of these SPases. A protease protection assay of SPase tendamistat fusions confirmed the presence of the N- as well as the C-terminal transmembrane anchor...

  18. Familial relationships in hyperthermo- and acidophilic archaeal viruses

    DEFF Research Database (Denmark)

    Happonen, Lotta Johanna; Redder, Peter; Peng, Xu;

    2010-01-01

    Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and three...

  19. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water.

    Science.gov (United States)

    Long, Yan; Yi, Hao; Chen, Sili; Zhang, Zhengke; Cui, Kai; Bing, Yongxin; Zhuo, Qiongfang; Li, Bingxin; Xie, Shuguang; Guo, Qingwei

    2016-10-01

    Both bacteria and archaeal communities can play important roles in biogeochemical processes in constructed wetland (CW) system. However, the influence of plant type on microbial community in surface water CW remains unclear. The present study investigated bacterial and archaeal communities in five surface water CW systems with different plant species. The abundance, richness, and diversity of both bacterial and archaeal communities considerably differed in these five CW systems. Compared with the other three CW systems, the CW systems planted with Vetiveria zizanioides or Juncus effusus L. showed much higher bacterial abundance but lower archaeal abundance. Bacteria outnumbered archaea in each CW system. Moreover, the CW systems planted with V. zizanioides or J. effusus L. had relatively lower archaeal but higher bacterial richness and diversity. In each CW system, bacterial community displayed much higher richness and diversity than archaeal community. In addition, a remarkable difference of both bacterial and archaeal community structures was observed in the five studied CW systems. Proteobacteria was the most abundant bacterial group (accounting for 33-60 %). Thaumarchaeota organisms (57 %) predominated in archaeal communities in CW systems planted with V. zizanioides or J. effusus L., while Woesearchaeota (23 or 24 %) and Euryarchaeota (23 or 15 %) were the major archaeal groups in CW systems planted with Cyperus papyrus or Canna indica L. Archaeal community in CW planted with Typha orientalis Presl was mainly composed of unclassified archaea. Therefore, plant type exerted a considerable influence on microbial community in surface water CW system. PMID:27392623

  20. The enteroinsular axis in dipeptidyl peptidase IV-negative rats

    DEFF Research Database (Denmark)

    Pederson, Raymond; Kieffer, T J; Pauly, R;

    1996-01-01

    were used in the current investigation as a model for examining the enteroinsular axis under conditions in which normal inactivation of GIP and GLP-1(7-36) does not occur. This was assessed by comparing GIP and GLP-1(7-36) responses following oral glucose in normal versus DPIV-deficient Fischer rats......Evidence has accumulated that the incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1(7-36) amide) are degraded and rendered biologically inactive in plasma by the enzyme dipeptidyl peptidase IV (DPIV). A strain of Fischer rats lacking the DPIV enzyme......, and by comparing the insulinotropic potency of both peptides in the perfused pancreas of both groups. The insulin response to an oral glucose challenge was decreased slightly in DPIV-negative rats compared with control animals. Of the two incretins, the GIP response to oral glucose was reduced by 50% compared...

  1. Distribution of Archaeal and Bacterial communities in a subtropical reservoir

    Directory of Open Access Journals (Sweden)

    Laís Américo Soares

    2015-12-01

    Full Text Available Abstract Aim: Microbial communities play a central role in environmental process such as organic matter mineralization and the nutrient cycling process in aquatic ecosystems. Despite their ecological importance, variability of the structure of archaeal and bacterial communities in freshwater remains understudied. Methods In the present study we investigated the richness and density of archaea and bacteria in the water column and sediments of the Itupararanga Reservoir. We also evaluated the relationship between the communities and the biotic and abiotic characteristics. Samples were taken at five depths in the water column next to the dam and three depths next to the reservoir entrance. Results PCR-DGGE evaluation of the archaeal and bacterial communities showed that both were present in the water column, even in oxygenated conditions. Conclusions The density of the bacteria (qPCR was greater than that of the archaea, a result of the higher metabolic plasticity of bacteria compared with archaea.

  2. Prediction of novel archaeal enzymes from sequence-derived features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Skovgaard, Marie; Brunak, Søren

    2002-01-01

    The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http://www.cbs.dtu.dk/......The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http......://www.cbs.dtu.dk/services/ArchaeaFun/). The method does not make use of sequence similarity; rather, it relies on predicted protein features like cotranslational and posttranslational modifications, secondary structure, and simple physical/chemical properties....

  3. Global analysis of viral infection in an archaeal model system

    Directory of Open Access Journals (Sweden)

    Walid S. Maaty

    2012-12-01

    Full Text Available The origin and evolutionary relationship of viruses is poorly understood. This makes archaeal virus-host of particular interest because the hosts generally root near the base of phylogenetic trees, while some of the viruses have clear structural similarities to those that infect prokaryotic and eukaryotic cells. Despite the advantageous position for use in evolutionary studies, little is known about archaeal viruses or how they interact with their hosts, compared to viruses of bacteria and eukaryotes. In addition, many archaeal viruses have been isolated from extreme environments and present a unique opportunity for elucidating factors that are important for existence at the extremes.. In this article we focus on virus-host interactions using a proteomics approach to study Sulfolobus Turreted Icosahedral Virus (STIV infection of Sulfolobus solfataricus P2. Using cultures grown from the ATCC cell stock, a single cycle of STIV infection was sampled 6 times over a 72 hr period. More than 700 proteins were identified throughout the course of the experiments. Seventy one host proteins were found to change by nearly two-fold (p<0.05 with 40 becoming more abundant and 31 less abundant. The modulated proteins represent 30 different cell pathways and 14 COG groups. 2D gel analysis showed that changes in post translational modifications were a common feature of the affected proteins. The results from these studies showed that the prokaryotic antiviral adaptive immune system CRISPR associated proteins (CAS proteins were regulated in response to the virus infection. It was found that regulated proteins come from mRNAs with a shorter than average half-life. In addition, activity-based protein profiling (ABPP profiling on 2D gels showed caspase, hydrolase and tyrosine phosphatase enzyme activity labeling at the protein isoform level. Together, this data provides a more detailed global view of archaeal cellular responses to viral infection, demonstrates the

  4. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    Directory of Open Access Journals (Sweden)

    Yendi E. Navarro-Noya

    2015-01-01

    Full Text Available In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5, indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances clearly clustered the communities by pH.

  5. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.

  6. Ribonucleoproteins in Archaeal Pre-rRNA Processing and Modification

    Directory of Open Access Journals (Sweden)

    W. S. Vincent Yip

    2013-01-01

    Full Text Available Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP machines. They are called small RNPs (sRNPs, in Archaea, and small nucleolar RNPs (snoRNPs, in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.

  7. Cell-free production of integral membrane aspartic acid proteases reveals zinc-dependent methyltransferase activity of the Pseudomonas aeruginosa prepilin peptidase PilD

    Science.gov (United States)

    Aly, Khaled A; Beebe, Emily T; Chan, Chi H; Goren, Michael A; Sepúlveda, Carolina; Makino, Shin-ichi; Fox, Brian G; Forest, Katrina T

    2013-01-01

    Integral membrane aspartic acid proteases are receiving growing recognition for their fundamental roles in cellular physiology of eukaryotes and prokaryotes, and may be medically important pharmaceutical targets. The Gram-negative Pseudomonas aeruginosa PilD and the archaeal Methanococcus voltae FlaK were synthesized in the presence of unilamellar liposomes in a cell-free translation system. Cosynthesis of PilD with its full-length substrate, PilA, or of FlaK with its full-length substrate, FlaB2, led to complete cleavage of the substrate signal peptides. Scaled-up synthesis of PilD, followed by solubilization in dodecyl-β-d-maltoside and chromatography, led to a pure enzyme that retained both of its known biochemical activities: cleavage of the PilA signal peptide and S-adenosyl methionine-dependent methylation of the mature pilin. X-ray fluorescence scans show for the first time that PilD is a zinc-binding protein. Zinc is required for the N-terminal methylation of the mature pilin, but not for signal peptide cleavage. Taken together, our work identifies the P. aeruginosa prepilin peptidase PilD as a zinc-dependent N-methyltransferase and provides a new platform for large-scale synthesis of PilD and other integral membrane proteases important for basic microbial physiology and virulence. PMID:23255525

  8. Dipeptidyl peptidase IV inhibitors: a promising new therapeutic approach for the management of type 2 diabetes

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Holst, Jens J

    2005-01-01

    of appetite. Glucagon-like peptide-1 is, however, extremely rapidly inactivated by the serine peptidase, dipeptidyl peptidase IV, so that the native peptide is not useful clinically. A new approach to utilise the beneficial effects of glucagon-like peptide-1 in the treatment of type 2 diabetes has been......-12 months duration in patients with type 2 diabetes, dipeptidyl peptidase IV inhibitors have proved efficacious, both as monotherapy and when given in combination with metformin. Fasting and postprandial glucose concentrations were reduced, leading to reductions in glycosylated haemoglobin levels, while...... the development of orally active dipeptidyl peptidase IV inhibitors. Preclinical studies have demonstrated that this approach is effective in enhancing endogenous levels of glucagon-like peptide-1, resulting in improved glucose tolerance in glucose-intolerant and diabetic animal models. In recent studies of 3...

  9. Comparison of two pig intestinal brush border peptidases with the corresponding renal enzymes

    DEFF Research Database (Denmark)

    Norén, O; Sjöström, H; Danielsen, Erik Michael;

    1979-01-01

    -glutamyl-transferase was found to be identical to that of the kidney enzyme. The electrophoretic mobilities of dipeptidyl peptidase IV from the two organs differed greatly. The difference was almost abolished by treatment with neuraminidase, suggesting that the variation in mobility was due to different contents of sialic acid......Intestinal dipeptidyl peptidase IV and gamma-glutamyltransferase were compared to the corresponding kidney enzymes with respect to immunological and electrophoretic properties. The influences of selected effectors on the two enzymes were also studied. The two kidney peptidases exhibited...... the reaction of total identity with the corresponding intestinal enzymes in immunodiffusion. Furthermore, the intestinal dipeptidyl peptidase IV and gamma-glutamyl transferase showed the same inhibition patterns as the corresponding kidney enzymes and the acceptor specificity of the intestinal gamma...

  10. Distribution and Diversity of Archaeal Ammonia Monooxygenase Genes Associated with Corals▿ †

    OpenAIRE

    Beman, J. Michael; Roberts, Kathryn J.; Wegley, Linda; Rohwer, Forest; Francis, Christopher A.

    2007-01-01

    Corals are known to harbor diverse microbial communities of Bacteria and Archaea, yet the ecological role of these microorganisms remains largely unknown. Here we report putative ammonia monooxygenase subunit A (amoA) genes of archaeal origin associated with corals. Multiple DNA samples drawn from nine coral species and four different reef locations were PCR screened for archaeal and bacterial amoA genes, and archaeal amoA gene sequences were obtained from five different species of coral coll...

  11. Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus.

    Science.gov (United States)

    Beauvais, A; Monod, M; Debeaupuis, J P; Diaquin, M; Kobayashi, H; Latgé, J P

    1997-03-01

    A novel dipeptidyl-peptidase (DPP V) was purified from the culture medium of Aspergillus fumigatus. This is the first report of a secreted dipeptidyl-peptidase. The enzyme had a molecular mass of 88 kDa and contained approximately 9 kDa of N-linked carbohydrate. The expression and secretion of dipeptidyl-peptidase varied with the growth conditions; maximal intra- and extracellular levels were detected when the culture medium contained only proteins or protein hydrolysates in the absence of sugars. The gene of DPP V was cloned and showed significant sequence homology to other eukaryotic dipeptidyl-peptidase genes. Unlike the other dipeptidyl-peptidases, which are all intracellular, DPP V contained a signal peptide. Like the genes of other dipeptidyl-peptidases, that of DPP V displayed the consensus sequences of the catalytic site of the nonclassical serine proteases. The biochemical properties of native and recombinant DPP V obtained in Pichia pastoris were unique and were characterized by a substrate specificity limited to the hydrolysis of X-Ala, His-Ser, and Ser-Tyr dipeptides at a neutral pH optimum. In addition, we showed that DPP V is identical to one of the two major antigens used for the diagnosis of aspergillosis. PMID:9045640

  12. Bacterial and Archaeal Diversity From the Eastern Lau Spreading Center

    Science.gov (United States)

    Reysenbach, A.; Banta, A.; Kelly, S.; Kirshstein, J.; Voytek, M.

    2005-12-01

    Due to the diversity of venting styles, geological settings and variations in fluid geochemistry, the Valu Fa Ridge and Eastern Lau Spreading Center (ELSC) provide a unique opportunity to explore the effects geological and geochemical variables on patterns of microbial phylogenetic and metabolic diversity. High temperature sulfides, diffuse flow fluids and microbial mats were collected from six active vent fields on the Valu Fa Ridge and Eastern Lau Spreading Center during the R/V Melville cruise TUIM05MV. All samples were subsampled for molecular and microbial culturing purposes. The archaeal and bacterial 16S rRNA genes were amplified by PCR from a selection of samples. Additionally, the presence of Aquificales and an unidentified lineage, the DHVE archaeal group, was explored using PCR primers specific for these groups. A selection of DNAs were also screened for functional genes that are diagnostic for certain pathways, viz, aclB (reductive TCA cycle), mcrA (methanogenesis), nirS and nirK (nitrite reduction), amoA (ammonia oxidation). Culturing of thermophiles, both acidophiles and neutrophiles, was initiated. Over 20 hydrogen oxidizing (hydrogen and oxygen) or nitrate reducing (hydrogen and nitrate) chemolithoautotrophs were isolated as colonies and grow at 70 degrees C. All are related to Persephonella hydrogenophila, with the exception of 2 cultures that perhaps represent new species of Hydrogenivirga and Aquifex. Preliminary analysis of patterns of Aquificales diversity using both culturing and molecular approaches suggest that the distributions of this group alone are very different from that observed at other hydrothermal sites such as along the East Pacific Rise or Central Indian Ridge. As yet, the most commonly isolated Aquificales, P. marina, has not been detected in enrichment cultures from ELSC, and the diversity of Aquificales-related sequences is much greater than detected from sites along the EPR. It is therefore also likely, that patterns of

  13. Electroporation of archaeal lipid membranes using MD simulations.

    Science.gov (United States)

    Polak, Andraž; Tarek, Mounir; Tomšič, Matija; Valant, Janez; Ulrih, Nataša Poklar; Jamnik, Andrej; Kramar, Peter; Miklavčič, Damijan

    2014-12-01

    Molecular dynamics (MD) simulations were used to investigate the electroporation of archaeal lipid bilayers when subjected to high transmembrane voltages induced by a charge imbalance, mimicking therefore millisecond electric pulse experiments. The structural characteristics of the bilayer, a 9:91 mol% 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-myo-inositol (AI) and 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-1'(2'-O-α-D-glucosyl)-myo-inositol (AGI) were compared to small angle X-ray scattering data. A rather good agreement of the electron density profiles at temperatures of 298 and 343 K was found assessing therefore the validity of the protocols and force fields used in simulations. Compared to dipalmitoyl-phosphatidylcholine (DPPC), the electroporation threshold for the bilayer was found to increase from ~2 V to 4.3 V at 323 K, and to 5.2 V at 298 K. Comparing the electroporation thresholds of the archaeal lipids to those of simple diphytanoyl-phosphatidylcholine (DPhPC) bilayers (2.5 V at 323 K) allowed one to trace back the stability of the membranes to the structure of their lipid head groups. Addition of DPPC in amounts of 50 mol% to the archaeal lipid bilayers decreases their stability and lowers the electroporation thresholds to 3.8 V and 4.1 V at respectively 323 and 298 K. The present study therefore shows how membrane compositions can be selected to cover a wide range of responses to electric stimuli. This provides new routes for the design of liposomes that can be efficiently used as drug delivery carriers, as the selection of their composition allows one to tune in their electroporation threshold for subsequent release of their load.

  14. Expression of kallikrein-related peptidase 7 is decreased in prostate cancer

    Directory of Open Access Journals (Sweden)

    Chong-Yu Zhang

    2015-02-01

    Full Text Available Recent evidence suggests that the human kallikrein 7 (KLK7 is differentially regulated in a variety of tumors. The aim of this study was to determine the expression of kallikrein-related peptidase 7 and KLK7 in our large collection of prostate samples. Between August 2000 and December 2012, 116 patients with histologically confirmed prostate cancer (PCa and 92 with benign prostate hyperplasia (BPH were recruited into the study. Using immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-PCR and western blot, kallikrein-related peptidase 7 expression in BPH and PCa tissues was determined at the mRNA and protein levels. The relationships between kallikrein-related peptidase 7 mRNA expression and clinicopathological features were analyzed. A total of 64 of 92 (69.57% benign cases showed positive staining for KLK7 and 23 of 116 (19.83% malignant cases showed positive, the difference of KLK7 expression between PCa and BPH was statistically significant (P < 0.001. The expression level of kallikrein-related peptidase 7 mRNA was significantly decreased in PCa tissues compared with that in BPH tissues and normal prostate tissue. Kallikrein-related peptidase 7 mRNA exhibited different expression patterns in terms of localization depending on pathological category of PCa. Similarly, our western immunoblot analyses demonstrated that the protein expression levels of KLK7 was lower in PCa than in BPH tissues and normal prostate tissue. Kallikrein-related peptidase 7 and KLK7 expression are down-regulated in PCa and lower expression of kallikrein-related peptidase 7 closely correlates with higher Gleason score and higher prostate-specific antigen level.

  15. Expression of kallikrein-related peptidase 7 is decreased in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Chong-Yu Zhang; Yu Zhu; Wen-Bin Rui; Jun Dai; Zhou-Jun Shen

    2015-01-01

    Recent evidence suggests that the human kallikrein 7 (KLK7) is differentially regulated in a variety of tumors. The aim of this study was to determine the expression of kallikrein‑related peptidase 7 and KLK7 in our large collection of prostate samples. Between August 2000 and December 2012, 116 patients with histologically confirmed prostate cancer (PCa) and 92 with benign prostate hyperplasia (BPH) were recruited into the study. Using immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT‑PCR) and western blot, kallikrein‑related peptidase 7 expression in BPH and PCa tissues was determined at the mRNA and protein levels. The relationships between kallikrein‑related peptidase 7 mRNA expression and clinicopathological features were analyzed. A total of 64 of 92 (69.57%) benign cases showed positive staining for KLK7 and 23 of 116 (19.83%) malignant cases showed positive, the difference of KLK7 expression between PCa and BPH was statistically significant (P < 0.001). The expression level of kallikrein‑related peptidase 7 mRNA was significantly decreased in PCa tissues compared with that in BPH tissues and normal prostate tissue. Kallikrein‑related peptidase 7 mRNA exhibited different expression patterns in terms of localization depending on pathological category of PCa. Similarly, our western immunoblot analyses demonstrated that the protein expression levels of KLK7 was lower in PCa than in BPH tissues and normal prostate tissue. Kallikrein‑related peptidase 7 and KLK7 expression are down‑regulated in PCa and lower expression of kallikrein‑related peptidase 7 closely correlates with higher Gleason score and higher prostate‑specific antigen level.

  16. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    Science.gov (United States)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  17. Modelling the evolution of the archaeal tryptophan synthase

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2007-04-01

    Full Text Available Abstract Background Microorganisms and plants are able to produce tryptophan. Enzymes catalysing the last seven steps of tryptophan biosynthesis are encoded in the canonical trp operon. Among the trp genes are most frequently trpA and trpB, which code for the alpha and beta subunit of tryptophan synthase. In several prokaryotic genomes, two variants of trpB (named trpB1 or trpB2 occur in different combinations. The evolutionary history of these trpB genes is under debate. Results In order to study the evolution of trp genes, completely sequenced archaeal and bacterial genomes containing trpB were analysed. Phylogenetic trees indicated that TrpB sequences constitute four distinct groups; their composition is in agreement with the location of respective genes. The first group consisted exclusively of trpB1 genes most of which belonged to trp operons. Groups two to four contained trpB2 genes. The largest group (trpB2_o contained trpB2 genes all located outside of operons. Most of these genes originated from species possessing an operon-based trpB1 in addition. Groups three and four pertain to trpB2 genes of those genomes containing exclusively one or two trpB2 genes, but no trpB1. One group (trpB2_i consisted of trpB2 genes located inside, the other (trpB2_a of trpB2 genes located outside the trp operon. TrpA and TrpB form a heterodimer and cooperate biochemically. In order to characterise trpB variants and stages of TrpA/TrpB cooperation in silico, several approaches were combined. Phylogenetic trees were constructed for all trp genes; their structure was assessed via bootstrapping. Alternative models of trpB evolution were evaluated with parsimony arguments. The four groups of trpB variants were correlated with archaeal speciation. Several stages of TrpA/TrpB cooperation were identified and trpB variants were characterised. Most plausibly, trpB2 represents the predecessor of the modern trpB gene, and trpB1 evolved in an ancestral bacterium

  18. A new TASK for Dipeptidyl Peptidase-like Protein 6.

    Directory of Open Access Journals (Sweden)

    Brian M Nadin

    Full Text Available Dipeptidyl Peptidase-like Protein 6 (DPP6 is widely expressed in the brain where it co-assembles with Kv4 channels and KChIP auxiliary subunits to regulate the amplitude and functional properties of the somatodendritic A-current, ISA. Here we show that in cerebellar granule (CG cells DPP6 also regulates resting membrane potential and input resistance by increasing the amplitude of the IK(SO resting membrane current. Pharmacological analysis shows that DPP6 acts through the control of a channel with properties matching the K2P channel TASK-3. Heterologous expression and co-immunoprecipitation shows that DPP6 co-expression with TASK-3 results in the formation of a protein complex that enhances resting membrane potassium conductance. The co-regulation of resting and voltage-gated channels by DPP6 produces coordinate shifts in resting membrane potential and A-current gating that optimize the sensitivity of ISA inactivation gating to subthreshold fluctuations in resting membrane potential.

  19. The Nonglycemic Actions of Dipeptidyl Peptidase-4 Inhibitors

    Directory of Open Access Journals (Sweden)

    Na-Hyung Kim

    2014-01-01

    Full Text Available A cell surface serine protease, dipeptidyl peptidase 4 (DPP-4, cleaves dipeptide from peptides containing proline or alanine in the N-terminal penultimate position. Two important incretin hormones, glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic peptide (GIP, enhance meal-stimulated insulin secretion from pancreatic β-cells, but are inactivated by DPP-4. Diabetes and hyperglycemia increase the DPP-4 protein level and enzymatic activity in blood and tissues. In addition, multiple other functions of DPP-4 suggest that DPP-4 inhibitor, a new class of antidiabetic agents, may have pleiotropic effects. Studies have shown that DPP-4 itself is involved in the inflammatory signaling pathway, the stimulation of vascular smooth cell proliferation, and the stimulation of oxidative stress in various cells. DPP-4 inhibitor ameliorates these pathophysiologic processes and has been shown to have cardiovascular protective effects in both in vitro and in vivo experiments. However, in recent randomized clinical trials, DPP-4 inhibitor therapy in high risk patients with type 2 diabetes did not show cardiovascular protective effects. Some concerns on the actions of DPP-4 inhibitor include sympathetic activation and neuropeptide Y-mediated vascular responses. Further studies are required to fully characterize the cardiovascular effects of DPP-4 inhibitor.

  20. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  1. The archaeal TFIIE homologue facilitates transcription initiation by enhancing TATA-box recognition

    NARCIS (Netherlands)

    Bell, S.D.; Brinkman, A.B.; Oost, van der J.; Jackson, S.P.

    2001-01-01

    Transcription from many archaeal promoters can be reconstituted in vitro using recombinant TATA-box binding protein (TBP) and transcription factor B (TFB)—homologues of eukaryal TBP and TFIIB—together with purified RNA polymerase (RNAP). However, all archaeal genomes sequenced to date reveal the pre

  2. Energy for two: New archaeal lineages and the origin of mitochondria.

    Science.gov (United States)

    Martin, William F; Neukirchen, Sinje; Zimorski, Verena; Gould, Sven B; Sousa, Filipa L

    2016-09-01

    Metagenomics bears upon all aspects of microbiology, including our understanding of mitochondrial and eukaryote origin. Recently, ribosomal protein phylogenies show the eukaryote host lineage - the archaeal lineage that acquired the mitochondrion - to branch within the archaea. Metagenomic studies are now uncovering new archaeal lineages that branch more closely to the host than any cultivated archaea do. But how do they grow? Carbon and energy metabolism as pieced together from metagenome assemblies of these new archaeal lineages, such as the Deep Sea Archaeal Group (including Lokiarchaeota) and Bathyarchaeota, do not match the physiology of any cultivated microbes. Understanding how these new lineages live in their environment is important, and might hold clues about how mitochondria arose and how the eukaryotic lineage got started. Here we look at these exciting new metagenomic studies, what they say about archaeal physiology in modern environments, how they impact views on host-mitochondrion physiological interactions at eukaryote origin. PMID:27339178

  3. Analyses of in vivo interactions between transcription factors and the archaeal RNA polymerase.

    Science.gov (United States)

    Walker, Julie E; Santangelo, Thomas J

    2015-09-15

    Transcription factors regulate the activities of RNA polymerase (RNAP) at each stage of the transcription cycle. Many basal transcription factors with common ancestry are employed in eukaryotic and archaeal systems that directly bind to RNAP and influence intramolecular movements of RNAP and modulate DNA or RNA interactions. We describe and employ a flexible methodology to directly probe and quantify the binding of transcription factors to RNAP in vivo. We demonstrate that binding of the conserved and essential archaeal transcription factor TFE to the archaeal RNAP is directed, in part, by interactions with the RpoE subunit of RNAP. As the surfaces involved are conserved in many eukaryotic and archaeal systems, the identified TFE-RNAP interactions are likely conserved in archaeal-eukaryal systems and represent an important point of contact that can influence the efficiency of transcription initiation.

  4. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells

    KAUST Repository

    Siegert, Michael

    2015-07-06

    © 2015 American Chemical Society. Methane is the primary end product from cathodic current in microbial electrolysis cells (MECs) in the absence of methanogenic inhibitors, but little is known about the archaeal communities that develop in these systems. MECs containing cathodes made from different materials (carbon brushes, or plain graphite blocks or blocks coated with carbon black and platinum, stainless steel, nickel, ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide) were inoculated with anaerobic digester sludge and acclimated at a set potential of -600 mV (versus a standard hydrogen electrode). The archaeal communities on all cathodes, except those coated with platinum, were predominated by Methanobacterium (median 97% of archaea). Cathodes with platinum contained mainly archaea most similar to Methanobrevibacter. Neither of these methanogens were abundant (<0.1% of archaea) in the inoculum, and therefore their high abundance on the cathode resulted from selective enrichment. In contrast, bacterial communities on the cathode were more diverse, containing primarily δ-Proteobacteria (41% of bacteria). The lack of a consistent bacterial genus on the cathodes indicated that there was no similarly selective enrichment of bacteria on the cathode. These results suggest that the genus Methanobacterium was primarily responsible for methane production in MECs when cathodes lack efficient catalysts for hydrogen gas evolution. (Figure Presented).

  5. Structure and cell biology of archaeal virus STIV.

    Science.gov (United States)

    Fu, Chi-yu; Johnson, Johnson E

    2012-04-01

    Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interactions. Reliable laboratory conditions to propagate STIV and available genetic tools allowed structural characterization of the virus and viral components that lead to the proposal of common capsid ancestry with PRD1 (bacteriophage), Adenovirus (eukaryotic virus) and PBCV (chlorellavirus). Microarray and proteomics approaches systematically analyzed viral replication and the corresponding host responses. Cellular cryo-electron tomography and thin-section EM studies uncovered the assembly and maturation pathway of STIV and revealed dramatic cellular ultra-structure changes upon infection. The viral-induced pyramid-like protrusions on cell surfaces represent a novel viral release mechanism and previously uncharacterized functions in viral replication. PMID:22482708

  6. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  7. An Entamoeba cysteine peptidase specifically expressed during encystation.

    Science.gov (United States)

    Ebert, Frank; Bachmann, Anna; Nakada-Tsukui, Kumiko; Hennings, Ina; Drescher, Babette; Nozaki, Tomoyoshi; Tannich, Egbert; Bruchhaus, Iris

    2008-12-01

    Protozoan parasites of the genus Entamoeba possess a considerable number of cysteine peptidases (CPs), the function of most of these molecules for amoeba biology needs to be established. In order to determine whether CPs may play a role during Entamoeba stage conversion from trophozoites into cysts and vice versa, expression of cp genes was analysed in the reptilian parasite Entamoeba invadens, a model organism for studying Entamoeba cyst development. By homology search, 28 papain-like cp genes were identified in public E. invadens genome databases. For eight of these genes the expression profiles during stage conversion was determined. By Northern blot analysis, transcripts for eicp-a9, -b7, -b8 and -c2, respectively, were detected neither in trophozoites or cysts nor at any of the point of times analysed during stage conversion. On the other hand, eicp-a5 is constitutively expressed during all developmental stages, whereas eicp-a3 and eicp-a11, respectively, are trophozoite-specific. Only eicp-b9 was found to be cyst-specific as it is expressed exclusively 18 to 28 h after cyst induction. Cyst-specific expression was confirmed by immunofluorescence microscopy of the corresponding protein EiCP-B9. In immature cysts, the molecule is located in structures that accumulate near the cyst wall, but which are uniformly distributed in mature cysts. The precise function of EiCP-B9 during Entamoeba encystation remains to be determined. However, colocalisation studies with an Entamoeba marker for autophagosomes suggest that EiCP-B9 is not associated with Entamoeba autophagy.

  8. Oxytocin biotransformation in the rat limbic brain: Characterization of peptidase activities and significance in the formation of oxytocin fragments

    NARCIS (Netherlands)

    Burbach, J.P.H.; Kloet, E.R. de; Wied, D. de

    1980-01-01

    The enzymatic conversion of oxytocin by brain peptidases has been studied. Oxytocin was incubated with synaptosomal plasma membranes (SPM) isolated from the rat brain. Qualitative studies using a microdansylation technique revealed two types of oxytocin converting peptidases, e.g. aminopeptidase and

  9. Proteomic analysis of human skin treated with larval schistosome peptidases reveals distinct invasion strategies among species of blood flukes.

    Directory of Open Access Journals (Sweden)

    Jessica Ingram

    2011-09-01

    Full Text Available Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts.Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays.This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts.

  10. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts

    Science.gov (United States)

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the coleopteran-specific Cry3Aa toxin from Bacillus thuringiensis (Bt). Larvae digest protein initially with cysteine peptidases in the anterior midgut and further with serine peptidases in middle and poste...

  11. IDENTIFICATION OF THE POTENTIAL ACTIVE-SITE OF THE SIGNAL PEPTIDASE SIPS OF BACILLUS-SUBTILIS - STRUCTURAL AND FUNCTIONAL SIMILARITIES WITH LEXA-LIKE PROTEASES

    NARCIS (Netherlands)

    VANDIJL, JM; DEJONG, A; VENEMA, G; BRON, S

    1995-01-01

    Signal peptidases remove signal peptides from secretory proteins. By comparing the type I signal peptidase, SipS, of Bacillus subtilis with signal peptidases from prokaryotes, mitochondria, and the endoplasmic reticular membrane, patterns of conserved amino acids were discovered. The conserved resid

  12. Fluorometric assay using naphthylamide substrates for assessing novel venom peptidase activities.

    Science.gov (United States)

    Gasparello-Clemente, Elaine; Silveira, Paulo Flávio

    2002-11-01

    In the present study we examined the feasibility of using the fluorometry of naphthylamine derivatives for revealing peptidase activities in venoms of the snakes Bothrops jararaca, Bothrops alternatus, Bothrops atrox, Bothrops moojeni, Bothrops insularis, Crotalus durissus terrificus and Bitis arietans, of the scorpions Tityus serrulatus and Tityus bahiensis, and of the spiders Phoneutria nigriventer and Loxosceles intermedia. Neutral aminopeptidase (APN) and prolyl-dipeptidyl aminopeptidase IV (DPP IV) activities were presented in all snake venoms, with the highest levels in B. alternatus. Although all examined peptidase activities showed relatively low levels in arthropod venoms, basic aminopeptidase (APB) activity from P. nigriventer venom was the exception. Compared to the other peptidase activities, relatively high levels of acid aminopeptidase (APA) activity were restricted to B. arietans venom. B. arietans also exhibited a prominent content of APB activity which was lower in other venoms. Relatively low prolyl endopeptidase and proline iminopeptidase activities were, respectively, detectable only in T. bahiensis and B. insularis. Pyroglutamate aminopeptidase activity was undetectable in all venoms. All examined peptidase activities were undetectable in T. serrulatus venom. In this study, the specificities of a diverse array of peptidase activities from representative venoms were demonstrated for the first time, with a description of their distribution which may contribute to guiding further investigations. The expressive difference between snake and arthropod venoms was indicated by APN and DPP IV activities while APA and APB activities distinguished the venom of B. arietans from those of Brazilian snakes. The data reflected the relatively uniform qualitative distribution of the peptidase activities investigated, together with their unequal quantitative distribution, indicating the evolutionary divergence in the processing of peptides in these different

  13. RNA-Based Assessment of Diversity and Composition of Active Archaeal Communities in the German Bight

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2012-01-01

    Full Text Available Archaea play an important role in various biogeochemical cycles. They are known extremophiles inhabiting environments such as thermal springs or hydrothermal vents. Recent studies have revealed a significant abundance of Archaea in moderate environments, for example, temperate sea water. Nevertheless, the composition and ecosystem function of these marine archaeal communities is largely unknown. To assess diversity and composition of active archaeal communities in the German Bight, seven marine water samples were taken and studied by RNA-based analysis of ribosomal 16S rRNA. For this purpose, total RNA was extracted from the samples and converted to cDNA. Archaeal community structures were investigated by pyrosequencing-based analysis of 16S rRNA amplicons generated from cDNA. To our knowledge, this is the first study combining next-generation sequencing and metatranscriptomics to study archaeal communities in marine habitats. The pyrosequencing-derived dataset comprised 62,045 archaeal 16S rRNA sequences. We identified Halobacteria as the predominant archaeal group across all samples with increased abundance in algal blooms. Thermoplasmatales (Euryarchaeota and the Marine Group I (Thaumarchaeota were identified in minor abundances. It is indicated that archaeal community patterns were influenced by environmental conditions.

  14. Magnetic Au Nanoparticles on Archaeal S-Layer Ghosts as Templates

    Directory of Open Access Journals (Sweden)

    Sonja Selenska-Pobell

    2011-10-01

    Full Text Available Cell‐ghosts representing empty cells of the archaeon Sulfolobus acidocaldarius, consisting only of their highly ordered and unusually stable outermost proteinaceous surface layer (S‐layer, were used as templates for Au nanoparticles fabrication. The properties of these archaeal Au nanoparticles differ significantly from those produced earlier by us onto bacterial S‐layer sheets. The archaeal Au nanoparticles, with a size of about 2.5 nm, consist exclusively of metallic Au(0, while those produced on the bacterial S‐layer had a size of about 4 nm and represented a mixture of Au(0 and Au(III in the ratio of 40 to 60 %. The most impressive feature of the archaeal Au nanoparticles is that they are strongly paramagnetic, in contrast to the bacterial ones and also to bulk gold. SQUID magnetometry and XMCD measurements demonstrated that the archaeal Au nanoparticles possess a rather large magnetic moment of about 0.1 µB/atom. HR‐ TEM‐EDX analysis revealed that the archaeal Au nanoparticles are linked to the sulfur atoms of the thiol groups of the amino acid cysteine, characteristic only for archaeal S‐layers. This is the first study demonstrating the formation of such unusually strong magnetic Au nanoparticles on a non‐modified archaeal S‐layer.

  15. Nucleotide sequence of the Pseudomonas fluorescens signal peptidase II gene (lsp) and flanking genes.

    OpenAIRE

    Isaki, L; Beers, R; Wu, H.C.

    1990-01-01

    The lsp gene encoding prolipoprotein signal peptidase (signal peptidase II) is organized into an operon consisting of ileS and three open reading frames, designated genes x, orf149, and orf316 in both Escherichia coli and Enterobacter aerogenes. A plasmid, pBROC128, containing a 5.8-kb fragment of Pseudomonas fluorescens DNA was found to confer pseudomonic acid resistance on E. coli host cells and to contain the structural gene of ileS from P. fluorescens. In addition, E. coli strains carryin...

  16. Archaeal promoter architecture and mechanism of gene activation

    DEFF Research Database (Denmark)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang;

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory...... element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked...... mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression....

  17. Archaeal promoter architecture and mechanism of gene activation.

    Science.gov (United States)

    Peng, Nan; Ao, Xiang; Liang, Yun Xiang; She, Qunxin

    2011-01-01

    Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression. PMID:21265754

  18. Useful scars: Physics of the capsids of archaeal viruses

    Science.gov (United States)

    Perotti, L. E.; Dharmavaram, S.; Klug, W. S.; Marian, J.; Rudnick, J.; Bruinsma, R. F.

    2016-07-01

    We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature of defect-free particle arrays on a surface with zero Gauss curvature.

  19. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  20. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  1. Geochemical Approach to Archaeal Ecology: δ13C of GDGTs

    Science.gov (United States)

    Lichtin, S.; Warren, C.; Pearson, A.; Pagani, M.

    2015-12-01

    Over the last decade and a half, glycerol dialkyl glycerol tetraethers (GDGTs) have increasingly been used to reconstruct environmental temperatures; proxies like TEX86 that correlate the relative abundance of these archaeal cell membrane lipids to sea surface temperature are omnipresent in paleoclimatology literature. While it has become common to make claims about past temperatures using GDGTs, our present understanding of the organisms that synthesize the compounds is still quite limited. The generally accepted theory states that microorganisms like the Thaumarchaeota modify the structure of membrane lipids to increase intermolecular interactions, strengthening the membrane at higher temperatures. Yet to date, culture experiments have been largely restricted to a single species, Nitrosopumilus maritimes, and recent studies on oceanic archaeal rRNA have revealed that these biomarkers are produced in diverse, heterogeneous, and site-specific communities. This brings up questions as to whether different subclasses of GDGTs, and all subsequent proxies, represent adaptation within a single organismal group or a shift in community composition. To investigate whether GDGTs with different chain structures, from the simple isoprenoidal GDGT-0 to Crenarchaeol with its many cyclopentane groups, are sourced from archaea with similar or disparate metabolic pathways—and if that information is inherited in GDGTs trapped in marine sediments—this study examines the stable carbon isotope values (δ13C) of GDGTs extracted from the uppermost meters of sediment in the Orca Basin, Gulf of Mexico, using spooling-wire microcombustion isotope-ratio mass spectrometer (SWiM-IRMS), tackling a fundamental assumption of the TEX86 proxy that influences the way we perceive the veracity of existing temperature records.

  2. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    Science.gov (United States)

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  3. Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for type 2 diabetes

    DEFF Research Database (Denmark)

    Deacon, Carolyn F

    2007-01-01

    Sitagliptin is a once-daily, orally active, competitive and fully reversible inhibitor of dipeptidyl peptidase 4, the enzyme that is responsible for the rapid degradation of the incretin hormone glucagon-like peptide-1. It is the first in this new class of antihyperglycaemic agents to gain...

  4. Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants

    NARCIS (Netherlands)

    Bolhuis, A; Tjalsma, H; Stephenson, K; Harwood, C.R; Venema, G; Bron, S; van Dijl, J.M

    1999-01-01

    The type I signal peptidase SipS of Bacillus subtilis is of major importance for the processing of secretory precursor proteins. In the present studies, we have investigated possible mechanisms of thermal inactivation of five temperature-sensitive SipS mutants. The results demonstrate that two of th

  5. NONFUNCTIONAL EXPRESSION OF ESCHERICHIA-COLI SIGNAL PEPTIDASE-I IN BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    VANDIJL, JM; DEJONG, A; SMITH, H; BRON, S; VENEMA, G; van Dijl, Jan Maarten

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  6. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis

    NARCIS (Netherlands)

    van Dijl, J M; de Jong, A; Smith, H; Bron, S; Venema, G

    1991-01-01

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half t

  7. Trelagliptin (SYR-472, Zafatek), Novel Once-Weekly Treatment for Type 2 Diabetes, Inhibits Dipeptidyl Peptidase-4 (DPP-4) via a Non-Covalent Mechanism

    Science.gov (United States)

    Jennings, Andy; Kamran, Ruhi; Ueno, Hikaru; Nishigaki, Nobuhiro; Kosaka, Takuo; Tani, Akiyoshi; Sano, Hiroki; Kinugawa, Yoshinobu; Koumura, Emiko; Shi, Lihong; Takeuchi, Koji

    2016-01-01

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin. PMID:27328054

  8. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    Science.gov (United States)

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  9. The essence of being extremophilic : the role of the unique archaeal membrane lipids

    NARCIS (Netherlands)

    Vossenberg, Jack L.C.M. van de; Driessen, Arnold J.M.; Konings, Wil N.

    1998-01-01

    In extreme environments, mainly Archaea are encountered. The archaeal cytoplasmic membrane contains unique ether lipids that cannot easily be degraded, are temperature- and mechanically resistant, and highly salt tolerant. Moreover, thermophilic and extreme acidophilic Archaea possess membrane-spann

  10. Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues; Souto, Tatiane Beltramini; de Oliveira, Tássio Brito; de Oliveira, Lilian Caroline Gonçalves; Karcher, Daniel; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rodrigues, André; Rosa, Jose C; Cabral, Hamilton

    2016-08-01

    In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese. PMID:27165660

  11. Bioinformatic analysis of the neprilysin (M13 family of peptidases reveals complex evolutionary and functional relationships

    Directory of Open Access Journals (Sweden)

    Pinney John W

    2008-01-01

    Full Text Available Abstract Background The neprilysin (M13 family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2, which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates

  12. Response of Archaeal Communities in Beach Sediments to Spilled Oil and Bioremediation

    OpenAIRE

    Röling, Wilfred F. M.; Couto de Brito, Ivana R.; Swannell, Richard P. J.; Head, Ian M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 day...

  13. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  14. Function of C1A barley peptidases and their inhibitors (cystatins) in barley seed germination : Funcion de las peptidasas C1A de cebada y sus inhibidores (cistatinas) en la germinacion de la semilla

    OpenAIRE

    Cambra Marin, Ines

    2012-01-01

    Plant proteolysis is a metabolic process where specific enzymes called peptidases degrade proteins. In plants, this complex process involves broad metabolic networks and different sub-cellular compartments. Several types of peptidases take part in the proteolytic process, mainly cysteine-, serine-, aspartyl- and metallo- peptidases. Among the cysteine-peptidases, the papain-like or C1A peptidases (family C1, clan CA) are extensively present in land plants and are classified into catepsins L-,...

  15. Identification of an archaeal mercury regulon by chromatin immunoprecipitation.

    Science.gov (United States)

    Rudrappa, Deepak; Yao, Andrew I; White, Derrick; Pavlik, Benjamin J; Singh, Raghuveer; Facciotti, Marc T; Blum, Paul

    2015-12-01

    Mercury is a heavy metal and toxic to all forms of life. Metal exposure can invoke a response to improve survival. In archaea, several components of a mercury response system have been identified, but it is not known whether metal transport is a member of this system. To identify such missing components, a peptide-tagged MerR transcription factor was used to localize enriched chromosome regions by chromosome immunoprecipitation combined with DNA sequence analysis. Such regions could serve as secondary regulatory binding sites to control the expression of additional genes associated with mercury detoxification. Among the 31 highly enriched loci, a subset of five was pursued as potential candidates based on their current annotations. Quantitative reverse transcription-PCR analysis of these regions with and without mercury treatment in WT and mutant strains lacking merR indicated significant regulatory responses under these conditions. Of these, a Family 5 extracellular solute-binding protein and the MarR transcription factor shown previously to control responses to oxidation were most strongly affected. Inactivation of the solute-binding protein by gene disruption increased the resistance of mutant cells to mercury challenge. Inductively coupled plasma-MS analysis of the mutant cell line following metal challenge indicated there was less intracellular mercury compared with the isogenic WT strain. Together, these regulated genes comprise new members of the archaeal MerR regulon and reveal a cascade of transcriptional control not previously demonstrated in this model organism.

  16. Protein phosphorylation and its role in archaeal signal transduction.

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C; Albers, Sonja-Verena; Siebers, Bettina

    2016-09-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies.

  17. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  18. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum

    Science.gov (United States)

    We studied protein digestion the tenebrionids Tenebrio molitor and Tribolium castaneum, pests of stored grains and grain products, to identify potential targets for biopesticide development. Tenebrionid larvae have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anter...

  19. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome

    DEFF Research Database (Denmark)

    Okawada, Manabu; Holst, Jens Juul; Teitelbaum, Daniel H

    2011-01-01

    Glucagon-like peptide-2 induces small intestine mucosal epithelial cell proliferation and may have benefit for patients who suffer from short bowel syndrome. However, glucagon-like peptide-2 is inactivated rapidly in vivo by dipeptidyl peptidase IV. Therefore, we hypothesized that selectively...... inhibiting dipeptidyl peptidase IV would prolong the circulating life of glucagon-like peptide-2 and lead to increased intestinal adaptation after development of short bowel syndrome....

  20. SipY Is the Streptomyces lividans Type I Signal Peptidase Exerting a Major Effect on Protein Secretion

    OpenAIRE

    Palacín, Arantxa; Parro, Víctor; Geukens, Nick; Anné, Jozef; Mellado, Rafael P.

    2002-01-01

    Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual s...

  1. Clan CD of cysteine peptidases as an example of evolutionary divergences in related protein families across plant clades

    OpenAIRE

    Cambra Marin, Ines; García Ramos, Francisco Javier; Martinez Muñoz, Manuel

    2010-01-01

    Comparative genomic analyses are powerful tools that can be used to analyze the presence, conservation, and evolution of protein families and to elucidate issues concerning their function. To deal with these questions, we have chosen the clan CD of cysteine peptidases, which is formed by different protein families that play key roles in plants. An evolutionary comparative analysis of clan CD cysteine peptidases in representative species of different taxonomic groups that appeared during the e...

  2. The Plasmid-Encoded Signal Peptidase SipP Can Functionally Replace the Major Signal Peptidases SipS and SipT of Bacillus subtilis

    OpenAIRE

    Tjalsma, Harold; van den Dolder, Juliëtte; Meijer, Wilfried J.J.; Venema, Gerard; Bron, Sierd; van Dijl, Jan Maarten

    1999-01-01

    The gram-positive eubacterium Bacillus subtilis is the organism with the largest number of paralogous type I signal peptidases (SPases) known. These are specified both by chromosomal and plasmid-borne genes. The chromosomally encoded SPases SipS and SipT have a major function in precursor processing, and cells depleted of SipS and SipT stop growing and die. In this study, we show that the SPase SipP, specified by the B. subtilis plasmid pTA1015, can functionally replace SipS and SipT, unlike ...

  3. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function.

    Science.gov (United States)

    Perkin, Lindsey; Elpidina, Elena N; Oppert, Brenda

    2016-01-01

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products.

  4. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae).

    Science.gov (United States)

    Bruno, Mariela A; Pardo, Marcelo F; Caffini, Néstor O; López, Laura M I

    2003-02-01

    A new peptidase, named hieronymain I, was purified to homogeneity from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae) by acetone fractionation followed by cation exchange chromatography (FPLC) on CM-Sepharose FF. Homogeneity of the enzyme was confirmed by mass spectroscopy (MALDI-TOF), isoelectric focusing, and SDS-PAGE. Hieronymain is a basic peptidase (pI > 9.3) and its molecular mass was 24,066 Da. Maximum proteolytic activity on casein (>90% of maximum activity) was achieved at pH 8.5-9.5. The enzyme was completely inhibited by E-64 and iodoacetic acid and activated by the addition of cysteine; these results strongly suggest that the isolated protease should be included within the cysteine group. The N-terminal sequence of hieronymain (ALPESIDWRAKGAVTEVKRQDG) was compared with 25 plant cysteine proteases that showed more than 50% of identity.

  5. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 inhibitors in the treatment of diabetes

    DEFF Research Database (Denmark)

    Madsbad, Sten; Krarup, Thure; Deacon, Carolyn F;

    2008-01-01

    PURPOSE OF REVIEW: To discuss the virtues and shortcomings of the glucagon-like peptide-1 receptor agonists and the dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes. RECENT FINDINGS: The injectable glucagon-like peptide-1 receptor agonists exenatide significantly improves...... glycaemic control, with average reductions in haemoglobin A1c of about 1.0%, fasting plasma glucose of about 1.4 mmol/l, and causes a weight loss of approximately 2-3 kg after 30 weeks of treatment in patients with type 2 diabetes. The adverse effects are transient nausea and vomiting. The long.......5-1.0%, are weight neutral and without gastrointestinal side-effects. SUMMARY: The benefits and position of the glucagon-like peptide-1 analogues and the dipeptidyl peptidase-4 inhibitors in the diabetes treatment algorithm will be clarified when we have long-term trials with hard cardiovascular endpoints and data...

  6. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  7. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Blombach, Fabian; Schulz, Sarah; von Voithenberg, Lena Voith; Lamb, Don C; Werner, Finn; Tinnefeld, Philip; Grohmann, Dina

    2014-06-01

    During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP-DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly different conditions. Employing single-pair fluorescence resonance energy transfer, we monitored DNA bending by eukaryotic and archaeal TBPs in the absence and presence of TFB in real-time. We observed that the lifetime of the TBP-DNA interaction differs significantly between the archaeal and eukaryotic system. We show that the eukaryotic DNA-TBP interaction is characterized by a linear, stepwise bending mechanism with an intermediate state distinguished by a distinct bending angle. TF(II)B specifically stabilizes the fully bent TBP-promoter DNA complex and we identify this step as a regulatory checkpoint. In contrast, the archaeal TBP-DNA interaction is extremely dynamic and TBP from the archaeal organism Sulfolobus acidocaldarius strictly requires TFB for DNA bending. Thus, we demonstrate that transcription initiation follows diverse pathways on the way to the formation of the pre-initiation complex. PMID:24744242

  8. pH dominates variation in tropical soil archaeal diversity and community structure.

    Science.gov (United States)

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities.

  9. Composition of bacterial and archaeal communities during landfill refuse decomposition processes.

    Science.gov (United States)

    Song, Liyan; Wang, Yangqing; Zhao, Heping; Long, David T

    2015-12-01

    Little is known about the archaeal and the bacterial diversities in a landfill during different phases of decomposition. In this study, the archaeal and the bacterial diversities of Laogang landfill (Shanghai, China) at two different decomposition phases (i.e., initial methanogenic phase (IMP) and stable methanogenic phase (SMP)), were culture-independently examined using PCR-based 454 pyrosequencing. A total of 47,753 sequences of 16S rRNA genes were retrieved from 69,954 reads and analyzed to evaluate the diversities of the archaeal and bacterial communities. The most predominant types of archaea were hydrogenotrophic Methanomicrobiales, and of bacteria were Proteobacteria, Firmicutes, and Bacteroidetes. As might be expected, their abundances varied at decomposition phases. Archaea Methanomicrobiales accounts for 97.6% of total archaeal population abundance in IMP and about 57.6% in SMP. The abundance of archaeal genus Halobacteriale was 0.1% in IMP and was 20.3% in the SMP. The abundance of Firmicutes was 21.3% in IMP and was 4.3% in SMP. The abundance of Bacteroidetes represented 11.5% of total bacterial in IMP and was dominant (49.4%) in SMP. Both the IMP and SMP had unique cellulolytic bacteria compositions. IMP consisted of members of Bacillus, Fibrobacter, and Eubacterium, while SMP harbored groups of Microbacterium. Both phases had Clostridium with different abundance, 4-5 folds higher in SMP.

  10. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management

    OpenAIRE

    Junfeng Fan; Johnson, Michelle H.; Mary Ann Lila; Gad Yousef; Elvira Gonzalez de Mejia

    2013-01-01

    Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV) is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC) isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for thei...

  11. Generation of Dipeptidyl Peptidase-IV-Inhibiting Peptides from β-Lactoglobulin Secreted by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Suguru Shigemori

    2014-01-01

    Full Text Available Previous studies showed that hydrolysates of β-lactoglobulin (BLG prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus.

  12. Inhibition of cysteine peptidase activity in ascitic fluid in pancreatic cancer patients.

    Directory of Open Access Journals (Sweden)

    Adam Skalski

    2011-04-01

    Full Text Available The work's objective is to answer the question whether there is any possibility of activity inhibition of cysteine peptidases inhibitors playing an important role in key processes accompanying cancer formation, including pancreas. There is a justified speculation that specific inhibitors of these enzymes may inhibit development of cancer processes by inhibiting their activity. In vitro studies confirmed that these enzymes in ascitic fluid were inhibited with egg whites inhibitors even to 90% of their original activity.

  13. S28 peptidases: lessons from a seemingly 'dysfunctional' family of two

    OpenAIRE

    Kozarich John W

    2010-01-01

    Abstract A recent paper in BMC Structural Biology reports the crystal structure of human prolylcarboxypeptidase (PRCP), one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7), helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine. See resea...

  14. Virus-mediated archaeal hecatomb in the deep seafloor

    Science.gov (United States)

    Danovaro, Roberto; Dell’Anno, Antonio; Corinaldesi, Cinzia; Rastelli, Eugenio; Cavicchioli, Ricardo; Krupovic, Mart; Noble, Rachel T.; Nunoura, Takuro; Prangishvili, David

    2016-01-01

    Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles. PMID:27757416

  15. Calcium Regulates the Activity and Structural Stability of Tpr, a Bacterial Calpain-like Peptidase.

    Science.gov (United States)

    Staniec, Dominika; Ksiazek, Miroslaw; Thøgersen, Ida B; Enghild, Jan J; Sroka, Aneta; Bryzek, Danuta; Bogyo, Matthew; Abrahamson, Magnus; Potempa, Jan

    2015-11-01

    Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein's activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis.

  16. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera

    KAUST Repository

    Dias, Renata O.

    2015-03-01

    © 2015 Elsevier Ltd. Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.

  17. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications.

    Science.gov (United States)

    Avogaro, Angelo; Fadini, Gian Paolo

    2014-10-01

    We performed a review of the literature to determine whether the dipeptidyl peptidase-4 inhibitors (DPP4-I) may have the capability to directly and positively influence diabetic microvascular complications. The literature was scanned to identify experimental and clinical evidence that DPP4-I can ameliorate diabetic microangiopathy. We retrieved articles published between 1 January 1980 and 1 March 2014 in English-language peer-reviewed journals using the following terms: ("diabetes" OR "diabetic") AND ("retinopathy" OR "retinal" OR "nephropathy" OR "renal" OR "albuminuria" OR "microalbuminuria" OR "neuropathy" OR "ulcer" OR "wound" OR "bone marrow"); ("dipeptidyl peptidase-4" OR "dipeptidyl peptidase-IV" OR "DPP-4" OR "DPP-IV"); and ("inhibition" OR "inhibitor"). Experimentally, DPP4-I appears to improve inflammation, endothelial function, blood pressure, lipid metabolism, and bone marrow function. Several experimental studies report direct potential beneficial effects of DPP4-I on all microvascular diabetes-related complications. These drugs have the ability to act either directly or indirectly via improved glucose control, GLP-1 bioavailability, and modifying nonincretin substrates. Although preliminary clinical data support that DPP4-I therapy can protect from microangiopathy, insufficient evidence is available to conclude that this class of drugs directly prevents or decreases microangiopathy in humans independently from improved glucose control. Experimental findings and preliminary clinical data suggest that DPP4-I, in addition to improving metabolic control, have the potential to interfere with the onset and progression of diabetic microangiopathy. Further evidence is needed to confirm these effects in patients with diabetes. PMID:25249673

  18. Blockade of N-acetylaspartylglutamate peptidases: a novel protective strategy for brain injuries and neurological disorders.

    Science.gov (United States)

    Zhong, Chunlong; Luo, Qizhong; Jiang, Jiyao

    2014-12-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress glutamate release mainly through selective activation of presynaptic Group II metabotropic glutamate receptor subtype 3 (mGluR3). Therefore, strategies of inhibition of NAAG peptidases and subsequent NAAG hydrolysis to elevate levels of NAAG could reduce glutamate release under pathological conditions and be neuroprotective by attenuating excitotoxic cell injury. A series of potent inhibitors of NAAG peptidases has been synthesized and demonstrated efficacy in experimental models of ischemic-hypoxic brain injury, traumatic brain injury, inflammatory pain, diabetic neuropathy, amyotrophic lateral sclerosis and phencyclidine-induced schizophrenia-like behaviors. The excessive glutamatergic transmission has been implicated in all of these neurological disorders. Thus, blockade of NAAG peptidases may augment an endogenous protective mechanism and afford neuroprotection in the brain. This review aims to summarize and provide insight into the current understanding of the novel neuroprotective strategy based on limiting glutamate excitotoxicity for a wide variety of brain injuries and neurological disorders.

  19. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    NARCIS (Netherlands)

    Frade, P.R.; Roll, K.; Bergauer, K.; Herndl, G.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associatedwith the surface mucus layer of corals have rarely taken place. It has thereforeremained enigmatic whether mucus-associated archaeal and bacterial communities exhibita similar specificity towards coral hosts a

  20. Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes

    Science.gov (United States)

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Boldyrev, Ivan A.; Efremov, Roman G.

    2014-12-01

    Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and ``branched'' hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems.

  1. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Lívia O Santos

    Full Text Available BACKGROUND: Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the overlap between the AIDS epidemic and leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we have investigated the effect of HIV aspartyl peptidase inhibitors (PIs on the Leishmania amazonensis proliferation, ultrastructure, interaction with macrophage cells and expression of classical peptidases which are directly involved in the Leishmania pathogenesis. All the HIV PIs impaired parasite growth in a dose-dependent fashion, especially nelfinavir and lopinavir. HIV PIs treatment caused profound changes in the leishmania ultrastructure as shown by transmission electron microscopy, including cytoplasm shrinking, increase in the number of lipid inclusions and some cells presenting the nucleus closely wrapped by endoplasmic reticulum resembling an autophagic process, as well as chromatin condensation which is suggestive of apoptotic death. The hydrolysis of HIV peptidase substrate by L. amazonensis extract was inhibited by pepstatin and HIV PIs, suggesting that an aspartyl peptidase may be the intracellular target of the inhibitors. The treatment with HIV PIs of either the promastigote forms preceding the interaction with macrophage cells or the amastigote forms inside macrophages drastically reduced the association indexes. Despite all these beneficial effects, the HIV PIs induced an increase in the expression of cysteine peptidase b (cpb and the metallopeptidase gp63, two well-known virulence factors expressed by Leishmania spp. CONCLUSIONS/SIGNIFICANCE: In the face of leishmaniasis/HIV overlap, it is critical to further comprehend the sophisticated interplays among Leishmania

  2. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    Science.gov (United States)

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-01

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  3. Differences in the Composition of Archaeal Communities in Sediments from Contrasting Zones of Lake Taihu

    Science.gov (United States)

    Fan, Xianfang; Xing, Peng

    2016-01-01

    In shallow lakes, different primary producers might impact the physiochemical characteristics of the sediment and the associated microbial communities. Until now, little was known about the features of sediment Archaea and their variation across different primary producer-dominated ecosystems. Lake Taihu provides a suitable study area with cyanobacteria- and macrophyte-dominated zones co-occurring in one ecosystem. The composition of the sediment archaeal community was assessed using 16S rRNA gene amplicon sequencing technology, based on which the potential variation with respect to the physiochemical characteristics of the sediment was analyzed. Euryarchaeota (30.19% of total archaeal sequences) and Bathyarchaeota (28.00%) were the two most abundant phyla, followed by Crenarchaeota (11.37%), Aigarchaeota (10.24%) and Thaumarchaeota (5.98%). The differences found in the composition of the archaeal communities between the two zones was significant (p = 0.005). Sediment from macrophyte-dominated zones had high TOC and TN content and an abundance of archaeal lineages potentially involved in the degradation of complex organic compounds, such as the order Thermoplasmatales. In the area dominated by Cyanobacteria, archaeal lineages related to sulfur metabolism, for example, Sulfolobales and Desulfurococcales, were significantly enriched. Among Bathyarchaeota, subgroups MCG-6 and MCG-15 were significantly accumulated in the sediment of areas dominated by macrophytes whereas MCG-4 was consistently dominant in both type of sediments. The present study contributes to the knowledge of sediment archaeal communities with different primary producers and their possible biogeochemical functions in sediment habitats. PMID:27708641

  4. The crude skin secretion of the pepper frog Leptodactylus labyrinthicus is rich in metallo and serine peptidases.

    Directory of Open Access Journals (Sweden)

    Michelle da Silva Libério

    Full Text Available Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0-10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0-8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology.

  5. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring

    Directory of Open Access Journals (Sweden)

    Sonu Bhatia

    2015-09-01

    Full Text Available The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche.

  6. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome.

    Science.gov (United States)

    McLuskey, Karen; Grewal, Jaspreet S; Das, Debanu; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Coombs, Graham H; Elsliger, Marc-André; Wilson, Ian A; Mottram, Jeremy C

    2016-04-29

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys(147), resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys(147) to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca(2+) for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms. PMID:26940874

  7. Cysteine peptidase and its inhibitor activity levels and vitamin E concentration in normal human serum and colorectal carcinomas

    Institute of Scientific and Technical Information of China (English)

    Robert Szwed; Zygmunt Grzebieniak; Yousif Saleh; Godwin Bwire Ekonjo; Maciej Siewinski

    2005-01-01

    AIM: Cysteine peptidase (CP) and its inhibitor (CPI) are a matrix protease that may be associated with colorectal carcinoma invasion and progression, and vitamin E is also a stimulator of the immunological system. Our purpose was to determine the correlation between the expression of cysteine peptidases and their endogenous inhibitors,and the level of vitamin E in sera of patients with colorectal cancer in comparison with healthy individuals.METHODS: The levels of cysteine peptidases and their inhibitors were determined in the sera of patients with primary and metastatic colorectal carcinoma and healthy individuals using fluorogenic substrate, and the level of vitamin E was determined by HPLC.RESULTS: The levels of cysteine peptidases and their inhibitors were significantly higher in the metastatic colorectal cancer patients than that in the healthy controls (P<0.05).The activity of CP increased 2.2-fold, CPI 2.8-fold and vitamin E decreased 3.4-fold in sera of patients with metastasis in comparison with controls. The level of vitamin E in healthy individuals was higher, whereas the activity of cysteine peptidases and their inhibitors associated with complexes was lower than that in patients with cancer of the digestive tract.CONCLUSION: These results suggest that the serum levels of CP and their inhibitors could be an indicator of the prognosis for patients with metastatic colorectal cancer. Vitamin E can be administered prophylactically to prevent digestive tract neoplasmas.

  8. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean

    Science.gov (United States)

    Lincoln, Sara A.; Wai, Brenner; Eppley, John M.; Church, Matthew J.; Summons, Roger E.; DeLong, Edward F.

    2014-01-01

    Archaea are ubiquitous in marine plankton, and fossil forms of archaeal tetraether membrane lipids in sedimentary rocks document their participation in marine biogeochemical cycles for >100 million years. Ribosomal RNA surveys have identified four major clades of planktonic archaea but, to date, tetraether lipids have been characterized in only one, the Marine Group I Thaumarchaeota. The membrane lipid composition of the other planktonic archaeal groups—all uncultured Euryarchaeota—is currently unknown. Using integrated nucleic acid and lipid analyses, we found that Marine Group II Euryarchaeota (MG-II) contributed significantly to the tetraether lipid pool in the North Pacific Subtropical Gyre at shallow to intermediate depths. Our data strongly suggested that MG-II also synthesize crenarchaeol, a tetraether lipid previously considered to be a unique biomarker for Thaumarchaeota. Metagenomic datasets spanning 5 y indicated that depth stratification of planktonic archaeal groups was a stable feature in the North Pacific Subtropical Gyre. The consistent prevalence of MG-II at depths where the bulk of exported organic matter originates, together with their ubiquitous distribution over diverse oceanic provinces, suggests that this clade is a significant source of tetraether lipids to marine sediments. Our results are relevant to archaeal lipid biomarker applications in the modern oceans and the interpretation of these compounds in the geologic record. PMID:24946804

  9. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Hopmans, E.C.

    2004-01-01

    Recently we proposed a new organic sea surface temperature proxy, TEX86, based on the distribution of archaeal tetraether lipids. Here, we have examined the effect of oxic degradation and maturity on this new temperature proxy. Our results show that oxic degradation does not appear to affect the TEX

  10. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark...

  11. Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Christina Z; Dong, Raymond M; Jiang, Hongchen; Wang, Shang; Wang, Genhou; Fang, Bin; Ding, Xiaoxue; Niu, Lu; Li, Xin; Zhang, Chuanlun; Dong, Hailiang

    2011-09-01

    The diversity of archaea and bacteria was investigated in ten hot springs (elevation >4600 m above sea level) in Central and Central-Eastern Tibet using 16S rRNA gene phylogenetic analysis. The temperature and pH of these hot springs were 26-81°C and close to neutral, respectively. A total of 959 (415 and 544 for bacteria and archaea, respectively) clone sequences were obtained. Phylogenetic analysis showed that bacteria were more diverse than archaea and that these clone sequences were classified into 82 bacterial and 41 archaeal operational taxonomic units (OTUs), respectively. The retrieved bacterial clones were mainly affiliated with four known groups (i.e., Firmicutes, Proteobacteria, Cyanobacteria, Chloroflexi), which were similar to those in other neutral-pH hot springs at low elevations. In contrast, most of the archaeal clones from the Tibetan hot springs were affiliated with Thaumarchaeota, a newly proposed archaeal phylum. The dominance of Thaumarchaeota in the archaeal community of the Tibetan hot springs appears to be unique, although the exact reasons are not yet known. Statistical analysis showed that diversity indices of both archaea and bacteria were not statistically correlated with temperature, which is consistent with previous studies.

  12. Metagenomic evaluation of bacterial and archaeal diversity in the geothermal hot springs of manikaran, India.

    Science.gov (United States)

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Green, Stefan J; Joshi, Amit; Chauhan, Ashvini

    2015-02-19

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat.

  13. CrAgDb--a database of annotated chaperone repertoire in archaeal genomes.

    Science.gov (United States)

    Rani, Shikha; Srivastava, Abhishikha; Kumar, Manish; Goel, Manisha

    2016-03-01

    Chaperones are a diverse class of ubiquitous proteins that assist other cellular proteins in folding correctly and maintaining their native structure. Many different chaperones cooperate to constitute the 'proteostasis' machinery in the cells. It has been proposed earlier that archaeal organisms could be ideal model systems for deciphering the basic functioning of the 'protein folding machinery' in higher eukaryotes. Several chaperone families have been characterized in archaea over the years but mostly one protein at a time, making it difficult to decipher the composition and mechanistics of the protein folding system as a whole. In order to deal with these lacunae, we have developed a database of all archaeal chaperone proteins, CrAgDb (Chaperone repertoire in Archaeal genomes). The data have been presented in a systematic way with intuitive browse and search facilities for easy retrieval of information. Access to these curated datasets should expedite large-scale analysis of archaeal chaperone networks and significantly advance our understanding of operation and regulation of the protein folding machinery in archaea. Researchers could then translate this knowledge to comprehend the more complex protein folding pathways in eukaryotic systems. The database is freely available at http://14.139.227.92/mkumar/cragdb/. PMID:26862144

  14. Identification of archaeal proteins that affect the exosome function in vitro

    Directory of Open Access Journals (Sweden)

    Palhano Fernando L

    2010-05-01

    Full Text Available Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

  15. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues

    2014-01-01

    Full Text Available The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra’s amoA gene. The principal coordinate analysis (PCoA test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  16. Archaeal communities associated with roots of the common reed (Phragmites australis) in Beijing Cuihu Wetland.

    Science.gov (United States)

    Liu, Yin; Li, Hong; Liu, Qun Fang; Li, Yan Hong

    2015-05-01

    The richness, phylogeny and composition of archaeal community associated with the roots of common reed (Phragmites australis) growing in the Beijing Cuihu Wetland, China was investigated using a 16S rDNA library. In total, 235 individual sequences were collected, and a phylogenetic analysis revealed that 69.4 and 11.5 % of clones were affiliated with the Euryarchaeota and the Crenarchaeota, respectively. In Euryarchaeota, the archaeal community was dominated by species in following genera: Methanobacterium in the order Methanobacteriales (60.7 %); Methanoregula and Methanospirillum in the order Methanomicrobiales (20.2 %), and Methanomethylovorans, Methanosarcina and Methanosaeta in the order Methanosarcinales (17.2 %). Of 27 sequences assigned to uncultured Crenarchaeota, 22 were grouped into Group 1.3, and five grouped into Group 1.1b. Hence, the archaeal communities associated with reed roots are largely involved in methane production, and, to a lesser extent, in ammonia oxidization. Quantification of the archaeal amoA gene indicated that ammonia oxidizing archaea were more numerous in the rhizosphere soil than in the root tissue or surrounding water. A total of 19.1 % of the sequences were unclassified, suggesting that many unidentified archaea are probably involved in the reed wetland ecosystem. PMID:25739566

  17. ENERGY-TRANSDUCING PROPERTIES OF PRIMARY PROTON PUMPS RECONSTITUTED INTO ARCHAEAL BIPOLAR LIPID VESICLES

    NARCIS (Netherlands)

    ELFERINK, MGL; DEWIT, JG; DRIESSEN, AJM; KONINGS, WN; Elferink, Marieke G.L.

    1993-01-01

    Archaeal lipids differ considerably from eubacterial and eukaryotic lipids in their structure and physical properties. From the membranes of the extreme thermophilic archaea Sulfolobus acidocaldarius a tetraether lipid fraction was isolated, which can form closed and stable monolayer liposomes in aq

  18. PNT1 Is a C11 Cysteine Peptidase Essential for Replication of the Trypanosome Kinetoplast.

    Science.gov (United States)

    Grewal, Jaspreet S; McLuskey, Karen; Das, Debanu; Myburgh, Elmarie; Wilkes, Jonathan; Brown, Elaine; Lemgruber, Leandro; Gould, Matthew K; Burchmore, Richard J; Coombs, Graham H; Schnaufer, Achim; Mottram, Jeremy C

    2016-04-29

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His(99) and Cys(136)), and an Asp (Asp(134)) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast. PMID:26940875

  19. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    Directory of Open Access Journals (Sweden)

    Galina Radeva

    2014-01-01

    Full Text Available Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA. Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  20. A molecular and biochemical study of two recombinant mammalian pyroglutamyl peptidases type 1

    OpenAIRE

    Kilbane, Zelda

    2006-01-01

    Pyroglutamyl Peptidase I (PAP1, EC 3 4 19 3) hydrolytically cleaves pyroglutamic acid (pGlu) from the N-terminal of most pGlu-peptides. In higher organisms Thyrothropin Releasing Hormone is a notable biologically active substrate of PAP1. The sequence of bovine PAP1 (Accession No XM 866409) was obtained from GenBank at NCBI (www ncbi nlm mh gov). Using suitable primers cDNA was synthesised using RNA extracted from bovine brain tissue. Following expression of recombinant bovine PAP1 in Escheri...

  1. Some properties and possible biological role of peptidase inhibitors from the entomopathogenic fungus Tolypocladium cylindrosporum.

    Science.gov (United States)

    Popova, V V; Dunaevsky, Y E; Domash, V I; Semenova, T A; Beliakova, G A; Belozersky, M A

    2015-10-01

    The activities of secreted and mycelial inhibitors of proteolytic enzymes from fungi of the order Hypocreales have been investigated. Inhibitors of bromelain, papain, and trypsin of low molecular mass (about 1 kDa) and a subtilisin proteinaceous inhibitor with molecular mass of 45 kDa were revealed in the culture liquid of the fungus Tolypocladium cylindrosporum. The subtilisin inhibitor from T. cylindrosporum has antibiotic properties, significantly decreased the activity of purified bacterial enzymes, and prevented the growth of the bacterium Pseudomonas sp. Data suggesting the existence in fungi of the Hypocreales order of two pools of peptidase inhibitors have been obtained. PMID:26210235

  2. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors.

    Science.gov (United States)

    Fukushima, Hiroshi; Hiratate, Akira; Takahashi, Masato; Mikami, Ayako; Saito-Hori, Masako; Munetomo, Eiji; Kitano, Kiyokazu; Chonan, Sumi; Saito, Hidetaka; Suzuki, Akio; Takaoka, Yuji; Yamamoto, Koji

    2008-04-01

    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.

  3. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Holst, Jens J

    2009-01-01

    Saxagliptin is a potent and selective reversible inhibitor of dipeptidyl peptidase-4, which is being developed for the treatment of type 2 diabetes. It is absorbed rapidly after oral administration and has a pharmacokinetic profile compatible with once daily dosing. Saxagliptin is metabolized...... a neutral effect on body weight and dose adjustment because of age, gender, or hepatic impairment is not necessary. Saxagliptin is being co-developed by Bristol-Myers-Squibb (New York, NY, USA) and AstraZeneca (Cheshire, UK), and is currently undergoing regulatory review....

  4. In vivo effects of bradykinin B2 receptor agonists with varying susceptibility to peptidases.

    Directory of Open Access Journals (Sweden)

    Mélissa eJean

    2016-01-01

    Full Text Available We reported evidence of bradykinin (BK regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility towards vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v. injection of increasing doses of BK, B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-BK, BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ~15 fold by the angiotensin converting enzyme (ACE inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist and not influenced by the Arg-carboxypeptidase (CP inhibitor (Plummer's inhibitor. The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal. Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can

  5. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases.

    Science.gov (United States)

    Jean, Mélissa; Gera, Lajos; Charest-Morin, Xavier; Marceau, François; Bachelard, Hélène

    2015-01-01

    We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be

  6. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards.

    Science.gov (United States)

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-11-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.

  7. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters.

    Science.gov (United States)

    Hugoni, Mylène; Taib, Najwa; Debroas, Didier; Domaizon, Isabelle; Jouan Dufournel, Isabelle; Bronner, Gisèle; Salter, Ian; Agogué, Hélène; Mary, Isabelle; Galand, Pierre E

    2013-04-01

    Marine Archaea are important players among microbial plankton and significantly contribute to biogeochemical cycles, but details regarding their community structure and long-term seasonal activity and dynamics remain largely unexplored. In this study, we monitored the interannual archaeal community composition of abundant and rare biospheres in northwestern Mediterranean Sea surface waters by pyrosequencing 16S rDNA and rRNA. A detailed analysis of the rare biosphere structure showed that the rare archaeal community was composed of three distinct fractions. One contained the rare Archaea that became abundant at different times within the same ecosystem; these cells were typically not dormant, and we hypothesize that they represent a local seed bank that is specific and essential for ecosystem functioning through cycling seasonal environmental conditions. The second fraction contained cells that were uncommon in public databases and not active, consisting of aliens to the studied ecosystem and representing a nonlocal seed bank of potential colonizers. The third fraction contained Archaea that were always rare but actively growing; their affiliation and seasonal dynamics were similar to the abundant microbes and could not be considered a seed bank. We also showed that the major archaeal groups, Thaumarchaeota marine group I and Euryarchaeota group II.B in winter and Euryarchaeota group II.A in summer, contained different ecotypes with varying activities. Our findings suggest that archaeal diversity could be associated with distinct metabolisms or life strategies, and that the rare archaeal biosphere is composed of a complex assortment of organisms with distinct histories that affect their potential for growth.

  8. Functional interaction of yeast and human TATA-binding proteins with an archaeal RNA polymerase and promoter.

    OpenAIRE

    Wettach, J; Gohl, H P; Tschochner, H; Thomm, M

    1995-01-01

    TATA boxes are common structural features of eucaryal class II and archaeal promoters. In addition, a gene encoding a polypeptide with sequence similarity to eucaryal TATA-binding protein (TBP) has recently been detected in Archaea, but its relationship to the archaeal transcription factors A (aTFA) and B (aTFB) was unclear. Here, we demonstrate that yeast and human TBP can substitute for aTFB in a Methanococcus-derived archaeal cell-free transcription system. Template-commitment studies show...

  9. Arrabidaea chica Hexanic Extract Induces Mitochondrion Damage and Peptidase Inhibition on Leishmania spp.

    Directory of Open Access Journals (Sweden)

    Igor A. Rodrigues

    2014-01-01

    Full Text Available Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC. In addition, the effect of the most active fraction (B2 on parasite’s ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 μg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents.

  10. A computational study of the glycine-rich loop of mitochondrial processing peptidase.

    Directory of Open Access Journals (Sweden)

    Tomáš Kučera

    Full Text Available An all atomic, non-restrained molecular dynamics (MD simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL of the α-subunit of the yeast mitochondrial processing peptidase (MPP and its importance for the tertiary and quaternary conformation of MPP. Wild-type and GRL-deleted MPP structures were studied using non-restrained MD simulations, both in the presence and the absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition, but also later, at least during the first third of the substrate translocation trajectory. Further, we show that the substrate remains in contact with the GRL during the whole first half of the translocation trajectory and that hydrophobic interactions play a major role. Finally, we conclude that the GRL acts as a precisely balanced structural element, holding the MPP subunits in a partially closed conformation regardless the presence or absence of a substrate in the active site.

  11. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    Energy Technology Data Exchange (ETDEWEB)

    Kozuka, Miyuki [Department of Health and Nutrition, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa 061-1449 (Japan); Yamane, Takuya, E-mail: t-yamane@pharm.hokudai.ac.jp [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan); Nakano, Yoshihisa [Center for Research and Development Bioresources, Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai, Osaka 599-8570 (Japan); Nakagaki, Takenori [Institute of Food Sciences, Nakagaki Consulting Engineer Co., Ltd, Nishi-ku, Sakai 593-8328 (Japan); Ohkubo, Iwao [Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Higashi-ku, Sapporo 065-0013 (Japan); Ariga, Hiroyoshi [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812 (Japan)

    2015-09-25

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.

  12. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    International Nuclear Information System (INIS)

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified that cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside

  13. Potential Role of Dipeptidyl Peptidase IV in the Pathophysiology of Heart Failure

    Directory of Open Access Journals (Sweden)

    Thiago A. Salles

    2015-02-01

    Full Text Available Dipeptidyl peptidase IV (DPPIV is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1, brain natriuretic peptide (BNP and stromal cell-derived factor-1 (SDF-α, all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF. Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water.

  14. Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors.

    Science.gov (United States)

    Matteucci, E; Giampietro, O

    2015-01-01

    Prospective epidemiological studies suggest that type 2 diabetes is a risk factor for neurodegenerative pathologies such as Alzheimer disease, vascular dementia, and Parkinson disease. Drugs that act as incretin receptor agonists or inhibit the proteolytic degradation of incretins (dipeptidyl peptidase 4 inhibitors) have been approved since 2005 for use in diabetes treatment. Dipeptidyl peptidase 4 (DPP4) cleaves N-terminal dipeptides from polypeptides when the second residue is proline, hydroxyproline, dehydroproline or alanine. The inhibition of DPP4 hydrolytic activities extends the halflife of these peptides by preventing their degradation. Several peptides have been identified as DPP4 substrates, including neuropeptides, chemokines, and the incretin hormones; hence the pleomorphic effects of DPP4 inhibition. Recently, the neuroprotective properties of these drugs have been evaluated in cell cultures and animal models, not yet in human trials. Although mechanisms distinct from glycaemic control alone have been claimed to account for protection against neuronal degeneration, the precise cellular mechanism by which DPP4 inhibitors exert their neuroprotective effects remain unknown. The present review is focused on the candidate pathways that could be involved in mediating DPP4 inhibitors-mediated protection against neuronal degeneration. PMID:25723507

  15. The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and insulin sensitivity in subjects with impaired fasting glucose

    DEFF Research Database (Denmark)

    Utzschneider, Kristina M; Tong, Jenny; Montgomery, Brenda;

    2007-01-01

    OBJECTIVE: To evaluate the effect of treatment with the dipeptidyl peptidase (DPP)-4 inhibitor vildagliptin on insulin sensitivity and beta-cell function in subjects with impaired fasting glucose (IFG). RESEARCH DESIGN AND METHODS: A total of 22 subjects with IFG (11 female and 11 male, mean +/- ...

  16. Measurements of islet function and glucose metabolism with the dipeptidyl peptidase 4 inhibitor vildagliptin in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Azuma, Koichiro; Rádiková, Zofia; Mancino, Juliet;

    2007-01-01

    OBJECTIVE: Pharmacological inhibition with the dipeptidyl peptidase 4 (DPP-4) inhibitor vildagliptin prolongs the action of endogenously secreted incretin hormones leading to improved glycemic control in patients with type 2 diabetes mellitus (T2DM). We undertook a double-blinded, randomized-orde...

  17. Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function

    Science.gov (United States)

    The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut. We have descri...

  18. Biosynthesis of intestinal microvillar proteins. Pulse-chase labelling studies on maltase-glucoamylase, aminopeptidase A and dipeptidyl peptidase IV

    DEFF Research Database (Denmark)

    Danielsen, E M; Sjöström, H; Norén, Ove

    1983-01-01

    The biogenesis of three intestinal microvillar enzymes, maltase-glucoamylase (EC 3.2.1.20), aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) and dipeptidyl peptidase IV (EC 3.4.14.5), was studied by pulse-chase labelling of pig small-intestinal explants kept in organ culture. The earliest...

  19. Alogliptin, a potent and selective dipeptidyl peptidase-IV inhibitor for the treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Deacon, Carolyn F

    2008-01-01

    Takeda San Diego Inc is developing alogliptin, a small-molecule, orally available dipeptidyl peptidase IV (DPP IV) inhibitor, for the potential treatment of type 2 diabetes. In January 2008, Takeda announced that an NDA for alogliptin had been submitted to the FDA....

  20. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes?

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Ahrén, Bo; Holst, Jens J

    2004-01-01

    Inhibitors of the enzyme dipeptidyl peptidase IV (DPP IV) are of increasing interest to both diabetologists and the pharmaceutical industry alike, as they may become established as the next member of the oral antidiabetic class of therapeutic agents, designed to lower blood glucose and, possibly,...

  1. Incretin-based treatment of type 2 diabetes: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors

    DEFF Research Database (Denmark)

    Deacon, Carolyn F

    2007-01-01

    infusion results in glucose profiles similar to those in non-diabetic subjects. Incretins are rapidly degraded by dipeptidyl peptidase-4 (DPP-4). Thus, strategies to enhance incretin activity have included development of GLP-1 receptor agonists resistant to the action of DPP-4 (e.g. exenatide...

  2. A Nonhost Peptidase Inhibitor of ~14 kDa from Butea monosperma (Lam. Taub. Seeds Affects Negatively the Growth and Developmental Physiology of Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Prabhash K. Pandey

    2014-01-01

    Full Text Available Helicoverpa armigera is one of the major devastating pests of crop plants. In this context a serine peptidase inhibitor purified from the seeds of Butea monosperma was evaluated for its effect on developmental physiology of H. armigera larvae. B. monosperma peptidase inhibitor on 12% denaturing polyacrylamide gel electrophoresis exhibited a single protein band of ~14 kDa with or without reduction. In vitro studies towards total gut proteolytic enzymes of H. armigera and bovine trypsin indicated measurable inhibitory activity. B. monosperma peptidase inhibitor dose for 50% mortality and weight reduction by 50% were 0.5% w/w and 0.10% w/w, respectively. The IC50 of B. monosperma peptidase inhibitor against total H. armigera gut proteinases activity was 2.0 µg/mL. The larval feeding assays suggested B. monosperma peptidase inhibitor to be toxic as reflected by its retarded growth and development, consequently affecting fertility and fecundity of pest and prolonging the larval-pupal duration of the insect life cycle of H. armigera. Supplementing B. monosperma peptidase inhibitor in artificial diet at 0.1% w/w, both the efficiencies of conversion of ingested as well as digested food were downregulated, whereas approximate digestibility and metabolic cost were enhanced. The efficacy of Butea monosperma peptidase inhibitor against progressive growth and development of H. armigera suggest its usefulness in insect pest management of food crops.

  3. Role of peptidases of the intestinal microflora and prey in temperature adaptations of the digestive system in planktivorous and benthivorous fish.

    Science.gov (United States)

    Kuz'mina, V V; Skvortsova, E G; Shalygin, M V; Kovalenko, K E

    2015-12-01

    Many fish enzymatic systems possess limited adaptations to low temperature; however, little data are available to judge whether enzymes of fish prey and intestinal microbiota can mitigate this deficiency. In this study, the activity of serine peptidases (casein-lytic, mainly trypsin and hemoglobin-lytic, mainly chymotrypsin) of intestinal mucosa, chyme and intestinal microflora in four species of planktivorous (blue bream) and benthivorous (roach, crucian carp, perch) was investigated across a wide temperature range (0-70 °C) to identify adaptations to low temperature. At 0 °C, the relative activity of peptidases of intestinal mucosa (microflora (5-12.6%) is considerably less than that of chyme peptidases (up to 40% of maximal activity). The level of peptidase relative activity in crucian carp intestinal microflora was 45% of maximal activity. The shape of t°-function curves of chyme peptidase also differs in fish from different biotopes. Fish from the littoral group are characterized by a higher degree of adaptation of chyme casein-lytic peptidases to functioning at low temperatures as compared to fish from the pelagic group. The role of intestinal microbiota and prey peptidases in digestive system adaptations of planktivorous and benthivorous fish to low temperatures is discussed.

  4. The Vertical Distribution of Sediment Archaeal Community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu

    Science.gov (United States)

    Fan, Xianfang; Xing, Peng

    2016-01-01

    Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay. PMID:26884723

  5. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.

    Science.gov (United States)

    Evans, Paul N; Parks, Donovan H; Chadwick, Grayson L; Robbins, Steven J; Orphan, Victoria J; Golding, Suzanne D; Tyson, Gene W

    2015-10-23

    Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota. PMID:26494757

  6. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.

    Science.gov (United States)

    Evans, Paul N; Parks, Donovan H; Chadwick, Grayson L; Robbins, Steven J; Orphan, Victoria J; Golding, Suzanne D; Tyson, Gene W

    2015-10-23

    Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota.

  7. A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model.

    Science.gov (United States)

    Min, Wonki; Angileri, Francesca; Luo, Haibin; Lauria, Antonino; Shanmugasundaram, Maruda; Almerico, Anna Maria; Cappello, Francesco; de Macario, Everly Conway; Lednev, Igor K; Macario, Alberto J L; Robb, Frank T

    2014-10-27

    Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major advantage of the system, consisting of rings with eight identical subunits, is that it amplifies the effects of a mutation as compared with the human counterpart, in which just one subunit per ring is defective. Therefore, the slight deficit of a non-lethal mutation can be detected and characterized.

  8. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D;

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation...... the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that......, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA...

  9. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens

    Science.gov (United States)

    Burggraf, S.; Stetter, K. O.; Rouviere, P.; Woese, C. R.

    1991-01-01

    Analysis of its 16S rRNA sequence shows that the newly discovered hyperthermophilic methanogen, Methanopryus kandleri, is phylogenetically unrelated to any other known methanogen. The organism represents a separate lineage originating near the root of the archaeal tree. Although the 16S rRNA sequence of Mp. kandleri resembles euryarchaeal 16S rRNAs more than it does crenarchaeal, it shows more crenarchaeal signature features than any known euryarchaeal rRNA. Attempts to place it in relation to the root of the archaeal tree show that the Mp. kandleri lineage likely arises from the euryarchaeal branch of the tree. While the existence of so deeply branching a methanogenic lineage brings into question the thesis that methanogenesis evolved from an earlier metabolism similar to that seen in Thermococcus, it at the same time reinforces the notion that the aboriginal [correction of aborginal] archaeon was a thermophile.

  10. Expression, purification and crystallization of an archaeal-type phosphoenolpyruvate carboxylase

    International Nuclear Information System (INIS)

    The expression, purification, crystallization and preliminary diffraction analysis of an archaeal-type phosphoenolpyruvate carboxylase are described. Complete highly redundant X-ray data have been measured from a crystal diffracting to 3.13 Å resolution. An archaeal-type phosphoenolpyruvate carboxylase (PepcA) from Clostridium perfringens has been expressed in Escherichia coli in a soluble form with an amino-terminal His tag. The recombinant protein is enzymatically active and two crystal forms have been obtained. Complete diffraction data extending to 3.13 Å resolution have been measured from a crystal soaked in KAu(CN)2, using radiation at a wavelength just above the Au LIII edge. The asymmetric unit contains two tetramers of PepcA

  11. Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin)

    OpenAIRE

    Lengger, S. K.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.

    2014-01-01

    Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL-GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death, but it has been suggested that some of these IPL-GDGTs can, just ...

  12. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways

    OpenAIRE

    Gietl, Andreas; Holzmeister, Phil; Blombach, Fabian; Schulz, Sarah; von Voithenberg, Lena Voith; Lamb, Don C; Werner, Finn; Tinnefeld, Philip; Grohmann, Dina

    2014-01-01

    During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP–DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly differen...

  13. Events during Initiation of Archaeal Transcription: Open Complex Formation and DNA-Protein Interactions

    OpenAIRE

    Hausner, Winfried; Thomm, Michael

    2001-01-01

    Transcription in Archaea is initiated by association of a TATA box binding protein (TBP) with a TATA box. This interaction is stabilized by the binding of the transcription factor IIB (TFIIB) orthologue TFB. We show here that the RNA polymerase of the archaeon Methanococcus, in contrast to polymerase II, does not require hydrolysis of the β-γ bond of ATP for initiation of transcription and open complex formation on linearized DNA. Permanganate probing revealed that the archaeal open complex s...

  14. Activation of archaeal transcription mediated by recruitment of transcription factor B.

    Science.gov (United States)

    Ochs, Simon M; Thumann, Sybille; Richau, Renate; Weirauch, Matt T; Lowe, Todd M; Thomm, Michael; Hausner, Winfried

    2012-05-25

    Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested. PMID:22496454

  15. Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus▿

    OpenAIRE

    Micorescu, Michael; Grünberg, Sebastian; Franke, Andreas; Cramer, Patrick; Thomm, Michael; Bartlett, Michael

    2007-01-01

    The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription com...

  16. The σ enigma: Bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs

    OpenAIRE

    Burton, Samuel P; Burton, Zachary F.

    2014-01-01

    Structural comparisons of initiating RNA polymerase complexes and structure-based amino acid sequence alignments of general transcription initiation factors (eukaryotic TFIIB, archaeal TFB and bacterial σ factors) show that these proteins are homologs. TFIIB and TFB each have two-five-helix cyclin-like repeats (CLRs) that include a C-terminal helix-turn-helix (HTH) motif (CLR/HTH domains). Four homologous HTH motifs are present in bacterial σ factors that are relics of CLR/HTH domains. Sequen...

  17. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs▿

    OpenAIRE

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, Wenjun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L.

    2008-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, i...

  18. Stratified active archaeal communities in the sediments of Jiulong River Estuary, China

    Directory of Open Access Journals (Sweden)

    Qianqian eLi

    2012-08-01

    Full Text Available Here the composition of total and active archaeal communities in a sediment core of Jiulong River estuary at Fujian Province, Southern China was reported. Profiles of CH4 and SO42- concentrations from the sediment core indicated the existence of a sulfate-methane transition zone (SMTZ in which sulfate reduction-coupled anaerobic oxidation of methane occurs. Accordingly, three sediment layers (16-18.5 cm, 71-73.5 cm, 161-163.5 cm from the 1.2 m sediment core were sectioned and named top, middle and bottom, respectively. Total DNA and RNA of each layer were extracted and used for clone libraries and sequence analysis of 16S rRNA genes, the reverse transcription (RT-PCR products of 16S rRNA and methyl CoM reductase alpha subunit (mcrA genes. Phylogenetic analysis indicated that archaeal communities of the three layers were dominated by the Miscellaneous Crenarchaeotal Group (MCG whose ecological functions were still unknown. The MCG could be further divided into seven subgroups, named MCG-A, B, C, D, E, F and G. MCG-A and MCG-G were the most active groups in the estuarine sediments. Known anaerobic methanotrophic archaea (ANMEs were only found as minor components in these estuarine archaeal communities. This study, together with the studies of deep subsurface sediments, would be a very good start point to target and compare the specific active archaeal groups and their roles in the dark, deep subsurface sediment environments.

  19. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest

    OpenAIRE

    Rasche, Frank; Knapp, Daniela; Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Sessitsch, Angela

    2010-01-01

    It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees wer...

  20. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  1. Bacterial and archaeal phylogenetic diversity associated with swine sludge from an anaerobic treatment lagoon.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Pereira, Zelina L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2012-11-01

    Over the last decades, the demand for pork products has increased significantly, along with concern about suitable waste management. Anaerobic-lagoon fermentation for swine-sludge stabilization is a good strategy, although little is known about the microbial communities in the lagoons. Here, we employed a cloning- and sequencing-based analysis of the 16S rRNA gene to characterize and quantify the prokaryotic community composition in a swine-waste-sludge anaerobic lagoon (SAL). DNA sequence analysis revealed that the SAL library harbored 15 bacterial phyla: Bacteroidetes, Cloroflexi, Proteobacteria, Firmicutes, Deinococcus-Thermus, Synergystetes, Gemmatimonadetes, Chlorobi, Fibrobacteres, Verrucomicrobia and candidates division OP5, OP8, WWE1, KSB1, WS6. The SAL library was generally dominated by carbohydrate-oxidizing bacteria. The archaeal sequences were related to the Crenarchaeota and Euryarchaeota phyla. Crenarchaeota predominated in the library, demonstrating that it is not restricted to high-temperature environments, being also responsible for ammonium oxidation in the anaerobic lagoon. Euryarchaeota sequences were associated with the hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales). Quantitative PCR analysis revealed that the number of bacterial cells was at least three orders of magnitude higher than the number of archaeal cells in the SAL. The identified prokaryotic diversity was ecologically significant, particularly the archaeal community of hydrogenotrophic methanogens, which was responsible for methane production in the anaerobic lagoon. This study provided insight into the archaeal involvement in the overall oxidation of organic matter and the production of methane. Therefore, the treatment of swine waste in the sludge anaerobic lagoon could represent a potential inoculum for the start-up of municipal solid-waste digesters. PMID:22828793

  2. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea

    OpenAIRE

    Berg, Carlo; Vandieken, Verona; Thamdrup, Bo; Jürgens, Klaus

    2014-01-01

    Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present wo...

  3. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards* #

    OpenAIRE

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-01-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profili...

  4. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea

    OpenAIRE

    Hugoni, Mylène; Agogué, Hélène; Taib, Najwa; Domaizon, Isabelle; Moné, Anne; Pierre E Galand; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2015-01-01

    International audience To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacte...

  5. Abundance and Composition of Epiphytic Bacterial and Archaeal Ammonia Oxidizers of Marine Red and Brown Macroalgae

    OpenAIRE

    Trias, R. (Rosalía); García-Lledó A. (Arantzazu); Sánchez, N.; López-Jurado, J. L.; Hallin, S. (Sara); Bañeras, Ll. (Lluís)

    2012-01-01

    Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae’s potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities o...

  6. Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs▿

    OpenAIRE

    Zhang, Chuanlun L.; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P.; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S.; Shock, Everett L.; Hedlund, Brian P.

    2008-01-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) ...

  7. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.

  8. Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity.

    Science.gov (United States)

    Tschantz, W R; Paetzel, M; Cao, G; Suciu, D; Inouye, M; Dalbey, R E

    1995-03-28

    Leader peptidase is a novel serine protease in Escherichia coli, which functions to cleave leader sequences from exported proteins. Its catalytic domain extends into the periplasmic space and is anchored to the membrane by two transmembrane segments located at the N-terminal end of the protein. At present, there is no information on the structure of the catalytic domain. Here, we report on the properties of a soluble form of leader peptidase (delta 2-75), and we compare its properties to those of the wild-type enzyme. We find that the truncated leader peptidase has a kcat of 3.0 S-1 and a Km of 32 microM with a pro-OmpA nuclease A substrate. In contrast to the wild-type enzyme (pI of 6.8), delta 2-75 is water-soluble and has an acidic isoelectric point of 5.6. We also show with delta 2-75 that the replacement of serine 90 and lysine 145 with alanine residues results in a 500-fold reduction in activity, providing further evidence that leader peptidase employs a catalytic serine/lysine dyad. Finally, we find that the catalysis of delta 2-75 is accelerated by the presence of the detergent Triton X-100, regardless if the substrate is pro-OmpA nuclease A or a peptide substrate. Triton X-100 is required for optimal activity of delta 2-75 at a level far below the critical micelle concentration. Moreover, we find that E. coli phospholipids stimulate the activity of delta 2-75, suggesting that phospholipids may play an important physiological role in the catalytic mechanism of leader peptidase. PMID:7696258

  9. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  10. S28 peptidases: lessons from a seemingly 'dysfunctional' family of two

    Directory of Open Access Journals (Sweden)

    Kozarich John W

    2010-06-01

    Full Text Available Abstract A recent paper in BMC Structural Biology reports the crystal structure of human prolylcarboxypeptidase (PRCP, one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7, helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine. See research article: http://www.biomedcentral.com/1472-6807/10/16/ Commentary The S28 serine peptidase family is something of an enzymatic odd couple. While showing low sequence similarity to all proteins except each other, the two known family members appear to be at odds functionally; one, prolylcarboxypeptidase (PRCP, is a carboxypeptidase that cleaves single hydrophobic residues from the carboxyl termini of proteins that end with a Pro-X motif (where X is any hydrophobic amino acid, while the other, human dipeptidyl peptidase (DPP7, is an aminopeptidase that cleaves amino-terminal X-Pro dipeptides. The structural basis of this orthogonal specificity would undoubtedly be interesting, and a recent report in BMC Structural Biology from the Merck Global Structural Biology group (Soisson et al. 1 has now met that expectation. In addition they reveal a new wrinkle to the iconic catalytic triad common to most serine hydrolases. The practical pharmaceutical interest in both these enzymes as potential drug targets is at present speculative. PRCP can inactivate a number of peptide hormones, such as angiotensin II, III and prekallikrein, implicating a role for the enzyme in hypertension, tissue proliferation and smooth-muscle growth. These properties suggest that this enzyme may well be a useful target for hypertension and anti-inflammatory therapy 2. Another (non-S28 family dipeptidyl dipeptidase (DPP4 is a major drug target in type 2 diabetes, and Merck has already

  11. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes.

    Science.gov (United States)

    Saw, Jimmy H; Spang, Anja; Zaremba-Niedzwiedzka, Katarzyna; Juzokaite, Lina; Dodsworth, Jeremy A; Murugapiran, Senthil K; Colman, Dan R; Takacs-Vesbach, Cristina; Hedlund, Brian P; Guy, Lionel; Ettema, Thijs J G

    2015-09-26

    The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal 'dark matter', is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell. PMID:26323759

  12. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.

  13. Archaeal community structures in the solfataric acidic hot springs with different temperatures and elemental compositions.

    Science.gov (United States)

    Satoh, Tomoko; Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi; Kurosawa, Norio

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L(-1), (2) Pond-B: 66°C and 2248 mg L(-1), (3) Pond-C: 88°C and 198 mg L(-1), and (4) Pond-D: 67°C and 340 mg L(-1). In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations.

  14. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm.

    Science.gov (United States)

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.

  15. Assessment of bacterial and archaeal community structure in Swine wastewater treatment processes.

    Science.gov (United States)

    Da Silva, Marcio Luis Busi; Cantão, Mauricio Egídio; Mezzari, Melissa Paola; Ma, Jie; Nossa, Carlos Wolfgang

    2015-07-01

    Microbial communities from two field-scale swine wastewater treatment plants (WWTPs) were assessed by pyrosequencing analyses of bacterial and archaeal 16S ribosomal DNA (rDNA) fragments. Effluent samples from secondary (anaerobic covered lagoons and upflow anaerobic sludge blanket [UASB]) and tertiary treatment systems (open-pond natural attenuation lagoon and air-sparged nitrification-denitrification tank followed by alkaline phosphorus precipitation process) were analyzed. A total of 56,807 and 48,859 high-quality reads were obtained from bacterial and archaeal libraries, respectively. Dominant bacterial communities were associated with the phylum Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. Bacteria and archaea diversity were highest in UASB effluent sample. Escherichia, Lactobacillus, Bacteroides, and/or Prevotella were used as indicators of putative pathogen reduction throughout the WWTPs. Satisfactory pathogen reduction was observed after the open-pond natural attenuation lagoon but not after the air-sparged nitrification/denitrification followed by alkaline phosphorus precipitation treatment processes. Among the archaeal communities, 80% of the reads was related to hydrogeno-trophic methanogens Methanospirillum. Enrichment of hydrogenotrophic methanogens detected in effluent samples from the anaerobic covered lagoons and UASB suggested that CO2 reduction with H2 was the dominant methanogenic pathway in these systems. Overall, the results served to improve our current understanding of major microbial communities' changes downgradient from the pen and throughout swine WWTP as a result of different treatment processes. PMID:25432577

  16. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    Science.gov (United States)

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640

  17. Temporal Dynamics of Active Prokaryotic Nitrifiers and Archaeal Communities from River to Sea.

    Science.gov (United States)

    Hugoni, Mylène; Agogué, Hélène; Taib, Najwa; Domaizon, Isabelle; Moné, Anne; Galand, Pierre E; Bronner, Gisèle; Debroas, Didier; Mary, Isabelle

    2015-08-01

    To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies. PMID:25851445

  18. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    Directory of Open Access Journals (Sweden)

    Daiva Domenech Tupinambá

    2016-01-01

    Full Text Available This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7% were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area. More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.

  19. Comparative study to predict dipeptidyl peptidase IV inhibitory activity of β-amino amide scaffold

    Directory of Open Access Journals (Sweden)

    S Patil

    2015-01-01

    Full Text Available Comparative study was performed on 34 β-amino amide derivatives as dipeptidyl peptidase IV inhibitors in order to determine their structural requirement to enhance the antidiabetic activities. Hologram quantitative structure activity relationships models utilized specialized fragment fingerprints (hologram length 353 which showed good predictivity with cross-validated q 2 and conventional r 2 values of 0.971 and 0.971, respectively. Models were validated and optimized by a test set of eight compounds and gave satisfactory predictive ability. Hologram quantitative structure activity relationships maps were helpful in prediction of the structural features of the ligands to account for the activity in terms of positively and negatively contributing towards activity. The information obtained from maps could be effectively use as a guiding tool for further structure modifications and synthesis of new potent antidiabetic agents.

  20. Dipeptidyl Peptidase-4 Regulation of SDF-1/CXCR4 Axis: Implications for Cardiovascular Disease.

    Science.gov (United States)

    Zhong, Jixin; Rajagopalan, Sanjay

    2015-01-01

    Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed protease that regulates diverse number of physiological functions. As a dipeptidase, it exerts its catalytic effects on proteins/peptides with proline, alanine, or serine in the penultimate (P1) amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is perhaps an increasingly recognized target, given its importance in processes, such as hematopoiesis, angiogenesis, and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease. PMID:26441982

  1. Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells

    DEFF Research Database (Denmark)

    Poulsen, Mona Dam; Hansen, Gert Helge; Dabelsteen, Erik;

    1993-01-01

    labeling using a monoclonal glucagon antibody as the second primary antibody. These results show that DP IV is sorted to secretory granules in the pig pancreatic islet A-cells. Furthermore, this secretory granule enzyme, as opposed to intestinal brush border DP IV, is suggested to be a soluble protein......Dipeptidyl peptidase IV (DP IV:EC 3.4.14.5) was localized in endocrine cells of pig pancreas by immunohistochemical and enzyme histochemical methods. Immunolight microscopy with both monoclonal and polyclonal antibodies demonstrated DP IV immunoreactivity in cells located in the peripheral part...... of the islets of Langerhans. The antigen is enzymatically active, as shown by enzyme histochemical analysis with a synthetic DP IV substrate. By immunoelectron microscopy (immunogold labeling), the labeling of DP IV in the islets was associated with the secretory granules of the A-cells, as identified by double...

  2. Three ileus cases associated with the use of dipeptidyl peptidase-4 inhibitors in diabetic patients.

    Science.gov (United States)

    Kanasaki, Keizo; Konishi, Kazunori; Hayashi, Ranji; Shiroeda, Hisakazu; Nomura, Tomoe; Nakagawa, Atsushi; Nagai, Takako; Takeda-Watanabe, Ai; Ito, Hiroki; Tsuda, Shin-Ichi; Kitada, Munehiro; Fujii, Mizue; Kanasaki, Megumi; Nishizawa, Makoto; Nakano, Yasuharu; Tomita, Yasuto; Ueda, Nobuhiko; Kosaka, Takeo; Koya, Daisuke

    2013-11-27

    Dipeptidyl peptidase (DPP)-4 inhibitors are a new class of antidiabetic drugs that increase incretin hormone levels to enhance blood sugar level-dependent insulinotropic effects, suppress glucagon action, and reduce bowel motility. These incretin effects are ideal for blood sugar control. However, the safety profile of DPP-4 inhibitors is not yet established. Herein, we present three cases of ileus, considered to be closely related to the use of DPP-4 inhibitors, in diabetic patients. Each of the three patients exhibited some risk of a deficiency in bowel movement; the onset of ileus was within 40 days after strengthened inhibition of DPP-4. The use of a DPP-4 inhibitor could be safe, although the cases presented herein enable us to inform the scientific community to some of the potential adverse effects of the use of DPP-4 inhibitors in select populations. PMID:24843724

  3. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Holst, Jens Juul

    2013-01-01

    INTRODUCTION: Dipeptidyl peptidase (DPP)-4 inhibitors belong to one class of drugs that have been approved for treatment of type 2 diabetes (T2D) based on the glucose-lowering actions of the gastrointestinal hormone glucagon-like peptide (GLP)-1. Several different compounds are now available...... of the different DPP-4 inhibitors, all are small orally active compounds with broadly similar HbA1c-lowering efficacy. They improve glycaemic control in T2D, without increasing the risk of hypoglycaemia or causing weight gain. They can be used as monotherapy or in combination with other anti-diabetic therapies...... covered includes original studies and meta-analyses identified in PubMed, recent abstracts presented at major diabetes scientific conferences, and clinical trials registered at ClinicalTrials.gov. EXPERT OPINION: Although there are some differences in the pharmacokinetic and pharmacodynamic profiles...

  4. Brush border peptidases and arylamidases in the experimental blind loop syndrome of the rat.

    Science.gov (United States)

    Mazzacca, G; Musella, S; Andria, G; D'Agostino, L; Cimino, L; Budillon, G

    1977-10-01

    Peptidase and arylamidase activities were assessed in purified brush borders from jejunum of rats with surgically created blind loops. The blind loop segment and the jejunum proximal and distal to the blind loop were studied. Comparable jejunal segments from control rats were also studied. The blind loop syndrome was documented by presence of macrocytic anemia. Enzyme activities were determined on purified brush borders. In rats with the blind loop syndromes enzymatic activities hydrolizing sucrose, L-Leucyl-beta-naphthylamide, L-lysyl-beta-naphthylamide, alpha-L-glutamyl-beta-naphthylamide, L-phenylalanyl-alanine and L-leucyl-glycine were significantly reduced as compared to controls (P less than 0.001). After a short course of antibiotic therapy enzymatic activities returned to normal. Our findings suggest a reversible intestinal mucosa damage in the rat with blind loop syndrome.

  5. Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.

  6. Increased expression of keratinase and other peptidases by Candida parapsilosis mutants

    Directory of Open Access Journals (Sweden)

    T.R. Duarte

    2011-03-01

    Full Text Available Keratinases are enzymes of great importance involved in pathogenic processes of some fungi. They also have a widespread ecological role since they are responsible for the degradation and recycling of keratin. On the one hand, studying them furthers our knowledge of pathogenicity mechanisms, which has important implications for human health, and on the other hand, understanding their ecological role in keratin recycling has biotechnological potential. Here, a wild-type keratinolytic Candida parapsilosis strain isolated from a poultry farm was treated with ethyl methanesulfonate in order to generate mutants with increased keratinase activity. Mutants were then cultured on media with keratin extracted from chicken feathers as the sole source of nitrogen and carbon. Approximately 500 mutants were screened and compared with the described keratinolytic wild type. Three strains, H36, I7 and J5, showed enhanced keratinase activity. The wild-type strain produced 80 U/mL of keratinolytic activity, strain H36 produced 110 U/mL, strain I7, 130 U/mL, and strain J5, 140 U/mL. A 70% increase in enzyme activity was recorded for strain J5. Enzymatic activity was evaluated by zymograms with proteic substrates. A peptidase migrating at 100 kDa was detected with keratin, bovine serum albumin and casein. In addition, a peptidase with a molecular mass of 50 kDa was observed with casein in the wild-type strain and in mutants H36 and J5. Gelatinase activity was detected at 60 kDa. A single band of 35 kDa was found in wild-type C. parapsilosis and in mutants with hemoglobin substrate.

  7. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Chishti, Athar H., E-mail: athar.chishti@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Sackler School of Graduate Biomedical Sciences, Programs in Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  8. Dipeptidyl-peptidase IV activity is correlated with colorectal cancer prognosis.

    Directory of Open Access Journals (Sweden)

    Gorka Larrinaga

    Full Text Available Dipeptidyl-peptidase IV (EC 3.4.14.5 (DPPIV is a serine peptidase involved in cell differentiation, adhesion, immune modulation and apoptosis, functions that control neoplastic transformation. Previous studies have demonstrated altered expression and activity of tissue and circulating DPPIV in several cancers and proposed its potential usefulness for early diagnosis in colorectal cancer (CRC.The activity and mRNA and protein expression of DPPIV was prospectively analyzed in adenocarcinomas, adenomas, uninvolved colorectal mucosa and plasma from 116 CRC patients by fluorimetric, quantitative RT-PCR and immunohistochemical methods. Results were correlated with the most important classic pathological data related to aggressiveness and with 5-year survival rates. Results showed that: 1 mRNA levels and activity of DPPIV increased in colorectal neoplasms (Kruskal-Wallis test, p<0.01; 2 Both adenomas and CRCs displayed positive cytoplasmic immunostaining with luminal membrane reinforcement; 3 Plasmatic DPPIV activity was lower in CRC patients than in healthy subjects (Mann-U test, p<0.01; 4 Plasmatic DPPIV activity was associated with worse overall and disease-free survivals (log-rank p<0.01, Cox analysis p<0.01.1 Up-regulation of DPPIV in colorectal tumors suggests a role for this enzyme in the neoplastic transformation of colorectal tissues. This finding opens the possibility for new therapeutic targets in these patients. 2 Plasmatic DPPIV is an independent prognostic factor in survival of CRC patients. The determination of DPPIV activity levels in the plasma may be a safe, minimally invasive and inexpensive way to define the aggressiveness of CRC in daily practice.

  9. Functional analysis of archaeal MBF1 by complementation studies in yeast

    Directory of Open Access Journals (Sweden)

    Siebers Bettina

    2011-03-01

    Full Text Available Abstract Background Multiprotein-bridging factor 1 (MBF1 is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP like proteins (e.g. Gcn4 in yeast or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect and the TATA-box binding protein (TBP in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1 and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ. Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus

  10. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases

    Directory of Open Access Journals (Sweden)

    Mareš Michael

    2008-03-01

    Full Text Available Abstract Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain, and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases.

  11. Spatiotemporal dynamics of bacterial and archaeal communities in household biogas digesters from tropical and subtropical regions of Yunnan Province, China.

    Science.gov (United States)

    Tian, Guangliang; Li, Qiumin; Dong, Minghua; Wu, Yan; Yang, Bin; Zhang, Lijuan; Li, Yingjuan; Yin, Fang; Zhao, Xingling; Wang, Yongxia; Xiao, Wei; Cui, Xiaolong; Zhang, Wudi

    2016-06-01

    A combination of 16S rRNA gene PCR-based techniques and the determination of abiotic factors were used to study community composition, richness, and evenness and the correlation between biotic and abiotic factors in 19 household biogas digesters in tropical and subtropical regions of Yunnan Province, China. The results revealed that both bacterial and archaeal community composition differed between regions and archaeal community composition was more affected by season than bacterial; regardless of sampling location, the dominant bacterial phyla included Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, and the most dominant archaeal phylum was Euryarchaeota; in digesters from both regions, Chloroflexi as the first or second most dominant bacteria accounted for 21.50-26.10 % of bacterial library sequences, and the phylum Crenarchaeota as the second most dominant archaea accounted for 17.65-19.77 % of archaeal library sequences; the species Methanosaeta concilii as the most dominant archaeal species accounted for 67.80-72.80 % of the sequences. This study found that most of the abundant microbial communities in 19 biogas digesters are similar, and this result will provide enlightenment for finding the universal nature in rural biogas digesters at tropical and subtropical regions in China. PMID:26916266

  12. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge.

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-01-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  13. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  14. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    Science.gov (United States)

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. PMID:22660713

  15. Dipeptidyl peptidase Ⅳ(DPP Ⅳ): a novel emerging target for the treatment of type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Jing Wu; Yiding Chen; Xiaoli Shi; Wei Gu

    2009-01-01

    The enzyme, dipeptidyl peptidase Ⅳ(DPP Ⅳ), is a novel target for the treatment of type 2 diabetes. Dipeptidyl peptidase Ⅳ inhibition improves the impaired insulin secretion and decrease postprandial concentrations of glucagon by enhancing the incretin hormone levels lucagon-like peptide-1(GLP-1) and glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide(GIP). Recently, DPP Ⅳ inhibitors have attracted more and more attention, several of which have entered pre-clinical and clinical trials, and one has received approval for use as an anti-diabetic agent. Among the DPP Ⅳ inhibitors, two leading agents(sitagliptin and vildagliptin) have been shown to be effective in reducing glycosylated hemoglobin(HbAlc) and fasting plasma glucose(FPG) in patients with type 2 diabetes. This review summarizes the evidence supporting DPP Ⅳ inhibitors as potential antidiabetic agents.

  16. System for Expression of Microsporidian Methionine Amino Peptidase Type 2 (MetAP2) in the Yeast Saccharomyces cerevisiae▿

    OpenAIRE

    Upadhya, Rajendra; Zhang, Hong Shan; Weiss, Louis M.

    2006-01-01

    Microsporidia are parasitic protists of all classes of vertebrates and most invertebrates. They recently emerged as important infections in various immunosuppressed and immunocompetent patient populations. They are also important veterinary and agricultural pathogens. Current therapies for microsporidiosis include benzimidazoles, which bind tubulin-inhibiting microtubule assembly, and fumagillin and its derivatives, which bind and inhibit methionine amino peptidase type 2 (MetAP2). Benzimidaz...

  17. Residual levels of tripeptidyl-peptidase I activity dramatically ameliorate disease in late infantile neuronal ceroid lipofuscinosis

    OpenAIRE

    Sleat, David E.; El-Banna, Mukarram; Sohar, Istvan; Kim, Kwi-Hye; Dobrenis, Kostantin; Walkley, Steven U.; Lobel, Peter

    2008-01-01

    Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a hereditary neurodegenerative disease of childhood that is caused by mutations in the gene (CLN2) encoding the lysosomal protease tripeptidyl-peptidase I (TPPI). LINCL is fatal and there is no treatment of demonstrated efficacy in affected children but preclinical studies with AAV-mediated gene therapy have demonstrated promise in a mouse model. Here, we have generated mouse CLN2 mutants that express different amounts of TPPI...

  18. Prohibitins Interact Genetically with Atp23, a Novel Processing Peptidase and Chaperone for the F1FO-ATP Synthase

    OpenAIRE

    Osman, Christof; Wilmes, Claudia; Tatsuta, Takashi; Langer, Thomas

    2007-01-01

    The generation of cellular energy depends on the coordinated assembly of nuclear and mitochondrial-encoded proteins into multisubunit respiratory chain complexes in the inner membrane of mitochondria. Here, we describe the identification of a conserved metallopeptidase present in the intermembrane space, termed Atp23, which exerts dual activities during the biogenesis of the F1FO-ATP synthase. On one hand, Atp23 serves as a processing peptidase and mediates the maturation of the mitochondrial...

  19. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs▿

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L.

    2008-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87°C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  20. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

    Science.gov (United States)

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L

    2008-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  1. Bacterial and Archaeal Diversity in the Gastrointestinal Tract of the North American Beaver (Castor canadensis)

    Science.gov (United States)

    Gruninger, Robert J.; McAllister, Tim A.; Forster, Robert J.

    2016-01-01

    The North American Beaver (Castor canadensis) is the second largest living rodent and an iconic symbol of Canada. The beaver is a semi-aquatic browser whose diet consists of lignocellulose from a variety of plants. The beaver is a hindgut fermenter and has an enlarged ceacum that houses a complex microbiome. There have been few studies examining the microbial diversity in gastrointestinal tract of hindgut fermenting herbivores. To examine the bacterial and archaeal communities inhabiting the gastrointestinal tract of the beaver, the microbiome of the ceacum and feaces was examined using culture-independent methods. DNA from the microbial community of the ceacum and feaces of 4 adult beavers was extracted, and the16S rRNA gene was sequenced using either bacterial or archaeal specific primers. A total of 1447 and 1435 unique bacterial OTUs were sequenced from the ceacum and feaces, respectively. On average, the majority of OTUs within the ceacum were classified as Bacteroidetes (49.2%) and Firmicutes (47.6%). The feaces was also dominated by OTUs from Bacteroidetes (36.8%) and Firmicutes (58.9%). The composition of bacterial community was not significantly different among animals. The composition of the ceacal and feacal microbiome differed, but this difference is due to changes in the abundance of closely related OTUs, not because of major differences in the taxonomic composition of the communities. Within these communities, known degraders of lignocellulose were identified. In contrast, to the bacterial microbiome, the archaeal community was dominated by a single species of methanogen, Methanosphaera stadtmanae. The data presented here provide the first insight into the microbial community within the hindgut of the beaver. PMID:27227334

  2. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees

    Directory of Open Access Journals (Sweden)

    Henry eMueller

    2015-03-01

    Full Text Available Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in Eastern and Western areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant-microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated.

  3. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  4. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage

    Directory of Open Access Journals (Sweden)

    Björn eBreidenbach

    2015-01-01

    Full Text Available We studied the resident (16S rDNA and the active (16S rRNA members of soil archaeal and bacterial communities during rice plant development by sampling three growth stages (vegetative, reproductive and maturity under field conditions. Additionally, the microbial community was investigated in two non-flooded fields (unplanted, cultivated with upland maize in order to monitor the reaction of the microbial communities to non-flooded, dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies throughout the growth season. Community profiling by T-RFLP indicated a relatively stable composition during rice plant growth whereas pyrosequencing revealed minor changes in relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with flooded rice fields showed that the community composition of the Bacteria was slightly different, while that of the Archaea was almost the same. Only the relative abundance of Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded versus flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in flooded rice fields, followed by non-flooded maize and unplanted fields. However, the abundance of ribosomal RNA (active microbes was similar indicating maintenance of a high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as preparedness for activity when conditions improve. In summary, the analyses showed that the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively stable over the season but reacted upon change in field management.

  5. Response of Archaeal and Bacterial Soil Communities to Changes Associated with Outdoor Cattle Overwintering.

    Directory of Open Access Journals (Sweden)

    Alica Chroňáková

    Full Text Available Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI and long-term impact (17 years; LTI, one is regenerating from cattle impact (REG and a control is unaffected by cattle (CON. Cattle manure (CMN, the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.

  6. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring.

    OpenAIRE

    Hongming WANG; Yu, Yongxin; Liu, Taigang; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Two genomic fragments (5,662 and 1,269 nt in size, GenBank accession no. JQ756122 and JQ756123, respectively) of novel, positive-strand RNA viruses that infect archaea were first discovered in an acidic hot spring in Yellowstone National Park (Bolduc et al., 2012). To investigate the diversity of these newly identified putative archaeal RNA viruses, global metagenomic datasets were searched for sequences that were significantly similar to those of the viruses. A total of 3,757 associated read...

  7. Effect of Tree Species and Mycorrhizal Colonization on the Archaeal Population of Boreal Forest Rhizospheres▿

    OpenAIRE

    Bomberg, Malin; Timonen, Sari

    2008-01-01

    Group 1.1c Crenarchaeota are the predominating archaeal group in acidic boreal forest soils. In this study, we show that the detection frequency of 1.1c crenarchaeotal 16S rRNA genes in the rhizospheres of the boreal forest trees increased following colonization by the ectomycorrhizal fungus Paxillus involutus. This effect was very clear in the fine roots of Pinus sylvestris, Picea abies, and Betula pendula, the most common forest trees in Finland. The nonmycorrhizal fine roots had a clearly ...

  8. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    OpenAIRE

    Thiago Rodrigues; Elisa Catão; Mercedes M. C. Bustamante; Quirino, Betania F.; Kruger, Ricardo H; Kyaw, Cynthia M

    2014-01-01

    The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked ...

  9. Altered cardiac bradykinin metabolism in experimental diabetes caused by the variations of angiotensin-converting enzyme and other peptidases.

    Science.gov (United States)

    Adam, Albert; Leclair, Patrick; Montpas, Nicolas; Koumbadinga, Gérémy Abdull; Bachelard, Hélène; Marceau, François

    2010-04-01

    The peptidases angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP) mediate most of the kinin catabolism in normal cardiac tissue and are the molecular targets of inhibitory drugs that favorably influence diabetic complications. We studied the variations of those kininases in the myocardium of rats in experimental diabetes. ACE and NEP activities were significantly decreased in heart membranes 4-8weeks post-streptozotocin (STZ) injection. However, insulin-dependent diabetes did not modify significantly bradykinin (BK) half-life (t(1/2)) while the effect of both ACE (enalaprilat) and ACE and NEP (omapatrilat) inhibitors on BK degradation progressively decreased, which may be explained by the upregulation of other unidentified metallopeptidase(s). In vivo insulin treatment restored the activities of both ACE and NEP. ACE and NEP activities were significantly higher in hearts of young Zucker rats than in those of Sprague-Dawley rats. BK t(1/2) and the effects of peptidase inhibitors on t(1/2) varied accordingly. It is concluded that kininase activities are subjected to large and opposite variations in rat cardiac tissue in type I and II diabetes models. A number of tissue or molecular factors may determine these variations, such as remodeling of cardiac tissue, ectoenzyme shedding to the extracellular fluid and the pathologic regulation of peptidase gene expression.

  10. Novel N-substituted aminobenzamide scaffold derivatives targeting the dipeptidyl peptidase-IV enzyme

    Directory of Open Access Journals (Sweden)

    Al-Balas QA

    2014-01-01

    Full Text Available Qosay A Al-Balas,1 Munia F Sowaileh,1 Mohammad A Hassan,1 Amjad M Qandil,1,2 Karem H Alzoubi,3 Nizar M Mhaidat,3 Ammar M Almaaytah,4 Omar F Khabour51Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 2Pharmaceutical Sciences Department, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; 3Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 4Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 5Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, JordanBackground: The dipeptidyl peptidase-IV (DPP-IV enzyme is considered a pivotal target for controlling normal blood sugar levels in the body. Incretins secreted in response to ingestion of meals enhance insulin release to the blood, and DPP-IV inactivates these incretins within a short period and stops their action. Inhibition of this enzyme escalates the action of incretins and induces more insulin to achieve better glucose control in diabetic patients. Thus, inhibition of this enzyme will lead to better control of blood sugar levels.Methods: In this study, computer-aided drug design was used to help establish a novel N-substituted aminobenzamide scaffold as a potential inhibitor of DPP-IV. CDOCKER software available from Discovery Studio 3.5 was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the DPP-IV enzyme. The designed compounds were synthesized and tested against a DPP-IV enzyme kit provided by Enzo Life Sciences. The synthesized compounds were characterized using proton and carbon nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and determination of melting point.Results: Sixty

  11. In vivo inhibition of dipeptidyl peptidase IV activity by pro-pro-diphenyl-phosphonate (Prodipine).

    Science.gov (United States)

    De Meester, I; Belyaev, A; Lambeir, A M; De Meyer, G R; Van Osselaer, N; Haemers, A; Scharpé, S

    1997-07-01

    Dipeptidyl peptidase IV (DPP IV, EC 3.4.14.5), also known as CD26, is a membrane-bound serine protease that cleaves off aminoterminal dipeptides from peptides with a penultimate proline (or, at a much slower rate, a penultimate alanine). Recently, we synthesized and characterized a number of dipeptide-derived diphenylphosphonates. Out of the resulting series of slow-binding irreversible inhibitors of DPP IV, diphenyl 1-(S)-prolylpyrrolidine-2(R,S)-phosphonate hydrochloride (Pro-Pro-diphenylphosphonate or Prodipine) was selected for further study. We investigated the in vivo applicability of Prodipine. Male rabbits weighing 3-4 kg received a single intravenous injection with 10 mg Prodipine or saline. After 1 hr, plasma DPP IV activity had decreased to less than 20% of the preinjection value and remained unchanged during a 24-hr observation period. In a next step, we aimed to study (i) the dose dependency and (ii) the duration of the effect after a single intravenous dose of Prodipine. A profound and long-lasting inhibition of plasma DPP IV activity was observed in the treated animals (1, 5 or 10 mg). It took 5 to 8 days to reach half of the pretreatment DPP IV activity and generally more than 20 days for a complete recovery. Systemic treatment with Prodipine not only led to inhibition of plasma DPP IV activity but also decreased tissue DPP IV activity in circulating mononuclear cells, kidney cortex, thymus, spleen, lung, and liver. No differences in activities of the related peptidases aminopeptidase P (APP, EC 3.4.11.9), prolyl oligopeptidase (PO, EC 3.4.21.26), or aminopeptidase M (mAAP, EC 3.4.11.2) were detected between Prodipine-treated and control rabbits. The in vivo applicability of this chemically stable, irreversible inhibitor of DPP IV opens new possibilities, not only to further unravel the biological functions of this intriguing ectopeptidase, but also to explore this enzyme as a new target in various fields of pharmacological research.

  12. Changes in archaeal abundance and community structure along a salinity gradient in the lower Pearl River and its estuary

    Science.gov (United States)

    Zhang, C.; Wang, J.; Xie, W.; Wang, P.; Wei, Y.; Chen, S.; Zhou, X.

    2013-12-01

    Archaea occur in a wide range of habitats and across broad environmental gradients. At the global scale, salinity is known to be a major driving force for archaeal species diversity. The goal of this study was to examine changes in abundance and diversity of archaeal community DNA and membrane lipids in the water column along a salinity gradient in the lower Pearl River and estuary in the context of water/gas chemistry (pH, nitrate/nitrite, ammonia, methane, carbon dioxide). The pH increased and nitrate/nitrite and ammonia decreased from the lower Pearl River to the estuary. Methane and carbon dioxide fluxes were high in the lower Pearl River and decreased sharply in the estuary and toward the open ocean. The archaeal lipid profile exhibited abrupt changes from dominance of GDGT-0 (a glycerol diakly glycerol tetraether with zero cyclopentyl ring, which is commonly present in methanogens) to dominance of crenarchaeol (a specific biomarker for Thaumarchaeota) with increasing salinity from zero in the lower Pearl River to >0.5% in the estuary. Quantification of the 16S rRNA gene abundance using qPCR revealed a switch from bacteria-dominance to archaea-dominance and the ratio of archaeal nirK/bacterial-amoA genes had a peak value in the estuary, suggesting enhanced activity of ammonia oxidation by archaea. Pyrosequencing of archaeal 16S rRNA, amoA and nirK genes exhibited systematic variation defined by habitat types. Our current studies employ rate measurements of carbon fixation, ammonia oxidation, and nitrate reduction using isotope labeling approaches, which will allow us to link changes in archaeal community structure and ecological function.

  13. Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1.

    Science.gov (United States)

    Fuhrman-Luck, Ruth A; Stansfield, Scott H; Stephens, Carson R; Loessner, Daniela; Clements, Judith A

    2016-08-01

    Prostate cancer metastasis to bone is terminal; thus, novel therapies are required to prevent end-stage disease. Kallikrein-related peptidase 4 (KLK4) is a serine protease that is overproduced in localized prostate cancer and is abundant in prostate cancer bone metastases. In vitro, KLK4 induces tumor-promoting phenotypes; however, the underlying proteolytic mechanism is undefined. The protein topography and migration analysis platform (PROTOMAP) was used for high-depth identification of KLK4 substrates secreted by prostate cancer bone metastasis-derived PC-3 cells to delineate the mechanism of KLK4 action in advanced prostate cancer. Thirty-six putative novel substrates were determined from the PROTOMAP analysis. In addition, KLK4 cleaved the established substrate, urokinase-type plasminogen activator, thus validating the approach. KLK4 activated matrix metalloproteinase-1 (MMP1), a protease that promotes prostate tumor growth and metastasis. MMP1 was produced in the tumor compartment of prostate cancer bone metastases, highlighting its accessibility to KLK4 at this site. KLK4 further liberated an N-terminal product, with purported angiogenic activity, from thrombospondin-1 (TSP1) and cleaved TSP1 in an osteoblast-derived matrix. This is the most comprehensive analysis of the proteolytic action of KLK4 in an advanced prostate cancer model to date, highlighting KLK4 as a potential multifunctional regulator of prostate cancer progression. PMID:27378148

  14. Crystal Structures of Human Dipeptidyl Peptidase Ⅳ in its Apo and Diprotin B-complexed Forms

    Institute of Scientific and Technical Information of China (English)

    Hajime HIRAMATSU; Kiyoshi KYONO; Atsushi YAMAMOTO; Kazuhiko SAEKI; Hideaki SHIMA; Shigeru SUGIYAMA; Koji INAKA; Ryo SHIMIZU

    2007-01-01

    Dipeptidyl peptidase Ⅳ (DPPIV), which belongs to the prolyl oligopeptidase family of serine proteases, is known to have a variety of regulatory biological functions and has been shown to be implicated in type 2 diabetes. It is therefore important to develop selective human DPPIV (hDPPIV) inhibitors. In this study, we determined the crystal structure of apo hDPPIV at 1.9 (A) resolution. Our high-resolution crystal structure of apo hDPPIV revealed the presence of sodium ion and glycerol molecules at the active site. In order to elucidate the hDPPIV binding mode and substrate specificity, we determined the crystal structure of hDPPIV-diprotin B (Val-Pro-Leu) complex at 2.1 (A) resolution, and clarified the difference in binding mode between diprotin B and diprotin A (Ile-Pro-Ile) into the active site of hDPPIV. Comparison between our crystal structures and the reported apo hDPPIV structures revealed that positively charged functional groups and conserved water molecules contributed to the interaction of ligands with hDPPIV. These results are useful for the design of potent hDPPIV inhibitors.

  15. Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis.

    Science.gov (United States)

    Rahulan, Raji; Dhar, Kiran S; Madhavan Nampoothiri, K; Pandey, Ashok

    2011-09-01

    Studies were conducted on the production of leucine amino peptidase (LAP) by Streptomyces gedanensis to ascertain the performance of the process in shake flask, parallel fermenter and 5-L fermenter utilizing soy bean meal as the carbon source. Experiments were conducted to analyze the effects of aeration and agitation rate on cell growth and LAP production. The results unveiled that an agitation rate of 300 rpm, 50% dissolved oxygen (DO) upholding and 0.15 vvm strategies were the optimal for the enzyme production, yielding 22.72 ± 0.11 IU/mL LAP in parallel fermenter which was comparable to flask level (24.65 ± 0.12 IU/mL LAP) fermentation. Further scale-up, in 5-L fermenter showed 50% DO and 1 vvm aeration rate was the best, producing optimum and the production was 20.09 ± 0.06 IU/mL LAP. The information obtained could be useful to design a strategy to improve a large-scale bioreactor cultivation of cells and production of LAP. PMID:21733679

  16. Dipeptidyl-Peptidase IV inhibitors and glycemic control in type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Lokendra Bahadur Sapkota

    2016-03-01

    Full Text Available Background & Objectives: Type 2 diabetes mellitus (T2DM is a progressive disease, characterized by insulin resistance, impaired glucose-induced insulin secretion, inappropriately elevated glucagon concentrations, and hyperglycemia. Many patients cannot obtain satisfactory glycemic control with current therapies. New and more effective agents, targeted not only at treatment, but also at prevention of the disease, its progression, and its associated complications, are, therefore, required. The dipeptidyl peptidase-4 (DPP-4 inhibitors are a newer class of oral drugs for the treatment of T2DM. They inhibit the breakdown of glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic polypeptide (GIP thereby increasing the incretin effect in patients with T2DM. In clinical practice they are associated with significant reductions in HbA1c, no weight gain and a low risk of hypoglycemia. Since incretin response is markedly diminished in Asian populations, these agents can be used to achieve satisfactory glycemic control in Nepalese T2DM patients.JCMS Nepal. 2016;12(1:28-32.

  17. Ubiquitin-Specific Peptidase USP22 Negatively Regulates the STAT Signaling Pathway by Deubiquitinating SIRT1

    Directory of Open Access Journals (Sweden)

    Ning Ao

    2014-06-01

    Full Text Available Background/Aims: The ubiquitin-specific peptidase USP22 mediates various cellular and organismal processes, such as cell growth, apoptosis, and tumor malignancy. However, the molecular mechanisms that regulate USP22 activity remain poorly understood. Here we identify STAT3 as a new USP22 interactor. Methods:· We used western blotting and RT-PCR to measure key protein, acetylated STAT3, and mRNA levels in HEK293 and colorectal cancer cell lines transfected with expression plasmids or specific siRNAs. Co-immunoprecipitation was used to demonstrate protein-protein interaction and protein complex composition. Results: USP22 overexpression down-regulated STAT3 acetylation by deubiquitinating SIRT1. The three proteins were found to be present in a single protein complex. SiRNA-mediated depletion of endogenous USP22 resulted in SIRT1 destabilization and elevated STAT3 acetylation. Consistent with this finding, USP22 also down-regulated the expression of two known STAT3 target genes, MMP9 and TWIST. Conclusion: We show that USP22 is a new regulator of the SIRT1-STAT3 signaling pathway and report a new mechanistic explanation for cross talk between USP22 and the SIRT1-STAT pathways.

  18. DIPEPTIDYL PEPTIDASE-4 REGULATION OF SDF-1/CXCR4 AXIS: IMPLICATIONS FOR CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Jixin eZhong

    2015-09-01

    Full Text Available Dipeptidyl peptidase-4 (DPP4 is a ubiquitously expressed protease that regulates a diverse number of physiologic functions. As a dipeptidase it exerts its catalytic effects on proteins/peptides with proline, alanine or serine in the penultimate (P1 amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which such as stromal-cell-derived factor-1 (SDF-1, also known as CXCL12 is perhaps an increasingly recognized target, given its importance in processes such as hematopoiesis, angiogenesis and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease.

  19. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Takasawa, Wataru [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Ohnuma, Kei [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Hatano, Ryo; Endo, Yuko [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road, Box 100278, Room MSB M410A, Gainesville, FL 32610 (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  20. Increased Plasma Dipeptidyl Peptidase-4 Activities in Patients with Coronary Artery Disease

    Science.gov (United States)

    Yang, Guang; Li, Yuzi; Cui, Lan; Jiang, Haiying; Li, Xiang; Jin, Chunzi; Jin, Dehao; Zhao, Guangxian; Jin, Jiyong; Sun, Rui; Piao, Limei; Xu, Wenhu; Fang, Chenghu; Lei, Yanna; Yuan, Kuichang; Xuan, Chunhua; Ding, Dazi

    2016-01-01

    Dipeptidyl peptidase-4 (DPP4) is one of the most potent mammalian serine proteases participated in the pathogenesis of subclinical atherosclerosis. Here we investigated whether the plasma soluble form of DPP4 is associated with the prevalence of coronary artery disease (CAD) with and without diabetes mellitus (DM). A cross-sectional study was conducted of 496 aged 26–81 years with (n = 362) and without (n = 134) CAD. Plasma DPP4 activity, high sensitive C-reactive protein (hs-CRP), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein levels were measured. The coronary atherosclerotic plaques were evaluated by coronary angiography. The CAD patients with (n = 84) and without (n = 278) DM had significantly higher DPP4 levels (11.8 ± 3.1 vs. 6.9 ± 3.5 ng/mL, Psyntax scores. A multiple logistic regression analysis demonstrated that plasma DPP4 activity was independent predictor of CAD (odds ratio, 1.56; 95% CI, 1.19–1.73; P<0.01). Our study shows that increased DPP4 activity levels are associated with the presence of CAD and that the plasma DPP4 level serves as a novel biomarker for CAD even without DM. PMID:27654253

  1. Gliptins and their target dipeptidyl peptidase 4: implications for the treatment of vascular disease.

    Science.gov (United States)

    Remm, Friederike; Franz, Wolfgang-Michael; Brenner, Christoph

    2016-07-01

    Gliptins are accepted as a standard therapy for diabetes mellitus today. By inhibition of the enzyme dipeptidyl peptidase 4 (DPP4), gliptins prolong the GLP1-dependent insulin secretion in the pancreatic β-cells and thus support physiological blood glucose control. Various studies have now raised hope for an additional protective effect of pharmacological DPP4 inhibition in vascular diseases. Besides GLP1, especially, the inhibition of SDF1 cleavage has been shown to depict a relevant mechanism to enhance endothelial regeneration and reduce atherosclerosis progression via the SDF1-CXCR4 axis. Furthermore, several clinical trials have now shown an excellent safety profile of gliptin therapy in cardiovascular risk patients. In this review, we give a comprehensive overview on DPP4-dependent vascular functions and pathophysiological mechanisms with a detailed discussion of the underlying molecular mechanisms. We further analyse the role of pharmacological DPP4 inhibitors and their potential therapeutic impact on endothelial function and regeneration besides their effect during atherosclerosis development. Finally, we discuss presently available data from in vitro and in vivo studies with respect to the results of the recent clinical trials in diabetic and non-diabetic patients. PMID:27533760

  2. Dipeptidyl peptidase-4 expression in pancreatic tissue from patients with congenital hyperinsulinism.

    Science.gov (United States)

    Rahman, Sofia A; Senniappan, Senthil; Sherif, Maha; Tahir, Sophia; Hussain, Khalid

    2015-01-01

    Congenital hyperinsulinism (CHI) is caused by unregulated insulin release and leads to hyperinsulinaemic-hypoglycaemia (HH). Glucagon like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY) and the enzyme; dipeptidyl peptidase-4 (DPP-4) all regulate appetite and glucose homeostasis. These proteins have been identified as possible contributors to HH but the mechanism remains poorly understood. We aimed to look at the expression pattern of pancreatic DPP-4 in children with focal and diffuse CHI (FCHI and DCHI, respectively). Using immunohistochemistry; we determined DPP-4 expression patterns in the pancreas of CHI patients. DPP-4 was found to be expressed in the pancreatic β, α and δ-cells in and around the focal area. However, it was predominantly co-localised with β-cells in the paediatric tissue samples. Additionally, proliferating β-cells expressed DPP-4 in DCHI, which was absent in the FCHI pancreas. Insulin was found to be present in the exocrine acini and duct cells of the DCHI pancreas suggestive of exocrine to endocrine transdifferentiation. Furthermore, 6 medically-unresponsive DCHI pancreatic samples showed an up-regulation of total pancreatic DPP-4 expression. In conclusion; the expression studies have shown DPP-4 to be altered in HH, however, further work is required to understand the underlying role for this enzyme.

  3. Dipeptidyl peptidase-IV (DPP-IV inhibitory activity of parotid exudate of Bufo melanostictus

    Directory of Open Access Journals (Sweden)

    Allenki Venkatesham

    2009-01-01

    Full Text Available Type 2 diabetes arises as a result of β-cell failure combined with concomitant insulin resistance. Glucagon-like peptide-1 is a gastrointestinal hormone that is released postprandially from the L cells of the gut and exerts a glucose- dependent and direct insulinotropic effect on the pancreatic β cell. Which activate adenylate cyclase and enhances insulin secretion. GLP-1 is rapidly degraded by DPP-IV to GLP-1(9-37 amide following release from gut L cells. GLP-1 directly enhances glucose-dependent insulin secretion via an increase in β-cell cAMP. Dipeptidyl peptidase IV (DPP-IV is a plasma membrane glycoprotein ectopeptidase. In mammals, DPP-IV was widely expressed on the surface of endothelial and epithelial cells and highest levels in humans have been reported to occur in the intestine, bone marrow and kidney. Inhibiting DPP-IV reduces its rapid degradation of GLP-1, increasing circulating levels of the active hormone in vivo and prolonging its beneficial effects. The IC 50 value of parotid exudate was found to be 9.4 μg/ml. The maximum % inhibition (61.8 was showed at a concentration of 12μg/ml. Parotid exudate through inhibition of DPP-IV, improves glucose tolerance and enhances insulin secretion. DPP-IV inhibitors are a novel class of oral hypoglycemic agents with a potential to improve pancreatic beta cell function and the clinical course of type 2 diabetes.

  4. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials.

    Science.gov (United States)

    Fu, Jianying; Zhu, Jianhong; Hao, Yehua; Guo, Chongchong; Zhou, Zhikun

    2016-01-01

    Data on the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors on fracture risk are conflicting. Here, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) assessing the effects of DPP-4 inhibitors. Electronic databases were searched for relevant published articles, and unpublished studies presented at ClinicalTrials.gov were searched for relevant clinical data. Eligible studies included prospective randomized trials evaluating DPP-4 inhibitors versus placebo or other anti-diabetic medications in patients with type 2 diabetes. Study quality was determined using Jadad scores. Statistical analyses were performed to calculate the risk ratios (RRs) and 95% confidence intervals (CIs) using fixed-effects models. There were 62 eligible RCTs with 62,206 participants, including 33,452 patients treated with DPP-4 inhibitors. The number of fractures was 364 in the exposed group and 358 in the control group. The overall risk of fracture did not differ between patients exposed to DPP-4 inhibitors and controls (RR, 0.95; 95% CI, 0.83-1.10; P = 0.50). The results were consistent across subgroups defined by type of DPP-4 inhibitor, type of control, and length of follow-up. The study showed that DPP-4 inhibitor use does not modify the risk of bone fracture compared with placebo or other anti-diabetic medications in patients with type 2 diabetes. PMID:27384445

  5. Isolation and characterisation of dipeptidyl peptidase IV from Prevotella loescheii ATCC 15930.

    Science.gov (United States)

    Koreeda, Y; Hayakawa, M; Ikemi, T; Abiko, Y

    2001-08-01

    A proline-specific dipeptidyl aminopeptidase, dipeptidyl peptidase IV (EC 3.4.14.5), was purified from a cell sonicate soluble fraction of Prevotella loescheii ATCC 15930 by sequential column chromatography. The molecular mass of the native enzyme was estimated as 160 kDa by high-pressure liquid gel filtration column chromatography and unheated sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The subunit molecular mass was 80 kDa when the enzyme was heated to 100 degrees C in the presence of 2-mercaptoethanol before SDS-PAGE, suggesting that the native enzyme consists of two identical subunits and is folded in 2% SDS. The optimum pH, with glycyl-prolyl-4-methyl-coumaryl-7-amide as the substrate, was 8.0; the isoelectric point was 5.2. Purified enzyme showed a strong preference for dipeptide substrates containing proline and, less efficiently, alanine in the P1 position. The enzyme was markedly inhibited by Cd(2+), Zn(2+), Hg(2+), Co(2+), and serine proteinase inhibitor di-isopropylfluorophosphate. PMID:11389867

  6. Environmental and Genetic Influences of Archaeal Lipid Distribution in Natural and Artificial Marine Environments

    Science.gov (United States)

    Warren, C.; Pagani, M.

    2012-12-01

    TEX86 is a proxy of sea surface temperature based on refractory glycerol dibiphytanyl glycerol tetraethers (GDGT) in the cell membranes of low-temperature dwelling (non-hyperthermophilic) Archaea. The degree to which environmental signals other than temperature influence the distribution of GDGT compounds is poorly understood. Few representatives of the Thaumarchaeota — the clade to which the dominant GDGT production has been attributed — have been described or isolated in pure culture, and the role of genetic lineage in the synthesis and distribution of GDGTs is unknown. For this project we collected water, filter and substrate samples from tank systems in non-profit and commercial aquariums around the United States. This analysis compares GDGT core lipids and intact polar lipid distributions with Archaeal genetic sequence data processed using rRNA and 454 Pyrosequencing. Environmental attributes (such as dissolved oxygen concentration, salinity, organic density, etc.) specific to each tank are also compared to lipid analyses and the presence of specific lineages within select tank systems. Our preliminary results demonstrate that archaeal GDGTs are present and abundant within a range of environmental conditions, including artificial saline and brackish waters derived from municipal sources. Comparisons of existing TEX86 calibration values with known temperatures suggest that residuals vary based on non-temperature parameters. Branched compounds are absent in most aquarium systems, but dominate in systems prepared with municipal water.

  7. Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines.

    Science.gov (United States)

    Huang, Qiuyuan; Jiang, Hongchen; Briggs, Brandon R; Wang, Shang; Hou, Weiguo; Li, Gaoyuan; Wu, Geng; Solis, Ramonito; Arcilla, Carlo A; Abrajano, Teofilo; Dong, Hailiang

    2013-09-01

    The microbial diversity was investigated in sediments of six acidic to circumneutral hot springs (Temperature: 60-92 °C, pH 3.72-6.58) in the Philippines using an integrated approach that included geochemistry and 16S rRNA gene pyrosequencing. Both bacterial and archaeal abundances were lower in high-temperature springs than in moderate-temperature ones. Overall, the archaeal community consisted of sequence reads that exhibited a high similarity (nucleotide identity > 92%) to phyla Crenarchaeota, Euryarchaeota, and unclassified Archaea. The bacterial community was composed of sequence reads moderately related (nucleotide identity > 90%) to 17 phyla, with Aquificae and Firmicutes being dominant. These phylogenetic groups were correlated with environmental conditions such as temperature, dissolved sulfate and calcium concentrations in spring water, and sediment properties including total nitrogen, pyrite, and elemental sulfur. Based on the phylogenetic inference, sulfur metabolisms appear to be key physiological functions in these hot springs. Sulfobacillus (within phylum Firmicutes) along with members within Sulfolobales were abundant in two high-temperature springs (> 76 °C), and they were hypothesized to play an important role in regulating the sulfur cycling under high-temperature conditions. The results of this study improve our understanding of microbial diversity and community composition in acidic to circumneutral terrestrial hot springs and their relationships with geochemical conditions.

  8. Archaeal Populations in Hypersaline Sediments Underlying Orange Microbial Mats in the Napoli Mud Volcano▿†

    Science.gov (United States)

    Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-01-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391

  9. Co-expression and co-purification of archaeal and eukaryal box C/D RNPs.

    Directory of Open Access Journals (Sweden)

    Yu Peng

    Full Text Available Box C/D ribonucleoprotein particles (RNPs are 2'-O-methylation enzymes required for maturation of ribosomal and small nuclear RNA. Previous biochemical and structural studies of the box C/D RNPs were limited by the unavailability of purified intact RNPs. We developed a bacterial co-expression strategy based on the combined use of a multi-gene expression system and a tRNA-scaffold construct that allowed the expression and purification of homogeneous archaeal and human box C/D RNPs. While the co-expressed and co-purified archaeal box C/D RNP was found to be fully active in a 2'-O-methylation assay, the intact human U14 box C/D RNP showed no detectable catalytic activity, consistent with the earlier findings that assembly of eukaryotic box C/D RNPs is nonspontaneous and requires additional protein factors. Our systems provide a means for further biochemical and structural characterization of box C/D RNPs and their assembly factors.

  10. Bacterial and archaeal community structures in the Arctic deep-sea sediment

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Qun; LI Chaolun; DONG Yi; ZHANG Wenyan; ZHANG Wuchang; XIAO Tian

    2015-01-01

    Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its rela-tionship with environmental factors, we applied Roche 454 sequencing of 16S rDNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities’ richness, compositions and structures as well as tax-onomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups;while the archaeal community is domi-nated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota (96.66%) and methanogenic Euryarchaeota (3.21%). This study describes the microbial diversity in the Arctic deep marine sediment (>3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.

  11. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices.

    Directory of Open Access Journals (Sweden)

    Jenna Morgan Lang

    Full Text Available Over 3000 microbial (bacterial and archaeal genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA, as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a "primary concordance" tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes.

  12. Overexpression, purification and crystallization of an archaeal DNA ligase from Pyrococcus furiosus

    International Nuclear Information System (INIS)

    Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. DNA ligases seal single-strand breaks in double-stranded DNA and their function is essential to maintain the integrity of the genome during various aspects of DNA metabolism, such as replication, excision repair and recombination. DNA-strand breaks are frequently generated as reaction intermediates in these events and the sealing of these breaks depends solely on the proper function of DNA ligase. Crystals of the archaeal DNA ligase from Pyrococcus furiosus were obtained using 6.6%(v/v) ethanol as a precipitant and diffracted X-rays to 1.7 Å resolution. They belong to the monoclinic space group P21, with unit-cell parameters a = 61.1, b = 88.3, c = 63.4 Å, β = 108.9°. The asymmetric unit contains one ligase molecule

  13. Ecological structuring of bacterial and archaeal taxa in surface ocean waters.

    Science.gov (United States)

    Yilmaz, Pelin; Iversen, Morten H; Hankeln, Wolfgang; Kottmann, Renzo; Quast, Christian; Glöckner, Frank O

    2012-08-01

    The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades. PMID:22416918

  14. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    Directory of Open Access Journals (Sweden)

    David S. Shin

    2014-01-01

    Full Text Available As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.

  15. Geographic distribution of archaeal ammonia oxidizing ecotypes in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Eva eSintes

    2016-02-01

    Full Text Available In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo, exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of archaeal ammonia oxidizers (AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization.

  16. Bacterial and archaeal dynamics in phylogeny and function in the North Atlantic deep waters

    Science.gov (United States)

    Herndl, G. J.; Brink, M.; Agogue, H.

    2009-04-01

    The diversity and specific functional aspects linked to the N cycle of the bacterio- and archaeoplankton were investigated in the major deep water masses of the North Atlantic following the main driver of the thermohaline circulation, the North Atlantic Deep Water, from 65°N to 5°S. The phylogenetic composition of Bacteria and Archaea is not only depth-dependent but, specific water masses harbor specific prokaryotic communities. The specific composition of these communities in a particular water mass is maintained even over large distances. The distribution of archaeal and bacterial amoA genes were also determined. Archaeal amoA copy numbers decreased drastically with depth especially in the eastern subtropical Atlantic. This coincides with the lower nutrient concentration of the deep waters in the southern parts of the North Atlantic and the older age of the deep-water masses there. These data demonstrate that the diversity and potential nitrification activity are closely linked to the hydrology and chemical characteristics of the major water masses in the North Atlantic.

  17. Archaeal Life on Tangkuban Perahu- Sampling and Culture Growth in Indonesian Laboratories

    Directory of Open Access Journals (Sweden)

    SRI HANDAYANI

    2012-09-01

    Full Text Available The aim of the expedition to Tangkuban Perahu, West Java was to obtain archaeal samples from the solfatara fields located in Domas crater. This was one of the places, where scientists from the University of Regensburg Germany had formerly isolated Indonesian archaea, especially Thermoplasma and Sulfolobus species but not fully characterized. We collected five samples from mud holes with temperatures from 57 to 88 oC and pH of 1.5-2. A portion of each sample was grown at the University of Regensburg in modified Allen’s medium at 80 oC. From four out of five samples enrichment cultures were obtained, autotrophically on elemental sulphur and heterotrophically on sulfur and yeast extract; electron micrographs are presented. In the laboratories of Universitas Indonesia the isolates were cultured at 55-60 oC in order to grow tetraetherlipid synthesizing archaea, both Thermoplasmatales and Sulfolobales. Here, we succeeded to culture the same type of archaeal cells, which had been cultured in Regensburg, probably a Sulfolobus species and in Freundt’s medium, Thermoplasma species. The harvested cells are documented by phase contrast microscope equipped with a digital camera. Our next steps will be to further characterize genetically the cultured cells from Tangkuban Perahu isolates.

  18. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids

    Science.gov (United States)

    2016-01-01

    Bacteria and Eukarya have cell membranes with sn-glycerol-3-phosphate (G3P), whereas archaeal membranes contain sn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form, Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane.

  19. An angiotensin-(1-7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme.

    Science.gov (United States)

    Wilson, Bryan A; Cruz-Diaz, Nildris; Marshall, Allyson C; Pirro, Nancy T; Su, Yixin; Gwathmey, TanYa M; Rose, James C; Chappell, Mark C

    2015-03-15

    Angiotensin 1-7 [ANG-(1-7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1-7) to ANG-(1-4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313-323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1-7) to ANG-(1-4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min(-1)·mg(-1)) compared with the tubules (96 ± 12 fmol·min(-1)·mg(-1)) and cortex (107 ± 9 fmol·min(-1)·mg(-1)). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1-7) and its endogenous analog [Ala(1)]-ANG-(1-7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp(1)]-ANG II, ANG I, and ANG-(1-12). Although the ANG-(1-7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1-7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1-7) tone.

  20. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: implications for TEX86 paleothermometry

    NARCIS (Netherlands)

    Wuchter, C.; Schouten, S.; Wakeham, S.G.; Sinninghe Damsté, J.S.

    2006-01-01

    The newly introduced temperature proxy, the tetraether index of archaeal lipids with 86 carbon atoms (TEX86), is based on the number of cyclopentane moieties in the glycerol dialkyl glycerol tetraether (GDGT) lipids of marine Crenarchaeota. The composition of sedimentary GDGTs used for TEX86 paleoth

  1. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim;

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  2. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle

    DEFF Research Database (Denmark)

    Prangishvili, David; Vestergaard, Gisle Alberg; Häring, Monika;

    2006-01-01

    A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long...

  3. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China

    Science.gov (United States)

    Gao, Peike; Tian, Huimei; Wang, Yansen; Li, Yanshu; Li, Yan; Xie, Jinxia; Zeng, Bing; Zhou, Jiefang; Li, Guoqiang; Ma, Ting

    2016-02-01

    To investigate the spatial distribution of microbial communities and their drivers in petroleum reservoir environments, we performed pyrosequencing of microbial partial 16S rRNA, derived from 20 geographically separated water-flooding reservoirs, and two reservoirs that had not been flooded, in China. The results indicated that distinct underground microbial communities inhabited the different reservoirs. Compared with the bacteria, archaeal alpha-diversity was not strongly correlated with the environmental variables. The variation of the bacterial and archaeal community compositions was affected synthetically, by the mining patterns, spatial isolation, reservoir temperature, salinity and pH of the formation brine. The environmental factors explained 64.22% and 78.26% of the total variance for the bacterial and archaeal communities, respectively. Despite the diverse community compositions, shared populations (48 bacterial and 18 archaeal genera) were found and were dominant in most of the oilfields. Potential indigenous microorganisms, including Carboxydibrachium, Thermosinus, and Neptunomonas, were only detected in a reservoir that had not been flooded with water. This study indicates that: 1) the environmental variation drives distinct microbial communities in different reservoirs; 2) compared with the archaea, the bacterial communities were highly heterogeneous within and among the reservoirs; and 3) despite the community variation, some microorganisms are dominant in multiple petroleum reservoirs.

  4. Detection and analysis of elusive members of a novel and diverse archaeal community within a thermal spring streamer consortium.

    Science.gov (United States)

    Colman, Daniel R; Thomas, Raquela; Maas, Kendra R; Takacs-Vesbach, Cristina D

    2015-03-01

    Recent metagenomic analyses of Yellowstone National Park (YNP) thermal spring communities suggested the presence of minor archaeal populations that simultaneous PCR-based assays using traditional 'universal' 16S rRNA gene primers failed to detect. Here we use metagenomics to identify PCR primers effective at detecting elusive members of the Archaea, assess their efficacy, and describe the diverse and novel archaeal community from a circum-neutral thermal spring from the Bechler region of YNP. We determined that a less commonly used PCR primer, Arch349F, captured more diversity in this spring than the widely used A21F primer. A search of the PCR primers against the RDP 16S rRNA gene database indicated that Arch349F also captured the largest percentage of Archaea, including 41 % more than A21F. Pyrosequencing using the Arch349F primer recovered all of the phylotypes present in the clone-based portion of the study and the metagenome of this spring in addition to several other populations of Archaea, some of which are phylogenetically novel. In contrast to the lack of amplification with traditional 16S rRNA gene primers, our comprehensive analyses suggested a diverse archaeal community in the Bechler spring, with implications for recently discovered groups such as the Geoarchaeota and other undescribed archaeal groups.

  5. Archaeal ammonia oxidation in volcanic grassland soils of Iceland. Effects of elevated temperature and N availability on processes and organisms

    NARCIS (Netherlands)

    Daebeler, A.

    2014-01-01

    Thaumarchaea are recognized today as the most abundant and ubiquitously dis­tributed archaeal organisms, especially in the oceans and soil. Their phylogenetic placement as a phylum, the capability of all cultivated Thaumarchaea to oxidize ammonia for energy conservation as well as many further aspec

  6. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    NARCIS (Netherlands)

    Sintes, Eva; Bergauer, Kristin; De Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotype

  7. Forest strata drive spatial structure of bacterial and archaeal communities and microbial methane cycling in neotropical bromeliad wetlands

    Science.gov (United States)

    Martinson, Guntars; Brandt, Franziska; Conrad, Ralf

    2016-04-01

    Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata

  8. Archaeal community in a human-disturbed watershed in southeast China: diversity, distribution, and responses to environmental changes.

    Science.gov (United States)

    Hu, Anyi; Wang, Hongjie; Li, Jiangwei; Liu, Jing; Chen, Nengwang; Yu, Chang-Ping

    2016-05-01

    The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97 % of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49 % of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of β-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities. PMID:26810199

  9. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Directory of Open Access Journals (Sweden)

    Hiromi Daiyasu

    2005-01-01

    Full Text Available Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS, from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS, phosphatidylglycerol synthase (PGS and phosphatidylinositol synthase (PIS derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea

  10. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes.

    Science.gov (United States)

    Mest, H-J; Mentlein, R

    2005-04-01

    Inhibitors of the regulatory protease dipeptidyl peptidase-IV (DPP-IV) are currently under development in preclinical and clinical studies (several pharmaceutical companies, now in Phase III) as potential drugs for the treatment of type 2 diabetes. Their development is based on the observation that DPP-IV rapidly inactivates the incretin hormone glucagon-like peptide-1 (GLP-1), which is released postprandially from the gut and increases insulin secretion. DPP-IV inhibitors stabilise endogenous GLP-1 at physiological concentrations, and induce insulin secretion in a glucose-dependent manner; therefore, they do not demonstrate any hypoglycaemic effects. Furthermore, they are orally bioavailable. In addition to their ability to protect GLP-1 against degradation, DPP-IV inhibitors also stabilise other incretins, including gastric inhibitory peptide and pituitary adenylate cyclase-activating peptide. They also reduce the antagonistic and desensitising effects of the fragments formed by truncation of the incretins. In clinical studies, when used for the treatment of diabetes over a 1-year period, DPP-IV inhibitors show improved efficacy over time. This finding can be explained by a GLP-1-induced increase in the number of beta cells. Potential risks associated with DPP-IV inhibitors include the prolongation of the action of other peptide hormones, neuropeptides and chemokines cleaved by the protease, and their interaction with DPP-IV-related proteases. Based on their mode of action, DPP-IV inhibitors seem to be of particular value in early forms of type 2 diabetes, either alone or in combination with other types of oral agents. PMID:15770466

  11. Decreased hepatic glucose production in obese rats by dipeptidyl peptidase-Ⅳ inhibitor sitagliptin

    Institute of Scientific and Technical Information of China (English)

    LU Ying-li; ZHOU De-quan; ZHAI Hua-ling; WU Hui; GUO Zeng-kui

    2012-01-01

    Background Dipeptidyl peptidase-Ⅳ (DPP-4) inhibitors are now used to improve postprandial glycemic control in type 2 diabetes.However,their effects on hepatic glucose production (HGP) in obesity are not clear.This study was designed to test the hypothesis that gluconeogenesis and HGP can be modulated by DPP-4 inhibitors in obesity.Methods Sprague Dawley male rats were divided into four groups,each on a different diet:general rat chow,n=10 (G);G+sitagliptin,n=10; high fat chow (obesity),n=10 (55% fat calories,HFO); HFO+sitagliptin,n=10.After 10 weeks,the rats were fasted overnight and glucose metabolism was determined using 3-3H-glucose and 14C-glycerol as tracers.Results Glycerol rate of appearance (P<0.00001),plasma glycerol (P<0.05) and free fatty acid (FFA) (P<0.05)concentrations,and HGP (P<0.05) were decreased in HFO+sitagliptin group compared with HFO group,but there was no significant difference between G and G+sitagliptin groups (P>0.05).Gluconeogenesis in HFO group was five times of that in G rats (P<0.01),but was significantly declined in HFO+sitagliptin group (P<0.0001).Conclusions Gluconeogenesis and HGP were inhibited by sitagliptin in high fat-induced obese rats due to decreased glycerol availability,which was a result of reduced glycerol release from adipose tissues.The finding suggests that sitagliptin is potentially useful for controlling fasting glucose in obesity,thereby delaying or preventing the development of diabetes.

  12. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    Science.gov (United States)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  13. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1.

    Science.gov (United States)

    Endow, Joshua K; Singhal, Rajneesh; Fernandez, Donna E; Inoue, Kentaro

    2015-11-27

    Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1. PMID:26446787

  14. Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays.

    Science.gov (United States)

    Karakosta, Theano D; Soosaipillai, Antoninus; Diamandis, Eleftherios P; Batruch, Ihor; Drabovich, Andrei P

    2016-09-01

    Human kallikrein-related peptidases (KLKs) are a group of 15 secreted serine proteases encoded by the largest contiguous cluster of protease genes in the human genome. KLKs are involved in coordination of numerous physiological functions including regulation of blood pressure, neuronal plasticity, skin desquamation, and semen liquefaction, and thus represent promising diagnostic and therapeutic targets. Until now, quantification of KLKs in biological and clinical samples was accomplished by enzyme-linked immunosorbent assays (ELISA). Here, we developed multiplex targeted mass spectrometry assays for the simultaneous quantification of all 15 KLKs. Proteotypic peptides for each KLK were carefully selected based on experimental data and multiplexed in single assays. Performance of assays was evaluated using three different mass spectrometry platforms including triple quadrupole, quadrupole-ion trap, and quadrupole-orbitrap instruments. Heavy isotope-labeled synthetic peptides with a quantifying tag were used for absolute quantification of KLKs in sweat, cervico-vaginal fluid, seminal plasma, and blood serum, with limits of detection ranging from 5 to 500 ng/ml. Analytical performance of assays was evaluated by measuring endogenous KLKs in relevant biological fluids, and results were compared with selected ELISAs. The multiplex targeted proteomic assays were demonstrated to be accurate, reproducible, sensitive, and specific alternatives to antibody-based assays. Finally, KLK4, a highly prostate-specific protein and a speculated biomarker of prostate cancer, was unambiguously detected and quantified by immunoenrichment-SRM assay in seminal plasma and blood serum samples from individuals with confirmed prostate cancer and negative biopsy. Mass spectrometry revealed exclusively the presence of a secreted isoform and thus unequivocally resolved earlier disputes about KLK4 identity in seminal plasma. Measurements of KLK4 in either 41 seminal plasma or 58 blood serum samples

  15. Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus-induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Long Jin

    Full Text Available Tacrolimus (TAC-induced pancreatic islet injury is one of the important causes of new-onset diabetes in transplant recipients. This study was performed to evaluate whether a dipeptidyl peptidase IV (DPP IV inhibitor is effective in improving TAC-induced diabetes mellitus by reducing pancreatic islet injury.Rats were treated with TAC (1.5 mg/kg, subcutaneously and the DPP IV inhibitor MK-0626 (10 or 20 mg/kg, oral gavage for 4 weeks. The effect of MK-0626 on TAC-induced diabetes was evaluated by assessing pancreatic islet function, histopathology. TAC-induced incretin dysfunction was also examined based on active glucagon-like peptide-1 (GLP-1 levels in the serum after glucose loading. The protective effect of MK-0626 was evaluated by measuring markers of oxidative stress, oxidative resistance, and apoptosis. To determine whether enhanced GLP-1 signaling is associated with these protective effects, we measured the expression of the GLP-1 receptor (GLP-1R and the effect of the GLP-1 analog exendin-4 on cell viability and oxidative stress in isolated islets.MK-0626 treatment attenuated TAC-induced pancreatic islet dysfunction and islet morphology. TAC treatment led to a defect in active GLP-1 secretion; however, MK-0626 reversed these effects. TAC treatment increased the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG, the number of apoptotic death, and the level of active caspase-3, and decreased the level of manganese superoxide dismutase and heme oxygenase-1; MK-0626 treatment reversed these changes. MK-0626 treatment restored the expression of GLP-1R, and direct administration of exendin-4 to isolated islets reduced TAC-induced cell death and 8-OHdG expression.The DPP IV inhibitor MK-0626 was an effective antidiabetic agent that exerted antioxidative and antiapoptotic effects via enhanced GLP-1 signaling in TAC-induced diabetics.

  16. Lessons learned from cardiovascular outcome clinical trials with dipeptidyl peptidase 4 (DPP-4) inhibitors.

    Science.gov (United States)

    Fiorentino, Teresa Vanessa; Sesti, Giorgio

    2016-08-01

    Previous trials of glucose-lowering strategies in subjects with type 2 diabetes have demonstrated a beneficial effect of intensive glycemic control on microvascular complications but failed to show a clear benefit on cardiovascular complications. The findings of meta-analyses of rosiglitazone trials suggesting that rosiglitazone might increase the risk of myocardial infarction have cast doubt on the cardiovascular safety of glucose-lowering drugs. In 2008, the US Food and Drug Administration has implemented rigorous criteria to approve new glucose-lowering drugs, requiring proof of cardiovascular safety. These regulatory requirements have led to a considerable increase in the number of cardiovascular outcome trials in type 2 diabetes to ensure that newer glucose-lowering drugs are not associated with increased cardiovascular risk. Incretin-based therapies including dipeptidyl peptidase 4 (DPP-4) inhibitors, and injectable glucagon-like peptide 1 (GLP-1) receptor agonists are novel treatment options for patients with inadequate glucose control. Although DPP-4 inhibitors have shown neutral effects on risk factors for cardiovascular diseases, it remains unclear whether treatment with these new glucose-lowering agents might be associated with a reduction in cardiovascular events. The results of the three cardiovascular outcome trials comparing DPP-4 inhibitors treatment to placebo in addition to other glucose-lowering drugs have been published. All the three DPP-4 inhibitor cardiovascular outcome trials have shown non-inferiority with regard to cardiovascular safety, compared with placebo, when added to usual care. In this review, we summarize cardiovascular outcome trials of DPP-4 inhibitors, and provide an overview of these trials and their limitations. PMID:26611248

  17. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management

    Directory of Open Access Journals (Sweden)

    Junfeng Fan

    2013-01-01

    Full Text Available Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for their inhibitory effects on DPP-IV by using a luminescence assay and computational modeling. ANC from blueberry-blackberry wine blends strongly inhibited DPP-IV activity (IC50, 0.07 ± 0.02 to >300 μM. Of the twenty-seven phenolics tested, the most potent DPP-IV inhibitors were resveratrol (IC50, 0.6 ± 0.4 nM, luteolin (0.12 ± 0.01 μM, apigenin (0.14 ± 0.02 μM, and flavone (0.17 ± 0.01 μM, with IC50 values lower than diprotin A (4.21 ± 2.01 μM, a reference standard inhibitory compound. Analyses of computational modeling showed that resveratrol and flavone were competitive inhibitors which could dock directly into all three active sites of DPP-IV, while luteolin and apigenin docked in a noncompetitive manner. Hydrogen bonding was the main binding mode of all tested phenolic compounds with DPP-IV. These results indicate that flavonoids, particularly luteolin, apigenin, and flavone, and the stilbenoid resveratrol can act as naturally occurring DPP-IV inhibitors.

  18. Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1.

    Science.gov (United States)

    Endow, Joshua K; Singhal, Rajneesh; Fernandez, Donna E; Inoue, Kentaro

    2015-11-27

    Type I signal peptidase (SPase I) is an integral membrane Ser/Lys protease with one or two transmembrane domains (TMDs), cleaving transport signals off translocated precursor proteins. The catalytic domain of SPase I folds to form a hydrophobic surface and inserts into the lipid bilayers at the trans-side of the membrane. In bacteria, SPase I is targeted co-translationally, and the catalytic domain remains unfolded until it reaches the periplasm. By contrast, SPases I in eukaryotes are targeted post-translationally, requiring an alternative strategy to prevent premature folding. Here we demonstrate that two distinct stromal components are involved in post-translational transport of plastidic SPase I 1 (Plsp1) from Arabidopsis thaliana, which contains a single TMD. During import into isolated chloroplasts, Plsp1 was targeted to the membrane via a soluble intermediate in an ATP hydrolysis-dependent manner. Insertion of Plsp1 into isolated chloroplast membranes, by contrast, was found to occur by two distinct mechanisms. The first mechanism requires ATP hydrolysis and the protein conducting channel cpSecY1 and was strongly enhanced by exogenously added cpSecA1. The second mechanism was independent of nucleoside triphosphates and proteinaceous components but with a high frequency of mis-orientation. This unassisted insertion was inhibited by urea and stroma extract. During import-chase assays using intact chloroplasts, Plsp1 was incorporated into a soluble 700-kDa complex that co-migrated with the Cpn60 complex before inserting into the membrane. The TMD within Plsp1 was required for the cpSecA1-dependent insertion but was dispensable for association with the 700-kDa complex and also for unassisted membrane insertion. These results indicate cooperation of Cpn60 and cpSecA1 for proper membrane insertion of Plsp1 by cpSecY1.

  19. SYNTHESIS AND PROCESSING OF ESCHERICHIA-COLI TEM-BETA-LACTAMASE AND BACILLUS-LICHENIFORMIS ALPHA-AMYLASE IN ESCHERICHIA-COLI : THE ROLE OF SIGNAL PEPTIDASE-I

    NARCIS (Netherlands)

    van Dijl, J M; SMITH, H; BRON, S; VENEMA, G

    1988-01-01

    A mutant of Escherichia coli, in which signal peptidase I synthesis can be regulated, was constructed. The mutant was used to study the effects of signal peptidase I limitation on the synthesis and efficiency of processing of two proteins: the periplasmic E. coli TEM-beta-lactamase and Bacillus lich

  20. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.

    Science.gov (United States)

    Burton, Samuel P; Burton, Zachary F

    2014-01-01

    Structural comparisons of initiating RNA polymerase complexes and structure-based amino acid sequence alignments of general transcription initiation factors (eukaryotic TFIIB, archaeal TFB and bacterial σ factors) show that these proteins are homologs. TFIIB and TFB each have two-five-helix cyclin-like repeats (CLRs) that include a C-terminal helix-turn-helix (HTH) motif (CLR/HTH domains). Four homologous HTH motifs are present in bacterial σ factors that are relics of CLR/HTH domains. Sequence similarities clarify models for σ factor and TFB/TFIIB evolution and function and suggest models for promoter evolution. Commitment to alternate modes for transcription initiation appears to be a major driver of the divergence of bacteria and archaea. PMID:25483602

  1. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes.

    Directory of Open Access Journals (Sweden)

    Luis Felipe Pineda De Castro

    Full Text Available In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow.

  2. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    OpenAIRE

    Bengtson, Per; Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abund...

  3. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    International Nuclear Information System (INIS)

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  4. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes

    Directory of Open Access Journals (Sweden)

    Yang Yi-Fan

    2007-03-01

    Full Text Available Abstract Background Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algorithms which not only accurately predict genes, but also facilitate comparative studies of prokaryotic genomes. Results This paper describes a new prokaryotic genefinding algorithm based on a comprehensive statistical model of protein coding Open Reading Frames (ORFs and Translation Initiation Sites (TISs. The former is based on a linguistic "Entropy Density Profile" (EDP model of coding DNA sequence and the latter comprises several relevant features related to the translation initiation. They are combined to form a so-called Multivariate Entropy Distance (MED algorithm, MED 2.0, that incorporates several strategies in the iterative program. The iterations enable us to develop a non-supervised learning process and to obtain a set of genome-specific parameters for the gene structure, before making the prediction of genes. Conclusion Results of extensive tests show that MED 2.0 achieves a competitive high performance in the gene prediction for both 5' and 3' end matches, compared to the current best prokaryotic gene finders. The advantage of the MED 2.0 is particularly evident for GC-rich genomes and archaeal genomes. Furthermore, the genome-specific parameters given by MED 2.0 match with the current understanding of prokaryotic genomes and may serve as tools for comparative genomic studies. In particular, MED 2.0 is shown to reveal divergent translation initiation mechanisms in archaeal genomes while making a more accurate prediction of TISs compared to the existing gene finders and the current GenBank annotation.

  5. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest.

    Science.gov (United States)

    Rasche, Frank; Knapp, Daniela; Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Sessitsch, Angela

    2011-03-01

    It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups.

  6. Expression of a novel dipeptidyl peptidase 8 (DPP8) transcript variant, DPP8-v3, in human testis

    Institute of Scientific and Technical Information of China (English)

    Hui Zhu; Zuo-Min Zhou; Li Lu; Min Xu; Hui Wang; Jian-Min Li; Jia-Hao Sha

    2005-01-01

    Aim: To investigate the role of a novel dipeptidyl peptidase 8 transcript variant (DPP8-v3) gene in testis development and/or spermatogenesis. Methods: A human testis cDNA microarray was hybridized with mRNA of human adult and fetal testes. Differentially expressed clones were sequenced and characterized and their expression was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) and Southern-blot analysis. Results: A new transcript variant of the human dipeptidyl peptidase (DPP8), exhibiting a 5-fold higher expression level in human adult than that in fetal testes, was cloned and was named DPP8 variant 3 (DPP8-v3). The full-length sequence of DPP8-v3was 3,030 bp, encoding a protein of 898 amino acids. Conclusion: DPP8-v3 is a novel human DPP8 transcript variant highly expressed in the adult testis. Similar to DPPⅣ, DPP8-v3 may play a key role in the immunoregulation of testes and accordingly may influence spermatogenesis and male fertility.

  7. Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches.

    Science.gov (United States)

    Wilson, Claire H; Zhang, Hui Emma; Gorrell, Mark D; Abbott, Catherine A

    2016-09-01

    The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation. PMID:27410463

  8. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com [BioMarin Pharmaceutical Inc., Novato, CA (United States); Kennedy, Derek [BioMarin Pharmaceutical Inc., Novato, CA (United States); Reed, Randall P.; Boyd, Robert B. [Northern Biomedical Research, Inc., Muskegon, MI (United States); Butt, Mark T. [Tox Path Specialists, LLC, Hagerstown, MD (United States); Musson, Donald G.; Keve, Steve; Cahayag, Rhea; Tsuruda, Laurie S.; O' Neill, Charles A. [BioMarin Pharmaceutical Inc., Novato, CA (United States)

    2014-05-15

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  9. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes.

    Science.gov (United States)

    Scheen, André J

    2013-05-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are oral incretin-based glucose-lowering agents with proven efficacy and safety in the management of type 2 diabetes mellitus (T2DM). In addition, preclinical data and mechanistic studies suggest a possible additional non-glycemic beneficial action on blood vessels and the heart, via both glucagon-like peptide-1-dependent and glucagon-like peptide-1-independent effects. As a matter of fact, DPP-4 inhibitors improve several cardiovascular risk factors: they improve glucose control (mainly by reducing the risk of postprandial hyperglycemia) and are weight neutral; may lower blood pressure somewhat; improve postprandial (and even fasting) lipemia; reduce inflammatory markers; diminish oxidative stress; improve endothelial function; and reduce platelet aggregation in patients with T2DM. In addition, positive effects on the myocardium have been described in patients with ischemic heart disease. Results of post hoc analyses of phase 2/3 controlled trials suggest a possible cardioprotective effect with a trend (sometimes significant) toward lower incidence of major cardiovascular events with sitagliptin, vildagliptin, saxagliptin, linagliptin, or alogliptin compared with placebo or other active glucose-lowering agents. However, the definite relationship between DPP-4 inhibition and better cardiovascular outcomes remains to be proven. Major prospective clinical trials involving various DPP-4 inhibitors with predefined cardiovascular outcomes are under way in patients with T2DM and a high-risk cardiovascular profile: the Sitagliptin Cardiovascular Outcome Study (TECOS) on sitagliptin, the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 trial on saxagliptin, the Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome (EXAMINE) trial on alogliptin, and the Cardiovascular Outcome

  10. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    International Nuclear Information System (INIS)

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mild increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV administered

  11. Effects of Inhibiting Dipeptidyl Peptidase-4 (DPP4 in Cows with Subclinical Ketosis.

    Directory of Open Access Journals (Sweden)

    Kirsten Schulz

    Full Text Available The inhibition of dipeptidyl peptidase-4 (DPP4 via specific inhibitors is known to result in improved glucose tolerance and insulin sensitivity and decreased accumulation of hepatic fat in type II diabetic human patients. The metabolic situation of dairy cows can easily be compared to the status of human diabetes and non-alcoholic fatty liver. For both, insulin sensitivity is reduced, while hepatic fat accumulation increases, characterized by high levels of non-esterified fatty acids (NEFA and ketone bodies.Therefore, in the present study, a DPP4 inhibitor was employed (BI 14332 for the first time in cows. In a first investigation BI 14332 treatment (intravenous injection at dosages of up to 3 mg/kg body weight was well tolerated in healthy lactating pluriparous cows (n = 6 with a significant inhibition of DPP4 in plasma and liver. Further testing included primi- and pluriparous lactating cows suffering from subclinical ketosis (β-hydroxybutyrate concentrations in serum > 1.2 mM; n = 12. The intension was to offer effects of DPP4 inhibition during comprehensive lipomobilisation and hepatosteatosis. The cows of subclinical ketosis were evenly allocated to either the treatment group (daily injections, 0.3 mg BI 14332/kg body weight, 7 days or the control group. Under condition of subclinical ketosis, the impact of DPP4 inhibition via BI 14332 was less, as in particular β-hydroxybutyrate and the hepatic lipid content remained unaffected, but NEFA and triglyceride concentrations were decreased after treatment. Owing to lower NEFA, the revised quantitative insulin sensitivity check index (surrogate marker for insulin sensitivity increased. Therefore, a positive influence on energy metabolism might be quite possible. Minor impacts on immune-modulating variables were limited to the lymphocyte CD4+/CD8+ ratio for which a trend to decreased values in treated versus control animals was noted. In sum, the DPP4 inhibition in cows did not affect glycaemic

  12. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy – focus on alogliptin

    Directory of Open Access Journals (Sweden)

    Capuano A

    2013-09-01

    Full Text Available Annalisa Capuano,1 Liberata Sportiello,1 Maria Ida Maiorino,2 Francesco Rossi,1 Dario Giugliano,2 Katherine Esposito3 1Department of Experimental Medicine, 2Department of Medical, Surgical, Neurological, Metabolic Sciences, and Geriatrics, 3Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy Abstract: Type 2 diabetes mellitus is a complex and progressive disease that is showing an apparently unstoppable increase worldwide. Although there is general agreement on the first-line use of metformin in most patients with type 2 diabetes, the ideal drug sequence after metformin failure is an area of increasing uncertainty. New treatment strategies target pancreatic islet dysfunction, in particular gut-derived incretin hormones. Inhibition of the enzyme dipeptidyl peptidase-4 (DPP-4 slows degradation of endogenous glucagon-like peptide-1 (GLP-1 and thereby enhances and prolongs the action of the endogenous incretin hormones. The five available DPP-4 inhibitors, also known as 'gliptins' (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin, are small molecules used orally with similar overall clinical efficacy and safety profiles in patients with type 2 diabetes. The main differences between the five gliptins on the market include: potency, target selectivity, oral bioavailability, long or short half-life, high or low binding to plasma proteins, metabolism, presence of active or inactive metabolites, excretion routes, dosage adjustment for renal and liver insufficiency, and potential drug–drug interactions. On average, treatment with gliptins is expected to produce a mean glycated hemoglobin (HbA1c decrease of 0.5%–0.8%, with about 40% of diabetic subjects at target for the HbA1c goal <7%. There are very few studies comparing DPP-4 inhibitors. Alogliptin as monotherapy or added to metformin, pioglitazone, glibenclamide, voglibose, or insulin therapy significantly improves glycemic control

  13. Archaeal and bacterial tetraether lipids in tropical ponds with contrasted salinity (Guadeloupe, French West Indies): Implications for tetraether-based environmental proxies

    OpenAIRE

    Huguet, Arnaud; Grossi, Vincent; Belmahdi, Imène; Fosse, Céline; Derenne, Sylvie

    2015-01-01

    International audience The occurrence and distribution of archaeal and bacterial glycerol dialkyl glycerol tetraether lipids (GDGTs) in continental saline environments have been rarely investigated. Here, the abundance and distribution of archaeal isoprenoid GDGTs (iGDGTs) and archaeol, and of bacterial branched GDGTs (brGDGTs) in four tropical water ponds of contrasting salinity in two islands from the French Western Indies, Grande-Terre and La Désirade, have been determined. The sediment...

  14. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs

    OpenAIRE

    Frade, Pedro R.; Katharina Roll; Kristin Bergauer; Herndl, Gerhard J.

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and ...

  15. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    Science.gov (United States)

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (pexplaining less variation, nitrate addition coupled with oil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation. PMID:27262497

  16. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing.

    Science.gov (United States)

    Wang, Lei; Huang, Xu; Zheng, Tian-Ling

    2016-08-15

    This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (poil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation.

  17. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring.

    Directory of Open Access Journals (Sweden)

    Changrui Lu

    Full Text Available BACKGROUND: The exosome complex is an essential RNA 3'-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry. METHODOLOGY/PRINCIPAL FINDINGS: Here we report an asymmetric 2.9 A Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation. CONCLUSION/SIGNIFICANCE: This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing.

  18. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts

    Science.gov (United States)

    Woese, C. R.; Achenbach, L.; Rouviere, P.; Mandelco, L.

    1991-01-01

    A major and too little recognized source of artifact in phylogenetic analysis of molecular sequence data is compositional difference among sequences. The problem becomes particularly acute when alignments contain ribosomal RNAs from both mesophilic and thermophilic species. Among prokaryotes the latter are considerably higher in G + C content than the former, which often results in artificial clustering of thermophilic lineages and their being placed artificially deep in phylogenetic trees. In this communication we review archaeal phylogeny in the light of this consideration, focusing in particular on the phylogenetic position of the sulfate reducing species Archaeoglobus fulgidus, using both 16S rRNA and 23S rRNA sequences. The analysis shows clearly that the previously reported deep branching of the A. fulgidus lineage (very near the base of the euryarchaeal side of the archaeal tree) is incorrect, and that the lineage actually groups with a previously recognized unit that comprises the Methanomicrobiales and extreme halophiles.

  19. Non-extremophilic 'extremophiles' - Archaeal dominance in the subsurface and their implication for life

    Science.gov (United States)

    Reitschuler, Christoph; Lins, Philipp; Illmer, Paul

    2014-05-01

    Archaea - besides bacteria and eukaryota constituting the third big domain of life - were so far regarded as typical inhabitants of extreme environments, as indicated by the name (Archaeon, Greek: 'original', 'primal'). Previous research and cultivation successes were basically carried out in habitats characterized by extreme temperature, pH and salinity regimes. Such extreme conditions, as expected at the beginning of the Earth's evolution, are occasionally also prevalent on extraterrestrial planets and moons and make the Archaeal domain a key group to be studied concerning life's evolution and the most likely pioneer organisms to colonize environments that are regarded as hostile. However, in recent years it became obvious that Archaea, in particular non-extremophilic species, can be found almost ubiquitously in marine, freshwater, terrestrial and also subsurface habitats and occasionally outnumber other microbial domains and hold key positions in globally relevant energy and nutrient cycles. Besides extreme environments - the big question remains how to define a parameter as extreme - subsurface and cave environments present a window to the past, where adaptions to early life's conditions can be studied and how microbiomes may be structured in a habitat that represents a refugium on extraterrestrial celestial bodies, were surface conditions might be at first sight too extreme for life. The lower part of the alpine Hundsalm cave in Tyrol (Austria) offered a unique opportunity to study an almost pristine cave habitat, which is separated from the touristic part of the ice cave. The main focus of our research was laid on the microbial communities that were supposed to be in connection with secondary carbonate precipitations ('moonmilk'). For the ascertainment of these so far poorly evaluated structures a multiple approach assessment was chosen to generate a virtually complete picture of these subsurface microbiomes. Thereby, a combination of different cultivation

  20. The Cell Lysis Activity of the Streptococcus agalactiae Bacteriophage B30 Endolysin Relies on the Cysteine, Histidine-Dependent Amidohydrolase/Peptidase Domain

    OpenAIRE

    Donovan, David M.; Foster-Frey, Juli; Dong, Shengli; Rousseau, Geneviève M.; Moineau, Sylvain; Pritchard, David G.

    2006-01-01

    The Streptococcus agalactiae bacteriophage B30 endolysin contains three domains: cysteine, histidine-dependent amidohydrolase/peptidase (CHAP), Acm glycosidase, and the SH3b cell wall binding domain. Truncations and point mutations indicated that the Acm domain requires the SH3b domain for activity, while the CHAP domain is responsible for nearly all the cell lysis activity.

  1. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Balas, Bogdan; Baig, Muhammad R; Watson, Catherine;

    2007-01-01

    AIMS/HYPOTHESIS: Vildagliptin is a selective dipeptidyl peptidase IV inhibitor that augments meal-stimulated levels of biologically active glucagon-like peptide-1. Chronic vildagliptin treatment decreases postprandial glucose levels and reduces hemoglobin A1c in type 2 diabetic patients. However,...

  2. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Mari, A; Sallas, W M; He, Y L;

    2005-01-01

    AIMS/HYPOTHESIS: The dipeptidyl peptidase IV inhibitor, vildagliptin, increases levels of intact glucagon-like peptide-1 (GLP-1) and improves glycemic control in patients with type 2 diabetes. Although GLP-1 is known to stimulate insulin secretion, vildagliptin does not affect plasma insulin leve...

  3. The effect of dipeptidyl peptidase 4 inhibition on gastric volume, satiation and enteroendocrine secretion in Type 2 diabetes: a double blind, placebo-controlled crossover study

    DEFF Research Database (Denmark)

    Vella, Adrian; Bock, Gerlies; Giesler, Paula D;

    2008-01-01

    Objectives: The Incretin hormone glucagon-like peptide-1 (GLP-1) retards gastric emptying, and decreases caloric intake. It is unclear if increased GLP-1 concentrations achieved by inhibition of the inactivating enzyme, dipeptidyl peptidase 4 (DPP-4), alter gastric volumes and satiation in people...

  4. The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion

    DEFF Research Database (Denmark)

    El-Ouaghlidi, Andrea; Rehring, Erika; Holst, Jens Juul;

    2007-01-01

    BACKGROUND/AIMS: Inhibition of dipeptidyl peptidase 4 by vildagliptin enhances the concentrations of the active form of the incretin hormones glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). The present study asked whether vildagliptin accentuates glibenclamide-induced hy...

  5. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    International Nuclear Information System (INIS)

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90% of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5' part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acid residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56% similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved

  6. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers

    Directory of Open Access Journals (Sweden)

    Céline Brochier-Armanet

    2006-01-01

    Full Text Available Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 °C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.

  7. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: implications for TEX86 paleothermometry

    OpenAIRE

    Wuchter, C.; Schouten, S.; Wakeham, S.G.; Sinninghe Damsté, J.S.

    2006-01-01

    The newly introduced temperature proxy, the tetraether index of archaeal lipids with 86 carbon atoms (TEX86), is based on the number of cyclopentane moieties in the glycerol dialkyl glycerol tetraether (GDGT) lipids of marine Crenarchaeota. The composition of sedimentary GDGTs used for TEX86 paleothermometry is thought to reflect sea surface temperature (SST). However, marine Crenarchaeota occur ubiquitously in the world oceans over the entire depth range and not just in surface waters. We an...

  8. [Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils].

    Science.gov (United States)

    Yuan, Hong-zhao; Wu, Hao; Ge, Ti-da; Li, Ke-lin; Wu, Jin-shui; Wang, Jiu-rong

    2015-06-01

    Paddy soils not only function as an important sink for "missing carbon" but also play an important role in the production of greenhouse gases such as N2O and CH4. Dynamic changes in greenhouse gases in the atmosphere are closely related to microbially mediated carbon and nitrogen transformation processes occurring in soil. Using soil samples collected from a long-term fertilization experimental site in Taojiang County, subtropical China (established in 1986), we determined the effects of long-term (>25 years) non-fertilization (CK), chemical fertilization (NPK), and NPK combined with rice straw residues (NPKS) on soil bacterial and archaeal community structures. The 16S rRNA genotypes from the three differently treated soils were divided into 9 bacterial phylotypes, mainly including Proteobacteria, Acidobacteria, Chloroflexi, and archaea of Crenarchaeota and Euryarchaeota. The relative abundance of Proteobacteria, Acidobacteria and Crenarchaeota increased in the soils under NPK and NPKS treatments, with the increase being greater in the latter treatment. LUBSHUFF statistical analyses also demonstrated that there was significant difference among the microbial community compositions in CK-, NPK- and NPKS-treated soils. The abundance of bacterial and archaeal 16S rRNA genes ranged from 0.58 x 10(10) to 1.06 x 10(10) copies · g(-1) dry soil and from 1.16 x 10(6) to 1.72 x 10(6) copies · g(-1) dry soil, respectively. Application of fertilizers increased the bacterial and archaeal abundance and diversity in the treated soils, with NPKS > NPK. Long-term chemical and organic applications significantly affected the abundance, diversity and composition of bacterial and archaeal communities in paddy ecosystems. PMID:26572036

  9. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Garcia-Ruiz, Maria Jesus; Rodriguez-Sanchez, Alejandro; Osorio, Francisco; Gonzalez-Lopez, Jesus

    2016-07-01

    Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale. PMID:26940050

  10. Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin.

    Science.gov (United States)

    Pérez-Rueda, Ernesto; Janga, Sarath Chandra

    2010-06-01

    Archaea, which represent a large fraction of the phylogenetic diversity of organisms, are prokaryotes with eukaryote-like basal transcriptional machinery. This organization makes the study of their DNA-binding transcription factors (TFs) and their transcriptional regulatory networks particularly interesting. In addition, there are limited experimental data regarding their TFs. In this work, 3,918 TFs were identified and exhaustively analyzed in 52 archaeal genomes. TFs represented less than 5% of the gene products in all the studied species comparable with the number of TFs identified in parasites or intracellular pathogenic bacteria, suggesting a deficit in this class of proteins. A total of 75 families were identified, of which HTH_3, AsnC, TrmB, and ArsR families were universally and abundantly identified in all the archaeal genomes. We found that archaeal TFs are significantly small compared with other protein-coding genes in archaea as well as bacterial TFs, suggesting that a large fraction of these small-sized TFs could supply the probable deficit of TFs in archaea, by possibly forming different combinations of monomers similar to that observed in eukaryotic transcriptional machinery. Our results show that although the DNA-binding domains of archaeal TFs are similar to bacteria, there is an underrepresentation of ligand-binding domains in smaller TFs, which suggests that protein-protein interactions may act as mediators of regulatory feedback, indicating a chimera of bacterial and eukaryotic TFs' functionality. The analysis presented here contributes to the understanding of the details of transcriptional apparatus in archaea and provides a framework for the analysis of regulatory networks in these organisms.

  11. Similarities and Contrasts in the Archaeal Community of Two Japanese Mountains: Mt. Norikura Compared to Mt. Fuji.

    Science.gov (United States)

    Singh, Dharmesh; Takahashi, Koichi; Park, Jungok; Adams, Jonathan M

    2016-02-01

    The community ecology, abundance, and diversity patterns of soil archaea are poorly understood-despite the fact that they are a major branch of life that is ubiquitous and important in nitrogen cycling in terrestrial ecosystems. We set out to investigate the elevational patterns of archaeal ecology, and how these compare with other groups of organisms. Many studies of different groups of organisms (plants, birds, etc.) have shown a series of distinct communities with elevation, and often a diversity maximum in mid-elevations. We investigated the soil archaeal communities on Mt. Norikura, Japan, using 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene. There was a strong mid-elevation maximum in diversity, and a mid-elevation maximum in abundance of soil archaea 16S rRNA and amoA genes. These diversity and abundance maximums could not be correlated with any identifiable soil parameter, nor plant diversity. Discrete, predictable communities of archaea occurred at each elevational level, also not explicable in terms of pH or major nutrients. When we compared the archaeal community and diversity patterns with those found in an earlier study of Mt Fuji, both mountains showed mid-elevation maximums in diversity and abundance of archaea, possibly a result of some common environmental factor such as soil disturbance frequency. However, they showed distinct sets of archaeal communities at similar elevational sampling points. Presumably, the difference reflects their distinct geology (Norikura being andesitic, while Fuji is basaltic) and the resulting combinations of soil chemistry and environmental conditions, although no explanatory variable was found. Clearly, many soil archaea have strongly defined niches and will only occur in a narrow subset of the range of possible climate and soil conditions. The findings of a mid-elevation diversity maximum on Norikura provides a further instance of how widespread this unexplained pattern is in nature, in a wide variety of

  12. Seasonal Changes of Freshwater Ammonia-Oxidizing Archaeal Assemblages and Nitrogen Species in Oligotrophic Alpine Lakes▿ †

    OpenAIRE

    Auguet, Jean-Christophe; Nomokonova, Natalya; Camarero, Lluis; Casamayor, Emilio O.

    2011-01-01

    The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal ...

  13. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the arctic mid-ocean spreading ridge

    Directory of Open Access Journals (Sweden)

    Steffen Leth eJørgensen

    2013-10-01

    Full Text Available In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~ 50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001. Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000, indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  14. Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Podar, Mircea [ORNL; Graham, David E [ORNL; Reysenbach, Anna-Louise [Portland State University; Koonin, Eugene [National Center for Biotechnology Information; Wolf, Yuri [National Center for Biotechnology Information; Makarova, Kira S. [National Center for Biotechnology Information

    2013-01-01

    A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of another archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.

  15. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico).

    Science.gov (United States)

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Enríquez-Aragón, J Arturo; Estrada-Alvarado, Isabel; Hernández-Rodríguez, César; Dendooven, Luc; Marsch, Rodolfo

    2008-03-01

    The soil of the former lake Texcoco is an extreme environment localized in the valley of Mexico City, Mexico. It is highly saline and alkaline, where Na+, Cl(-), HCO3(-) and CO3(2-) are the predominant ions, with a pH ranging from 9.8 to 11.7 and electrolytic conductivities in saturation extracts from 22 to 150 dS m(-1). Metagenomic DNA from the archaeal community was extracted directly from soil and used as template to amplify 16S ribosomal gene by PCR. PCR products were used to construct gene libraries. The ribosomal library showed that the archaeal diversity included Natronococcus sp., Natronolimnobius sp., Natronobacterium sp., Natrinema sp., Natronomonas sp., Halovivax sp., "Halalkalicoccus jeotgali" and novel clades within the family of Halobacteriaceae. Four clones could not be classified. It was found that the archaeal diversity in an alkaline-saline soil of the former lake Texcoco, Mexico, was low, but showed yet uncharacterized and unclassified species.

  16. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities.

    Science.gov (United States)

    Kittelmann, Sandra; Seedorf, Henning; Walters, William A; Clemente, Jose C; Knight, Rob; Gordon, Jeffrey I; Janssen, Peter H

    2013-01-01

    Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community's bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.

  17. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available Geothermal habitats in Yellowstone National Park (YNP provide an unparalled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (~40-45 Mbase Sanger sequencing per site was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G+C content and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH. These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high temperature systems of YNP.

  18. Archaeal diversity and abundance within different layers of summer sea-ice and seawater from Prydz Bay, Antarctica

    Institute of Scientific and Technical Information of China (English)

    MA Jifei; DU Zongjun; LUO Wei; YU Yong; ZENG Yixin; CHEN Bo; LI Huirong

    2014-01-01

    Fluorescence in-situ hybridization (FISH) and 16S rRNA gene clone library analyses were used to determine the abundance and diversity of archaea in Prydz Bay, Antarctica. Correlation analysis was also performed to assess links between physicochemical parameters and archaeal abundance and diversity within the sea-ice. Samples of sea-ice and seawater were collected during the 26th Chinese National Antarctic Research Expedition. The results of FISH showed that archaea were relatively abundant within the top layer of the sea-ice, and correlation analysis suggested that the concentration of 4NH+ might be one of the main factors underlying this distribution pattern. However, using 16S rRNA gene libraries, archaea were not detected in the top and middle layers of the sea-ice. All archaeal clones obtained from the bottom layer of the sea-ice were grouped into the Marine Group I Crenarchaeota while the archaeal clones from seawater were assigned to Marine Group I Crenarchaeota, Marine Group II Euryarchaeota, and Marine Group III Euryarchaeota. Overall, the ifndings of this study showed that the diversity of archaea in the sea-ice in Prydz Bay was low.

  19. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  20. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry.

    Science.gov (United States)

    Inskeep, William P; Jay, Zackary J; Herrgard, Markus J; Kozubal, Mark A; Rusch, Douglas B; Tringe, Susannah G; Macur, Richard E; Jennings, Ryan deM; Boyd, Eric S; Spear, John R; Roberto, Francisco F

    2013-01-01

    Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40-45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH). These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high-temperature systems of YNP.

  1. Divergent responses of methanogenic archaeal communities in two rice cultivars to elevated ground-level O3.

    Science.gov (United States)

    Zhang, Jianwei; Tang, Haoye; Zhu, Jianguo; Lin, Xiangui; Feng, Youzhi

    2016-06-01

    Inhibitive effect of elevated ground-level ozone (O3) on paddy methane (CH4) emission varies with rice cultivars. However, little information is available on its microbial mechanism. For this purpose, the responses of methane-metabolizing microorganisms, methanogenic archaea and methanotrophic bacteria to O3 pollution were investigated in the O3-tolerant (YD6) and the O3-sensitive (IIY084) cultivars at two rice growth stages in Free Air Concentration Elevation of O3 (O3-FACE) system of China. It was found that O3 pollution didn't change the abundances of Type I and Type II methanotrophic bacteria at two rice stages. For methanogenic archaea, their abundances in both cultivars were decreased by O3 pollution at the tillering stage. Furthermore, a greater negative influence on methanogenic archaeal community was observed on IIY084 than on YD6: at tillering stage, the alpha diversity indices of methanogenic archaeal community in IIY084 was decreased to a greater extent than in YD6; IIY084 shifted methanogenic archaeal community composition and decreased the abundances and the diversities of Methanosarcinaceae and Methanosaetaceae as well as the abundance of Methanomicrobiales, while the diversity of Methanocellaceae were increased in YD6. These findings indicate that the variations in the responses of paddy CH4 emission to O3 pollution between cultivars could result from the divergent responses of their methanogenic archaea. PMID:26895536

  2. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS

    Science.gov (United States)

    Nagy, Julia; Grohmann, Dina; Cheung, Alan C. M.; Schulz, Sarah; Smollett, Katherine; Werner, Finn; Michaelis, Jens

    2015-01-01

    The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Förster resonance energy transfer and the Bayesian parameter estimation-based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH.

  3. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance.

    Science.gov (United States)

    Thion, Cécile E; Poirel, Jessica D; Cornulier, Thomas; De Vries, Franciska T; Bardgett, Richard D; Prosser, James I

    2016-07-01

    The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology.

  4. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate.

    Science.gov (United States)

    Hakumai, Yuichi; Oike, Shota; Shibata, Yuka; Ashiuchi, Makoto

    2016-06-01

    Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co(2+), Ni(2+), Mn(2+), Ga(3+), In(3+), and Dy(3+)). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga(3+), In(3+), and Dy(3+)) was far superior to that of any other industrially-versatile PAC materials. PMID:27013333

  5. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    Science.gov (United States)

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance. PMID:25818237

  6. Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance.

    Science.gov (United States)

    Thion, Cécile E; Poirel, Jessica D; Cornulier, Thomas; De Vries, Franciska T; Bardgett, Richard D; Prosser, James I

    2016-07-01

    The influence of plants on archaeal (AOA) and bacterial (AOB) ammonia oxidisers (AO) is poorly understood. Higher microbial activity in the rhizosphere, including organic nitrogen (N) mineralisation, may stimulate both groups, while ammonia uptake by plants may favour AOA, considered to prefer lower ammonia concentration. We therefore hypothesised (i) higher AOA and AOB abundances in the rhizosphere than bulk soil and (ii) that AOA are favoured over AOB in the rhizosphere of plants with an exploitative strategy and high N demand, especially (iii) during early growth, when plant N uptake is higher. These hypotheses were tested by growing 20 grassland plants, covering a spectrum of resource-use strategies, and determining AOA and AOB amoA gene abundances, rhizosphere and bulk soil characteristics and plant functional traits. Joint Bayesian mixed models indicated no increase in AO in the rhizosphere, but revealed that AOA were more abundant in the rhizosphere of exploitative plants, mostly grasses, and less abundant under conservative plants. In contrast, AOB abundance in the rhizosphere and bulk soil depended on pH, rather than plant traits. These findings provide a mechanistic basis for plant-ammonia oxidiser interactions and for links between plant functional traits and ammonia oxidiser ecology. PMID:27130939

  7. Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean.

    Science.gov (United States)

    Sintes, Eva; De Corte, Daniele; Haberleitner, Elisabeth; Herndl, Gerhard J

    2016-01-01

    In marine ecosystems, Thaumarchaeota are most likely the major ammonia oxidizers. While ammonia concentrations vary by about two orders of magnitude in the oceanic water column, archaeal ammonia oxidizers (AOA) vary by only one order of magnitude from surface to bathypelagic waters. Thus, the question arises whether the key enzyme responsible for ammonia oxidation, ammonia monooxygenase (amo), exhibits different affinities to ammonia along the oceanic water column and consequently, whether there are different ecotypes of AOA present in the oceanic water column. We determined the abundance and phylogeny of AOA based on their amoA gene. Two ecotypes of AOA exhibited a distribution pattern reflecting the reported availability of ammonia and the physico-chemical conditions throughout the Atlantic, and from epi- to bathypelagic waters. The distinction between these two ecotypes was not only detectable at the nucleotide level. Consistent changes were also detected at the amino acid level. These changes include substitutions of polar to hydrophobic amino acid, and glycine substitutions that could have an effect on the configuration of the amo protein and thus, on its activity. Although we cannot identify the specific effect, the ratio of non-synonymous to synonymous substitutions (dN/dS) between the two ecotypes indicates a strong positive selection between them. Consequently, our results point to a certain degree of environmental selection on these two ecotypes that have led to their niche specialization. PMID:26903961

  8. Potential radiocarbon chronology tool using archaeal tetraether lipids for the western Arctic Ocean sediment

    Science.gov (United States)

    Uchida, M.; Kondo, M.; Utsumi, M.; Shibata, Y.

    2011-12-01

    The Arctic Ocean plays a major role in global climate changes by changing global energy balance through ice-albedo feedback and by affecting the oceanic thermohaline circulation through the water exchange with the Atlantic and Pacific Ocean. For future prediction of those changes in Arctic Ocean it is necessary to reconstruct details of past climate history with accurate age model. However, it is not easy to make age model of sediment cores covering late Pleistocene-Holocene transition including global abrupt climate change because preservation of carbonate fossil such as planktonic foraminifera is very limited. In the glacial time, foraminifera is almost barren. Thus, so far climate history in the Arctic Ocean environment is poorly understood. For these reasons, we are looking for alternative chronological target instead of foraminifera. In this study, radiocarbon contents of archaeal glycerol dibiphytanyl glycerol tetraether lipids (GDGTs) from Arctic surface sediments, which is also used for paleothermometry, were measured and compared with those of dissolved inorganic carbon (DIC) of sea water, planktonic and benthic foraminifera, shell, and bulk organic matter in the same horizons. We will discuss potential as chronology using the GDGTs and carbon sources of these compounds.

  9. Rapid fold and structure determination of the archaeal translation elongation factor 1β from Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    The tertiary fold of the elongation factor, aEF-1β, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1β was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1β structure revealed close similarity to its human analogue, eEF-1β. In agreement with studies on EF-Ts and human EF-1β, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1α. aEF-1β was also found to bind calcium in the groove between helix α2 and strand β4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation

  10. Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors.

    Science.gov (United States)

    Liu, Yang; Si, Meimei; Tang, Li; Shangguan, Shihao; Wu, Haoshu; Li, Jia; Wu, Peng; Ma, Xiaodong; Liu, Tao; Hu, Yongzhou

    2013-09-15

    A series of novel benzyl-substituted (S)-phenylalanine derivatives were synthesized and evaluated for their dipeptidyl peptidase 4 (DPP-4) inhibitory activity and selectivity. It was found that most synthesized target compounds were potent DPP-4 inhibitors with IC50 values in 3.79-25.52 nM, which were significantly superior to that of the marketed drug sitagliptin. Furthermore, the 4-fluorobenzyl substituted phenylalanine derivative 6g not only displayed the potent DPP-4 inhibition with an IC50 value of 3.79 nM, but also showed better selectivity against DPP-4 over other related enzymes including DPP-7, DPP-8, and DPP-9. In an oral glucose tolerance test (OGTT) in normal Sprague Dawley rats, compound 6g reduced blood glucose excursion in a dose-dependent manner.

  11. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Directory of Open Access Journals (Sweden)

    Pedro R Frade

    Full Text Available Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%. About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater, host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.

  12. Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs.

    Science.gov (United States)

    Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J

    2016-01-01

    Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity. PMID:26788724

  13. Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo.

    Science.gov (United States)

    Kim, Sung-Ho; Jung, Eunsoo; Yoon, Min Kyung; Kwon, O Hwan; Hwang, Dal-Mi; Kim, Dong-Wook; Kim, Junghyun; Lee, Sun-Mee; Yim, Hyeon Joo

    2016-10-01

    Gemigliptin, a novel dipeptidyl peptidase (DPP)-4 inhibitor, is approved for use as a monotherapy or in combination therapy to treat hyperglycemia in patients with type 2 diabetes mellitus. In this study, we investigated the pharmacological profiles of gemigliptin in vitro and in vivo and compared them to those of the other DPP-4 inhibitors. Gemigliptin was a reversible and competitive inhibitor with a Ki value of 7.25±0.67nM. Similar potency was shown in plasma from humans, rats, dogs, and monkeys. The kinetics of DPP-4 inhibition by gemigliptin was characterized by a fast association and a slow dissociation rate compared to sitagliptin (fast on and fast off rate) or vildagliptin (slow on and slow off rate). In addition, gemigliptin showed at least >23,000-fold selectivity for DPP-4 over various proteases and peptidases, including DPP-8, DPP-9, and fibroblast activation protein (FAP)-α. In the rat, dog, and monkey, gemigliptin showed more potent DPP-4 inhibitory activity in vivo compared with sitagliptin. In mice and dogs, gemigliptin prevented the degradation of active glucagon-like peptide-1 by DPP-4 inhibition, which improved glucose tolerance by increasing insulin secretion and reducing glucagon secretion during an oral glucose tolerance test. The long-term anti-hyperglycemic effect of gemigliptin was evaluated in diet-induced obese mice and high-fat diet/streptozotocin-induced diabetic mice. Gemigliptin dose-dependently decreased hemoglobin A1c (HbA1c) levels and ameliorated β-cell damage. In conclusion, gemigliptin is a potent, long-acting, and highly selective DPP-4 inhibitor and can be a safe and effective drug for the long-term treatment of type 2 diabetes. PMID:27298192

  14. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice.

    Science.gov (United States)

    Liu, Limei; Liu, Jian; Yu, Xiaoxing

    2016-02-12

    Autophagy is cellular machinery for maintenance of β-cell function and mass. The current study aimed to investigate the regulatory effects of MK-626, a dipeptidyl peptidase-4 inhibitor, on insulin secretion through the activation of autophagy in high fat diet-induced obese mice. C57BL/6 mice were fed with a rodent diet containing 45 kcal% fat for 16 weeks to induce obesity and then were received either vehicle or MK-626 (3 mg/kg/day) orally during the final 4 weeks. Mouse islets were isolated. Phosphorylation of serine/threonine-protein kinase mTOR and levels of light chain 3B I (LC3B I), LC3B II, sequestosome-1 (SQSTM1/p62) and autophagy-related protein-7 (Atg7) were examined by Western blotting. Glucagon like-peptide-1 (GLP-1) level and insulin secretion were measured by ELISA. GLP-1 level in plasma was decreased in obese mice, which was elevated by dipeptidyl peptidase-4 inhibitor MK-626. In the islets of obese mice, phosphorylation of mTOR, ratio of LC3B I and LC3B II, and level of p62 were elevated and the expression of Atg7 and insulin secretion were reduced compared to those of C57BL/6 mice. However, such effects were reversed by MK-626. Autophagy activator rapamycin stimulated insulin secretion in obese mice but autophagy inhibitor chloroquine treatment inhibited insulin secretion in obese mice administrated by MK-626. Furthermore, the beneficial effects of MK-626 were inhibited by GLP-1 receptor antagonist exendin 9-39. The present study reveals the activation of autophagy to mediate the anti-diabetic effect of GLP-1.

  15. Crystal structure of the flagellar accessory protein FlaH of Methanocaldococcus jannaschii suggests a regulatory role in archaeal flagellum assembly.

    Science.gov (United States)

    Meshcheryakov, Vladimir A; Wolf, Matthias

    2016-06-01

    Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA-like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP-however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH-FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA-binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC-like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly. PMID:27060465

  16. The efficiency of human cytomegalovirus pp65(495-503) CD8+ T cell epitope generation is determined by the balanced activities of cytosolic and endoplasmic reticulum-resident peptidases.

    Science.gov (United States)

    Urban, Sabrina; Textoris-Taube, Kathrin; Reimann, Barbara; Janek, Katharina; Dannenberg, Tanja; Ebstein, Frédéric; Seifert, Christin; Zhao, Fang; Kessler, Jan H; Halenius, Anne; Henklein, Petra; Paschke, Julia; Cadel, Sandrine; Bernhard, Helga; Ossendorp, Ferry; Foulon, Thierry; Schadendorf, Dirk; Paschen, Annette; Seifert, Ulrike

    2012-07-15

    Control of human CMV (HCMV) infection depends on the cytotoxic activity of CD8(+) CTLs. The HCMV phosphoprotein (pp)65 is a major CTL target Ag and pp65(495-503) is an immunodominant CTL epitope in infected HLA-A*0201 individuals. As immunodominance is strongly determined by the surface abundance of the specific epitope, we asked for the components of the cellular Ag processing machinery determining the efficacy of pp65(495-503) generation, in particular, for the proteasome, cytosolic peptidases, and endoplasmic reticulum (ER)-resident peptidases. In vitro Ag processing experiments revealed that standard proteasomes and immunoproteasomes generate the minimal 9-mer peptide epitope as well as N-terminal elongated epitope precursors of different lengths. These peptides are largely degraded by the cytosolic peptidases leucine aminopeptidase and tripeptidyl peptidase II, as evidenced by increased pp65(495-503) epitope presentation after leucine aminopeptidase and tripeptidyl peptidase II knockdown. Additionally, with prolyl oligopeptidase and aminopeptidase B we identified two new Ag processing machinery components, which by destroying the pp65(495-503) epitope limit the availability of the specific peptide pool. In contrast to cytosolic peptidases, silencing of ER aminopeptidases 1 and 2 strongly impaired pp65(495-503)-specific T cell activation, indicating the importance of ER aminopeptidases in pp65(495-503) generation. Thus, cytosolic peptidases primarily interfere with the generation of the pp65(495-503) epitope, whereas ER-resident aminopeptidases enhance such generation. As a consequence, our experiments reveal that the combination of cytosolic and ER-resident peptidase activities strongly shape the pool of specific antigenic peptides and thus modulate MHC class I epitope presentation efficiency. PMID:22706083

  17. Signal Peptidase Cleavage at the Flavivirus C-prM Junction: Dependence on the Viral NS2B-3 Protease for Efficient Processing Requires Determinants in C, the Signal Peptide, and prM

    OpenAIRE

    Stocks, C. E.; Lobigs, M

    1998-01-01

    Signal peptidase cleavage at the C-prM junction in the flavivirus structural polyprotein is inefficient in the absence of the cytoplasmic viral protease, which catalyzes cleavage at the COOH terminus of the C protein. The signal peptidase cleavage occurs efficiently in circumstances where the C protein is deleted or if the viral protease complex is present. In this study, we used cDNA of Murray Valley encephalitis virus (MVE) to examine features of the structural polyprotein which allow this ...

  18. CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources

    Directory of Open Access Journals (Sweden)

    Lucchetti-Miganeh Céline

    2010-03-01

    Full Text Available Abstract Background The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. Description The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total. CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments. Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools". The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. Conclusions With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten.

  19. Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands.

    Science.gov (United States)

    Hartmann, Martin; Lee, Sangwon; Hallam, Steven J; Mohn, William W

    2009-12-01

    Disturbances caused by timber harvesting have critical long-term effects on the forest soil microbiota and alter fundamental ecosystem services provided by these communities. This study assessed the effects of organic matter removal and soil compaction on microbial community structures in different soil horizons 13 years after timber harvesting at the long-term soil productivity site at Skulow Lake, British Columbia. A harvested stand was compared with an unmanaged forest stand. Ribosomal intergenic spacer profiles of bacteria, archaea and eukarya indicated significantly different community structures in the upper three soil horizons of the two stands, with differences decreasing with depth. Large-scale sequencing of the ribosomal intergenic spacers coupled to small-subunit ribosomal RNA genes allowed taxonomic identification of major microbial phylotypes affected by harvesting or varying among soil horizons. Actinobacteria and Gemmatimonadetes were the predominant phylotypes in the bacterial profiles, with the relative abundance of these groups highest in the unmanaged stand, particularly in the deeper soil horizons. Predominant eukaryal phylotypes were mainly assigned to known mycorrhizal and saprotrophic species of Basidiomycetes and Ascomycetes. Harvesting affected Basidiomycetes to a minor degree but had stronger effects on some Ascomycetes. Archaeal profiles had low diversity with only a few predominant crenarchaeal phylotypes whose abundance appeared to increase with depth. Detection of these effects 13 years after harvesting may indicate a long-term change in processes mediated by the microbial community with important consequences for forest productivity. These effects warrant more comprehensive investigation of the effects of harvesting on the structure of forest soil microbial communities and the functional consequences. PMID:19659501

  20. Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars.

    Science.gov (United States)

    La Duc, Myron T; Vaishampayan, Parag; Nilsson, Henrik R; Torok, Tamas; Venkateswaran, Kasthuri

    2012-08-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.

  1. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  2. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California).

    Science.gov (United States)

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-08-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the 'BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel 'ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  3. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  4. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Science.gov (United States)

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M.; Fields, Matthew W.

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  5. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    Kara Bowen De León

    2013-11-01

    Full Text Available The Heart Lake Geyser Basin (HLGB is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5 hot springs with varying temperatures (44°C, 63°C, 75°C. The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44°C and 63°C springs and a hyperthermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  6. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    OpenAIRE

    Kara Bowen De León; Robin eGerlach; Peyton, Brent M.; Matthew W Fields

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatur...

  7. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean

    OpenAIRE

    Sintes, Eva; Bergauer, Kristin; de Corte, Daniele; Yokokawa, Taichi; Herndl, Gerhard J.

    2013-01-01

    Mesophilic ammonia-oxidizing Archaea (AOA) are abundant in a diverse range of marine environments, including the deep ocean, as revealed by the quantification of the archaeal amoA gene encoding the alpha-subunit of the ammonia monooxygenase. Using two different amoA primer sets, two distinct ecotypes of marine Crenarchaeota Group I (MCGI) were detected in the waters of the tropical Atlantic and the coastal Arctic. The HAC-AOA ecotype (high ammonia concentration AOA) was ≍ 8000 times and 15 ti...

  8. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution

    DEFF Research Database (Denmark)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka;

    2012-01-01

    additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter...... thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared...... between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes...

  9. Expression of Recombinant pET22b-LysK-Cysteine/Histidine-Dependent Amidohydrolase/Peptidase Bacteriophage Therapeutic Protein in Escherichia coli BL21 (DE3)

    OpenAIRE

    Kashani, Hamed Haddad; Moniri, Rezvan

    2015-01-01

    Objectives Bacteriophage-encoded endolysins are a group of enzymes that act by digesting the peptidoglycan of bacterial cell walls. LysK has been reported to lyse live staphylococcal cultures. LysK proteins containing only the cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain has the capability to show lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to clone and express LysK...

  10. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    Directory of Open Access Journals (Sweden)

    Suman RK

    2016-08-01

    Full Text Available Rajesh Kumar Suman,1 Ipseeta Ray Mohanty,1 Ujwala Maheshwari,2 Manjusha K Borde,1 YA Deshmukh1 1Department of Pharmacology, 2Department of Pathology, MGM Medical College, Kamothe, Navi Mumbai, India Background: Mangiferin (MNG is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome.Objective: The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component.Material and methods: Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg at week three (high-fat diabetic control group. After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week.Results: The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin. In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein. Reduction in serum dipeptidyl peptidase--IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function.Conclusion: The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with

  11. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Mark W Robinson

    Full Text Available BACKGROUND: The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3, liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that FhCL1, FhCL2 and FhCL3 exhibit differences in their kinetic parameters towards a range of peptide substrates. Uniquely, FhCL2 and FhCL3 readily cleave substrates with Pro in the P2 position and peptide substrates mimicking the repeating Gly-Pro-Xaa motifs that occur within the primary sequence of collagen. FhCL1, FhCL2 and FhCL3 hydrolysed native type I and II collagen at neutral pH but while FhCL1 cleaved only non-collagenous (NC, non-Gly-X-Y domains FhCL2 and FhCL3 exhibited collagenase activity by cleaving at multiple sites within the α1 and α2 triple helix regions (Col domains. Molecular simulations created for FhCL1, FhCL2 and FhCL3 complexed to various seven-residue peptides supports the idea that Trp67 and Tyr67 in the S2 subsite of the active sites of FhCL3 and FhCL2, respectively, are critical to conferring the unique collagenase-like activity to these enzymes by accommodating either Gly or Pro residues at P2 in the substrate. The data also suggests that FhCL3 accommodates hydroxyproline (Hyp-Gly at P3-P2 better than FhCL2 explaining the observed greater ability of FhCL3 to digest type I and II collagens compared to FhCL2 and why these enzymes cleave at different positions within the Col domains. CONCLUSIONS/SIGNIFICANCE: These studies further our understanding of how this helminth parasite regulates peptidase expression to ensure infection, migration and establishment in host tissues.

  12. Evaluation of 16S rRNA Gene Primer Pairs for Monitoring Microbial Community Structures Showed High Reproducibility within and Low Comparability between Datasets Generated with Multiple Archaeal and Bacterial Primer Pairs.

    Science.gov (United States)

    Fischer, Martin A; Güllert, Simon; Neulinger, Sven C; Streit, Wolfgang R; Schmitz, Ruth A

    2016-01-01

    The application of next-generation sequencing technology in microbial community analysis increased our knowledge and understanding of the complexity and diversity of a variety of ecosystems. In contrast to Bacteria, the archaeal domain was often not particularly addressed in the analysis of microbial communities. Consequently, established primers specifically amplifying the archaeal 16S ribosomal gene region are scarce compared to the variety of primers targeting bacterial sequences. In this study, we aimed to validate archaeal primers suitable for high throughput next generation sequencing. Three archaeal 16S primer pairs as well as two bacterial and one general microbial 16S primer pairs were comprehensively tested by in-silico evaluation and performing an experimental analysis of a complex microbial community of a biogas reactor. The results obtained clearly demonstrate that comparability of community profiles established using different primer pairs is difficult. 16S rRNA gene data derived from a shotgun metagenome of the same reactor sample added an additional perspective on the community structure. Furthermore, in-silico evaluation of primers, especially those for amplification of archaeal 16S rRNA gene regions, does not necessarily reflect the results obtained in experimental approaches. In the latter, archaeal primer pair ArchV34 showed the highest similarity to the archaeal community structure compared to observed by the metagenomic approach and thus appears to be the appropriate for analyzing archaeal communities in biogas reactors. However, a disadvantage of this primer pair was its low specificity for the archaeal domain in the experimental application leading to high amounts of bacterial sequences within the dataset. Overall our results indicate a rather limited comparability between community structures investigated and determined using different primer pairs as well as between metagenome and 16S rRNA gene amplicon based community structure analysis

  13. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Forterre, Patrick; Prangishvili, David; Krupovic, Mart; Koonin, Eugene V

    2014-09-01

    Microbial genomes encompass a sizable fraction of poorly characterized, narrowly spread fast-evolving genes. Using sensitive methods for sequences comparison and protein structure prediction, we performed a detailed comparative analysis of clusters of such genes, which we denote "dark matter islands", in archaeal genomes. The dark matter islands comprise up to 20% of archaeal genomes and show remarkable heterogeneity and diversity. Nevertheless, three classes of entities are common in these genomic loci: (a) integrated viral genomes and other mobile elements; (b) defense systems, and (c) secretory and other membrane-associated systems. The dark matter islands in the genome of thermophiles and mesophiles show similar general trends of gene content, but thermophiles are substantially enriched in predicted membrane proteins whereas mesophiles have a greater proportion of recognizable mobile elements. Based on this analysis, we predict the existence of several novel groups of viruses and mobile elements, previously unnoticed variants of CRISPR-Cas immune systems, and new secretory systems that might be involved in stress response, intermicrobial conflicts and biogenesis of novel, uncharacterized membrane structures.

  14. Temperature and pH dependence of DNA ejection from archaeal lemon-shaped virus His1.

    Science.gov (United States)

    Hanhijärvi, K J; Ziedaite, G; Hæggström, E; Bamford, D H

    2016-07-01

    The archaeal virus His1 isolated from a hypersaline environment infects an extremely halophilic archaeon Haloarcula hispanica. His1 features a lemon-shaped capsid, which is so far found only in archaeal viruses. This unique capsid can withstand high salt concentrations, and can transform into a helical tube, which in turn is resistant to extremely harsh conditions. Hypersaline environments exhibit a wide range of temperatures and pH conditions, which present an extra challenge to their inhabitants. We investigated the influence of pH and temperature on DNA ejection from His1 virus using single-molecule fluorescence experiments. The observed number of ejecting viruses is constant in pH 5 to 9, while the ejection process is suppressed at pH below 5. Similarly, the number of ejections within 15-42 °C shows only a minor increase around 25-37 °C. The maximum velocity of single ejected DNA increases with temperature, in qualitative agreement with the continuum model of dsDNA ejection. PMID:26820561

  15. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    International Nuclear Information System (INIS)

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  16. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes.

    Science.gov (United States)

    Costa, Danielle Cristina Machado; Vermelho, Alane Beatriz; Almeida, Catia Amancio; de Souza Dias, Edilma Paraguai; Cedrola, Sabrina Martins Lage; Arrigoni-Blank, Maria de Fátima; Blank, Arie Fitzgerald; Alviano, Celuta Sales; Alviano, Daniela Sales

    2014-02-01

    Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.

  17. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  18. Economic Impact of Combining Metformin with Dipeptidyl Peptidase-4 Inhibitors in Diabetic Patients with Renal Impairment in Spanish Patients

    Directory of Open Access Journals (Sweden)

    Antoni Sicras-Mainar

    2015-02-01

    Full Text Available BackgroundTo evaluate resource use and health costs due to the combination of metformin and dipeptidyl peptidase-4 (DPP-4 inhibitors in patients with diabetes and renal impairment in routine clinical practice.MethodsAn observational, retrospective study was performed. Patients aged ≥30 years treated with metformin who initiated a second oral antidiabetic treatment in 2009 to 2010 were included. Two groups of patients were analysed: metformin+DPP-4 inhibitors and other oral antidiabetics. The main measures were: compliance, persistence, metabolic control (glycosylated hemoglobin< 7% and complications (hypoglycemia, cardiovascular events and total costs. Patients were followed up for 2 years.ResultsWe included 395 patients, mean age 70.2 years, 56.5% male: 135 patients received metformin+DPP-4 inhibitors and 260 patients received metformin+other oral antidiabetics. Patients receiving DPP-4 inhibitors showed better compliance (66.0% vs. 60.1%, persistence (57.6% vs. 50.0%, and metabolic control (63.9% vs. 57.3%, respectively, compared with those receiving other oral antidiabetics (P<0.05, and also had a lower rate of hypoglycemia (20.0% vs. 47.7% and lower total costs (€ 2,486 vs. € 3,002, P=0.001.ConclusionDespite the limitations of the study, patients with renal impairment treated with DPP-4 inhibitors had better metabolic control, lower rates (association of hypoglycaemia, and lower health costs for the Spanish national health system.

  19. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate.

    Science.gov (United States)

    Rout, Subhashree; Mahapatra, Rajani Kanta

    2016-08-01

    M17 LAP (Leucine Amino Peptidase) plays an important role in the hydrolysis of amino acids essential for growth and development of Plasmodium vivax (Pv), the pathogen causing malaria. In this paper a homology model of PvLAP was generated using MODELLER v9.15. From different in-silico methods such as structure based, ligand based and de novo drug designing a total of 90 compounds were selected for docking studies. A final list of 10 compounds was prepared. The study reported the identification of 2-[(3-azaniumyl-2-hydroxy-4-phenylbutanoyl) amino]-4-methylpentanoate as the best inhibitor in terms of docking score and pharmacophoric features. The reliability of the binding mode of the inhibitor is confirmed by molecular dynamics (MD) simulation study with GROMACS software for a simulation time of 20ns in water environment. Finally, in silico ADMET analysis of the inhibitors using MedChem Designer v3 evaluated the drug likeness of the best hits to be considered for industrial pharmaceutical research.

  20. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors.

    Science.gov (United States)

    Fanfrlík, Jindřich; Brahmkshatriya, Pathik S; Řezáč, Jan; Jílková, Adéla; Horn, Martin; Mareš, Michael; Hobza, Pavel; Lepšík, Martin

    2013-12-01

    The quantum mechanics (QM)-based scoring function that we previously developed for the description of noncovalent binding in protein-ligand complexes has been modified and extended to treat covalent binding of inhibitory ligands. The enhancements are (i) the description of the covalent bond breakage and formation using hybrid QM/semiempirical QM (QM/SQM) restrained optimizations and (ii) the addition of the new ΔG(cov)' term to the noncovalent score, describing the "free" energy difference between the covalent and noncovalent complexes. This enhanced QM-based scoring function is applied to a series of 20 vinyl sulfone-based inhibitory compounds inactivating the cysteine peptidase cathepsin B1 of the Schistosoma mansoni parasite (SmCB1). The available X-ray structure of the SmCB1 in complex with a potent vinyl sulfone inhibitor K11017 is used as a template to build the other covalently bound complexes and to model the derived noncovalent complexes. We present the correlation of the covalent score and its constituents with the experimental binding data. Four outliers are identified. They contain bulky R1' substituents structurally divergent from the template, which might induce larger protein rearrangements than could be accurately modeled. In summary, we propose a new computational approach and an optimal protocol for the rapid evaluation and prospective design of covalent inhibitors with a conserved binding mode. PMID:24195769

  1. Association between kallikrein-related peptidases (KLKs) and macroscopic indicators of semen analysis: their relation to sperm motility.

    Science.gov (United States)

    Emami, Nashmil; Scorilas, Andreas; Soosaipillai, Antoninus; Earle, Tammy; Mullen, Brendan; Diamandis, Eleftherios P

    2009-09-01

    Human kallikrein-related peptidases (KLKs) are a family of proteases, the majority of which are found in seminal plasma and have been implicated in semen liquefaction. Here, we examined the clinical value of seminal KLKs in the evaluation of semen quality and differential diagnosis and etiology of abnormal liquefaction and/or viscosity. KLK1-3, 5-8, 10, 11, 13, and 14 were analyzed, using highly specific ELISA assays. Samples were categorized into four clinical groups, according to their state of liquefaction and viscosity. Data were compared between the clinical groups and in association with other parameters of sperm quality, including number of motile sperms, straight line speed, sperm concentration, volume, pH, and patient age. Seminal KLKs were found to be differentially expressed in the four clinical groups. Combination of KLK2, 3, 13, and 14 and KLK1, 2, 5, 6, 7, 8, 10, 13, and 14 showed very strong discriminatory potential for semen liquefaction and viscosity, respectively. Liquefaction state was associated with several parameters of sperm motility. Finally, KLK14 was differentially expressed in asthenospermic cases. In conclusion, the expression level of several seminal plasma KLKs correlates with liquefaction and viscosity indicators of semen quality and may aid in their differential diagnosis and etiology. PMID:19558318

  2. Kallikrein-related peptidases in cancers of gastrointestinal tract: an inside view of their role and clinical significance.

    Science.gov (United States)

    Linardoutsos, Dimitrios; Gazouli, Maria; Machairas, Anastasios; Bramis, Ioannis; Zografos, Georgios C

    2014-01-01

    Human tissue kallikrein (KLK1) and is related peptidases (KLK2-KLK15) are a family of 15 homologous serine proteases, participating in numerous processes of normal physiology. Considering the irreversible impact of proteases on substrates, the tissue-dependent regulation of KLKs activity becomes crucial for their beneficial role in normal homeostasis. Moreover, KLKs expression is strongly regulated at the transcriptional and post-transcriptional level by steroid hormones and miRNAs, respectively. Deregulation of KLKs expression, secretion and/or activation has been observed in most human malignancies and there is a trend to identify their role in the multi-complex process of cancer development. The identification of extracellular matrix (ECM) proteins, cell-surface receptors, cell-surface adhesion molecules and growth factors among substrates, clearly support the driving role of KLK abnormal expression and function during tumorigenesis and cancer progression. KLKs have also clinical utility in cancer diagnosis and monitoring like KLK 3 (PSA) in prostate cancer. In this review, we tried to summarize the existing literature about the role of KLKs in gastrointestinal cancers as well as to emphasize their clinical significance for patients' prognosis.

  3. Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family

    Directory of Open Access Journals (Sweden)

    Chaikuad Apirat

    2012-06-01

    Full Text Available Abstract Backround Aspartyl aminopeptidase (DNPEP, with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.

  4. Dipeptidyl Peptidase 4 Inhibition May Facilitate Healing of Chronic Foot Ulcers in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Raffaele Marfella

    2012-01-01

    Full Text Available The pathophysiology of chronic diabetic ulcers is complex and still incompletely understood, both micro- and macroangiopathy strongly contribute to the development and delayed healing of diabetic wounds, through an impaired tissue feeding and response to ischemia. With adequate treatment, some ulcers may last only weeks; however, many ulcers are difficult to treat and may last months, in certain cases years; 19–35% of ulcers are reported as nonhealing. As no efficient therapy is available, it is a high priority to develop new strategies for treatment of this devastating complication. Because experimental and pathological studies suggest that incretin hormone glucagon-like peptide-1 may improves VEGF generation and promote the upregulation of HIF-1α through a reduction of oxidative stress, the study evaluated the effect of the augmentation of GLP-1, by inhibitors of the dipeptidyl peptidase-4, such as vildagliptin, on angiogenesis process and wound healing in diabetic chronic ulcers. Although elucidation of the pathophysiologic importance of these aspects awaits further confirmations, the present study evidences an additional aspect of how DPP-4 inhibition might contribute to improved ulcer outcome.

  5. Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes.

    Science.gov (United States)

    Marfella, Raffaele; Sasso, Ferdinando Carlo; Rizzo, Maria Rosaria; Paolisso, Pasquale; Barbieri, Michelangela; Padovano, Vincenzo; Carbonara, Ornella; Gualdiero, Pasquale; Petronella, Pasquale; Ferraraccio, Franca; Petrella, Antonello; Canonico, Raffaele; Campitiello, Ferdinando; Della Corte, Angela; Paolisso, Giuseppe; Canonico, Silvestro

    2012-01-01

    The pathophysiology of chronic diabetic ulcers is complex and still incompletely understood, both micro- and macroangiopathy strongly contribute to the development and delayed healing of diabetic wounds, through an impaired tissue feeding and response to ischemia. With adequate treatment, some ulcers may last only weeks; however, many ulcers are difficult to treat and may last months, in certain cases years; 19-35% of ulcers are reported as nonhealing. As no efficient therapy is available, it is a high priority to develop new strategies for treatment of this devastating complication. Because experimental and pathological studies suggest that incretin hormone glucagon-like peptide-1 may improves VEGF generation and promote the upregulation of HIF-1α through a reduction of oxidative stress, the study evaluated the effect of the augmentation of GLP-1, by inhibitors of the dipeptidyl peptidase-4, such as vildagliptin, on angiogenesis process and wound healing in diabetic chronic ulcers. Although elucidation of the pathophysiologic importance of these aspects awaits further confirmations, the present study evidences an additional aspect of how DPP-4 inhibition might contribute to improved ulcer outcome.

  6. Dual Targeting of a Processing Peptidase into Both Endosymbiotic Organelles Mediated by a Transport Signal of Unusual Architecture

    Institute of Scientific and Technical Information of China (English)

    Bianca Baudisch; Ralf Bernd Kl(o)sgen

    2012-01-01

    As a result of the endosymbiotic gene transfer,the majority of proteins of mitochondria and chloroplasts are encoded in the nucleus and synthesized in the cytosol as precursor proteins carrying N-terminal transport signals for the 're-import' into the respective target organelle.Most of these transport signals are monospecific,although some of them have dual targeting properties,that is,they are recognized both by mitochondria and by chloroplasts as target organelles.We have identified alpha-MPP2,one of the two isoforms of the substrate binding subunit of mitochondrial processing peptidase ofArabidopsis thaliana,as a novel member of this class of nuclear-encoded organelle proteins.As demonstrated by in organello transport experiments with isolated organelles and by in vivo localization studies employing fluorescent chimeric reporter proteins,the N-terminal region of the alpha-MPP2 precursor comprises transport signals for the import into mitochondria as well as into chloroplasts.Both signals are found within the N-terminal 79 residues of the precursor protein,where they occupy partly separated and partly overlapping regions.Deletion mapping combined with in organello and in vivo protein transport studies demonstrate an unusual architecture of this transport signal,suggesting a composition of three functionally separated domains.

  7. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) harms (Bromeliaceae).

    Science.gov (United States)

    López, L M; Sequeiros, C; Natalucci, C L; Brullo, A; Maras, B; Barra, D; Caffini, N O

    2000-03-01

    A new papain-like cysteine peptidase isolated from fruits of Pseudananas macrodontes (Morr.) Harms, a species closely related to pineapple (Ananas comosus L.), has been purified and characterized. The enzyme, named macrodontain I, is the main proteolytic component present in fruit extracts and was purified by acetone fractionation followed by anion-exchange chromatography. Separation was improved by selecting both an adequate pH value and a narrow saline gradient. Optimum pH range (more than 90% of maximum activity with casein) was achieved at pH 6.1-8.5. Homogeneity of the enzyme was confirmed by bidimensional electrophoresis and mass spectroscopy (MS). Molecular mass of the enzyme was 23,459 (MS) and its isoelectric point was 6.1. The alanine, glutamine, and tyrosine derivatives were strongly preferred when the enzyme was assayed on N-alpha-CBZ-l-amino acid p-nitrophenyl esters. The N-terminal sequence of macrodontain (by comparison with the N-terminus of 30 plant proteases with more than 50% homology) showed a great deal of sequence similarity to the other pineapple-stem-derived cysteine endopeptidases, being 85.7, 85. 2, and 77.8% identical to comosain, stem bromelain, and ananain, respectively. It seems clear that the Bromeliaceae endopeptidases are more closely related to each other than to other members of the papain family, suggesting relatively recent divergence. PMID:10686143

  8. Novel water-soluble prodrugs of acyclovir cleavable by the dipeptidyl-peptidase IV (DPP IV/CD26) enzyme.

    Science.gov (United States)

    Diez-Torrubia, Alberto; Cabrera, Silvia; de Castro, Sonia; García-Aparicio, Carlos; Mulder, Gwenn; De Meester, Ingrid; Camarasa, María-José; Balzarini, Jan; Velázquez, Sonsoles

    2013-01-01

    We herein report for the first time the successful use of the dipeptidyl peptidase IV (DPPIV/CD26) prodrug approach to guanine derivatives such as the antiviral acyclovir (ACV). The solution- and solid-phase synthesis of the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of acyclovir are reported. The synthesis of the demanding tetrapeptide amide prodrug of ACV 3 was first established in solution and successfully transferred onto solid support by using Ellman's dihydropyran (DHP) resin. In contrast with the valyl ester prodrug (valacyclovir, VACV), the tetrapeptide amide prodrug 3 and the tripeptide ester conjugate 4 of ACV proved fully stable in PBS. Both prodrugs converted to VACV (for 4) or ACV (for 3) upon exposure to purified DPPIV/CD26 or human or bovine serum. Vildagliptin, a potent inhibitor of DPPIV/CD26 efficiently inhibited the DPPIV/CD26-catalysed hydrolysis reaction. Both amide and ester prodrugs of ACV showed pronounced anti-herpetic activity in cell culture and significantly improved the water solubility in comparison with the parent drug.

  9. Development and validation of a simple cell-based fluorescence assay for dipeptidyl peptidase 1 (DPP1) activity.

    Science.gov (United States)

    Thong, Bob; Pilling, James; Ainscow, Edward; Beri, Raj; Unitt, John

    2011-01-01

    Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.

  10. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes.

    Science.gov (United States)

    Stefanova, Katerina; Tomova, Iva; Tomova, Anna; Radchenkova, Nadja; Atanassov, Ivan; Kambourova, Margarita

    2015-12-01

    Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)].

  11. Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: Implications for GDGT-based proxies in saline high mountain lakes

    NARCIS (Netherlands)

    Günther, F.; Thiele, A.; Gleixner, G.; Xu, B.Q.; Yao, T.; Schouten, S.

    2014-01-01

    Bacterial and archaeal lipids, such as glycerol dialkyl glycerol tetraethers (GDGTs) and dialkyl glycerol diethers, are increasingly used as proxies for specific environmental parameters, such as air temperature and soil pH in lacustrine environments. Little is known, however, about the distribution

  12. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls

    NARCIS (Netherlands)

    Panyakaew, P.; Boon, N.; Goel, G.; Yuangklang, C.; Schonewille, J.T.; Hendriks, W.H.; Fievez, V.

    2013-01-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rum

  13. The influence of different land uses on the structure of archaeal communities in Amazonian anthrosols based on 16S rRNA and amoA genes.

    Science.gov (United States)

    Taketani, Rodrigo Gouvêa; Tsai, Siu Mui

    2010-05-01

    Soil from the Amazonian region is usually regarded as unsuitable for agriculture because of its low organic matter content and low pH; however, this region also contains extremely rich soil, the Terra Preta Anthrosol. A diverse archaeal community usually inhabits acidic soils, such as those found in the Amazon. Therefore, we hypothesized that this community should be sensitive to changes in the environment. Here, the archaeal community composition of Terra Preta and adjacent soil was examined in four different sites in the Brazilian Amazon under different anthropic activities. The canonical correspondence analysis of terminal restriction fragment length polymorphisms has shown that the archaeal community structure was mostly influenced by soil attributes that differentiate the Terra Preta from the adjacent soil (i.e., pH, sulfur, and organic matter). Archaeal 16S rRNA gene clone libraries indicated that the two most abundant genera in both soils were Candidatus nitrosphaera and Canditatus nitrosocaldus. An ammonia monoxygenase gene (amoA) clone library analysis indicated that, within each site, there was no significant difference between the clone libraries of Terra Preta and adjacent soils. However, these clone libraries indicated there were significant differences between sites. Quantitative PCR has shown that Terra Preta soils subjected to agriculture displayed a higher number of amoA gene copy numbers than in adjacent soils. On the other hand, soils that were not subjected to agriculture did not display significant differences on amoA gene copy numbers between Terra Preta and adjacent soils. Taken together, our findings indicate that the overall archaeal community structure in these Amazonian soils is determined by the soil type and the current land use. PMID:20204349

  14. Variability in abundance of the Bacterial and Archaeal 16S rRNA and amoA genes in water columns of northern South China Sea

    Science.gov (United States)

    Liu, H.; Yang, C.; Chen, S.; Xie, W.; Wang, P.; Zhang, C. L.

    2014-12-01

    Recent advances in marine microbial ecology have shown that ammonia-oxidizing Archaea (AOA) are more abundant than ammonia-oxidizing bacteria (AOB), although total Bacteria are more abundant than total Archaea in marine environments. This study aimed to examine the spatial distribution and abundance of planktonic archaeal and bacterial 16S rRNA- and amoA genes in the northern South China Sea. Water samples were collected at different depths at six stations (maximum depth ranging from 1800 m to 3200 m)with four stations (B2, B3, B6, B7) located along a transect from the northeastern continental slope to the Bashi Strait and the other two (D3, D5) located southwest of this transect. Quantitative PCR of the 16S rRNA- and amoA genes was used to estimate the abundances of total Archaea, total Bacteria, and AOA and AOB, respectively. At the B series stations, the abundance of bacterial 16S rRNA gene was twofold to 36fold higher than that of the archaeal 16S rRNA gene while fivefold lower to sixfold higher at the two D stations, with both genes showing peak values slightly below sea surface (5-75 m depths) at all stations. The archaeal amoA gene had similar variations with the archaeal 16S rRNA gene, but was 1-4 orders of magnitude lower than the archaeal 16S rRNA gene at all stations. Bacterial amoA gene was below the detection at all stations. Our results also show the difference in depth profiles among these stations, which may be caused by the difference in water movement between these regions. The non-detection of bacterial amoA gene indicates that ammonia-oxidizing Archaea are the dominant group of microorganisms in nitrification of the South China Sea, which is consistent with observations in other oceans.

  15. Preliminary crystallography confirms that the archaeal DNA-binding and tryptophan-sensing regulator TrpY is a dimer.

    Science.gov (United States)

    Cafasso, Jacquelyn; Manjasetty, Babu A; Karr, Elizabeth A; Sandman, Kathleen; Chance, Mark R; Reeve, John N

    2010-11-01

    TrpY regulates the transcription of the metabolically expensive tryptophan-biosynthetic operon in the thermophilic archaeon Methanothermobacter thermautotrophicus. TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P4(3)2(1)2 or P4(1)2(1)2, with unit-cell parameters a = b = 87, c = 147 Å, and diffracted to 2.9 Å resolution. The possible packing of molecules within the cell based on the values of the Matthews coefficient (V(M)) and analysis of the self-rotation function are consistent with the asymmetric unit being a dimer. Determining the structure of TrpY in detail will provide insight into the mechanisms of DNA binding, tryptophan sensing and transcription regulation at high temperature by this novel archaeal protein. PMID:21045304

  16. Preliminary Crystallography Confirms that the Archaeal DNA-binding and Tryptophan-sensing Regulator TrpY is a Dimer

    Energy Technology Data Exchange (ETDEWEB)

    J Cafasso; B Manjasetty; E Karr; K Sandman; M Chance; J Reeve

    2011-12-31

    TrpY regulates the transcription of the metabolically expensive tryptophan-biosynthetic operon in the thermophilic archaeon Methanothermobacter thermautotrophicus. TrpY was crystallized using the hanging-drop method with ammonium sulfate as the precipitant. The crystals belonged to the tetragonal space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 87, c = 147 {angstrom}, and diffracted to 2.9 {angstrom} resolution. The possible packing of molecules within the cell based on the values of the Matthews coefficient (V{sub M}) and analysis of the self-rotation function are consistent with the asymmetric unit being a dimer. Determining the structure of TrpY in detail will provide insight into the mechanisms of DNA binding, tryptophan sensing and transcription regulation at high temperature by this novel archaeal protein.

  17. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication

    DEFF Research Database (Denmark)

    Oke, Muse; Kerou, Melina; Liu, Huanting;

    2011-01-01

    The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a...... active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely...... positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral...

  18. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico.

    Science.gov (United States)

    Newell, Silvia E; Eveillard, Damien; McCarthy, Mark J; Gardner, Wayne S; Liu, Zhanfei; Ward, Bess B

    2014-02-01

    The Gulf of Mexico is affected by hurricanes and suffers seasonal hypoxia. The Deepwater Horizon oil spill impacted every trophic level in the coastal region. Despite their importance in bioremediation and biogeochemical cycles, it is difficult to predict the responses of microbial communities to physical and anthropogenic disturbances. Here, we quantify sediment ammonia-oxidizing archaeal (AOA) community diversity, resistance and resilience, and important geochemical factors after major hurricanes and the oil spill. Dominant AOA archetypes correlated with different geochemical factors, suggesting that different AOA are constrained by distinct parameters. Diversity was lowest after the hurricanes, showing weak resistance to physical disturbances. However, diversity was highest during the oil spill and coincided with a community shift, suggesting a new alternative stable state sustained for at least 1 year. The new AOA community was not significantly different from that at the spill site 1 year after the spill. This sustained shift in nitrifier community structure may be a result of oil exposure. PMID:24596268

  19. Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry

    DEFF Research Database (Denmark)

    Inskeep, William P; Jay, Zackary J; Herrgard, Markus;

    2013-01-01

    Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high......-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.......4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40-45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and...

  20. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV

    Indian Academy of Sciences (India)

    Hansel Gómez; Mae Chappé; Pedroa Valiente; Tirso Pons; Marí­a de Los Angeles Chávez; Jean-Louis Charli; Isel Pascual

    2013-09-01

    Dipeptidyl peptidase IV (DPP-IV) is an ectopeptidase with many roles, and a target of therapies for different pathologies. Zinc and calcium produce mixed inhibition of porcine DPP-IV activity. To investigate whether these results may be generalized to mammalian DPP-IV orthologues, we purified the intact membrane-bound form from rat kidney. Rat DPP-IV hydrolysed Gly-Pro--nitroanilide with an average Vmax of 0.86±0.01 mol min–1mL–1 and KM of 76±6 M. The enzyme was inhibited by the DPP-IV family inhibitor L-threo-Ile-thiazolidide (Ki=64.0±0.53 nM), competitively inhibited by bacitracin (Ki=0.16±0.01 mM) and bestatin (Ki=0.23±0.02 mM), and irreversibly inhibited by TLCK (IC50 value of 1.20±0.11 mM). The enzyme was also inhibited by divalent ions like Zn2+ and Ca2+, for which a mixed inhibition mechanism was observed (Ki values of the competitive component: 0.15±0.01 mM and 50.0±1.05 mM, respectively). According to bioinformatic tools, Ca2+ ions preferentially bound to the -propeller domain of the rat and human enzymes, while Zn2+ ions to the - hydrolase domain; the binding sites were essentially the same that were previously reported for the porcine DPP-IV. These data suggest that the cationic susceptibility of mammalian DPP-IV orthologues involves conserved mechanisms.

  1. Genetic ablation or pharmacological blockade of dipeptidyl peptidase IV does not impact T cell-dependent immune responses

    Directory of Open Access Journals (Sweden)

    Pryor Kellyann

    2009-04-01

    Full Text Available Abstract Background Current literature suggests that dipeptidyl peptidase IV (DPP-IV; CD26 plays an essential role in T-dependent immune responses, a role that could have important clinical consequences. To rigorously define the role of DPP-IV in the immune system, we evaluated genetic and pharmacological inhibition of the enzyme on T-dependent immune responses in vivo. Results The DPP-IV null animals mounted robust primary and secondary antibody responses to the T dependent antigens, 4-hydroxy-3-nitrophenylacetyl-ovalbumin (NP-Ova and 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin (NP-CGG, which were comparable to wild type mice. Serum levels of antigen specific IgM, IgG1, IgG2a, IgG2b and IgG3 were similar between the two groups of animals. DPP-IV null animals mounted an efficient germinal center reaction by day 10 after antigen stimulation that was comparable to wild type mice. Moreover, the antibodies produced by DPP-IV null animals after repeated antigenic challenge were affinity matured. Similar observations were made using wild type animals treated with a highly selective DPP-IV inhibitor during the entire course of the experiments. T cell recall responses to ovalbumin and MOG peptide, evaluated by measuring proliferation and IL-2 release from cells isolated from draining lymph nodes, were equivalent in DPP-IV null and wild type animals. Furthermore, mice treated with DPP-IV inhibitor had intact T-cell recall responses to MOG peptide. In addition, female DPP-IV null and wild type mice treated with DPP-IV inhibitor exhibited normal and robust in vivo cytotoxic T cell responses after challenge with cells expressing the male H-Y minor histocompatibility antigen. Conclusion These data indicate Selective inhibition of DPP-IV does not impair T dependent immune responses to antigenic challenge.

  2. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects.

    Science.gov (United States)

    Rhee, Su-Jin; Choi, YoonJung; Lee, SeungHwan; Oh, Jaeseong; Kim, Sung-Jin; Yoon, Seo Hyun; Cho, Joo-Youn; Yu, Kyung-Sang

    2016-01-01

    Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4) inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO); metformin IR, 1,000 mg bid for 7 days (MET); and the combination of EVO and MET (EVO + MET). After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration-time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval) were 1.06 (1.01-1.12) and 1.02 (0.99-1.06), respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration-time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval) of 0.84 (0.79-0.89) and 0.94 (0.89-0.98), respectively. EVO + MET and EVO had similar DPP-4 inhibition efficacy, but EVO + MET increased active glucagon-like peptide-1 and reduced glucose to larger extents than either EVO or MET alone. Our results suggested that EVO+MET could provide therapeutic benefits without clinically significant pharmacokinetic interactions. Thus, the EVO + MET combination is a promising option for treating type 2 diabetes mellitus. PMID:27570447

  3. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV.

    Science.gov (United States)

    Bower, Allyson M; Real Hernandez, Luis M; Berhow, Mark A; de Mejia, Elvira Gonzalez

    2014-07-01

    Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis), and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims were to characterize and examine extracts from greenhouse-grown or commercially purchased herbs for their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and protein tyrosine phosphatase 1B (PTP1B), enzymes that play a role in insulin secretion and insulin signaling, respectively. Greenhouse herbs contained more polyphenols (302.7-430.1 μg of gallic acid equivalents/mg of dry weight of extract (DWE)) and flavonoids (370.1-661.4 μg of rutin equivalents/mg of DWE) compared to the equivalent commercial herbs. Greenhouse rosemary, Mexican oregano, and marjoram extracts were the best inhibitors of DPP-IV (IC₅₀=16, 29, and 59 μM, respectively). Commercial rosemary, Mexican oregano, and marjoram were the best inhibitors of PTP1B (32.4-40.9% at 500 μM). The phytochemicals eriodictyol, naringenin, hispidulin, cirsimaritin, and carnosol were identified by LC-ESI-MS as being present in greenhouse-grown Mexican oregano and rosemary. Computational modeling indicated that hispidulin, carnosol, and eriodictyol would have the best binding affinities for DPP-IV. Biochemically, the best inhibitors of DPP-IV were cirsimaritin (IC₅₀=0.43±0.07 μM), hispidulin (IC₅₀=0.49±0.06 μM), and naringenin (IC₅₀=2.5±0.29 μM). Overall, herbs contain several flavonoids that inhibit DPP-IV and should be investigated further regarding their potential in diabetes management. PMID:24881464

  4. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2016-05-01

    Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.

  5. Natural dipeptidyl peptidase-IV inhibitor mangiferin mitigates diabetes- and metabolic syndrome-induced changes in experimental rats

    Science.gov (United States)

    Suman, Rajesh Kumar; Mohanty, Ipseeta Ray; Maheshwari, Ujwala; Borde, Manjusha K; Deshmukh, YA

    2016-01-01

    Background Mangiferin (MNG) is known to possess antidiabetic and antioxidant activity. However, there is no experimental evidence presently available in the literature with regard to its ameliorating effects on diabetes mellitus coexisting with metabolic syndrome. Objective The present study was designed to evaluate the protective effects of MNG on various components of metabolic syndrome with diabetes as an essential component. Material and methods Adult Wistar rats were fed high-fat diets for 10 weeks and challenged with streptozotocin (40 mg/kg) at week three (high-fat diabetic control group). After the confirmation of metabolic syndrome in the setting of diabetes, MNG 40 mg/kg was orally fed to these rats from the fourth to tenth week. Results The treatment with MNG showed beneficial effects on various components of metabolic syndrome, such as reduced dyslipidemia (decreased triglyceride, total cholesterol, low-density lipoprotein cholesterol, and increased high-density lipoprotein cholesterol) and diabetes mellitus (reduced blood glucose and glycosylated hemoglobin). In addition, an increase in serum insulin, C-peptide, and homeostasis model assessment-β and a reduction in homeostasis model assessment of insulin resistance-IR were observed in MNG-treated group compared with high-fat diabetic control group. MNG was also found to be cardioprotective (reduction in creatine phosphokinase-MB levels, atherogenic index, high-sensitivity C-reactive protein). Reduction in serum dipeptidyl peptidase–IV levels in the MNG-treated group correlated with improvement in insulin resistance and enhanced β-cell function. Conclusion The present study has demonstrated antidiabetic, hypolipidemic, and cardioprotective effects of MNG in the setting of diabetes with metabolic syndrome. Thus, MNG has the potential to be developed as a natural alternative to synthetic dipeptidyl peptidase-IV inhibitors beneficial in this comorbid condition. PMID:27621658

  6. Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity.

    Science.gov (United States)

    Karl, Tim; Hoffmann, Torsten; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    Dipeptidyl-peptidase IV (DPPIV/CD26) is involved in several physiological functions by cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY(3-36), which lacks affinity for the Y(1) but not for other NPY receptor subtypes. Among other effects, the NPY Y(1) receptor mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking endogenous DPPIV-like activity we found a reduced behavioral stress response, which might be due to a differential degradation of NPY. Here we tested this hypothesis and administered intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding motivation, decreased motor activity in the plus maze and social interaction test, and exerted anxiolytic-like effects. More important for the present hypothesis, NPY administration was found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects (increased social interaction time in the social interaction test) and sedative-like effects (decreased motor activity in the elevated plus maze). These data demonstrate for the first time a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-specificity of NPY, which may result from a differential degradation of NPY in this genetic model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated effects in the central nervous system are modulated by DPPIV-like enzymatic activity. PMID:12957230

  7. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    Science.gov (United States)

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  8. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand

    Science.gov (United States)

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Saokaew, Surasak; Thavorn, Kednapa; Chaiyakunapruk, Nathorn

    2016-01-01

    Background The management of type 2 diabetes mellitus (T2DM) in elderly population poses many challenges. Dipeptidyl peptidase-4 (DPP-4) inhibitors show particular promise due to excellent tolerability profiles, low risk of hypoglycemia, and little effect on body weight. This study evaluated, from the health care system’s perspective, the long-term cost-effectiveness of DPP-4 inhibitor monotherapy vs metformin and sulfonylurea (SFU) monotherapy in Thai elderly T2DM patients. Methods The clinical efficacy was estimated from a systematic review and meta-analysis. Baseline cohort characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. A validated IMS CORE Diabetes Model version 8.5 was used to project clinical and economic outcomes over a lifetime horizon using a 3% annual discount rate. Costs were expressed in 2014 Thai Baht (THB) (US dollar value). Incremental cost-effectiveness ratios were calculated. Base-case assumptions were assessed through several sensitivity analyses. Results For treating elderly T2DM patients, DPP-4 inhibitors were more expensive and less effective, ie, a dominated strategy, than the metformin monotherapy. Compared with SFU, treatment with DPP-4 inhibitors gained 0.031 more quality-adjusted life years (QALYs) at a total cost incurred over THB113,701 or US$3,449.67, resulting in an incremental cost-effectiveness ratio of THB3.63 million or US$110,133.50 per QALY. At the acceptable Thai ceiling threshold of THB160,000/QALY (US$4,854.37/QALY), DPP-4 inhibitors were not a cost-effective treatment. Conclusion DPP-4 inhibitor monotherapy is not a cost-effective treatment for elderly T2DM patients compared with metformin monotherapy and SFU monotherapy, given current resource constraints in Thailand. PMID:27703387

  9. Serum activities of adenosine deaminase, dipeptidyl peptidase IV and prolyl endopeptidase in patients with fibromyalgia: diagnostic implications.

    Science.gov (United States)

    Čulić, Ognjen; Cordero, Mario D; Žanić-Grubišić, Tihana; Somborac-Bačura, Anita; Pučar, Lara Batičić; Detel, Dijana; Varljen, Jadranka; Barišić, Karmela

    2016-10-01

    Fibromyalgia (FM) is a chronic pain syndrome with number of symptoms that present challenge in terms of diagnosis and treatment. Patients with FM show abnormal profile of purines in plasma. In this work, we measured serum activities of enzymes involved in purine metabolism, namely total adenosine deaminase (ADE) and its isoforms (ADE1 and ADE2), ecto-ATPase, and 5'-nucleotidase (5'-NT). We also measured activity of dipeptidyl peptidase IV (DPPIV) and prolyl endopeptidase (PEP). Spectrophotometric and fluorometric methods were used for enzyme activity determinations. Enzyme activities were measured in sera of 24 patients with FM that were not undergoing pharmacological treatment during the study. Control group comprised 32 healthy control subjects. Significantly higher activities of total ADE (P = 0.025) and ADE2 (P = 0.011) were observed in FM patients, while no significant differences in ADE1, ecto-ATPase, and 5'-NT activities (P > 0.05) were found when compared to healthy controls. Moreover, increase in the activity of DPPIV (P = 0.015) and lower activity of PEP (P = 0.011) were also found in the FM group. ROC analysis pointed to different diagnostic sensitivities/specificities for individual enzyme activities measured as follows: ADE (50.0/87.5), ADE2 (41.7/90.6), DPPIV (62.5/71.9), and PEP (83.3/62.5). ADE2 and PEP were shown to be independent predictors of FM, while combination of the two gives AUC of 0.786 (95 % confidence interval of 0.656-0.885, P < 0.05). Our results are showing that serum activities of ADE2 and PEP could be useful as biomarkers for FM diagnosis. However, relatively low diagnostic sensitivity of ADE2 and specificity of PEP must be taken into account.

  10. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand

    Science.gov (United States)

    Permsuwan, Unchalee; Dilokthornsakul, Piyameth; Saokaew, Surasak; Thavorn, Kednapa; Chaiyakunapruk, Nathorn

    2016-01-01

    Background The management of type 2 diabetes mellitus (T2DM) in elderly population poses many challenges. Dipeptidyl peptidase-4 (DPP-4) inhibitors show particular promise due to excellent tolerability profiles, low risk of hypoglycemia, and little effect on body weight. This study evaluated, from the health care system’s perspective, the long-term cost-effectiveness of DPP-4 inhibitor monotherapy vs metformin and sulfonylurea (SFU) monotherapy in Thai elderly T2DM patients. Methods The clinical efficacy was estimated from a systematic review and meta-analysis. Baseline cohort characteristics and cost parameters were obtained from published studies and hospital databases in Thailand. A validated IMS CORE Diabetes Model version 8.5 was used to project clinical and economic outcomes over a lifetime horizon using a 3% annual discount rate. Costs were expressed in 2014 Thai Baht (THB) (US dollar value). Incremental cost-effectiveness ratios were calculated. Base-case assumptions were assessed through several sensitivity analyses. Results For treating elderly T2DM patients, DPP-4 inhibitors were more expensive and less effective, ie, a dominated strategy, than the metformin monotherapy. Compared with SFU, treatment with DPP-4 inhibitors gained 0.031 more quality-adjusted life years (QALYs) at a total cost incurred over THB113,701 or US$3,449.67, resulting in an incremental cost-effectiveness ratio of THB3.63 million or US$110,133.50 per QALY. At the acceptable Thai ceiling threshold of THB160,000/QALY (US$4,854.37/QALY), DPP-4 inhibitors were not a cost-effective treatment. Conclusion DPP-4 inhibitor monotherapy is not a cost-effective treatment for elderly T2DM patients compared with metformin monotherapy and SFU monotherapy, given current resource constraints in Thailand.

  11. Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site.

    Science.gov (United States)

    Rummey, Christian; Metz, Günther

    2007-01-01

    Dipeptidyl peptidase 4 (DP4) inhibitors are currently under intensive investigation in late-stage clinical trials as a treatment for type II diabetes. Lack of selectivity toward the related enzymes DP8 and DP9 has recently emerged as a possible source of drug-induced toxicity. Unlike DP4, X-ray structures of DP8 and DP9 are not yet available. As an aid to understanding the structural basis for selectivity, the authors have constructed homology models of DP8 and DP9 based on the X-ray coordinates of DP4. Accurate sequence alignment reveals common structural features indicative for a well-preserved overall fold comprising two domains, namely, a hydrolase domain and a so-called beta-propeller, which together form the active site deeply buried within the protein. The conformation of two loops inside this deep cavity is particularly relevant for the active sites. The authors used a published protocol for loop prediction based on conformational sampling and energy analysis to generate plausible solutions for these two loops. The predictive power of the approach was successfully evaluated for the template protein DP4 and two additional known structures from the same protein family, namely, FAP and DPX. The authors also show that inclusion of the covalent ligand NVP-728 greatly enhances the refinement. Based on the established evaluation protocol, the corresponding loops of DP8 and DP9 were predicted and the resulting active sites were compared with DP4. In particular, the authors conclude that differences in the P2-pocket are relevant for the design of selective DP4 inhibitors. The loss of key interactions in DP8 and DP9 as predicted from their models is consistent with the selectivity profile of the DP4 clinical candidate MK-431.

  12. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system.

    Science.gov (United States)

    Klemann, C; Wagner, L; Stephan, M; von Hörsten, S

    2016-07-01

    CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation. PMID:26919392

  13. Soil bacterial and archaeal communities of the Stringer Creek Watershed in relation to soil moisture, chemistry, and gas fluxes

    Science.gov (United States)

    Jones, R. T.; Du, Z.; Riveros-Iregui, D.; Dore, J. E.; Emanuel, R. E.; McGlynn, B. L.; McDermott, T.; Li, X.

    2013-12-01

    The Stringer Creek watershed within the Tenderfoot Creek Experimental Forest (Montana) is a highly instrumented watershed with long-term hydrologic and gas flux measurements, and is an ideal study system to incorporate microbiological characterizations into landscape scale hydrological and biogeochemical studies. As a first attempt to determine how hydrological processes, soil chemistry, and gas fluxes are correlated with bacterial and archaeal lineages in soil, we collected soil samples across the watershed (July 9 - 11, 2012) and used barcoded high-throughput DNA sequencing to characterize the bacterial and archaeal communities. Soils were collected adjacent to gas well sites at 5 cm, 20 cm, and 50 cm depths, corresponding to the depths of the wells. Gas measurements included CO2, CH4, O2, and N2O; soil measurements included water content, % carbon, and % nitrogen. We analyzed 775,000 16S rRNA gene sequences from 28 soil samples. Relative abundances of certain microbial lineages or groups (e.g. methanotrophs, methanogens, Acidobacteria, Bacteroidetes, Firmicutes, Proteobacteria, etc.) varied significantly with CO2, CH4, and O2 concentrations. Furthermore, beta-diversity analyses showed that microbial community composition was significantly governed by water content, % nitrogen, and % carbon; community composition also significantly varied with CO2, CH4, and O2 concentrations. Together, our results suggest that soil environmental factors such as water content, % carbon, and % nitrogen affect microbial community composition, and that microbial community composition correlates with CO2, O2, and CH4 concentrations. Future work will focus on characterizing microbial communities across the entire summer season as soil conditions drastically change from fully saturated to very dry.

  14. Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters.

    Science.gov (United States)

    Wilms, Reinhard; Sass, Henrik; Köpke, Beate; Köster, Jürgen; Cypionka, Heribert; Engelen, Bert

    2006-04-01

    The subsurface of a tidal-flat sediment was analyzed down to 360 cm in depth by molecular and geochemical methods. A community structure analysis of all three domains of life was performed using domain-specific PCR followed by denaturing gradient gel electrophoresis analysis and sequencing of characteristic bands. The sediment column comprised horizons easily distinguishable by lithology that were deposited in intertidal and salt marsh environments. The pore water profile was characterized by a subsurface sulfate peak at a depth of about 250 cm. Methane and sulfate profiles were opposed, showing increased methane concentrations in the sulfate-free layers. The availability of organic carbon appeared to have the most pronounced effect on the bacterial community composition in deeper sediment layers. In general, the bacterial community was dominated by fermenters and syntrophic bacteria. The depth distribution of methanogenic archaea correlated with the sulfate profile and could be explained by electron donor competition with sulfate-reducing bacteria. Sequences affiliated with the typically hydrogenotrophic Methanomicrobiales were present in sulfate-free layers. Archaea belonging to the Methanosarcinales that utilize noncompetitive substrates were found along the entire anoxic-sediment column. Primers targeting the eukaryotic 18S rRNA gene revealed the presence of a subset of archaeal sequences in the deeper part of the sediment cores. The phylogenetic distance to other archaeal sequences indicates that these organisms represent a new phylogenetic group, proposed as "tidal-flat cluster 1." Eukarya were still detectable at 360 cm, even though their diversity decreased with depth. Most of the eukaryotic sequences were distantly related to those of grazers and deposit feeders.

  15. Analysis of Bacterial and Archaeal Communities along a High-Molecular-Weight Polyacrylamide Transportation Pipeline System in an Oil Field

    Directory of Open Access Journals (Sweden)

    Cai-Yun Li

    2015-04-01

    Full Text Available Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA. Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields.

  16. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Guibing Zhu; Lei Ye; Xiaojuan Feng; Huub J. M. Op den Camp; Chengqing Yin

    2012-01-01

    The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling.Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites.The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers.Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 μg NO2--N/(g dry weight soil.hr),while only 1.0-1.7 μg NO2- -N/(gdry weight soil·hr) was measured at other sites.The potential nitrification rates were proportional to the amoA gene abundance for AOB,hut with no significant correlation with AOA.The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study.Higher richness in the surface layer was found in the analysis of biodiversity.Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis' and Candidatus ‘Nitrosoealdus yellowstonii'.The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.

  17. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    Science.gov (United States)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  18. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells

    OpenAIRE

    Shiobara, Taichi; Chibana, Kazuyuki; Watanabe, Taiji; Arai, Ryo; Horigane, Yukiko; Nakamura, Yusuke; Hayashi, Yumeko; Shimizu, Yasuo; Takemasa, Akihiro; Ishii, Yoshiki

    2016-01-01

    Background Type 2 helper T-cell cytokines including IL-13 play a central role in the pathogenesis of bronchial asthma (BA). During the course of our research, our attention was drawn to dipeptidyl peptidase-4 (DPP4) as one of the molecules that were induced from bronchial epithelial cells (BECs) by IL-13 stimulation. DPP4 could become a new biomarker or therapeutic target. The aim of this study was to investigate the expression of DPP4 in the asthmatic airway, and its role in the pathophysiol...

  19. [Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid--effectors of peptidases of Bacillus thuringiensis and alpha-L-rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus].

    Science.gov (United States)

    Varbanets, L D; Matseliukh, E V; Seĭfullina, I I; Khitrich, N V; Nidialkova, N A; Hudzenko, E V

    2014-01-01

    The influence of cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activity and Eupenicillium erubescens and Cryptococcus albidus alpha-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R')-dithiocarbamatoisothiocyanate)cobalt (II)--[Co(RR'Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II)--[Co(S2CNRR')2]; 5) dithiocarbamates of cobalt (III)--[Co(S2CNRR')3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine--[Co(S2CNRR')3] x 2I(2). These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR' in their molecules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase--coordinately nonsaturated complexes of cobalt (II) (1-4) containing short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic

  20. The Human Asparaginase-Like Protein 1 hASRGL1is an Ntn Hydrolase with β-aspartyl Peptidase Activity

    OpenAIRE

    Cantor, Jason R.; Stone, Everett M.; Chantranupong, Lynne; Georgiou, George

    2009-01-01

    Herein we report the bacterial expression, purification, and enzymatic characterization of the human asparaginase-like protein 1 (hASRGL1). We present evidence that hASRGL1 exhibits β-aspartyl peptidase activity consistent with enzymes designated as plant-type asparaginases, which had thus far only been found in plants and bacteria. Similar to non-mammalian plant-type asparaginases, hASRGL1 is shown to be an Ntn hydrolase for which Thr168 serves as the essential N-terminal nucleophile for int...

  1. Crystal Structure and Autoactivation Pathway of the Precursor Form of Human Tripeptidyl-peptidase 1, the Enzyme Deficient in Late Infantile Ceroid Lipofuscinosis* S⃞

    OpenAIRE

    Guhaniyogi, Jayita; Sohar, Istvan; Das, Kalyan; Stock, Ann M.; Lobel, Peter

    2009-01-01

    Late infantile neuronal ceroid lipofuscinosis is a fatal childhood neurological disorder caused by a deficiency in the lysosomal protease tripeptidyl-peptidase 1 (TPP1). TPP1 represents the only known mammalian member of the S53 family of serine proteases, a group characterized by a subtilisin-like fold, a Ser-Glu-Asp catalytic triad, and an acidic pH optimum. TPP1 is synthesized as an inactive proenzyme (pro-TPP1) that is proteolytically processed into the active enzyme after exposure to low...

  2. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake

    DEFF Research Database (Denmark)

    Ryskjaer, Jakob; Deacon, Carolyn F.; Carr, Richard D;

    2006-01-01

    hormones are metabolized quickly by the enzyme dipeptidyl peptidase-IV (DPP-IV). It is well known that type-2 diabetic patients have an impaired incretin effect. Therefore, the aim of the present study was to investigate plasma DPP-IV activity in the fasting and the postprandial state in type-2 diabetic...... patients, DPP-IV activity was positively correlated to FPG and HbAlc and negatively to the duration of diabetes and age of the patients. No postprandial changes were seen in plasma DPP-IV activity in any of the groups. CONCLUSIONS: Plasma DPP-IVactivity increases in the fasting state and is positively...

  3. The first structure of dipeptidyl-peptidase III (DPP III) provides insight into the catalytic mechanism and the mode of substrate binding

    OpenAIRE

    Baral, P. K.; Jajcanin-Jozi\\'c, N.; Deller, S.; Macheroux, P.; Abrami\\'c, M.; Gruber, K.

    2008-01-01

    Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing ...

  4. Synergy between Colistin and the Signal Peptidase Inhibitor MD3 Is Dependent on the Mechanism of Colistin Resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Martínez-Guitián, Marta; Vázquez-Ucha, Juan C; Odingo, Joshua; Parish, Tanya; Poza, Margarita; Waite, Richard D; Bou, German; Wareham, David W; Beceiro, Alejandro

    2016-07-01

    Synergy between colistin and the signal peptidase inhibitor MD3 was tested against isogenic mutants and clinical pairs of Acinetobacter baumannii isolates. Checkerboard assays and growth curves showed synergy against both colistin-susceptible strains (fractional inhibitory concentration index [FICindex] = 0.13 to 0.24) and colistin-resistant strains with mutations in pmrB and phosphoethanolamine modification of lipid A (FICindex = 0.14 to 0.25) but not against colistin-resistant Δlpx strains with loss of lipopolysaccharide (FICindex = 0.75 to 1). A colistin/MD3 combination would need to be targeted to strains with specific colistin resistance mechanisms. PMID:27139471

  5. THE ESCHERICHIA COLI SIGNAL PEPTIDE PEPTIDASE A IS A SERINE-LYSINE PROTEASE WITH A LYSINE RECRUITED TO THE NON-CONSERVED AMINO-TERMINAL DOMAIN IN THE S49 PROTEASE FAMILY

    OpenAIRE

    Wang, Peng; Shim, Eunjung; Cravatt, Benjamin; Jacobsen, Richard; Schoeniger, Joe; Kim, Apollos C.; Paetzel, Mark; Dalbey, Ross E.

    2008-01-01

    The E. coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein, but doe...

  6. Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa

    Science.gov (United States)

    Rughöft, Saskia; Herrmann, Martina; Lazar, Cassandre S.; Cesarz, Simone; Levick, Shaun R.; Trumbore, Susan E.; Küsel, Kirsten

    2016-01-01

    Savannas cover at least 13% of the global terrestrial surface and are often nutrient limited, especially by nitrogen. To gain a better understanding of their microbial diversity and the microbial nitrogen cycling in savanna soils, soil samples were collected along a granitic and a basaltic catena in Kruger National Park (South Africa) to characterize their bacterial and archaeal composition and the genetic potential for nitrification. Although the basaltic soils were on average 5 times more nutrient rich than the granitic soils, all investigated savanna soil samples showed typically low nutrient availabilities, i.e., up to 38 times lower soil N or C contents than temperate grasslands. Illumina MiSeq amplicon sequencing revealed a unique soil bacterial community dominated by Actinobacteria (20–66%), Chloroflexi (9–29%), and Firmicutes (7–42%) and an increase in the relative abundance of Actinobacteria with increasing soil nutrient content. The archaeal community reached up to 14% of the total soil microbial community and was dominated by the thaumarchaeal Soil Crenarchaeotic Group (43–99.8%), with a high fraction of sequences related to the ammonia-oxidizing genus Nitrosopshaera sp. Quantitative PCR targeting amoA genes encoding the alpha subunit of ammonia monooxygenase also revealed a high genetic potential for ammonia oxidation dominated by archaea (~5 × 107 archaeal amoA gene copies g−1 soil vs. mostly < 7 × 104 bacterial amoA gene copies g−1 soil). Abundances of archaeal 16S rRNA and amoA genes were positively correlated with soil nitrate, N and C contents. Nitrospira sp. was detected as the most abundant group of nitrite oxidizing bacteria. The specific geochemical conditions and particle transport dynamics at the granitic catena were found to affect soil microbial communities through clay and nutrient relocation along the hill slope, causing a shift to different, less diverse bacterial and archaeal communities at the footslope. Overall, our

  7. Dipeptidyl peptidase-IV activity assay and inhibitor screening using a gold nanoparticle-modified gold electrode with an immobilized enzyme substrate

    International Nuclear Information System (INIS)

    We report on an electrochemical biosensor for the determination of the activity of dipeptidyl peptidase-IV (DPP-IV), and on a method for screening the effect of its inhibitors. An enzyme substrate (Fc-peptide) was immobilized on the surface of a gold electrode, and double signal amplification was accomplished via an additional layer consisting of phenyl rings and gold nanoparticles. The activity of DPP-IV was determined at levels as low as 39 nU·mL−1 and over a linear detection range as wide as from 0.5 μU·mL−1 to 2.5 mU·mL−1. The inhibitory effects of diprotin A and the His-Leu dipeptide on the activity of DPP-IV also were tested and gave IC50 values of 93.5 and 95.5 μM, respectively. The assay is rapid, precise and selective. It may be extended to other peptidases and, possibly, proteases and their inhibitors. (author)

  8. The MAPK Signaling Cascade is a Central Hub in the Regulation of Cell Cycle, Apoptosis and Cytoskeleton Remodeling by Tripeptidyl-Peptidase II

    Directory of Open Access Journals (Sweden)

    Ramakrishna Sompallae

    2008-01-01

    Full Text Available Tripeptidyl-peptidase II (TPPII is a serine peptidase highly expressed in malignant Burkitt’s lymphoma cells (BL. We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes high- lighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII infl uences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability.

  9. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Science.gov (United States)

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  10. Treatment progression in sulfonylurea and dipeptidyl peptidase-4 inhibitor cohorts of type 2 diabetes patients on metformin

    Science.gov (United States)

    Peng, Xiaomei; Jiang, Dingfeng; Liu, Dongju; Varnado, Oralee J; Bae, Jay P

    2016-01-01

    Background Metformin is an oral antidiabetic drug (OAD) widely used as first-line therapy in type 2 diabetes (T2D) treatments. Numerous treatment pathways after metformin failure exist. It is important to understand how treatment choices influence subsequent therapy progressions. This retrospective study compares adherence to, persistence with, and treatment progression in sulfonylurea (SU) and dipeptidyl peptidase-4 (DPP-4) inhibitor patient cohorts with T2D on metformin. Methods Using health insurance claims data, matched patient cohorts were created and OAD use was compared in patients with T2D initiating SU or DPP-4 inhibitors (index drugs) since January 1, 2010, to December 31, 2010, with background metformin therapy. Propensity score matching adjusted for possible selection bias. Persistence was measured via Cox regression as days to a ≥60-day gap in index drug possession; adherence was defined as proportion of days covered (PDC) ≥80%. Evolving treatment patterns were traced at 6-month intervals for 24 months following index drug discontinuation. Results From among 19,621 and 7,484 patients in the SU and DPP-4 inhibitor cohorts, respectively, 6,758 patient pairs were matched. Persistence at 12 months in the SU cohort was 48.0% compared to 52.5% for the DPP-4 inhibitor cohort. PDC adherence (mean [SD]) during the 12-month follow-up period was 63.3 (29.7) for the SU cohort and 65.5 (28.7) for the DPP-4 inhibitor cohort. PDC ≥80% was 40.5% and 43.4% in the SU and DPP-4 inhibitor cohorts, respectively. A higher percentage of patients in the SU cohort remained untreated. Following index drug discontinuation, monotherapy was more common in the SU cohort, while use of two or three OADs was more common in the DPP-4 inhibitor cohort. Insulin therapy initiation was higher in the SU cohort. Conclusion Slightly better adherence and persistence were seen in the DPP-4 inhibitor cohort. Adherence and persistence remain a challenge to many patients; understanding

  11. Treatment progression in sulfonylurea and dipeptidyl peptidase-4-inhibitor cohorts of type 2 diabetes patients on metformin

    Directory of Open Access Journals (Sweden)

    Peng X

    2016-08-01

    Full Text Available Xiaomei Peng, Dingfeng Jiang, Dongju Liu, Oralee J Varnado, Jay P Bae Eli Lilly and Company, Global Patient Outcomes and Real World Evidence, Indianapolis, IN, USA Background: Metformin is an oral antidiabetic drug (OAD widely used as first-line therapy in type 2 diabetes (T2D treatments. Numerous treatment pathways after metformin failure exist. It is important to understand how treatment choices influence subsequent therapy progressions. This retrospective study compares adherence to, persistence with, and treatment progression in sulfonylurea (SU and dipeptidyl peptidase-4 (DPP-4 inhibitor patient cohorts with T2D on metformin. Methods: Using health insurance claims data, matched patient cohorts were created and OAD use was compared in patients with T2D initiating SU or DPP-4 inhibitors (index drugs since January 1, 2010, to December 31, 2010, with background metformin therapy. Propensity score matching adjusted for possible selection bias. Persistence was measured via Cox regression as days to a ≥60-day gap in index drug possession; adherence was defined as proportion of days covered (PDC ≥80%. Evolving treatment patterns were traced at 6-month intervals for 24 months following index drug discontinuation. Results: From among 19,621 and 7,484 patients in the SU and DPP-4 inhibitor cohorts, respectively, 6,758 patient pairs were matched. Persistence at 12 months in the SU cohort was 48.0% compared to 52.5% for the DPP-4 inhibitor cohort. PDC adherence (mean [SD] during the 12-month follow-up period was 63.3 (29.7 for the SU cohort and 65.5 (28.7 for the DPP-4 inhibitor cohort. PDC ≥80% was 40.5% and 43.4% in the SU and DPP-4 inhibitor cohorts, respectively. A higher percentage of patients in the SU cohort remained untreated. Following index drug discontinuation, monotherapy was more common in the SU cohort, while use of two or three OADs was more common in the DPP-4 inhibitor cohort. Insulin therapy initiation was higher in the SU

  12. Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus.

    Science.gov (United States)

    Wei, Ting; Chisholm, Joan; Sanfaçon, Hélène

    2016-01-01

    The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase) cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa)-long hydrophobic region (termed TM2). However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G). Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3-7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s) oriented parallel to the membrane inner surface. PMID:27589230

  13. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Science.gov (United States)

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  14. Pharmacokinetic and pharmacodynamic interactions between metformin and a novel dipeptidyl peptidase-4 inhibitor, evogliptin, in healthy subjects

    Directory of Open Access Journals (Sweden)

    Rhee SJ

    2016-08-01

    Full Text Available Su-jin Rhee,1,* YoonJung Choi,1,* SeungHwan Lee,1,2 Jaeseong Oh,1 Sung-Jin Kim,3 Seo Hyun Yoon,1 Joo-Youn Cho,1 Kyung-Sang Yu1 1Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; 2Clinical Trials Center, Seoul National University Hospital, Seoul, Republic of Korea; 3Department of Clinical Development, Dong-A ST Co., Ltd., Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Evogliptin is a newly developed dipeptidyl peptidase-4 (DPP-4 inhibitor, which is expected to be combined with metformin for treating type 2 diabetes mellitus. We investigated the potential pharmacokinetic and pharmacodynamic interactions between evogliptin and metformin. A randomized, open-label, multiple-dose, six-sequence, three-period crossover study was conducted in 36 healthy male subjects. All subjects received three treatments, separated by 7-day washout intervals: evogliptin, 5 mg od for 7 days (EVO; metformin IR, 1,000 mg bid for 7 days (MET; and the combination of EVO and MET (EVO + MET. After the last dose in a period, serial blood samples were collected for 24 hours for pharmacokinetic assessments. During steady state, serial blood samples were collected for 2 hours after an oral glucose tolerance test, and DPP-4, active glucagon-like peptide-1, glucose, glucagon, insulin, and C-peptide were measured to assess pharmacodynamic properties. EVO + MET and EVO showed similar steady state maximum concentration and area under the concentration–time curve at steady state values for evogliptin; the geometric mean ratios (90% confidence interval were 1.06 (1.01–1.12 and 1.02 (0.99–1.06, respectively. EVO + MET slightly reduced steady state maximum concentration and area under the concentration–time curve at steady state values for metformin compared to MET, with geometric mean ratios (90% confidence interval of 0.84 (0.79

  15. Generation and confirmation of NAAG peptidase gene knockout model%NAAG肽酶基因剔除小鼠模型的建立及鉴定

    Institute of Scientific and Technical Information of China (English)

    崔振文; 张明坤; 钟春龙; 吴增宝; 蔡蕾; 匡颖; 王铸钢; 江基尧; 罗其中

    2012-01-01

    目的 建立N-乙酰天冬氨酰谷氨酸(NAAG)肽酶基因剔除小鼠模型,为在体研究NAAG肽酶基因的生物学功能并揭示其在脑损伤后继发性脑损害进程中的所起的作用创造条件.方法 根据小鼠NAAG肽酶基因组的序列,设计基因剔除策略,构建基因剔除载体NAAG-KO-pBR322,以电穿孔方法将基因剔除载体导入胚胎干细胞(ES),应用G418和更昔洛韦进行正负筛选,获得双抗性克隆,聚合酶链式反应(PCR)鉴定并测序获得正确同源重组的ES细胞克隆.结果 同源重组的ES细胞注入小鼠囊胚后获得11只嵌合率>50%嵌合体雄性小鼠,嵌合体小鼠与C57 BL/6J雌鼠交配后获得11只杂合子小鼠,其中雄性7只,雌性4只.在雌、雄杂合子小鼠交配的后代中获得7只纯合子小鼠,PCR鉴定其基因型,逆转录PCR (RT-PCR)提示该基因鼠未表达NAAG肽酶.结论 我们成功建立了NAAG肽酶基因剔除小鼠模型,其中纯合子小鼠未出现胚胎致死现象;初步的表型观察未发现NAAG肽酶基因剔除小鼠出现异常改变.%Objective To establish N-acetylaspartylglutamate (NAAG) peptidase gene knockout mouse model and to create the condition for farther in vivo study of its biological function and its role in the secondary brain damage after brain injury. Methods According to the NAAG peptidase genomic DNA sequence ,the strategy of gene targeting was established, and the gene knockout vector (NAAG-KO-pBR322) was constructed. Electroporation of embryonic stem (ES) cells with the gene knockout vector and screening of both G418 and Ganciclovir resistant clones were performed. The homologous recombined ES ceD clones were identified by polymerase chain reaction (PCR). Results After transplantation of homologous recombined ES cells into blastocysts through microinjection, there were 11 male chimeras bom with embedment rate >50%. The male chimeras then were bred with C57BL/6J female mice and 7(♂) and 4 (♀) offsprings with

  16. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies▿†

    OpenAIRE

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L.

    2011-01-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundance...

  17. Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein.

    OpenAIRE

    Gohl, H P; Gröndahl, B; Thomm, M

    1995-01-01

    At least two transcription factors, aTFB and aTFA, are required for accurate and faithful in vitro transcription of homologous templates in cell-free extracts from the methanogenic Archaeon Methanococcus thermolithotrophicus. We have recently shown that the function of aTFB can be replaced by eucaryal TATA-binding proteins. Here we demonstrate using template commitment experiments that promoter recognition in an Archaeon is mediated by transcription factors. The archaeal TATA box was identifi...

  18. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    Science.gov (United States)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  19. 古菌细胞膜脂在古菌群落组成及其对环境响应研究中的应用%Applications of archaeal membrane lipids in investigating archaeal community composition and its responses to environmental factors

    Institute of Scientific and Technical Information of China (English)

    曹鹏; 沈菊培; 贺纪正

    2012-01-01

    Archaea, as the third life form distinct from bacteria and eukaryota, widely distribute in various kinds of habitats, and play important roles in the biogeochemical cycles of carbon and nitrogen and in ecosystem functioning. As the biomarker of archaea, archaeal membrane lipids can be used to investigate the archaeal community composition and its responses to the environment. This paper introduced the structural characteristics of archaeal membrane lipids and the differences in the membrane lipids composition among different archaeal communities, and discussed the feasibility of using archeal membrane lipids in depicting archaeal community composition. The abundance of archaeal membrane lipids in the environment could be used to characterize the biomass of archaea, and the related results could complement and ascertain each other with the DNA-based bio-molecular approaches on the accuracy, analysis efficiency, and cost. Based on the description of the difficulties and importance of using archaeal membrane lipids to analyze the composition and abundance of archaeal communities, and by linking to the environmental factors such as temperature and pH that affected the archaeal community composition, the relationships between archaea and their habitats were further expatiated, and the evolution process of archaeal communities and its application prospects in the studies of geochemistry and geological events were analyzed.%古菌作为区别于细菌和真核生物的第3种生命形式广泛分布于各种生境,与碳、氮等元素的生物地球化学循环密切相关,在整个生态系统中具有重要作用.古菌细胞膜脂作为古菌重要的生物标志物,在其群落组成和对环境变化响应的研究中具有重要指示作用.本文介绍了古菌细胞膜脂的结构特征及不同古菌类群间细胞膜脂结构差异,用以表征古菌群落的组成特征.环境中细胞膜脂丰度可反映古菌生物量,并可与基于DNA的分子生物学

  20. Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea

    Directory of Open Access Journals (Sweden)

    Alina Stadnitskaia

    2003-01-01

    Full Text Available A methane-derived carbonate crust was collected from the recently discovered NIOZ mud volcano in the Sorokin Trough, NE Black Sea during the 11th Training-through-Research cruise of the R/V Professor Logachev. Among several specific bacterial and archaeal membrane lipids present in this crust, two novel macrocyclic diphytanyl glycerol diethers, containing one or two cyclopentane rings, were detected. Their structures were tentatively identified based on the interpretation of mass spectra, comparison with previously reported mass spectral data, and a hydrogenation experiment. This macrocyclic type of archaeal core membrane diether lipid has so far been identified only in the deep-sea hydrothermal vent methanogen Methanococcus jannaschii. Here, we provide the first evidence that these macrocyclic diethers can also contain internal cyclopentane rings. The molecular structure of the novel diethers resembles that of dibiphytanyl tetraethers in which biphytane chains, containing one and two pentacyclic rings, also occur. Such tetraethers were abundant in the crust. Compound-specific isotope measurements revealed δ13C values of –104 to –111‰ for these new archaeal lipids, indicating that they are derived from methanotrophic archaea acting within anaerobic methane-oxidizing consortia, which subsequently induce authigenic carbonate formation.

  1. Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain.

    Science.gov (United States)

    Liu, Ying; Wang, Jiao; Liu, Yang; Wang, Yuchen; Zhang, Ziqian; Oksanen, Hanna M; Bamford, Dennis H; Chen, Xiangdong

    2015-12-01

    Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene. PMID:26331239

  2. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Herman, Gary A; Bergman, Arthur; Stevens, Catherine;

    2006-01-01

    CONTEXT: In response to a meal, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are released and modulate glycemic control. Normally these incretins are rapidly degraded by dipeptidyl peptidase-4 (DPP-4). DPP-4 inhibitors are a novel class of oral antihyperglyce...

  3. Pyrosequencing reveals the influence of elevated atmospheric CO2 on the composition of archaeal communities in the rhizosphere of C3 and C4 crops

    Science.gov (United States)

    Nelson, D. M.; Cann, I. K.; Mackie, R. I.

    2008-12-01

    The projected increase in atmospheric CO2 concentrations throughout the 21st century is likely to increase aboveground and belowground plant productivity and cause changes in the quantity and quality of plant root exudates, although plants using C4 photosynthesis are likely to be only affected during times of drought (Leakey et al., 2006, Plant Physiology, 140, 779). Evidence is emerging from molecular tools that these changes may influence the abundance and composition of soil microbial communities that regulate key soil processes, such as nitrogen cycling (Lesaulnier et al., 2008, Environmental Microbiology, 10, 926). However, most molecular tools are not well-suited for comparing multiple samples at great sequencing depth, which is critical when considering soil microbial communities of high diversity. To overcome these limitations we used pyrosequencing and quantitative PCR (qPCR) of two genes (the V3 region of 16S rDNA and the amoA gene) to examine intra- and inter-treatment variability in the abundance and composition of microbial communities in the rhizosphere of soybean (C3) and maize (C4) grown in field conditions under ambient (~380 ppm) and elevated (~550 ppm) CO2 using FACE (free-air concentration enrichment) technology during the 2006 growing season in central Illinois. We specifically focused on archaeal communities because of their key role in nitrification (Leininger et al., 2006, Nature, 442, 806). The majority (>97%) of recovered sequences were from members of the phylum Crenarchaeota. Principle component analysis of sequence results from the V3 and amoA genes indicated significant (p<0.05) differences in the composition of rhizosphere archaeal communities between ambient and elevated CO2 beneath soybean, but not maize. qPCR suggested no significant difference in the abundance of archaea between treatments for soybean and maize. The lack of response of archaeal community composition beneath maize to elevated CO2 is consistent with relatively high

  4. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls.

    Science.gov (United States)

    Panyakaew, P; Boon, N; Goel, G; Yuangklang, C; Schonewille, J Th; Hendriks, W H; Fievez, V

    2013-12-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rumen fermentation, protozoal counts and archaeal abundance, as well as their diversity and functional organization. KO contains similar amounts of C12:0 as CO (420 and 458 g/kg FA, respectively), but has a higher proportion of C14:0 (464 v. 205 g/kg FA, respectively). Treatments contained 35 g supplemental fat per kg DM: a control diet with tallow (T); a diet with supplemental CO; and a diet with supplemental KO. A 4th treatment consisted of a diet with similar amounts of MCFA (i.e. C10:0+C12:0+C14:0) from CO and KO. To ensure isolipidic diets, extra tallow was supplied in the latter treatment (KO+T). Eight fistulated bulls (two bulls per treatment), fed a total mixed ration predominantly based on cassava chips, rice straw, tomato pomace, rice bran and soybean meal (1.5% of BW), were used. Both KO and CO increased the rumen volatile fatty acids, in particular propionate and decreased acetate proportions. Protozoal numbers were reduced through the supplementation of an MCFA source (CO, KO and KO+T), with the strongest reduction by KO. Quantitative real-time polymerase chain reaction assays based on archaeal primers showed a decrease in abundance of Archaea when supplementing with KO and KO+T compared with T and CO. The denaturing gradient gel electrophoresis profiles of the rumen archaeal population did not result in a grouping of treatments. Richness indices were calculated from the number of DGGE bands, whereas community organization was assessed from the Pareto-Lorenz evenness curves on the basis of DGGE band intensities. KO supplementation (KO and KO+T treatments) increased richness and evenness within the archaeal community. Further research including methane

  5. Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China.

    Science.gov (United States)

    Wu, Weiyan; Zhang, Chuanlun L; Wang, Huanye; He, Liu; Li, Wenjun; Dong, Hailiang

    2013-01-01

    In culture experiments and many low temperature environments, the distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) commonly shows a strong correlation with temperature; however, this is often not the case in hot springs. We studied 26 hot springs in Yunnan, China, in order to determine whether temperature or other factors control the distribution of GDGTs in these environments. The hot springs ranged in temperature from 39.0 to 94.0°C, and in pH from 2.35 to 9.11. Water chemistry including nitrogen-, sulfur-, and iron species was also determined. Lipids from the samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Distributions of GDGTs in these hot springs were examined using cluster analysis, which resulted in two major groups. Group 1 was characterized by the lack of dominance of any individual GDGTs, while Group 2 was defined by the dominance of GDGT-0 or thaumarchaeol. Temperature was the main control on GDGT distribution in Group 1, whereas pH played an important role in the distribution of GDGTs in Group 2. However, no correlations were found between the distribution of GDGTs and any of the nitrogen-, sulfur-, or iron species. Results of this study indicate the dominance of temperature or pH control on archaeal lipid distribution, which can be better evaluated in the context of lipid classification.

  6. Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China

    Directory of Open Access Journals (Sweden)

    Weiyan eWu

    2013-10-01

    Full Text Available In culture experiments and many low temperature environments, the distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs commonly shows a strong correlation with temperature; however, this is often not the case in hot springs. We studied 26 hot springs in Yunnan, China, in order to determine whether temperature or other factors control the distribution of GDGTs in these environments. The hot springs ranged in temperature from 39°C to 94°C, and in pH from 2.35 to 9.11. Water chemistry including nitrogen-, sulfur- and iron species was also determined. Lipids from the samples were analyzed using LC-MS (liquid chromatography-mass spectrometry. Distributions of GDGTs in these hot springs were examined using cluster analysis, which resulted in two major groups. Group 1 was characterized by the lack of dominance of any individual GDGTs, while Group 2 was defined by the dominance of GDGT-0 or thaumarchaeol. Temperature was the main control on GDGT distribution in Group 1, whereas pH played an important role in the distribution of GDGTs in Group 2. However, no correlations were found between the distribution of GDGTs and any of the nitrogen-, sulfur- or iron species. Results of this study indicate the predominance of temperature or pH control on archaeal lipid distribution, which can be better evaluated in the context of lipid classification.

  7. S-layers at second glance? Altiarchaeal grappling hooks (hami resemble archaeal S-layer proteins in structure and sequence

    Directory of Open Access Journals (Sweden)

    Alexandra Kristin Perras

    2015-06-01

    Full Text Available The uncultivated Ca. Altiarchaeum hamiconexum (formerly known as SM1 Euryarchaeon carries highly specialized nano-grappling hooks (hami on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal phylum at their N-terminal region (47-44% identity. Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins.

  8. Archaeal Diversity in Biofilm Technologies Applied to Treat Urban and Industrial Wastewater: Recent Advances and Future Prospects

    Directory of Open Access Journals (Sweden)

    Jesús González-López

    2013-09-01

    Full Text Available Biological wastewater treatment (WWT frequently relies on biofilms for the removal of anthropogenic contaminants. The use of inert carrier materials to support biofilm development is often required, although under certain operating conditions microorganisms yield structures called granules, dense aggregates of self-immobilized cells with the characteristics of biofilms maintained in suspension. Molecular techniques have been successfully applied in recent years to identify the prokaryotic communities inhabiting biofilms in WWT plants. Although methanogenic Archaea are widely acknowledged as key players for the degradation of organic matter in anaerobic bioreactors, other biotechnological functions fulfilled by Archaea are less explored, and research on their significance and potential for WWT is largely needed. In addition, the occurrence of biofilms in WWT plants can sometimes be a source of operational problems. This is the case for membrane bioreactors (MBR, an advanced technology that combines conventional biological treatment with membrane filtration, which is strongly limited by biofouling, defined as the undesirable accumulation of microbial biofilms and other materials on membrane surfaces. The prevalence and spatial distribution of archaeal communities in biofilm-based WWT as well as their role in biofouling are reviewed here, in order to illustrate the significance of this prokaryotic cellular lineage in engineered environments devoted to WWT.

  9. Human settlement as driver of bacterial, but not of archaeal, ammonia oxidizers abundance and community structure in tropical stream sediments

    Directory of Open Access Journals (Sweden)

    Mariana De Paula Reis

    2015-08-01

    Full Text Available Ammonia-oxidizing archaea (AOA and bacteria (AOB are a diverse and functionally important group in the nitrogen cycle. Nevertheless, AOA and AOB communities driving this process remain uncharacterized in tropical freshwater sediment. Here, the effect of human settlement on the AOA and AOB diversity and abundance have been assessed by phylogenetic and quantitative PCR analyses, using archaeal and bacterial amoA and 16S rRNA genes. Overall, each environment contained specific clades of amoA and 16S rRNA genes sequences, suggesting that selective pressures lead to AOA and AOB inhabiting distinct ecological niches. Human settlement activities, as derived from increased metal and mineral nitrogen contents, appear to cause a response among the AOB community, with Nitrosomonas taking advantage over Nitrosospira in impacted environments. We also observed a dominance of AOB over AOA in mining-impacted sediments, suggesting that AOB might be the primary drivers of ammonia oxidation in these sediments. In addition, ammonia concentrations demonstrated to be the driver for the abundance of AOA, with an inversely proportional correlation between them. Our findings also revealed the presence of novel ecotypes of Thaumarchaeota, such as those related to the obligate acidophilic Nitrosotalea devanaterra at ammonia-rich places of circumneutral pH. These data add significant new information regarding AOA and AOB from tropical freshwater sediments, albeit future studies would be required to provide additional insights into the niche differentiation among these microorganisms.

  10. Temporal and Spatial Coexistence of Archaeal and Bacterial amoA Genes and Gene Transcripts in Lake Lucerne

    Directory of Open Access Journals (Sweden)

    Elisabeth W. Vissers

    2013-01-01

    Full Text Available Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO. This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA and bacteria (AOB over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42 m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton.

  11. High Oxygen Concentration Increases the Abundance and Activity of Bacterial Rather than Archaeal Nitrifiers in Rice Field Soil.

    Science.gov (United States)

    Ke, Xiubin; Lu, Wei; Conrad, Ralf

    2015-11-01

    Oxygen is considered as a limiting factor for nitrification in rice paddy soil. However, little is known about how the nitrifying microbial community responds to different oxygen concentrations at community and transcript level. In this study, soil and roots were harvested from 50-day-old rice microcosms and were incubated for up to 45 days under two oxygen concentrations: 2 % O(2) and 20 % O(2) (ambient air). Nitrification rates were measured from the accumulation of nitrite plus nitrate. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was determined from the abundance (using quantitative PCR (qPCR)) and composition (using terminal restriction fragment length polymorphism and cloning/sequencing) of their amoA genes, that of nitrite oxidizers (NOB) by quantifying the nxrA gene of Nitrobacter spp. and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by quantifying the copy numbers of amoA and nxrA transcripts (using RT-qPCR). Different oxygen concentrations did not affect the community compositions of AOB, AOA, and NOB, which however were different between surface soil, bottom soil, and rice roots. However, nitrification rates were higher under ambient air than 2 % O(2), and abundance and transcript activities of AOB, but not of AOA, were also higher. Abundance and transcript copy numbers of Nitrobacter were also higher at ambient air. These results indicate that AOB and NOB, but not AOA, were sensitive to oxygen availability. PMID:26054702

  12. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina

    2014-07-09

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. The authors quantified sponge symbionts in eight sponge species from three different locations by real time PCR targetting 16S rRNA genes. Additionally, FISH was performed and diversity and abundance of singularized microbial symbionts from Aplysina aerophoba was determined for a comprehensive quantification work. © 2014 Federation of European Microbiological Societies.

  13. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: Identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and Periphery.

    Science.gov (United States)

    Wagner, Leona; Wolf, Raik; Zeitschel, Ulrike; Rossner, Steffen; Petersén, Åsa; Leavitt, Blair R; Kästner, Florian; Rothermundt, Matthias; Gärtner, Ulf-Torsten; Gündel, Daniel; Schlenzig, Dagmar; Frerker, Nadine; Schade, Jutta; Manhart, Susanne; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; von Hörsten, Stephan

    2015-12-01

    The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application. The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes

  14. Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1

    DEFF Research Database (Denmark)

    Migoya, E M; Bergeron, R; Miller, J L;

    2010-01-01

    The aim of the study was to investigate the effects of a dipeptidyl peptidase-4 (DPP-4) inhibitor, of metformin, and of the combination of the two agents, on incretin hormone concentrations. Active and inactive (or total) incretin plasma concentrations, plasma DPP-4 activity, and preproglucagon...... (GCG) gene expression were determined after administration of each agent alone or in combination to mice with diet-induced obesity (DIO) and to healthy human subjects. In mice, metformin increased Gcg expression in the large intestine and elevated the plasma concentrations of inactive glucagon......-like peptide 1 (GLP-1) (9-36) and glucagon. In healthy subjects, a DPP-4 inhibitor elevated both active GLP-1 and glucose dependent insulinotropic polypeptide (GIP), metformin increased total GLP-1 (but not GIP), and the combination resulted in additive increases in active GLP-1 plasma concentrations...

  15. Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2.

    Directory of Open Access Journals (Sweden)

    Ryosuke Suzuki

    Full Text Available Hepatitis C virus (HCV nonstructural protein 2 (NS2 is a hydrophobic, transmembrane protein that is required not only for NS2-NS3 cleavage, but also for infectious virus production. To identify cellular factors that interact with NS2 and are important for HCV propagation, we screened a human liver cDNA library by split-ubiquitin membrane yeast two-hybrid assay using full-length NS2 as a bait, and identified signal peptidase complex subunit 1 (SPCS1, which is a component of the microsomal signal peptidase complex. Silencing of endogenous SPCS1 resulted in markedly reduced production of infectious HCV, whereas neither processing of structural proteins, cell entry, RNA replication, nor release of virus from the cells was impaired. Propagation of Japanese encephalitis virus was not affected by knockdown of SPCS1, suggesting that SPCS1 does not widely modulate the viral lifecycles of the Flaviviridae family. SPCS1 was found to interact with both NS2 and E2. A complex of NS2, E2, and SPCS1 was formed in cells as demonstrated by co-immunoprecipitation assays. Knockdown of SPCS1 impaired interaction of NS2 with E2. Our findings suggest that SPCS1 plays a key role in the formation of the membrane-associated NS2-E2 complex via its interaction with NS2 and E2, which leads to a coordinating interaction between the structural and non-structural proteins and facilitates the early step of assembly of infectious particles.

  16. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae: A Putative Target for Control of Citrus Huanglongbing.

    Directory of Open Access Journals (Sweden)

    Taíse Fernanda da Silva Ferrara

    Full Text Available Huanglonbing (HLB is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB. DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM. The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM and CaneCPI-4 (Ki = 0.05 nM and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM. RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  17. Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water.

    Science.gov (United States)

    Apolinar-Hernández, Max M; Peña-Ramírez, Yuri J; Pérez-Rueda, Ernesto; Canto-Canché, Blondy B; De Los Santos-Briones, César; O'Connor-Sánchez, Aileen

    2016-11-15

    Metagenomics is a culture-independent technology that allows access to novel and potentially useful genetic resources from a wide range of unknown microorganisms. In this study, a fosmid metagenomic library of tropical underground water was constructed, and clones were functionally screened for extracellular proteolytic activity. One of the positive clones, containing a 41,614-bp insert, had two genes with 60% and 68% identity respectively with a peptidase S8 of Chitinimonas koreensis. When these genes were individually sub-cloned, in both cases their sub-clones showed proteolytic phenotype, confirming that they both encode functional proteases. These genes -named PrAY5 and PrAY6- are next to each other. They are similar in size (1845bp and 1824bp respectively) and share 66.5% identity. An extensive in silico characterization showed that their ORFs encode complex zymogens having a signal peptide at their 5' end, followed by a pro-peptide, a catalytic region, and a PPC domain at their 3' end. Their translated sequences were classified as peptidases S8A by sequence comparisons against the non-redundant database and corroborated by Pfam and MEROPS. Phylogenetic analysis of the catalytic region showed that they encode novel proteases that clustered with the sub-family S8_13, which according to the CDD database at NCBI, is an uncharacterized subfamily. They clustered in a clade different from the other three proteases S8 found so far by functional metagenomics, and also different from proteases S8 found in sequenced environmental samples, thereby expanding the range of potentially useful proteases that have been identified by metagenomics. I-TASSER modeling corroborated that they may be subtilases, thus possibly they participate in the hydrolysis of proteins with broad specificity for peptide bonds, and have a preference for a large uncharged residue in P1.

  18. Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water.

    Science.gov (United States)

    Apolinar-Hernández, Max M; Peña-Ramírez, Yuri J; Pérez-Rueda, Ernesto; Canto-Canché, Blondy B; De Los Santos-Briones, César; O'Connor-Sánchez, Aileen

    2016-11-15

    Metagenomics is a culture-independent technology that allows access to novel and potentially useful genetic resources from a wide range of unknown microorganisms. In this study, a fosmid metagenomic library of tropical underground water was constructed, and clones were functionally screened for extracellular proteolytic activity. One of the positive clones, containing a 41,614-bp insert, had two genes with 60% and 68% identity respectively with a peptidase S8 of Chitinimonas koreensis. When these genes were individually sub-cloned, in both cases their sub-clones showed proteolytic phenotype, confirming that they both encode functional proteases. These genes -named PrAY5 and PrAY6- are next to each other. They are similar in size (1845bp and 1824bp respectively) and share 66.5% identity. An extensive in silico characterization showed that their ORFs encode complex zymogens having a signal peptide at their 5' end, followed by a pro-peptide, a catalytic region, and a PPC domain at their 3' end. Their translated sequences were classified as peptidases S8A by sequence comparisons against the non-redundant database and corroborated by Pfam and MEROPS. Phylogenetic analysis of the catalytic region showed that they encode novel proteases that clustered with the sub-family S8_13, which according to the CDD database at NCBI, is an uncharacterized subfamily. They clustered in a clade different from the other three proteases S8 found so far by functional metagenomics, and also different from proteases S8 found in sequenced environmental samples, thereby expanding the range of potentially useful proteases that have been identified by metagenomics. I-TASSER modeling corroborated that they may be subtilases, thus possibly they participate in the hydrolysis of proteins with broad specificity for peptide bonds, and have a preference for a large uncharged residue in P1. PMID:27522038

  19. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    Science.gov (United States)

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  20. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    Science.gov (United States)

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  1. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    Science.gov (United States)

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. PMID:27480840

  2. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  3. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    Science.gov (United States)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  4. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    Science.gov (United States)

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  5. Archaeal Ammonia Oxidizers and Total Production of N2O and CH4 in Arctic Polar Desert Soils

    Science.gov (United States)

    Brummell, Martin; Robert, Stan; Bodrossy, Levente; Abell, Guy; Siciliano, Steven

    2014-05-01

    Ammonia-oxidizing Archaea are abundant in Arctic desert soils and appear to be responsible for the majority of ammonia oxidation activity in these cold and dry ecosystems. We used DNA microarrays to characterize the microbial community consisting of ammonia-oxidizing Archaea and methane-oxidizing Bacteria in three polar deserts from Ellesmere Island, Canada. Patterns of net greenhouse gas production, including production and consumption of CO2, CH4, and N2O were compared with community relative richness and abundance in a structural equation model that tested causal hypotheses relating edaphic factors to the biological community and net gas production. We extracted and amplified DNA sequences from soils collected at three polar deserts on Ellesmere Island in the Canadian high Arctic, and characterized the community structure using DNA microarrays. The functional genes Archaeal AmoA and pMMO were used to compare patterns of biological community structure to the observed patterns of net greenhouse gas production from those soils, as measured in situ. Edaphic factors including water content, bulk density, pH, and nutrient levels such as nitrate, ammonia, and extractable organic carbon were also measured for each soil sample, resulting in a highly multivariate dataset. Both concentration and net production of the three greenhouse gases were correlated, suggesting underlying causal factors. Edaphic factors such as soil moisture and pH had important, direct effects on the community composition of both functional groups of microorganisms, and pH further had a direct effect on N2O production. The structural relationship between the examined microbial communities and net production of both N2O and CH4 was strong and consistent between varying model structures and matrices, providing high confidence that this model relationship accurately reflects processes occurring in Arctic desert soils.

  6. Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation

    Directory of Open Access Journals (Sweden)

    Roy Edward Price

    2013-07-01

    Full Text Available Phase separation is a ubiquitous process in seafloor hydrothermal vents, creating a large range of salinities. Toxic elements (e.g., arsenic partition into the vapor phase, and thus can be enriched in both high and low salinity fluids. However, investigations of microbial diversity at sites associated with phase separation are rare. We evaluated prokaryotic diversity in arsenic-rich shallow-sea vents off Milos Island (Greece by comparative analysis of 16S rRNA clone sequences from two vent sites with similar pH and temperature but marked differences in salinity. Clone sequences were also obtained for aioA-like functional genes (AFGs. Bacteria in the surface sediments (0 to 1.5 cm at the high salinity site consisted of mainly Epsilonproteobacteria (Arcobacter sp., which transitioned to almost exclusively Firmicutes (Bacillus sp. at ~10 cm depth. However, the low salinity site consisted of Bacteroidetes (Flavobacteria in the surface and Epsilonproteobacteria (Arcobacter sp. at ~10 cm depth. Archaea in the high salinity surface sediments were dominated by the orders Archaeoglobales and Thermococcales, transitioning to Thermoproteales and Desulfurococcales (Staphylothermus sp. in the deeper sediments. In contrast, the low salinity site was dominated by Thermoplasmatales in the surface and Thermoproteales at depth. Similarities in gas and redox chemistry suggest that salinity and/or arsenic concentrations may select for microbial communities that can tolerate these parameters. Many of the archaeal 16S rRNA sequences contained inserts, possibly introns, including members of the Euryarchaeota. Clones containing AFGs affiliated with either Alpha- or Betaproteobacteria, although most were only distantly related to published representatives. Most clones (89% originated from the deeper layer of the low salinity, highest arsenic site. This is the only sample with overlap in 16S rRNA data, suggesting arsenotrophy as an important metabolism in similar

  7. COMPLEXES OF BISCITRATOGERMANATES AND BISCITRATOSTANATES WITH METALS ARE MODIFIERS OF ACTIVITY OF Bacillus thuringiensis var. іsraelensis PEPTIDASES AND α-Penicillium canescens, Cladosporium cladosporioides AND Aspergillus niger GALACTOIDASES

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2016-06-01

    Full Text Available The aim of the research was to study the effect of a number of coordination compounds of stanum and germanium (compounds 1‒8 as modifiers of activity of peptidases and α-galactosidases. The coordination compounds with the same type structure of were investigated as enzymes effectors. Two types of complexes: 1 [M(H2O6][Ge(НCitr2]4H2O (M = Mg(1, Mn(2, Co(3, Ni(4, Zn(5, containing biscitrate-stanate anion ([Ge(НCitr2]2-, and 2 [M(H2O6][Sn(НCitr2]4H2O (M = Mg(6, Co(7, Ni(8, containing biscitratostanate anion and various hexaaquacations ([M(H2O6]2+, М= Mg, Mn, Co, Ni, Zn were studied. It is shown that the compound 6 which is a biscitratostanate complex containing magnesium ions as metal, can be used for stimulation on 20‒25% of collagenase activity of B. thuringiensis var. israelensis IMV B-7465 peptidase 1 and peptidase 2. Compound 1 (biscitrate-stanate complex containing magnesium ions as metal and 7 (biscitratostanate complex containing cobalt ions as metal and compound 6 in a concentration of 0.001% are able to increase elastolytic activity of peptidase 1 on 55‒58%. However compound 7 has shown the greatest activating effect. It increased the elastolytic activity of peptidase 2 on 100‒140% (for both tested concentrations. This indicates that the compound 7 can further be used as of peptidase 2 elastolytic activity effector. In the study of effect of the considered coordination compounds on the activity of α-galactosidase of Penicillium canescens, Cladosporium cladosporioides and Aspergillus niger was found that when using a number of complexes (1‒2 and 4‒8, there is a slight increase on 12‒20% of enzyme activity of P. canescens, and the maximum effect (~20%, concentration 0.01% was provided by complex 6.

  8. Spatial Variations in Archaeal Lipids of Surface Water and Core-Top Sediments in the South China Sea and Their Implications for Paleoclimate Studies▿†

    Science.gov (United States)

    Wei, Yuli; Wang, Jinxiang; Liu, Jie; Dong, Liang; Li, Li; Wang, Hui; Wang, Peng; Zhao, Meixun; Zhang, Chuanlun L.

    2011-01-01

    The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 μg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected. PMID:21890672

  9. Novel PCR primers for the archaeal phylum Thaumarchaeota designed based on the comparative analysis of 16S rRNA gene sequences.

    Directory of Open Access Journals (Sweden)

    Jin-Kyung Hong

    Full Text Available Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7% belonged to the MG-I and SCG, which together contained most (93.9% of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer's specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and 95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and ecological niche of Thaumarchaeota.

  10. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers.

    Science.gov (United States)

    Niu, Yuhong; Meng, Qingxiang; Li, Shengli; Ren, Liping; Zhou, Bo; Schonewille, Thomas; Zhou, Zhenming

    2016-01-01

    This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had similar crude protein (CP), neutral detergent fiber (NDF), and metabolizable energy. Following the feeding trial, the steers were slaughtered and ruminal liquid samples were collected to study the ruminal microbiome. Extraction of DNA, amplification of the V4 region of the 16S rRNA gene, and Illumina MiSeq pyrosequencing were performed for each sample. Following sequence de-noising, chimera checking, and quality trimming, an average of 209,610 sequences were generated per sample. Quantitative real-time PCR was performed to examine the selected bacterial species in the rumen. Our results showed that the predominant phyla were Bacteroidetes (43.90%), Firmicutes (39.06%), Proteobacteria (4.31%), and Tenericutes (2.04%), and the predominant genera included Prevotella (13.82%), Ruminococcus (2.51%), Butyrivibrio (2.38%), and Succiniclasticum (2.26%). Compared to the control group, EML and SMFP groups had a higher abundance of total bacteria (p composition was similar among the three groups. At the phylum level, there were no significant differences in Firmicutes (p = 0.7932), Bacteroidetes (p = 0.2330), Tenericutes (p = 0.2811), or Proteobacteria (p = 0.0680) levels among the three groups; however, Fibrobacteres decreased in EML (p = 0.0431). At the genus level, there were no differences in Prevotella (p = 0.4280), Ruminococcus (p = 0.2639), Butyrivibrio (p = 0.4433), or Succiniclasticum (p = 0.0431) levels among the groups. Additionally, the dietary treatments had no significant effects on the archaeal community composition in the rumen. Therefore, EML and SMFP supplementation had no significant effects on the ruminal bacterial or archaeal community composition of finishing steers.

  11. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  12. Archaeal and Bacterial Diversity and Enzymatic Activities Associated With Particulate Matter in the Laptev Sea, a River-Impacted Arctic Shelf Environment

    Science.gov (United States)

    Evans, C. T.; Deming, J. W.

    2006-12-01

    Arctic Ocean shelves are influenced by riverine input of terrestrial, relatively refractory particulate organic matter (POM) as well as fresh material from marine phytoplankton blooms. The fate of organic particles and aggregates depends in large part on their associated microbes and the effectiveness of hydrolytic enzymes. The Laptev Sea provides an ideal setting to test for connections between Archaeal and Bacterial communities, the quality of the POM they colonize, and the activities of extracellular enzymes. Aboard the Russian icebreaker Kapitan Dranitsyn during the NABOS 2005 cruise to the Laptev Sea, we sampled various size fractions of particulate matter, from 0.2 to 70 μm. Patterns of Archaeal and Bacterial diversity were analyzed using terminal restriction fragment length polymorphism (T-RFLP). Extracellular enzymatic activities were evaluated using fluorescent substrate analogs. Thus far, we have observed a statistically significant difference between particle-associated and free-living Bacteria, many of which appear (by clone library) to be gamma-proteobacteria or CFB. Bacterial community richness associated with the largest particle fractions, where protease and glucosidase activities were the highest, was best explained by indicators of primary productivity (chlorophyll a and phaeopigments), while richness associated with smaller size fractions was best explained by general particle indicators (and depth and salinity). In contrast, particle-associated Archaea were not significantly different from their free-living counterparts. Archaeal clone library results indicate a predominance of Marine Group 1 Crenarchaea, the group containing a recently isolated nitrifying Archaeon. Given all these results, we hypothesize that in the Laptev Sea cold-active Bacteria are the primary agents in the enzymatic degradation of POM, whether terrestrial or marine, while Archaea play other roles in the elemental cycles of Arctic waters, perhaps especially in the nitrogen

  13. Pyrosequencing reveals the influence of elevated atmospheric CO2 on the composition of archaeal communities in the rhizosphere of C3 and C4 crops

    Science.gov (United States)

    Nelson, D. M.; Cann, I. K.; Mackie, R. I.

    2008-12-01

    The projected increase in atmospheric CO2 concentrations throughout the 21st century is likely to increase aboveground and belowground plant productivity and cause changes in the quantity and quality of plant root exudates, although plants using C4 photosynthesis are likely to be only affected during times of drought (Leakey et al., 2006, Plant Physiology, 140, 779). Evidence is emerging from molecular tools that these changes may influence the abundance and composition of soil microbial communities that regulate key soil processes, such as nitrogen cycling (Lesaulnier et al., 2008, Environmental Microbiology, 10, 926). However, most molecular tools are not well-suited for comparing multiple samples at great sequencing depth, which is critical when considering soil microbial communities of high diversity. To overcome these limitations we used pyrosequencing and quantitative PCR (qPCR) of two genes (the V3 region of 16S rDNA and the amoA gene) to examine intra- and inter-treatment variability in the abundance and composition of microbial communities in the rhizosphere of soybean (C3) and maize (C4) grown in field conditions under ambient (~380 ppm) and elevated (~550 ppm) CO2 using FACE (free-air concentration enrichment) technology during the 2006 growing season in central Illinois. We specifically focused on archaeal communities because of their key role in nitrification (Leininger et al., 2006, Nature, 442, 806). The majority (>97%) of recovered sequences were from members of the phylum Crenarchaeota. Principle component analysis of sequence results from the V3 and amoA genes indicated significant (psoybean, but not maize. qPCR suggested no significant difference in the abundance of archaea between treatments for soybean and maize. The lack of response of archaeal community composition beneath maize to elevated CO2 is consistent with relatively high soil moisture availability throughout the summer of 2006, whereas the significant influence of elevated CO2 on

  14. Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane RID C-7675-2009

    DEFF Research Database (Denmark)

    Bian, LQ; Hinrichs, KU; Xie, TM;

    2001-01-01

    Analyses of C-13 contents of individual organic molecules in a marine sediment show that crocetane, 2,6,11,15-tetramethylhexadecane, an isomer of phytane, is produced by microorganisms that use methane as their main source of carbon. The sediments lie at a water depth of 68 m in the Kattegat......-consuming member of the microbial consortium responsible for the anaerobic oxidation of methane [Hoehler et al., 1994], in which, as first demonstrated quantitatively in these sediments [Iversen and Jørgensen, 1985], electrons are transferred from methane to sulfate. The presence of archaeal biomass throughout...

  15. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Directory of Open Access Journals (Sweden)

    M. S. Alam

    2013-08-01

    Full Text Available The function of ammonia-oxidizing archaea (AOA and bacteria (AOB depends on the major energy-generating compounds (i.e., ammonia and oxygen. The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force

  16. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    Science.gov (United States)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  17. Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods

    Science.gov (United States)

    Hochstein, Rebecca A.; Amenabar, Maximiliano J.; Munson-McGee, Jacob H.; Boyd, Eric S.

    2016-01-01

    this research, we report a virus-centered approach to virus discovery and characterization, linking viral metagenomic sequences to a virus particle, its sequenced genome, and its host directly in environmental samples, without using culture-dependent methods. This approach provides a pathway for the discovery, isolation, and characterization of new viruses. While this study used an acidic hot spring environment to characterize a new archaeal virus, Acidianus tailed spindle virus (ATSV), the approach can be generally applied to any environment to expand knowledge of virus diversity in all three domains of life. PMID:26763997

  18. Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidase-like bacterial Dimethylsulfoniopropionate lyase: a new enzyme from an old fold.

    Science.gov (United States)

    Wang, Peng; Chen, Xiu-Lan; Li, Chun-Yang; Gao, Xiang; Zhu, De-yu; Xie, Bin-Bin; Qin, Qi-Long; Zhang, Xi-Ying; Su, Hai-Nan; Zhou, Bai-Cheng; Xun, Lu-ying; Zhang, Yu-Zhong

    2015-10-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria, and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds, but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO4 (3-) and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Furthermore, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production. PMID:26154071

  19. Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin.

    Science.gov (United States)

    Tishchenko, S V; Vassilieva, J M; Platonova, O B; Serganov, A A; Fomenkova, N P; Mudrik, E S; Piendl, W; Ehresmann, C; Ehresmann, B; Garber, M B

    2001-09-01

    The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

  20. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    Science.gov (United States)

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing. PMID:27338271

  1. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1

    International Nuclear Information System (INIS)

    A hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from S. solfataricus P1 has been crystallized as a recombinant protein with a vector-derived long N-terminal extension region. The P43212 crystals of recombinant ARF diffracted to 1.85 Å resolution using synchrotron radiation. The hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe–2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 Å resolution and belonged to the tetragonal space group P43212, with unit-cell parameters a = 60.72, c = 83.31 Å. The asymmetric unit contains one protein molecule

  2. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.

    Directory of Open Access Journals (Sweden)

    Sarit Edelheit

    2013-06-01

    Full Text Available The presence of 5-methylcytidine (m(5C in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m(5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis and gram negative (E. coli bacteria, an archaeon (S. solfataricus and a eukaryote (S. cerevisiae, followed by massively parallel sequencing. We were able to recover most previously documented m(5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m(5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m(5C was absent were also discovered. Intriguingly, we detected m(5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m(5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.

  3. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors?

    Science.gov (United States)

    Siles, José A; Margesin, Rosa

    2016-07-01

    Shifts in soil microbial communities over altitudinal gradients and the driving factors are poorly studied. Their elucidation is indispensable to gain a comprehensive understanding of the response of ecosystems to global climate change. Here, we investigated soil archaeal, bacterial, and fungal communities at four Alpine forest sites representing a climosequence, over an altitudinal gradient from 545 to 2000 m above sea level (asl), regarding abundance and diversity by using qPCR and Illumina sequencing, respectively. Archaeal community was dominated by Thaumarchaeota, and no significant shifts were detected in abundance or community composition with altitude. The relative bacterial abundance increased at higher altitudes, which was related to increasing levels of soil organic matter and nutrients with altitude. Shifts in bacterial richness and diversity as well as community structure (comprised basically of Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes) significantly correlated with several environmental and soil chemical factors, especially soil pH. The site at the lowest altitude harbored the highest bacterial richness and diversity, although richness/diversity community properties did not show a monotonic decrease along the gradient. The relative size of fungal community also increased with altitude and its composition comprised Ascomycota, Basidiomycota, and Zygomycota. Changes in fungal richness/diversity and community structure were mainly governed by pH and C/N, respectively. The variation of the predominant bacterial and fungal classes over the altitudinal gradient was the result of the environmental and soil chemical factors prevailing at each site. PMID:26961712

  4. Comparison of Fecal Methanogenic Archaeal Community Between Erhualian and Landrace Pigs Using Denaturing Gradient Gel Electrophoresis and Real-Time PCR Analysis

    Institute of Scientific and Technical Information of China (English)

    SU Yong; Hauke Smidt; ZHU Wei-Yun

    2014-01-01

    Erhualian and Landrace breeds are typical genetically obese and lean pigs, respectively. To compare the fecal methanogenic Archaeal community between these two pig breeds, fecal samples from different growth phase pigs were collected and used for PCR-denaturing gradient gel electrophoresis (DGGE) with two primer pairs (344fGC/519r and 519f/915rGC) and real-time PCR analysis. Results showed that a better separation and higher quality of bands pattern were obtained in DGGE proifles using primers 344fGC/519r as compared with primers 519f/915rGC. Sequencing of DGGE bands showed that the predominant methanogens in the feces of Erhualian and Landrace pigs belonged to Methanobrevibacter spp. and Methanosphaera spp. Real-time PCR analysis revealed that there was no signiifcant difference in the numbers of fecal total methanogens between Erhualian and Landrace pigs;however, pig growth phase affected the numbers of 16S rRNA genes of total methanogens and Methanobrevibacter smithii. Dissociation curves of methyl coenzyme-M reductase subunit A (mcrA) gene fragments ampliifed with real-time PCR showed all samples possessed a single peak at 82°C, which might be associated with M. smithii. Samples from the same growth phase of each breed showed good replicative dissociation curves. The results suggest that the growth phase (including diet factor) other than genotype of pig may affect the fecal methanogenic Archaeal community of pigs.

  5. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    Science.gov (United States)

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  6. Suppression of Ubiquitin-Specific Peptidase 17 (USP17) Inhibits Tumorigenesis and Invasion in Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Zhang, Shengchao; Yuan, Jun; Zheng, Ruheng

    2016-01-01

    Recently, deubiquitinating enzymes (DUBs) are emerging as new regulators in cancer progression. However, understanding of the involvement of DUBs in non-small cell lung cancer (NSCLC) is just beginning. In this study, we investigated the expression and biological function of ubiquitin-specific peptidase 17 (USP17) in NSCLC progression in vitro and in vivo. We found that the expression of USP17 was higher than in a normal control. We further efficiently depleted USP17 expression in two different NSCLC cells, A549 and H1299. The anchorage-independent growth ability of these cells, estimated by soft agar colony formation assay, was significantly reduced after USP17 knockdown. Moreover, Matrigel-Transwell analysis showed that suppression of USP17 decreased cell migration and invasion capacity. Molecular mechanism studies found that USP17 silencing downregulated the expression of matrix metalloproteases (MMP3 and MMP9) in NSCLC cells. Furthermore, animal model results showed that USP17 suppression inhibited NSCLC tumorigenesis and growth. Altogether, this study illustrates the important functions of USP17 in NSCLC and suggests that USP17 might be an attractive target for NSCLC therapy. PMID:27656837

  7. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    Directory of Open Access Journals (Sweden)

    Yuanxin Miao

    2015-04-01

    Full Text Available Myostatin (MSTN, a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph, and zinc metallopeptidase STE24 (Zmpste24. In addition, kyphoscoliosis peptidase (Ky, which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA pathways (Dgki, Dgkz, Plcd4 were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  8. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    Science.gov (United States)

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  9. Comparative activity of proline-containing dipeptide noopept and inhibitor of dipeptidyl peptidase-4 sitagliptin in a rat model of developing diabetes.

    Science.gov (United States)

    Ostrovskaya, R U; Ozerova, I V; Gudascheva, T A; Kapitsa, I G; Ivanova, E A; Voronina, T A; Seredenin, S B

    2014-01-01

    Developing diabetes was modeled on adult male Wistar rats by repeated intraperitoneal injections of streptozotocin in a subdiabetogenic dose of 30 mg/kg for 3 days. Proline-containing dipeptide drug Noopept or a standard diabetic drug dipeptidyl peptidase-4 inhibitor sitagliptin was administered per os in a dose of 5 mg/kg before each injection of the toxin and then for 16 days after streptozotocin course. In active control group, spontaneously increase glucose level and reduced tolerance to glucose load (1000 mg/kg intraperitoneally) were observed on the next day after the third administration of toxin. Basal glucose level decreased by day 16, but glucose tolerance remained impaired. Noopept normalized the basal blood glucose level and tolerance to glucose load on the next day after administration of streptozotocin. The effect of Noopept persisted to the end of the experiment. At early terms of the experiment, sitagliptin was somewhat superior to Noopept by the effect on baseline glucose level, but was inferior by the influence on glucose tolerance.. By the end of the experiment, Noopept significantly (by 2 times) surpassed sitagliptin by its effect on glucose tolerance. PMID:24771372

  10. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34⁺CXCR4⁺ cells in patients with type 2 diabetes.

    Science.gov (United States)

    Aso, Yoshimasa; Jojima, T; Iijima, T; Suzuki, K; Terasawa, T; Fukushima, M; Momobayashi, A; Hara, K; Takebayashi, K; Kasai, K; Inukai, T

    2015-12-01

    We investigated the effects of sitagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, on the number of circulating CD34(+)CXCR4(+)cells, a candidate for endothelial progenitor cells (EPCs), plasma levels of stromal cell-derived factor (SDF)-1α, a ligand for CXCR4 receptor and a substrate for DPP-4, and plasma levels of interferon-inducible protein (IP)-10, for a substrate for DPP-4, in patients with type 2 diabetes. We studied 30 consecutive patients with type 2 diabetes who had poor glycemic control despite treatment with metformin and/or sulfonylurea. Thirty diabetic patients were randomized in a 2:1 ratio into a sitagliptin (50 mg/day) treatment group or an active placebo group (glimepiride 1 mg/day) for 12 weeks. Both groups showed similar improvements in glycemic control. The number of circulating CD34(+)CXCR4(+) cells was increased from 30.5 (20.0, 47.0)/10(6) cells at baseline to 55.5 (31.5, 80.5)/10(6) cells at 12 weeks of treatment with 50 mg/day sitagliptin (P = 0.0014), while showing no significant changes in patients treated with glimepiride. Plasma levels of SDF-1α and IP-10, both physiological substrates of endogenous DPP-4 and chemokines, were significantly decreased at 12 weeks of sitagliptin treatment. In conclusion, treatment with sitagliptin increased the number of circulating CD34(+)CXCR4(+) cells by approximately 2-fold in patients with type 2 diabetes.

  11. Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin.

    Science.gov (United States)

    Nongonierma, Alice B; Le Maux, Solène; Hamayon, Joël; FitzGerald, Richard J

    2016-08-10

    Bovine α-lactalbumin (α-La) contains numerous dipeptidyl peptidase IV (DPP-IV) inhibitory peptide sequences within its primary structure. In silico analysis indicated that the targeted hydrolysis of α-La with elastase should release DPP-IV inhibitory peptides. An α-La isolate was hydrolysed with elastase under different conditions using an experimental design approach incorporating 3 factors (temperature, pH and enzyme to substrate ratio (E : S) ratio) at 2 levels. The hydrolyzate generated at pH 8.5, 50 °C, E : S 2.0% (w/w) (H9) displayed the highest mean DPP-IV inhibition value at 3.1 mg mL(-1) of 75.8 ± 3.7% and had a half maximal DPP-IV inhibitory concentration (IC50) value of 1.20 ± 0.12 mg mL(-1). Five α-La-derived DPP-IV inhibitory peptides (GY, GL, GI, NY and WL) predicted to be released in silico were identified by liquid-chromatography tandem mass spectrometry (LC-MS/MS) within H9 and its simulated gastrointestinal digestion (SGID) sample. This preliminary study demonstrated the benefit of using a targeted approach combined with an experimental design in the generation of dietary protein hydrolyzates with DPP-IV inhibitory properties. PMID:27410260

  12. Prevalence of the serpin peptidase inhibitor (alpha-1-antitrypsin PI*S and PI*Z alleles in Brazilian children with liver disease

    Directory of Open Access Journals (Sweden)

    Guilherme Baldo

    2008-01-01

    Full Text Available Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin, member 1 (SERPINA1 deficiency is one of the main genetic causes related to liver disease in children. In SERPINA1 deficiency the most frequent SERPINA1 alleles found are the PI*S and PI*Z alleles. We used the polymerase chain reaction and the amplification created restriction site (ACRS technique to investigate the prevalence of the PI*S and PI*Z alleles in a group of Brazilian children (n = 200 with liver disease and established the general frequency of the PI*S allele in our population. We found a significant association of the PI*Z allele and liver disease, but no such relationship was found for the PI*S allele. Our results show that SERPINA1 deficiency due to the PI*Z allele, even when heterozygous, is a frequent cause of liver disease in our group of Brazilian children but that the PI*S allele does not confer an increased risk of hepatic disorders in our group of Brazilian children.

  13. Postprandial incretin and islet hormone responses and dipeptidyl-peptidase 4 enzymatic activity in patients with maturity onset diabetes of the young

    DEFF Research Database (Denmark)

    Østoft, Signe Harring; Bagger, Jonatan Ising; Hansen, Torben;

    2015-01-01

    )), and dipeptidyl-peptidase 4 (DPP-4) enzymatic activity in patients with glucokinase (GCK)-diabetes (MODY2), hepatocyte nuclear factor 1α (HNF1A)-diabetes (MODY3), and in matched healthy individuals (CTRLs). Subjects and methods: Ten patients with GCK-diabetes (age: 43±5 years; BMI: 24±2 kg/m2; FPG: 7.1±0.3 mmol.......7±1.2 mU/ml) vs. CTRLs (13.6±0.8, P=0.011), but was similar to patients with GCK-diabetes (15.0±0.7 mU/ml, P=0.133). Conclusions: The pathophysiology of HNF1A-diabetes includes exaggerated postprandial glucagon responses and increased fasting DPP-4 enzymatic activity, but normal postprandial incretin......±176 min×pmol/l, P=0.005) and tended to have a greater response than patients with GCK-diabetes (410±154 min×pmol/l, P=0.063). Similar peak concentrations and AUCs for plasma GIP and plasma GLP-1 were observed across the groups. Increased fasting DPP-4-activity was seen in patients with HNF1A-diabetes (17...

  14. Anti-α-glucosidase and Anti-dipeptidyl Peptidase-IV Activities of Extracts and Purified Compounds from Vitis thunbergii var. taiwaniana.

    Science.gov (United States)

    Lin, Yin-Shiou; Chen, Chiy-Rong; Wu, Wei-Hau; Wen, Chi-Luan; Chang, Chi-I; Hou, Wen-Chi

    2015-07-22

    Ethanol extracts (Et) from the stem (S) and leaf (L) of Vitis thunbergii var. taiwaniana (VTT) were used to investigate yeast α-glucosidase and porcine kidney dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Both VTT-Et showed complete α-glucosidase inhibition at 0.1 mg/mL; VTT-S-Et and VTT-L-Et showed 26 and 11% DPP-IV inhibition, respectively, at 0.5 mg/mL. The VTT-Et interventions (20 and 50 mg/kg) resulted in improvements in impaired glucose tolerance of diet-induced obese rats. (+)-Hopeaphenol, (+)-vitisin A, and (-)-vitisin B were isolated from the ethyl acetate fractions of S-Et and showed yeast α-glucosidase inhibition (IC50 = 18.30, 1.22, and 1.02 μM) and porcine kidney DPP-IV inhibition (IC50 = 401, 90.75, and 15.3 μM) compared to acarbose (6.39 mM) and sitagliptin (47.35 nM), respectively. Both (+)-vitisin A and (-)-vitisin B showed mixed noncompetitive inhibition against yeast α-glucosidase and porcine kidney DPP-IV, respectively. These results proposed that VTT extracts might through inhibitions against α-glucosidase and DPP-IV improve the impaired glucose tolerance in diet-induced obese rats.

  15. The impact of dipeptidyl peptidase 4 inhibition on incretin effect, glucose tolerance, and gastrointestinal-mediated glucose disposal in healthy subjects

    DEFF Research Database (Denmark)

    Rhee, Nicolai Alexander; Østoft, Signe Harring; Holst, Jens Juul;

    2014-01-01

    Objective Inhibition of dipeptidyl peptidase 4 (DPP-4), is thought to intensify the physiological effects of the incretin hormones. We investigated the effects of DPP-4 inhibition on plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), the incretin...... effect, glucose tolerance, gastrointestinal-mediated glucose disposal (GIGD) and gastric emptying in healthy subjects. Design Randomised, controlled, open-label. Methods Ten healthy subjects (6 women) (age: 40±5 years (mean±SEM); BMI: 24±3 kg/m2, fasting plasma glucose: 5.1±0.2 mmol/l; HbA1c: 34±1 mmol......±26 mmol/l×min, p=0.7) or peak plasma glucose during OGTT (8.5±0.4 vs 8.1±0.3 mmol/l, p=0.3) was observed. Neither incretin effect (40±9 (without DPP-4 inhibitor) vs 40±7% (with DPP-4 inhibitor), p=1.0), glucagon responses (1,395±165 vs 1,223±195 pmol/l×min, p=0.41), GIGD (52±4 vs 56±5%, p=0.40) nor...

  16. Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B.

    Science.gov (United States)

    Nakano, Shogo; Okazaki, Seiji; Ishitsubo, Erika; Kawahara, Nobuhiro; Komeda, Hidenobu; Tokiwa, Hiroaki; Asano, Yasuhisa

    2015-01-01

    Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP. PMID:26370172

  17. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    Science.gov (United States)

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling. PMID:22798209

  18. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    Science.gov (United States)

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-01

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM. PMID:26468909

  19. Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Ulf Meyer-Hoffert

    Full Text Available Kallikreins-related peptidases (KLKs are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI. Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.

  20. Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts

    Science.gov (United States)

    Van Beersel, Guillaume; Tihon, Eliane; Demine, Stéphane; Hamer, Isabelle; Jadot, Michel; Arnould, Thierry

    2012-01-01

    NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology. PMID:23249249

  1. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    Science.gov (United States)

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-01

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy. PMID:25226384

  2. Determination of a dipeptidyl peptidase IV agonist, β-aminoacyl containing thiazolidine derivatives (KR-66223) in rat plasma by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Kim, Min-Sun; Park, Jong-Shik; Jang, Su-Min; Lee, Byung Hoi; Ahn, Sung-Hoon; Ahn, Jin Hee; Yoo, Sung Eun; Song, Im-Sook; Silinski, Peter; Schneider, Stephen Edward; Bae, Myung Ae

    2011-07-15

    A sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for a novel dipeptidyl peptidase IV agonist (DDP-IV) agonist, KR-66223, in rat plasma. It involves liquid-liquid extraction (LLE) followed by HPLC separation and electrospray ionization tandem mass spectrometry. KR-66223 and imipramine (IS) was separated on Gemini-NX C18 column with mixture of acetonitrile-ammonium formate (10mM) (90:10, v/v) as mobile phase. The ion transitions monitored were m/z 553.2→206.2 for KR-66223, m/z 281.3→86.1 for imipramine in multiple reaction monitoring (MRM) mode. The linear ranges of the assay were 0.003-10μg/ml with a correlation coefficient (R(2)) greater than 0.99 and the lower limit of quantification was 3ng/ml. The average recovery was 78.9% and 87.1% from rat plasma for KR-66223 and imipramine, respectively. The coefficients of variation of intra- and inter-assay were 3.9-14.4% and the relative error was 0.8-11.5%. The method was validated and successfully applied to the pharmacokinetic study of KR-66223 in rat.

  3. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins.

    Science.gov (United States)

    Wang, Feng; Yu, Guoyong; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2015-11-01

    Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM.

  4. Preparation of Optically Active Alkoxy-serines from Amino-amide Racemate Catalyzed by Escherichia coil Cells with Peptidase B Activity

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-yuan; LIU Jun-zhong; XU Li-sheng; ZHANG Hong-juan; LIU Qian; JIAO Qing-cai

    2013-01-01

    Alkoxy-L-serines are useful for peptide syntheses.The demand for alkoxy-L-serines in the pharmaceutical industries continues to increase because of their multiple physiological effects.In this research,an improved method for alkoxy-L-serines synthesis is reported.A series of substrates,DL-β-alkoxy-α-amino propionamides,was used for the synthesis of alkoxy-serines catalyzed by Escherichia coli cells with peptidase B(PepB) activity.The results show that PepB has a high resolution activity with DL-β-alkoxy-α-amino propionamides as substrate.Reaction conditions were optimized,i.e.,DL-β-methoxy-α-amino propionamide as substrate at pH=9.0,40 ℃ and 14 h,and the optimal reaction concentration is 400 mmol/L.The results also show that divalent metal cations exhibit different effects on the PepB activity,for example,Zn2+ and Cu2+ can obviously inhibit the activity of PepB,whereas Co2+,Ca2+,Mn2+ and Mg2+ at low concentrations can activate PepB.This research provides access to enantiomerically enriched and valuable alkoxy-L-serines from a simple amino-amide racemate.

  5. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    Science.gov (United States)

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  6. An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Zhi-Wei; Yang, Tianxin; Zhang, Xueji; Yang, Yin-Xue; Duan, Wei; Zhou, Shu-Feng

    2015-12-01

    Alogliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor that is a class of relatively new oral hypoglycaemic drugs used in patients with type 2 diabetes (T2DM), can be used as monotherapy or in combination with other anti-diabetic agents, including metformin, pioglitazone, sulfonylureas and insulin with a considerable therapeutic effect. Alogliptin exhibits favorable pharmacokinetic and pharmacodynamic profiles in humans. Alogliptin is mainly metabolized by cytochrome P450 (CYP2D6) and CYP3A4. Dose reduction is recommended for patients with moderate or worse renal impairment. Side effects of alogliptin include nasopharyngitis, upper-respiratory tract infections and headache. Hypoglycaemia is seen in about 1.5% of the T2DM patients. Rare but severe adverse reactions such as acute pancreatitis, serious hypersensitivity including anaphylaxis, angioedema and severe cutaneous reactions such as Stevens-Johnson syndrome have been reported from post-marketing monitoring. Pharmacokinetic interactions have not been observed between alogliptin and other drugs including glyburide, metformin, pioglitazone, insulin and warfarin. The present review aimed to update the clinical information on pharmacodynamics, pharmacokinetics, adverse effects and drug interactions, and to discuss the future directions of alogliptin. PMID:26218204

  7. Mechanisms for the export of archaeal lipids down the water column in the upwelling area off Cape Blanc, North-West Africa

    Science.gov (United States)

    Ebersbach, Friederike; Goldenstein, Nadine; Iversen, Morten; Mollenhauer, Gesine; Hinrichs, Kai-Uwe

    2016-04-01

    Transport mechanisms of microbial membrane lipids from surface waters to the seafloor are poorly understood. In particular, pelagic archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) from planktonic archaea are frequently used for reconstruction of ancient sea surface temperatures (Schouten et al. 2013). Because planktonic archaea are too small and neutrally buoyant to sink independently, transport vehicles for efficient export of fossil archaeal biomarkers to the sediment are required. The surface ocean is coupled with the deep ocean through biogenic sinking particles, a process known as the biological pump (Volk and Hoffert 1985). Two different pathways for particle formation, mainly taking place in the mesopelagic zone, are distinguished: Direct aggregation of phytoplankton blooms or grazing, resulting in phyto-detrital aggregates or reprocessed faecal material, respectively. Grazing and packaging into sinking particles is a possible export mechanism for GDGTs (Huguet et al. 2006). Moreover, it is assumed that phyto-detrital aggregates also play an important role in transporting GDGTs to the deep (Mollenhauer et al. 2015), but processes behind this pathway remain unclear. However, there are only few studies that link GDGT signals in sinking particles to the composition of the exported particulate matter (e.g. Yamamoto et al., 2012; Mollenhauer et al. 2015). Here we investigate sinking particles and suspended particulate matter (SPM) from spring blooms in 2012 and 2013 in the upwelling region in the Atlantic Ocean off Cape Blanc, Mauritania. We compare for the first time material from free-floating sediment traps (100, 200 and 400 m; purely sinking particles) with sinking particles and SPM from size fractionated in-situ pump (ISP) filters (several depths between 40 and 2350 m). This setup allows to relate the signal from archaeal lipids to (i) the flux of particulate organic carbon and the particle assemblages as revealed by the characterisation of

  8. The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase--The archaeal Zwischenferment.

    Science.gov (United States)

    Pickl, Andreas; Schönheit, Peter

    2015-04-28

    The oxidative pentose phosphate pathway (OPPP), catalyzing the oxidation of glucose-6-phosphate to ribulose-5-phosphate is ubiquitous in eukarya and bacteria but has not yet been reported in archaea. In haloarchaea a putative 6-phosphogluconate dehydrogenase (6PGDH) is annotated, whereas a gene coding for glucose-6-phosphate dehydrogenase (Glc6PDH) could not be identified. Here we report the purification and characterization of a novel type of Glc6PDH in Haloferax volcanii that is not related to bacterial and eukaryal Glc6PDHs and the encoding gene is designated as azf (archaeal zwischenferment). Further, recombinant H. volcanii 6PGDH was characterized. Deletion mutant analyses indicate that both, Glc6PDH and 6PGDH, are functionally involved in pentose phosphate formation in vivo. This is the first report on the operation of the OPPP in the domain of archaea.

  9. Structural and Functional Characterization of an Archaeal Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Complex for Antiviral Defense (CASCADE)

    DEFF Research Database (Denmark)

    Lintner, Nathanael G; Kerou, Melina; Brumfield, Susan K;

    2011-01-01

    In response to viral infection, many prokaryotes incorporate fragments of virus-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). The loci are then transcribed, and the processed CRISPR transcripts are used to target invading viral DNA and RNA....... The Escherichia coli "CRISPR-associated complex for antiviral defense" (CASCADE) is central in targeting invading DNA. Here we report the structural and functional characterization of an archaeal CASCADE (aCASCADE) from Sulfolobus solfataricus. Tagged Csa2 (Cas7) expressed in S. solfataricus co-purifies with Cas5......a-, Cas6-, Csa5-, and Cas6-processed CRISPR-RNA (crRNA). Csa2, the dominant protein in aCASCADE, forms a stable complex with Cas5a. Transmission electron microscopy reveals a helical complex of variable length, perhaps due to substoichiometric amounts of other CASCADE components. A recombinant Csa2...

  10. Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains.

    Science.gov (United States)

    Whitman, William B; Woyke, Tanja; Klenk, Hans-Peter; Zhou, Yuguang; Lilburn, Timothy G; Beck, Brian J; De Vos, Paul; Vandamme, Peter; Eisen, Jonathan A; Garrity, George; Hugenholtz, Philip; Kyrpides, Nikos C

    2015-01-01

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity.

  11. Exploring the biotechnologial applications in the archaeal domain Explorando as aplicações biotecnológicas do domínio archaea

    Directory of Open Access Journals (Sweden)

    S.M.C. Alquéres

    2007-09-01

    Full Text Available Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. The extremophilic nature of many archaea has stimulated intense efforts to understand the physiological adaptations for living in extreme environments. Their unusual properties make them a potentially valuable resource in the development of novel biotechnological processes and industrial applications as new pharmaceuticals, cosmetics, nutritional supplements, molecular probes, enzymes, and fine chemicals. In the present mini-review, we show and discuss some exclusive characteristics of Archaea domain and the current knowledge about the biotechnological uses of the archaeal enzymes. The topics are: archaeal characteristics, phylogenetic division, biotechnological applications, isolation and cultivation of new microbes, achievements in genomics, and metagenomic.As arqueas representam uma considerável fração dos procariotos nos ecossistemas marinhos e terrestes, indicando que estes organismos devem possuir um grande impacto nos ciclos energéticos. A natureza extremofílica de muitas arqueas tem estimulado intensos esforços para compreender sua adaptação fisiológica a ambientes extremos. Suas propriedades incomus as tornam uma fonte valiosa no desenvolvimento de novos processos biotecnológicos e aplicações industriais como novos fármacos, cosméticos, suplementos nutricionais, sondas moleculares, enzimas e reagentes. Na presente mini-revisão, mostramos e discutimos algumas de suas características exclusivas correlacionando-as com seu potencial biotecnológico e aplicação industrial. Os tópicos são: características das arqueas, divisão filogenética, aplicações biotecnológicas, isolamento e cultivo de novos microrganismos, genoma e metagenoma.

  12. The Primary Results of Analyses on The Archaeal and Bacterial Diversity of Active Cave Environments Settled in Limestones at Southern Turkey

    Science.gov (United States)

    Tok, Ezgi; Kurt, Halil; Tunga Akarsubasi, A.

    2016-04-01

    The microbial diversity of cave sediments which are obtained from three different caves named Insuyu, Balatini and Altınbeşik located at Southern Turkey has been investigated using molecular methods for biomineralization . The total number of 22 samples were taken in duplicates from the critical zones of the caves at where the water activity is observed all year round. Microbial communities were monitored by 16S rRNA gene based PCR-DGGE (Polymerase Chain Reaction - Denaturating Gradient Gel Electrophoresis) methodology. DNA were extracted from the samples by The PowerSoil® DNA Isolation Kit (MO BIO Laboratories inc., CA) with the modifications on the producer's protocol. The synthetic DNA molecule poly-dIdC was used to increase the yield of PCR amplification via blocking the reaction between CaCO3 and DNA molecules. Thereafter samples were amplified by using both Archaeal and Bacterial universal primers (ref). Subsequently, archaeal and bacterial diversities in cave sediments, were investigated to be able to compare with respect to their similarities by using DGGE. DGGE patterns were analysed with BioNumerics software 5.1. Similarity matrix and dendograms of the DGGE profiles were generated based on the Dice correlation coefficient (band-based) and unweighted pair-group method with arithmetic mean (UPGMA). The structural diversity of the microbial community was examined by the Shannon index of general diversity (H). Similtaneously, geochemical analyses of the sediment samples were performed within the scope of this study. Total organic carbon (TOC), x-ray diffraction spectroscopy (XRD) and x-ray fluorescence spectroscopy (XRF) analysis of sediments were also implemented. The extensive results will be obtained at the next stages of the study currently carried on.

  13. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    International Nuclear Information System (INIS)

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose

  14. Peptidases from Latex of Carica candamarcensis Upregulate COX-2 and IL-1 mRNA Transcripts against Salmonella enterica ser. Typhimurium-Mediated Inflammation

    Directory of Open Access Journals (Sweden)

    Maria Taciana Ralph

    2014-01-01

    Full Text Available The immunomodulatory properties of a mixture of cysteine peptidases (P1G10 obtained from the fruit lattice of Carica candamarcensis were investigated. P1G10 was obtained from fresh latex samples by chromatography in a Sephadex column and initially administered to Swiss mice (n=5; 1 or 10 mg/kg via i.p. After 30 min, the mice were injected with carrageenan (0.5 mg/mouse or heat-killed S. Typhimurium (107 CFU/mL; 100°C/30 min into the peritoneal cavity. Afterwards, two animal groups were i.p. administered with P1G10 (n=6; 1, 5, or 10 mg/Kg or PBS 24 hours prior to challenge with live S. Typhimurium (107 CFU/mL. P1G10 stimulated the proliferation of circulating neutrophils and lymphocytes, 6 h after injection of carrageenan or heat-killed bacteria, respectively. Furthermore, survival after infection was dose-dependent and reached 60% of the animal group. On the other hand, control mice died 1–3 days after infection. The examination of mRNA transcripts in liver cells 24 h after infection confirmed fold variation increases of 5.8 and 4.8 times on average for IL-1 and COX-2, respectively, in P1G10 pretreated mice but not for TNF-α, IL-10, γ-IFN and iNOS, for which the results were comparable to untreated animals. These data are discussed in light of previous reports.

  15. Peptidases from latex of Carica candamarcensis upregulate COX-2 and IL-1 mRNA transcripts against Salmonella enterica ser. Typhimurium-mediated inflammation.

    Science.gov (United States)

    Ralph, Maria Taciana; Silva, Ayrles Fernanda Brandão; da Silva, Dayane Laíse; do Nascimento, Danielle Cristina Oliveira; da Silva, Diogo Manoel Farias; Gomes-Filho, Manoel A; Souza, Paulo Roberto Eleutério; Evêncio-Neto, Joaquim; Ramos, Márcio Viana; Salas, Carlos Edmundo; Lima-Filho, José Vitor

    2014-01-01

    The immunomodulatory properties of a mixture of cysteine peptidases (P1G10) obtained from the fruit lattice of Carica candamarcensis were investigated. P1G10 was obtained from fresh latex samples by chromatography in a Sephadex column and initially administered to Swiss mice (n = 5; 1 or 10 mg/kg) via i.p. After 30 min, the mice were injected with carrageenan (0.5 mg/mouse) or heat-killed S. Typhimurium (10(7) CFU/mL; 100°C/30 min) into the peritoneal cavity. Afterwards, two animal groups were i.p. administered with P1G10 (n = 6; 1, 5, or 10 mg/Kg) or PBS 24 hours prior to challenge with live S. Typhimurium (10(7) CFU/mL). P1G10 stimulated the proliferation of circulating neutrophils and lymphocytes, 6 h after injection of carrageenan or heat-killed bacteria, respectively. Furthermore, survival after infection was dose-dependent and reached 60% of the animal group. On the other hand, control mice died 1-3 days after infection. The examination of mRNA transcripts in liver cells 24 h after infection confirmed fold variation increases of 5.8 and 4.8 times on average for IL-1 and COX-2, respectively, in P1G10 pretreated mice but not for TNF-α, IL-10, γ-IFN and iNOS, for which the results were comparable to untreated animals. These data are discussed in light of previous reports.

  16. Dipeptidyl peptidase IV (CD26 activity in the hematopoietic system: differences between the membrane-anchored and the released enzyme activity

    Directory of Open Access Journals (Sweden)

    D.A. Pereira

    2003-05-01

    Full Text Available Dipeptidyl peptidase IV (DPP-IV; CD26 (EC 3.4.14.5 is a membrane-anchored ectoenzyme with N-terminal exopeptidase activity that preferentially cleaves X-Pro-dipeptides. It can also be spontaneously released to act in the extracellular environment or associated with the extracellular matrix. Many hematopoietic cytokines and chemokines contain DPP-IV-susceptible N-terminal sequences. We monitored DPP-IV expression and activity in murine bone marrow and liver stroma cells which sustain hematopoiesis, myeloid precursors, skin fibroblasts, and myoblasts. RT-PCR analysis showed that all these cells produced mRNA for DPP-IV. Partially purified protein reacted with a commercial antibody to CD26. The K M values for Gly-Pro-p-nitroanilide ranged from 0.43 to 0.98 mM for the membrane-associated enzyme of connective tissue stromas, and from 6.76 to 8.86 mM for the enzyme released from the membrane, corresponding to a ten-fold difference, but only a two-fold difference in K M was found in myoblasts. K M of the released soluble enzyme decreased in the presence of glycosaminoglycans, nonsulfated polysaccharide polymers (0.8-10 µg/ml or simple sugars (320-350 µg/ml. Purified membrane lipid rafts contained nearly 3/4 of the total cell enzyme activity, whose K M was three-fold decreased as compared to the total cell membrane pool, indicating that, in the hematopoietic environment, DPP-IV activity is essentially located in the lipid rafts. This is compatible with membrane-associated events and direct cell-cell interactions, whilst the long-range activity depending upon soluble enzyme is less probable in view of the low affinity of this form.

  17. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase.

    Science.gov (United States)

    Yamane, Takuya; Kozuka, Miyuki; Konda, Daisuke; Nakano, Yoshihisa; Nakagaki, Takenori; Ohkubo, Iwao; Ariga, Hiroyoshi

    2016-05-01

    Aronia berries have many potential effects on health. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. Recently, we have reported that aronia juice has an inhibitory effect on dipeptidyl peptidase (DPP IV) activity and that the DPP IV inhibitor in aronia juice was identified as cyanidin 3,5-diglucoside. In this study, we found that body weights and blood glucose levels were reduced in diabetes model KK-Ay mice given aronia juice. We also found that weights of white adipose tissues were reduced in KK-Ay mice given aronia juice. Furthermore, levels of DPP IV activity in the serum and liver from KK-Ay mice were lower than those in the serum and liver from C57BL/6JmsSlc mice. Interestingly, although levels of DPP IV activity were not changed in the serum and liver from aronia-juice-administered KK-Ay mice, levels of DPP IV activity were increased in those from aronia-juice-administered C57BL/6JmsSlc mice. Furthermore, α-glucosidase activity was inhibited in the upper region of the small intestine from aronia-juice-administered KK-Ay mice but not in the lower region. Inhibition of α-glucosidase activity in the upper portion of the small intestine induced a reduction of glucose-dependent insulinotropic polypeptide (GIP) level. The results suggest that DPP IV activity in diabetic mice is inhibited by aronia juice, that the GIP level in the upper region of the small intestine is reduced by inhibition of α-glucosidase activity and that weights of adipose tissues are reduced by aronia juice. PMID:27133429

  18. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    Science.gov (United States)

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  19. Quantitative expression analysis and study of the novel human kallikrein-related peptidase 14 gene (KLK14) in malignant and benign breast tissues.

    Science.gov (United States)

    Papachristopoulou, Georgia; Avgeris, Margaritis; Charlaftis, Antonios; Scorilas, Andreas

    2011-01-01

    Human kallikrein-related peptidase 14 gene (KLK14) is regulated by androgens and progestins. This gene is expressed in the central nervous system and endocrine tissues such as the breast, prostate and ovary. The differential KLK14 mRNA expression levels are related to several human neoplasias, among them breast cancer. The aim of this study was to analyse the KLK14 expression in breast tissues and to investigate its differential diagnostic and prognostic value in the mammary carcinomas. For this purpose, we isolated total RNA from 70 malignant and 33 benign specimens. After testing RNA quality, we synthesised cDNA by reverse transcription and applied a highly sensitive quantitative real-time PCR (qRT-PCR) method for KLK14 mRNA quantification using the SYBR Green® chemistry. HPRT1 was used as a reference gene and the BT20 breast cancer cell line as a calibrator. Relative quantification analysis was performed using the comparative CT method 2-ΔΔCT. KLK14 expression was detected in both types of breast tumours. However, a statistically significant increase of the KLK14 mRNA level was observed in the malignant, compared to the benign tumour samples (pgrade (p=0.043) and size (p=0.007) in cancerous samples. Furthermore, KLK14 mRNA expression showed negative correlation in a statistically significant manner with estrogen receptor status (p=0.024). In accordance with logistic regression models (p=0.012) and receiver-operating-characteristics analysis (p<0.001), KLK14 gene expression could be evaluated as a putative independent diagnostic biomarker in breast tumour biopsies. PMID:21057706

  20. The serine protease, dipeptidyl peptidase IV as a myokine: dietary protein and exercise mimetics as a stimulus for transcription and release.

    Science.gov (United States)

    Neidert, Leslie E; Mobley, C Brooks; Kephart, Wesley C; Roberts, Michael D; Kluess, Heidi A

    2016-06-01

    Dipeptidyl-peptidase IV (DPP-IV) is an enzyme with numerous roles within the body, mostly related to regulating energy metabolism. DPP-IV is also a myokine, but the stimulus for its release is poorly understood. We investigated the transcription and release of DPP-IV from skeletal muscle in a three-part study using C2C12 myotube cultures, an acute rat exercise and postexercise feeding model, and human feeding or human exercise models. When myotubes were presented with leucine only, hydrolyzed whey protein, or chemicals that cause exercise-related signaling to occur in cell culture, all caused an increase in the mRNA expression of DPP-IV (1.63 to 18.56 fold change, P protein caused a significant increase in DPP-IV activity in the cell culture media. When rats were fed whey protein concentrate immediately following stimulated muscle contractions, DPP-IV mRNA in both the exercised and nonexercised gastrocnemius muscles significantly increased 2.5- to 3.7-fold (P protein up to 1 h post consumption, after a 10 min bout of vigorous running, or during the completion of three repeated lower body resistance exercise bouts. Our cell culture and rodent data suggest that whey protein increases DPP-IV mRNA expression and secretion from muscle cells. However, our human data suggest that DPP-IV is not elevated in the bloodstream following acute whey protein ingestion or exercise. PMID:27335432