WorldWideScience

Sample records for archaeal heat shock

  1. Heat shock proteins and immunotherapy

    Institute of Scientific and Technical Information of China (English)

    XinZHAO; XueMeiXU; GuoxingSONG

    2005-01-01

    Being one of the most abundant intracellular proteins,heat shock proteins(HSPs) have many housekeeping functions which are crucial for the survival of organisms.In addition,some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity.They could activate CD8+ and CD4+ lymphocytes,induce innate immune response including natural killer(NK) cell activation and cytokine secretion,and induce maturation of dendritic cells(DCs).These characteristics have been used for immunotherapy of various types of cancers and infectious disenses.This review focuses on the main HSP families——HSP70 and 90 families.The mechanism of HSPs’ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details.At the end of this review,authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.

  2. Heat shock proteins in multiple myeloma

    OpenAIRE

    Zhang, Lei; Jacqueline H L Fok; Davies, Faith E.

    2014-01-01

    Heat shock proteins are molecular chaperones with a central role in protein folding and cellular protein homeostasis. They also play major roles in the development of cancer and in recent years have emerged as promising therapeutic targets. In this review, we discuss the known molecular mechanisms of various heat shock protein families and their involvement in cancer and in particular, multiple myeloma. In addition, we address the current progress and challenges in pharmacologically targeting...

  3. Heat shock factor 1 prevents the reduction in thrashing due to heat shock in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2015-07-01

    Heat shock factor 1 (HSF-1) is activated by heat stress and induces the expression of heat shock proteins. However, the role of HSF-1 in thermotolerance remains unclear. We previously reported that heat stress reversibly reduces thrashing movement in Caenorhabditis elegans. In this study, we analyzed the function of HSF-1 on thermotolerance by monitoring thrashing movement. hsf-1 RNAi suppressed the restoration of thrashing reduced by heat stress. In contrast, hsf-1 knockdown cancelled prevention of movement reduction in insulin/IGF-1-like growth factor 1 receptor (daf-2) mutant, but didn't suppress thrashing restoration in daf-2 mutant. In addition, hsf-1 RNAi accelerated the reduction of thrashing in heat-shocked wild-type C. elegans. And, daf-16 KO didn't accelerate the reduction of thrashing by heat stress. Taken together, these results suggest that HSF-1 prevents the reduction of thrashing caused by heat shock.

  4. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  5. Association of heat shock proteins, heat shock factors and male infertility

    Institute of Scientific and Technical Information of China (English)

    Zi-Liang Ji; Yong-Gang Duan; Li-Sha Mou; Jean-Pierre Allam; Gerhard Haidl; Zhi-Ming Cai

    2012-01-01

    It has been well established that heat shock proteins(HSP) and heat shock factors(HSF) are involved in wide varieties of physiological regulation process and signal pathway.Numerous members of heat shock family exhibit a cell-type-specific expression pattern during spermatogenesis and play crucial roles in germ cell development.This led to the emerging studies to reveal the association between heat shock family and male infertility.Aberrant expressions ofHSP/HSFs observed in sterile men and animal models indicate the two opposite effects, both protective and harmful, of heat shock family on male fertility.Moreover,HSP/HSFs are also involved in the two major causes of male infertility.It seems that different behaviors of HSP/HSFs patients with varicocele andChlamydia trachomatis infection lead to distinct outcomes of male fertility.In addition, emerging evidence has demonstrated that the altered expression ofHSP/HSFs may be responsible for the abnormal germ cell apoptosis and subsequently results in impaired spermatogenesis.Therefore, heat shock family may play an important role in the quality-control of germ cells during spermatogenesis, raising the prospect of their utility for novel treatment targets in male infertility.

  6. Heat shock protection against cold stress of Drosophila melanogaster.

    OpenAIRE

    Burton, V; Mitchell, H K; Young, P.; Petersen, N S

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  7. Heat Shock Proteins and their clinical Implications

    Directory of Open Access Journals (Sweden)

    M. M. Pathan

    Full Text Available Knowledge of the physiological role of heat shock proteins is currently limited; however better understanding of their function and thereby the acquisition of the capacity to harness their power might lead to their use as therapeutic agents and revolutionize clinical practice in a number of areas. Future work is needed to translate the experimental data on the capacity of heat shock proteins to induce tumor protection and immunity to infectious agents into the clinical environment. Approach to cancer vaccine is based on the role of HSP in the presentation of antigens. In several infections and especially autoimmune diseases, the implications of immune responses against HSP are still not properly or fully understood. HSP have clinical significance in conditions such as cardiac hypertrophy, vascular wall injury, cardiac surgery, ischemic preconditioning and ageing. [Veterinary World 2010; 3(12.000: 558-560

  8. Heat Shock Proteins (HSPs: a Review

    Directory of Open Access Journals (Sweden)

    Jana Tkáčová

    2012-05-01

    Full Text Available Heat shock proteins (HSPs are a large class of proteins that have been conserved throughout evolution and exist by prokaryote and eukaryote organisms. Heat shock proteins play an important role in protein homeostasis. They can found in all major cellular compartments. The HSP90 family are important in the formation of the steroid receptor complex. The HSP70 family is necessary for protein synthesis, translocation, and folding. HSP60 family is important in protein stability. Many factors, e. g. heavy metals and organic toxic substances, elevated temperature in all cells responsive to the formation of proteins called stress proteins. This is happening with a simple bacterium and with complex of neurons too. The concentration of HSPs in muscle in young and adults birds is increasing rapidly in the cellular stress. Increasing HSPs leads to significant changes in gene expression, which lead to reconstruction of skeletal muscle.

  9. Heat Shock Protein 90 in Alzheimer's Disease

    OpenAIRE

    Jiang-Rong Ou; Meng-Shan Tan; An-Mu Xie; Jin-Tai Yu; Lan Tan

    2014-01-01

    Alzheimer’s disease (AD) is the first most common neurodegenerative disease. Despite a large amount of research, the pathogenetic mechanism of AD has not yet been clarified. The two hallmarks of the pathology of AD are the extracellular senile plaques (SPs) of aggregated amyloid-beta (Aβ) peptide and the accumulation of the intracellular microtubule-associated protein tau into fibrillar aggregates. Heat shock proteins (HSPs) play a key role in preventing protein misfolding and aggregation, an...

  10. Heat Shock Proteins in the Human Eye

    OpenAIRE

    Lærke Urbak; Henrik Vorum

    2010-01-01

    Heat shock proteins (Hsps) are believed to primarily protect and maintain cell viability under stressful conditions such as those occurring during thermal and oxidative challenges chiefly by refolding and stabilizing proteins. Hsps are found throughout the various tissues of the eye where they are thought to confer protection from disease states such as cataract, glaucoma, and cancer. This minireview summarizes the placement, properties, and roles of Hsps in the eye and aims to provide a bett...

  11. Biophoton Emission Induced by Heat Shock

    OpenAIRE

    Kobayashi, Katsuhiro; Okabe, Hirotaka; Kawano, Shinya; Hidaka, Yoshiki; Hara, Kazuhiro

    2014-01-01

    Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observe...

  12. Heat Shock Proteins in the Human Eye

    Directory of Open Access Journals (Sweden)

    Lærke Urbak

    2010-01-01

    Full Text Available Heat shock proteins (Hsps are believed to primarily protect and maintain cell viability under stressful conditions such as those occurring during thermal and oxidative challenges chiefly by refolding and stabilizing proteins. Hsps are found throughout the various tissues of the eye where they are thought to confer protection from disease states such as cataract, glaucoma, and cancer. This minireview summarizes the placement, properties, and roles of Hsps in the eye and aims to provide a better comprehension of their function and involvement in ocular disease pathogenesis.

  13. Impact of heat shock on heat shock proteins expression,biological and commercial traits of Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    VASUDHA B. CHAVADI; APARNA H. S OSALEGOWDA; MANJUNATHA H.B OREGOWDA

    2006-01-01

    We report the thermotolerance of new bivoltine silkworm, Bombyx mori strains NB4D2, KSO1, NP2, CSR2 and CSR4 and differential expression of heat shock proteins at different instars. Different instars of silkworm larva were subjected to heat shock at 35℃,40℃ and 45℃ for 2 hours followed by 2 hours recovery. Heat shock proteins were analyzed by SDS-PAGE. The impact of heat shock on commercial traits of cocoons was analyzed by following different strategies in terms of acquired thermotolerance over control. Comparatively NP2 exhibited better survivability than other strains. Resistance to heat shock was increased as larval development proceeds in the order of first instar > second instar > third instar > fourth instar > fifth instar in all silkworm strains. Expression of heat shock proteins varies in different instars. 90 kDa in the first, second and third instars, 84 kDa in the fourth instar and 84, 62, 60, 47 and 33 kDa heat shock proteins in fifth instar was observed in response to heat shock. Relative influence of heat shock on commercial traits that correspond to different stages was significant in all strains. In NB4D2, cocoon and shell weight significantly increased to 17.52% and 19.44% over control respectively. Heat shock proteins as molecular markers for evaluation and evolution of thermotolerant silkworm strains for tropics was discussed.

  14. Barcoding heat shock proteins to human diseases : looking beyond the heat shock response

    NARCIS (Netherlands)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    2014-01-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) - and thus generally restoring the disturbed protein homeostasis associated with such diseases - has often been suggested as a therape

  15. Heat shock proteins in the kidney.

    Science.gov (United States)

    Sreedharan, Rajasree; Van Why, Scott K

    2016-10-01

    Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease. PMID:26913726

  16. Heat Shock Protein and Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Min-FuTsan; BaochongGao

    2004-01-01

    In addition to serving as molecular chaperones, heat shock proteins (HSPs) have been implicated in autoimmune diseases, antigen presentation and tumor immunity. Extensive work in the last 10 years has also suggested that HSPs such as Hsp60, Hsp70, Hsp90 and gp96, may be potent activators of the innate immune system capable of inducing the production of pro-inflammatory cytokines by the monocyte-macrophage system, and the activation and maturation of dendritic cells via the Toll-like receptor 2 and 4 signal transduction pathways. However, recent evidence suggests that the reported cytokine effects of HSPs may be a result of the contaminating bacterial cell-wall products. This concise review summarizes the current controversy over the role of HSPs in innate immunity. Cellular & Molecular Immunology.

  17. Heat Shock Protein and Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Min-Fu Tsan; Baochong Gao

    2004-01-01

    In addition to serving as molecular chaperones, heat shock proteins (HSPs) have been implicated in autoimmune diseases, antigen presentation and tumor immunity. Extensive work in the last 10 years has also suggested that HSPs such as Hsp60, Hsp70, Hsp90 and gp96, may be potent activators of the innate immune system capable of inducing the production of pro-inflammatory cytokines by the monocyte-macrophage system, and the activation and maturation of dendritic cells via the Toll-like receptor 2 and 4 signal transduction pathways. However, recent evidence suggests that the reported cytokine effects of HSPs may be a result of the contaminating bacterial cell-wall products. This concise review summarizes the current controversy over the role of HSPs in innate immunity.

  18. Heat shock proteins: Molecules with assorted functions

    Institute of Scientific and Technical Information of China (English)

    Surajit SARKAR; M. Dhruba SINGH; Renu YADAV; K. P. ARUNKUMAR; Geoffrey W. PITTMAN

    2011-01-01

    Heat shock proteins (Hsps) or molecular chaperones,are highly conserved protein families present in all studied organisms.Following cellular stress,the intracellular concentration of Hsps generally increases several folds.Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for transiocation across membranes or mark them for degradation.They are broadly classified in several families according to their molecular weights and functional properties.Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response.Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication,immune response,protein transport,apoptosis,cell cycle regulation,gametogenesis and aging.The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.

  19. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Science.gov (United States)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  20. Diminished heat shock response in the aged myocardium

    OpenAIRE

    Locke, Marius; Tanguay, Robert M.

    1996-01-01

    Induction of heat shock proteins (Hsps), Hsp72 in particular, has been associated with myocardial protection. Since a decreased Hsp response has been reported to occur with aging, it was of interest to determine if hearts from aged animals also demonstrate an altered heat shock response and subsequent myocardial protection. Adult (6 months old) and aged (22 months old) Fischer 344 rats were heat stressed by raising their rectal temperatures to 41 °C for 10 min. At selected times following hea...

  1. Heat shock response of Trichinella spiralis and T. pseudospiralis

    OpenAIRE

    Ko, RCC; Fan, L.

    1996-01-01

    Heat shock proteins (HSPs) were documented for the first time in both somatic extracts and excretory/secretory (ES) products of the infective-stage larvae of Trichinella spiralis and T. pseudospiralis. Larvae recovered from muscles of infected mice were heat shocked at 37, 40, 43 and 45 degrees C in RPMI 1640 medium containing L(-)[35S]methionine. Somatic extracts and ES products of heat-shocked worms were then analysed by SDS-PAGE, autoradiography and laser densitometry. Prominent bands of H...

  2. Chromosome Behavior of Heat Shock Induced Triploid in Fenneropenaeus Chinensis

    Institute of Scientific and Technical Information of China (English)

    张晓军; 李富花; 相建海

    2003-01-01

    Triploidy was induced in Chinese shrimp Fenneropenaeus chinensis by 30 + 0.5 ℃ heat shock treatment (initiated at 20 min after fertilization) for 10 min to inhibit the release of PB2 at 18.0℃ . The highest triploid rate obtained was 84.5% in nauplius stage. The effect of heat shock treatment on meiosis and cleavage of eggs was investigated in this work aimed to establish ef ficient procedures for triploid induction and to gain understanding of the mechanism of triploid production. Three pronuclei that could be observed in the treated eggs under fluorescence microscope developed into triploid embryos. Some abnormal chromosome behavior was observed in heat shocked eggs.

  3. Heat shock protein 90: the cancer chaperone

    Indian Academy of Sciences (India)

    Len Neckers

    2007-04-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.

  4. Heat-shock protein 70: molecular supertool?

    Science.gov (United States)

    Aufricht, Christoph

    2005-06-01

    The cellular stress response decreases cellular injury, either via primary induction of cytoresistance or by secondary enhancement of cellular repair mechanisms. The most frequently studied and best understood effectors of the cellular stress response are the heat shock proteins (HSP). HSP are among the oldest tools in the cellular protein machinery, demonstrating extremely high conservation of the genetic code since bacteria. Molecular chaperons, with the HSP-70 being the prototype, cooperate in transport and folding of proteins, preventing aggregation, and even resolubilizing injured proteins. Increasing evidence supports a role for HSP during the recovery from renal ischemia, in particular in cellular salvage from apoptotic cell death and cytoskeletal restoration. Recent studies also report the potential for biomolecular profiling of newborns for the risk of acute renal failure. In peritoneal dialysis novel data suggest the use of HSP expression for biocompatibility testing. More importantly, HSP are prime therapeutic candidates for clinical situations associated with predictable insults, such as organ procurement in transplant medicine and repetitive exposure to hyperosmolar and acidotic peritoneal dialysis fluids. The next challenge will be to define the regulatory pathways of the cellular stress response in these models to introduce novel therapeutic interventions, such as new pharmaceutics enhancing the HSP expression.

  5. Heat Shock Proteins, Autoimmunity, and Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Stuart K. Calderwood

    2012-01-01

    Full Text Available Heat shock proteins (HSPs have been linked to the therapy of both cancer and inflammatory diseases, approaches that utilize contrasting immune properties of these proteins. It would appear that HSP family members Hsp60 and Hsp70, whether from external sources or induced locally during inflammation, can be processed by antigen-presenting cells and that HSP-derived epitopes then activate regulatory T cells and suppress inflammatory diseases. These effects also extend to the HSP-rich environments of cancer cells where elevated HSP concentrations may participate in the immunosuppressive tumor milieu. However, HSPs can also be important mediators of tumor immunity. Due to their molecular chaperone properties, some HSPs can bind tumor-specific peptides and deliver them deep into the antigen-processing pathways of antigen-presenting cells (APCs. In this context, HSP-based vaccines can activate tumor-specific immunity, trigger the proliferation and CTL capabilities of cancer-specific CD8+ T cells, and inhibit tumor growth. Further advances in HSP-based anticancer immunotherapy appear to involve improving the properties of the molecular chaperone vaccines by enhancing their antigen-binding properties and combating the immunosuppressive tumor milieu to permit programming of active CTL capable of penetrating the tumor milieu and specifically targeting tumor cells.

  6. Plasma Heating by Strong Shock Waves

    International Nuclear Information System (INIS)

    About 104 cm3 of plasma at T ∼ 1 keV, n ∼ 1 x 1016 cm-3, were created by fast collisional shock waves in an electromagnetic shock tube. The speed of these shock waves ranges up to 4 x 108cm/s, corresponding to an acoustic Mach number of 3200 and an Alfvén-Mach number of 15. These experiments were performed in a 3-metre-long coaxial electromagnetic shock tube, employing a 60-μf, 120-kV capacitor bank which produces a 2 x 106 -A drive current. The pre-shock hydrogen initial state was T = 239°K, p = 50 mTorr. The preshock 7.2- kG transverse magnetic field was used to keep the shock thickness small and retard plasma interaction with the walls. Separation of the transverse ionizing shock wave from the driving current was clearly observed, and a hot dense plasma was created behind the shock wave. The state of this plasma was determined by laser interferometer measurements, X-ray bremsstrahlung spectra, a particle energy analyser, probes, and neutron detectors. The shock-created plasma contained an azimuthal magnetic field of B ∼ 22 kG. When deuterium gas was used, neutrons were detected and we estimate a yield of about 5 x 105 neutrons per shot. The transverse ionizing shock thickness, as determined by magnetic field structure, was found to be from 5 to 80 cm thick, the larger values occurring at higher shock speeds. These thicknesses are found to agree with the calculations made from a two-fluid MHD computer code employing classical plasma transport properties. The calculated structure of these collisional shock waves predict that the ion temperature substantially exceeds the electron temperature. (author)

  7. Heat shock transcription factors regulate heat induced cell death in a rat histiocytoma

    Indian Academy of Sciences (India)

    Kolla V, P Rasad; Aftab Taiyab; D Jyothi; Usha K Srinivas; Amere S Sreedhar

    2007-04-01

    Heat shock response is associated with the synthesis of heat shock proteins (Hsps) which is strictly regulated by different members of heat shock transcription factors (HSFs). We previously reported that a rat histiocytoma, BC-8 failed to synthesize Hsps when subjected to typical heat shock conditions (42°C, 60 min). The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA binding activity. In the present study we report that BC-8 tumor cells when subjected to heat shock at higher temperature (43°C, 60 min) or incubation for longer time at 42°C, exhibited necrosis characteristics; however, under mild heat shock (42°C, 30 min) conditions cells showed activation of autophagy. Mild heat shock treatment induced proteolysis of HSF1, and under similar conditions we observed an increase in HSF2 expression followed by its enhanced DNA binding activity. Inhibiting HSF1 proteolysis by reversible proteasome inhibition failed to inhibit heat shock induced autophagy. Compromising HSF2 expression but not HSF1 resulted in the inhibition of autophagy, suggesting HSF2 dependent activation of autophagy. We are reporting for the first time that HSF2 is heat inducible and functions in heat shock induced autophagic cell death in BC-8 tumor cells.

  8. Heat shock response and autophagy--cooperation and control.

    Science.gov (United States)

    Dokladny, Karol; Myers, Orrin B; Moseley, Pope L

    2015-01-01

    Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.

  9. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    OpenAIRE

    Neal L. Millar; George A. C. Murrell

    2012-01-01

    Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-as...

  10. Heat shock protein and heat shock factor 1 expression and localization in vaccinia virus infected human monocyte derived macrophages

    Directory of Open Access Journals (Sweden)

    Dziedzic Jakub

    2005-10-01

    Full Text Available Abstract Background Viruses remain one of the inducers of the stress response in the infected cells. Heat shock response induced by vaccinia virus (VV infection was studied in vitro in human blood monocyte derived macrophages (MDMs as blood cells usually constitute the primary site of the infection. Methods Human blood monocytes were cultured for 12 – 14 days. The transcripts of heat shock factor 1 (HSF1, heat shock protein 70 (HSP70, heat shock protein 90 (HSP90 and two viral genes (E3L and F17R were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR, and the corresponding proteins measured by Western blot. Heat shock factor 1 DNA binding activities were estimated by electrophoretic mobility shift assay (EMSA and its subcellular localization analyzed by immunocytofluorescence. Results It appeared that infection with vaccinia virus leads to activation of the heat shock factor 1. Activation of HSF1 causes increased synthesis of an inducible form of the HSP70 both at the mRNA and the protein level. Although HSP90 mRNA was enhanced in vaccinia virus infected cells, the HSP90 protein content remained unchanged. At the time of maximum vaccinia virus gene expression, an inhibitory effect of the infection on the heat shock protein and the heat shock factor 1 was most pronounced. Moreover, at the early phase of the infection translocation of HSP70 and HSP90 from the cytoplasm to the nucleus of the infected cells was observed. Conclusion Preferential nuclear accumulation of HSP70, the major stress-inducible chaperone protein, suggests that VV employs this particular mechanism of cytoprotection to protect the infected cell rather than to help viral replication. The results taken together with our previuos data on monocytes or MDMs infected with VV or S. aureus strongly argue that VV employs multiple cellular antiapoptotic/cytoprotective mechanisms to prolong viability and proinflammatory activity of the cells of monocytic

  11. Identifying gene regulatory modules of heat shock response in yeast

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-09-01

    Full Text Available Abstract Background A gene regulatory module (GRM is a set of genes that is regulated by the same set of transcription factors (TFs. By organizing the genome into GRMs, a living cell can coordinate the activities of many genes in response to various internal and external stimuli. Therefore, identifying GRMs is helpful for understanding gene regulation. Results Integrating transcription factor binding site (TFBS, mutant, ChIP-chip, and heat shock time series gene expression data, we develop a method, called Heat-Inducible Module Identification Algorithm (HIMIA, for reconstructing GRMs of yeast heat shock response. Unlike previous module inference tools which are static statistics-based methods, HIMIA is a dynamic system model-based method that utilizes the dynamic nature of time series gene expression data. HIMIA identifies 29 GRMs, which in total contain 182 heat-inducible genes regulated by 12 heat-responsive TFs. Using various types of published data, we validate the biological relevance of the identified GRMs. Our analysis suggests that different combinations of a fairly small number of heat-responsive TFs regulate a large number of genes involved in heat shock response and that there may exist crosstalk between heat shock response and other cellular processes. Using HIMIA, we identify 68 uncharacterized genes that may be involved in heat shock response and we also identify their plausible heat-responsive regulators. Furthermore, HIMIA is capable of assigning the regulatory roles of the TFs that regulate GRMs and Cst6, Hsf1, Msn2, Msn4, and Yap1 are found to be activators of several GRMs. In addition, HIMIA refines two clusters of genes involved in heat shock response and provides a better understanding of how the complex expression program of heat shock response is regulated. Finally, we show that HIMIA outperforms four current module inference tools (GRAM, MOFA, ReMoDisvovery, and SAMBA, and we conduct two randomization tests to show that

  12. Heat shock response in photosynthetic organisms: membrane and lipid connections.

    NARCIS (Netherlands)

    I. Horvath; A. Glatz; H. Nakamoto; M.L. Mishkind; T. Munnik; Y. Saidi; P. Goloubinoff; J.L. Harwood; L. Vigh

    2012-01-01

    The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as

  13. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe;

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  14. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  15. AGN Heating Through Cavities and Shocks

    NARCIS (Netherlands)

    P.E.J. Nulsen; C. Jones; W.R. Forman; L.P. David; B.R. McNamara; D.A. Rafferty; L. Bîrzan; M. Wise

    2007-01-01

    Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak sho

  16. Nuclear phenotype changes after heat shock in Panstrongylus megistus (Burmeister

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2000-01-01

    Full Text Available The nuclear phenotypes of Malpighian tubule epithelial cells of male nymphs of the blood-sucking insect, Panstrongylus megistus, subjected to short- and long-duration heat shocks at 40ºC were analyzed immediately after the shock and 10 and 30 days later. Normal nuclei with a usual heterochromatic body as well as phenotypes indicative of survival (unravelled heterochromatin, giants and death (apoptosis, necrosis responses were observed in control and treated specimens. However, all nuclear phenotypes, except the normal ones, were more frequent in shocked specimens. Similarly altered phenotypes have also been reported in Triatoma infestans following heat shock, although at different frequencies. The frequency of the various nuclear phenotypes observed in this study suggests that the forms of cell survival observed were not sufficient or efficient enough to protect all of the Malpighian tubule cells from the deleterious effects of stress. In agreement with studies on P. megistus survival following heat shock, only long-duration shock produced strongly deleterious effects.

  17. Circuit architecture explains functional similarity of bacterial heat shock responses

    CERN Document Server

    Inoue, Masayo; Trusina, Ala

    2012-01-01

    Heat shock response is a stress response to temperature changes and a consecutive increase in amounts of unfolded proteins. To restore homeostasis, cells upregulate chaperones facilitating protein folding by means of transcription factors (TF). We here investigate two heat shock systems: one characteristic to gram negative bacteria, mediated by transcriptional activator sigma32 in E. coli, and another characteristic to gram positive bacteria, mediated by transcriptional repressor HrcA in L. lactis. We construct simple mathematical model of the two systems focusing on the negative feedbacks, where free chaperons suppress sigma32 activation in the former, while they activate HrcA repression in the latter. We demonstrate that both systems, in spite of the difference at the TF regulation level, are capable of showing very similar heat shock dynamics. We find that differences in regulation impose distinct constrains on chaperone-TF binding affinities: the binding constant of free sigma32 to chaperon DnaK, known to...

  18. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    Directory of Open Access Journals (Sweden)

    Neal L. Millar

    2012-01-01

    Full Text Available Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs, are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy.

  19. AGN feedback in clusters: shock and sound heating

    CERN Document Server

    Nulsen, P E J

    2013-01-01

    Observations support the view that feedback, in the form of radio outbursts from active nuclei in central galaxies, prevents catastrophic cooling of gas and rapid star formation in many groups and clusters of galaxies. Variations in jet power drive a succession of weak shocks that can heat regions close to the active galactic nuclei (AGN). On larger scales, shocks fade into sound waves. The Braginskii viscosity determines a well-defined sound damping rate in the weakly magnetized intracluster medium (ICM) that can provide sufficient heating on larger scales. It is argued that weak shocks and sound dissipation are the main means by which radio AGN heat the ICM, in which case, the power spectrum of AGN outbursts plays a central role in AGN feedback.

  20. ACUPUNCTURE-MOXIBUSTION, HEAT SHOCK PROTEIN 70 AND CYTOPROTECTION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Heat shock protein 70 (HSP70) is a kind of non-specific cytoprotective protein, and its generation can be induced by acupuncture and moxibustion. In the present paper, the authors review the protective actions of HSP70 on the heart, gastric mucosa, liver, brain tissues, kidney, etc., and the relationship among acupuncture/moxibustion, heat shock protein and the cytoprotective actions. It is worth studying the cytoprotective effect of acupuncture and moxibustion by way of the resultant generation of HSP70 in the organism.

  1. Variation of the ratio of specific heats across a detached bow shock

    Science.gov (United States)

    Chao, J. K.; Wiskerchen, M. J.

    1974-01-01

    Equations are derived which allow the ratio of specific heats behind the earth's bow shock to be evaluated if several pre-shock parameters (the specific-heat ratio, the Alfvenic Mach number, the sonic Mach number, and the angle between the shock normal at the stagnation point and the magnetic field) and the density jump across the shock are known. Numerical examples show that the dependence of the post-shock ratio on the pre-shock ratio is weak.

  2. HEAT SHOCK PROTEINS IN DIABETES AND WOUND HEALING

    OpenAIRE

    Atalay, Mustafa; Oksala, Niku; Lappalainen, Jani; David E Laaksonen; Sen, Chandan K.; Roy, Sashwati

    2009-01-01

    The heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a highly conserved family of proteins that respond to a wide variety of stress. Although HSPs are among the most abundant intracellular proteins, they are expressed at low levels under normal physiological conditions, and show marked induction in response to various stressors. HSPs function primarily as molecular chaperones, facilitating the folding of other cellular proteins, preventing protein aggrega...

  3. Circuit architecture explains functional similarity of bacterial heat shock responses

    International Nuclear Information System (INIS)

    Heat shock response is a stress response to temperature changes and a consecutive increase in amounts of unfolded proteins. To restore homeostasis, cells upregulate chaperones facilitating protein folding by means of transcription factors (TFs). We here investigate two heat shock systems: one characteristic to gram negative bacteria, mediated by transcriptional activator σ32 in E. coli, and another characteristic to gram positive bacteria, mediated by transcriptional repressor HrcA in L. lactis. We construct simple mathematical models of the two systems focusing on the negative feedbacks, where free chaperones suppress σ32 activation in the former, while they activate HrcA repression in the latter. We demonstrate that both systems, in spite of the difference at the TF regulation level, are capable of showing very similar heat shock dynamics. We find that differences in regulation impose distinct constraints on chaperone–TF binding affinities: the binding constant of free σ32 to chaperone DnaK, known to be in 100 nM range, set the lower limit of amount of free chaperone that the system can sense the change at the heat shock, while the binding affinity of HrcA to chaperone GroE set the upper limit and have to be rather large extending into the micromolar range. (paper)

  4. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  5. Shock Waves and Turbulent Heating in Low-Density Plasmas

    International Nuclear Information System (INIS)

    Shock heating and shock structures are studied in theta-pinch-like devices in a wide range of plasma parameters ne, B1, mi, and of wave speeds u1 (3 x 106 cms-1 ≤ u1 ≤ 108 cm-1). Densities and temperatures were determined locally by interferometry and by Thomson scattering. Magnetic and electric fields were measured with small high-frequency probes. Previous investigations of perpendicular, hydromagnetic shocks at β1 A A, critical at densities above 1014 cm-3 are extended to densities close to 1013 cm-3 and to other mass ratios me/mi. Shocks are nearly collision-free even with respect to the initial state. A scaling law is obtained for the effective collision frequency veff, deduced from measured turbulent-heating rates and current densities. Results show that veff ≈ 10-3 (Te/Ti) (vd/cs) ωpi. Studies are extended to small Alfvén-Mach numbers, where shock structures are still collision-dominated. Comparison with theory shows good agreement. In the same density range, shocks are generated at β1 ≈ 0.3, and with MA >> MA critical- from the observed election heating rates and the electron density jump, together with the shock relations, estimates for turbulent ion-heating rates are obtained. Investigation of the structure of collision-dominated shocks in magnetic field-free plasma shows that electron temperature and density front are well separated; the width of separation agrees with theoretical estimates. Attempts are made to heat low-density (n ≤ 1013 cm-3), magnetic-field-free plasma by fast magnetic compression. In deuterium, an anomalously broad current sheath is observed. Nevertheless, deuteron temperatures of ≈ 10 keV and relatively high values of the local β (β ≈ 10) are achieved in a low-energy theta-pinch (≈ 10 kj) . Electric and magnetic field fluctuations of large amplitude occur. In argon, at large radii, a stationary electromagnetic sheath is found with a width of a few c/ωpe and an electric potential jump as required by theory. Ion

  6. Heat shock response and mammal adaptation to high elevation (hypoxia)

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiaolin; XU; Cunshuan; WANG; Xiujie; WANG; Dongjie; WANG; Qingshang

    2006-01-01

    The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2)From low elevation to high elevation (hypoxia induction):The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

  7. Tissue specificity of the heat-shock response in maize.

    Science.gov (United States)

    Cooper, P; Ho, T H; Hauptmann, R M

    1984-06-01

    The tissue specificity of the heat-shock response in maize was investigated. The ability to synthesize heat shock proteins (hsp) at 40 degrees C, as well as the intensity and duration of that synthesis, was analyzed in coleoptiles, scutella, green and etiolated leaves, suspension-cultured cells, germinating pollen grains, and primary root sections at different stages of development. One-dimensional sodium dodecyl sulfate gel electrophoresis of extracted proteins revealed that most of the tissues synthesized the typical set of 10 hsp, but that the exact characteristics of the response depended upon the tissue type. While elongating portions of the primary root exhibited a strong heat shock response, the more mature portions showed a reduced ability to synthesize hsp. Leaves, whether green or etiolated, excised or intact, constitutively synthesized a low level of hsp at 25 degrees C, and high levels could be induced at 40 degrees C. Suspension-cultures of Black Mexican sweet corn synthesized, besides the typical set of hsp, two additional polypeptides. In contrast to all the other tissues, germinating pollen grains could not be induced to synthesize the typical set of hsp but did synthesize two new polypeptides of 92 and 56 kD molecular weight.The heat shock response was transient for most of the tissues which synthesized the standard set of hsp. Hsp synthesis was detected up to 2 to 3 hours, but not at 10 hours of continuous 40 degrees C treatment. The exception was suspension cultured cells, in which hsp synthesis showed only a slight reduction after 10 hours at 40 degrees C. Tissue-specific differences in the heat-shock response suggest that there are differences in the way a given tissue is able to adapt to high temperature.We have confirmed the previous suggestion that maize hsp do not accumulate in substantial quantities. Using two-dimensional gel analysis, hsp could be detected by autoradiography but not by sensitive silver staining techniques. PMID:16663639

  8. Shock Heating of the Merging Galaxy Cluster A521

    Science.gov (United States)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  9. Overexpression of colligin 2 in glioma vasculatureis associated with overexpression of heat shock factor 2

    NARCIS (Netherlands)

    D.A.M. Mustafa (Dana); A.M. Sieuwerts (Anieta); P.P. Zheng (Pingpin); J.M. Kros (Johan)

    2010-01-01

    textabstractIn previous studies we found expression of the protein collig in 2 (heat shock protein 47 (HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors (HSF). In mammal

  10. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  11. Multiple mild heat-shocks decrease the Gompertz component of mortality in Caenorhabditis elegans.

    Science.gov (United States)

    Wu, Deqing; Cypser, James R; Yashin, Anatoli I; Johnson, Thomas E

    2009-09-01

    Exposure to mild heat-stress (heat-shock) can significantly increase the life expectancy of the nematode Caenorhabditis elegans. A single heat-shock early in life extends longevity by 20% or more and affects life-long mortality by decreasing initial mortality only; the rate of increase in subsequent mortality (Gompertz component) is unchanged. Repeated mild heat-shocks throughout life have a larger effect on life span than does a single heat-shock early in life. Here, we ask how multiple heat-shocks affect the mortality trajectory in nematodes and find increases of life expectancy of close to 50% and of maximum longevity as well. We examined mortality using large numbers of animals and found that multiple heat-shocks not only decrease initial mortality, but also slow the Gompertz rate of increase in mortality. Thus, multiple heat-shocks have anti-aging hormetic effects and represent an effective approach for modulating aging.

  12. 壽The heat shock response and cytoprotection of the intestinal epithelium

    OpenAIRE

    Malago, Joshua J.; Koninkx, Jos F. J. G.; van Dijk, Jaap E.

    2002-01-01

    Following heat stress, the mammalian intestinal epithelial cells respond by producing heat shock proteins that confer protection under stressful conditions, which would otherwise lead to cell damage or death. Some of the noxious processes against which the heat shock response protects cells include heat stress, infection, and inflammation. The mechanisms of heat shock response–induced cytoprotection involve inhibition of proinflammatory cytokine production and induction of cellular proliferat...

  13. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  14. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Directory of Open Access Journals (Sweden)

    Aurelie de Thonel

    2011-03-01

    Full Text Available Heat Shock Factors (HSF form a family of transcription factors (four in mammals which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  15. Role of Heat Shock Proteins in Stem Cell Behavior

    OpenAIRE

    Fan, Guo-Chang

    2012-01-01

    Stress response is well appreciated to induce the expression of heat shock proteins (Hsps) in the cell. Numerous studies have demonstrated that Hsps function as molecular chaperones in the stabilization of intracellular proteins, repairing damaged proteins, and assisting in protein translocation. Various kinds of stem cells (embryonic stem cells, adult stem cells, or induced pluripotent stem cells) have to maintain their stemness and, under certain circumstances, undergo stress. Therefore, Hs...

  16. Transcription regulation of HYPK by Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Srijit Das

    Full Text Available HYPK (Huntingtin Yeast Partner K was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1, upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1.

  17. Competition between shock and turbulent heating in coronal loop system

    Science.gov (United States)

    Matsumoto, Takuma

    2016-11-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  18. Competition between shock and turbulent heating in coronal loop system

    Science.gov (United States)

    Matsumoto, Takuma

    2016-08-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in the present study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  19. Competition between shock and turbulent heating in coronal loop system

    CERN Document Server

    Matsumoto, Takuma

    2016-01-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfv\\'{e}n waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfv\\'{e}n waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The i...

  20. Molecular genetics of heat tolerance and heat shock proteins in cereals.

    Science.gov (United States)

    Maestri, Elena; Klueva, Natalya; Perrotta, Carla; Gulli, Mariolina; Nguyen, Henry T; Marmiroli, Nelson

    2002-01-01

    Heat stress is common in most cereal-growing areas of the world. In this paper, we summarize the current knowledge on the molecular and genetic basis of thermotolerance in vegetative and reproductive tissues of cereals. Significance of heat stress response and expression of heat shock proteins (HSPs) in thermotolerance of cereal yield and quality is discussed. Major avenues for increasing thermotolerance in cereals via conventional breeding or genetic modification are outlined. PMID:11999842

  1. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  2. Integrative analysis of the heat shock response in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Brakhage Axel A

    2010-01-01

    Full Text Available Abstract Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE. To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS. They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones, oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha

  3. A Comprehensive Method of Identifying Heat Shock Proteins (HSPs

    Directory of Open Access Journals (Sweden)

    Pielesz A

    2016-03-01

    Full Text Available Because no model will ever completely replicate clinical human wound healing, it is essential that the model utilized be selected with care. Anatomically and physiologically, poultry skin is similar to human skin in many respects. Therefore, organic chicken skin (an ex-vivo burninjured skin model was analysed in this study. Acetate electrophoresis (CAE, microbiological procedure, Fourier-transform infrared spectrometry (FTIR and scanning electron microscopy analysis (SEM were all carried out after heating samples of model chicken skin to a temperature simulating a burn incident and stimulating the release of Heat Shock Proteins (HSPs. Aggregates of smaller molecular weight, HSP37 proteins, were isolated by cellulose acetate electrophoresis. FTIR tests revealed that heating a dry organic chicken skin to boiling point leads to the production of β-sheet aggregates, which are the response of protein to thermal shock. Aggregates of HSP37 are produced in thermal injury and not all the antimicrobial activity of the skin is lost in this model. So, antimicrobial peptides found in the burnt skin, HSP proteins were confirmed by microscopic, microbiological, electrophoretic and spectroscopic examination.

  4. Effect of heat shock protein 70 on cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wen Yan; Xiulian Chen; Rui Chen; Shiming Xu; Lijuan Zhang; Hongjuan Wang; Chunyue Huo

    2006-01-01

    OBJECTIVE: To summarize the relationship between heat shock protein 70 (HSP70) and cerebral ischemia.DATA SOURCES: An online search of Medline database was undertaken to identify relevant articles published in English from January 1980 to December 2005 by using the keywords of "heat shock protein 70, ischemia". Meanwhile, Chinese relevant articles published from January 2000 to December 2005 were searched in China National Knowledge Infrastructure (CNKI) database and Chinese Journal of Clinical Rehabilitation with the keywords of "heat shock protein 70, cerebral ischemia" in Chinese.STUDY SELECTION: More than 100 related articles were screened, and 29 references mainly about HSP70and cerebral ischemia were selected, including basic and clinical researches. As to the articles with similar content, those published in the authoritative journals in recent 3 years were preferential.DATA EXTRACTION : A total of 29 articles were collected and classified according to the structure, function and clinical application of HSP70. Among them, 1 article is about the structure of HSP70, 27 about the relationship between HSP70 and cerebral ischemia, and 2 about the clinical application of HSP70.DATA SYNTHESTS: HSP70 is one of the most conservative proteins during biological evolution. Experiments in cerebral ischemia revealed that HSP70 expression was time-dependent, also correlated with the injured site and severity. The cerebral ischemia induced HSP70 gene expression in hippocampus of gerbil had protection to tolerance of fatal ischemic injury for neurons. The increase of HSP70 expression may be one of the endogenous protective mechanisms during cerebral ischemia, and can effectively alleviate cerebral ischemia. Thus HSP70 protein and HSP70 mRNA have been taken as important indexes extensively applied in the basic study of cerebral ischemia by some scholars abroad.CONCLUSTON: HSP70 plays a protective role in cerebral ischemia, and a deeper research into the biological function of

  5. Intra-Binary Shock Heating of Black Widow Companions

    CERN Document Server

    Romani, Roger W

    2016-01-01

    The low mass companions of evaporating binary pulsars (black widows and their ilk) are strongly heated on the side facing the pulsar. However in high-quality photometric and spectroscopic data the heating pattern does not match that expected for direct pulsar illumination. Here we explore heating mediated by an intra-binary shock (IBS). We develop a simple analytic model and implement it in the popular `ICARUS' light curve code. The model is parameterized by the wind momentum ratio beta and velocity v_Rel v_orb and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test we apply the results to the high quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produc...

  6. Intra-binary Shock Heating of Black Widow Companions

    Science.gov (United States)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  7. Stress-Specific Activation and Repression of Heat Shock Factors 1 and 2

    OpenAIRE

    Mathew, Anu; Mathur, Sameer K.; Jolly, Caroline; Fox, Susan G.; Kim, Soojin; Richard I Morimoto

    2001-01-01

    Vertebrate cells express a family of heat shock transcription factors (HSF1 to HSF4) that coordinate the inducible regulation of heat shock genes in response to diverse signals. HSF1 is potent and activated rapidly though transiently by heat shock, whereas HSF2 is a less active transcriptional regulator but can retain its DNA binding properties for extended periods. Consequently, the differential activation of HSF1 and HSF2 by various stresses may be critical for cells to survive repeated and...

  8. Report on the VIIth International Symposium on Heat Shock Proteins in Biology & Medicine

    OpenAIRE

    Calderwood, Stuart K; Hightower, Lawrence E.

    2014-01-01

    This seventh symposium in a series on heat shock proteins in biology and medicine was held November 1–5, 2014, at the Hilton Hotel in Old Town Alexandria, Virginia. Approximately 70 participants including principal investigators, postdoctoral fellows, and graduate students were in attendance. The major themes were: new properties of heat shock proteins (HSPs) and heat shock factor (HSF) and role in the etiology of cancer, molecular chaperones in aging, extracellular HSPs in inflammation and i...

  9. Heat Shock Protein 90 and Heat Shock Response%热激蛋白90与热激应答

    Institute of Scientific and Technical Information of China (English)

    李娟; 杨惠; 周元国

    2008-01-01

    热激蛋白90(heat shock protein 90,HSP90)作为机体重要的分子伴侣之一,主要是维持机体内环境的稳态.在机体遭受内外界刺激时,体内氧化-抗氧化平衡失调诱发机体热激应答,诱导HSP90高表达来抵御刺激对机体造成的损伤.

  10. Heat Shock Protein 96 Induces Maturation of Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Chunxia Cao; Wei Yang; Yonglie Chu; Qingguang Liu; Liang Yu; Cheng'en Pan

    2006-01-01

    Objective: Heat shock protein (HSP) has the promiscuous abilities to chaperone and present a broad repertoire of tumor antigens to antigen presenting cells including DCs. In this report, we analyzed the modulation of immature DC by HSP 96 (gp96).Method: Murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which aped the immunostimulatory effects of DC.Cocultured DC and gp96-peptide complexes (gp96-PC) or inactivated H22 cells, the expression of MHC class Ⅱ, CD40, CD80 was quantified by flow cytometry. The concentration of IL-12 and TNF- in culture supernatants were determined by ELISA.[51] Cr release assay was used to test specific cytotoxic T cell. Results: Our study demonstrated that the extent of DC maturation induced by gp96-PC, which was reflected in surface density of costimulatory and MHC Ⅱ molecules, was correlated with the secretion of IL-12 and with the T cellactivating potential in vitro. Conclusion: Heat shock protein 96 could be isolated and purified from H22 cells and could induce maturation of dendritic cell. Our findings might be relevance to the use of DC vaccine in therapy of human tumors.

  11. Modification of tooth development by heat shock protein 60

    Institute of Scientific and Technical Information of China (English)

    Tamas Papp; Angela Polyak; Krisztina Papp; Zoltan Meszar; Roza Zakany; Eva Meszar-Katona; Palne Terdik Tu nde; Chang Hwa Ham; Szabolcs Felszeghy

    2016-01-01

    Although several heat shock proteins have been investigated in relation to tooth development, no available information is available about the spatial and temporal expression pattern of heat shock protein 60 (Hsp 60). To characterize Hsp 60 expression in the structures of the developing tooth germ, we used Western blotting, immunohistochemistry and in situ hybridization. Hsp 60 was present in high amounts in the inner and outer enamel epithelia, enamel knot (EK) and stratum intermedium (SI). Hsp 60 also appeared in odontoblasts beginning in the bell stage. To obtain data on the possible effect of Hsp 60 on isolated lower incisors from mice, we performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle during culturing, we used the 5-bromo-2- deoxyuridine (BrdU) incorporation test on dental cells. Exogenously administered Hsp 60 caused bluntness at the apical part of the 16.5-day-old tooth germs, but it did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 in the developing tooth germ, which was present in high concentrations in the inner and outer enamel epithelia, EK, SI and odontoblasts. High concentration of exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence the proliferation rate of the dental cells. Our results suggest that increased levels of Hsp 60 may cause abnormalities in the morphological development of the tooth germ and support the data on the significance of Hsp during the developmental processes.

  12. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  13. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting

    OpenAIRE

    E.B Dolan; Haugh, M. G.; Tallon, D.; Casey, C.; McNamara, L. M.

    2012-01-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 ...

  14. An atypical unfolded protein response in heat shocked cells.

    Directory of Open Access Journals (Sweden)

    Lonneke Heldens

    Full Text Available BACKGROUND: The heat shock response (HSR and the unfolded protein response (UPR are both activated by proteotoxic stress, although in different compartments, and share cellular resources. How these resources are allocated when both responses are active is not known. Insight in possible crosstalk will help understanding the consequences of failure of these systems in (age-related disease. RESULTS: In heat stressed HEK293 cells synthesis of the canonical UPR transcription factors XBP1s and ATF4 was detected as well as HSF1 independent activation of the promoters of the ER resident chaperones HSPA5 (BiP and DNAJB9 (ERdj4. However, the heat stress activation of the DNAJB9 promoter, a XBP1s target, was not blocked in cells expressing a dominant negative IRE1α mutant, and thus did not require XBP1s. Furthermore, the DNA element required for heat stress activation of the DNAJB9 promoter is distinct from the ATF4 and ATF6 target elements; even though inhibition of eIF2α phosphorylation resulted in a decreased activation of the DNAJB9 promoter upon heat stress, suggesting a role for an eIF2α phosphorylation dependent product. CONCLUSIONS: The initial step in the UPR, synthesis of transcription factors, is activated by heat stress but the second step, transcriptional transactivation by these factors, is blocked and these pathways of the UPR are thus not productive. Expression of canonical ER chaperones is part of the response of heat stressed cells but another set of transcription factors has been recruited to regulate expression of these ER chaperones.

  15. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Richa Arya; Moushami Mallik; Subhash C Lakhotia

    2007-04-01

    Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with components of the apoptotic pathways. Hsp90, which acts as a chaperone for unstable signal transducers to keep them poised for activation, interacts with RIP and Akt and promotes NF-B mediated inhibition of apoptosis; in addition it also blocks some steps in the apoptotic pathways. Hsp70 is mostly anti-apoptotic and acts at several levels like inhibition of translocation of Bax into mitochondria, release of cytochrome c from mitochondria, formation of apoptosome and inhibition of activation of initiator caspases. Hsp70 also modulates JNK, NF-B and Akt signaling pathways in the apoptotic cascade. In contrast, Hsp60 has both anti- and pro-apoptotic roles. Cytosolic Hsp60 prevents translocation of the pro-apoptotic protein Bax into mitochondria and thus promotes cell survival but it also promotes maturation of procaspase-3, essential for caspase mediated cell death. Our recent in vivo studies show that RNAi for the Hsp60D in Drosophila melanogaster prevents induced apoptosis. Hsp27 exerts its anti-apoptotic influence by inhibiting cytochrome c and TNF-mediated cell death. crystallin suppresses caspase-8 and cytochrome c mediated activation of caspase-3. Studies in our laboratory also reveal that absence or reduced levels of the developmentally active as well as stress induced non-coding hsr transcripts, which are known to sequester diverse hnRNPs and related nuclear RNA-binding proteins, block induced apoptosis in Drosophila. Modulation of the apoptotic pathways by Hsps reflects their roles as ``weak links” between various ``hubs” in cellular networks. On the other hand, non-coding RNAs, by virtue of their potential to bind with multiple proteins, can act as ``hubs” in

  16. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus.

    Directory of Open Access Journals (Sweden)

    Jingjing Xie

    Full Text Available Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours or chronic (32°C for 8 weeks high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P<0.05. However, oxidation status of lipid and protein and expression of heat shock transcription factors (HSFs and heat shock proteins (HSPs 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05 and gene expression of all 4 HSF gene expression was upregulated (P<0.05. During chronic heat treatment, the HSP 70 mRNA level was increased (P<0.05 and HSP 90 mRNA (P<0.05 was decreased. In the liver, oxidation of protein was alleviated during acute heat challenge (P<0.05, however, gene expression HSF2, 3 and 4 and HSP 70 were highly induced (P<0.05. HSP90 expression was increased by chronic thermal treatment (P<0.05. In the muscle, both types of heat stress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052 and 90 (P = 0.054 gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  17. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses

    DEFF Research Database (Denmark)

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M.;

    2012-01-01

    shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout......Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat....... We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response...

  18. A minimal titration modelization of the mammalian dynamical heat shock response

    CERN Document Server

    Aude, Sivéry; Thommen, Quentin

    2015-01-01

    Environmental stress, such as oxidative or heat stress, induces the activation of the Heat Shock Response (HSR) which leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular chaperones to maintain proteostasis. Even if the main heat shock response partners are well known, a detailed description of the dynamical properties of the HSR network is still missing. In this study, we derive a minimal mathematical model of cellular response to heat shock that reproduces available experimental data sets both on transcription factor activity and cell viability. This simplistic model highlights the key mechanistic processes that rule the HSR network and reveals (i) the titration of Heat Shock Factor 1 (HSF1) by chaperones as the guiding line of the network, (ii) that protein triage governs the fate of damaged proteins and (iii) three different temperature regimes describing normal, acute or chronic stress.

  19. Characterization of the heat shock response in Brucella abortus and isolation of the genes encoding the GroE heat shock proteins.

    OpenAIRE

    Lin, J.; Adams, L G; Ficht, T A

    1992-01-01

    In an effort to define the heat shock response in the bovine intracellular pathogen Brucella abortus, a rough variant lacking extensive lipopolysaccharide was pulse-labeled with [35S]methionine following exposure to elevated temperatures. The major heat shock proteins observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography migrate at 70, 62, 18, and 10 kDa. The maximum response was observed between 42 and 46 degrees C and within 2 to 3 h of the shif in...

  20. Proteomic Analysis of Trypanosoma cruzi Epimastigotes Subjected to Heat Shock

    Directory of Open Access Journals (Sweden)

    Deyanira Pérez-Morales

    2012-01-01

    Full Text Available Trypanosoma cruzi is exposed to sudden temperature changes during its life cycle. Adaptation to these variations is crucial for parasite survival, reproduction, and transmission. Some of these conditions may change the pattern of genetic expression of proteins involved in homeostasis in the course of stress treatment. In the present study, the proteome of T. cruzi epimastigotes subjected to heat shock and epimastigotes grow normally was compared by two-dimensional gel electrophoresis followed by mass spectrometry for protein identification. Twenty-four spots differing in abundance were identified. Of the twenty-four changed spots, nineteen showed a greater intensity and five a lower intensity relative to the control. Several functional categories of the identified proteins were determined: metabolism, cell defense, hypothetical proteins, protein fate, protein synthesis, cellular transport, and cell cycle. Proteins involved in the interaction with the cellular environment were also identified, and the implications of these changes are discussed.

  1. HEAT SHOCK PROTEIN gp96 AND CANCER IMMUNOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    岳培彬; 杨树德; 黄常志

    2002-01-01

    Heat shock protein gp96 is a highly conserved and monomorphic glycoprotein in the endoplasmic reticulum.It functions as molecular chaperone and can associate with a variety of antigenic peptides noncovalently in vivo and in vitro. Recent studies have indicated that gp96 molecules participate in major histocompatibility complex class I - restricted antigen presentation pathway. Immunization of mice with gp96 preparations isolated from cancer cells can elicit a cancer - specific protective T cell immune response that is recallable, which is a prerequisite for gp96 as a therapeutic vaccine against cancers. The immunogenicity of gp96 molecules has been attributed to the antigenic peptides associated with them. These phenomena provide a new pathway for cancer immunotherapy. The mechanism that the gp96 -peptide complex induces specific immune response and the explorations for gp96 - peptide complex as a therapeutic cancer vaccine are reviewed.

  2. Heat Shock Protein 90 regulates encystation in Entamoeba

    Directory of Open Access Journals (Sweden)

    Meetali eSingh

    2015-10-01

    Full Text Available Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90 in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.

  3. Protein kinase A binds and activates heat shock factor 1.

    Directory of Open Access Journals (Sweden)

    Ayesha Murshid

    Full Text Available BACKGROUND: Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1, a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS: In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA. HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320, both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1 and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS: These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.

  4. The hexameric structures of human heat shock protein 90.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Lee

    Full Text Available BACKGROUND: The human 90-kDa heat shock protein (HSP90 functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood. PRINCIPAL FINDINGS: Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90. CONCLUSIONS: While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis.

  5. Increased heat shock protein 70 expression in the pancreas of rats with endotoxic shock

    Institute of Scientific and Technical Information of China (English)

    Xue-Lian Wang; Ying Li; Jin-Song Kuang; Yue Zhao; Pei Liu

    2006-01-01

    AIM: To investigate the ultra-structural changes and heat shock protein 70 (HSP70) expression in the pancreas of rats with endotoxic shock and to detect their possible relationship.METHODS: A total of 33 Wistar rats were randomly divided into three groups: control group (given normal saline), small dose lipopolysaccharide (LPS) group (given LPS 5 mg/kg) and large dose LPS group (given LPS 10mg/kg). Pancreas was explanted to detect the ultrastructural changes by TEM and the HSP70 expression by immunohistochemistry and Western blot.RESULTS: Rats given small doses of LPS showed swelling and loss of mitochondrial cristae of acinar cells and increased number of autophagic vacuoles in the cytoplasm of acinar cells. Rats given large doses of LPS showed swelling, vacuolization, and obvious myeloid changes of mitochondrial cristae of acinar cells, increased number of autophagic vacuoles in the cytoplasm of acinar cells. HSP70 expression was increased compared to the control group (P<0.05).CONCLUSION: Small doses of LPS may induce stronger expression of HSP70, promote autophagocytosis and ameliorate ultra-structural injuries.

  6. Induced Levels of Heat Shock Proteins in dnaK mutants of Lactococcus lactis

    DEFF Research Database (Denmark)

    Koch, Birgit; Hammer, Karin; Vogensen, Finn K.;

    1998-01-01

    The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for the growth and the heat shock...

  7. Heat protective role and mechanism of heat shock protein Hpc60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A cytosolic heat shock protein named Hpc60 has been purified by immunoaffinity chromatography from pea leaves and its function has been examined in vitro. Results show that Hpc60 may suppress the aggregation of luciferase (LUC), protect lactate dehydrogenase (LDH) and ascorbate peroxidase (APX) from thermal inactivation. It also shows that Mg2+, ATP and pH affect the protective function of Hpc60 in different manners.

  8. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock

    OpenAIRE

    Marin Vinader, L.; Shin, C.; Onnekink, C; Manley, J L; Lubsen, N H

    2005-01-01

    A heat stress causes a rapid inhibition of splicing. Exogenous expression of Hsp27 did not prevent that inhibition but enhanced the recovery of splicing afterward. Another small heat shock protein, αB-crystallin, had no effect. Hsp27, but not αB-crystallin, also hastened rephosphorylation of SRp38—dephosphorylated a potent inhibitor of splicing—after a heat shock, although it did not prevent dephosphorylation by a heat shock. The effect of Hsp27 on rephosphorylation of SRp38 required phosphor...

  9. Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, A. P. (Physical Biosciences Division, Berkeley, CA); Wall, J. D. (University of Missouri-Columbia, Columbia, MO); Hazen, T. C. (Physical Biosciences Division, Berkeley, CA); He, Z. (Oak Ridge National Laboratory, Oak Ridge, TN); Zhou, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Huang, K. H. (Physical Biosciences Division, Berkeley, CA); Gaucher, Sara P.; He, Q. (Oak Ridge National Laboratory, Oak Ridge, TN); Hadi, Masood Z.; Chhabra, Swapnil R.; Alm, Eric J. (Physical Biosciences Division, Berkeley, CA); Singh, A. K.

    2005-08-01

    Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z {ge} 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13 C from a growth temperature of 37 C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors {sigma}{sup 32} and {sigma}{sup 54}. While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU

  10. Heating of Heavy Ions by Interplanetary Coronal Mass Ejection (ICME) Driven Collisionless Shocks

    CERN Document Server

    Korreck, K E; Lepri, S T; Raines, J M

    2006-01-01

    Shock heating and particle acceleration processes are some of the most fundamental physical phenomena of plasma physics with countless applications in laboratory physics, space physics, and astrophysics. This study is motivated by previous observations of non-thermal heating of heavy ions in astrophysical shocks (Korreck et al. 2004). Here, we focus on shocks driven by Interplanetary Coronal Mass Ejections (ICMEs) which heat the solar wind and accelerate particles. This study focuses specifically on the heating of heavy ions caused by these shocks. Previous studies have focused only on the two dynamically dominant species, H+ and He2+ . This study utilizes thermal properties measured by the Solar Wind Ion Composition Spectrometer (SWICS) aboard the Advanced Composition Explorer (ACE) spacecraft to examine heavy ion heating. This instrument provides data for many heavy ions not previously available for detailed study, such as Oxygen (O6+, O7+), Carbon (C5+, C6+), and Iron (Fe10+). The ion heating is found to d...

  11. Effects of Heat Stress on Yeast Heat Shock Factor-Promoter Binding In Vivo

    Institute of Scientific and Technical Information of China (English)

    Ning LI; Le-Min ZHANG; Ke-Qin ZHANG; Jing-Shi DENG; Ralf PR(A)NDL; Fritz SCH(O)FFL

    2006-01-01

    Heat shock factor-DNA interaction is critical for understanding the regulatory mechanisms of stress-induced gene expression in eukaryotes. In this study, we analyzed the in vivo binding of yeast heat shock factor (HSF) to the promoters of target genes ScSSA1, ScSSA4, HSP30 and HSP104, using chromatin immunoprecipitation. Previous work suggested that yeast HSF is constitutively bound to DNA at all temperatures. Expression of HSF target genes is regulated at the post-transcriptional level. However, our results indicated that HSF does not bind to the promoters of ScSSA4 and HSP30 at normal temperature (23 ℃). Binding to these promoters is rapidly induced by heat stress at 39 ℃. HSF binds to ScSSA1 and HSP104 promoters under non-stress conditions, but at a low level. Heat stress rapidly leads to a notable increase in the binding of HSF to these two genes. The kinetics of the level of HSF-promoter binding correlate well with the expression of target genes, suggesting that the expression of HSF target genes is at least partially the result of HSF-promoter binding stability and subsequent transcription stimulation.

  12. Tissue-type-specific heat-shock response and immunolocalization of class I low-molecular-weight heat-shock proteins in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Tsung-Luo Jinn; Pi-Fang Linda Chang; Yih-Ming Chen [National Taiwan Univ. (China)] [and others

    1997-06-01

    A monospecific polyclonal antibody was used to study the tissue-type specificity and intracellular localization of class I low-molecular-weight (LMW) heat-shock proteins (HSPs) in soybean (Glycine max) under different heat-shock regimes. In etiolated soy-bean seedlings, the root meristematic regions contained the highest levels of LMW HSP. No tissue-type-specific expression of class I LMW HSP was detected using the tissue-printing method. In immunolocalization studies of seedlings treated with HS (40{degrees}C for 2 h) the class I LMW HSPs were found in the aggregated granular structures, which were distributed randomly in the cytoplasm and in the nucleus. When the heat shock was released, the granular structures disappeared and the class I LMW HSPs became distributed homogeneously in the cytoplasm. When the seedlings were then given a more severe heat shock following the initial 40{degrees}C {yields} 28{degrees}C treatment, a large proportion of the class I LMW HSPs that originally localized in the cytoplasm were translocated into the nucleus and nucleolus. Class I LMW HSPs may assist in the resolubilization of proteins denatured or aggregated by heat and may also participate in the restoration of organellar function after heat shock.

  13. Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    Science.gov (United States)

    Gelmedin, Verena; Delaney, Angela; Jennelle, Lucas; Hawdon, John M

    2015-07-01

    When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock

  14. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  15. The pertinence of expression of heat shock proteins (HSPs) to the efficacy of cryopreservation in HELAs.

    Science.gov (United States)

    Wang, Peitao; Shu, Zhiquan; He, Liqun; Cui, Xiangdong; Wang, Yuzhen; Gao, Dayong

    2005-01-01

    HELAs (Hela cells, passed cells of human cervical carcinoma) were heat or cold treated (named heat or cold shock) and then resumed normal culture for 2, 4 or 8 hours respectively. The expressions of heat shock protein 70 (HSP70) and 90 (HSP90) of the HELAs were measured by Northern and Western blotting. HELAs after 4-hour culture were exposed to or cryopreserved with different concentration of dimethyl sulfoxide (Me2SO, 2.5%, 5%, 10%, 15% and 20% respectively, V/V). Meanwhile, the HELAs after different culture time (2, 4 and 6 hours of culture) were cryopreserved with 5% Me2SO. After exposure or cryopreservation, the number of live HELAs was counted and the survival rate was calculated. The results showed that heat shock increased the expression of HSP70 and HSP90 of HELAs, while cold shock decreased the expression of the two proteins. When the concentrations of Me2SO were 10%, 15% and 20%, the survival rates of HELAs after exposure to Me2SO or cryopreservation were much lower than those when the concentrations were small. The survival rates of the heat shocked HELAs were significantly higher than those of the cold shocked and control HELAs. After cryopreservation with 5% Me2SO, the survival rate of heat shocked HELAs group with 2 hours culture time was the lowest among all the groups of HELAs with different cultural time. From the results of this study, we conclude that the expressions of HSP70 and HSP90 in HELAs increased significantly after heat shock, while cold shock decreased the expressions of these two proteins. The over-expressions of HSPs in the heat shocked HELAs could protect the cells from both injury caused by potential toxicity of high concentrations of Me2SO and cryoinjury caused by the freeze-thawing/cryopreservation procedure.

  16. The Transcriptional Heat Shock Response of Salmonella Typhimurium Shows Hysteresis and Heated Cells Show Increased Resistance to Heat and Acid Stress

    DEFF Research Database (Denmark)

    Pin, C.; Hansen, Trine; Munoz-Cuevas, M.;

    2012-01-01

    of 120 up-regulated genes during the heat shock remained up-regulated 30 minutes after the temperature was set back to 25uC, while only 86 out of 293 down regulated genes remained down regulated 30 minutes after the heat shock ceased. Thus, the majority of the induced genes exhibited hysteresis, i...

  17. Exercise-induced ROS in heat shock proteins response.

    Science.gov (United States)

    Dimauro, Ivan; Mercatelli, Neri; Caporossi, Daniela

    2016-09-01

    Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental

  18. The Entamoeba histolytica methylated LINE-binding protein EhMLBP provides protection against heat shock.

    Science.gov (United States)

    Katz, Sophia; Kushnir, Oded; Tovy, Ayala; Siman Tov, Rama; Ankri, Serge

    2012-01-01

    Adaptation to environmental stress is a key process that allows the unicellular parasite Entamoeba histolytica to survive in its human host. We previously characterized EhMLBP as an essential protein for the growth and the virulence of the parasite. EhMLBP binds to methylated repetitive DNA, and is one of the core proteins of the parasite's epigenetic machinery. Here, we show that EhMLBP and heat shock proteins have common properties. EhMLBP is induced by heat shock and its expression is regulated by a heat shock element binding site that is located in its 5' non-coding region. Following heat shock, the perinuclear localization of EhMLBP in control trophozoites is replaced by an even distribution within the nucleus alongside with an enhanced recruitment of EhMLBP to the reverse transcriptase of a long interspersed nucleotide element (LINE) DNA. Constitutive overexpression of EhMLBP protects trophozoites against heat shock and reduces protein aggregation. This protective function is lost in trophozoites that overexpress a mutated form of EhMLBP which is devoid of its heat shock domain. To the best of our knowledge, this is the first report of a methyl DNA-binding protein that plays a protective role against heat shock.

  19. Archaeal extrachromosomal genetic elements

    DEFF Research Database (Denmark)

    Wang, Haina; Peng, Nan; Shah, Shiraz Ali;

    2015-01-01

    viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered...

  20. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.

    Science.gov (United States)

    Dolan, E B; Haugh, M G; Tallon, D; Casey, C; McNamara, L M

    2012-12-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors. PMID:22915633

  1. [Small heat shock proteins and adaptation to hypertermia in various Drosophila species].

    Science.gov (United States)

    Shilova, V Iu; Garbuz, D G; Evgen'ev, M B; Zatsepina, O G

    2006-01-01

    Expression level and kinetics of accumulation of small heat shock proteins (21-27 kDa group) have been investigated in three Drosophila species differing significantly by temperature niche and thermosensitivity. It was shown that low-latitude thermotolerant species D. virilis exceeds the high-latitude thermosensitive closely-related species D. lummei as well as distant thermosensitive species D. melanogaster in terms of small heat shock proteins expression and accumulation after temperature elevation. The data obtained enable to postulate an important role of small heat shock proteins in organism basal thermotolerance and general adaptation to adverse conditions of environment. PMID:16637267

  2. Heat shock response of the blue crab Portunus pelagicus:thermal stress and acclimation

    Institute of Scientific and Technical Information of China (English)

    Suhaila Qari

    2014-01-01

    Objective:To determine the effect of prior heat shock on the CTMax of differently acclimated Portunus pelagicus (P. pelagicus) as well as the time course of the changes in CTMax post heat shock. Methods: Crabs P. pelagicus were held in laboratory aquaria in tanks, which were supplied with filtered and aerated seawater. Crabs were acclimated at 20 °C, 25 °C, 30 °C and 35 °C for 3 weeks before their CTMax was determined. The CTMax was recorded for each crab as the median temperature during the 5 min period when a crab was not able to right itself, the average CTMax was calculated. The effect of heat shock on subsequent CTMax was measured. Crabs were heat shocked at temperature 1 °C lower than the CTMax for 20 min, followed by either 0.5 h, 1 h or 1.5 h recovery at 20 °C. The same procedure was repeated at other acclimation temperatures (25 °C, 30 °C and 35 °C). Results: Temperature acclimation of P. pelargicus from 20-35 °C progressively increased the CTMax. Acclimation at 35 °C the CTMax was 42.66 °C, whereas acclimation at 20 °C the CTMax was 39.8 °C. In P. pelagicus acclimated, at 20 °C the CTMax values after heat shock were significantly higher than crabs in control for 30 min, 1 h and 1.5 h after heat shock. In the 25 °C and 30 °C acclimated crabs, the CTMax values after heat shock were significantly higher than control only in 30 min and 1 h after heat shock. No significant differences in 35 °C acclimated crabs between control and heat shocked crabs were found after recovery for 30 min, 1 h, or 1.5 h. Conclusions: Heat shock caused significant rises in the CTMax, however, this increase was progressively reduced with longer recovery times at the acclimation temperature. For 20 °C acclimated crabs, the increased CTMax was still evident after 90 min, but for 25 °C and 30 °C crabs, the response was over after 90 min. Heat shock of 35 °C crabs was problematical, the CTMax gave no increased thermotolerance. It must be concluded that the

  3. Reassembly and protection of small nuclear ribonucleoprotein particles by heat shock proteins in yeast cells.

    OpenAIRE

    Bracken, A P; Bond, U

    1999-01-01

    The process of mRNA splicing is sensitive to in vivo thermal inactivation, but can be protected by pretreatment of cells under conditions that induce heat-shock proteins (Hsps). This latter phenomenon is known as "splicing thermotolerance". In this article we demonstrate that the small nuclear ribonucleoprotein particles (snRNPs) are in vivo targets of thermal damage within the splicing apparatus in heat-shocked yeast cells. Following a heat shock, levels of the tri-snRNP (U4/U6.U5), free U6 ...

  4. Heat-Shock Protein 90-Targeted Nano Anticancer Therapy.

    Science.gov (United States)

    Rochani, Ankit K; Ravindran Girija, Aswathy; Borah, Ankita; Maekawa, Toru; Sakthi Kumar, D

    2016-04-01

    Suboptimal chemotherapy of anticancer drugs may be attributed to a variety of cellular mechanisms, which synergize to dodge the drug responses. Nearly 2 decades of heat-shock protein 90 (Hsp90)-targeted drug discovery has shown that the mono-therapy with Hsp90 inhibitors seems to be relatively ineffective compared with combination treatment due to several cellular dodging mechanisms. In this article, we have tried to analyze and review the Hsp90 and mammalian target of rapamycin (m-TOR)-mediated drug resistance mechanisms. By using this information we have discussed about the rationale behind use of drug combinations that includes both or any one of these inhibitors for cancer therapy. Currently, biodegradable nano vector (NV)-loaded novel drug delivery systems have shown to resolve the problems of poor bioavailability. NVs of drugs such as paclitaxel, doxorubicin, daunorubicin, and others have been successfully introduced for medicinal use. Hence, looking at the success of NVs, in this article we have also discussed the progress made in the delivery of biodegradable NV-loaded Hsp90 and m-TOR-targeted inhibitors in multiple drug combinations. We have also discussed the possible ways by which the market success of biodegradable NVs can positively impact the clinical trials of anti-Hsp90 and m-TOR combination strategy. PMID:26886301

  5. Heat-shock protein 90 in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Researches on Candidal heat-shock protein 90 (HSP90) in recent years are summarized.Candida albicans is a commensal pathogen in human and animals.In immunocompromised individuals it behaves as an opportunist pathogen,giving rise to superficial or systemic infections.Systemic candidosis is a common cause of death among immunocompromised and debilitated patients,in which the mortality is as high as 70%.HSP90 is now recognized as an immunodominant antigen in C.albicans and plays a key role in systemic candidosis as a molecular chaperone.The 47-ku peptide is the breakdown product of HSP90.Patients who has recovered from systemic candidosis produce high titre of antibodies to 47-ku antigen,whereas the fatal cases have little antibody or falling titres.The three commonest epitopes of candidal HSP90 have been mapped,epitopes C,B and H.Epitopes C and H are immunogenic.The antibody probes of both epitopes may be developed into a new serological test agents for systemic candidosis due to rather high specificity and sensitivity.The recent results establish HSP90 as an ATP-dependent chaperone that is involved in the folding of cell regulatory proteins and in the refolding of stress-denatured polypeptides.Some researches on fungal HSP90 and the treatment of patients with candidosis are reviewed as well.

  6. The pleiotropic activity of heat-shock proteins

    Directory of Open Access Journals (Sweden)

    Arleta Kaźmierczuk

    2009-10-01

    Full Text Available Stress or heat-shock proteins (HSPs are highly conserved proteins present in cells of both prokaryotes and eukaryotes, providing them with protection from cellular and environmental stress factors. Based on molecular-weight, HSPs can be divided into the large (HSP100: 100–110 kDa and HSP90: 75–96 kDa, intermediate (HSP70: 66–78 kDa, HSP60, and HSP40, and small (sHSP: 8.5–40 kDa subfamilies. These proteins play an essential role as molecular chaperones/co-chaperones by assisting the correct folding of nascent and stress-accumulated protein-substrate assembly, preventing the aggregation of these proteins, as well as transport across membranes and the degradation of other proteins. Members of HSP family display dual activity depending on their intra- or extracellular distribution. Intracellular HSPs mainly play a protective role. Extracellular or membrane-bound HSPs mediate immunological functions. Among the functions of HSPs is their participation in cell signaling. This review deals with the structure and properties of the main members of the HSPs and their role in a large number of cellular/extracellular processes.

  7. Small Heat Shock Proteins and Distal Hereditary Neuropathies.

    Science.gov (United States)

    Nefedova, V V; Muranova, L K; Sudnitsyna, M V; Ryzhavskaya, A S; Gusev, N B

    2015-12-01

    Classification of small heat shock proteins (sHsp) is presented and processes regulated by sHsp are described. Symptoms of hereditary distal neuropathy are described and the genes whose mutations are associated with development of this congenital disease are listed. The literature data and our own results concerning physicochemical properties of HspB1 mutants associated with Charcot-Marie-Tooth disease are analyzed. Mutations of HspB1, associated with hereditary motor neuron disease, can be accompanied by change of the size of HspB1 oligomers, by decreased stability under unfavorable conditions, by changes in the interaction with protein partners, and as a rule by decrease of chaperone-like activity. The largest part of these mutations is accompanied by change of oligomer stability (that can be either increased or decreased) or by change of intermonomer interaction inside an oligomer. Data on point mutation of HspB3 associated with axonal neuropathy are presented. Data concerning point mutations of Lys141 of HspB8 and those associated with hereditary neuropathy and different forms of Charcot-Marie-Tooth disease are analyzed. It is supposed that point mutations of sHsp associated with distal neuropathies lead either to loss of function (for instance, decrease of chaperone-like activity) or to gain of harmful functions (for instance, increase of interaction with certain protein partners).

  8. The Involvement of Heat Shock Proteins in Murine Liver Regeneration

    Institute of Scientific and Technical Information of China (English)

    Qing Shi; Zhongjun Dong; Haiming Wei

    2007-01-01

    Partial hepatectomy (PHx) in mammals is a very common experimental model to investigate the process of liver regeneration. The surgery itself could give birth to a series of stresses, such as the temporary raise of body temperature and the ischaemia-reperfusion injury. Heat shock proteins (HSPs) were a family of stress-inducible proteins involved in maintaining cell homeostasis and regulating the immune system. In our study, we intended to investigate the expression and role of HSPs in liver regeneration. Using RT-PCR and Western blotting, we determined the expression in regenerating liver of HSP27, HSP60, HSP70 and HSP90 in mRNA level and protein level, respectively, with mice treated with sham operation as controls. We also used quercertin as an inhibitior of HSPs to explore their effects on liver regeneration. We found that hepatic expression of HSPs increased at the early phase of liver regeneration and declined to the constitutively low level later. Moreover, quercetin pretreatment delayed the progress of liver regeneration in mice via inhibition of HSPs. The results indicated that HSPs played an important role in liver regeneration.

  9. Post heat shock tolerance: a neuroimmunological anti-inflammatory phenomenon

    Directory of Open Access Journals (Sweden)

    Jazani Nima

    2009-03-01

    Full Text Available Abstract We previously showed that the progression of burn-induced injury was inhibited by exposing the peripheral area of injured skin to sublethal hyperthermia following the burn. We called this phenomenon post-heat shock tolerance. Here we suggest a mechanism for this phenomenon. Exposure of the peripheral primary hyperalgesic/allodynic area of burned skin to local hyperthermia (45°C, 30 seconds, which is a non-painful stimulus for normal skin, results in a painful sensation transmitted by nociceptors. This hyperthermia is too mild to induce any tissue injury, but it does result in pain due to burn-induced hyperalgesia/allodynia. This mild painful stimulus can result in the induction of descending anti-nociceptive mechanisms, especially in the adjacent burned area. Some of these inhibitory mechanisms, such as alterations of sympathetic outflow and the production of endogenous opioids, can modify peripheral tissue inflammation. This decrease in burn-induced inflammation can diminish the progression of burn injury.

  10. The role of small heat shock proteins in parasites.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Espinoza, Bertha

    2015-09-01

    The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

  11. Estimation of thermal shock resistance of fine porous alumina by infrared radiation heating method

    OpenAIRE

    Iwamoto, Yuji; Honda, Sawao; Ogihara, Yuki; Kishi, Tsunego; イワモト, ユウジ; ホンダ, サワオ; 岩本, 雄二; 本多, 沢雄

    2009-01-01

    The thermal shock resistance of α-alumina porous capillary, the support material for hydrogen-permselective microporous ceramic membrane was studied. To study the effect of porosity on the thermal shock resistance systematically, porous alumina with different porosities was fabricated, and the thermal shock resistance of the fabricated samples as well as the porous capillary was estimated by the infrared radiation heating method. The mechanical and thermal properties concerned to the thermal ...

  12. Influence of selenium on heat shock protein 70 expression in heat stressed turkey embryos (Meleagris gallopavo).

    Science.gov (United States)

    Rivera, Rafael E; Christensen, V L; Edens, F W; Wineland, M J

    2005-12-01

    Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos

  13. Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.

    Science.gov (United States)

    Liao, H J; Qian, Q; Liu, X D

    2014-06-01

    Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.

  14. Mechanism of protonophores-mediated induction of heat-shock response in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Saha Swati

    2009-01-01

    Full Text Available Abstract Background Protonophores are the agents that dissipate the proton-motive-force (PMF across E. coli plasma membrane. As the PMF is known to be an energy source for the translocation of membrane and periplasmic proteins after their initial syntheses in cell cytoplasm, protonophores therefore inhibit the translocation phenomenon. In addition, protonophores also induce heat-shock-like stress response in E. coli cell. In this study, our motivation was to investigate that how the protonophores-mediated phenomena like inhibition of protein translocation and induction of heat-shock proteins in E. coli were correlated. Results Induction of heat-shock-like response in E. coli attained the maximum level after about 20 minutes of cell growth in the presence of a protonophore like carbonyl cyanide m-chloro phenylhydrazone (CCCP or 2, 4-dinitrophenol (DNP. With induction, cellular level of the heat-shock regulator protein sigma-32 also increased. The increase in sigma-32 level was resulted solely from its stabilization, not from its increased synthesis. On the other hand, the protonophores inhibited the translocation of the periplasmic protein alkaline phosphatase (AP, resulting its accumulation in cell cytosol partly in aggregated and partly in dispersed form. On further cell growth, after withdrawal of the protonophores, the previously accumulated AP could not be translocated out; instead the AP-aggregate had been degraded perhaps by an induced heat-shock protease ClpP. Moreover, the non-translocated AP formed binary complex with the induced heat-shock chaperone DnaK and the excess cellular concentration of DnaK disallowed the induction of heat-shock response by the protonophores. Conclusion Our experimental results suggested that the protonophores-mediated accumulation and aggregation of membrane proteins (like AP in cell cytosol had signaled the induction of heat-shock proteins in E. coli and the non-translocated protein aggregates were possibly

  15. Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice

    OpenAIRE

    Vedam, Kaushik; Nishijima, Yoshinori; Druhan, Lawrence J.; Khan, Mahmood; Moldovan, Nicanor I.; Zweier, Jay L.; Ilangovan, Govindasamy

    2010-01-01

    Treating cancer patients with chemotherapeutics, such as doxorubicin (Dox), cause dilated cardiomyopathy and congestive heart failure because of oxidative stress. On the other hand, heat shock factor-1 (HSF-1), a transcription factor for heat shock proteins (Hsps), is also known to be activated in response to oxidative stress. However, the possible role of HSF-1 activation and the resultant Hsp25 in chemotherapeutic-induced heart failure has not been investigated. Using HSF-1 wild-type (HSF-1...

  16. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    OpenAIRE

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; TAKASAKI, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found...

  17. Proteotoxic stress of cancer: implication of the heat-shock response in oncogenesis

    OpenAIRE

    Dai, Chengkai; Dai, Siyuan; Cao, Junyue

    2012-01-01

    Organisms frequently encounter a wide variety of proteotoxic stressors. The heat-shock response, an ancient cytoprotective mechanism, has evolved to augment organismal survival and longevity in the face of proteotoxic stress from without and within. These broadly recognized beneficial effects, ironically, contrast sharply with its emerging role as a culprit in the pathogenesis of cancers. Here, we present an overview of the normal biology of the heat-shock response and highlight its implicati...

  18. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage

    OpenAIRE

    Morales, M. A.; Watanabe, R.; Dacher, M.; Chafey, P; Osorio y Fortea, J.; Scott, D A; Beverley, S.M.; van Ommen, G.; CLOS, J.; Hem, S.; Lenormand, P.; Rousselle, J.-C.; A. Namane; Spath, G. F.

    2010-01-01

    Leishmania is exposed to a sudden increase in environmental temperature during the infectious cycle that triggers stage differentiation and adapts the parasite phenotype to intracellular survival in the mammalian host. The absence of classical promoter-dependent mechanisms of gene regulation and constitutive expression of most of the heat-shock proteins (HSPs) in these human pathogens raise important unresolved questions as to regulation of the heat-shock response and stage-specific functions...

  19. Heat Shock Transcription Factor 1-Deficiency Attenuates Overloading-Associated Hypertrophy of Mouse Soleus Muscle

    OpenAIRE

    Tomoyuki Koya; Sono Nishizawa; Yoshitaka Ohno; Ayumi Goto; Akihiro Ikuta; Miho Suzuki; Tomotaka Ohira; Tatsuro Egawa; Akira Nakai; Takao Sugiura; Yoshinobu Ohira; Toshitada Yoshioka; Moroe Beppu; Katsumasa Goto

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on t...

  20. Heat shock proteins and hypometabolism: adaptive strategy for proteome preservation

    Directory of Open Access Journals (Sweden)

    Storey KB

    2011-03-01

    Full Text Available Kenneth B Storey, Janet M StoreyDepartments of Biology and Chemistry, Carleton University, Ottawa, ON, CanadaAbstract: To survive under harsh environmental conditions many organisms retreat into hypometabolic states where metabolic rate may be reduced by 80% or more and energy use is reprioritized to emphasize key functions that sustain viability and provide cytoprotection. ATP-expensive activities, such as gene expression, protein turnover (synthesis and degradation, and the cell cycle, are largely shut down. As a consequence, mechanisms that stabilize the existing cellular proteome can become critical for long-term survival. Heat shock proteins (HSPs are well-known for their actions as chaperones that act to fold new proteins or refold proteins that are damaged. Indeed, they are part of the “minimal stress proteome” that appears to be a ubiquitous response by all cells as they attempt, successfully or unsuccessfully, to deal with stress. The present review summarizes evidence that HSPs are also a conserved feature of natural animal hypometabolism including the phenomena of estivation, hibernation, diapause, cold-hardiness, anaerobiosis, and anhydrobiosis. That is, organisms that retreat into dormant or torpid states in anticipation that environmental conditions may become too difficult for normal life also integrate the use of HSPs to protect their proteome while hypometabolic. Multiple studies show a common upregulation of expression of hsp genes and/or HSP proteins prior to or during hypometabolism in organisms as diverse as ground squirrels, turtles, land snails, insects, and brine shrimp and in situations of both preprogrammed dormancies (eg, seasonal or life stage specific and opportunistic hypometabolism (eg, triggered by desiccation or lack of oxygen. Hence, HSPs are not just a “shock” response that attempts to rescue cells from damaging stress but are a key protective strategy that is an integral component of natural states of

  1. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shujun; Liu Chunjiang [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240 (China); Jiang Pingan [College of Pratacultural and Environmental Science, Xinjiang Agricultural University, Urumqi 830052 (China); Cai Weimin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Yan [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: xusj@mail.sjtu.edu.cn

    2009-03-15

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 deg. C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 deg. C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.

  2. Short communication: lack of breed differences in responses of bovine spermatozoa to heat shock.

    Science.gov (United States)

    Chandolia, R K; Reinertsen, E M; Hansen, P J

    1999-12-01

    An experiment was conducted to test whether the magnitude of effects of heat shock on spermatozoal function were less for thermotolerant breeds (Brahman and other breeds with Brahman influence) than for breeds that evolved in northern Europe (Angus and Holstein). Frozen spermatozoa were thawed, purified by Percoll gradient centrifugation and incubated at 38.5, 41, or 42 degrees C for 4 h. Sperm motility was then analyzed with a Hamilton Thorn Motility Analyzer. Heat shock reduced the percentage of sperm that were motile, mean track speed, and mean path velocity. There were no significant breed x temperature interactions for these traits. The mean frequency of tail beat tended to be reduced by heat shock in bulls of Brahman-influenced breeds and, to a lesser extent, in Brahman bulls, but it was not affected by heat shock in Angus or Holstein bulls. For no traits were there significant temperature x bull within breed interactions. Overall, results indicate that 1) heat shock reduces motility of bovine spermatozoa and 2) genetic effects are unlikely to be an important determinant of the function of ejaculated sperm following heat shock. PMID:10629808

  3. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  4. Factors influencing the kinetics of heat shock protein expression in human lymphocytes

    International Nuclear Information System (INIS)

    Full text: All organisms, from bacteria to humans, respond to various forms of environmental stresses by inducing the synthesis of a highly conserved set of proteins, the heat shock proteins (hsps) or stress proteins. Many hsps are also expressed constitutively at lower levels and in this capacity perform essential cellular functions including protein trafficking and chaperone activity. Our approach was to follow the kinetics of hsp expression in both control and heat shocked human peripheral lymphocytes from young and old individuals. Heat shock treatment was at 42 deg C for 1 h and samples were taken at various time points during heat shock and following recovery at 37 deg C. Samples were analysed using both 35[S] methionine-labelling and western blot analysis. In addition, we investigated the possible role of phosphorylation in modulating the activity of hsps utilising phospho-specific antibodies in western blot analysis as well as metabolic 32[P] phosphate-labelling. Our study showed that hsp expression is elevated at the end of heat shock treatment, but can be seen at a lower level from 30 min during heat shock. The time taken to reach maximal induction varied for different hsps. For example hsp 70 appeared to peak at 3 h following recovery, which is consistent with previous findings. The results from western blots using phospho-specific antibodies and also the de novo synthesis of 32[P] phosphate-labelled hsps are preliminary and experiments are currently in progress

  5. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    Science.gov (United States)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  6. THEORY AND EXPERIMENT ON THE VISCOUS HEATING OF FLUID DAMPER UNDER SHOCK ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing; WANG Yu

    2008-01-01

    A specially designed fluid damper used as negative shock pulse generator in the shock resistance test system to dissipate the shock input energy in transient time duration is presented. The theoretical modeling based on the three-dimensional equation of heat transfer through a fluid element is created to predict the viscous heating in the fluid damper under shock conditions. A comprehensive experimental program that investigates the problem of viscous heating in the fluid damper under different shock conditions is conducted on the shock test machine to validate the analytical expression. Temperature histories for the fluid within the damper at two locations, the annular-orifice and the-end-of stroke of the damper, are recorded. The experimental results show that the theoretical model can offer a very dependable prediction for the temperature histories in the damper for increasing input velocity. The theoretical model and experimental data both clearly indicate that the viscous heating in the damper is directly related to the maximum shock velocity input and the pressure between the two sides of the piston head.

  7. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  8. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  9. Relationship between the induction of heat shock proteins and the decrease in glucocorticoid receptor during heat shock response in human osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    宋亮年

    1995-01-01

    Previously,it has been found that glucocorticoid receptor(GR)binding activity decreasedrapidly during heat shock response in HOS-8603,a human osteosarcorna cell line.In this study,Therelationship between the induction of heat shock proteins(HSPs)and the decrease in GR was furtherstudied in the same cell line.It was found that even though quercetin could specifically inhibit the ex-pression of hsp90α and hsp70 mRNA,it could not prevent GR from the decrease in response to the heatshock treatment.This represents the first reported evidence that the induction of HSPs and the decrease inGR during heat shock response were 2 independent biological events.The results of the present study furthershowed that although the heat shock treatment alone had no effects on alkaline phosphatase(AKP)activity,itcould completely block the induction of AKP activity in HOS-8603 cells by dexamethasone(Dex),a syntheticglucocorticoid.These results demonstrate that the heat shock-induced alteration in GR was accompanied by adecrease in GR functional activity.Furthermore,when the induction of HSPs was inhibited by the treatmentof cells with quercetin,the stimulatory effects of Dex on AKP activity could still be inhibited completely bythe heat shock treatment.The results of this part,on the basis of GR functional activity,further demonstratethat quercetin could not inhibit the heat shock-induced decrease in GR,even though it could inhibit the induc-tion of HSPs.To clarify further the effects of quercetin alone on GR binding activity in HOS-8603 cells,theregulation of GR by quercetin was also studied.It was found for the first time that quercetin coulddown-regulate GR in a time-dependent manner significantly,and that the down-regulation of GR by quercetinin HOS-8603 cells paralelled with a decrease in glucocorticoid-mediated functional responses,suggesting thatthe down-regulation of GR by quercetin is of biological significance.

  10. Heat shock protein90 in lobular neoplasia of the breast

    Directory of Open Access Journals (Sweden)

    Patsouris Efstratios

    2008-10-01

    Full Text Available Abstract Background Heat shock protein 90 (Hsp90 overexpression has been implicated in breast carcinogenesis, with putative prognostic and therapeutic implications. The purpose of this study is to evaluate the immunohistochemical expression of Hsp90 and to examine whether Hsp90 expression is associated with estrogen receptor alpha (ER-alpha and beta (ER-beta immunostaining in lobular neoplasia (LN of the breast. Methods Tissue specimens were taken from 44 patients with LN. Immunohistochemical assessment of Hsp90, ER-alpha and ER-beta was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. As far as Hsp90 evaluation is concerned: i the percentage of positive cells, and ii the intensity was separately analyzed. Additionally, the Allred score was adopted and calculated. Accordingly, Allred score was separately evaluated for ER-alpha and ER-beta. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3. Statistical analysis followed. Results Hsp90 immunoreactivity was mainly cytoplasmic in both the epithelial cells of normal breast (ducts and lobules and LN. Some epithelial cells of LN also showed nuclear staining, but all the LN foci mainly disclosed a positive cytoplasmic immunoreaction for Hsp90. In addition, rare intralobular inflammatory cells showed a slight immunoreaction. The percentage of Hsp90 positive cells in the LN areas was equal to 67.1 ± 12.2%, whereas the respective percentage in the normal adjacent breast tissue was 69.1 ± 11.6%; the difference was not statistically significant. The intensity score of Hsp90 staining was 1.82 ± 0.72 in LN foci, while in the normal adjacent tissue the intensity score was 2.14 ± 0.64. This difference was statistically significant (p = 0.029, Wilcoxon matched-pairs signed-ranks test. The Hsp90 Allred score was 6.46 ± 1.14 in the LN foci, significantly lower than in the normal adjacent tissue (6.91

  11. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter;

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...

  12. Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells.

    Directory of Open Access Journals (Sweden)

    Antonio Rossi

    Full Text Available The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF. In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2, a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E(2 in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position -2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function.

  13. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized a...

  14. Stimulation of cysteinyl leukotriene production in mast cells by heat shock and acetylsalicylic acid.

    Science.gov (United States)

    Mortaz, Esmaeil; Redegeld, Frank A; Dunsmore, Kathy; Odoms, Kelli; Wong, Hector R; Nijkamp, Frans P; Engels, Ferdi

    2007-04-30

    Immunoglobulin (Ig) E-dependent activation of mast cells is central to the allergic response. The engagement of IgE-occupied receptors initiates a series of molecular events that causes the release of preformed, and de novo synthesis of, allergic mediators. Cysteinyl leukotrienes are able to contract airway smooth muscle and increase mucus secretion and vascular permeability and recruit eosinophils. Mast cells have also recently been recognized as active participants in innate immune responses. Heat stress can modulate innate immunity by inducing stress proteins such as heat-shock proteins (HSPs). We previously demonstrated that treatment of mast cells with heat shock or acetylsalicylic acid results in an increase of TNF-alpha and IL-6 release. This effect was paralleled by expression of HSP70. In the current study, we further investigated the effects of heat shock and acetylsalicylic acid on the activation of mast cells and the release of cysteinyl leukotrienes. In mouse mast cells, derived from a culture of bone marrow cells, responsiveness to heat shock, acetylsalicylic acid and exogenous or endogenous HSP70 was monitored by measuring leukotriene C4 release. We show that after heat shock treatment and exposure to acetylsalicylic acid leukotriene production was increased. Moreover, exogenous rHSP70 also induced leukotriene production. Because it has been reported that leukotriene production in mast cells may be mediated by Toll like receptor (TLR) activation, and HSP70 also activates TLRs signaling, we further explored these issues by using mast cells that are not able to produce HSP70, i.e. heat shock factor-1 (HSF-1) knockout cells. We found that in HSF-1 knockout bone marrow derived mast cells, heat shock and acetylsalicylic acid failed to induce release of leukotrienes. Moreover, in wild type cells the surface expression of TLR4 was attenuated, whereas the intracellular expression was up-regulated. We conclude that heat shock and acetylsalicylic acid induce

  15. The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response.

    Directory of Open Access Journals (Sweden)

    Rachel Raynes

    Full Text Available The heat shock response, the cellular response to protein damaging stress, is critical in maintaining proteostasis. The heat shock response is regulated by the transcription factor HSF1, which is activated upon heat shock and other stresses to induce the expression of molecular chaperones. SIRT1 has previously been shown to activate HSF1 by deacetylating it, leading to increased DNA binding ability. We have investigated how the heat shock response may be controlled by factors influencing SIRT1 activity. We found that heat shock results in an increase in the cellular NAD(+/NADH ratio and an increase in recruitment of SIRT1 to the hsp70 promoter. Furthermore, we found that the SIRT1 modulators AROS and DBC1 have an impact on hsp70 transcription, HSF1 acetylation status, and HSF1 recruitment to the hsp70 promoter. Therefore, AROS and DBC1 are now two new targets available for therapeutic regulation of the heat shock response.

  16. Sleep deprivation increase the expression of inducible heat shock protein 70 in rat gastric mucosa

    Institute of Scientific and Technical Information of China (English)

    Xi-Zhong Shen1; Marcel W.L. Koo; Chi-Hin Cho

    2001-01-01

    AIM To .investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7 d sleep deprivation. RT-PCR,immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70.Ethanol (500 mL@ L 1, I.g.) was used to induce gastric muceea damage. RESULTS RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL@ L-1 ethanol challenge, the ulcer area found in the rats with 7 d sleep deprivation (19.15 ± 4.2) mm2 was significantly lower (P<0.01) than the corresponding control (53.7 ± 8.1) mm2. CONCLUSION Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.

  17. Isolation and characterization of a small heat shock protein gene from maize.

    Science.gov (United States)

    Dietrich, P S; Bouchard, R A; Casey, E S; Sinibaldi, R M

    1991-08-01

    A maize (Zea mays L.) genomic clone (Zmempr 9') was isolated on the basis of its homology to a meiotically expressed Lilium sequence. Radiolabeled probe made from the maize genomic clone detected complementary RNA at high fidelity. Furthermore, it hybridized to RNA isolated from staged (an interval that is coincident with meiotic prophase) maize tassel spikelets. Complimentary RNA was strongly (at least 50-fold) induced during heat shock of maize somatic tissue and appeared as a single size class in Northern blot hybridizations. Sequencing of the complete coding region of Zmempr 9' confirmed the homology of the inferred amino acid sequence to other small heat shock proteins. Consensus sequences found in the flanking regions corresponded to the usual signals for initiation of RNA transcription, polyadenylate addition, and the induction of heat shock genes. The latter sequences conferred heat shock-specific transient expression in electroporated protoplasts when cloned into promoterless reporter gene plasmid constructs. Hybrid-selected translations revealed specific translation products ranging from 15 to 18 kilodaltons, providing evidence that this gene is a member of a related multigene family. We therefore conclude that this maize genomic DNA clone, recovered through its homology to clones for meiotic transcripts in lily, represents a genuine maize small heat shock protein gene. PMID:16668329

  18. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  19. Impact of ecologically relevant heat shocks on Hsp developmental function in the vetigastropod Haliotis asinina.

    Science.gov (United States)

    Gunter, Helen M; Degnan, Bernard M

    2008-07-15

    Heat shock proteins (Hsps) are essential for cellular maintenance, normal differentiation and morphogenesis, and protection against a range of environmental stresses. It is unknown which of these roles takes precedence when they are required simultaneously. Here we examined the impact of thermal stress on the complex developmental expression patterns of HasHsp70 and HasHsp90A in the vetigastropod Haliotis asinina. We find that near-lethal heat shocks do not alter the spatial demarcation of Hsp expression despite such treatments impacting on the external character of the embryos. Using a suite of molecular markers that are both coexpressed with the Hsps (i.e. in ventrolateral ectoderm and prototroch) and expressed in tissues that have lower (basal) Hsp expression (e.g. serotonergic nervous system and shell gland), we determined that Hsp-expressing tissues do not incur markedly less thermal damage than adjacent tissues. To explore the relationship of Hsp expression with sensitivity of specific cell territories to heat shock, we focused on the formation of the prototroch, a tissue where HasHsp70 and HasHsp90A are coexpressed. By heat shocking at specific developmental stages, we determined that the most sensitive period of prototroch development is during its early specification and differentiation, which overlaps with the time the Hsps are expressed at their highest levels in these cells. This correlation is consistent with heat shock impairing the function of Hsps in regions of the H. asinina embryo undergoing morphogenesis.

  20. Shock initiation of the TATB based explosive PBX 9502 heated to ~ 76∘C

    Science.gov (United States)

    Gustavsen, Richard; Gehr, Russell; Bucholtz, Scott; Pacheco, Adam; Bartram, Brian

    2015-06-01

    Recently we reported on shock initiation of PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 binder) cooled to -55°C and to 77K Shock waves were generated by gas-gun driven plate impacts and reactive flow in the cooled PBX 9502 was measured with embedded electromagnetic gauges. Here we use similar methods to warm the explosive to ~ 76°C. The explosive sample is heated by warm air flowing through channels in an aluminum sample mounting plate and a copper tubing coil surrounding the sample. Temperature in the sample is monitored using six type-E thermocouples. Results show increased shock sensitivity; time and distance to detonation onset vs. initial shock pressure are shorter than when the sample is initially at ambient temperature. Our results are consistent with those reported by Dallman & Wackerle. Particle velocity wave profiles were also obtained during the shock-to-detonation transition and will be presented.

  1. Post-shock-revival evolutions in the neutrino-heating mechanism of core-collapse supernovae

    CERN Document Server

    Yamamoto, Yu; Nagakura, Hiroki; Yamada, Shoichi

    2012-01-01

    We perform some experimental simulations in spherical symmetry and axisymmetry to understand the post-shock-revival evolution of core-collapse supernovae. Assuming that the stalled shock wave is relaunched by neutrino heating and employing the so-called light bulb approximation, we induce shock revival by raising the neutrino luminosity by hand up to the critical value, which is also determined by dynamical simulations. We incorporate nuclear network calculations with a consistent equation of state in the simulations to account for the energy release by nuclear reactions and their feedback to hydrodynamics. Varying the shock-relaunch time rather arbitrarily, we investigate the ensuing long-term evolutions systematically, paying particular attention to the explosion energy and nucleosynthetic yields as a function of this relaunch time, or equivalently the accretion rate at shock revival. We study in detail how the diagnostic explosion energy approaches the asymptotic value and which physical processes contribu...

  2. Expression of heat shock protein70 in oral submucous fibrosis and oral squamous cell carcinoma: An immunohistochemical study

    OpenAIRE

    M Thubashini; Malathi, N.; L Kannan

    2011-01-01

    Background: Heat shock proteins are a highly conserved group of protective cellular proteins whose synthesis is increased in response to a variety of environmental or pathophysiological stresses. Heat shock proteins are useful biomarkers for carcinogenesis in tissues and signal the degree of differentiation and the aggressiveness of cancers. Regulation of heat shock protein 70 (HSP70) expression in oral submucous fibrosis is not known much, and the aim of this study was to evaluate HSP70 expr...

  3. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  4. Increased light intensity induces heat shock protein Hsp60 in coral species

    OpenAIRE

    Chow, Ari M.; Ferrier-Pagès, Christine; Khalouei, Sam; Reynaud, Stéphanie; Brown, Ian R.

    2009-01-01

    The effect of increased light intensity and heat stress on heat shock protein Hsp60 was examined in two coral species using a branched coral and a laminar coral, selected for their different resistance to environmental perturbation. Transient Hsp60 induction was observed in the laminar coral following either light or thermal stress. Sustained induction was observed when these stresses were combined. The branched coral exhibited comparatively weak transient Hsp60 induction after heat stress an...

  5. The time development of a blast wave with shock heated electrons

    Science.gov (United States)

    Edgar, R. J.; Cox, D. P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  6. The time development of a blast wave with shock-heated electrons

    Science.gov (United States)

    Edgar, R. J.; Cox, D. P.

    1984-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  7. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.

    Science.gov (United States)

    Tribst, Alline A L; Franchi, Mark A; Cristianini, Marcelo; de Massaguer, Pilar R

    2009-01-01

    This research evaluated the inactivation of a heat-resistant Aspergillus niger conidia in mango nectar by high-pressure homogenization (HPH) combined with heat shock. A. niger were inoculated in mango nectar (10(6) conidia mL(-1)) and subjected to HPH (300 to 100 MPa) and heat shock (80 degrees C for 5 to 20 min) before or after HPH. Processes were evaluated according to number of decimal reductions reached by each isolated or combined process. Scanning electron microscopy was performed to observe conidia wall after pressure treatment. Pressures below 150 MPa did not inactivate A. niger while pressures of 200 and 300 MPa resulted in 2 and more than 6 log reductions, respectively. D(80 degrees C) of A. niger was determined as 5.03 min. A heat shock of 80 degrees C/15 min, reaching 3 decimal conidia reductions, was applied before or after a 200 MPa pressure treatment to improve the decimal reduction to 5 log cycles. Results indicated that HPH inactivated A. niger in mango nectar at 300 MPa (>6.24 log cycles) and that, with pressure (200 MPa) combined with post heat shock, it was possible to obtain the same decimal reduction, showing a synergistic effect. On the other hand, pre heat shock associated with HPH resulted in an additive effect. The observation of A. niger conidia treated by HPH at 100 and 200 MPa by scanning electron microscopy indicated that HPH promoted intense cell wall damage, which can sensitize the conidia to post heat shock and possibly explain the synergistic effect observed. Practical Application: The results obtained in this paper are relevant to elucidate the mechanism of conidia inactivation in order to develop the application of HPH as an alternative pasteurization process for the fruit nectar industry.

  8. Archaeal DNA replication.

    Science.gov (United States)

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed. PMID:25421597

  9. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    OpenAIRE

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock, a phenomenon known as thermotolerance and attributed to the presence of the heat shock proteins. The question we asked first is whether the error rate in macromolecular synthesis (transcription, RN...

  10. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.

    Science.gov (United States)

    Sleadd, Isaac M; Lee, Marissa; Hassumani, Daniel O; Stecyk, Tonya M A; Zeitz, Otto K; Buckley, Bradley A

    2014-08-01

    The endemic fish fauna of the Southern Ocean are cold-adapted stenotherms and are acutely sensitive to elevated temperature. Many of these species lack a heat shock response and cannot increase the production of heat shock proteins in their tissues. However, some species retain the ability to induce other stress-responsive genes, some of which are involved in cell cycle arrest and apoptosis. Here, the effect of heat on cell cycle stage and its ability to induce apoptosis were tested in thermally stressed hepatocytes from a common Antarctic fish species from McMurdo Sound in the Ross Sea. Levels of proliferating cell nuclear antigen were also measured as a marker of progression through the cell cycle. The results of these studies demonstrate that even sub-lethal heat stress can have deleterious impacts at the cellular level on these environmentally sensitive species. PMID:25086982

  11. Conditions for shock revival by neutrino heating in core-collapse supernovae

    Science.gov (United States)

    Janka, H.-Th.

    2001-03-01

    Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrodynamic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover, the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock can then be calculated from global properties of the gain layer as solutions of an initial value problem, which expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can

  12. Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Initial crystallographic studies of the X. fastidiosa small heat-shock protein HSP17.9 are reported. The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Å resolution. The crystal belonged to space group P4322, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group

  13. Suppression of first cleavage in the Mexican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.L.; Armstrong, J.B.

    1981-12-01

    Androgenetic diploid axolotls were produced by ultraviolet inactivation of the egg pronucleus shortly after fertilization, followed by suppression of the first cleavage division by hydrostatic pressure or heat shock. After treatment at 14,000 psi for 8 minutes, diploidy was restored in 74% of the embryos, but only 0.8% survived to hatching. A 36-37 degrees C heat shock of 10-minutes duration, applied 5.5 hours after the eggs were collected, yielded a slightly lower percentage of diploids. However, the proportion surviving to hatching was significantly greater (up to 4.6%). A second generation of androgenetic diploids was produced from one of the oldest of the first generation males with a similar degree of success. The lack of significant improvement suggests that the low survival is due to the heat shock per se and not to the uncovering of recessive lethal genes carried by the parent.

  14. Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The DNA-binding activity of heat shock transcription factor (HSF) was induced by heat shock (HS) of a whole cell extract. Addition of antiserum, specific to CaM, to a whole cell extract reduced bind of the HSF to the heat shock element (HSE) with maize, and the re-addition of CaM to the sample restored the activity of the HSF for binding to HSE. In addition, DNA-binding activity of the HSF was also induced by directly adding CaM to a whole cell extract at non-HS temperature with maize. Similar results were obtained with wheat and tomato. Our observations provide the first example of the involvement of CaM in regulation of the DNA-binding activity of the HSF.

  15. Transportable, Chemical Genetic Methodology for the Small Molecule-Mediated Inhibition of Heat Shock Factor 1.

    Science.gov (United States)

    Moore, Christopher L; Dewal, Mahender B; Nekongo, Emmanuel E; Santiago, Sebasthian; Lu, Nancy B; Levine, Stuart S; Shoulders, Matthew D

    2016-01-15

    Proteostasis in the cytosol is governed by the heat shock response. The master regulator of the heat shock response, heat shock factor 1 (HSF1), and key chaperones whose levels are HSF1-regulated have emerged as high-profile targets for therapeutic applications ranging from protein misfolding-related disorders to cancer. Nonetheless, a generally applicable methodology to selectively and potently inhibit endogenous HSF1 in a small molecule-dependent manner in disease model systems remains elusive. Also problematic, the administration of even highly selective chaperone inhibitors often has the side effect of activating HSF1 and thereby inducing a compensatory heat shock response. Herein, we report a ligand-regulatable, dominant negative version of HSF1 that addresses these issues. Our approach, which required engineering a new dominant negative HSF1 variant, permits dosable inhibition of endogenous HSF1 with a selective small molecule in cell-based model systems of interest. The methodology allows us to uncouple the pleiotropic effects of chaperone inhibitors and environmental toxins from the concomitantly induced compensatory heat shock response. Integration of our method with techniques to activate HSF1 enables the creation of cell lines in which the cytosolic proteostasis network can be up- or down-regulated by orthogonal small molecules. Selective, small molecule-mediated inhibition of HSF1 has distinctive implications for the proteostasis of both chaperone-dependent globular proteins and aggregation-prone intrinsically disordered proteins. Altogether, this work provides critical methods for continued exploration of the biological roles of HSF1 and the therapeutic potential of heat shock response modulation.

  16. Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation.

    Directory of Open Access Journals (Sweden)

    Ilse M Beck

    Full Text Available Compound A possesses glucocorticoid receptor (GR-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1, upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA's anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells.

  17. Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection.

    Directory of Open Access Journals (Sweden)

    Jingxian Yang

    Full Text Available BACKGROUND: Induction of the heat shock response (HSR and increased expression of the heat shock proteins (HSPs provide mechanisms to ensure proper protein folding, trafficking, and disposition. The importance of HSPs is underscored by the understanding that protein mis-folding and aggregation contribute centrally to the pathogenesis of neurodegenerative diseases. METHODOLOGY/PRINCIPAL FINDINGS: We used a cell-based hsp70-luciferease reporter gene assay system to identify agents that modulate the HSR and show here that clinically relevant concentrations of the FDA-approved ALS drug riluzole significantly increased the heat shock induction of hsp70-luciferse reporter gene. Immuno-Western and -cytochemical analysis of HSF1 show that riluzole increased the amount of cytosolic HSF1 to afford a greater activation of HSF1 upon heat shock. The increased HSF1 contributed centrally to the cytoprotective activity of riluzole as hsf1 gene knockout negated the synergistic activity of riluzole and conditioning heat shock to confer cell survival under oxidative stress. Evidence of a post-transcriptional mechanism for the increase in HSF1 include: quantitation of mRNA(hsf1 by RT-PCR showed no effect of either heat shock or riluzole treatment; riluzole also increased the expression of HSF1 from a CMV-promoter; analysis of the turnover of HSF1 by pulse chase and immunoprecipitation show that riluzole slowed the decay of [(35S]labeled-HSF1. The effect of riluzole on HSF1 was qualitatively different from that of MG132 and chloroquine, inhibitors of the proteasome and lysosome, respectively, and appeared to involve the chaperone-mediated autophagy pathway as RNAi-mediated knockdown of CMA negated its effect. CONCLUSION/SIGNIFICANCE: We show that riluzole increased the amount of HSF1 to amplify the HSR for cytoprotection. Our study provides novel insight into the mechanism that regulates HSF1 turnover, and identifies the degradation of HSF1 as a target for

  18. Plasma antibodies to heat shock protein 60 and heat shock protein 70 are associated with increased risk of electrocardiograph abnormalities in automobile workers exposed to noise

    OpenAIRE

    Yuan, Jing; Yang, Miao; Yao, Huiling; Zheng, Jianru; Yang, Qiaoling; Chen, Sheng; Wei, Qingyi; Tanguay, Robert M.; Wu, Tangchun

    2005-01-01

    In the living and working environment, stressful factors, such as noise, can cause health problems including cardiovascular diseases and noise-induced hearing loss. Some heat shock proteins (Hsps) play an important role in protecting cardiac cells against ischemic injury, and antibodies against these Hsps are associated with the development and prognosis of atherogenesis, coronary heart disease, and hypertension. Whether the presence of such antibodies is associated with abnormal electrocardi...

  19. A heat shock element in the phosphoglycerate kinase gene promoter of yeast.

    OpenAIRE

    Piper, P W; Curran, B; Davies, M W; Hirst, K; Lockheart, A; Ogden, J E; Stanway, C A; Kingsman, A J; Kingsman, S M

    1988-01-01

    The phosphoglycerate kinase (PGK) promoter is often employed in yeast expression vectors due to its very high efficiency. Its activity in unstressed cells has been shown to be due to an upstream activator site (UASPGK) at -402 to -479. Since levels of PGK mRNA can sometimes be elevated by heat shock of yeast cultures this investigation determined how specific deletions of PGK promoter sequences effect levels of PGK mRNA both before and after heat shock. A series of PGK promoter deletions was ...

  20. Heat Shock proteins expression in different types of classical Hodgkin`s Lymphoma

    Directory of Open Access Journals (Sweden)

    Tumanskiy V.O.

    2013-01-01

    Full Text Available In the study estimation of heat shock proteins hsp60 and hsp90 expression in tumor tissue were conducted in lymphocyte rich, mixed cellularity and ymphocyte depleted (reticular type variants of classical Hodgkins lymphoma. It was shown that HRS-cells and cellular microenvironment in the studied tumor tissues have in their cytoplasm heat shock proteins, what may cause resistance to inner and outer damage effects. Expression increases from lymphocyte rich to mixed cellularity and the most significant in tumor tissue of Hodgkin`s sarcoma.

  1. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng; Thomas LAUMONIER; Jacques MENETREY

    2007-01-01

    Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treatment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and massive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P<0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and nontreated cells (67.69%±8.35% versus 58.79%±8.35%, P>0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32%±8.22% versus 28.27%±6.32%, P<0.01)and more than threefold at 120 h (26.33%±5.54% versus 8.79%±2.51%, P<0.01). Histological analysis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock

  2. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treat-ment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and mas-sive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and non- treated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analy-sis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation

  3. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    Energy Technology Data Exchange (ETDEWEB)

    Eymery, Angeline, E-mail: aeymery@gmail.com [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France); Souchier, Catherine, E-mail: catherine.souchier@ujf-grenoble.fr [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France); Vourc' h, Claire, E-mail: claire.vourch@ujf-grenoble.fr [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France); Jolly, Caroline, E-mail: caroline.jolly@upmf-grenoble.fr [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France)

    2010-07-01

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  4. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    International Nuclear Information System (INIS)

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  5. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  6. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  7. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.)

    Science.gov (United States)

    Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  8. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Ding, Xiaotao; Jiang, Yuping; Hao, Ting; Jin, Haijun; Zhang, Hongmei; He, Lizhong; Zhou, Qiang; Huang, Danfeng; Hui, Dafeng; Yu, Jizhu

    2016-01-01

    Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease. PMID:27065102

  9. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  10. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects.

    Science.gov (United States)

    Rogers, Robert S; Beaudoin, Marie-Soleil; Wheatley, Joshua L; Wright, David C; Geiger, Paige C

    2015-01-01

    Heat treatments (HT) and the induction of heat shock proteins (HSPs) improve whole body and skeletal muscle insulin sensitivity while decreasing white adipose tissue (WAT) mass. However, HSPs in WAT have been understudied. The purpose of the present study was to examine patterns of HSP expression in WAT depots, and to examine the effects of a single in vivo HT on WAT metabolism. Male Wistar rats received HT (41°C, 20 min) or sham treatment (37°C), and 24 h later subcutaneous, epididymal, and retroperitoneal WAT depots (SCAT, eWAT, and rpWAT, respectively) were removed for ex vivo experiments and Western blotting. SCAT, eWAT, and rpWAT from a subset of rats were also cultured separately and received a single in vitro HT or sham treatment. HSP72 and HSP25 expression was greatest in more metabolically active WAT depots (i.e., eWAT and rpWAT) compared with the SCAT. Following HT, HSP72 increased in all depots with the greatest induction occurring in the SCAT. In addition, HSP25 increased in the rpWAT and eWAT, while HSP60 increased in the rpWAT only in vivo. Free fatty acid (FFA) release from WAT explants was increased following HT in the rpWAT only, and fatty acid reesterification was decreased in the rpWAT but increased in the SCAT following HT. HT increased insulin responsiveness in eWAT, but not in SCAT or rpWAT. Differences in HSP expression and induction patterns following HT further support the growing body of literature differentiating distinct WAT depots in health and disease.

  11. PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Under stress, AMP-activated protein kinase (AMPK plays a central role in energy balance, and the heat shock response is a protective mechanism for cell survival. The relationship between AMPK activity and heat shock protein (HSP expression under stress is unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found that heat stress induced dephosphorylation of AMPKα subunit (AMPKα in various cell types from human and rodent. In HepG2 cells, the dephosphorylation of AMPKα under heat stress in turn caused dephosphorylation of acetyl-CoA carboxylase and upregulation of phosphoenolpyruvate carboxykinase, two downstream targets of AMPK, confirming the inhibition of AMPK activity by heat stress. Treatment of HepG2 cells with phosphatase 2A (PP2A inhibitor okadaic acid or inhibition of PP2A expression by RNA interference efficiently reversed heat stress-induced AMPKα dephosphorylation, suggesting that heat stress inhibited AMPK through activation of PP2A. Heat stress- and other HSP inducer (CdCl(2, celastrol, MG132-induced HSP70 expression could be inhibited by AICAR, an AMPK specific activator. Inhibition of AMPKα expression by RNA interference reversed the inhibitory effect of AICAR on HSP70 expression under heat stress. These results indicate that AMPK inhibition under stress contribute to HSP70 expression. Mechanistic studies showed that activation of AMPK by AICAR had no effect on heat stress-induced HSF1 nuclear translocation, phosphorylation and binding with heat response element in the promoter region of HSP70 gene, but significantly decreased HSP70 mRNA stability. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that during heat shock response, PP2A mediated AMPK inhibition upregulates HSP70 expression at least partially through stabilizing its mRNA, which suggests a novel mechanism for HSP induction under stress.

  12. Interference heating due to shock wave impingement on laminar boundary layers.

    Science.gov (United States)

    Hung, F. T.

    1973-01-01

    Laminar interference heating correlations have been developed based on recent experimental data obtained with wedge/flat plate models for wide ranges of Reynolds number and shock strength. Two correlation techniques were developed using the Eckert reference method. The peak interference Stanton number was first correlated with shock strength, Reynolds number, and Prandtl number based on flow conditions upstream of the interference region. The second approach was made by correlating peak interference Stanton number with only Reynolds number and Prandtl number based on downstream flow conditions. The laminar boundary layer remains laminar when both Reynolds number and shock strength are low but becomes transitional or turbulent when Reynolds number or/and shock strength are increased.

  13. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  14. A new case of multiple mitochondrial enzyme deficiencies with decreased amount of heat shock protein 60

    NARCIS (Netherlands)

    Briones, P; Vilaseca, MA; Ribes, A; Vernet, A; Lluch, M; Cusi, [No Value; Huckriede, A; Agsteribbe, E

    1997-01-01

    Heat shock protein 60 (hsp60) is a mitochondrial matrix protein involved in the folding and correct assembly of polypeptides into complex mitochondrial enzymes. Its deficiency has recently been described as the most likely primary cause of congenital lactic acidaemia with multiple mitochondrial enzy

  15. The role of the heat shock response in the cytoprotection of the intestinal epithelium

    NARCIS (Netherlands)

    Malago, Joshua Joseph

    2003-01-01

    Under normal conditions, the intestinal epithelial cells produce constitutive amount of heat shock proteins (Hsps) that are elevated following stressful stimuli. As the intestine is constantly exposed to variety of agents like diet, normal flora, infectious microorganisms, chemicals, and immune medi

  16. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  17. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation.

    Science.gov (United States)

    Hooper, Philip L; Durham, Heather D; Török, Zsolt; Hooper, Paul L; Crul, Tim; Vígh, László

    2016-09-01

    Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease. PMID:27283588

  18. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast

    DEFF Research Database (Denmark)

    Hou, Jin; Tang, Hongting; Liu, Zihe;

    2014-01-01

    In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protect...

  19. Manipulating heat shock factor-1 in Xenopus tadpoles: neuronal tissues are refractory to exogenous expression.

    Directory of Open Access Journals (Sweden)

    Ron P Dirks

    Full Text Available BACKGROUND: The aging related decline of heat shock factor-1 (HSF1 signaling may be causally related to protein aggregation diseases. To model such disease, we tried to cripple HSF1 signaling in the Xenopus tadpole. RESULTS: Over-expression of heat shock factor binding protein-1 did not inhibit the heat shock response in Xenopus. RNAi against HSF1 mRNA inhibited the heat shock response by 70% in Xenopus A6 cells, but failed in transgenic tadpoles. Expression of XHSF380, a dominant-negative HSF1 mutant, was embryonic lethal, which could be circumvented by delaying expression via a tetracycline inducible promoter. HSF1 signaling is thus essential for embryonic Xenopus development. Surprisingly, transgenic expression of the XHSF380 or of full length HSF1, whether driven by a ubiquitous or a neural specific promoter, was not detectable in the larval brain. CONCLUSIONS: Our finding that the majority of neurons, which have little endogenous HSF1, refused to accept transgene-driven expression of HSF1 or its mutant suggests that HSF1 levels are strictly controlled in neuronal tissue.

  20. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    1987-01-01

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce sim

  1. 热休克蛋白70%Heat shock protein70

    Institute of Scientific and Technical Information of China (English)

    叶春; 王瑞元; 何执静

    2001-01-01

    The heat shock response is a common cellular reaction to external stressers.A characteristic set of proteins is synthesized shortly after the organism is exposed to stress.Heat shock protein 70 family are the most strongly induced heat shock proteins.They are also called stress protein or molecular chaperones.They carry out important cellular functions,such as molecular chaperones,cellular protection.%热休克蛋白(HSP heat shock protein)是应激后细胞内优先合成的一组蛋白质,又称为应激蛋白(CSP,stress protein)或分子伴侣(chaperones)。其中HSP70它具有重要的细胞功能,如细胞保护作用、分子伴侣及抗氧化等。文章重点介绍HSP70的功能、结构、调节及与运动之间的相互影响。

  2. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy.

    Science.gov (United States)

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael; Bhattacharya, Dhruva; Schneider, Suzanne; Deretic, Vojo; Moseley, Pope Lloyd

    2013-05-24

    The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell. PMID:23576438

  3. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range

    NARCIS (Netherlands)

    Massa, Sonia I.; Pearson, Gareth A.; Aires, Tania; Kube, Michael; Olsen, Jeanine L.; Reinhardt, Richard; Serrao, Ester A.; Arnaud-Haond, Sophie

    2011-01-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera midi during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to f

  4. Heat Shock Factor 1: From Fire Chief to Crowd-Control Specialist.

    Science.gov (United States)

    Triandafillou, Catherine G; Drummond, D Allan

    2016-07-01

    HSF1 is the supposed master regulator of the heat shock response. In this issue of Molecular Cell, Solís et al. reveal that it has a much narrower job description: organizing a small team of molecular chaperones that keep the proteome moving. PMID:27392142

  5. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig;

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...

  6. Derivation of Varying Specific Heat Gasdynamic Functions,Normal Shock Analytical Solution and its Improvements

    Institute of Scientific and Technical Information of China (English)

    TsuiChih-Ya

    1992-01-01

    A set of new gasdynamic functions with varying specific heat are deriveo for the first time.An original analytical solution of normal shock waves is owrked out therewith.This solution is thereafter further improved by not involving total temperature,Illustrative examples of comparison are given,including also some approximate solutions to show the orders of their errors.

  7. Dynamics of the full length and mutated heat shock factor 1 in human cells.

    Directory of Open Access Journals (Sweden)

    Gaëtan Herbomel

    Full Text Available Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs. nSBs represent a natural amplification of RNA pol II dependent transcription sites. Dynamics of HSF1 and of deletion mutants were studied in living cells using multi-confocal Fluorescence Correlation Spectroscopy (mFCS and Fluorescence Recovery After Photobleaching (FRAP. In this paper, we show that HSF1 dynamics modifications upon heat shock result from both formation of high molecular weight complexes and increased HSF1 interactions with chromatin. These interactions involve both DNA binding with Heat Shock Element (HSE and sat III sequences and a more transient sequence-independent binding likely corresponding to a search for more specific targets. We find that the trimerization domain is required for low affinity interactions with chromatin while the DNA binding domain is required for site-specific interactions of HSF1 with DNA.

  8. Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation

    DEFF Research Database (Denmark)

    Petkeviciute, Egle; Kania, Per Walter; Skovgaard, Alf

    2015-01-01

    Expression of stress-related genes was investigated in the marine copepod Acartia tonsa in relation to heat shock at two different salinities (10 and 32‰), and it was furthermore investigated whether experimentally induced epibiont infestation led to elevated expression of stress-related genes...

  9. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    Science.gov (United States)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  10. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation.

    Science.gov (United States)

    Hooper, Philip L; Durham, Heather D; Török, Zsolt; Hooper, Paul L; Crul, Tim; Vígh, László

    2016-09-01

    Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.

  11. Dietary heme adversely affects experimental colitis in rats, despite heat-shock protein induction

    NARCIS (Netherlands)

    Schepens, Marloes A. A.; Vink, Carolien; Schonewille, Arjan J.; Dijkstra, Gerard; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M. J.

    2011-01-01

    Objective: Research on dietary modulation of inflammatory bowel disease is in its infancy. Dietary heme, mimicking red meat, is cytotoxic to colonic epithelium and thus may aggravate colitis. Alternatively, heme-induced colonic stress might also result in potential protective heat-shock proteins (HS

  12. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  13. Limits of shock heating for the chromospheres of low-gravity stars

    Science.gov (United States)

    Gadelmavla, Diaa

    2016-07-01

    This work discusses theoretical limits of chromospheric heating by shock waves in stars with low surface gravity. The computations are self consistent, and based on waves generated in stellar convection zones. We employ the new finding of the mixing length parameter α = 1.8. The Ca~II~H+K and Mg~II~h+k fluxes are computed assuming partial redistribution (PRD). The results show the strong dependence of the number of formed shocks and their transmission through the atmosphere on the value of the surface gravity. For stars with solar gravity, heating by shock waves is very efficient, this efficiency decreases with decreasing the value of G. For fixed effective temperature and solar metallicity, the temperature of the chromosphere increase with increasing the stellar surface gravity. A linear correlation is found between the surface gravity and the number of transmitted shocks. The emitted Mg~II and Ca~II fluxes show also a linear dependance on G. It has been found that there is a clear threshold value of G where no shocks are formed. The theoretically computed basal Ca~II and Mg~II fluxes follow simple formulae as a function of stellar surface gravity.

  14. Molecular cloning and expression of a human heat shock factor, HSF1

    Energy Technology Data Exchange (ETDEWEB)

    Rabindran, S.K.; Giorgi, G.; Clos, J.; Wu, C. (National Institutes of Health, Bethesda, MD (United States))

    1991-08-15

    Human cells respond to heat stress by inducing the binding of a preexisting transcriptional activator (heat shock factor, HSF) to DNA. The authors isolated recombinant DNA clones for a human cDNA fragment. The human HSF1 probe was produced by the PCR with primers deduced from conserved amino acids in the Drosophila and yeast HSF sequences. The human HSF1 mRNA is constitutively expressed in HeLa cells under nonshock conditions and encodes a protein with four conserved leucine zipper motifs. Like its counterpart in Drosophila, human HSF1 produced in Escherichia coli in the absence of heat shock is active as a DNA binding transcription factor, suggesting that the intrinsic activity of HSF is under negative control in human cells. Surprisingly, an independently isolated human HSF clone, HSF2, is related to but significantly different from HSF.

  15. Genetic variation in resistance of the preimplantation bovine embryo to heat shock.

    Science.gov (United States)

    Hansen, Peter J

    2014-12-01

    Reproduction is among the physiological functions in mammals most susceptible to disruption by hyperthermia. Many of the effects of heat stress on function of the oocyte and embryo involve direct effects of elevated temperature (i.e. heat shock) on cellular function. Mammals limit the effects of heat shock by tightly regulating body temperature. This ability is genetically controlled: lines of domestic animals have been developed with superior ability to regulate body temperature during heat stress. Through experimentation in cattle, it is also evident that there is genetic variation in the resistance of cells to the deleterious effects of elevated temperature. Several breeds that were developed in hot climates, including Bos indicus (Brahman, Gir, Nelore and Sahiwal) and Bos taurus (Romosinuano and Senepol) are more resistant to the effects of elevated temperature on cellular function than breeds that evolved in cooler climates (Angus, Holstein and Jersey). Genetic differences are expressed in the preimplantation embryo by Day 4-5 of development (after embryonic genome activation). It is not clear whether genetic differences are expressed in cells in which transcription is repressed (oocytes >100 µm in diameter or embryos at stages before embryonic genome activation). The molecular basis for cellular thermotolerance has also not been established, although there is some suggestion for involvement of heat shock protein 90 and the insulin-like growth factor 1 system. Given the availability of genomic tools for genetic selection, identification of genes controlling cellular resistance to elevated temperature could be followed by progress in selection for those genes within the populations in which they exist. It could also be possible to introduce genes from thermotolerant breeds into thermally sensitive breeds. The ability to edit the genome makes it possible to design new genes that confer protection of cells from stresses like heat shock. PMID:25472041

  16. Heat-shock protein 70 expression in shrimp Fenneropenaeus chinensis during thermal and immune-challenged stress

    Institute of Scientific and Technical Information of China (English)

    GUO Zhenyu; JIAO Chuanzhen; XIANG Jianhai

    2004-01-01

    Using western immunoblotting, we obtained heat-shock protein 70 (HSP70) induction data and distribution in different tissues from shrimp Fenneropenaeus chinensis during thermal and immune-challenged stresses. This is probably the first report of the effects of various stressors on the expression of HSP70 in shrimp. HSP70 was prominently induced in hepatopancreas and gills, but not in muscle, eyestalk and hemolymph, when the shrimp were exposed to heat shock and Vibrio anguillavium-challenged stresses. Cold shock and WSSV treatment had no significant effects on the levels of HSP70 expression in all tissues examined. HSP70 induction was greatest after 2 h exposure to heat shock stress, which was elevated after acute heat shock exposure of 10℃ above ambient temperature.

  17. Induction of Heat Shock Protein 72 in RGCs of Rat Acute Glaucoma Model after Heat Stress or Zinc Administration

    Institute of Scientific and Technical Information of China (English)

    Guoping Qing; Xuanchu Duan; Youqin Jiang

    2004-01-01

    Purpose :To investigate the dynamics of heat shock protein 72 (HSP72) expression in retinal ganglion cells (RGCs) in rat model of acute glaucoma treated with heat stress or intraperitoneal injection of zinc sulfate.Methods: Twenty-seven male Wistar rats were used to make acute glaucoma models. Five others served as normal control. Acute glaucoma models were made by intracameral irrigation in the right eyes with balanced salt saline (BSS) at 102 mmHg for 2 hours. Nine model rats were killed at different intervals after intracameral irrigation without treatment, which served as damage control. Ten were treated with heat stress 40℃~42℃, and 8 were used for zinc sulfate administration 2 days posterior to intracameral irrigation.Treated model rats were sacrificed at designed intervals after treatment. Right eyes were enucleated immediately, and the retinas were dissected for Western blot.Results: No HSP72 was found in RGCs of normal Wistar rats. In damage control group,slight HSP72 was detected during 6~36 hours posterior to intracameral irrigation. HSP72was detected significantly expressed in RGCs of both heat shock group and zinc sulfate group. But the dynamics of HSP72 production were quite different in these two treated groups. In heat shock group, HSP72 appeared at the sixth hour after treatment, and increased gradually until its peak production emerged at the 48th hour. HSP72 vanished 8days later after treatment. In zinc sulfate group, HSP72 expression began 24 hours later after zinc administration, and reached its highest level at the 72th hour posterior to treatment. HSP72 expression then decreased slowly, and disappeared 21 days later after treatment.Conclusion:HSP72 can be induced in RGCs of rat acute glaucoma models with heat stress or zinc sulfate adddministration. But the dynamics of the HSP72 induction in those two groups were quite different. Eye Science 2004;20:30-33.

  18. ZERO DISSIPATION LIMIT OF THE COMPRESSIBLE HEAT-CONDUCTING NAVIER-STOKES EQUATIONS IN HE PRESENCE OF THE SHOCK

    Institute of Scientific and Technical Information of China (English)

    Wang Yi

    2008-01-01

    The zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock is investigated. It is shown that when the heat ε→ 0 (see (1.3)), if the solution of the corresponding Euler equations is piecewise smooth with shock wave satisfying the Lax entropy condition, then there exists a smooth solution to the Navier-Stokes equations, which converges to the piecewise smooth shock solution of the Euler equations away from the shock discontinuity at a rate of ε. The proof is given by a combination of the energy estimates and the matched asymptotic analysis introduced in [3].

  19. Heat shock inhibits. alpha. -amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Sticher, L.; Biswas, A.K.; Bush, D.S.; Jones, R.L. (Univ. of California, Berkeley (USA))

    1990-02-01

    The effects of heat shock on the synthesis of {alpha}-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25{degree}C to 40{degree}C for 3 hours, inhibits the accumulation of {alpha}-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca{sup 2+}. When ER is isolated from heat-shocked aleurone layers, less newly synthesized {alpha}-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca{sup 2+} transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.

  20. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.

    2005-09-16

    Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.

  1. An artificial HSE promoter for efficient and selective detection of heat shock pathway activity.

    Science.gov (United States)

    Ortner, Viktoria; Ludwig, Alfred; Riegel, Elisabeth; Dunzinger, Sarah; Czerny, Thomas

    2015-03-01

    Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.

  2. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  3. Numerical Analysis on Standing Accretion Shock Instability with Neutrino Heating in the Supernova Cores

    CERN Document Server

    Ohnishi, N; Yamada, S; Ohnishi, Naofumi; Kotake, Kei; Yamada, Shoichi

    2006-01-01

    We have numerically studied the instability of the spherically symmetric standing accretion shock wave against non-spherical perturbations. We have in mind the application to the collapse-driven supernovae in the post bounce phase, where the prompt shock wave generated by core bounce is commonly stalled. We take an experimental stand point in this paper. Using spherically symmetric, completely steady, shocked accretion flows as unperturbed states, we have clearly observed both the linear growth and the subsequent nonlinear saturation of the instability. In so doing, we have employed a realistic equation of state together with heating and cooling via neutrino reactions with nucleons. We have done a mode analysis based on the spherical harmonics decomposition and found that the modes with l=1, 2 are dominant not only in the linear regime, but also after the nonlinear couplings generate various modes and the saturation occurs. Varying the neutrino luminosity, we have constructed the unperturbed states both with ...

  4. The role of the membrane-initiated Heat Shock Response in cancer

    Directory of Open Access Journals (Sweden)

    Zohar eBromberg

    2016-04-01

    Full Text Available The heat shock response (HSR is a cellular response to diverse environmental and physiological stressors resulting in the induction of genes encoding molecular chaperones, proteases and other proteins that are essential for protection and recovery from cellular damage. Since different perturbations cause accumulation of misfolded proteins, cells frequently encounter fluctuations in the environment which alter proteostasis. Since tumor cells use their natural adaptive mechanism of coping with stress and misfolded proteins, in recent years, the proteostasis network became a promising target for anti-tumor therapy. The membrane is the first to be affected by heat shock and therefore may be the first one to sense heat shock. The membrane also connects between the extracellular and the intracellular signals. Hence, there is a cross talk between the HSR and the membranes since heat shock can induce changes in the fluidity of membranes, leading to membrane lipid remodeling that occurs in several diseases such as cancer. During the last decade, a new possible therapy has emerged in which an external molecule is used that could induce membrane lipid re-organization. Since at the moment there are very few substances that regulate the HSR effectively, an alternative way has been searched to modulate chaperone activities through the plasma membrane. Recently, we suggested that the use of the membrane Transient Receptor Potential Vanilloid-1 (TRPV1 modulators regulated the HSR in cancer cells. However, the primary targets of the signal transduction pathway are yet un-known. This review provides an overview of the current literature regarding the role of HSR in membrane remodeling in cancer since a deep understanding of the membrane biology in cancer and the membrane heat sensing pathway is essential to design novel efficient therapies.

  5. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination.

  6. Leishmania amazonensis: effects of heat shock on ecto-ATPase activity.

    Science.gov (United States)

    Peres-Sampaio, Carlos Eduardo; de Almeida-Amaral, Elmo Eduardo; Giarola, Naira Ligia Lima; Meyer-Fernandes, José Roberto

    2008-05-01

    In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress. PMID:18295760

  7. POST-SHOCK-REVIVAL EVOLUTION IN THE NEUTRINO-HEATING MECHANISM OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yu; Yamada, Shoichi [Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi, Kumamoto 861-1102 (Japan); Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2013-07-01

    We perform experimental simulations with spherical symmetry and axisymmetry to understand the post-shock-revival evolution of core-collapse supernovae. Assuming that the stalled shock wave is relaunched by neutrino heating and employing the so-called light bulb approximation, we induce shock revival by raising the neutrino luminosity up to the critical value, which is determined by dynamical simulations. A 15 M{sub Sun} progenitor model is employed. We incorporate nuclear network calculations with a consistent equation of state in the simulations to account for the energy release by nuclear reactions and their feedback to hydrodynamics. Varying the shock-relaunch time rather arbitrarily, we investigate the ensuing long-term evolutions systematically, paying particular attention to the explosion energy and nucleosynthetic yields as a function of relaunch time, or equivalently, the accretion rate at shock revival. We study in detail how the diagnostic explosion energy approaches the asymptotic value and which physical processes contribute in what proportions to the explosion energy. Furthermore, we study the dependence of physical processes on the relaunch time and the dimension of dynamics. We find that the contribution of nuclear reactions to the explosion energy is comparable to or greater than that of neutrino heating. In particular, recombinations are dominant over burnings in the contributions of nuclear reactions. Interestingly, one-dimensional (1D) models studied in this paper cannot produce the appropriate explosion energy and nickel mass simultaneously; nickels are overproduced. This problem is resolved in 2D models if the shock is relaunched at 300-400 ms after the bounce.

  8. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    Directory of Open Access Journals (Sweden)

    Alisia Carnemolla

    Full Text Available The heat shock response (HSR is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders.

  9. Co-localization of the heat shock protein and human immunoglobulin G in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-guang; LIU Yan-fang; LI Kai-nan; YU Lu; CUI Ji-hong; LI Jing; YANG Shou-jing

    2005-01-01

    @@ Elevated levels of serum immunoglobulin observed in patients with cancers of epithelial origin, including carcinomas of breast, colon, and liver1,2 have been interpreted as humoral responses of host to cancer growth.3 Recently, Qiu et al4 described in detail that human cancers of epithelial origin, including carcinomas of breast, colon, liver, lung, established epithelial cancer lines, produce immunoglobulin G (IgG) in their cytoplasm. Under normal conditions, heat shock proteins (HSPs) have multiple cellular functions, such as folding and translocating newly synthesized proteins. When a cell is injured or under stress, HSPs refold damaged protein or facilitate degradation of proteins. In most cancers, heat shock proteins can capture tumour specific peptide to inhibit the growth of cancer. This study demonstrated that human IgG and HSPs are co-localized in hepatocellular carcinoma.

  10. Oligomers of heat-shock proteins: Structures that don't imply function

    CERN Document Server

    Jacobs, William M; Frenkel, Daan

    2015-01-01

    Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as small heat-shock proteins, suppress thermodynamic instabilities in protein solutions. Given fixed concentrations of chaperones and client proteins, the solubility of the proteome can be increased by tuning the chaperone--client binding strength. Surprisingly, we find that the binding strength that optimizes solubility while preventing irreversible chaperone binding also promotes the formation of weakly bound chaperone oligomers, although the presence of these oligomers does not significantly affect the thermodynamic stability of the solution. Such oligomers are commonly observed in experiments on small heat-shock prote...

  11. Heat Shock Followed by Priming Increases the Quality of Agropyron elongatum Seeds under Accelerated Ageing

    Directory of Open Access Journals (Sweden)

    Malihe AKBARPOUR BAHREH

    2014-06-01

    Full Text Available The present study was carried out to examine the possibilities of obtaining primed seeds that maintain high germination quality and the same longevity as the untreated seeds. For Tall wheatgrass tested, we found that the desired longevity could be obtained by keeping the seeds under heat shock for a period of several hours, after a priming treatment. Decreasing germination and seedling vigour in BAP 25 and 50 ppm, for 24 priming, did not happen again due to such a treatment. In addition, following priming, heat shock affects the initial quality of primed seeds in some treatments. Optimal temperature was strongly duration dependent. The method was applied to obtain primed seeds without the loss of storability, which is similar to those procedures used to induce desiccation tolerance in germinated seeds and acquire thermo tolerance in plant vegetative tissues.

  12. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Ping-Chang Yang

    2009-01-01

    Full Text Available Background : Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods : Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results : HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions : Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein. (Yang PC, Tu YH, Perdue MH, Oluwole C, Struiksma S. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction.

  13. Experimental pneumococcal meningitis causes central nervous system pathology without inducing the 72-kd heat shock protein.

    OpenAIRE

    Täuber, M G; Kennedy, S L; Tureen, J H; Lowenstein, D. H.

    1992-01-01

    We examined whether experimental pneumococcal meningitis induced the 72-kd heat shock protein (HSP72), a sensitive marker of neuronal stress in other models of central nervous system (CNS) injury. Brain injury was characterized by vasculitis, cerebritis, and abscess formation in the cortex of infected animals. The extent of these changes correlated with the size of the inoculum (P less than 0.003) and with pathophysiologic parameters of disease severity, i.e., cerebrospinal fluid (CSF) lactat...

  14. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    OpenAIRE

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to ...

  15. FTSJ2, a heat shock-inducible mitochondrial protein, suppresses cell invasion and migration.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Lai

    Full Text Available Ribosomal RNA large subunit methyltransferase J (RrmJ, an Escherichia coli heat shock protein, is responsible for 2'-O-ribose methylation in 23S rRNA. In mammals, three close homologs of RrmJ have been identified and have been designated as FTSJ1, FTSJ2 and FTSJ3; however, little is known about these genes. In this study, we characterized the mammalian FTSJ2, which was the most related protein to RrmJ in a phylogenetic analysis that had similar amino acid sequence features and tertiary protein structures of RrmJ. FTSJ2 was first identified in this study as a nucleus encoded mitochondrial protein that preserves the heat shock protein character in mammals in which the mRNA expressions was increased in porcine lung tissues and A549 cells after heat shock treatment. In addition, a recent study in non-small cell lung cancer (NSCLC suggested that the FTSJ2 gene is located in a novel oncogenic locus. However, our results demonstrate that the expression of FTSJ2 mRNA was decreased in the more invasive subline (CL1-5 of the lung adenocarcinoma cells (CL1 compared with the less invasive subline (CL1-0, and overexpression of FTSJ2 resulted in the inhibition of cell invasion and migration in the rhabdomyosarcoma cell (TE671. In conclusion, our findings indicate that mammalian FTSJ2 is a mitochondrial ortholog of E. coli RrmJ and conserves the heat shock protein properties. Moreover, FTSJ2 possesses suppressive effects on the invasion and migration of cancer cells.

  16. Agonistic encounters and cellular angst: social interactions induce heat shock proteins in juvenile salmonid fish

    OpenAIRE

    Currie, Suzanne; LeBlanc, Sacha; Watters, M. Alexandrea; Gilmour, Kathleen M.

    2009-01-01

    Juvenile salmonid fish readily form dominance hierarchies when faced with limited resources. While these social interactions may result in profound behavioural and physiological stress, it is unknown if this social stress is evident at the level of the cellular stress response—specifically, the induction of stress or heat shock proteins (Hsps). Thus, the goal of our study was to determine if Hsps are induced during hierarchy formation in juvenile rainbow trout (Oncorhynchus mykiss). To this e...

  17. Exploiting the Diversity of the Heat-Shock Protein Family for Primary and Secondary Tauopathy Therapeutics

    OpenAIRE

    Abisambra, Jose F.; Jinwal, Umesh K; Jones, Jeffrey R.; Blair, Laura J.; Koren, John; Dickey, Chad A.

    2011-01-01

    The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strat...

  18. Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets

    OpenAIRE

    McConnell, Jeanette R.; McAlpine, Shelli R.

    2013-01-01

    The heat shock proteins are essential players in the development of cancer and they are prime therapeutic targets. Targeting multiple hsps in dual therapies decreases the likelihood of drug resistance compared to utilizing mono-therapies. Further, employing an hsp inhibitor in combination with another therapy has proven clinically successful. Examples of efficacious strategies include the inhibition of hsp27, which prevents protein aggregation, controlling hsp40’s role as an ATPase modulator,...

  19. Aberrant Expression and Secretion of Heat Shock Protein 90 in Patients with Bullous Pemphigoid

    OpenAIRE

    Stefan Tukaj; Konrad Kleszczyński; Katerina Vafia; Stephanie Groth; Damian Meyersburg; Piotr Trzonkowski; Ludwig, Ralf J; Detlef Zillikens; Enno Schmidt; Tobias W Fischer; Michael Kasperkiewicz

    2013-01-01

    The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP), the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i) Hsp9...

  20. Serum heat shock protein 47 levels in patients with drug-induced lung disease

    OpenAIRE

    Kakugawa, Tomoyuki; Yokota, Shin-ichi; Ishimatsu, Yuji; Hayashi, Tomayoshi; Nakashima, Shota; Hara, Shintaro; Sakamoto, Noriho; Matsuoka, Yasuhiro; Kubota, Hiroshi; Mine, Mariko; Mukae, Hiroshi; Nagata, Kazuhiro; Kohno, Shigeru

    2013-01-01

    Background Heat shock protein (HSP) 47 is a collagen-specific molecular chaperone that is required for molecular maturation of various types of collagens. We recently reported that HSP47 serum levels were markedly higher in patients with acute exacerbations of idiopathic pulmonary fibrosis (IPF) when compared with patients with stable IPF, suggesting that serum HSP47 levels correlate with interstitial pneumonia activity. The aim of this study was to evaluate serum HSP47 levels in patients wit...

  1. Serum heat shock protein 47 levels are elevated in acute exacerbation of idiopathic pulmonary fibrosis

    OpenAIRE

    Kakugawa, Tomoyuki; Yokota, Shin-ichi; Ishimatsu, Yuji; Hayashi, Tomayoshi; Nakashima, Shota; Hara, Shintaro; Sakamoto, Noriho; Kubota, Hiroshi; Mine, Mariko; Matsuoka, Yasuhiro; Mukae, Hiroshi; Nagata, Kazuhiro; Kohno, Shigeru

    2013-01-01

    Little is known about the pathophysiology of acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF). Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for biosynthesis and secretion of collagen molecules. Previous studies in experimental animal fibrosis models have shown that downregulation of HSP47 expression reduces collagen production and diminishes fibrosis progression. In this study, serum HSP47 levels were evaluated to elucidate pathogenic diff...

  2. Heat Shock Protein 90 Inhibitors Prolong Survival, Attenuate Inflammation, and Reduce Lung Injury in Murine Sepsis

    OpenAIRE

    Chatterjee, Anuran; Dimitropoulou, Christiana; Drakopanayiotakis, Fotios; ANTONOVA, Galina; Snead, Connie; Cannon, Joseph; Venema, Richard C.; Catravas, John D.

    2007-01-01

    Rationale: Severe sepsis is the leading cause of death for patients in intensive care units. Patients with severe sepsis develop multiple organ failure, including acute lung injury (ALI), resulting from a deregulated inflammatory response. Inhibitors of the ubiquitous chaperone, heat shock protein 90 (Hsp90), block the activity of certain proinflammatory mediators in vitro. We hypothesized that Hsp90 inhibitors may ameliorate the inflammation and ALI associated with severe sepsis.

  3. Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis

    OpenAIRE

    Li Zihai; Goldstein Mark G

    2009-01-01

    Abstract Inflammation is a necessary albeit insufficient component of tumorigenesis in some cancers. Infectious agents directly implicated in tumorigenesis have been shown to induce inflammation. This process involves both the innate and adaptive components of the immune system which contribute to tumor angiogenesis, tumor tolerance and metastatic properties of neoplasms. Recently, heat-shock proteins have been identified as mediators of this inflammatory process and thus may provide a link b...

  4. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  5. Antigen capture ELISA for the heat shock protein (hsp60) of Chlamydia trachomatis.

    OpenAIRE

    Horner, P J; Ali, M.; Parker, D.; Weber, J. N.; Taylor-Robinson, D.; McClure, M O

    1996-01-01

    AIMS: To develop an indirect ELISA using the heat shock protein (hsp60) of Chlamydia trachomatis as antigen. METHODS: The hsp60 gene was amplified by PCR, expressed in the vector pDEV-107 and transformed into Escherichia coli. The recombinant protein, expressed as a beta-galactosidase fusion product, was captured onto a solid phase using a monoclonal antibody directed against beta-galactosidase. Following incubation with goat anti-human antibody conjugated to peroxidase and colour development...

  6. Impact of Exercise and Metabolic Disorders on Heat Shock Proteins and Vascular Inflammation

    Directory of Open Access Journals (Sweden)

    Earl G. Noble

    2012-01-01

    Full Text Available Heat shock proteins (Hsp play critical roles in the body’s self-defense under a variety of stresses, including heat shock, oxidative stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS, or mechanical deformation of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia are associated with type 1 diabetes (an autoimmune disease, type 2 diabetes (the common type of diabetes usually associated with obesity, and atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress, increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1 (HSF1 reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise on inflammation and metabolism depend on the type, intensity, and duration of physical activity.

  7. Comparison of viscous-shock-layer heating analysis with Shuttle flight data in slip flow regime

    Science.gov (United States)

    Shinn, J. L.; Simmonds, A. L.

    1984-01-01

    Comparison of STS-2 Shuttle flight heating data along the windward centerline has been made with two-dimensional nonequilibrium viscous shock-layer solutions obtained with shock and wall-slip conditions at an altitude range of 90 to 110 km. The shock slip condition used is the modified Rankine-Hugoniot relations of Cheng as used by Davis, and the wall-slip conditions are based on the first order consideration derived from kinetic theory as given by Scott and Hendricks. The results indicate that the calculated heating distributions with slip boundary conditions agree better with the flight data than those without slip conditions. The agreement improves when the accommodation coefficient or freestream density is decreased to one-half, suggesting the possibility of less than full accommodation for the tile surface and (or) an overestimate of freestream density using the Jacchia-Roberts model. Heating reduction due to the slip effect becomes very pronounced as the flow becomes more rarefied, and the effect is more significant for the stagnation region than the aft region of the vehicle.

  8. Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases.

    Science.gov (United States)

    Dayalan Naidu, Sharadha; Sutherland, Calum; Zhang, Ying; Risco, Ana; de la Vega, Laureano; Caunt, Christopher J; Hastie, C James; Lamont, Douglas J; Torrente, Laura; Chowdhry, Sudhir; Benjamin, Ivor J; Keyse, Stephen M; Cuenda, Ana; Dinkova-Kostova, Albena T

    2016-09-15

    Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response. PMID:27354066

  9. Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity.

    Science.gov (United States)

    Zhang, Yunfei; Zhang, Yong; Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.

  10. Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really so (heat) shocking?

    Science.gov (United States)

    Cotgreave, Ian A

    2005-03-01

    Cells phenotypically adapt to alterations in their intra- and extracellular environment via organised alterations to gene and protein expression. Many chemical and physical stimuli are known to drive such responses, including the induction of oxidative stress and heat shock. Increasing use of mobile telephones in our society, has brought focus on the potential for radio frequency (microwave) electromagnetic radiation to elicit biological stress responses, in association with potentially detrimental effects of this to human health. Here we review evidence suggesting altered gene and protein expression in response to such emissions, with particular focus on heat shock proteins. Non-thermal induction of heat shock proteins has been claimed by a number of investigations in in vitro cellular systems, and appears pleiotropic for many other regulatory events. However, many of these studies are flawed by inconsistencies in exposure models, cell types used and the independent reproducibility of the findings. Further, the paucity of evidence from in vivo experimentation is largely contradictory. Therefore, the validity of these effects in human health risk assessment remain unsubstantiated. Where possible, suggestions for further experimental clarification have been provided.

  11. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico

    Science.gov (United States)

    Zuloaga-Aguilar, Susana; Briones, Oscar; Orozco-Segovia, Alma

    2011-05-01

    In many fire-prone ecosystems, seed germination is triggered by heat shock, smoke, ash and charred wood. However, few studies concerning the effect of these fire products on the germination of tropical and subtropical species exist. We assessed the effect of fire products and their interactions on seed germination in 12 species that frequently grow in burned areas of pine-oak and mixed forest in a mountainous subtropical area. Each species was exposed to a predetermined treatment of heat shock, which was optimised in accordance with a previous study. For smoke treatments, seeds were immersed in smoke water, whereas for ash treatments, 1.5 g of ash was added to the incubation medium. Germination increased in 92% of the species in response to the products of fire. Both the smoke water and the ash treatments promoted germination in four species that had permeable seed covers and physiological dormancy. Six species with physical dormancy required both heat shock and smoke water or ash to break dormancy. Our results indicate that seed germination response to fire products depends on the species and/or dormancy type. The germination response to the fire products varied between species; therefore, fire products may influence the species composition in post-fire regeneration.

  12. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2015-08-01

    The aquaculture industry for Apostichopus japonicus has suffered severe economic and resource losses due to high temperature in recent summers. There is increasing concern about the effect of high temperature on this species. Histological, ultrastructural and HSP70 responses to heat stress were investigated in the intestine of A. japonicus. Tissue degradation was observed in muscular, submucosal and mucosal layers, with significant decrease in plicae circulares of the mucosal layer. Ultrastructural damage intensified with increasing stress time, and indicators of cell apoptosis were evident after 192 h heat stress. Immunostaining showed HSP70 mainly in mucosa and serosa, with faint staining in non-stressed individuals (the control group) and denser staining under stress (the 6, 48 and 192 h groups). Western blot detection confirmed ocurrence of HSP70 in all groups and significant up-regulation under stress. The rapid and persistent response of HSP70 implies its critical role in the heat shock response of A. japonicus. PMID:25917397

  13. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Yuan B

    2016-04-01

    Full Text Available Bo Yuan, Thomas J Webster, Amit K Roy Chemical Engineering Department, College of Engineering, Northeastern University, Boston, MA, USA Abstract: It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells are commonly altered during changes in environmental conditions. Studies by our group and others have shown that nanoparticles (NPs are able to efficiently attenuate oxidative stress by penetrating into specific tissues or organs. Such findings warrant further investigation on the effects of NPs on heat-shock-induced stress, specifically in cells in the presence or absence (pretreated of NPs. Here, we examined the cytoprotective effects of two different NPs (cerium and selenium on heat-induced cell death for a model cell using dermal fibroblasts. We report for the first time that both ceria and selenium NPs (at 500 µg/mL possess stress-relieving behavior on fibroblasts undergoing heat shock. Such results indicate the need to further develop these NPs as a novel treatment for heat shock. Keywords: ceria, heat shock, nanotechnology, cell death, nanomedicine, protective

  14. Stomatal movement in response to long distance- communicated signals initiated by heat shock in partial roots of Commelina communis L.

    Institute of Scientific and Technical Information of China (English)

    YANG; Songjie; HUANG; Conglin; WU; Zhongyi; HU; Jianfang; LI; Tianzhong; LIU; Shigui

    2006-01-01

    The systematic or long-distance signal transmission plays crucial roles in animal lives. Compared with animals, however, much less is known about the roles of long-distance signal communication in plant lives. Using the model plant Commelina communis L., we have probed the root to shoot communication mediated by heat-shock signals. The results showed that a heat shock of 5 min at 40℃ in partial roots, i.e. half or even 1/4 root system, could lead to a significant decrease in stomatal conductance. The regulation capability depends on both heat shock temperature and the amount of root system, i.e. with higher temperature and more roots stressed, the leaf conductance would decrease more significantly. Interestingly, the stomatal regulation by heat shock signal is in a manner of oscillation: when stomata conductance decreased to the lowest level within about 30 min, it would increase rapidly and sometimes even exceed the initial level, and after several cycles the stomata conductance would be finally stabilized at a lower level. Feeding xylem sap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggesting that the heat shock-initiated signal is basically a positive signal. Further studies showed that heat shock was not able to affect ABA content in xylem sap, and also, not able to lead to a decrease in leaf water status, which suggested that the stomatal regulation was neither mediated by ABA nor by a hydraulic signal. Heat shock could lead to an increase in xylem sap H2O2 content, and moreover, the removal of H2O2 by catalase could partially recover the stomatal inhibition by xylem sap collected from heat-shocked plants, suggesting that H2O2 might be able to act as one of the root signals to control the stomatal movement. Due to the fact that heat-shock and drought are usually two concomitant stresses, the stomatal regulation by heat-shock signal should be of significance for plant response to stresses. The observation for the

  15. Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status.

    Science.gov (United States)

    Kamwanja, L A; Chase, C C; Gutierrez, J A; Guerriero, V; Olson, T A; Hammond, A C; Hansen, P J

    1994-02-01

    We tested whether resistance of lymphocytes to heat stress is modified by breed, intracellular glutathione content, and extracellular antioxidants. In the first experiment, lymphocytes from Angus (Bos taurus, non-heat-tolerant), Brahman (B. indicus, heat-tolerant), and Senepol (B. taurus, heat-tolerant) heifers (12 heifers per breed) were cultured at 45 degrees C for 3 h to evaluate thermal killing, at 42 degrees C for 12 h in a 60-h phytohemagglutinin-induced proliferation test, and at 42 degrees C for 1 h to measure induction of heat shock protein 70 (HSP70). Killing at 45 degrees C was affected by breed x temperature (P Brahman or Senepol. For phytohemagglutinin-stimulated lymphocytes, heating to 42 degrees C reduced [3H]thymidine incorporation equally for all breeds. Viability at the end of culture was affected (P < .001) by a breed x temperature interaction because the decrease in viability caused by culture at 42 degrees C was greatest for lymphocytes from Angus heifers. Heat shock for 1 h at 42 degrees C caused a two- to threefold increase in intracellular concentrations of HSP70, but there was no interaction of temperature with breed. In another experiment (with lymphocytes harvested from three Holstein cows), buthionine sulfoximine, a glutathione synthesis inhibitor, inhibited (P < .01) proliferation of phytohemagglutinin-stimulated lymphocytes at 38.5 and 42 degrees C. Addition of the antioxidants glutathione or thioredoxin to culture did not reduce the effects of heating to 42 degrees C on proliferation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8157528

  16. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jian-da; LUO Cheng-qun; XIE Hui-qing; NIE Xin-min; ZHAO Yan-zhong; WANG Shao-hua; XU Yi; Pashupati Babu Pokharel; XU Dan

    2008-01-01

    Background Chronic dermal ulcers are also referred to as refractory ulcers, This study was conducted to elucidate the therapeutic effect of laser on chronic dermal ulcers and the induced expression of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70) in wound tissues.Methods Sixty patients with 84 chronic dermal ulcers were randomly divided into traditional therapy and laser therapy groups. Laser treatment was performed in addition to traditional therapy in the laser therapy group. The treatment efficacy was evaluated after three weeks. Five tissue sections of healing wounds were randomly collected along with five normal skin sections as controls. HSP70-positive cells from HSP70 immunohistochemical staining were counted and the gray scale of positive cells was measured for statistical analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the mRNA and protein expressions of HSF1 and HSP70.Results The cure rate of the wounds and the total efficacy in the laser therapy group were significantly higher than those in the traditional therapy group (P<0.05, P<0.01, respectively). Immunohistochemical staining revealed that the HSP70-positive cell count was significantly higher in laser therapy group than those in the traditional therapy group and controls (P<0.01), and the gray scale of the cell signal was obviously lower than traditional therapy group and controls (P <0.05). By contrast, the traditional therapy group and the control group were not significantly different. The RNA levels of HSF1 and HSP70 were higher in the laser therapy group by RT-PCR, but very low in normal skin and the traditional therapy group. The analysis on the gray scale of the Western blot bands indicated that the expression of HSF1 and HSP70 in the laser therapy group was significantly higher than in the traditional therapy group and the control group (P <0.01), and the expression in the traditional therapy group was also

  17. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation

    OpenAIRE

    Yuan B; Webster TJ; Roy AK

    2016-01-01

    Bo Yuan, Thomas J Webster, Amit K Roy Chemical Engineering Department, College of Engineering, Northeastern University, Boston, MA, USA Abstract: It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells) are commonly altered during...

  18. Myeloma cell line–derived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma

    OpenAIRE

    Qian, Jianfei; Hong, Sungyoul; Wang, Siqing; Zhang, Liang; Sun, Luhong; Wang, Michael; Yang, Jing; Kwak, Larry W.; Hou, Jian; Yi, Qing

    2009-01-01

    Tumor cell–derived heat shock proteins are used as vaccines for immunotherapy of cancer patients. However, current approaches require the generation of custom-made products and are clinically ineffective. To improve the applicability of heat shock protein–based immunotherapy in cancers and to enhance clinical efficacy, we explored combinational treatments in a myeloma setting using pooled heterogeneous or allogeneic myeloma cell line–derived glycoprotein 96 (gp96) as universal vaccines, and c...

  19. Emphasizing on heat shock protein 90′s utility in head and neck squamous cell carcinoma treatment

    OpenAIRE

    Samapika Routray; Aparajita Sunkavalli; Niharika Swain; Shankar, Akhil A

    2013-01-01

    Heat shock protein 90 (Hsp90) a member of the heat shock proteins (HSPs) family, is an adenosine triphosphate dependent molecular chaperone protein, which integrates multiple oncogenic pathways. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma using the first generation Hsp90 inhibitors. Hsp90 as the target of anticancer activity of geldanamycin sparked much inter...

  20. Identification of mono- or poly-specific monoclonal antibody to Porphyromonas gingivalis heat-shock protein 60

    OpenAIRE

    Choi, Jeomil; Lee, Sang-Yull; KIM, Koanhoi; Choi, Bong-Kyu; Kim, Myung-Jin

    2011-01-01

    Purpose The aim of this study was to define the immunoreactive specificity of Porphyromonas gingivalis (P. gingivalis) heat shock protein (HSP) 60 in periodontitis and atherosclerosis. Methods In an attempt to define the cross-reactive bacterial heat-shock protein with human self-antigen at molecular level, we have introduced a novel strategy for cloning hybridoma producing anti-P. gingivalis HSP 60 which is polyreactive to bacterial HSPs or to the human homolog. Results Five cross-reactive c...

  1. Heat shock protein expression as guidance for the therapeutic window of retinal laser therapy

    Science.gov (United States)

    Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seungjun; Tan, Gavin; Lee, Daeyoung; Lavinksy, Daniel; Palanker, Daniel

    2016-03-01

    Unlike conventional photocoagulation, non-damaging retinal laser therapy (NRT) limits laser-induced heating to stay below the retinal damage threshold and therefore requires careful dosimetry. Without the adverse effects associated with photocoagulation, NRT can be applied to critical areas of the retina and repeatedly to manage chronic disorders. Although the clinical benefits of NRT have been demonstrated, the mechanism of therapeutic effect and width of the therapeutic window below damage threshold are not well understood. Here, we measure activation of heat shock response via laser-induced hyperthermia as one indication of cellular response. A 577 nm laser is used with the Endpoint Management (EpM) user interface, a titration algorithm, to set experimental pulse energies relative to a barely visible titration lesion. Live/dead staining and histology show that the retinal damage threshold in rabbits is at 40% of titration energy on EpM scale. Heat shock protein 70 (HSP70) expression in the retinal pigment epithelium (RPE) was detected by whole-mount immunohistochemistry after different levels of laser treatment. We show HSP70 expression in the RPE beginning at 25% of titration energy indicating that there is a window for NRT between 25% and 40% with activation of the heat shock protein expression in response to hyperthermia. HSP70 expression is also seen at the perimeter of damaging lesions, as expected based on a computational model of laser heating. Expression area for each pulse energy setting varied between laser spots due to pigmentation changes, indicating the relatively narrow window of non-damaging activation and highlighting the importance of proper titration.

  2. Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants.

    Directory of Open Access Journals (Sweden)

    Nicoletta Ferradini

    Full Text Available Heat shock proteins (HSPs are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock.

  3. Multilevel comparative analysis of the contributions of genome reduction and heat shock to the Escherichia coli transcriptome

    Directory of Open Access Journals (Sweden)

    Ying Bei-Wen

    2013-01-01

    Full Text Available Abstract Background Both large deletions in genome and heat shock stress would lead to alterations in the gene expression profile; however, whether there is any potential linkage between these disturbances to the transcriptome have not been discovered. Here, the relationship between the genomic and environmental contributions to the transcriptome was analyzed by comparing the transcriptomes of the bacterium Escherichia coli (strain MG1655 and its extensive genomic deletion derivative, MDS42 grown in regular and transient heat shock conditions. Results The transcriptome analysis showed the following: (i there was a reorganization of the transcriptome in accordance with preferred chromosomal periodicity upon genomic or heat shock perturbation; (ii there was a considerable overlap between the perturbed regulatory networks and the categories enriched for differentially expressed genes (DEGs following genome reduction and heat shock; (iii the genes sensitive to genome reduction tended to be located close to genomic scars, and some were also highly responsive to heat shock; and (iv the genomic and environmental contributions to the transcriptome displayed not only a positive correlation but also a negatively compensated relationship (i.e., antagonistic epistasis. Conclusion The contributions of genome reduction and heat shock to the Escherichia coli transcriptome were evaluated at multiple levels. The observations of overlapping perturbed networks, directional similarity in transcriptional changes, positive correlation and epistatic nature linked the two contributions and suggest somehow a crosstalk guiding transcriptional reorganization in response to both genetic and environmental disturbances in bacterium E. coli.

  4. Numerical Analysis of Standing Accretion Shock Instability with Neutrino Heating in Supernova Cores

    Science.gov (United States)

    Ohnishi, Naofumi; Kotake, Kei; Yamada, Shoichi

    2006-04-01

    We have numerically studied the instability of the spherically symmetric standing accretion shock wave against nonspherical perturbations. We have in mind the application to collapse-driven supernovae in the postbounce phase, where the prompt shock wave generated by core bounce is commonly stalled. We take an experimental standpoint in this paper. Using spherically symmetric, completely steady, shocked accretion flows as unperturbed states, we have clearly observed both the linear growth and the subsequent nonlinear saturation of the instability. In so doing, we have employed a realistic equation of state, together with heating and cooling via neutrino reactions with nucleons. We have performed a mode analysis based on the spherical harmonics decomposition and found that the modes with l=1,2 are dominant not only in the linear regime but also after nonlinear couplings generate various modes and saturation occurs. By varying the neutrino luminosity, we have constructed unperturbed states both with and without a negative entropy gradient. We have found that in both cases the growth of the instability is similar, suggesting that convection does not play a dominant role, which also appears to be supported by the recent linear analysis of the convection in accretion flows by Foglizzo et al. The oscillation period of the unstable l=1 mode is found to fit better with the advection time rather than with the sound crossing time. Whatever the cause may be, the instability favors a shock revival.

  5. Ultrafast Measurement of the Optical Properties of Shocked Nickel and Laser Heated Gold

    Science.gov (United States)

    Funk, David J.; Moore, D. S.; Reho, J. H.; Gahagan, K. T.; McGrane, S. D.; Rabie, R. L.

    2002-07-01

    We have used high-resolution Frequency Domain Interferometry (FDI) to make the first ultrafast measurement of shock-induced changes in the optical properties of thin nickel (approx500 nm) targets. Data taken at several angles of incidence allowed the separation of optical effects from material motion, yielding an effective complex index for the shocked material. In contrast to our previous studies of aluminum, measurements with an 800 nm probe wavelength found a phase shift attributable to optical property changes with the same sign as that due to surface motion, during an 11.5 GPa shock breakout. A similar experiment was attempted with thin gold films (approx180 nm) using Ultrafast Spatial Interferometry (USI). However, since the electron-phonon coupling in gold is extremely weak, a shock is observed as it "forms". Ballistic electrons and electron-electron equilibrium cause fast heating of the electrons in the entire thickness of the thin film, followed by lattice excitation through electron-phonon coupling, eventually leading to melt and frustrated thermal expansion yielding the observed surface motion. We suggest that these experiments offer a new path for observation of phase changes or for temperature measurements, by allowing a determination of the complex index under dynamic loading conditions and comparing the measured values to those obtained under static conditions.

  6. Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2014-06-01

    Full Text Available During heat shock and other proteotoxic stresses, cells regulate multiple steps in gene expression in order to globally repress protein synthesis and selectively upregulate stress response proteins. Splicing of several mRNAs is known to be inhibited during heat stress, often meditated by SRp38, but the extent and specificity of this effect have remained unclear. Here, we examined splicing regulation genome-wide during heat shock in mouse fibroblasts. We observed widespread retention of introns in transcripts from ∼1,700 genes, which were enriched for tRNA synthetase, nuclear pore, and spliceosome functions. Transcripts with retained introns were largely nuclear and untranslated. However, a group of 580+ genes biased for oxidation reduction and protein folding functions continued to be efficiently spliced. Interestingly, these unaffected transcripts are mostly cotranscriptionally spliced under both normal and stress conditions, whereas splicing-inhibited transcripts are mostly spliced posttranscriptionally. Altogether, our data demonstrate widespread repression of splicing in the mammalian heat stress response, disproportionately affecting posttranscriptionally spliced genes.

  7. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation.

    Science.gov (United States)

    Assimon, Victoria A; Southworth, Daniel R; Gestwicki, Jason E

    2015-12-01

    Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.

  8. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate this l...... conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life.......Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate this...... lifespan-prolonging effect late in life, we treated flies with mild heat stress (34 °C for 2 h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10–51 days after the last heat treatment. We found significant transcriptomic changes in the heat...

  9. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingkang Guo; Jian Wu; Qian Ji; Chao Wang; Lei Luo; Yi Yuan; Yonghua Wang; Jian Wang

    2008-01-01

    The heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in the protection against stress damage and many other impor tant biological processes. Study of the HSF gene family is important for understanding the mechanism by which plants respond to stress. The completed genome sequences of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) constitute a valuable resource for comparative genomic analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. The identification of phylogenetic relationships among HSF proteins in these species is a fundamental step to unravel the functionality of new and yet uncharacterized genes belonging to this family.In this study, the full complement of HSF genes in rice and Arabidopsis has probably been identified through the genome-wide scan. Phylogenetic analyses resulted in the identification of three major clusters of orthologous genes that contain members belonging to both species, which must have been represented in their common ancestor before the taxonomic splitting of the angiosperms. Further analysis of the phylogenetic tree reveals a possible dicot specific gene group. We also identified nine pairs of paralogs, as evidence for studies on the evolution history of rice HSF family and rice genome evolution. Expression data analysis indicates that HSF proteins are widely expressed in plants. These results provide a solid base for future functional genomic studies of the HSF gene family in rice and Arabidopsis.

  10. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae.

    Science.gov (United States)

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-06-01

    Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis₆ or PBP2xHis₆. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae. PMID:21422206

  11. Genome-Wide Analysis and Molecular Characterization of Heat Shock Transcription Factor Family in Glycine max

    Institute of Scientific and Technical Information of China (English)

    Eunsook Chung; Kyoung-Mi Kim; Jai-Heon Lee

    2013-01-01

    Heat shock transcription factors (Hsfs) play an essential role on the increased tolerance against heat stress by regulating the expression of heat-responsive genes.In this study,a genome-wide analysis was performed to identify all of the soybean (Glycine max) GmHsfgenes based on the latest soybean genome sequence.Chromosomal location,protein domain,motif organization,and phylogenetic relationships of 26 non-redundant GmHsf genes were analyzed compared with AtHsfs (Arabidopsis thaliana Hsfs).According to their structural features,the predicted members were divided into the previously defined classes A-C,as described for AtHsfs.Transcript levels and subcellular localization of five GmHsfs responsive to abiotic stresses were analyzed by real-time RT-PCR.These results provide a fundamental clue for understanding the complexity of the soybean GmHsfgene family and cloning the functional genes in future studies.

  12. Electron Heating, Magnetic Field Amplification, and Cosmic Ray Precursor Length at Supernova Remnant Shocks

    CERN Document Server

    Laming, J Martin; Ghavamian, Parviz; Rakowski, Cara

    2014-01-01

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and may be quenched either by nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to $10^{17} - 10^{18}$ cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly ...

  13. HIFI observations of warm gas in DR21: Shock versus radiative heating

    CERN Document Server

    Ossenkopf, V; Simon, R; Schneider, N; Okada, Y; Stutzki, J; Gerin, M; Akyilmaz, M; Beintema, D; Benz, A O; Berne, O; Boulanger, F; Bumble, B; Coeur-Joly, O; Dedes, C; Diez-Gonzalez, M C; France, K; Fuente, A; Gallego, J D; Goicoechea, J R; Güsten, R; Harris, A; Higgins, R; Jackson, B; Jarchow, C; Joblin, C; Klein, T; Kramer, C; Lord, S; Martin, P; Martin-Pintado, J; Mookerjea, B; Neufeld, D A; Phillips, T; Rizzo, J R; van der Tak, F F S; Teyssier, D; Yorke, H

    2010-01-01

    The molecular gas in the DR21 massive star formation region is known to be affected by the strong UV field from the central star cluster and by a fast outflow creating a bright shock. The relative contribution of both heating mechanisms is the matter of a long debate. By better sampling the excitation ladder of various tracers we provide a quantitative distinction between the different heating mechanisms. HIFI observations of mid-J transitions of CO and HCO+ isotopes allow us to bridge the gap in excitation energies between observations from the ground, characterizing the cooler gas, and existing ISO LWS spectra, constraining the properties of the hot gas. Comparing the detailed line profiles allows to identify the physical structure of the different components. In spite of the known shock-excitation of H2 and the clearly visible strong outflow, we find that the emission of all lines up to > 2 THz can be explained by purely radiative heating of the material. However, the new Herschel/HIFI observations reveal ...

  14. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.

    Directory of Open Access Journals (Sweden)

    H Hans Salamanca

    Full Text Available Heat shock factor 1 (HSF1 is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.

  15. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    CERN Document Server

    Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco

    2016-01-01

    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...

  16. Progress in the participation of Ca2+-calmodulin in heat shock signal transduction

    Institute of Scientific and Technical Information of China (English)

    Rengang Zhou; Bing Li; Hongtao Liu; Daye Sun

    2009-01-01

    A novel heat shock (HS) signal transduction pathway in plants for the participation of Ca2+-calmodulin (CAM) in HS signal trans-duction was identified. HS induces a rapid increase in intracellular free calcium ion levels ([Ca2+]i), and the involvement of phospholipase C-inositol 1,4,5-trisphosphate is one of the factors leading to elevation in [Ca2+]i induced by HS. HS also increases the expression of the CaM gene and the accumulation of the CaM protein. The CaM isoform, AtCaM3, in Arabidopsis is a key member in the HS signal trans-duction pathway. AtCaM3 regulates the activity of CaM-binding protein kinase (AtCBK3) or protein phosphatase (AtPP7), promoting the activation of the HS transcription factor, AtHSFA1a, by phosphorylation/dephosphorylation and the expression of heat shock pro-tein genes, then improving heat tolerance in plants.

  17. A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains.

    Science.gov (United States)

    Lee, Changhan; Wigren, Edvard; Trček, Janja; Peters, Verena; Kim, Jihong; Hasni, Muhammad Sharif; Nimtz, Manfred; Lindqvist, Ylva; Park, Chankyu; Curth, Ute; Lünsdorf, Heinrich; Römling, Ute

    2015-11-01

    Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C-specific genomic island (PACGI-1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere-like 24-meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide-distributed clone C strains.

  18. Heat shock increases lifetime of a small RNA and induces its accumulation in cells.

    Science.gov (United States)

    Tatosyan, Karina A; Kramerov, Dmitri A

    2016-08-01

    4.5SH and 4.5SI RNA are two abundant small non-coding RNAs specific for several related rodent families including Muridae. These RNAs have a number of common characteristics such as the short length (about 100nt), transcription by RNA polymerase III, and origin from Short Interspersed Elements (SINEs). However, their stabilities in cells substantially differ: the half-life of 4.5SH RNA is about 20min, while that of 4.5SI RNA is 22h. Here we studied the influence of cell stress such as heat shock or viral infection on these two RNAs. We found that the level of 4.5SI RNA did not change in stressed cells; whereas heat shock increased the abundance of 4.5SH RNA 3.2-10.5 times in different cell lines; and viral infection, 5 times. Due to the significant difference in the turnover rates of these two RNAs, a similar activation of their transcription by heat shock increases the level of the short-lived 4.5SH RNA and has minor effect on the level of the long-lived 4.5SI RNA. In addition, the accumulation of 4.5SH RNA results not only from the induction of its transcription but also from a substantial retardation of its decay. To our knowledge, it is the first example of a short-lived non-coding RNA whose elongated lifetime contributes significantly to its accumulation in stressed cells.

  19. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  20. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  1. Dual-reporter in vivo imaging of transient and inducible heat-shock promoter activation.

    Science.gov (United States)

    Fortin, Pierre-Yves; Genevois, Coralie; Chapolard, Mathilde; Santalucía, Tomàs; Planas, Anna M; Couillaud, Franck

    2014-02-01

    Gene promoter activity can be studied in vivo by molecular imaging methods using reporter gene technology. Transcription of the reporter and the reported genes occurs simultaneously. However, imaging depends on reporter protein translation, stability, and cellular fate that may differ among the various proteins. A double transgenic mouse strain expressing the firefly luciferase (lucF) and fluorescent mPlum protein under the transcriptional control of the thermo-inducible heat-shock protein (Hspa1b) promoter was generated allowing to follow up the reporter proteins by different and complementary in vivo imaging technologies. These mice were used for in vivo imaging by bioluminescence and epi fluorescence reflectance imaging (BLI & FRI) and as a source of embryonic fibroblast (MEF) for in vitro approaches. LucF, mPlum and endogenous Hsp70 mRNAs were transcribed simultaneously. The increase in mRNA was transient, peaking at 3 h and then returning to the basal level about 6 h after the thermal stimulations. The bioluminescent signal was transient and initiated with a 3 h delay versus mRNA expression. The onset of mPlum fluorescence was more delayed, increasing slowly up to 30 h after heat-shock and remaining for several days. This mouse allows for both bioluminescence imaging (BLI) and fluorescence reflectance imaging (FRI) of Hsp70 promoter activation showing an early and transient lucF activity and a retrospective and persistent mPlum fluorescence. This transgenic mouse will allow following the transient local induction of Hsp-70 promoter beyond its induction time-frame and relate into subsequent dynamic biological effects of the heat-shock response. PMID:24575340

  2. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    Science.gov (United States)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  3. The importance of seed mass for the tolerance to heat shocks of savanna and forest tree species

    NARCIS (Netherlands)

    Ribeiro, L.C.; Barbosa, E.R.M.; Langevelde, van F.; Borghetti, F.

    2015-01-01

    Questions: Does seed mass influence the tolerance of seeds to the effects of heating in fires? Is the tolerance to heat shocks during fire events dependent mostly on seed mass itself or to other traits linked to the species ecological origin, e.g. non-fire-prone (forest) and fire-prone (savanna) env

  4. Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones

    OpenAIRE

    Sirotkin, Alexander V; Bauer, Miroslav

    2010-01-01

    The present studies aimed to understand the interrelationships between stress, hormones and heat shock proteins (HSPs) in the ovary. We examined (1) whether HSP70.2, HSP72 and HSP105/110 can be produced and accumulated in porcine ovarian tissue, (2) whether these HSPs could be indicators of stress, i.e. whether two kinds of stress (high temperatures and malnutrition/serum deprivation) can affect them, and (3) whether some hormonal regulators of ovarian functions (insulin-like growth factor (I...

  5. Regulation of apoptotic signal transduction pathways by the heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    LI; Zhengyu; ZHAO; Xia; WEI; Yuquan

    2004-01-01

    The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the biological behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.

  6. Heat transfer analysis for the roller shell under the condition of periodic thermal shock

    Institute of Scientific and Technical Information of China (English)

    Lihua Zhan; Xiaoqian Li

    2003-01-01

    According to the actual working conditions of roller shell in the process of continuous roll casting, the Fourier heat transfer law is used to conduct the simulating analysis for the temperature distribution of the roller shell under the condition of periodic thermal shock. The temperature variation law inside the roller shell is studied during the process of continuous roll casting, and the steady temperature distributions of the roller shell at different casting velocities have been obtained when the thermal contact conductance between the roller shell and the casting strip is considered.

  7. Heat shock and other apoptosis-related proteins as therapeutic targets in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Costantine Albany; Noah M Hahn

    2014-01-01

    Defects within apoptotic pathways have been implicated in prostate cancer (PCa) tumorigenesis, metastatic progression and treatment resistance. A hallmark of cancers is the ability to derail apoptosis by inhibiting the apoptotic signal, reducing the expression of apoptotic proteins and/or amplifying survival signals through increased production of antiapoptotic molecule. This review describes associations between heat shock proteins (HSPs) and the human androgen receptor (AR), the role of HSPs and other stress-induced proteins in PCa development and emerging strategies in targeting these protective proteins to treat PCa.

  8. Sickle Cell Vaso-occlusive Crisis Induces the Release of Circulating Serum Heat Shock Protein-70

    OpenAIRE

    Adewoye, Adeboye H; Klings, Elizabeth S.; Farber, Harrison W.; Palaima, Elizabeth; Bausero, Maria A.; McMahon, Lillian; Odhiambo, Adam; Surinder, Safaya; Yoder, Mark; Martin H Steinberg; Asea, Alexzander

    2005-01-01

    Inflammation may play an important role in the pathophysiology of sickle cell disease (SCD), and recent studies have identified the 70-kDa heat shock protein (Hsp70) as an important mediator of inflammatory responses. Here we demonstrate a significant increase in circulating serum Hsp70 level in SCD during vaso-occlusive crisis (VOC) as compared with baseline steady-state levels (P < 0.05) and a significant increase in Hsp70 levels in SCD at baseline compared with normal controls (P < 0.05). ...

  9. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress

    Directory of Open Access Journals (Sweden)

    Lane William S

    2005-03-01

    Full Text Available Abstract Background Heat shock factor (HSF/HSF1 not only is the transcription factor primarily responsible for the transcriptional response of cells to physical and chemical stress but also coregulates other important signaling pathways. The factor mediates the stress-induced expression of heat shock or stress proteins (HSPs. HSF/HSF1 is inactive in unstressed cells and is activated during stress. Activation is accompanied by hyperphosphorylation of the factor. The regulatory importance of this phosphorylation has remained incompletely understood. Several previous studies on human HSF1 were concerned with phosphorylation on Ser303, Ser307 and Ser363, which phosphorylation appears to be related to factor deactivation subsequent to stress, and one study reported stress-induced phosphorylation of Ser230 contributing to factor activation. However, no previous study attempted to fully describe the phosphorylation status of an HSF/HSF1 in stressed cells and to systematically identify phosphoresidues involved in factor activation. The present study reports such an analysis for human HSF1 in heat-stressed cells. Results An alanine scan of all Ser, Thr and Tyr residues of human HSF1 was carried out using a validated transactivation assay, and residues phosphorylated in HSF1 were identified by mass spectrometry and sequencing. HSF1 activated by heat treatment was phosphorylated on Ser121, Ser230, Ser292, Ser303, Ser307, Ser314, Ser319, Ser326, Ser344, Ser363, Ser419, and Ser444. Phosphorylation of Ser326 but none of the other Ser residues was found to contribute significantly to activation of the factor by heat stress. Phosphorylation on Ser326 increased rapidly during heat stress as shown by experiments using a pSer326 phosphopeptide antibody. Heat stress-induced DNA binding and nuclear translocation of a S326A substitution mutant was not impaired in HSF1-negative cells, but the mutant stimulated HSP70 expression several times less well than wild type

  10. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2012-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  11. Heat shock protein in skeletal muscle cells%骨骼肌细胞与热休克蛋白

    Institute of Scientific and Technical Information of China (English)

    张晓峰; 王青涛; 李风晴

    2011-01-01

    BACKGROUND: There are many kinds of heat shock proteins in skeletal muscle, and they have important physiologic functions.OBJECTIVE: To review the features of heat shock proteins, and to discuss the significance of heat shock proteins under both physiological and physiologic conditions.METHODS: Databases of PubMed and CNKI were searched by computer using key words of "heat shock proteins, skeletal muscles, exercise, ischemia-reperfusion" both in English and Chinese. Literatures addressing heat shock proteins in skeletal muscles cells were included, and the repetitive researches were excluded.RESULTS AND CONCLUSION: A total of 197 documents were retrieved, and 35 articles were retained after depleting unrelated and repetitive ones. To date, skeletal muscles contain a variety of heat shock proteins, mainly comprise small heat shock protein,heat shock protein 70, heat shock protein 60 and heat shock protein 90. Heat shock proteins play an important role in reflecting intra-cellular changes during sports and monitoring over training. In addition, heat shock proteins are important in maintaining muscle function after over training or muscle injury.%背景:骨骼肌含有多种热休克蛋白,可能具有重要的生理功能.目的:综述骨骼肌热休克蛋白的特性,以及骨骼肌热休克蛋白在生理及病理情况下表达的意义.方法:以"热休克蛋白,骨骼肌,运动,缺血再灌注"为中文检索词,以"heat shock proteins,skeletal muscle,exercise,ischemia-reperfusion"为英文检索词,应用计算机检索Pubmed数据库和中文期刊全文数据库2010-06前发表的相关文章.纳入与骨骼肌细胞热休克蛋白研究相关的文献,排除重复性研究.结果与结论:共检索到197篇文献,排除无关重复的文献,保留35篇文献进行综述.目前研究证实骨骼肌含有多种热休克蛋白,主要有小热休克蛋白,热休克蛋白70,热休克蛋白60和热休克蛋白90等.热休克蛋白作为应激的指标,可以反

  12. Differential Expression of Heat Shock Transcription Factors and Heat Shock Proteins after Acute and Chronic Heat Stress in Laying Chickens (Gallus gallus)

    OpenAIRE

    Jingjing Xie; Li Tang; Lin Lu; Liyang Zhang; Lin Xi; Hsiao-Ching Liu; Jack Odle; Xugang Luo

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (P

  13. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8

    Science.gov (United States)

    Wieting, Allan R.; Holden, Michael S.

    1987-01-01

    This paper presents the details of an experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet. The study was conducted at Mach numbers of 6.3, 6.5 and 8.0. This study has provided the first (1) detailed pressure and heat transfer rate distributions for a two-dimensional shock wave interference on a cylinder and (2) insight into the effects of temperature dependent specific heats on the phenomena. The peak pressure and heat transfer rates were 10 times the undisturbed flow stagnation point levels. The peak levels and their gradients increased with Mach number. Variation in specific heats and hence the ratio of specific heats with temperature manifest in slightly lower loads and amplification factors than for corresponding perfect gas conditions.

  14. Isolation of a cDNA for HSF 2: Evidence for two heat shock factor genes in humans

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, T.J.; Gallo, G.J.; Sheldon, L.; Kingston, R.E. (Massachusetts General Hospital, Boston (United States) Harvard Medical School, Boston, MA (United States)); Tempst, P. (Harvard Medical School, Boston, MA (United States))

    1991-08-15

    The heat shock response is transcriptionally regulated by an evolutionarily conserved protein termed heat shock factor (HSF). The authors report the purification to homogeneity and the partial peptide sequence of HSF from HeLa cells. The peptide sequence was used to isolate a human cDNA with a predicted open reading frame that has homology to the DNA binding domains of both Saccharomyces cerevisiae and Drosophila HSFs. The cDNA directs the synthesis of a protein that binds to the heat shock element with specificity identical to HeLa HSF and stimulates transcription from a heat shock promoter. The expressed protein cross-reacts with anti-HSF antibodies. Surprisingly, however, this cDNA does not encode all of the peptides obtained from purified HeLa HSF. These peptides are encoded by a distinct human cDNA. HSF1. It therefore appears that there is a human heat shock factor gene family and that at least two separate but related HSF proteins regulate the stress response in humans.

  15. Effect of heat shock on the chilling sensitivity of trichomes and petioles of African violet (Saintpaulia ionantha).

    Science.gov (United States)

    Saltveit, Mikal E.; Hepler, Peter K.

    2004-05-01

    Chilling at 6 degrees C caused an immediate cessation of protoplasmic streaming in trichomes from African violets (Saintpaulia ionantha), and a slower aggregation of chloroplasts in the cells. Streaming slowly recovered upon warming to 20 degrees C, reaching fairly stable rates after 4, 15, 25 and 35 min for tissue chilled for 2 min and for 2, 14 and 24 h, respectively. The rate of ion leakage from excised petioles into an isotonic 0.2 M mannitol solution increased after 12 h of chilling and reached a maximum after 3 days of chilling. A heat shock at 45 degrees C for 6 min reduced chilling-induced rates of ion leakage from excised 1-cm petiole segments by over 50%, namely to levels near that from non-chilled control tissue. Heat-shock treatments themselves had no effect on the rate of ion leakage from non-chilled petiole segments. Protoplasmic streaming was stopped by 1 min of heat shock at 45 degrees C, but slowly recovered to normal levels after about 30 min Chloroplasts aggregation was prevented by a 1 or 2 min 45 degrees C heat-shock treatment administered 1.5 h before chilling, but heat-shock treatments up to 6 min only slightly delayed the reduction in protoplasmic streaming caused by chilling. Tradescantia virginiana did not exhibit symptoms associated with chilling injury in sensitive species (i.e. cessation of protoplasmic streaming in stamen hairs and increased ion leakage from leaf tissue). PMID:15086815

  16. Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos.

    Science.gov (United States)

    Puigderrajols, Pere; Jofré, Anna; Mir, Gisela; Pla, Maria; Verdaguer, Dolors; Huguet, Gemma; Molinas, Marisa

    2002-06-01

    The timing and tissue localization of small heat shock proteins (sHSPs) during cork oak somatic embryo development was investigated under normal growing culture conditions and in response to stress. Western blot analyses using polyclonal antibodies raised against cork oak recombinant HSP17 showed a transient accumulation of class I sHSPs during somatic embryo maturation and germination. Moreover, the amount of protein increased at all stages of embryo development in response to exogenous stress. The developmentally accumulated proteins localized to early differentiating, but not the highly dividing, regions of the root and shoot apical meristems. By contrast, these highly dividing regions were strongly immunostained after heat stress. Findings support the hypothesis of a distinct control for developmentally and stress-induced accumulation of class I sHSPs. The possible role of sHSPs is discussed in relation to their tissue specific localization.

  17. Thermal shocks in solar boiler tubes and mechanical tolerance to heating velocity

    International Nuclear Information System (INIS)

    The boiler circular cross-section tubes are cooled by an internal flow and are subjected to a non uniform heat flux around their outer circumference that changes very rapidly with time. Thus thermal shocks can develop in the thickness of tube walls and may cause brittle fracture or fatigue damage. We solve the corresponding thermoelastic problem. The determination of temperature distribution through the wall thickness requires the solution of one-dimensional transient heat equation obtained by performing a Fourier expansion in the angular variable. For each harmonic, Galerkin's method with respect to the radial coordinate together with a finite difference scheme with respect to time permit to completely discretize the associated equation. (orig.)

  18. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  19. Disruption of heat shock factor 1 reduces the formation of conidia and thermotolerance in the mycoparasitic fungus Coniothyrium minitans.

    Science.gov (United States)

    Hamid, M Imran; Zeng, Fanyun; Cheng, Jiasen; Jiang, Daohong; Fu, Yanping

    2013-04-01

    Coniothyrium minitans is a bio-control agent of Sclerotinia spp., and has the ability to produce abundant conidia to infect the host fungi. Mediation of heat shock factors (HSFs) is required to adapt to the acute temperatures, and to regulate the expression of heat shock proteins (HSPs) to function as molecular chaperones to assist in development, protein folding and stability. A heat shock factor 1 (HSF1) gene was identified from a T-DNA insertion mutant that lost the ability to form conidia in liquid culture as well as on solid media. Null mutants lacking CmHSF1 were constructed by gene disruption strategy. Mutants lacking CmHSF1 had reduced in conidial production and displayed decreased tolerance to heat and other abiotic stresses as compared to the wild type parent. Over-expression strains could recover faster from heat and abiotic stresses such as, ethanol, oxidative or osmotic stresses with or without heat shock. In over-expression strains, conidial germination was increased, and parasitic ability on sclerotia of Sclerotinia sclerotiorum was enhanced by 0.42-5.92% compared to the wild type strain. Increased expression levels in wild strain ZS-1 were observed when the fungus was grown at 37°C or 45°C with other abiotic stresses. CmHSF1 plays an important role in conidial production, conidial germination, and tolerance against heat and other abiotic stresses. PMID:23357354

  20. Nonequilibrium radiation and dissociation of CO molecules in shock-heated flows

    Science.gov (United States)

    Macdonald, R. L.; Munafò, A.; Johnston, C. O.; Panesi, M.

    2016-08-01

    This work addresses the study of the behavior of the excited electronic states of CO molecules in the nonequilibrium relaxation zone behind a normal shock for a CO2-N2 mixture representative of the Mars atmosphere. The hybrid state-to-state (StS) model developed accounts for thermal nonequilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The electronic states of CO molecules are treated as separate species, allowing for non-Boltzmann distributions of their populations. The StS model is coupled with a nonequilibrium radiation solver, hpc-rad, allowing for the calculation of the radiation signature from the molecular and atomic species in the gas. This study focuses on the radiation from the fourth positive system of CO, which dominates the radiation heating on the forebody for higher speed Mars entry applications. In the rapidly dissociating regime behind strong shock waves, the population of the ground electronic state of CO [ CO(X 1Σ )], departs from Maxwell-Boltzmann distributions, owing to the efficient collisional excitation to the electronically excited CO(A 1Π ) state. In general the assumption of the equilibrium between electronic and vibration fails when the excitation of electronic states is driven by heavy particles. The comparison of the radiation heating predictions obtained using the conventional quasi-steady-state (QSS) approach and the physics-based StS approach revealed differences in radiative heating predictions of up to 50%. These results demonstrate that the choice of nonequilibrium model can have a significant impact on radiative heating simulations, and more importantly, they cast serious doubts on the validity of the QSS assumption for the condition of interest to this work.

  1. Selective killing of cancer cells by small molecules targeting heat shock stress response.

    Science.gov (United States)

    Zhang, Daniel; Zhang, Bin

    2016-09-30

    HSF1 heat shock response has emerged as a valuable non-oncogenetic intervention point in targeted cancer therapy. Current reporter based high throughput screening has led to the discovery of several compounds or chemotypes that are effective in the growth inhibition of multiple cancer cell lines and relevant animal tumor models. However, some intrinsic limitations of reporter based assays can potentially lead to biased results. Using a previously validated high content image based assay, we performed a phenotypic screen targeting HSF1 heat shock pathway with a chemically diversified library of over 100,000 compounds. Several novel functional inhibitors of HSF1 pathway were identified with different chemotypes. Western blot analysis confirmed that selective compounds inhibit phosphorylation of HSF1, followed by reduced expression of HSP proteins. Moreover, HeLa cells stably transfected with HSF1 shRNA were more resistant to the compound treatment under lethal temperature than cells containing HSF1, validating HSF1 dependent mechanism of action. These compounds demonstrate nanomolar potency toward multiple cancer cell lines with relatively low cytotoxicity to normal cells. Further SAR and target identification study will pave the way for the potential development of next generation anticancer drugs. PMID:27553278

  2. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential.

    Science.gov (United States)

    Wang, Cun; Zhang, Yurong; Guo, Kun; Wang, Ning; Jin, Haojie; Liu, Yinkun; Qin, Wenxin

    2016-04-15

    Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC. PMID:26853533

  3. Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model

    Institute of Scientific and Technical Information of China (English)

    Jinnan Zhang; Wei Lu; Qiang Lei; Xi Tao; Hong You; Pinghui Xie

    2013-01-01

    Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi-crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue fol owing ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneal y injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smal er infarct area and a significantly lower number of apoptotic cel s were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression.

  4. Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Michael Oglesbee

    2012-09-01

    Full Text Available Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70. However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4. This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern, and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.

  5. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  6. Heat shock protein 70 of Naegleria fowleri is important factor for proliferation and in vitro cytotoxicity.

    Science.gov (United States)

    Song, Kyoung-Ju; Song, Kyung-Hui; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Yang-Jin; Park, Chang-Eun; Shin, Ho-Joon

    2008-07-01

    To evaluate the role of heat shock 70 protein (HSP70) in free-living amoeba, a constitutive and inducible heat shock 70 gene of pathogenic Naegleria fowleri has previously been cloned, characterized, and named as Nf-cHSP70. The Nf-cHSP70 is localized in the cytoplasm, pseudopodia, and phagocytic food-cups. To investigate the role of Nf-cHSP70 in the pathogenicity of N. fowleri, the synthesis of N. fowleri HSP70 was first inhibited with benzylidene lactam compound (KNK437), and Nf-cHSP70 gene was knock-downed with antisense oligomers, which were designed with a start region-specific antisense oligonucleotides (24 oligomers) and modified with phosphorothioate. KNK437 inhibited the induction of N. fowleri HSP70 in a dose-dependent manner. In addition, 300 muM KNK437 reduced the proliferation of N. fowleri to 79.4% of untreated control (100%). Nf-cHSP70 knock-downed N. fowleri with antisense oligomers showed 68.5% reduction of proliferation in comparison with untreated control (100%). The cytotoxicity of N. fowleri against CHO target cells was reduced to 42.1% by KNK437 and 68.6% by antisense oligomers. These results suggest that the cloned Nf-cHSP70 plays an important role in the proliferation and cytotoxicity of pathogenic N. fowleri.

  7. Response of S. boulardii cells to {sup 60} Co irradiation and heat shock

    Energy Technology Data Exchange (ETDEWEB)

    Neves, M.J.; Andrade, A.S.R.; Santos, R.G. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. Microbiologia

    1997-12-31

    Full text. Preparation of Saccharomyces boulardii, a non pathogenic yeast, has been widely used in Europe and other countries to prevent gastrointestinal disorders. However the mechanism of action of theses cells on the illness is unknown but the efficacy of S. boulardii depends on its viability. As trehalose is a well known viability protectant in yeast cells against several adverse conditions, we determined its level. We measured the level of trehalose in cells submitted to heat shock, gamma irradiation and simulation of gastric environmental, all these conditions are commonly found during the bio therapeutic production and in the patients oral treatment. Trehalose levels were higher in yeast cells surviving to gamma irradiation ({sup 60} Cobalt) than in control cells. S. boulardii cells growth in log phase and submitted to the heat shock (40 deg C). Accumulated more trehalose than S. cerevisiae and unlikely to these cells, the pool of trehalose accumulated in S. boulardii was mobilized very slowly (70% of the trehalose pool was present 5 hours after the return to the normal temperature 30 deg C). Our results suggested a rather different trehalose metabolism in S. boulardii when compared with S. cerevisiae and showed that one of the response to the stress of irradiation was an increasing on the level of intracellular trehalose

  8. Axial shock wave heating of reversed-field theta-pinch plasmas

    International Nuclear Information System (INIS)

    Reversed-field theta pinches are known to contract rapidly in the axial direction soon after the radial implosion. Under certain conditions the axial implosion can be quite strong. A model is described which simulates both the radial and axial implosions. Among the important features included are realistic plasma density profiles, and current-driven anomalous transport. Given input parameters such as initial fill pressure, bias magnetic field, coil size, applied voltage (or electric field) and compression magnetic field, the model predicts the final plasma temperature, density, radial and axial dimensions, trapped magnetic flux and fraction of particles trapped within the separatrix. The results indicate very strong axial shock heating for high bias field, which leads to temperatures up to several times that predicted for simple field-free plasmas. The model is applied to parameters charcteristic of two recent experiments, and several features of the calculated results are shown to be consistent with experimental observations. It is also applied to a fusion reactor scale plasma: as a result of strong axial shock heating, the model predicts that fusion ignition (e.g., a temperature of 8 keV) can be achieved without resort to large electric field or large magnetic compression

  9. Loading-Induced Heat-Shock Response in Bovine Intervertebral Disc Organ Culture.

    Science.gov (United States)

    Chooi, Wai Hon; Chan, Samantha Chun Wai; Gantenbein, Benjamin; Chan, Barbara Pui

    2016-01-01

    Mechanical loading has been shown to affect cell viability and matrix maintenance in the intervertebral disc (IVD) but there is no investigation on how cells survive mechanical stress and whether the IVD cells perceive mechanical loading as stress and respond by expression of heat shock proteins. This study investigates the stress response in the IVD in response to compressive loading. Bovine caudal disc organ culture was used to study the effect of physiological range static loading and dynamic loading. Cell activity, gene expression and immunofluorescence staining were used to analyze the cell response. Cell activity and cytoskeleton of the cells did not change significantly after loading. In gene expression analysis, significant up-regulation of heat shock protein-70 (HSP70) was observed in nucleus pulposus after two hours of loading. However, the expression of the matrix remodeling genes did not change significantly after loading. Similarly, expressions of stress response and matrix remodeling genes changed with application and removal of the dynamic loading. The results suggest that stress response was induced by physiological range loading without significantly changing cell activity and upregulating matrix remodeling. This study provides direct evidence on loading induced stress response in IVD cells and contributes to our understanding in the mechanoregulation of intervertebral disc cells. PMID:27580124

  10. Size dependent classification of heat shock proteins: a mini-review

    Science.gov (United States)

    Jee, Hyunseok

    2016-01-01

    Molecular chaperones are ubiquitous and abundant within cellular environments, functioning as a defense mechanism against outer environment. The range of molecular chaperones varies from 10 to over 100 kDa. Depending on the size, the specific locations and physiological roles of molecular chaperones vary within the cell. Multifunctionality of heat shock proteins (HSPs) expressed via various cyto-stress including heat shock have been spotlighted as a reliable prognostic target biomarker for therapeutic purpose in neuromuscular disease or cancer related studies. HSP also plays a critical role in the maintenance of proteins and cellular homeostasis in exercise-induced adaptation. Such various functions of HSPs give scientists insights into intracellular protective mechanisms in the living body thus HSPs can be target molecules to know the defense mechanism in cellular environment. Based on experimental results regarding small to large scaled HSPs, this review aims to provide updated important information regarding the modality of responses of intracellular HSPs towards extracellular stimulations. Further, the expressive mechanisms of HSPs data from tremendous in vivo and in vitro studies underlying the enhancement of the functionality of living body will be discussed.

  11. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede;

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... for dnaK, dnaJ and groELS after transfer from 30°C to 43°C when MG1363 was grown in defined medium. The dnaK gene showed a 100-fold induction level 15 min after temperature shifting. Induction of the first two genes in the dnaK operon, orf1 and grpW, resembled the pattern observed for the above genes......, although maximum induction was observed earlier for orf1 and grpE. Novel transcript sizes were detected in heat-shocked cells. The induction kinetics observed for ftsH suggested a different regulation for this gene. Experimental evidence for a prenounced transcriptional regulation being involved...

  12. On the Origin of Bimodality in Galaxy Properties: Cold Flows vs. Shock Heating, Clustering and Feedback

    CERN Document Server

    Dekel, A; Dekel, Avishai; Birnboim, Yuval

    2004-01-01

    We address the origin of the robust bi-modality in galaxies about a critical stellar mass ~3x10^10 Msol. Less massive galaxies tend to be ungrouped blue star-forming discs correlated along a fundamental line. More massive galaxies are typically grouped red old-star spheroids on a fundamental plane hosting AGNs. M/L is at a minimum near the critical mass. Color-magnitude data show a gap between the red and blue sequences, extremely red luminous galaxies already at z~1, a truncation of today's blue sequence above L*, and massive starbursts at z~2-4. We propose that these features are driven by the thermal properties of the inflowing gas and their interplay with the clustering and feedback processes, all functions of the dark-matter halo mass associated with a similar scale. In haloes below a critical shock-heating mass Ms~6x10^11 Msol, discs are built by cold streams, not heated by a virial shock, yielding efficient early star formation (SFR). It is regulated by supernova and radiative feedbacks into a long seq...

  13. Expression of Heat Shock Protein 70 mRNA in Epithelial Cells of Human Lens

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective:To try to find out the pathogenesis of the cataract , effects of beat and oxidative stresson heat shock proteins of tissue cultured human lens epithelial cells (LEC-B3) were investigate& Methods:Cells were exposed to heat shock (45℃) and oxidative stress(5OmMH2O2 for 30 min, and then allowed to recoverat different intervals (Oh, 2h, 4h, 6h, 16h, 24h) in physiological medium Reverse transcription polymerasechain reaction (RT-PCR) were used to determined the level of HSP70. Results: HSPs existed in both physiologicaland stressful situation. The level of HSP7OmRNA increased 2h later after both stresses. The expression of HSP70got to the summit during 2h to 6h in each group. Subsequently it decreased gradually in each group, maintaininga high level at 16h. Conclusion: HSP70 exists in lens epithelial cells and can be induced after stress. Thedata suggested it may play an important protective role in lens epithelial cells in respond to cellular stress.

  14. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    Science.gov (United States)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  15. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    Science.gov (United States)

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  16. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    International Nuclear Information System (INIS)

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  17. Effects of heat transfer coefficient treatments on thermal shock fracture prediction for LWR fuel claddings in water quenching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho; Lee, Jeong Ik; Cheon, Hee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Accurate modeling of thermal shock induced stresses has become ever most important to emerging accident-tolerant ceramic cladding concepts, such as silicon carbide (SiC) and SiC coated zircaloy. Since fractures of ceramic (entirely ceramic or coated) occur by excessive tensile stresses with linear elasticity, modeling transient stress distribution in the material provides a direct indication of the structural integrity. Indeed, even for the current zircaloy cladding material, the oxide layer formed on the surface - where cracks starts to develop upon water quenching - essentially behaves as a brittle ceramic. Hence, enhanced understanding of thermal shock fracture of a brittle material would fundamentally contribute to safety of nuclear reactors for both the current fuel design and that of the coming future. Understanding thermal shock fracture of a brittle material requires heat transfer rate between the solid and the fluid for transient temperature fields of the solid, and structural response of the solid under the obtained transient temperature fields. In water quenching, a solid experiences dynamic time-varying heat transfer rates with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates during the water quenching transience has been overlooked in assessments of mechanisms, predictability, and uncertainties for thermal shock fracture. Rather, a time-constant heat transfer coefficient, named 'effective heat transfer coefficient' has become a conventional input to thermal shock fracture analysis. No single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic heat transfer coefficient changes with fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials and complete the picture of stress evolution in the quenched solid. The presented result

  18. Effects of Crack on Heat Flux in Hypersonic Shock/Boundary-Layer Interaction

    Science.gov (United States)

    Ozawa, Hiroshi; Hanai, Katsuhisa; Kitamura, Keiichi; Mori, Koichi; Nakamura, Yoshiaki

    A small crack on body surface led to a tragic accident in 2003, which is the Columbia accident. During the shuttle's re-entry, high temperature gas penetrated crack on leading-edge of the left wing and melted the aluminum structure, finally the Columbia blew up. Since early times, there are many fundamental studies about simple cavity-flow formed on body surface in hypersonic speeds. However, an investigation of Shock/Boundary-Layer Interaction (SBLI) on crack has not been researched. For multistage space transportation vehicle such as TSTO, SBLI is an inevitable problem, and then SBLI on crack becomes a critical issue for TSTO development. In this study, the effects of crack, where SBLI occurs, were investigated for TSTO hypersonic speed (M∞ = 8.1). A square crack locates at SBLI point on the TSTO booster. Results show that a crack and its depth strongly effect on peak heat flux and aerodynamic interaction flow-field. In the cases of shallow crack (d/C ≤ 0.10), there exist two high heat flux regions on crack floor, which locates at a flow reattachment region and a back end wall of crack. In this case, a peak heat flux at flow reattachment region becomes about 2 times as large as the stagnation point heat flux, which value becomes larger compared with a peak heat flux in the case of No-Crack TSTO. While in the case of deep crack (d/C = 0.20), overall heat flux on crack floor decreases to below the stagnation point heat flux. These results provide useful data for a development of TSTO thermal protection system (TPS) such as thermal protection tile.

  19. Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvraa, Steen; Bross, Peter;

    2006-01-01

    Age-dependent changes in heat shock response (HSR) were studied in mononuclear cells (monocytes and lymphocytes) collected from young (mean age = 22.6 +/- 1.7 years) and middle-aged (mean age = 56.3 +/- 4.7 years) subjects after 1 hour of heat shock at 42 degrees C. Genotype-specific HSR was...... measured by genotyping the subjects for 3 single nucleotide polymorphisms, HSPA1A(A-110C), HSPA1B(A1267G), and HSPA1L(T2437C), 1 each in the 3 HSP70 genes. A significant age-related decrease in the induction of Hsp70 occurred after heat shock in both monocytes and lymphocytes. The noninducible and...

  20. Inhibition of HSP70 Gene Expression by Modified Antisense and Its Effects on Embryonic Sensitivity to Heat Shock

    Institute of Scientific and Technical Information of China (English)

    TIAN Wen-ru; DU Li-yin; HE Jian-bin; LI Shou-jun

    2004-01-01

    Experiments were performed to evaluate the efficiency of inhibition of HSP70 gene expression by antisense oligonucleotides complementary to the mRNA of HSP70 and to test the effects of inhibition of HSP70 gene expression on subsequent embryonic sensitivity to heat shock. The results showed that transfection of pre-implantation embryos at 4-cell stage with 5 μM antisense oligo had no effect on in vitro blastocyst development. However, transfection with 10 to 40 μM antisense oligo had reduced in vitro blastocyst development to 15, 10% and 0; For the embryos which exposed to 40 μM As arrested at the 16-cell stage, there was no blastocyst formation within the heat shock groups. In contrast, transfection had no effect on embryonic sensitivity to heat shock, above 25% of embryos developed to blastocyst stage in control groups.

  1. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25 °C to 37 °C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.

  2. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    Science.gov (United States)

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  3. Collisionless Shock Waves and Turbulent Heating in High Voltage Theta Pinches

    International Nuclear Information System (INIS)

    Based on preceding experiments with smaller systems, a large (46 cm diameter, 100 cm length) theta pinch has been constructed which is driven by a Blumlein-type transmission line (∼0.4Ω) capable of generating a 1 MV pulse (open circuit) of 100 ns duration. For the experiments described herein, it was operated at 40% of design voltage. The corresponding peak field is 3.2 kG, and a strong shock wave (5 x 107 cm/s) is generated in the initial plasma containing a (parallel or antiparallel) bias field. This initial plasma is prepared in typically 5 m Torr D2 by a sequence of auxiliary discharges through the theta-pinch coil. Shock structure and field-vacuum interface are investigated (mainly by magnetic probes). These measurements, besides being compared directly with theoretical predictions, also yield current densities required for the determination of effective (turbulent) electrical conductivities from measured electron heating rates (using X-ray emission). Ion energies are estimated from neutron yields. Indications are that there is an anomalous ion heating mechanism, in addition to anomalous electron heating, as observed in preceding experiments from Thomson scattering measurements. In parallel with these laboratory investigations, a computer simulation program has been developed which permits quantitative discussion of the influence of non-stationarity and cylindrical convergence on the experimental results and of the deviations from classical results caused by anomalous transport processes (with coefficients either estimated theoretically from growth rates of expected microinstabilities or chosen to fit the experimental results). (author)

  4. Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): inducer-specific patterns of the three transcripts

    OpenAIRE

    1989-01-01

    The Drosophila hsr omega locus produces one of the largest and most active heat shock puffs, yet it does not encode a heat shock protein. Instead, this locus produces a distinctive set of three transcripts, all from the same start site. The largest transcript, omega 1, is limited to the nucleus and appears to have a role there. A second nuclear transcript, omega 2, is produced by alternative termination and contains the sequence found in the 5' 20-25% of omega 1 (depending on the Drosophila s...

  5. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren

    2016-01-01

    Background Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund’s Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. Results We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund’s Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Conclusions Our work identified Hsc70 and its ATPase activity as a central

  6. Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells.

    OpenAIRE

    Belanger, F. C.; Brodl, M R; Ho, T H

    1986-01-01

    In response to a phytohormone, gibberellic acid, the aleurone layers of barley seeds synthesize and secrete alpha-amylases, which are coded by a set of stable mRNAs. When aleurone layers are subjected to heat shock treatment, the synthesis of alpha-amylase is suppressed while heat shock proteins are induced. The suppression of alpha-amylase synthesis is not the result of translational control as reported in several other systems. Rather, the sequences of alpha-amylase mRNA are rapidly degrade...

  7. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pbiomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  8. Archaeal viruses of the sulfolobales

    DEFF Research Database (Denmark)

    Erdmann, Susanne; Garrett, Roger Antony

    2015-01-01

    Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an environm......Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2...... in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs...

  9. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  10. Non-lethal heat shock increased Hsp70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp.

    Directory of Open Access Journals (Sweden)

    Nguyen Hong Loc

    Full Text Available Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70 and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO, peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined.

  11. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress.

    Science.gov (United States)

    Soto, A; Allona, I; Collada, C; Guevara, M A; Casado, R; Rodriguez-Cerezo, E; Aragoncillo, C; Gomez, L

    1999-06-01

    A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17. 5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37 degrees C to 50 degrees C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4 degrees C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress.

  12. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine (Vitis pseudoreticulata).

    Science.gov (United States)

    Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Li, Ya-Juan; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-02-01

    Heat shock transcription factors (Hsfs) are known to play pivotal roles in the adaptation of plants to heat stress and other stress stimuli. While grapevine (Vitis vinifera L.) is one of the most important fruit crops worldwide, little is known about the Hsf family in Vitis spp. Here, we identified nineteen putative Hsf genes (VviHsfs) in Vitis spp based on the 12 × grape genome (V. vinifera L.). Phylogenetic analysis revealed three classes of grape Hsf genes (classes A, B, and C). Additional comparisons between grape and Arabidopsis thaliana demonstrated that several VviHsfs genes occurred in corresponding syntenic blocks of Arabidopsis. Moreover, we examined the expression profiles of the homologs of the VviHsfs genes (VpHsfs) in the wild Chinese Vitis pseudoreticulata accession Baihe-35-1, which is tolerant to various environmental stresses. Among the nineteen VpHsfs, ten VpHsfs displayed lower transcript levels under non-stress conditions and marked up-regulation during heat stress treatment; several VpHsfs also displayed altered expression levels in response to cold, salt, and hormone treatments, suggesting their versatile roles in response to stress stimuli. In addition, eight VpHsf-GFP fusion proteins showed differential subcellular localization in V. pseudoreticulata mesophyll protoplasts. Taken together, our data may provide an important reference for further studies of Hsf genes in Vitis spp.

  13. Identification and expression analysis of heat shock transcription factors in the wild Chinese grapevine (Vitis pseudoreticulata).

    Science.gov (United States)

    Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Li, Ya-Juan; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-02-01

    Heat shock transcription factors (Hsfs) are known to play pivotal roles in the adaptation of plants to heat stress and other stress stimuli. While grapevine (Vitis vinifera L.) is one of the most important fruit crops worldwide, little is known about the Hsf family in Vitis spp. Here, we identified nineteen putative Hsf genes (VviHsfs) in Vitis spp based on the 12 × grape genome (V. vinifera L.). Phylogenetic analysis revealed three classes of grape Hsf genes (classes A, B, and C). Additional comparisons between grape and Arabidopsis thaliana demonstrated that several VviHsfs genes occurred in corresponding syntenic blocks of Arabidopsis. Moreover, we examined the expression profiles of the homologs of the VviHsfs genes (VpHsfs) in the wild Chinese Vitis pseudoreticulata accession Baihe-35-1, which is tolerant to various environmental stresses. Among the nineteen VpHsfs, ten VpHsfs displayed lower transcript levels under non-stress conditions and marked up-regulation during heat stress treatment; several VpHsfs also displayed altered expression levels in response to cold, salt, and hormone treatments, suggesting their versatile roles in response to stress stimuli. In addition, eight VpHsf-GFP fusion proteins showed differential subcellular localization in V. pseudoreticulata mesophyll protoplasts. Taken together, our data may provide an important reference for further studies of Hsf genes in Vitis spp. PMID:26689772

  14. Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-cell Communication

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    2014-06-01

    Full Text Available Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.

  15. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70.

    Science.gov (United States)

    Sonuç Karaboğa, Münteha Nur; Şimşek, Çiğdem Sayıklı; Sezgintürk, Mustafa Kemal

    2016-10-15

    This paper describes a novel, simple, and disposable immunosensor based on indium-tin oxide (ITO) sheets modified with gold nanoparticles to sensitively analyze heat shock protein 70 (HSP70), a potential biomarker that could be evaluated in diagnosis of some carcinomas. Disposable ITO coated Polyethylene terephthalate (PET) electrodes were used and modified with gold nanoparticles in order to construct the biosensors. Optimization and characterization steps were analyzed by electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Surface morphology of the biosensor was also identified by electrochemical methods, scanning electron microscopy (SEM), and atomic force microscopy (AFM). To interpret binding characterization of HSP70 to anti-HSP70 single frequency impedance method was successfully operated. Moreover, the proposed HSP70 immunosensor acquired good stability, repeatability, and reproducibility. Ultimately, proposed biosensor was introduced to real human serum samples to determine HSP70 sensitively and accurately. PMID:26318579

  16. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves

    Institute of Scientific and Technical Information of China (English)

    Emanuele; Calabrò; Salvatore; Condello; Monica; Currò; Nadia; Ferlazzo; Daniela; Caccamo; Salvatore; Magazù; Riccardo; Ientile

    2012-01-01

    AIM: To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS: Neuron-like cells, obtained by retinoicacid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS: Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity was significantly changed. Interestingly, a significant decrease in Hsp20 expression was observed at both times of exposure, whereas Hsp70 levels were significantly increased only after 4 h exposure. CONCLUSION: The modulation of the expression of Hsps in neuronal cells can be an early response to radiofrequency microwaves.

  17. Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise

    DEFF Research Database (Denmark)

    Vissing, K.; Bayer, M.L.; Overgaard, K.;

    2009-01-01

    This study hypothesized that heat shock protein (HSP) translocation and upregulation is more probable to occur after eccentric exercise than after concentric exercise or repeated eccentric exercise. Fourteen young, healthy, untrained male subjects completed two bench-stepping exercise bouts with 8...... cytoskeletal protein fractions. The first bout of exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses were attenuated after the repeated eccentric exercise bout (P < 0.05), suggesting a repeated bout adaptation. Increases in inducible...... eccentric exercise bout. Our results show that HSP translocation and expression responses are induced by muscle damaging exercise, and suggest that such HSP responses are closely related to the extent of muscle damage Udgivelsesdato: 2009/7...

  18. Topoisomerase activity during the heat shock response in Escherichia coli K-12.

    Science.gov (United States)

    Camacho-Carranza, R; Membrillo-Hernández, J; Ramírez-Santos, J; Castro-Dorantes, J; Chagoya de Sánchez, V; Gómez-Eichelmann, M C

    1995-01-01

    During the upshift of temperature from 30 to 42, 45, 47, or 50 degrees C, an increase in the level of supercoiling of a reporter plasmid was observed. This increase was present in groE and dnaK mutants but was inhibited in cells treated with chloramphenicol and novobiocin. The intracellular [ATP]/[ADP] ratio increased rapidly after an upshift in temperature from 30 to 47 degrees C and then decreased to reach a level above that observed at 30 degrees C. These results suggest that gyrase and proteins synthesized during heat shock are responsible for the changes seen in plasmid supercoiling. Proteins GroE and DnaK are probably not involved in this phenomenon. PMID:7768879

  19. Fast electron divergence and transport in laser-driven shock heated warm dense matter

    International Nuclear Information System (INIS)

    Understanding of fast electron source and transport is important for Fast Ignition Inertial Confinement Fusion. Particularly, a detailed investigation of fast electron transport in warm/hot dense matter is important pertinent to fast ignition conditions. We have performed experiments on the Titan laser at LLNL and OMEGA EP laser at LLE to investigate electron source and transport into warm dense matter (WDM) with varying densities and temperatures. On the Titan laser, WDM was created by a long laser pulse (300 J, 3 ns, 600 µm spot) driven shock compression and heating of the low-density foam with initial mass density of 150 mg/cm3. At its maximum compression, a low-Z WDM with approximately solid density and temperature of 5-10 eV was assembled beneath the Au foil. Transport of the high intensity laser (150 J, 0.7 ps, Ipeak∼1020 W/cm2) produced relativistic electrons from the Au foil (mimics the tip of the cone) through WDM, was characterized by measuring the K-shell x-ray emission from the Cu fluorescence layer. A large angular spread (>100°) of fast electrons is observed in the 2D spatial profiles of the Ka emission when fast electrons transport into WDM. In addition, 5x increase in the number of escaped electrons at a large off-normal angle is seen compared to a case with 15 µm thick solid CH insulator as the transport medium, consistent with the observed large angular spread. Collisional PIC simulations including dynamic ionization using the PICLS [1] code suggest that the large angular spread is caused by the deformation of the laser plasma interaction surface due to high laser ponderomotive pressure. The large source divergence is observed to be suppressed by the self-generated fields at the ionization wave front when electrons propagate in the insulator medium. On OMEGA EP, a series of shots have been carried out to, i) characterize the plasma and ii) to study fast electron transport in a large volume of warm dense plasma, which was created by shock

  20. Heat shock protein 70 chaperoned alpha-fetoprotein in human hepatocellular carcinoma cell line BEL-7402

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Wang; Qiao-Xia Wang; Hai-Yan Li; Rui-Fen Chen

    2005-01-01

    AIM: To investigate the interaction between heat shock protein 70 (HSP70) and α-fetoprotein (AFP) in human hepatocellular carcinoma (HCC) cell line BEL7402.METHODS: The expression and localization of HSP70 and AFP in human HCC cell line BEL-7402 were determined by immunocytochemistry and indirect immunofluorescence cytochemical staining. The interaction between HSP70 and AFP in HCC cells was analyzed by immunoprecipitation and Western blot.RESULTS: Immunocytochemical staining detection showed that HCC cell BEL-7402 expressed a high level of HSP70 and AFP synchronously. Both were stained in cell plasma.AFP existed in the immunoprecipitate of anti-HSP70 mAb,while there was HSP70 in the immunoprecipitate of antiAFP mAb.CONCLUSION: HSP70 chaperones AFP in human HCCcell BEL-7402. The interaction between HSP70 and AFP in human HCC cell can be a new route to study the pathogenesis and immunotherapy of HCC.

  1. Sequence characterization of heat shock protein gene of Cyclospora cayetanensis isolates from Nepal, Mexico, and Peru.

    Science.gov (United States)

    Sulaiman, Irshad M; Torres, Patricia; Simpson, Steven; Kerdahi, Khalil; Ortega, Ynes

    2013-04-01

    We have described the development of a 2-step nested PCR protocol based on the characterization of the 70-kDa heat shock protein (HSP70) gene for rapid detection of the human-pathogenic Cyclospora cayetanensis parasite. We tested and validated these newly designed primer sets by PCR amplification followed by nucleotide sequencing of PCR-amplified HSP70 fragments belonging to 16 human C. cayetanensis isolates from 3 different endemic regions that include Nepal, Mexico, and Peru. No genetic polymorphism was observed among the isolates at the characterized regions of the HSP70 locus. This newly developed HSP70 gene-based nested PCR protocol provides another useful genetic marker for the rapid detection of C. cayetanensis in the future. PMID:22924935

  2. Regulatory effect of heat shock protein 70 in stress-induced rat intestinal epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Stevie Struiksma

    2009-06-01

    Full Text Available Background: Psychological stress is one of the factors associated with many human diseases; the mechanisms need to be further understood. Methods: Rats were subjected to chronic water avoid stress. Intestinal epithelial heat shock protein (HSP 70 was evaluated. The intestinal epithelial permeability was examined with Ussing chamber technique. Results: HSP70 was detected in normal intestinal epithelial cells. Psychological stress decreased HSP70 in the intestinal epithelial cells that correlated with the stress-induced intestinal epithelial hyperpermeability. Pretreatment with HSP70 abrogated stress-induced intestinal barrier dysfunction. Conclusions: Chronic stress inhibits HSP70 activity in rat intestinal epithelial layer that is associated with intestinal epithelial barrier dysfunction, which can be prevented by pretreatment with HSP70 protein.

  3. Simulation of intense heating and shock hydrodynamics in free-moving liquid targets.

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, A.

    1999-08-27

    Recently, significant interest has focused on the use of free or open liquid-metal targets flowing with high velocities in various nuclear and high-energy physics applications such as the ISOLDE and muon collider projects. This is because the heat generated in solid targets due to beam bombardment cannot be removed easily and the resulting thermal shock damage is a serious problem. The behavior of a free-moving liquid mercury or gallium jet due to a proton beam deposition in a strong magnetic field has been modeled and analyzed for the muon collider project. Free liquid-metal jets offer significant advantages over conventional solid targets, particularly for the more demanding and challenging high-power applications.

  4. AN EXPERIMENTAL STUDY ON THE INDUCTION MECHANISM OF SUPEROXIDE DISMUTASE IN CULTURED CARDIOMYOCYTES DURING HEAT SHOCK

    Institute of Scientific and Technical Information of China (English)

    朱洪生; 王胜; 沈莉; 谢芳; 魏丕敬

    2000-01-01

    Objective To explore the role of reaction oxygen species (ROS) in heat shock (HS) on the tolerance of cardiomyocytes to anoxia - reoxygenation (AO - RO) injury and on the activity of superoxide dismutase (SOD).Methods Cultured neonatal myocytes of rats were divided into 5 groups: normal control, anoxic control, HS,HS- SOD pretreated and exogenous ROS pretreated (n= 6). Results Compared with the 2 control groups, ROS release in HS and ROS pretreated groups increased mildly, but after experiencing 3h anoxia/lh reoxygenation 24hlater, ROS release of the two groups decreased significantly, which was accompanied by enhanced SOD activities and less myocytes damage. Opposite results were found when SOD was insituted during HS. Conclusion HS did enhance myocardial tolerance to AO-RO injury. The mild release of ROS during HS may trigger delayed myocardial protection by altering SOD activity.

  5. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  6. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister (Hemiptera, Reduviidae

    Directory of Open Access Journals (Sweden)

    Garcia Simone L

    2002-01-01

    Full Text Available Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion or death (apoptosis, necrosis responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h or cold (5 or 0°C, 1 h shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature. As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  7. Activity of heat shock genes' promoters in thermally contrasting animal species.

    Science.gov (United States)

    Astakhova, Lyubov N; Zatsepina, Olga G; Funikov, Sergei Yu; Zelentsova, Elena S; Schostak, Natalia G; Orishchenko, Konstantin E; Evgen'ev, Michael B; Garbuz, David G

    2015-01-01

    Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality.

  8. Prophylactic Antitumor Effect of Mixed Heat Shock Proteins/Peptides in Mouse Sarcoma

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Shu-Yun Liu; Mei Yuan; Yu Tang; Quan-Yi Guo; Xue-Mei Cui; Xiang Sui

    2015-01-01

    Background:To develop a vaccine-based immunotherapy for sarcoma,we evaluated a mixture of heat shock proteins (mHSPs) as a vaccine for sarcoma treatment in a mouse model.Heat shock protein/peptides (HSP/Ps) are autoimmune factors that can induce both adaptive and innate immune responses;HSP/Ps isolated from tumors can induce antitumor immune activity when used as vaccines.Methods:In this study,we evaluated the effects of mHSP/Ps on prophylactic antitumor immunity.We extracted mHSP/Ps,including HSP60,HSP70,GP96,and HSP l 10,from the mouse sarcoma cell lines S 180 and MCA207 using chromatography.The immunity induced by mHSP/Ps was assessed using flow cytometry,ELISPOT,lactate dehydrogenase release,and enzyme-linked immunosorbent assay.Results:Of S180 sarcoma-beating mice immunized with mHSP/Ps isolated from S180 cells,41.2% showed tumor regression and long-term survival,with a tumor growth inhibition rate of 82.3% at 30 days.Of MCA207 sarcoma-bearing mice immunized with mHSP/Ps isolated from MCA207 cells,50% showed tumor regression and long-term survival with a tumor growth inhibition rate of 79.3%.All control mice died within 40 days.The proportions of natural killer cells,CD8+,and interferon-γ-secreting cells and tumor-specific cytotoxic T-lymphocyte activity were increased in the immunized group.Conclusions:Vaccination with a polyvalent mHSP/P cancer vaccine can induce an immunological response and a marked antitumor response to autologous tumors.This mHSP/P vaccine exerted greater antitumor effects than did HSPT0,HSP60,or tumor lysates alone.

  9. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Koya

    Full Text Available Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1, and up-regulate heat shock proteins (HSPs in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05. Significant up-regulations of interleukin (IL-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  10. Chalcones from Angelica keiskei: Evaluation of Their Heat Shock Protein Inducing Activities.

    Science.gov (United States)

    Kil, Yun-Seo; Choi, Seul-Ki; Lee, Yun-Sil; Jafari, Mahtab; Seo, Eun-Kyoung

    2015-10-23

    Five new chalcones, 4,2',4'-trihydroxy-3'-[(2E,5E)-7-methoxy-3,7-dimethyl-2,5-octadienyl]chalcone (1), (±)-4,2',4'-trihydroxy-3'-[(2E)-6-hydroxy-7-methoxy-3,7-dimethyl-2-octenyl]chalcone (2), 4,2',4'-trihydroxy-3'-[(2E)-3-methyl-5-(1,3-dioxolan-2-yl)-2-pentenyl]chalcone (3), 2',3'-furano-4-hydroxy-4'-methoxychalcone (4), and (±)-4-hydroxy-2',3'-(2,3-dihydro-2-methoxyfurano)-4'-methoxychalcone (5), were isolated from the aerial parts of Angelica keiskei Koidzumi together with eight known chalcones, 6-13, which were identified as (±)-4,2',4'-trihydroxy-3'-[(6E)-2-hydroxy-7-methyl-3-methylene-6-octenyl]chalcone (6), xanthoangelol (7), xanthoangelol F (8), xanthoangelol G (9), 4-hydroxyderricin (10), xanthoangelol D (11), xanthoangelol E (12), and xanthoangelol H (13), respectively. Chalcones 1-13 were evaluated for their promoter activity on heat shock protein 25 (hsp25, murine form of human hsp27). Compounds 1 and 6 activated the hsp25 promoter by 21.9- and 29.2-fold of untreated control at 10 μM, respectively. Further protein expression patterns of heat shock factor 1 (HSF1), HSP70, and HSP27 by 1 and 6 were examined. Compound 6 increased the expression of HSF1, HSP70, and HSP27 by 4.3-, 1.5-, and 4.6-fold of untreated control, respectively, without any significant cellular cytotoxicities, whereas 1 did not induce any expression of these proteins. As a result, 6 seems to be a prospective HSP inducer.

  11. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans.

    Science.gov (United States)

    Camargo, Gabriela; Elizalde, Alejandro; Trujillo, Xochitl; Montoya-Pérez, Rocío; Mendoza-Magaña, María Luisa; Hernandez-Chavez, Abel; Hernandez, Leonardo

    2016-09-01

    The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.

  12. Mild electrical stimulation with heat shock ameliorates insulin resistance via enhanced insulin signaling.

    Directory of Open Access Journals (Sweden)

    Saori Morino

    Full Text Available Low-intensity electrical current (or mild electrical stimulation; MES influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72 alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration together with HS at 42 degrees C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor beta subunit (IRbeta and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12-15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway.

  13. CHIP Knockdown Reduced Heat Shock Response and Protein Quality Control Capacity in Lens Epithelial Cells.

    Science.gov (United States)

    Zhang, W; Liu, Z; Bao, X; Qin, Y; Taylor, A; Shang, F; Wu, M

    2015-01-01

    Protein quality control (PQC) systems, including molecular chaperones and ubiquitin-proteasome pathway (UPP), plays an important role in maintaining intracellular protein homeostasis. Carboxyl terminus of Hsc70- interacting protein (CHIP) links the chaperone and UPPs, thus contributing to the repair or removal of damaged proteins. Over-expression of CHIP had previously been used to protect cells from environmental stress. In order to gain a more physiologic mechanism of the advantage conferred by CHIP, we induced a CHIP knockdown and monitored the ability of cells to cope with environmental stress. To knockdown CHIP, the human lens epithelial cell line HLE B3 was transfected with lentiviral particles that encode a CHIP short hairpin RNA (shRNA) or negative control lentiviral particles. Stable CHIP-knock down cells (KD) and negative control cells (NC) were selected with puromycin. After exposure to heat shock stress, there was no change observed in the expression of Hsp90. In contrast, Hsp70 levels increased significantly in NC cells but less so in KD cells. Hsp27 levels also increased after heat shock, but only in NC cells. Protein ubiquitination was reduced when CHIP was knocked down. CHIP knockdown reduced the ability to clear aggregation proteins. When same levels of aggregation-prone RFP-mutant crystallin fusion protein, RFP/V76D-γD, was expressed, there was ~9- fold more aggregates in KD cells as compared to that observed in NC cells. Furthermore, KD cells were more sensitive to toxicity of amino acid analog canavanine as compared to NC cells. Together, these data indicate that CHIP is required for PQC and that CHIP knockdown diminished cellular PQC capacity in lens cells. PMID:26321754

  14. Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusiona)

    Science.gov (United States)

    Regan, S. P.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Li, D.; Radha, P. B.; Sawada, H.; Seka, W.; Boehly, T. R.; Delettrez, J. A.; Gotchev, O. V.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Yaakobi, B.; Mancini, R. C.

    2007-05-01

    Direct-drive laser absorption, mass ablation rate, and shock heating are experimentally studied on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] to validate hydrodynamics simulations. High-gain, direct-drive inertial confinement fusion target implosions require accurate predictions of the shell adiabat α (entropy), defined as the pressure in the main fuel layer to the Fermi-degenerate pressure, and the implosion velocity of the shell. The laser pulse shape determines the shell adiabat and the hydrodynamic efficiency determines the implosion velocity. A comprehensive set of measurements tracking the flow of energy from the laser to the target was conducted. Time-resolved measurements of laser absorption in the corona are performed on spherical implosion experiments. The mass ablation rate is inferred from time-resolved Ti K-shell spectroscopic measurements of nonaccelerating, solid CH spherical targets with a buried tracer layer of Ti. Shock heating is diagnosed in planar-CH-foil targets using time-resolved x-ray absorption spectroscopy and noncollective spectrally resolved x-ray scattering. The highly reproducible experimental results achieved with a high level of laser drive uniformity [S. P. Regan et al., J. Opt. Soc. Am. B 22, 998 (2005)] constrain the modeling of direct-drive energy coupling. A detailed comparison of the experimental results and the simulations reveals that a single-value flux limiter in the thermal transport model cannot explain all of the experimental observables. Simulations of laser absorption measurements need a time-dependent flux limiter to match the data. Modeling of both resonance absorption and nonlocal effects in the electron thermal conduction from the critical density to the ablation front are underway to resolve the observed discrepancies.

  15. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast.

    Directory of Open Access Journals (Sweden)

    Liliana Batista-Nascimento

    Full Text Available Heat shock transcription factor 1 (HSF1 plays an important role in the cellular response to proteotoxic stresses. Under normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1 and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1 regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element (HSE are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for deciphering aspects of human HSF1 regulation by post-translational modifications.

  16. Osmotic stress stimulates phosphorylation and cellular expression of heat shock proteins in rhesus macaque sperm.

    Science.gov (United States)

    Cole, Julie A; Meyers, Stuart A

    2011-01-01

    The cryosurvival of sperm requires cell signaling mechanisms to adapt to anisotonic conditions during the freezing and thawing process. Chaperone proteins heat shock protein 70 (HSP 70) and heat shock protein 90 (HSP 90; recently renamed HSPA and HSPC, respectively) facilitate some of these cell signaling events in somatic cells. Sperm were evaluated for their cellular expression and levels of phosphorylation of both HSP 70 and HSP 90 under anisotonic conditions as a potential model for cell signaling during the cryopreservation of macaque spermatozoa. In order to monitor the level of stress, the motility and viability parameters were evaluated at various time points. Cells were then either prepared for phosphoprotein enrichment or indirect immunocytochemistry. As controls, the phosphoserine, phosphothreonine, and phosphotyrosine levels were measured under capacitation and cryopreservation conditions and were compared with the phosphoprotein levels expressed under osmotic conditions. As expected, there was an increase in the level of tyrosine phosphorylation under capacitation and cryopreservation conditions. There was also a significant increase in the level of all phosphoproteins under hyperosmotic conditions. There was no change in the level of expression of HSP 70 or 90 under osmotic stress conditions as measured by Western blot. The enrichment of phosphoproteins followed by Western immunoblotting revealed an increase in the phosphorylation of HSP 70 but not HSP 90 under osmotic stress conditions. Indirect immunofluorescence localized HSP 70 to the postacrosomal region of sperm, and the level of membrane expression of HSP 70 was significantly affected by anisotonic conditions, as measured by flow cytometry. Taken together, these results suggest a differential role for HSP 70 and HSP 90 during osmotic stress conditions in rhesus macaque sperm. PMID:21088232

  17. A sexual dimorphism influences bicyclol-induced hepatic heat shock factor 1 activation and hepatoprotection.

    Science.gov (United States)

    Chen, Xiaosong; Zhang, Jianjian; Han, Conghui; Dai, Huijuan; Kong, Xianming; Xu, Longmei; Xia, Qiang; Zhang, Ming; Zhang, Jianjun

    2015-07-01

    Bicyclol [4,4'-dimethoxy-5,6,5',6'-bis(methylenedioxy)-2-hydroxy-methyl-2'-methoxycarbonyl biphenyl] is a synthetic hepatoprotectant widely used in clinical practice, but resistance to this treatment is often observed. We found that the hepatoprotective effect of bicyclol was greatly compromised in female and castrated male mice. This study was to dissect the molecular basis behind the sex difference, which might underlie the clinical uncertainty. We compared bicyclol-induced hepatoprotection between male and female mice using acute liver damage models. Inducible knockout by the Cre/loxp system was used to decipher the role of heat shock transcription factor 1 (HSF1). Functional experiments, western blot, and histopathological analysis were used to determine the key causative factors which might antagonize bicyclol in female livers. HSF1 activation and heat shock protein 70 (Hsp70) expression, which were responsible for bicyclol-induced hepatoprotection, were compromised in female and castrated male livers. Compromised HSF1 activation was a result of HSF1 phosphorylation at serine 303, which was catalyzed by glycogen synthase kinase 3β (GSK3β). Testosterone was necessary for bicyclol to inhibit hepatic GSK3β activity. Administration of testosterone or GSK3β inhibitors restored bicyclol-induced protection in females. Bicyclol induces sex-specific hepatoprotection based on a sex-specific HSF1/Hsp70 response, in which testosterone and GSK3β play key roles. Because a lot of patients suffering from liver diseases have very low testosterone levels, our results give a possible explanation for the clinical variation in bicyclol-induced hepatoprotection, as well as practicable solutions to improve the effect of bicyclol. PMID:25901028

  18. CHIP Knockdown Reduced Heat Shock Response and Protein Quality Control Capacity in Lens Epithelial Cells.

    Science.gov (United States)

    Zhang, W; Liu, Z; Bao, X; Qin, Y; Taylor, A; Shang, F; Wu, M

    2015-01-01

    Protein quality control (PQC) systems, including molecular chaperones and ubiquitin-proteasome pathway (UPP), plays an important role in maintaining intracellular protein homeostasis. Carboxyl terminus of Hsc70- interacting protein (CHIP) links the chaperone and UPPs, thus contributing to the repair or removal of damaged proteins. Over-expression of CHIP had previously been used to protect cells from environmental stress. In order to gain a more physiologic mechanism of the advantage conferred by CHIP, we induced a CHIP knockdown and monitored the ability of cells to cope with environmental stress. To knockdown CHIP, the human lens epithelial cell line HLE B3 was transfected with lentiviral particles that encode a CHIP short hairpin RNA (shRNA) or negative control lentiviral particles. Stable CHIP-knock down cells (KD) and negative control cells (NC) were selected with puromycin. After exposure to heat shock stress, there was no change observed in the expression of Hsp90. In contrast, Hsp70 levels increased significantly in NC cells but less so in KD cells. Hsp27 levels also increased after heat shock, but only in NC cells. Protein ubiquitination was reduced when CHIP was knocked down. CHIP knockdown reduced the ability to clear aggregation proteins. When same levels of aggregation-prone RFP-mutant crystallin fusion protein, RFP/V76D-γD, was expressed, there was ~9- fold more aggregates in KD cells as compared to that observed in NC cells. Furthermore, KD cells were more sensitive to toxicity of amino acid analog canavanine as compared to NC cells. Together, these data indicate that CHIP is required for PQC and that CHIP knockdown diminished cellular PQC capacity in lens cells.

  19. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  20. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  1. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    Science.gov (United States)

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-01-01

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. PMID:26865701

  2. Heat-shock response and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats

    OpenAIRE

    Pöhlmann, Kevin; Koenigstein, Stefan; Alter, Katharina; Abele, Doris; Held, Christoph

    2011-01-01

    Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia...

  3. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle.

    Science.gov (United States)

    Gaughan, J B; Bonner, S L; Loxton, I; Mader, T L

    2013-01-01

    Sixty Angus steers (449.2±11.0 kg) with implanted body temperature (BT) transmitters were used in a 110-d study to determine the effect of chronic stress (housing, diet, and climate) on extracellular heat shock protein 70 (eHsp70) concentration in plasma. The steers were a subset of a larger study involving 164 steers. Before the start of the study (d -31), 63 steers were implanted with a BT transmitter between the internal abdominal muscle and the peritoneum at the right side flank. Steers were housed in 20 pens (10 with shade and 10 without). Within each pen, 3 steers had a transmitter, and BT was recorded at 30-min intervals throughout the study. On d 0, 30, 60, 90, and 110, steers were weighed, BCS assessed (1 to 9 scale in which 1=emaciated and 9=obese), and 10 mL of blood from the coccygeal vein was collected for determination of inducible heat shock protein 70 (Hsp70) concentration by ELISA. Climatic variables (ambient temperature, relative humidity, solar radiation, black globe temperature, and wind speed) were obtained every 30 min from an on-site weather station. The relationship between the climatic variables and Hsp70 concentration were examined. As we failed to detect an effect of shade, all data were pooled. Mean BT over the duration of the study was 39.6±0.10°C. Mean BT was lowest (38.7±0.10°C) on d 0 and highest on d 110 (40.2°C±0.10). The Hsp70 concentration was least on d 0 (2.33±0.47 ng/mL) and greatest on d 30 (8.08±0.78 ng/mL). The Hsp70 concentration decreased from d 30 but remained above the d-0 concentrations on d 60, 90, and 110. There was a strong relationship between Hsp70 concentration and ambient temperature (r2=0.86; PBCS and BT, the relationship was moderate (r2=0.48; P38.6°C. The Hsp70 concentration is a reliable indicator of chronic stress but is not a reliable indicator of a single stressor when animals are exposed to multiple chronic stressors.

  4. Heat shock response down-regulates IL-18 expression in the murine macrophage cell line, RAW264.7

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Heat shock response is a self-defense mechanism for protection of cells and organisms from a wide range of harmful stressors. Recent studies revealed that it is involved in the regulation of cytokines expression. IL-18 is an important cytokine in mediating immune response. We studied LPS-induced IL-18 expression in heat shock treated RAW264.7 murine macrophages. Our results show that the heat shock response significantly inhibited the expression of LPS-induced pro-inflammatory cytokine IL-18. Further research on the down-regulation mechanism shows that this inhibitory effect is correlated to the great suppression of the binding activity of AP-1, which is a transcription factor binding to the promoter of IL-18 (-1120 to -1083) and regulates the transcription of IL-18. Meanwhile, we observed that the phosphorylation of JNK, which is AP-1 upstream kinase, was greatly decreased. These results confirmed that the down-regulation effect on IL-18 production in heat shock response is related to the suppression of the JNK/AP-1 signaling pathway.

  5. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response

    NARCIS (Netherlands)

    Meijering, Roelien A. M.; Wiersma, Marit; van Marion, Denise M. S.; Zhang, Deli; Hoogstra-Berends, Femke; Dijkhuis, Anne-Jan; Schmidt, Martina; Wieland, Thomas; Kampinga, Harm H.; Henning, Robert H.; Brundel, Bianca J. J. M.

    2015-01-01

    Background The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress.

  6. Analysis of affecting factors in the detection of tumor patients heat shock protein 90α using ELISA

    Institute of Scientific and Technical Information of China (English)

    宋媛媛

    2014-01-01

    Objective To investigate the interference of the related factors on detection of heat shock protein 90α(Hsp90α)by ELISA.Methods Seventy-two blood samples were collected in Cancer Institute/Hospital,Chinese Academy of Medical Sciences from March to July 2012,which collected simultaneously via various anticoagulants of EDTA-K2

  7. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles.

    Science.gov (United States)

    Tedeschi, J N; Kennington, W J; Tomkins, J L; Berry, O; Whiting, S; Meekan, M G; Mitchell, N J

    2016-01-13

    The capacity of species to respond adaptively to warming temperatures will be key to their survival in the Anthropocene. The embryos of egg-laying species such as sea turtles have limited behavioural means for avoiding high nest temperatures, and responses at the physiological level may be critical to coping with predicted global temperature increases. Using the loggerhead sea turtle (Caretta caretta) as a model, we used quantitative PCR to characterise variation in the expression response of heat-shock genes (hsp60, hsp70 and hsp90; molecular chaperones involved in cellular stress response) to an acute non-lethal heat shock. We show significant variation in gene expression at the clutch and population levels for some, but not all hsp genes. Using pedigree information, we estimated heritabilities of the expression response of hsp genes to heat shock and demonstrated both maternal and additive genetic effects. This is the first evidence that the heat-shock response is heritable in sea turtles and operates at the embryonic stage in any reptile. The presence of heritable variation in the expression of key thermotolerance genes is necessary for sea turtles to adapt at a molecular level to warming incubation environments. PMID:26763709

  8. Induction of DnaK and GroEL heat shock proteins by fluoroquinolones in Escherichia coli.

    OpenAIRE

    Mizushima, T; Matsuo, M; Sekimizu, K

    1997-01-01

    Various fluoroquinolones (norfloxacin, enoxacin, ofloxacin, levofloxacin, and sparfloxacin) induce DnaK and GroEL heat shock proteins in Escherichia coli. The induction is transient, consistent with the kinetics of cellular DNA relaxation. The concentrations of fluoroquinolones required for induction are similar to those required for DNA relaxation and much higher than those required for cell death.

  9. The human genome encodes ten alpha-crystallin-related small heat shock proteins: HspB1-10

    NARCIS (Netherlands)

    Kappé, G.; Franck, E.; Verschuure, P.; Boelens, W.C.; Leunissen, J.A.M.; Jong, de W.W.

    2003-01-01

    To obtain an inventory of all human genes that code for alpha-crystallin-related small heat shock proteins (sHsps), the databases available from the public International Human Genome Sequencing Consortium (IHGSC) and the private Celera human genome project were exhaustively searched. Using the human

  10. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response.

    Directory of Open Access Journals (Sweden)

    Alejandra eBernardini

    2015-10-01

    Full Text Available Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained S. maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457.. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.

  11. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    Science.gov (United States)

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2* Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue11The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  12. Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70

    DEFF Research Database (Denmark)

    Chen, S; Prapapanich, V; Rimerman, R A;

    1996-01-01

    mature PR complexes. In the present study we observe that a monoclonal antibody specific for p60 can, on the one hand, inhibit formation of mature PR complexes containing heat shock protein 90 (hsp90), p23, and immunophilins and, on the other, enhance recovery of early PR complexes containing hsp70...

  13. Physiology and Endocrinology Symposium: The current status of heat shock in early embryonic survival and reproductive efficiency

    Science.gov (United States)

    The Physiology and Endocrinology Symposium entitled “The Current Status of Heat Shock in Early Embryonic Survival and Reproductive Efficiency” was held at the Joint ADSA-CSAS-AMPA-WSAS-ASAS Meeting in Phoenix, Arizona, July 15 to 19, 2012. In recent years, data has accumulated suggesting a role for...

  14. Close correlation between heat shock response and cytotoxicity in Neurospora crassa treated with aliphatic alcohols and phenols

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, U.; Schweim, P.; Fracella, F.; Rensing, L. [Univ. of Bremen (Germany)

    1995-03-01

    In Neurospora crassa the aliphatic alcohols methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, ethylene glycol, glycerol, and allyl alcohol and the phenolic compounds phenol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, sodium salicylate, and acetylsalicylic acid were analyzed with respect to their capacities to induce heat shock proteins (HSP) and to inhibit protein synthesis. Both the alcohols and phenols showed the greatest levels of HSP induction at concentrations which inhibited the overall protein synthesis by about 50%. The abilities of the different alcohols to induce the heat shock response are proportional to their lipophilicities: the lipophilic alcohol isobutanol is maximally inductive at about 0.6 M, whereas the least lipophilic alcohol, methanol, causes maximal induction at 5.7 M. The phenols, in general, show a higher capability to induce the heat shock response. The concentrations for maximal induction range between 25 mM (sodium salicylate) and 100 mM (resorcinol). Glycerol (4.1 M) shifted the concentration necessary for maximal HSP induction by hydroquinone from 50 to 200 mM. The results reveal that the induction of HSP occurs under conditions which considerably constrain cell metabolism. The heat shock response, therefore, does not represent a sensitive marker for toxicity tests but provides a good estimate for the extent of cell damage.

  15. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles.

    Science.gov (United States)

    Tedeschi, J N; Kennington, W J; Tomkins, J L; Berry, O; Whiting, S; Meekan, M G; Mitchell, N J

    2016-01-13

    The capacity of species to respond adaptively to warming temperatures will be key to their survival in the Anthropocene. The embryos of egg-laying species such as sea turtles have limited behavioural means for avoiding high nest temperatures, and responses at the physiological level may be critical to coping with predicted global temperature increases. Using the loggerhead sea turtle (Caretta caretta) as a model, we used quantitative PCR to characterise variation in the expression response of heat-shock genes (hsp60, hsp70 and hsp90; molecular chaperones involved in cellular stress response) to an acute non-lethal heat shock. We show significant variation in gene expression at the clutch and population levels for some, but not all hsp genes. Using pedigree information, we estimated heritabilities of the expression response of hsp genes to heat shock and demonstrated both maternal and additive genetic effects. This is the first evidence that the heat-shock response is heritable in sea turtles and operates at the embryonic stage in any reptile. The presence of heritable variation in the expression of key thermotolerance genes is necessary for sea turtles to adapt at a molecular level to warming incubation environments.

  16. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes.

    Science.gov (United States)

    Seveso, Davide; Montano, Simone; Strona, Giovanni; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2016-08-01

    Climate changes have increased the intensity/frequency of extreme thermal events, which represent serious threats to the health of reef-building corals. Since the vulnerability of corals exposed to thermal stresses are related to their ability to regulate Heat shock proteins (Hsps), we have analyzed together the time related expression profiles of the mitochondrial Hsp60 and the associated changes in tissue pigmentation in Seriatopora caliendrum subjected to 48 h of heat and cold treatments characterized by moderate (±2 °C) and severe (±6 °C) shocks. For the first time, an Hsp60 response was observed in a scleractinian coral exposed to cold stresses. Furthermore, the Hsp60 modulations and the changes in the tissue coloration were found to be specific for each treatment. A strong down-regulation at the end of the treatments was observed following both the severe shocks, but only the severe heat stress led to bleaching in concert with the lowest levels of Hsp60, suggesting that a severe heat shock can be more deleterious than an exposure to a severe cold temperature. On the contrary, a moderate cold stress seems to be more harmful than a moderate temperature increase, which could allow coral acclimation. Our results can provide a potential framework for understanding the physiological tolerance of corals under possible future climate changes. PMID:27183199

  17. MORPHOLOGY OF THE MITOCHONDRIA IN HEAT-SHOCK-PROTEIN-60 DEFICIENT FIBROBLASTS FROM MITOCHONDRIAL MYOPATHY PATIENTS - EFFECTS OF STRESS CONDITIONS

    NARCIS (Netherlands)

    HUCKRIEDE, A; HEIKEMA, A; SJOLLEMA, K; BRIONES, P; AGSTERIBBE, E

    1995-01-01

    We have described two mitochondrial (mt) myopathy patients with reduced activities of various mt enzymes associated with significantly decreased amounts of heat shock protein 60 (hsp60). Experimental evidence suggested that the lack of hsp60 was the primary defect. Since hsp60 is essential for the p

  18. Possibilities for observations with the infrared space observatory of emission from shock-heated dust in SNRs

    International Nuclear Information System (INIS)

    The possibilities for observing infrared emission from shock-heated dust in SNRs with the future Infrared Space Observatory (ISO) are illustrated with calculations of the ISOPHOT-P and ISOPHOT-C flux densities and integration times for radiation from six selected SNRs in eight wavelength bands between 4 μm and 180 μm

  19. Shaping the Archaeal Cell Envelope

    NARCIS (Netherlands)

    Ellen, Albert F.; Zolghadr, Behnam; Driessen, Arnold M. J.; Albers, Sonja-Verena

    2010-01-01

    Although archaea have a similar cellular organization as other prokaryotes, the lipid composition of their membranes and their cell surface is unique. Here we discuss recent developments in our understanding of the archaeal protein secretion mechanisms, the assembly of macromolecular cell surface st

  20. Archaeal virus-host interactions

    NARCIS (Netherlands)

    Quax, T.E.F.

    2013-01-01

      The work presented in this thesis provides novel insights in several aspects of the molecular biology of archaea, bacteria and their viruses. Three fundamentally different groups of viruses are associated with the three domains of life. Archaeal viruses are characterized by a particularly

  1. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation.

    Science.gov (United States)

    Kim, Bo-Kyung; Park, Minhwa; Kim, Ji-Yon; Lee, Kyung-Ho; Woo, So-Youn

    2016-08-01

    The pathogenesis of inflammatory skin diseases involves interactions between immune cells and keratinocytes, including the T helper 17 (Th17)-mediated immune response. Several chemokines [chemokine (C-X-C motif) ligand (CXCL)1, CXCL5 and CXCL8] and antimicrobial peptides [β-defensin 1 (BD1), LL-37, S100A8 and S100A9] were transcriptionally upregulated in the keratinocyte cell line HaCaT upon stimulation with interleukin (IL)-17. Balneotherapy, the treatment of disease by bathing, is an alternative therapy that has frequently been used for the treatment of inflammatory skin diseases. Immersion in pools of thermal mineral water is often considered to have chemical, thermal, mechanical and immunomodulatory benefits. We examined the effect of thermal treatment on IL-17-mediated inflammation in a model of skin disease. As Act1 is required for IL-17 signaling and is a client protein of heat shock protein 90 (HSP90), we evaluated the effect of HSP90 inhibition on IL-17-mediated cytokine and antimicrobial peptide expression in keratinocytes following heat treatment. We found that after thermal stimulation, Act1 binding to HSP90α was significantly increased in the presence of IL-17 (100 ng/ml) and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG, 1 µM). Antimicrobial peptide and chemokine expression generally increased after heat treatment; Act1 knockdown and 17‑AAG reversed this effect. These observations demonstrate the possible immunomodulatory effect of heat on keratinocytes during the progression of IL-17-mediated inflammatory skin diseases. PMID:27279135

  2. 热休克蛋白与肿瘤免疫%The correlation between heat shock protein and tumor immunity

    Institute of Scientific and Technical Information of China (English)

    王小平; 胥冰; 马晓军; 晁旭; 李哲

    2015-01-01

    The heat shock protein( HSP)is a highly conserved group of cellular proteins and is up-regulated under stress conditions. It functions as molecular chaperone and biochemical regulator to mediate cell growth,apoptosis,pro-tein homeostasis and cellular targets of peptides. Aside from their response to heat shock and chemical or physical stress stimuli,HSPs have been reported to be over-expressed in a wide range of human tumors. It has been confirmed that heat shock proteins could combine with tumor peptides,present the antigen to the immune cells through lympho-cyte receptor and elicit specific anti-tumor immunity via CTLs. As novel vaccines,heat shock proteins have a wide therapeutic prospect in biotherapy.%热休克蛋白( heat shock protein,HSP)是一类在生物进化中高度保守、广泛存在于原核及真核生物中的蛋白质。近年热休克蛋白在免疫中的作用已成为当前研究的热点之一。已证实其能与肿瘤细胞内多肽分子结合,通过抗原提呈细胞上的受体,将抗原肽传递给细胞毒T细胞诱导特异性抗肿瘤免疫应答。热休克蛋白肽复合物作为一种疫苗,在生物治疗方面拥有广阔的治疗前景,值得深入研究。

  3. The identification of protein kinase C iota as a regulator of the Mammalian heat shock response using functional genomic screens.

    Directory of Open Access Journals (Sweden)

    Frank Boellmann

    Full Text Available BACKGROUND: The heat shock response is widely used as a surrogate of the general protein quality control system within the cell. This system plays a significant role in aging and many protein folding diseases as well as the responses to other physical and chemical stressors. METHODS/PRINCIPAL FINDINGS: In this study, a broad-based functional genomics approach was taken to identify potential regulators of the mammalian heat shock response. In the primary screen, a total of 13724 full-length genes in mammalian expression vectors were individually co-transfected into human embryonic kidney cells together with a human HSP70B promoter driving firefly luciferase. A subset of the full-length genes that showed significant activation in the primary screen were then evaluated for their ability to hyper-activate the HSP70B under heat shock conditions. Based on the results from the secondary assay and gene expression microarray analyses, eight genes were chosen for validation using siRNA knockdown. Of the eight genes, only PRKCI showed a statistically significant reduction in the heat shock response in two independent siRNA duplexes compared to scrambled controls. Knockdown of the PRKCI mRNA was confirmed using quantitative RT-PCR. Additional studies did not show a direct physical interaction between PRKCI and HSF1. CONCLUSIONS/SIGNIFICANCE: The results suggest that PRKCI is an indirect co-regulator of HSF1 activity and the heat shock response. Given the underlying role of HSF1 in many human diseases and the response to environmental stressors, PRKCI represents a potentially new candidate for gene-environment interactions and therapeutic intervention.

  4. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Anson, E-mail: piercea2@uthscsa.edu [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); The Department of Veteran' s Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284 (United States); Wei, Rochelle; Halade, Dipti [Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Yoo, Si-Eun [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Ran, Qitao; Richardson, Arlan [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); The Department of Veteran' s Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284 (United States)

    2010-11-05

    Research highlights: {yields} Development of mouse overexpressing native human HSF1 in all tissues including CNS. {yields} HSF1 overexpression enhances heat shock response at whole-animal and cellular level. {yields} HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. {yields} HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1{sup +/0}) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1{sup +/0} mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1{sup +/0} cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1{sup +/0} cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  5. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  6. Quercetin suppresses heat shock-induced nuclear translocation of Hsp72

    Directory of Open Access Journals (Sweden)

    Antoni Gawron

    2011-08-01

    Full Text Available The effect of quercetin and heat shock on the Hsp72 level and distribution in HeLa cells was studied by Western blotting, indirect immunofluorescence and immunogold electron microscopy. In control cells and after quercetin treatment, Hsp72 was located both in the cytoplasm and in the nucleus in comparable amounts. After hyperthermia, the level of nuclear Hsp72 raised dramatically. Expression of Hsp72 in cytoplasm was also higher but not to such extent as that observed in the nucleus. Preincubation of heated cells with quercetin inhibited strong Hsp72 expression observed after hyperthermia and changed the intracellular Hsp72 distribution. The cytoplasmic level of protein exceeded the nuclear one, especially around the nucleus, where the coat of Hsp72 was noticed. Observations indicating that quercetin was present around and in the nuclear envelope suggested an involvement of this drug in the inhibition of nuclear translocation. Our results indicate that pro-apoptotic activity of quercetin may be correlated not only with the inhibition of Hsp72 expression but also with suppression of its migration to the nucleus.

  7. External induction of heat shock stimulates the immune response and longevity of Caenorhabditis elegans towards pathogen exposure.

    Science.gov (United States)

    Prithika, Udayakumar; Deepa, Veerappan; Balamurugan, Krishnaswamy

    2016-08-01

    Heat shock proteins (HSPs) are highly chaperonic molecules that give immediate response during any stress, tissue damage or bacterial infections. In the present study, the role of HSPs upon bacterial encounter is studied by applying external heat induction to live Caenorhabditis elegans Heat shock was observed to increase the life span of wild type C. elegans upon pathogenic encounter, indicating a role of HSPs in bacterial infection and immunity. Similar increase in resistance towards pathogenesis observed in long-lived C. elegans daf-2 mutants and the increase in the lifespan indicated a role for the insulin/IGF-1 signaling (IIS) pathway in HSP-mediated pathogenic resistance. The microscopic observation of C. elegans after external heat induction and sequential exposure of pathogens indicated reduction of egg viability. Results of Real-time PCR and immunoblotting analysis of candidate genes revealed that heat shock and IIS pathways collaborate in the observed pathogenic resistance and further suggested SGK-1 to be the possible factor linking both these pathways. In addition, survival assays carried out using mutants equips us with supporting evidence that HSP and HSF-1 are necessary for the accelerated lifespan of C. elegans Our findings thus confirm that crosstalk between HSPs and SGK-1 influences C. elegans longevity. PMID:27317398

  8. A simplified method for thermal analysis of a cowl leading edge subject to intense local shock-wave-interference heating

    Science.gov (United States)

    Mcgowan, David M.; Camarda, Charles J.; Scotti, Stephen J.

    1992-01-01

    Type IV shock wave interference heating on a blunt body causes extremely intense heating over a very localized region of the body. An analytical solution is presented to a heat transfer problem that approximates the shock wave interference heating of an engine cowl leading edge of the National Aero-Space Plane. The problem uses a simplified geometry to represent the leading edge. An analytical solution is developed that provides a means for approximating maximum temperature differences between the outer and inner surface temperatures of the leading edge. The solution is computationally efficient and, as a result, is well suited for conceptual and preliminary design or trade studies. Transient and steady state analyses are conducted, and results obtained from the analytical solution are compared with results of 2-D thermal finite element analyses over a wide range of design parameters. Isotropic materials as well as laminated composite materials are studied. Results of parametric studies are presented to indicate the effects of the thickness of the cowl leading edge and the width of the region heated by the shock wave interference on the thermal response of the leading edge.

  9. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Changjun Mu

    Full Text Available Small heat shock proteins (smHSPs play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson Raffill var. Willmottiae, which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.

  10. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng

    2014-08-01

    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  11. High speed interference heating loads and pressure distributions resulting from elevon deflections. [shock wave interaction effects on hypersonic aircraft surfaces

    Science.gov (United States)

    Johnson, C. B.; Kaufman, L. G., III

    1979-01-01

    Effects of elevon-induced three-dimensional shock-wave turbulent boundary-layer interactions on hypersonic aircraft surfaces are analyzed. Detailed surface pressure and heating rate distributions obtained on wing-elevon-fuselage models representative of aft portions of hypersonic aircraft are compared with analytical and experimental results from other sources. Examples are presented that may be used to evaluate the adequacy of current theoretical methods for estimating the effects of three-dimensional shock-wave turbulent boundary-layer interactions on hypersonic aircraft surfaces.

  12. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating

    Directory of Open Access Journals (Sweden)

    Anne eDaebeler

    2012-10-01

    Full Text Available The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of the associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilisation site along a temperature gradient in Icelandic grasslands. Microarray, clone library and quantitative PCR analyses of the ammonia monooxygenase subunit A (amoA gene accompanied by physico-chemical measurements of the soil properties were conducted. In contrast to most other terrestrial environments, the ammonia-oxidizing communities consisted almost exclusively of archaea. Their bacterial counterparts proved to be undetectable by quantitative PCR suggesting AOB are only of minor relevance for ammonia oxidation in these soils. Our results show that fertilization and local, geothermal warming affected detectable ammonia-oxidizing communities, but not soil chemistry: only a subset of the detected AOA phylotypes was present in higher temperature soils and AOA abundance was increased in the fertilized soils, while the measured soil physico-chemical properties remained unchanged. Differences in distribution and structure of AOA communities were best explained by soil pH and clay content irrespective of temperature or fertilizer treatment in these grassland soils, suggesting that these factors have a greater potential for ecological niche-differentiation of AOA in soil than temperature and N fertilization.

  13. Clonal mosaic analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated HEAT SHOCK FACTOR BINDING PROTEINs during maize shoot development.

    OpenAIRE

    Fu, Suneng; Scanlon, Michael J.

    2004-01-01

    The paralogous maize proteins EMPTY PERICARP2 (EMP2) and HEAT SHOCK FACTOR BINDING PROTEIN2 (HSBP2) each contain a single recognizable motif: the coiled-coil domain. EMP2 and HSBP2 accumulate differentially during maize development and heat stress. Previous analyses revealed that EMP2 is required for regulation of heat shock protein (hsp) gene expression and also for embryo morphogenesis. Developmentally abnormal emp2 mutant embryos are aborted during early embryogenesis. To analyze EMP2 func...

  14. Effect of the C.-1 388 A>G polymorphism in chicken heat shock transcription factor 3 gene on heat tolerance

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-wu; KONG Li-na; ZHANG De-xiang; JI Cong-liang; ZHANG Xi-quan; LUO Qing-bin

    2015-01-01

    Heat stress is one of the main factors that inlfuence poultry production. Heat shock proteins (HSPs) are known to affect heat tolerance. The formation of HSPs is regulated by heat shock transcription factor 3 (HSF3) in chicken. A DNA pool was established for identifying single nucleotide polymorphisms (SNPs) of the chicken HSF3, and 13 SNPs were detected. The bioinformatic analysis showed that 8 SNPs had the capacity to alter the transcription activity of HSF3. The dual luciferase report gene assay showed that there was a signiifcant difference (PG (S1) and C.–1 388 A>G (S4) sites at the 5´-untranslated region (UTR) of chicken HSF3. The elec-trophoretic mobility shift assay showed that the S4 site was a transcription binding factor. The analysis of the association of the S1 and S4 sites with heat tolerance index revealed that the S4 site was signiifcantly correlated with the CD3+T cel , corticosterone, and T3 levels in Lingshan chickens and with the heterophil/lymphocyte value in White Recessive Rock. These results showed that the S4 site at the 5´ UTR of chicken HSF3 might have an impact on heat tolerance in summer and could be used as a potential marker for the selection of chicken with heat tolerance in the future.

  15. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Ruma; Mukherjee, Sutapa [Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata 700 026 (India); Biswas, Jaydip [Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata 700 026 (India); Roy, Madhumita, E-mail: mitacnci@yahoo.co.in [Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata 700 026 (India)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  16. Antitumor immunity induced by DNA vaccine encoding alpha-fetoprotein/heat shock protein 70

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Wang; Guo-Zhen Liu; Ai-Li Song; Hai-Yan Li; Yu Liu

    2004-01-01

    AIM: To construct a DNA vaccine encoding human alphafetoprotein (hAFP)/heat shock protein 70 (HSP70), and to study its ability to induce specific CTL response and its protective effect against AFP-expressing tumor.METHODS: A DNA vaccine was constructed by combining hAFP gene with HSP70 gene. SP2/0 cells were stably transfected with pBBS212-hAFP and pBBS212-hAFP/HSP70eukaryotic expression vectors. Mice were primed and boosted with DNA vaccine hAFP/HSP70 by intramuscular injection, whereas plasmid with hAFP or HSP70 was used as controls. ELISPOT and ELISA were used to detect IFN-γ-producing splenocytes and the level of serum anti-AFP antibody from immunized mice respectively. In vivo tumor challenge was measured to assess the immune effect of the DNA vaccine.RESULTS: By DNA vaccine immunization, the results of ELISPOT and ELISA showed that the number of IFN-γ-producing splenocytes and the level of serum anti-AFP antibody were significantly higher in rhAFP/HSP70 group than in hAFP and empty plasmid groups (95.50±10.90IFN-γ spots/106 cells vs 23.60±11.80 IFN-γ spots/106 cells,7.17±4.24 IFN-γ spots/106 cells, P<0.01; 126.50±8.22 μg/mL vs 51.72±3.40 μg/mL, 5.83±3.79 μg/mL, P<0.01). The tumor volume in rhAFP/HSP70 group was significantly smaller than that in pBBS212-hAFP and empty plasmid groups (37.41±7.34 mm3 vs381.13±15.48 mm3, 817.51±16.25 mm3,P<0.01).CONCLUSION: Sequential immunization with a recombinant DNA vaccine encoding AFP and heat shock protein70 could generate effective AFP-specific T cell responses and induce definite antitumor effects on AFP-producing tumors, which may be suitable for some clinical testing as a vaccine for HCC.

  17. Inheritance of resistance of bovine preimplantation embryos to heat shock: relative importance of the maternal versus paternal contribution.

    Science.gov (United States)

    Block, J; Chase, C C; Hansen, P J

    2002-09-01

    Brahman preimplantation embryos are less affected by exposure to heat shock than Holstein embryos. Two experiments were conducted to test whether the ability of Brahman embryos to resist the deleterious effects of heat shock was a result of the genetic and cellular contributions from the oocyte, spermatozoa, or a combination of both. In the first experiment, Brahman and Holstein oocytes were collected from slaughterhouse ovaries and fertilized with spermatozoa from an Angus bull. A different bull was used for each replicate to eliminate bull effects. On day 4 after fertilization, embryos >or= 9 cells were collected and randomly assigned to control (38.5 degrees C) or heat shock (41 degrees C for 6 hr) treatments. The proportion of embryos developing to the blastocyst (BL) and advanced blastocyst (ABL; expanded and hatched) stages was recorded on day 8. Heat shock reduced the number of embryos produced from Holstein oocytes that developed to BL (P Brahman oocytes (BL = 42.1 +/- 4.8% vs. 55.6 +/- 4.8% for 38.5 and 41 degrees C, respectively; ABL = 17.6 +/- 4.2% vs. 32.4 +/- 4.2%). In the second experiment, oocytes from Holstein cows were fertilized with semen from bulls of either Brahman or Angus breeds. Heat shock of embryos >or= 9 cells reduced development to BL (P Brahman (BL = 54.3 +/- 7.7% vs. 23.4 +/- 7.7%; ABL = 43. +/- 7.4% vs. 7.9 +/- 7.4%, for 38.5 and 41 degrees C, respectively) and Angus bulls (BL = 57.9 +/- 7.7% vs. 31.0 +/- 7.7%; ABL = 33.6 +/- 7.4% vs. 18.4 +/- 7.4%, for 38.5 and 41 degrees C, respectively). There were no breed x temperature interactions. Results suggest that the oocyte plays a more significant role in the resistance of Brahman embryos to the deleterious effects of heat shock than the spermatozoa. PMID:12211058

  18. The role of heat shock protein (HSP as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture

    Directory of Open Access Journals (Sweden)

    Sri Wigati Mardi Mulyani

    2014-03-01

    Full Text Available Background: The concept of stem cell therapy is one of the new hope as a medical therapy on salivary gland defect. However, the lack of viability of the transplanted stem cells survival rate led to the decrease of effectiveness of stem cell therapy. The underlying assumption in the decrease of viability and function of stem cells is an increase of apoptosis incidence. It suggests that the microenvironment in the area of damaged tissues is not conducive to support stem cell viability. One of the microenvironment is the hypoxia condition. Several scientific journals revealed that the administration of hypoxic cell culture can result in stress cells but on the other hand the stress condition of the cells also stimulates heat shock protein 27 (HSP 27 as antiapoptosis through inhibition of caspase 9. Purpose: The purpose of this study was to examine the role of heat shock protein 27 as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Methods: Stem cell culture was performed in hypoxic conditions (O2 1% and measured the resistance to apoptosis through HSP 27 and caspase 9 expression of bone marrow mesenchymal stem cells by using immunoflorecence and real time PCR. Results: The result of study showed that preconditioning hypoxia could inhibit apoptosis through increasing HSP 27 and decreasing level of caspase 9. Conclusion: The study suggested that hypoxic precondition could reduce apoptosis by increasing amount of heat shock protein 27 and decreasing caspase 9.Latar belakang: Konsep terapi stem cell merupakan salah satu harapan baru sebagai terapi medis kelainan kelenjar ludah. Namun, rendahnya viabilitas stem cell yang ditransplantasikan menyebabkan penurunan efektivitas terapi. Asumsi yang mendasari rendahnya viabilitas dan fungsi stem cell adalah tingginya kejadian apoptosis. Hal ini menunjukkan bahwa lingkungan mikro di daerah jaringan yang rusak tidak kondusif untuk mendukung viabilitas stem cell. Salah satu lingkungan

  19. Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory

    Science.gov (United States)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1998-05-01

    Propagation of the shock wave generated during pulsed laser heating of aluminum targets was measured utilizing a probe beam deflection technique. The transit time of the laser-generated shock wave was compared with that predicted from the Sedov-Taylor solution for an ideal spherical blast wave. It was found that the most important parameters for the laser-generated shock wave to be consistent with the theoretically predicted propagation are the ambient pressure and the laser beam spot size. The prediction for laser energy conversion into the laser-induced vapor flow using the Sedov-Taylor solution overestimated the energy coupling efficiency, indicating a difference between a laser-induced gas-dynamic flow and an ideal blast wave.

  20. Investigations on biological functions of heat shock transcription factor 1 (HSF1) using a gene knock out mouse model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    HSF1 is the major heat shock transcription factor that binds heat shock element (HSE) in the promoter of heat shock proteins (HSPs) and controls rapid HSP induction in cells subjected to various stresses such as elevated temperature, chemicals, or exposure to toxins. Although at least four members of the vertebrate HSF have been cloned, details of their individual physiological roles remain relatively obscure. To clarify the exact in vivo functions of HSF1 and assess whether HSF1 exhibits redundant or unique roles, we have created homozygous Hsf1-/- mice using standard gene targeting techniques and isolated Hsf1-/- embryonic fibroblasts. Here we demonstrate that heat shock response (HSR) was not attainable in Hsf1-/- embryonic fibroblasts, and this response was required for thermotolerance and protection against heat-induced apoptosis, and that homozygous Hsf1-/- mice, which survived to adulthood according to genetic background, exhibited multiple phenotypes including: (1) placental defects that reduced embryonic viability after late midgestation (day 13.5); (2) growth retardation; (3) female infertility caused by preimplantation lethality, and (4) increased mortality (+/+ vs -/-, P<0.05) and exaggerated production of proinflammatory cytokine, TNF α (+/- vs -/-, P<0.05) after endotoxin challenge. Interestingly, although Hsf1-/- mice exhibited placental defects and embryonic death, basal HSP expression is not appreciably altered during embryonic development by the HSF1 null mutation, suggesting this factor might be involved in regulating some non-HSP genes or signaling pathways which may be important for development. Taken together, our results established direct causal effects for the HSF1 transactivator in regulating diverse physiological and pathophysiological conditions such as developnent, growth, reproduction, apoptosis and sepsis. The present work also provided a useful mammalian model for further investigating the implications of Hsf1 and its target

  1. The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein

    OpenAIRE

    Shi, Chao; Huang, Xuan; Zhang, Bin; Zhu, Dan; Luo, Huqiao; Lu, Quqin; Xiong, Wen-Cheng; Mei, Lin; Luo, Shiwen

    2015-01-01

    Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the...

  2. Exercise Training-Induced Changes in Inflammatory Mediators and Heat Shock Proteins in Young Tennis Players

    Science.gov (United States)

    Ziemann, Ewa; Zembroñ-Lacny, Agnieszka; Kasperska, Anna; Antosiewicz, Jȩdrzej; Grzywacz, Tomasz; Garsztka, Tomasz; Laskowski, Radoslaw

    2013-01-01

    Heat shock proteins (Hsp) represent proteins’ groups, whose protective function, may be induced by heat, reactive oxygen species, cytokines etc. We evaluated blood levels of Hsp27 and Hsp70, and their relation to skeletal muscle damage and inflammation in young tennis players before and after the conditioning camp. Blood samples were collected directly after tournament season, 3-day rest and 14-day conditioning camp that followed. Hydrogen peroxide (H2O2) demonstrated the highest concentration directly after tournament season, which significantly decreased at camp’s end. The pro-inflammatory cytokines IL-1β and TNFα decreased, whereas anti-inflammatory cytokines IL-6 and IL-10 increased after 3d rest and 14d camp. Hsp27 increased after 3d rest and remained so after 14d camp, while Hsp70 decreased from baseline to camp’s completion. Hsp27 and Hsp70 correlated significantly with H2O2, IL-1β and TNFα. Muscle damage, observed as creatine kinase (CK) activity changes, increased after 14d camp similarly to Hsp27 and anti-inflammatory cytokines IL-6 and IL-10. Obtained data allows to conclude that decrease of Hsp27 and increase in pro-inflammatory cytokines could be a good indicator of overreaching. Reverse tendencies in these proteins may verify accuracy of conditioning camp. Finally, this training program caused an increase in the anti-inflammatory cytokines concentrations, improving individual status of recovery. Key Points The study demonstrating low grade inflammation-induced by the tournament season in young tennis player. Three days of active rest stimulated the anti-inflammatory response via rise of Hsp27 and anti-inflammatory cytokine IL-10. Observed decrease of blood Hsp70 may support mental recovery. Thirteen-day appropriate training program led to maintaining an immunological response balance. PMID:24149807

  3. Skeletal muscle heat shock protein 70: Diverse functions and therapeutic potential for wasting disorders

    Directory of Open Access Journals (Sweden)

    Sarah M Senf

    2013-11-01

    Full Text Available The stress-inducible 70-kDa heat shock protein (HSP70 is a highly conserved protein with diverse intracellular and extracellular functions. In skeletal muscle, HSP70 is rapidly induced in response to both non-damaging and damaging stress stimuli including exercise and acute muscle injuries. This upregulation of HSP70 contributes to the maintenance of muscle fiber integrity and facilitates muscle regeneration and recovery. Conversely, HSP70 expression is decreased during muscle inactivity and aging, and evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile dysfunction and reduced regenerative capacity associated with these conditions. To date, the therapeutic benefit of HSP70 upregulation in skeletal muscle has been established in rodent models of muscle injury, muscle atrophy, modified muscle use, aging, and muscular dystrophy, which highlights HSP70 as a key therapeutic target for the treatment of various conditions which negatively affect skeletal muscle mass and function. This article will review these important findings and provide perspective on the unanswered questions related to HSP70 and skeletal muscle plasticity which require further investigation.

  4. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    Energy Technology Data Exchange (ETDEWEB)

    Munafò, A., E-mail: munafo@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801 (United States); NASA Ames Research Center, Moffett Field, California 94035 (United States); Liu, Y., E-mail: yen.liu@nasa.gov [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, M., E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801 (United States)

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  5. Structures of HSF2 Reveal Mechanisms for Differential Regulation of Human Heat Shock Factors

    Science.gov (United States)

    Jaeger, Alex M.; Pemble, Charles W.; Sistonen, Lea; Thiele, Dennis J.

    2016-01-01

    Heat Shock Transcription Factor (HSF) family members function in stress protection and in human disease including proteopathies, neurodegeneration and cancer. The mechanisms that drive distinct post-translational modifications, co-factor recruitment and target gene activation for specific HSF paralogs are unknown. We present high-resolution crystal structures of the human HSF2 DNA-binding domain (DBD) bound to DNA, revealing an unprecedented view of HSFs that provides insights into their unique biology. The HSF2 DBD structures resolve a novel carboxyl-terminal helix that directs the coiled-coil domain to wrap around DNA, exposing paralog-specific sequences of the DBD surface, for differential post-translational modifications and co-factor interactions. We further demonstrate a direct interaction between HSF1 and HSF2 through their coiled-coil domains. Together, these features provide a new model for HSF structure as the basis for differential and combinatorial regulation to influence the transcriptional response to cellular stress. PMID:26727490

  6. Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Daming eZuo

    2016-03-01

    Full Text Available Heat shock proteins (HSPs of eukaryotes are evolutionarily conserved molecules present in all the major intracellular organelles. They mainly function as molecular chaperones and participate in maintenance of protein homeostasis in physiological state and under stressful conditions. Despite their relative abundance, the large HSPs, i.e., Hsp110 and glucose-regulated protein 170 (Grp170, have received less attention compared to other conventional HSPs. These proteins are distantly related to the Hsp70 and belong to the Hsp70 superfamily. Increased sizes of Hsp110 and Grp170, largely due to the presence of a loop structure, appears to result in their exceptional capability in binding to polypeptide substrates or non-protein ligands, such as pathogen-associated molecules. These interactions that occur in the extracellular environment during tissue injury or microbial infection may lead to amplification of an immune response engaging both innate and adaptive immune components. Here we review the current advances in understanding these large HSPs as molecular chaperones in proteostasis control and immune modulation as well as their therapeutic implications in treatment of cancer and neurodegeneration. Given their unique immunoregulatory activities, we also discuss the emerging evidence of their potential involvement in inflammatory and immune-related diseases.

  7. Antimyeloma Effects of the Heat Shock Protein 70 Molecular Chaperone Inhibitor MAL3-101

    Directory of Open Access Journals (Sweden)

    Marc J. Braunstein

    2011-01-01

    Full Text Available Multiple myeloma (MM is the second most common hematologic malignancy and remains incurable, primarily due to the treatment-refractory/resistant nature of the disease. A rational approach to this compelling challenge is to develop new drugs that act synergistically with existing effective agents. This approach will reduce drug concentrations, avoid treatment resistance, and also improve treatment effectiveness by targeting new and nonredundant pathways in MM. Toward this goal, we examined the antimyeloma effects of MAL3-101, a member of a new class of non-ATP-site inhibitors of the heat shock protein (Hsp 70 molecular chaperone. We discovered that MAL3-101 exhibited antimyeloma effects on MM cell lines in vitro and in vivo in a xenograft plasmacytoma model, as well as on primary tumor cells and bone marrow endothelial cells from myeloma patients. In combination with a proteasome inhibitor, MAL3-101 significantly potentiated the in vitro and in vivo antimyeloma effects. These data support a preclinical rationale for small molecule inhibition of Hsp70 function, either alone or in combination with other agents, as an effective therapeutic strategy for MM.

  8. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  9. ANTIOXIDANT STATUS AND EXPRESSION OF HEAT SHOCK PROTEIN OF COBALT-TREATED PORCINE OVARIAN GRANULOSA CELLS

    Directory of Open Access Journals (Sweden)

    Marcela Capcarová

    2013-02-01

    Full Text Available The aim of this study was to determine the activity of superoxide dismutase (SOD, total antioxidant status (TAS and expression of heat shock protein 70 (Hsp70 of porcine ovarian granulosa cells cultured in vitro after cobalt (Co administrations. Ovarian granulosa cells were incubated with cobalt sulphate administrations as follows: group E1 (0.09 mg.ml-1, group E2 (0.13 mg.ml-1, group E3 (0.17 mg.ml-1, group E4 (0.33 mg.ml-1, group E5 (0.5 mg.ml-1 and the control group without any additions for 18 h. Co administration developed stress reaction and promoted accumulation of Hsp70 what resulted in increasing activity of SOD. TAS of granulosa cells increased with higher doses of Co whereas low doses had no effect on this parameter. Trace elements can adversely affect animal female reproductive system and its functions, through either direct or indirect effects on oxidative stress induction.

  10. A portable, shock-proof, surface-heated droplet PCR system for Escherichia coli detection.

    Science.gov (United States)

    Angus, Scott V; Cho, Soohee; Harshman, Dustin K; Song, Jae-Young; Yoon, Jeong-Yeol

    2015-12-15

    A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 10(3) genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides real-time droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008

  11. Aberrant Expression and Secretion of Heat Shock Protein 90 in Patients with Bullous Pemphigoid

    Science.gov (United States)

    Tukaj, Stefan; Kleszczyński, Konrad; Vafia, Katerina; Groth, Stephanie; Meyersburg, Damian; Trzonkowski, Piotr; Ludwig, Ralf J.; Zillikens, Detlef; Schmidt, Enno; Fischer, Tobias W.; Kasperkiewicz, Michael

    2013-01-01

    The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP), the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i) Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii) in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii) Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv) Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT) cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP. PMID:23936217

  12. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  13. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    International Nuclear Information System (INIS)

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.

  14. Anti-Tumor Effect of Heat Shock Protein 70-Peptide Complexes on A-549 Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the anti-tumor immunity in vitro of heat shock protein 70-peptide complexes (HSP70-PC) from human lung cancer tissue. Methods: HSP70-PC was purified from lung tumor tissues and corresponding non-tumor lung samples with the methods of ADP-affinity chromatography, DEAE ion-exchange chromatography and Western-blot. The activation and proliferation of PBMC induced by different HSP70-PC and tumor cytotoxic reactivity to A549 cells in vitro were measured by the MTT cell proliferation assay. Results: The purified HSP70-PC had a very high purity found by SDS-PAGE and Western-blot. Human lymphocytes were sensitized efficiently by HSP70 preparation purified from lung cancer tissues and a definite cytotoxicity to A-549 cells was observed. There was significant difference with HSP70-PC purified from lung cancer, compared with the control group (P<0.001). Conclusion: High purity of HSP70-PC could be achieved from tumor tissues in this study. HSP70-PC purified from human tumor tissues can induce anti-tumor immunity in vitro mainly implemented by eliciting CTL immunity.

  15. A review of acquired thermotolerance, heat shock proteins, and molecular chaperones in archaea

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.

    1996-05-01

    Acquired thermotolerance, the associated synthesis of heat-shock proteins (HSPs) under stress conditions, and the role of HSPs as molecular chaperones under normal growth conditions have been studied extensively in eukaryotes and bacteria, whereas research in these areas in archaea is only beginning. All organisms have evolved a variety of strategies for coping with high-temperature stress, and among these strategies is the increased synthesis of HSPs. The facts that both high temperatures and chemical stresses induce the HSPs and that some of the HSPs recognize and bind to unfolded proteins in vitro have led to the theory that the function of HSPs is to prevent protein aggregation in vivo. The facts that some HSPs are abundant under normal growth conditions and that they assist in protein folding in vitro have led to the theory that they assist protein folding in vivo; in this role, they are referred to as molecular chaperones. The limited research on acquired thermotolerance, HSPs, and molecular chaperones in archaea, particularly the hyperthermophilic archaea, suggests that these extremophiles provide a new perspective in these areas of research, both because they are members of a separate phylogenetic domain and because they have evolved to live under extreme conditions.

  16. Signaling mechanisms in alcoholic liver injury: Role of transcription factors,kinases and heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alcoholic liver injury comprises of interactions of various intracellular signaling events in the liver. Innate immune responses in the resident Kupffer cells of the liver, oxidative stress-induced activation of hepatocytes,fibrotic events in liver stellate cells and activation of liver sinusoidal endothelial cells all contribute to alcoholic liver injury. The signaling mechanisms associated with alcoholic liver injury vary based on the cell type involved and the extent of alcohol consumption. In this review we will elucidate the oxidative stress and signaling pathways affected by alcohol in hepatocytes and Kupffer cells in the liver by alcohol. The toll-like receptors and their down-stream signaling events that play an important role in alcohol-induced inflammation will be discussed. Alcohol-induced alterations of various intracellular transcription factors such as NFκB, PPARs and AP-1, as well as MAPK kinases in hepatocytes and macrophages leading to induction of target genes that contribute to liver injury will be reviewed. Finally, we will discuss the significance of heat shock proteins as chaperones and their functional regulation in the liver that could provide new mechanistic insights into the contributions of stress-induced signaling mechanisms in alcoholic liver injury.

  17. Phylogenetic analysis of the Trypanosoma genus based on the heat-shock protein 70 gene.

    Science.gov (United States)

    Fraga, Jorge; Fernández-Calienes, Aymé; Montalvo, Ana Margarita; Maes, Ilse; Deborggraeve, Stijn; Büscher, Philippe; Dujardin, Jean-Claude; Van der Auwera, Gert

    2016-09-01

    Trypanosome evolution was so far essentially studied on the basis of phylogenetic analyses of small subunit ribosomal RNA (SSU-rRNA) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes. We used for the first time the 70kDa heat-shock protein gene (hsp70) to investigate the phylogenetic relationships among 11 Trypanosoma species on the basis of 1380 nucleotides from 76 sequences corresponding to 65 strains. We also constructed a phylogeny based on combined datasets of SSU-rDNA, gGAPDH and hsp70 sequences. The obtained clusters can be correlated with the sections and subgenus classifications of mammal-infecting trypanosomes except for Trypanosoma theileri and Trypanosoma rangeli. Our analysis supports the classification of Trypanosoma species into clades rather than in sections and subgenera, some of which being polyphyletic. Nine clades were recognized: Trypanosoma carassi, Trypanosoma congolense, Trypanosoma cruzi, Trypanosoma grayi, Trypanosoma lewisi, T. rangeli, T. theileri, Trypanosoma vivax and Trypanozoon. These results are consistent with existing knowledge of the genus' phylogeny. Within the T. cruzi clade, three groups of T. cruzi discrete typing units could be clearly distinguished, corresponding to TcI, TcIII, and TcII+V+VI, while support for TcIV was lacking. Phylogenetic analyses based on hsp70 demonstrated that this molecular marker can be applied for discriminating most of the Trypanosoma species and clades. PMID:27180897

  18. Heat shock protein 27 expression in the human testis showing normal and abnormal spermatogenesis.

    Science.gov (United States)

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk A

    2008-10-01

    Heat shock proteins (HSPs) are molecular chaperones involved in protein folding, assembly and transport, and which play critical roles in the regulation of cell growth, survival and differentiation. We set out to test the hypothesis that HSP27 protein is expressed in the human testes and its expression varies with the state of spermatogenesis. HSP27 expression was examined in 30 human testicular biopsy specimens (normal spermatogenesis, maturation arrest and Sertoli cell only syndrome, 10 cases each) using immunofluorescent methods. The biopsies were obtained from patients undergoing investigations for infertility. The seminiferous epithelium of the human testes showing normal spermatogenesis had a cell type-specific expression of HSP27. HSP27 expression was strong in the cytoplasm of the Sertoli cells, spermatogonia, and Leydig cells. Alternatively, the expression was moderate in the spermatocytes, weak in the spermatids and absent in the spermatozoa. In testes showing maturation arrest, HSP27 expression was strong in the Sertoli cells, weak in the spermatogonia, and spermatocytes. It was absent in the spermatids and Leydig cells. In Sertoli cell only syndrome, HSP27 expression was strong in the Sertoli cells and absent in the Leydig cells. We report for the first time the expression patterns of HSP27 in the human testes and show differential expression during normal spermatogenesis, indicating a possible role in this process. The altered expression of this protein in testes showing abnormal spermatogenesis may be related to the pathogenesis of male infertility.

  19. Molecular characterization of the heat shock protein 70 gene in Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Zhang, Bin; Han, Xiao; Yue, Hua; Tang, Cheng

    2013-10-01

    Mycoplasma ovipneumoniae is a species of mycoplasma bacteria that commonly infects the respiratory tract, causing respiratory disease in sheep and goats worldwide. In the current study, the 70-kDa heat shock protein (Hsp70) gene was cloned, sequenced and analyzed in 14 clinical isolates of M. ovipneumoniae. Results showed that, compared to the reference Y98 strain, the open-reading frames (ORFs) of Hsp70 gene in all isolates were 1818 base pairs (bp). Three nucleotides of TCA were inserted at 1,776 bp, resulting in insertion of the amino acid glutamine at amino acid position 593. The neighbor-joining trees, constructed using the Hsp70 gene, exhibited that the closest genetic relationship occurred between M. ovipneumoniae and Mycoplasma hyopneumoniae, which was consistent with the one based on the whole genome comparisons between these two mycoplasma species. Therefore, these results suggest that the Hsp70 gene, rather than 16S ribosomal RNA, was suitable as a potential molecular marker for evaluating the genetic relationship of M. ovipneumoniae with other bacterial species.

  20. Specific protein homeostatic functions of small heat-shock proteins increase lifespan.

    Science.gov (United States)

    Vos, Michel J; Carra, Serena; Kanon, Bart; Bosveld, Floris; Klauke, Karin; Sibon, Ody C M; Kampinga, Harm H

    2016-04-01

    During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress-denatured substrates and/or to prevent aggregation of disease-associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70-dependent refolding of stress-denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70-independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.

  1. Heat Shock Protein 72 Antagonizes STAT3 Signaling to Inhibit Fibroblast Accumulation in Renal Fibrogenesis.

    Science.gov (United States)

    Zhou, Yi; Cao, Shirong; Li, Huiyan; Peng, Xuan; Wang, Yating; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping

    2016-04-01

    Heat shock protein 72 (HSP72) has been shown to attenuate unilateral ureteral obstruction-induced kidney fibrosis. It remains unknown whether HSP72 has direct effects on fibroblast proliferation in the renal fibrotic evolution. Herein, we first confirmed that increased HSP72 expression occurred in fibrotic human kidneys. Using three different animal models of kidney fibrosis, pharmacological down-regulation or genetic deletion of endogenous HSP72 expression exacerbated STAT3 phosphorylation, fibroblast proliferation, and tubulointerstitial fibrosis. In contrast, treatment with geranylgeranyl acetone, a specific inducer of HSP72, reduced phosphorylated STAT3 and protected animals from kidney fibrosis. In cultured renal interstitial fibroblasts, overexpression of HSP72 blocked transforming growth factor (TGF)-β1-induced cell activation and proliferation, as evidenced by inhibiting expression of α-smooth muscle actin, fibronectin, and collagen I/III, as well as by reducing cell numbers and DNA synthesis. Mechanical studies showed that overexpressed HSP72 attenuated TGF-β-induced phosphorylation and nuclear translocation of STAT3 and its downstream protein expression. However, siRNA knockdown of HSP72 increased TGF-β-induced STAT3 activity and fibroblast proliferation. Ectopic expression of a constitutively active STAT3 conferred resistance to HSP72 inhibition of fibroblast proliferation. Thus, HSP72 blocks fibroblast activation and proliferation in renal fibrosis via targeting the STAT3 pathway and may serve as a novel therapeutic agent for chronic kidney disease regardless of the etiology. PMID:26851345

  2. Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I

    Energy Technology Data Exchange (ETDEWEB)

    Angileri, Francesca; Morrow, Geneviève; Roy, Vincent; Orejuela, Diana; Tanguay, Robert M., E-mail: robert.tanguay@ibis.ulaval.ca [Laboratory of Cell and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Institut de Biologie Intégrative et des Systèmes (IBIS) and PROTEO, 1030 avenue de la médecine, Université Laval, Québec G1V 0A6 (Canada)

    2014-04-23

    Hereditary Tyrosinemia type 1 (HT1) is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH), an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3-dione). However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC) are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs) in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC.

  3. Heat shock protein B1-deficient mice display impaired wound healing.

    Directory of Open Access Journals (Sweden)

    Jonathan Crowe

    Full Text Available There is large literature describing in vitro experiments on heat shock protein (hspB1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27(kip1 and p21(waf1. The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation.

  4. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Kuo, Rei-Lin [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Ma, Wei-Chieh [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Hsing-I [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yu, Jau-Song [Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yen, Sih-Min [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Chi-Ruei [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Shih, Shin-Ru [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  5. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma.

    Science.gov (United States)

    Aghdassi, Ali; Phillips, Phoebe; Dudeja, Vikas; Dhaulakhandi, Dhara; Sharif, Rifat; Dawra, Rajinder; Lerch, Markus M; Saluja, Ashok

    2007-01-15

    Pancreatic carcinoma is a malignant disease that responds poorly to chemotherapy because of its resistance to apoptosis. Heat shock proteins (Hsp) are not only cytoprotective but also interfere with the apoptotic cascade. Here, we investigated the role of Hsp70 in regulating apoptosis in pancreatic cancer cells. Hsp70 expression was increased in pancreatic cancer cells compared with normal pancreatic ductal cells. This was confirmed by increased mRNA levels for Hsp70 in human pancreatic cancer tissue compared with neighboring normal tissue from the same patient. Depletion of Hsp70 by quercetin decreased cell viability and induced apoptosis in cancer cells but not in normal pancreatic ductal cells. To show that this is a specific effect of Hsp70 on apoptosis, levels of Hsp70 were knocked down by short interfering RNA treatment, which also induced apoptosis in cancer cells as indicated by Annexin V staining and caspase activation. Daily administration of quercetin to nude mice decreased tumor size as well as Hsp70 levels in tumor tissue. These findings indicate that Hsp70 plays an important role in apoptosis and that selective Hsp70 knockdown can be used to induce apoptosis in pancreatic cancer cells. PMID:17234771

  6. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans.

    Directory of Open Access Journals (Sweden)

    Martin L Duennwald

    Full Text Available How small heat shock proteins (sHsps might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.

  7. Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid.

    Directory of Open Access Journals (Sweden)

    Stefan Tukaj

    Full Text Available The cell stress chaperone heat shock protein 90 (Hsp90 has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP, the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP.

  8. Protective effect of doxorubicin induced heat shock protein 72 on cold preservation injury of rat livers

    Institute of Scientific and Technical Information of China (English)

    Hao Chen; Ying-Yan Yu; Ming-Jun Zhang; Xia-Xing Deng; Wei-Ping Yang; Jun Ji; Cheng-Hong Peng; Hong-Wei Li

    2004-01-01

    AIM: To observe the protective effect of heat shock protein 72 (HSP 72) induced by pretreatment of doxorubicin (DXR)on long-term cold preservation injury of rat livers.METHODS: Sprague-Dawley rats were administered intravenously DXR at a dose of 1 mg/kg body mass in DXR group and saline in control group. After 48 h, the rat liver was perfused with cold Linger′s and University of Wisconsin (UW) solutions and then was preserved in UW solution at 4 ℃ for 24, 36 and 48 h. AST, ALT, LDH and hyaluronic acid in preservative solution were determined. Routine HE,immunohistochemical staining for HSP 72 and electron microscopic examination of hepatic tissues were performed.RESULTS: After 24, 36 and 48 h, the levels of AST, ALT and hyaluronic acid in preservative solution were significantly higher in control group than in DXR group (P<0.05), while LDH level was not significantly different between the 2 groups (P>0.05). Hepatic tissues in DXR group were morphologically normal and significantly injured in control group. HSP 72was expressed in hepatocytes and sinusoidal endothelial cells in DXR group but not in control group.CONCLUSION: Pretreatment of DXR may extend the time of rat liver cold preservation and keep liver alive. The expression of HSP 72 in liver can prevent hepatocytes and sinusoidal endothelial cells from long-term cold preservation injury.

  9. Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60.

    Directory of Open Access Journals (Sweden)

    Joost A Aalberse

    Full Text Available BACKGROUND: To prevent harmful autoimmunity most immune responses to self proteins are controlled by central and peripheral tolerance. T cells specific for a limited set of self-proteins such as human heat shock protein 60 (HSP60 may contribute to peripheral tolerance. It is not known whether HSP60-specific T cells are present at birth and thus may play a role in neonatal tolerance. We studied whether self-HSP60 reactive T cells are present in cord blood, and if so, what phenotype these cells have. METHODOLOGY/PRINCIPAL FINDINGS: Cord blood mononuclear cells (CBMC of healthy, full term neonates (n = 21, were cultured with HSP60 and Tetanus Toxoid (TT to study antigen specific proliferation, cytokine secretion and up-regulation of surface markers. The functional capacity of HSP60-induced T cells was determined with in vitro suppression assays. Stimulation of CBMC with HSP60 led to CD4(+ T cell proliferation and the production of various cytokines, most notably IL-10, Interferon-gamma, and IL-6. HSP60-induced T cells expressed FOXP3 and suppressed effector T cell responses in vitro. CONCLUSION: Self-reactive HSP60 specific T cells are already present at birth. Upon stimulation with self-HSP60 these cells proliferate, produce cytokines and express FOXP3. These cells function as suppressor cells in vitro and thus they may be involved in the regulation of neonatal immune responses.

  10. Fast electron heating of shock compressed solids at high intensities relevant to fast ignition

    International Nuclear Information System (INIS)

    This report describes the experiment entitled 'Fast electron heating of shock compressed solids at high intensities relevant to fast ignition'; carried out at the Central Laser Facility (CLF) from the 5th January to the 15th February 1997. The experiment, funded by the Framework IV Large-Scale Facilities Access Scheme, was proposed by Dr. D. Batani, University of Milan, Italy and carried out by visiting researchers from the University and Ecole Polytechnique, Palaiseau, France. They were supported by UK researchers from the University of Essex, the University of Bristol and the Central Laser Facility, Rutherford Appleton Laboratory. Experimental results: (i) The experiment demonstrated the first results for fast electron deposition in compressed matter. The irradiances used in these experiments are lower than would be used in the fast ignitor scheme but the significance of the results is, nevertheless very relevant to this scheme. (ii) It is shown that in the experiments presented here that ionised, compressed plastic is less effective at stopping the fast electrons than uncompressed, unionised plastic. The stopping power of the compressed material is reduced by a factor of two (in areal density units) over the uncompressed materials. (iii) These experiments are the first measurements of electron stopping power in compressed plasmas but further experiments with more highly compressed plasmas are necessary before the results may be safely extrapolated to fast ignitor conditions. (author)

  11. Absence of force suppression in rabbit bladder correlates with low expression of heat shock protein 20

    Directory of Open Access Journals (Sweden)

    Murphy Richard A

    2005-11-01

    Full Text Available Abstract Background Nitroglycerin can induce relaxation of swine carotid artery without sustained reductions in [Ca2+]i or myosin regulatory light chain (MRLC phosphorylation. This has been termed force suppression and been found to correlate with ser16-phosphorylation of heat shock protein 20 (HSP20. We tested for the existence of this mechanism in a smooth muscle that is not responsive to nitric oxide. Methods Isometrically mounted mucosa free rabbit bladder strips were contracted with carbachol and relaxed with 8-Br-cGMP, forskolin, or isoprenaline. Results Contraction was associated with a highly cooperative relation between MRLC phosphorylation and force such that very small increases in MRLC phosphorylation induced large increases in force. Relaxation induced by 8-Br-cGMP, forskolin, or isoprenaline did not shift the MRLC phosphorylation-force relation from that observed with carbachol alone, i.e. there was no force suppression. HSP20 content was negligible (approximately two hundred-fold less than swine carotid. Conclusion The lack of force suppression in the absence of HSP20 is consistent with the hypothesized role for HSP20 in the force suppression observed in tonic smooth muscles.

  12. Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis.

    Science.gov (United States)

    Morfoisse, Florent; Tatin, Florence; Hantelys, Fransky; Adoue, Aurelien; Helfer, Anne-Catherine; Cassant-Sourdy, Stephanie; Pujol, Françoise; Gomez-Brouchet, Anne; Ligat, Laetitia; Lopez, Frederic; Pyronnet, Stephane; Courty, Jose; Guillermet-Guibert, Julie; Marzi, Stefano; Schneider, Robert J; Prats, Anne-Catherine; Garmy-Susini, Barbara H

    2016-08-01

    The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR. PMID:27280395

  13. Detrimental Effect of Fungal 60-kDa Heat Shock Protein on Experimental Paracoccidioides brasiliensis Infection

    Science.gov (United States)

    Fernandes, Fabrício Freitas; de Oliveira, Leandro Licursi; Landgraf, Taise Natali; Peron, Gabriela; Costa, Marcelo Vieira; Coelho-Castelo, Arlete A. M.; Bonato, Vânia L. D.; Roque-Barreira, Maria-Cristina; Panunto-Castelo, Ademilson

    2016-01-01

    The genus Paracoccidioides comprises species of dimorphic fungi that cause paracoccidioidomycosis (PCM), a systemic disease prevalent in Latin America. Here, we investigated whether administration of native 60-kDa heat shock protein of P. brasiliensis (nPbHsp60) or its recombinant counterpart (rPbHsp60) affected the course of experimental PCM. Mice were subcutaneously injected with nPbHsp60 or rPbHsp60 emulsified in complete’s Freund Adjuvant (CFA) at three weeks after intravenous injection of P. brasiliensis yeasts. Infected control mice were injected with CFA or isotonic saline solution alone. Thirty days after the nPbHsp60 or rPbHsp60 administration, mice showed remarkably increased fungal load, tissue inflammation, and granulomas in the lungs, liver, and spleen compared with control mice. Further, rPbHsp60 treatment (i) decreased the known protective effect of CFA against PCM and (ii) increased the concentrations of IL-17, TNF-α, IL-12, IFN-γ, IL-4, IL-10, and TGF-β in the lungs. Together, our results indicated that PbHsp60 induced a harmful immune response, exacerbated inflammation, and promoted fungal dissemination. Therefore, we propose that PbHsp60 contributes to the fungal pathogenesis. PMID:27598463

  14. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway.

    Science.gov (United States)

    Cohen-Sfady, Michal; Nussbaum, Gabriel; Pevsner-Fischer, Meirav; Mor, Felix; Carmi, Pnina; Zanin-Zhorov, Alexandra; Lider, Ofer; Cohen, Irun R

    2005-09-15

    We recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses. PMID:16148103

  15. Geranylgeranylacetone attenuates hepatic fibrosis by increasing the expression of heat shock protein 70.

    Science.gov (United States)

    He, Wei; Zhuang, Yun; Wang, Liangzhi; Qi, Lei; Chen, Binfang; Wang, Mei; Shao, Dong; Chen, Jianping

    2015-10-01

    Increasing evidence has demonstrated that the heat shock protein 70 (HSP70) gene may be closely associated with tissue fibrosis; however, the association between HSP70 and liver fibrosis remains to be fully elucidated. The present study hypothesized that geranylgeranylacetone (GGA) exerts beneficial effects on liver fibrosis though upregulation of the expression of HSP70. Liver fibrosis was induced in rats using carbon tetrachloride (CCl4). The rats were subsequently divided into three groups: Control group, CCl4 model group and CCl4 model + GGA group. Liver fibrosis in the rats was evaluated using hematoxylin and eosin staining, Masson's trichrome staining and Sirius red staining. The levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin were determined using an automated biochemistry analyzer. The levels of total hepatic hydroxyproline were also determined. The expression levels of α‑smooth muscle actin (α‑SMA) and transforming growth factor‑β1 (TGF‑β1) were determined using immunofluorescence staining and western blotting, and the protein expression levels of HSP70 were determined using western blotting. The CCl4‑induced rats exhibited liver fibrosis, increased hydroxyproline content, impaired liver function, upregulated expression levels of the α‑SMA and TGF‑β1 pro‑fibrogenic proteins, and increased expression of HSP70, compared with the control group. These changes were attenuated by treatment with GGA. These results demonstrated that GGA exerted beneficial effects in CCl4‑induced liver fibrosis via upregulating the expression of HSP70. PMID:26165998

  16. Heat Shock Protein-70 Expression in Vitiligo and its Relation to the Disease Activity

    Science.gov (United States)

    Doss, Reham William; El-Rifaie, Abdel-Aziz A; Abdel-Wahab, Amr M; Gohary, Yasser M; Rashed, Laila A

    2016-01-01

    Background: Vitiligo is a progressive depigmenting disorder characterized by the loss of functional melanocytes from the epidermis. The etiopathogenesis of vitiligo is still unclear. Heat shock proteins (HSPs) are prime candidates to connect stress to the skin. HSPs were found to be implicated in autoimmune diseases such as rheumatoid arthritis and other skin disorders as psoriasis. Aim and Objectives: The aim of this study was to map the level of HSP-70 in vitiligo lesions to declare its role in the pathogenesis and activity of vitiligo. Materials and Methods: The study included thirty patients with vitiligo and 30 age- and sex-matched healthy controls. Vitiligo patients were divided as regards to the disease activity into highly active, moderately active, and inactive vitiligo groups. Skin biopsies were taken from the lesional and nonlesional skin of patients and from the normal skin of the controls. HSP-70 messenger RNA (mRNA) expression was estimated using quantitative real-time polymerase chain reaction. Results: Our analysis revealed a significantly higher expression of HSP-70 mRNA in lesional skin biopsies from vitiligo patients compared to nonlesional skin biopsies from vitiligo patients (P vitiligo showed higher mean HSP-70 level compared to those with inactive disease. Conclusions: HSP-70 plays a role in the pathogenesis of vitiligo and may enhance the immune response in active disease.

  17. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Si [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); He, Pei-Juin [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Tsai, Nu-Man [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Li, Chi-Han; Yang, Shang-Chih; Hsu, Wei-Tung [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Wu, Ming-Shiang [Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Wu, Chang-Jer [Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (China); Cheng, Tain-Lu [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liao, Kuang-Wen, E-mail: kitchhen@yahoo.com.tw [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China)

    2010-02-05

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.

  18. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process

    Directory of Open Access Journals (Sweden)

    Genevieve eMorrow

    2015-03-01

    Full Text Available Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC. Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species (ROS scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22 is part of the molecular chaperone axis of the PQC and is characterized by its intra-mitochondrial localization and preferential expression during aging. As a stress biomarker, the level of its expression during aging has been shown to partially predict the remaining lifespan of flies. Since over-expression of this small heat shock protein (sHSP increases lifespan and resistance to stress, Hsp22 most likely has a positive effect on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the mitochondrial unfolding protein response (mtUPR of flies. This review will summarize the key findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.

  19. Is there any relationship between polymorphism of Heat Shock Protein 70 genes and Pemphigus foliaceus?

    Science.gov (United States)

    Toumi, Amina; Abida, O; Ben-Ayed, M; Masmoudi, A; Turki, H; Masmoudi, H

    2015-04-01

    The human Heat Shock Proteins (HSP70) family plays a key role in up-regulating stress responses. Some studies reported possible associations of single nucleotide polymorphisms in the HSP70 genes with some autoimmune diseases. However, whether HSP70 polymorphisms represent a risk factor for pemphigus foliaceus (PF) is still unkown. We analyzed by PCR-RFLP polymorphisms of HSP70 genes HSA1A, HSPA1B and HSPA1L in 80 Tunisian patients with PF, 160 matched healthy controls and 147 related healthy subjects. There were significant differences between PF patients and controls in the allelic (pc=5.91×10(-12), pc=1.14×10(-5) and pc=0.0089, respectively) and homozygous genotypic frequencies of HSPA1L>T, HSPA1A>C and HSPA1B>G (p=2.617×10(-12), p=1.017×10(-5) and p=0.0058, respectively). Haplotype analysis showed significant differences between PF patients and controls: the CCA, CGA, CCG and CGG haplotypes were significantly over-represented in controls whereas the TCG haplotype was significantly over-represented in patients. However, the significant LD found between the HSP70 and the HLA class II susceptibility alleles together with the multivariant regression analysis data between the two loci could argue against a direct role of the HSP70 polymorphism in the occurrence of PF. PMID:25687737

  20. Expression profile of heat shock protein 70 in indigenous Huainan partridge chicken exposed to low temperature

    Directory of Open Access Journals (Sweden)

    Xing Yong Chen

    2014-04-01

    Full Text Available It is clear that heat shock protein 70 (HSP70 is responsible for stressful conditions. However, the expression level and profile of HSP70 during cold stress are still unknown. In this study, the expression profile of HSP70 in the heart, liver, muscle and spleen of Huainan partridge chicken exposed to low temperature was investigated. HSP70 expression was showed tissue-dependent with highest expression in muscle, followed by liver and heart; conversely, there was no evidence of changes in spleen, where there were two expression peaks during cold stress, before 3 and after 72 h, respectively. The plasma creatine kinase (CK activity exhibited a significant increase (P<0.01 after 1 h of cold stress exposure, and then decreased till to the lowest level after 72 h of cold stress exposure. On the other hand, nitric oxide content arose and reached the peak level (P<0.01 after 3 h of cold stress exposure, and then suddenly decreased to the original level with the duration of exposure time. In conclusion, mRNA expression of HSP70 turned out to be tissueand time-dependent in muscle, liver and heart in broilers under cold stress exposure. The distinct expression of HSP70 suggested that highenergy supply and balance of CK activity might be responsible for the HSP70 high expression.

  1. Heat Shock Response Associated with Hepatocarcinogenesis in a Murine Model of Hereditary Tyrosinemia Type I

    Directory of Open Access Journals (Sweden)

    Francesca Angileri

    2014-04-01

    Full Text Available Hereditary Tyrosinemia type 1 (HT1 is a metabolic liver disease caused by genetic defects of fumarylacetoacetate hydrolase (FAH, an enzyme necessary to complete the breakdown of tyrosine. The severe hepatic dysfunction caused by the lack of this enzyme is prevented by the therapeutic use of NTBC (2-[2-nitro-4-(trifluoromethylbenzoyl] cyclohexane-1,3-dione. However despite the treatment, chronic hepatopathy and development of hepatocellular carcinoma (HCC are still observed in some HT1 patients. Growing evidence show the important role of heat shock proteins (HSPs in many cellular processes and their involvement in pathological diseases including cancer. Their survival-promoting effect by modulation of the apoptotic machinery is often correlated with poor prognosis and resistance to therapy in a number of cancers. Here, we sought to gain insight into the pathophysiological mechanisms associated with liver dysfunction and tumor development in a murine model of HT1. Differential gene expression patterns in livers of mice under HT1 stress, induced by drug retrieval, have shown deregulation of stress and cell death resistance genes. Among them, genes coding for HSPB and HSPA members, and for anti-apoptotic BCL-2 related mitochondrial proteins were associated with the hepatocarcinogenetic process. Our data highlight the variation of stress pathways related to HT1 hepatocarcinogenesis suggesting the role of HSPs in rendering tyrosinemia-affected liver susceptible to the development of HCC.

  2. Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani.

    Science.gov (United States)

    Raina, Puneet; Kaur, Sukhbir

    2006-09-01

    The present study investigates the role of apoptosis in the regulation of cell numbers of Leishmania donovani during the in vitro differentiation of promastigote stage to amastigote stage in axenic conditions. We report that apoptosis is induced in Leishmania donovani due to chronic heat-shock treatment of 37 ( degrees )C that also mediates the differentiation of promastigotes to amastigotes. This is characterized by the fragmentation of DNA, blebbing in the parasite cell membrane, nuclear condensation, formation of preapoptotic bodies and involvement of Ca(++) in the apoptotic process. The flowcytometric analysis shows an early and steep rise in percentage apoptotic nuclei till 48-hour stage of differentiation and then a gradual decline, suggesting synergistic action of Ca(++) ATPase and probably Hsp70. Hsp70 might be rescuing cells from apoptosis in the death signaling pathway. Incubation of the culture with Ca(++) chelator EGTA (1 mM) brings down the percentage of apoptotic nuclei considerably showing thereby that calcium is needed for the process of cell death here that occurs by apoptosis. The survival of the infective individuals appears to be decided by the parasite in the early stages of its differentiation. Our studies show the potential of the physiological temperature of 37 ( degrees )C in inducing apoptosis in Leishmania donovani and the therapeutic use it can be put to. PMID:16718376

  3. Heat shock protein 90β: A novel mediator of vitamin D action

    International Nuclear Information System (INIS)

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90β expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90β by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%, respectively, in Hsp90β-deficient cells. Nuclear protein for VDR and RXRα, its heterodimer partner, were not reduced in Hsp90β-deficient cells. These findings indicate that Hsp90β is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90β in VDR signaling

  4. Heat Shock-Induced Three-Dimensional-Like Proliferation of Normal Human Fibroblasts Mediated by Pressed Silk

    Directory of Open Access Journals (Sweden)

    Shigeki Inoue

    2009-11-01

    Full Text Available The aim of this study was to determine the optimal heat treatment conditions for enhancement of pressed silk-mediated 3D-like proliferation of normal human dermal fibroblasts, as well as to determine the responses to heat shock of cells and intracellular signaling pathways. The beginning of 3D-like pattern formation of cells was observed in the second week after the start of the experiment. The mean rates of beginning of 3D-like pattern formation by cells heat-treated at 40 ºC and 43 ºC for 10 min were significantly higher (3.2- and 8.6-fold, respectively than that of untreated cells. We found that apoptosis had occurred in 7.5% and 50.0% of the cells at one week after heat treatment for 10 min at 43 ºC and 45 ºC, respectively. Western blot analysis demonstrated that phosphorylation of p38 MAPK and that of Hsp27 were markedly increased by heat treatment at 43 ºC for 10 min. The results of an experiment using a p38 MAPK inhibitor and Hsp27 inhibitor suggest that activation of p38 MAPK by heat shock is associated with 3D-like cell proliferation and that Hsp27 contributes to the inhibition of apoptosis. The results of this study should be useful for further studies aimed at elucidation of the physiologic mechanisms underlying thermotherapy.

  5. Measuring the shock-heating rate in the winds of O stars using X-ray line spectra

    CERN Document Server

    Cohen, David H; Gayley, Kenneth G; Owocki, Stanley P; Sundqvist, Jon O; Petit, Veronique; Leutenegger, Maurice A

    2014-01-01

    We present a new method for using measured X-ray emission line fluxes from O stars to determine the shock-heating rate due to instabilities in their radiation-driven winds. The high densities of these winds means that their embedded shocks quickly cool by local radiative emission, while cooling by expansion should be negligible. Ignoring for simplicity any non-radiative mixing or conductive cooling, the method presented here exploits the idea that the cooling post-shock plasma systematically passes through the temperature characteristic of distinct emission lines in the X-ray spectrum. In this way, the observed flux distribution among these X-ray lines can be used to construct the cumulative probability distribution of shock strengths that a typical wind parcel encounters as it advects through the wind. We apply this new method (Gayley 2014) to Chandra grating spectra from five O stars with X-ray emission indicative of embedded wind shocks in effectively single massive stars. Correcting for wind absorption of...

  6. A contribution to the investigation of the heat load of shock absorbers of semi-active suspensions in motor vehicles

    Directory of Open Access Journals (Sweden)

    Miroslav D. Demić

    2013-10-01

    Full Text Available Dynamic simulation, based on modeling, has a significant role during the process of vehicle development. It is especially important in the first stages of vehicle design, when relevant vehicle parameters are to be defined. Shock absorbers as executive parts of vehicle semi-active suspension systems suffer thermal loads, which may result in damage and degradation of ther characteristics. Therefore,this paper shows an attempt to analyze converting of mechanical work into heat by using the dynamic simulation method. Introduction Shock absorbers are integral elements of semi-active suspension systems for vehicles (hereinafter SASS. They directly affect the active vehicle safety. The role of shock absorbers is to absorb mechanical vibrations transferred from the road and to ensure the safety of passengers in a vehicle. The kinetic energy of vehicle vibrations transforms into mechanical work or heat in shock absorbers. In practice, in the first stage of vehicle development, the shock absorber parameters are chosen from the condition of damping vibrations of vehicles, but their thermal shock loads should be also taken into account. Motor vehicles have complex dynamic characteristics manifested by spatial movement, parameters change during operation, a number of disturbing influences, backlash, friction, hysteresis, etc. The above-mentioned dynamic phenomena, especially vibration, lead to fatigue of driver and users, reduce the life of the vehicle and its systems, etc. The main objective of the system is to reduce the reliance of the above-mentioned negative effects, improving the vehicle behavior on the road and allow the exploitation of vehicles in a wide range of service conditions. Classical systems cannot satisfiy these conditions, so there was a need to introduce new suspension systems with controlled characteristics (briefly called "semi-active", or "active" systems. Oscillatory model of vehicle The differential equations of vibratory motion of

  7. Structure of the Contact Region and its Application to the Reflexion of a Plane Shock Wave from a Heat Conducting Wall

    Directory of Open Access Journals (Sweden)

    B. C. Pandey

    1970-07-01

    Full Text Available A study of the structure of the contact region has been made taking into account the effects of viscosity, heat conduction and radiative heat transfer. Analytical solutions for the temperature, velocity and pressure distributions in a uniformly moving contact region have been obtained under the optically thick-gas approximation when the thermal conductivity and absorption coefficients are given by power laws. Applying the analysis of the contact region to the situation when a plane shock is reflected from a plane heat-conducting wall it has been shown that the reflected shock is attenuated due to the combined effects of molecular heat conduction and radiative heat conduction.

  8. Diploid Gynogenesis Induced by Heat Shock after Activation with UV-Irradiated Sperm in Rainbow Trout (Oncorhynchus Mykiss

    Directory of Open Access Journals (Sweden)

    Ioan Bencsik

    2011-05-01

    Full Text Available Gynogenesis is a technique used to generate diploid individuals with genetic material exclusively of maternal origin. In this study we test the hypothesis that heat shock treatment of rainbow trout eggs, activated with UV irradiated sperms, leads to the generation of a uniform populations of diploid gynogenetic females. Activation of fertilized eggs with UV irradiated semen, by heat shock at 27.5°C for 10 min. directly after fertilization induces diploid gynogenesis. Diploid individuals are obtained at a rate of 73.33%. Triploid individuals are obtained at a rate of 26.67%. The enhanced number of triploid individuals may be due to insufficient irradiation of heritable material of sperm.

  9. Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration

    International Nuclear Information System (INIS)

    The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Numerical Analysis on Standing Accretion Shock Instability with Neutrino Heating in the Supernova Cores

    OpenAIRE

    Ohnishi, Naofumi; Kotake, Kei; Yamada, Shoichi

    2005-01-01

    We have numerically studied the instability of the spherically symmetric standing accretion shock wave against non-spherical perturbations. We have in mind the application to the collapse-driven supernovae in the post bounce phase, where the prompt shock wave generated by core bounce is commonly stalled. We take an experimental stand point in this paper. Using spherically symmetric, completely steady, shocked accretion flows as unperturbed states, we have clearly observed both the linear grow...

  11. Heat Shock Protein 72 Protects Retinal Ganglion Cells in Rat Model of Acute Glaucoma

    Institute of Scientific and Technical Information of China (English)

    Guoping Qing; Xuanchu Duan; Youqin Jiang

    2005-01-01

    Purpose: To investigate whether the induction of heat shock protein (HSP)72 by heat stress (HS) or zinc (Zn2+ ) administration can increase survival of retinal ganglion cells (RGC) in rat model of acute experimental glaucoma.Methods: Acute glaucoma model was made by intracameral irrigation with BSS at 102 mmHg for two hours in right eyes of male Wistar rats. Glaucoma model rats were treated with HS once a week (six rats) or intraperitoneal injection of zinc sulfate (24.6 mg/kg) every two weeks (six rats), and were referred to as HS group and zinc group, respectively. Untreated model rats served as damage group (six rats). In control groups, quercetin (400 mg/kg) was intraperitoneally injected to inhibit the induction of heat shock proteins 6 hours before HS or zinc administration, and were referred to as HS+que group (six rats) and zinc+que group (six rats), respectively. Subsequent to 16 days of IOP elevation, the rats were sacrificed. Eyes were quickly enucleated, and the retinas were dissected. RGC were labeled with Nissl staining and counted under microscope.Results: The average RGC density in normal Wistar rats was (2504±181) cells/mm2. In damage group, it decreased to (2015±111 ) cells/mm2. The RGC densities at 1,2, and 3 mm from the center of the optic nerve head were (2716±215), (2496±168), and (2317±171) cells/mm2, respectively, for normal rats and (2211±133), (1969±154),and (1872±68) cells/mm2, respectively, for damage group. The latter was significantly lower at all locations compared with the former (P=0.027 for each, Mann-Whitney test).The average RGC densities were (2207±200) cells/mm2 for HS group, (2272±155) cells/mm2 for zinc group, (1964±188) cells/mm2 for HS+que group, (2051 ±214) cells/mm2 for zinc+que group and (2015±111 ) cells/mm2 for damage group. There were significant differences in density of labeled RGCs among the five groups (P=0.040,Kruskal-Wallis test). Both HS and zinc group had higher RGC densities than damage group (P

  12. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity

    OpenAIRE

    Cicero, Marco P.; T. Hubl, Susan; Harrison, Celia J.; Littlefield, Otis; Hardy, Jeanne A.; Nelson, Hillary C. M.

    2001-01-01

    The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix–turn–helix proteins, HSF’s wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein–protein interactions, possibly within a trimer or between adjacent trimers. To unders...

  13. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come

    OpenAIRE

    Murshid, Ayesha; Gong, Jianlin; Stevenson, Mary Ann; Calderwood, Stuart K.

    2011-01-01

    Molecular chaperone–peptide complexes extracted from tumors (heat shock protein [HSP] vaccines) have been intensively studied in the preceding two decades, proving to be safe and effective in treating a number of malignant diseases. They offer personalized therapy and target a cross-section of antigens expressed in patients' tumors. Future advances may rely on understanding the molecular underpinnings of this approach to immunotherapy. One property common to HSP vaccines is the ability to sti...

  14. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.

    Directory of Open Access Journals (Sweden)

    Shiuh-Dih Chou

    Full Text Available The target of rapamycin (TOR is a high molecular weight protein kinase that regulates many processes in cells in response to mitogens and variations in nutrient availability. Here we have shown that mTOR in human tissue culture cells plays a key role in responses to proteotoxic stress and that reduction in mTOR levels by RNA interference leads to increase sensitivity to heat shock. This effect was accompanied by a drastic reduction in ability to synthesize heat shock proteins (HSP, including Hsp70, Hsp90 and Hsp110. As HSP transcription is regulated by heat shock transcription factor 1 (HSF1, we examined whether mTOR could directly phosphorylate this factor. Indeed, we determined that mTOR could directly phosphorylate HSF1 on serine 326, a key residue in transcriptional activation. HSF1 was phosphorylated on S326 immediately after heat shock and was triggered by other cell stressors including proteasome inhibitors and sodium arsenite. Null mutation of S326 to alanine led to loss of ability to activate an HSF1-regulated promoter-reporter construct, indicating a direct role for mTOR and S326 in transcriptional regulation of HSP genes during stress. As mTOR is known to exist in at least two intracellular complexes, mTORC1 and mTOR2 we examined which complex might interact with HSF1. Indeed mTORC1 inhibitor rapamycin prevented HSF1-S326 phosphorylation, suggesting that this complex is involved in HSF1 regulation in stress. Our experiments therefore suggest a key role for mTORC1 in transcriptional responses to proteotoxic stress.

  15. Transcription factor TFIID recognizes DNA sequences downstream of the TATA element in the Hsp70 heat shock gene.

    OpenAIRE

    Emanuel, P A; Gilmour, D S

    1993-01-01

    The interaction between the Hsp70 heat shock gene promoter and a Drosophila protein complex which contains the TATA-binding protein depends on sequence-specific interactions located in the region downstream of the transcription start site. Immunopurification of the complex through the use of antibodies against the TATA-binding protein reveals that the complex is transcription factor TFIID. Binding assays with the immunopurified TFIID confirm that sequence-specific contacts are made in the reg...

  16. Water as carrier of information of heat shock and drug effect between two groups of Adhatoda vasica plants

    Directory of Open Access Journals (Sweden)

    N C Sukul

    2012-06-01

    Full Text Available Adhatoda vasica Nees plants were grown in 50 earthen pots, which were divided into 5 batches A, B, C, D, and E. Of these A, B and C, D were arranged into two separate parallel pairs. One leaf of each plant of an adjacent pair was immersed in sterile tap water in a beaker. Adjacent beakers in each pair A B or C D were connected by polythene tubes containing wet cotton threads. One leaf of each plant of A was given heat shock by immersing a leaf in hot water for 5 min. One leaf of each plant of C was treated with Cantharis vesicatoria 200c. Batch E served as the unstressed and untreated control. One hour after heat shock or drug treatment all the leaves were harvested and their proteins were extracted by chilled protein extraction buffer. Proteins were separated by Fast Protein Liquid Chromatography (FPLC. Protein profiles of A, B and C, D showed marked similarity with respect to expression and repression of some proteins. It is concluded that the effect of heat shock and drug treatment is transmitted through water in the capillaries of cotton threads connecting the pairs of plants. It is assumed that heat shock or drug treatment altered locally the water structure in the leaves which was propagated through global network of water structure over the protein network in the whole plants, and from there to the interfacial water in the beakers and cotton threads. A homeopathic potency is thought to be specifically structured water which influences the water structure in the treated organism.

  17. Reduction in the level of antibodies against heat shock proteins 60 during different hormonal protocols in postmenopausal women

    OpenAIRE

    Rajtar-Ciosek, Agnieszka; Kacalska-Janssen, Olga; Zmaczyński, Andrzej; Wyroba, Jakub; Tomczyk, Rita; Wiatr, Joanna; Gałuszka-Bednarczyk, Anna; Bereza, Tomasz; Milewicz, Tomasz; Krzysiek, Józef

    2015-01-01

    Introduction In current literature, the immune-inflammatory theory of atherosclerosis is widely discussed. The role of how heat shock proteins 60 (HSP60) lead to the development of the atheromatous plaque is especially underlined. The aim of the study is to estimate the influence of three hormonal protocols on behavior of antibodies against HSP60. It determines the state of endothelium in postmenopausal women. Material and methods The study was carried out on 90 women between 2007 and 2012. A...

  18. Modulation of the chaperone heat shock cognate 70 by embryonic (pro)insulin correlates with prevention of apoptosis

    OpenAIRE

    De La Rosa, Enrique J; Vega-Núñez, Elena; Morales, Aixa V.; Serna, José; Rubio, Eva; Pablo, Flora de

    1998-01-01

    Insights have emerged concerning insulin function during development, from the finding that apoptosis during chicken embryo neurulation is prevented by prepancreatic (pro)insulin. While characterizing the molecules involved in this survival effect of insulin, we found insulin-dependent regulation of the molecular chaperone heat shock cognate 70 kDa (Hsc70), whose cloning in chicken is reported here. This chaperone, generally considered constitutively expressed, showed regulation of its mRNA a...

  19. Effects of feed restriction on the upper temperature tolerance and heat shock response in juvenile green and white sturgeon

    OpenAIRE

    Lee, S; Hung, SSO; Fangue, NA; Haller, L.; Verhille, CE; Zhao, J; Todgham, AE

    2016-01-01

    The objective of the current study was to investigate the effects of feed restriction on whole-organism upper thermal tolerance and the heat shock response of green and white sturgeon to determine how changes in food amount might influence physiological performance of each species when faced with temperature stress. Two parallel feed restriction trials were carried out for juvenile green (202g; 222-day post hatch: dph) and white sturgeon (205g; 197-dph) to manipulate nutritional status at 12....

  20. Zinc Supplementation with Polaprezinc Protects Mouse Hepatocytes against Acetaminophen-Induced Toxicity via Induction of Heat Shock Protein 70

    OpenAIRE

    Nishida, Tadashi; Ohata, Shuzo; Kusumoto, Chiaki; Mochida, Shinsuke; Nakada, Junya; Inagaki, Yoshimi; Ohta, Yoshiji; Matsura, Tatsuya

    2009-01-01

    Polaprezinc, a chelate compound consisting of zinc and l-carnosine, is clinically used as a medicine for gastric ulcers. It has been shown that induction of heat shock protein (HSP) is involved in protective effects of polaprezinc against gastric mucosal injury. In the present study, we investigated whether polaprezinc and its components could induce HSP70 and prevent acetaminophen (APAP) toxicity in mouse primary cultured hepatocytes. Hepatocytes were treated with polaprezinc, zinc sulfate o...

  1. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis

    Science.gov (United States)

    Wang, Xiuyun; Huang, Wanlu; Yang, Zhimin; Liu, Jun; Huang, Bingru

    2016-01-01

    Heat stress transcription factor A2s (HsfA2s) are key regulators in plant response to high temperature. Our objectives were to isolate an HsfA2 gene (CtHsfA2b) from a warm-season grass species, African bermudagrass (Cynodon transvaalensis Burtt-Davy), and to determine the physiological functions and transcriptional regulation of HsfA2 for improving heat tolerance. Gene expression analysis revealed that CtHsfA2b was heat-inducible and exhibited rapid response to increasing temperature. Ectopic expression of CtHsfA2b improved heat tolerance in Arabidopsis and restored heat-sensitive defects of Arabidopsis hsfa2 mutant, which was demonstrated by higher survival rate and photosynthetic parameters, and lower electrolyte leakage in transgenic plants compared to the WT or hsfa2 mutant. CtHsfA2b transgenic plants showed elevated transcriptional regulation of several downstream genes, including those encoding ascorbate peroxidase (AtApx2) and heat shock proteins [AtHsp18.1-CI, AtHsp22.0-ER, AtHsp25.3-P and AtHsp26.5-P(r), AtHsp70b and AtHsp101-3]. CtHsfA2b was found to bind to the heat shock element (HSE) on the promoter of AtApx2 and enhanced transcriptional activity of AtApx2. These results suggested that CtHsfA2b could play positive roles in heat protection by up-regulating antioxidant defense and chaperoning mechanisms. CtHsfA2b has the potential to be used as a candidate gene to genetically modify cool-season species for improving heat tolerance. PMID:27320381

  2. Role of hippocampal dentate gyrus neurons in the protective effects of heat shock factor 1 on working memory

    Institute of Scientific and Technical Information of China (English)

    Min Peng; Xiongzhao Zhu; Ming Cheng; Xiangyi Chen; Shuqiao Yao

    2011-01-01

    Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis.Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.

  3. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis.

    Science.gov (United States)

    Kim, Jenny Gi Yae; Wilson, Adam C

    2016-02-01

    The pathogenesis of Bacillus anthracis depends on several virulence factors, including the anthrax toxin. Loss of the alternative sigma factor σI results in a coordinate decrease in expression of all three toxin subunits. Our observations suggest that loss of σI alters the activity of the master virulence regulator AtxA, but atxA transcription is unaffected by loss of σI. σI-containing RNA polymerase does not appear to directly transcribe either atxA or the toxin gene pagA. As in Bacillus subtilis, loss of σI in B. anthracis results in increased sensitivity to heat shock and transcription of sigI, encoding σI, is induced by elevated temperature. Encoded immediately downstream of and part of a bicistronic message with sigI is an anti-sigma factor, RsgI, which controls σI activity. Loss of RsgI has no direct effect on virulence gene expression. sigI appears to be expressed from both the σI and σA promoters, and transcription from the σA promoter is likely more significant to virulence regulation. We propose a model in which σI can be induced in response to heat shock, whilst, independently, σI is produced under non-heat-shock, toxin-inducing conditions to indirectly regulate virulence gene expression. PMID:26744224

  4. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  5. Effect of herbal medicine Juzentaihoto on hepatic and intestinal heat shock gene expression requires intestinal microflora in mouse

    Institute of Scientific and Technical Information of China (English)

    Miho Kato; Kenji Watanabe; Atsushi Ishige; Naoko Anjiki; Masahiro Yamamoto; Yoshifumi Irie; Mitsue Taniyama; Ryoko Kibe; Junichiro Oka; Yoshimi Benno

    2007-01-01

    AIM: To evaluate the role of intestinal microflora in the effects of multi-herbal medicine on gene expression in the gut and liver.METHODS: The multi-herbal medicine Juzentaihoto (JTX) was administered to five germ-free mice and regular mice for 2 wk. Among the results of the comprehensive gene chip analysis of the intestine and liver, we featured heat shock proteins (HSPs) 70 and 105 because their gene expression changed only in the presence of microflora. Real-time RT-PCR was performed to confirm the expression levels of these HSP genes. To determine whether JTX acts directly on the HSP genes, sodium arsenite (SA) was used to induce the heat shock proteins directly. To examine the change of the intestinal microflora with administration of JTX, the terminal restriction fragment polymorphism (T-RFLP) method was used. To identify the changed bacteria, DNA sequencing was performed.RESULTS: Heat shock protein gene expression,documented by gene chip and real-time RT-PCR, changed with the administration of JTX in the regular mice but not in the germ-free mice. JTX did not suppress the direct induction of the HSPs by SA. T-RFLP suggested that JTX decreased unculturable bacteria and increased Lactobacillus johnsoni. These data suggested that JTX changed the intestinal microflora which, in turn, changed HSP gene expression.CONCLUSION: Intestinal microflora affects multi-herbal product JTX on the gene expression in the gut and liver.

  6. Non-lethal heat shock protects gnotobiotic Artemia franciscana larvae against virulent Vibrios

    OpenAIRE

    Yik Sung, Y.; Van Damme, E.J.M.; Sorgeloos, P.; Bossier, P

    2007-01-01

    Brine shrimp Artemia were exposed under gnotobiotic conditions to a non-lethal heat shock (NLHS) from 28 to 32, 37 and 40°C. Different recovery periods (2, 6, 12 and 24 h) and different heat-exposure times (15, 30, 45 and 60 min) were tested. After these NLHS, Artemia was subsequently challenged with Vibrio. Challenge tests were performed in stressed and unstressed nauplii at concentrations of 107 cells ml-1 of pathogenic bacteria, Vibrio campbellii and Vibrio proteolyticus. A NLHS with an op...

  7. Molecular Cloning and Identification of a Heat Shock Cognate Protein 70 Gene, Thhsc70, in Thellungiella halophila

    Institute of Scientific and Technical Information of China (English)

    ZHANGXia; GUOShan-Li; YINHai-Bo; XIONGDong-Jin; ZHANGHui; ZHAOYan-Xiu

    2004-01-01

    Heat shock cognate proteins 70 (hsp70s) act as molecular chaperones. Some hsp70s are also expressed in unstressed plants, known as hsc70. To gain further knowledge about the hsc70, the Thellungiella halophila hsc70 (Thhsc70) gene that encoded the cytosolic hsc70 in salt cress (T.halophila (C.A.Mey.) O.E.Schulz) was identified. In unstressed plants the expression of Thhsc70was shown to be tissue-specific. The Thhsc70 gene was induced by heat and cold stresses, but almost not by salt and drought stresses. Overexpression of Thhsc7Ocould increase thermctolerance and chilling tolerance in transgenic Arabidopsis plants.

  8. A Self-similar Flow Behind a Shock Wave in a Gravitating or Non-gravitating Gas with Heat Conduction and Radiation Heat-flux

    Indian Academy of Sciences (India)

    J. P. Vishwakarma; Arvind K. Singh

    2009-03-01

    The propagation of a spherical shock wave in an ideal gas with heat conduction and radiation heat-flux, and with or without self-gravitational effects, is investigated. The initial density of the gas is assumed to obey a power law. The heat conduction is expressed in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density, and the total energy of the wave to vary with time. Similarity solutions are obtained and the effects of variation of the heat transfer parameters, the variation of initial density and the presence of self-gravitational field are investigated.

  9. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis

    Science.gov (United States)

    Sedaghatmehr, Mastoureh; Mueller-Roeber, Bernd; Balazadeh, Salma

    2016-01-01

    Acquired tolerance to heat stress is an increased resistance to elevated temperature following a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of intervening stress is called ‘thermomemory' but the mechanistic basis for this memory is not well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that rapidly accumulates after heat stress and remains abundant during the thermomemory phase, is a crucial component of thermomemory. Sustained memory requires that HSP21 levels remain high. Through pharmacological interrogation and transcriptome profiling, we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance. Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of thermomemory and increases thermomemory capacity. Our results thus reveal the presence of a plastidial FtsH6–HSP21 control module for thermomemory in plants. PMID:27561243

  10. Cytochrome P-450-catalyzed reactive oxygen species production mediates the (-schisandrin B-induced glutathione and heat shock responses in H9c2 cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Na Chen

    2012-01-01

    Conclusion: The results suggest that ROS arising from the CYP-catalyzed metabolism of (-Sch B elicit glutathione antioxidant and heat shock responses, thereby protecting against oxidant-induced apoptosis in H9c2 cardiomyocytes.

  11. On the proper Mach number and ratio of specific heats for modeling the Venus bow shock

    Science.gov (United States)

    Tatrallyay, M.; Russell, C. T.; Luhmann, J. G.; Barnes, A.; Mihalov, J. D.

    1984-01-01

    Observational data from the Pioneer Venus Orbiter are used to investigate the physical characteristics of the Venus bow shock, and to explore some general issues in the numerical simulation of collisionless shocks. It is found that since equations from gas-dynamic (GD) models of the Venus shock cannot in general replace MHD equations, it is not immediately obvious what the optimum way is to describe the desired MHD situation with a GD code. Test case analysis shows that for quasi-perpendicular shocks it is safest to use the magnetospheric Mach number as an input to the GD code. It is also shown that when comparing GD predicted temperatures with MHD predicted temperatures total energy should be compared since the magnetic energy density provides a significant fraction of the internal energy of the MHD fluid for typical solar wind parameters. Some conclusions are also offered on the properties of the terrestrial shock.

  12. Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus.

    Science.gov (United States)

    Rossi, Franca; Zotta, Teresa; Iacumin, Lucilla; Reale, Anna

    2016-08-01

    The understanding of the heat shock response (HSR) in lactobacilli from a regulatory point of view is still limited, though an increased knowledge on the regulation of this central stress response can lead to improvements in the exploitation of these health promoting microorganisms. Therefore the aim of this in silico study, that is the first to be carried out for members of the Lactobacillus genus, was predicting how HSR influences cell functions in the food associated and probiotic species Lactobacillus casei and Lactobacillus rhamnosus. To this purpose, thirteen whole genomes of these bacteria were analyzed to identify which genes involved in HSR are present. It was found that all the genomes share 25 HSR related genes, including those encoding protein repair systems, HSR repressors, HrcA and CtsR, and the positive regulators of HSR, alternative σ factors σ(32) and σ(24). Two genes encoding a σ(70)/σ(24) factor and a Lon protease, respectively, were found only in some genomes. The localization of the HSR regulators binding sites in genomes was analyzed in order to identify regulatory relationships driving HSR in these lactobacilli. It was observed that the binding site for the HrcA repressor is found upstream of the hrcA-grpE-dnaK-dnaJ and groES-groEL gene clusters, of two hsp genes, clpE, clpL and clpP, while the CtsR repressor binding site precedes the ctsR-clpC operon, clpB, clpE and clpP. Therefore the ClpE-ClpP protease complex is dually regulated by HrcA and CtsR. Consensus sequences for the promoters recognized by the HSR alternative σ factors were defined for L. casei and L. rhamnosus and were used in whole genome searches to identify the genes that are possibly regulated by these transcription factors and whose expression level is expected to increases in HSR. The results were validated by applying the same procedure of promoter consensus generation and whole genome search to an additional 11 species representative of the main Lactobacillus

  13. The heat shock-induced hyperphosphorylation of τ is estrogen-independent and prevented by androgens: Implications for Alzheimer disease

    OpenAIRE

    Papasozomenos, Sozos Ch.

    1997-01-01

    We have shown that heat shock induces rapid dephosphorylation of τ in both female and male rats followed by hyperphosphorylation only in female rats. To investigate the role of gonadal hormones, rats were ovariectomized (OVX), orchiectomized (ORX), or sham-gonadectomized and received replacement therapy with estradiol benzoate (EB), testosterone propionate (TP), or sesame oil (SO) vehicle for 2–3 weeks, respectively. At 0, 3, 6, and 12 hr after heat shock, immunoblot analysis of SDS cerebral ...

  14. Differences between Brahman and Holstein cows in response to estrus synchronization, superovulation and resistance of embryos to heat shock.

    Science.gov (United States)

    Krininger, C E; Block, J; Al-Katanani, Y M; Rivera, R M; Chase, C C; Hansen, P J

    2003-09-15

    Embryos from Bos indicus are more resistant to elevated culture temperature (i.e. heat shock) than embryos from some Bos taurus breeds. The present experiment was designed to determine if Brahman embryos have greater resistance to heat shock than Holstein embryos at a stage in development before the embryonic genome was fully activated. A second objective was to test breed effects on estrus synchronization and superovulation responses. A total of 29 Brahman and 24 Holstein cows were subjected to estrus synchronization using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF2alpha) superovulation. Embryos were collected at 48 h and day 5 after insemination. There was a tendency for a lower proportion of Brahmans to be detected in standing estrus than Holsteins. There were no differences between breeds in the proportion of cows detected in estrus using both tailpaint and standing estrus as criteria or in interval from PGF2alpha to estrus. The degree of synchrony in estrus was greater for Brahmans. Superovulation response was generally similar between breeds. At 48 h after insemination, there was a tendency for a greater proportion of Brahman oocytes to have undergone cleavage. Uncleaved oocytes were cultured for an additional 24 h-at this time, cleavage rate was similar between breeds. When embryos reached the 2-4-cell stage, they were heat-shocked for 4.5 h at 41 degrees C. This heat shock reduced the proportion of embryos that developed to the blastocyst stage but there was no breedxtreatment interaction. At day 5 after insemination, the number of embryos recovered was too low to allow comparison of breed effects. In conclusion, genetic effects on cellular thermotolerance that make Brahman embryos more resistant to heat shock are not expressed at the 2-4-cell stage. There were few differences between Brahman and Holstein in response to estrus synchronization and superovulation. The fact that cleavage tended to occur earlier in Brahman than

  15. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression.

  16. Evaluation of heat shock protein (HSP-60) induction on accumulation of carbohydrate in Isochrysis galbana

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, H.; Wolfe, M.; Tell, J.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry

    1995-12-31

    Primary levels of the marine food chain may play an important role in the fate of petroleum hydrocarbons in both chemically dispersed and un-dispersed oil spills. HSP-60 proteins, members of the chaperonin family of stress proteins, are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. Increased production and storage of carbohydrate in I. galbana has been associated with aging and stress. Thus, HSP-60 and carbohydrate storage were selected as sublethal endpoints of exposure to the primary producer, I. galbana, a golden brown, unicellular algae, and a significant component of the marine phytoplankton community. The authors have found that I. galbana cultures exposed to water-accommodated fractions (WAF) of Prudhoe Bay Crude Oil (PBCO), and PBCO/dispersant preparations efficiently induce HSP-60. Studies indicated that WAF produced a dose-related response in I. galbana, which increased as a function of time. Dispersant alone showed the greatest induction, while combined WAF-dispersant showed less induction, suggesting a possible competition between crude oil and algae for dispersant interaction. In addition, they have demonstrated that I. galbana accumulates carbohydrates in response to exposure to WAF and PBCO/dispersant preparations and therefore represents another index of stress in this organism. They were interested in determining if induction of stress proteins and HSP60 in particular represented an adaptive-mechanism, allowing this algae to better cope with exposure to petroleum hydrocarbons released in the marine environment during an oil spill. In an effort to determine if stress protein induction serves as a protective adaptive response to exposure to petroleum hydrocarbons they examined the effect of heat shock induction on the accumulation of carbohydrates by these organisms in response to exposure to WAF and dispersed oil preparations.

  17. Autophagy protects monocytes from Wolbachia heat shock protein 60-induced apoptosis and senescence.

    Directory of Open Access Journals (Sweden)

    Vijayan Kamalakannan

    2015-04-01

    Full Text Available Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60 interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence.

  18. Autophagy protects monocytes from Wolbachia heat shock protein 60-induced apoptosis and senescence.

    Science.gov (United States)

    Kamalakannan, Vijayan; Shiny, Abijit; Babu, Subash; Narayanan, Rangarajan Badri

    2015-04-01

    Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60) interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS) induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence. PMID:25849993

  19. Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms.

    Directory of Open Access Journals (Sweden)

    Sylvain Lecomte

    Full Text Available Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs. The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contribute to additional complexity in HSF transcriptional regulation, but remain poorly examined in the literature. In this work, we studied the transcriptional activity of HSF1 and HSF2 splicing isoforms transfected into immortalized Mouse Embryonic Fibroblasts (iMEFs deleted for both Hsf1 and Hsf2, under normal conditions and after proteasome inhibition. We found that HSF1α is significantly more active than the β isoform after exposure to the proteasome inhibitor MG132. Furthermore, we clearly established that, while HSF2 had no transcriptional activity by itself, short β isoform of HSF2 exerts a negative role on HSF1β-dependent transactivation. To further assess the impact of HSF2β inhibition on HSF1 activity, we developed a mathematical modelling approach which revealed that the balance between each HSF isoform in the cell regulated the strength of the transcriptional response. Moreover, we found that cellular stress such as proteasome inhibition could regulate the splicing of Hsf2 mRNA. All together, our results suggest that relative amounts of each HSF1 and HSF2 isoforms quantitatively determine the cellular level of the proteotoxic stress response.

  20. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.

    Science.gov (United States)

    Ardi, Veronica C; Alexander, Leslie D; Johnson, Victoria A; McAlpine, Shelli R

    2011-12-16

    Heat shock protein 90 (Hsp90) accounts for 1-2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is overexpressed (3- to 6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90's ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90's MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins.

  1. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H2O2 and GSH modulate HBV capsid assembly. • H2O2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H2O2 and GSH induce conformation change of Hsp90

  2. Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment

    Science.gov (United States)

    Patel, Hardik J; Modi, Shanu; Chiosis, Gabriela; Taldone, Tony

    2011-01-01

    Introduction Over the last 15 – 20 years, targeted anticancer strategies have focused on therapies aimed at abrogating a single malignant protein. Agents that are directed towards the inhibition of a single oncoprotein have resulted in a number of useful drugs in the treatment of cancers (i.e., Gleevec, BCR-ABL; Tarceva and Iressa, EGFR). However, such a strategy relies on the notion that a cancer cell is dependent on a single signaling pathway for its survival. The possibility that a cancer cell may mutate or switch its dependence to another signaling pathway can result in the ineffectiveness of such agents. Recent advances in the biology of heat-shock protein 90 (Hsp90) have revealed intimate details into the complexity of the chaperoning process that Hsp90 is engaged in and, at the same time, have offered those involved in drug discovery several unique ways to interfere in this process. Areas covered This review provides the current understanding of the chaperone cycle of Hsp90 and presents the multifaceted approaches used by researchers in the discovery of potential Hsp90 drugs. It discusses the phenotypic outcomes in cancer cells on Hsp90 inhibition by these several approaches and also addresses several distinctions observed among direct Hsp90 ATP-pocket competitors providing commentary on the potential biological outcomes as well as the clinical relevance of such features. Expert opinion The significantly different phenotypic outcomes observed from Hsp90 inhibition by the many inhibitors developed suggest that the clinical development of Hsp90 inhibitors would be better served by careful consideration of the pharmacokinetic/pharmacodynamic properties of individual candidates rather than a generic approach directed towards the target. PMID:22400044

  3. Heat shock protein 70-2 gene polymorphism and susceptibility to diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Xin-wei LIN

    2015-01-01

    Full Text Available Objective To investigate the relationship between heat shock protein 70-2 (HSP70-2 gene polymorphism and diabetic nephropathy (DN in patients with type 2 diabetes mellitus (T2DM. Methods Following the inclusion and exclusion criteria, a total of 677 subjects were enrolled in present study. They were either hospitalized or undergoing regular health check-up in the Department of Nephrology of PLA 152nd Hospital in Pingdingshan of Henan Province. Among them 226 patients were suffering from diabetes mellitus and nephrosis (DN+ group, 221 patients with T2DM but without nephrosis (DN– group, and 230 were normal controls (NC group. Data were collected by questionnaire, physical examination and laboratory examination, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique was applied to detect the single nucleotide polymorphisms of HSP70-2(+1267/G. Results The G/G genotype frequency of HSP70-2 was significantly higher in DN+ group than in DN– and NC group (χ2=8.123, P<0.01; χ2=11.651, P<0.01; the G allele frequency of HSP70-2 was significantly higher in DN+ group than in DN – and NC group (χ2=9.392, P<0.01, OR=1.782; χ2=11.971, P<0.01, OR=2.153. The levels of MALB/Cr and BMI were significantly higher in G/G gene carriers than in A/A gene carriers (P<0.05. Conclusion The G/G genotype of HSP70-2(+1267 may be related to susceptibility to DN and general obesity; G allele carrier may have increased risk of T2DM with DN. DOI: 10.11855/j.issn.0577-7402.2014.11.11

  4. The Role of Heat Shock Proteins in Pathogenesis of Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Adi Prayitno

    2013-07-01

    Full Text Available Cell in the distress situation, denaturation of proteins may occur, and may also respond by expressing stress proteins. However, such homeostasis effort does not always succeed and even may lead to disease, including cancer. In distress situation also ensue much protein misfolding. Objective: This research were to explain the role of heat shock protein 40 (Hsp40 and Hsp70 in pathogenesis of occurred oral squamous cell carcinoma (OSCC patient which realized human papilloma virus (HPV infection. Material and Method: Tissue biopsy frozen section were taken from BOSC and OSCC patients was cut into three part. Parrafin blocks were made from cutting I, which was subsequently stains with HE to ascertain the type of neoplasm. Cutting II was subjected to DNA isolation. The DNA isolation results were subjected to PCR to amplify L1-HPV gene for fixed the HPV stressoor. Protein isolation was treated from Cutting III, folloewd with Blottdot test by using antibody monoclonal anti Hsp40 and Hsp70 and continued with measurement using densitometer to find the concentration of Hsp40 and Hsp70. The collected data were analyzed with F Test (Manova and discriminant analysis. Result: This experiment showed the differences in concentration of Hsp40 (p<=0,070 and Hsp70 (p<=0,006 between beningn oral squamous cell (BOSC and OSCC patients which realized HPV infection. Conclusion: This experiment proved that OSCC patients which realized HPV infection indicated an up regulated of Hsp70 concentration, so that there was occurs misfolding of the proteins cell. The misfolding was ensue obstacle of apoptosis and to raise cell proliferation which to storm carcinogenesis. An up regulated of Hsp40 was role as co-chaperone.DOI: 10.14693/jdi.v16i2.91 

  5. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Chishti, Athar H., E-mail: athar.chishti@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Sackler School of Graduate Biomedical Sciences, Programs in Physiology, Pharmacology, and Microbiology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  6. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  7. Thermal shock and fatigue resistance of tungsten materials under transient heat loading

    International Nuclear Information System (INIS)

    Highlights: • Basic properties, thermal load resistance of PW, WL10 and W-K were characterized. • DBTT values were 823–873,723–773 and 873 K for PW, WL10 and W-K. • Coarse La2O3 at the grain boundary reduced the thermal load resistance of WL10. • Fine K bubbles at the grain boundary improved the thermal load resistance of W-K. - Abstract: Transient heat loading tests were performed on rolled pure tungsten (PW) and lanthanum oxide doped tungsten (WL10) as well as swaged + rolled potassium doped tungsten (W-K) samples using an electron beam. In thermal shock tests, the cracking threshold was 0.44–0.66, 0.17–0.22 and 0.44–0.66 GW/m2 for PW, WL10 and W-K, respectively. The melting threshold was over 1.1 GW/m2 for PW and W-K while 0.66–0.88 GW/m2 for WL10. In thermal fatigue tests, the obvious roughening threshold was over 1000 cycles for PW and WL10 while 1–100 cycles for W-K. The cracking threshold was 100–1000 cycles for PW, 1–100 cycles for WL10 and over 1000 cycles for W-K alloy. WL10 displayed worse thermal and fatigue resistance while W-K exhibited better properties compared with PW, which was attributed to differences in thermal–mechanical properties of the three tungsten alloys, in addition to the size and number density of La2O3 particles and potassium bubbles

  8. Induction of Heat Shock Protein 70 Ameliorates Ultraviolet-Induced Photokeratitis in Mice

    Directory of Open Access Journals (Sweden)

    Yukihiro Horie

    2013-01-01

    Full Text Available Acute ultraviolet (UV B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse and UVB-exposed (400 mJ/cm2, GGA-untreated UVB-exposed (400 mJ/cm2, GGA-treated (500 mg/kg/mouse but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. HSP70, reactive oxygen species (ROS production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and protein kinase B (Akt expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01. Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01. Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05. ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.

  9. Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation.

    Science.gov (United States)

    Rigg, Rachel A; Healy, Laura D; Nowak, Marie S; Mallet, Jérémy; Thierheimer, Marisa L D; Pang, Jiaqing; McCarty, Owen J T; Aslan, Joseph E

    2016-04-01

    Molecular chaperones that support protein quality control, including heat shock protein 70 (Hsp70), participate in diverse aspects of cellular and physiological function. Recent studies have reported roles for specific chaperone activities in blood platelets in maintaining hemostasis; however, the functions of Hsp70 in platelet physiology remain uninvestigated. Here we characterize roles for Hsp70 activity in platelet activation and function. In vitro biochemical, microscopy, flow cytometry, and aggregometry assays of platelet function, as well as ex vivo analyses of platelet aggregate formation in whole blood under shear, were carried out under Hsp70-inhibited conditions. Inhibition of platelet Hsp70 blocked platelet aggregation and granule secretion in response to collagen-related peptide (CRP), which engages the immunoreceptor tyrosine-based activation motif-bearing collagen receptor glycoprotein VI (GPVI)-Fc receptor-γ chain complex. Hsp70 inhibition also reduced platelet integrin-αIIbβ3 activation downstream of GPVI, as Hsp70-inhibited platelets showed reduced PAC-1 and fibrinogen binding. Ex vivo, pharmacological inhibition of Hsp70 in human whole blood prevented the formation of platelet aggregates on collagen under shear. Biochemical studies supported a role for Hsp70 in maintaining the assembly of the linker for activation of T cells signalosome, which couples GPVI-initiated signaling to integrin activation, secretion, and platelet function. Together, our results suggest that Hsp70 regulates platelet activation and function by supporting linker for activation of T cells-associated signaling events downstream of platelet GPVI engagement, suggesting a role for Hsp70 in the intracellular organization of signaling systems that mediate platelet secretion, "inside-out" activation of platelet integrin-αIIbβ3, platelet-platelet aggregation, and, ultimately, hemostatic plug and thrombus formation.

  10. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Langella Philippe

    2006-03-01

    Full Text Available Abstract Background Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted. Results Only the secreted form of GroEL was stably produced in L. lactis, suggesting a detrimental effect of GroEL protein when intracellularly produced in this bacterium. Only trace amounts of mature GroEL were detected in the supernatant fraction of induced lactococcal cultures, and the GroEL precursor remained stacked in the cell fraction. Attempts to raise the secretion yields were made, but even when GroEL was fused to a synthetic propeptide, secretion of this antigen was not improved. Conclusion We found that L. lactis is able to produce, and to secrete, a stable form of GroEL into the extracellular medium. Despite the low secretion efficiency of GroEL, which suggest that this antigen interacts with the cell envelope of L. lactis, secretion seems to be the best way to achieve both production and protein yields, regardless of cellular location. The L. lactis strain secreting GroEL has potential for in vivo immunization.

  11. Association of heat shock protein 90 with motility of post-thawed sperm in bulls.

    Science.gov (United States)

    Zhang, Xiao-Gang; Hu, Shan; Han, Cong; Zhu, Qing-Chao; Yan, Guan-Jie; Hu, Jian-Hong

    2015-04-01

    The correlation between the 90 kDa heat-shock protein (HSP90) and sperm quality following the process of freezing-thawing in bulls has not been studied clearly. Therefore, the objective of the present was to clarify the relationship between HSP90 level and semen parameters during the process of cryopreservation in bulls. Semen samples from 5 Holstein bulls were obtained by artificial vagina. Characteristics of these semen at three stages (fresh, after equilibration and frozen-thawed), including motility, plasma membrane integrity and acrosome integrity were evaluated. The mRNA expression level of HSP90 at the three stages was evaluated by using quantitative Real-Time PCR. Meanwhile, the protein level of HSP90 expression at the three stages was detected according to Western blot. The results showed that sperm parameters evaluated in fresh semen was the highest in the three groups. Sperm parameters in semen after equilibration were lower than those in fresh semen (P>0.05) and higher than those in post-thawed semen (PSperm parameters in frozen-thawed semen were the lowest among the three groups (PHSP90 expression is proportional to sperm quality. HSP90 expression level in fresh semen was significantly higher than that in frozen-thawed semen (PHSP90 expression were observed between fresh semen and semen after equilibration (P>0.05). Results in this study suggest that HSP90 level in bull spermatozoa was gradually declined following the process of freezing-thawing, and might be associated with sperm motility, plasma membrane integrity and acrosome integrity. PMID:25578982

  12. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  13. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    Science.gov (United States)

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation. PMID:21296977

  14. Heat shock protein-70 expression in vitiligo and its relation to the disease activity

    Directory of Open Access Journals (Sweden)

    Reham William Doss

    2016-01-01

    Full Text Available Background: Vitiligo is a progressive depigmenting disorder characterized by the loss of functional melanocytes from the epidermis. The etiopathogenesis of vitiligo is still unclear. Heat shock proteins (HSPs are prime candidates to connect stress to the skin. HSPs were found to be implicated in autoimmune diseases such as rheumatoid arthritis and other skin disorders as psoriasis. Aim and Objectives: The aim of this study was to map the level of HSP-70 in vitiligo lesions to declare its role in the pathogenesis and activity of vitiligo. Materials and Methods: The study included thirty patients with vitiligo and 30 age- and sex-matched healthy controls. Vitiligo patients were divided as regards to the disease activity into highly active, moderately active, and inactive vitiligo groups. Skin biopsies were taken from the lesional and nonlesional skin of patients and from the normal skin of the controls. HSP-70 messenger RNA (mRNA expression was estimated using quantitative real-time polymerase chain reaction. Results: Our analysis revealed a significantly higher expression of HSP-70 mRNA in lesional skin biopsies from vitiligo patients compared to nonlesional skin biopsies from vitiligo patients (P < 0.001 and compared to skin biopsies from healthy controls (P < 0.001. The level of HSP-70 was not found to be correlated with age, sex, or disease duration. The expression of HSP-70 was correlated with the disease activity and patients with active vitiligo showed higher mean HSP-70 level compared to those with inactive disease. Conclusions: HSP-70 plays a role in the pathogenesis of vitiligo and may enhance the immune response in active disease.

  15. THE VARIATION OF PLASMATIC CONCENTRATION OF HAEMOGLOBIN AND THE EVALUATION OF HEAT SHOCK PROTEINS IN RHEUMATIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Claudia Vlad

    2012-06-01

    Full Text Available Rheumatoid arthritis is a systemic inflammatory disease with still unknown aetiology. The purpose of our study was to comparatively investigate the level of haemoglobin, as well as of the heat shock proteins HSP60 and HSP70 as well as their specific antibodies serum levels in rheumatic patients, in order to evaluate their potential role as an aid in the diagnosis of this chronic pathology. This study was performed on patients with rheumatoid polyarthritis. The haemoglobin plasmatic concentration was assessed by a quantitative determination using the automatic analyzer Beckman Coulter Act5diff, while the thermal shock proteins HSP 60, HSP 70 as well as their respective serum antibodies were determined by Western blot method and ELISA assay, respectively. All the patients involved in this study exhibited low values of haemoglobin, known to be an important marker of haematological disorders. These results maintain the idea that anaemia, heart disease, osteoporosis are the most frequent complication for rheumatoid arthritis. The concept of overexpression of endogenous HSPs is central to hypotheses in which HSPs are implicated in the pathogenesis of autoimmune rheumatic disease. The quantification of HSPs levels in the serum of the rheumatic patients showed that both Hsp60 and Hsp70 levels are higher, especially in those patients who had as a secondary disease, like cardiac insufficiency and obesity. The HSP60 and HSP70 antibodies were also highly expressed in our patients. These lesions could be partially due to the fact that despite the ubiquitous and high homology of heat shock proteins among different species, they also represent important antigenic targets of the cellular and humoral immune response. Besides the low level of haemoglobin, the presence of a high level of heat shock proteins and of their corresponding antibodies may be considered as useful markers which could be correlated with the evolution and the severity of a long chain of

  16. Investigation of the chaperone function of the small heat shock protein — AgsA

    Directory of Open Access Journals (Sweden)

    Nagamune Hideaki

    2010-07-01

    Full Text Available Abstract Background A small heat shock protein AgsA was originally isolated from Salmonella enterica serovar Typhimurium. We previously demonstrated that AgsA was an effective chaperone that could reduce the amount of heat-aggregated proteins in an Escherichia coli rpoH mutant. AgsA appeared to promote survival at lethal temperatures by cooperating with other chaperones in vivo. To investigate the aggregation prevention mechanisms of AgsA, we constructed N- or C-terminal truncated mutants and compared their properties with wild type AgsA. Results AgsA showed significant overall homology to wheat sHsp16.9 allowing its three-dimensional structure to be predicted. Truncations of AgsA until the N-terminal 23rd and C-terminal 11th amino acid (AA from both termini preserved its in vivo chaperone activity. Temperature-controlled gel filtration chromatography showed that purified AgsA could maintain large oligomeric complexes up to 50°C. Destabilization of oligomeric complexes was observed for N-terminal 11- and 17-AA truncated AgsA; C-terminal 11-AA truncated AgsA could not form large oligomeric complexes. AgsA prevented the aggregation of denatured lysozyme, malate dehydrogenase (MDH and citrate synthase (CS but did not prevent the aggregation of insulin at 25°C. N-terminal 17-AA truncated AgsA showed no chaperone activity towards MDH. C-terminal 11-AA truncated AgsA showed weak or no chaperone activity towards lysozyme, MDH and CS although it prevented the aggregation of insulin at 25°C. When the same amount of AgsA and C-terminal 11-AA truncated AgsA were mixed (half of respective amount required for efficient chaperone activities, good chaperone activity for all substrates and temperatures was observed. Detectable intermolecular exchanges between AgsA oligomers at 25°C were not observed using fluorescence resonance energy transfer analysis; however, significant exchanges between AgsA oligomers and C-terminal truncated AgsA were observed at 25

  17. Heat shock protein 22 (HSPB8) limits TGF-β-stimulated migration of osteoblasts.

    Science.gov (United States)

    Yamamoto, Naohiro; Tokuda, Haruhiko; Kuroyanagi, Gen; Kainuma, Shingo; Matsushima-Nishiwaki, Rie; Fujita, Kazuhiko; Kozawa, Osamu; Otsuka, Takanobu

    2016-11-15

    Heat shock proteins (HSPs) are induced in response to various physiological and environmental conditions such as chemical and heat stress, and recognized to function as molecular chaperones. HSP22 (HSPB8), a low-molecular weight HSP, is ubiquitously expressed in many cell types. However, the precise role of HSP22 in bone metabolism remains to be clarified. In the present study, we investigated whether HSP22 is implicated in the transforming growth factor-β (TGF-β)-stimulated migration of osteoblast-like MC3T3-E1 cells. Although protein levels of HSP22 were clearly detected in unstimulated MC3T3-E1 cells, TGF-β failed to induce the protein levels. The TGF-β-stimulated migration was significantly up-regulated by knockdown of HSP22 expression. The cell migration stimulated by platelet-derived growth factor-BB was also enhanced by HSP22 knockdown. SB203580, an inhibitor of p38 mitogen-activated protein kinase, PD98059, an inhibitor of MEK1/2, or SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase had no effects on the TGF-β-induced migration. SIS3, a specific inhibitor of TGF-β-dependent Smad3 phosphorylation, significantly reduced the migration with or without TGF-β stimulation. Smad2, Smad3, Smad4 or Smad7 was not coimmunoprecipitated with HSP22. On the other hand, the TGF-β-induced Smad2 phosphorylation was enhanced by HSP22 down-regulation. The protein levels of TGF-β type II receptor (TGF-β RII) but not TGF-β type I receptor (TGF-β RI) was significantly up-regulated in HSP22 knockdown cells compared with those in the control cells. However, the levels of TGF-β RII mRNA in HSP22 knockdown cells were little different from those of the control cells. Neither TGF-β RI nor TGF-β RII was coimmunoprecipitated with HSP22. SIS3 reduced the amplification by HSP22 knockdown of the TGF-β-stimulated cell migration almost to the basal level. Our results strongly suggest that HSP22 functions as a negative regulator in the TGF

  18. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    Science.gov (United States)

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  19. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    Science.gov (United States)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  20. Effect of the C.-1 388 A〉G polymorphism in chicken heat shock transcription factor 3 gene on heat tolerance

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-wu[1,2,3; KONG Li-na[1,2,3; ZHANG De-xian[1,4; JI Cong-liang[4; ZHANG Xi-quan[1,2; LUO Qing-bin[1,2,3

    2015-01-01

    Heat stress is one of the main factors that influence poultry production. Heat shock proteins (HSPs) are known to affect heat tolerance. The formation of HSPs is regulated by heat shock transcription factor 3 (HSF3) in chicken. A DNA pool was established for identifying single nucleotide polymorphisms (SNPs) of the chicken HSF3, and 13 SNPs were detected. The bioinformatic analysis showed that 8 SNPs had the capacity to alter the transcdption activity of HSF3. The dual luciferase report gene assay showed that there was a significant difference (P〈0.01) in the Firefly luciferase/Renilla luciferase ratio (F/R) of C.-1 703 A〉G ($1) and C.-1 388 A〉G (S4) sites at the 5"-untranslated region (UTR) of chicken HSF3. The elec- trophoretic mobility shift assay showed that the S4 site was a transcription binding factor. The analysis of the association of the S1 and S4 sites with heat tolerance index revealed that the $4 site was significantly correlated with the CD3+ T cell, corticosterone, and T3 levels in Lingshan chickens and with the heterophil/lymphocyte value in White Recessive Rock. These results showed that the S4 site at the 5 UTR of chicken HSF3 might have an impact on heat tolerance in summer and could be used as a potential marker for the selection of chicken with heat tolerance in the future.

  1. Hydrodynamic Modeling of Accretion Impacts in Classical T Tauri Stars: Radiative Heating of the Pre-shock Plasma

    CERN Document Server

    Costa, G; Peres, G; Argiroffi, C; Bonito, R

    2016-01-01

    Context. It is generally accepted that, in Classical T Tauri Stars, the plasma from the circumstellar disc accretes onto the stellar surface with free fall velocity, and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims. We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream with the aim to identify in which region a significant part of the UV emission originates. Methods. We developed a 1D hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray ...

  2. Ignition delay times of shock-heated tetraethoxysilane, hexamethyldisiloxane, and titanium tetraisopropoxide

    Science.gov (United States)

    Abdali, A.; Fikri, M.; Orthner, H.; Wiggers, H.; Schulz, C.

    2014-05-01

    Ignition delay times of tetraethoxysilane (TEOS), hexamethyldisiloxane (HMDSO) and titanium tetraisopropoxide (TTIP) were determined from the onset of chemiluminescence in shock-tube experiments behind reflected shock waves in dry as well as in humid gas mixtures. Additionally, the ignition delay times of TEOS and HMDSO have been investigated in humid air and as a function of water vapor concentration in the initial gas mixture.

  3. Viscous-shock-layer heating analysis for the shuttle windward-symmetry plane with surface finite catalytic recombination rates

    Science.gov (United States)

    Shinn, J. L.; Moss, J. N.; Simmonds, A. L.

    1982-01-01

    The paper demonstrates the capability of a reacting, two-dimensional viscous-shock-layer solution using the equivalent axisymmetric body concept to predict heating rates on the shuttle windward centerline for a wide range of altitudes. Results indicate that the nonequilibrium effects persist through most of the STS-2 entry heating pulse down to an altitude of about 50 km. When results are compared to those of the inviscid flowfield plus boundary layer solution of Scott (1980), agreement is fair to poor for nonequilibrium calculations, although very good for equilibrium calculations. A parametric study to demonstrate the effect of uncertainties in oxygen surface recombination rate for RCG coated HRSI on heating, indicates favorable results when a wall recombination rate of 100 cm/sec is used in the temperature range 1400-900 K.

  4. Decomposition of TNT by Heat and Shock%受热、受冲击TNT的分解

    Institute of Scientific and Technical Information of China (English)

    Martin Kouba; Svatopluk Zeman; Eva Zemanová

    2003-01-01

    用高效液相色谱法(HPLC)分析了受热、受冲击工业TNT试样,发现两种情况下的主要分解产物是相同的,表明受冲击TNT分子初始分裂的化学微观机理与低温热分解情况下的机理相同.%Samples of technical TNT exposed to heat or to shock have been analyzed by means of high performance liquid chromatography(HPLC). It was found that the main decomposition products are identical in the two cases. It has been stated that the chemical micro-mechanism of the primary fragmentations of shocked TNT molecules should be the same as in the case of their low-temperature thermal decomposition.

  5. Cloning of heat shock protein genes from the brown planthopper,Nilaparvata lugens, and the small brown planthopper, Laodelphax striatellus, and their expression in relation to thermal stress

    Institute of Scientific and Technical Information of China (English)

    Dong Hun Kim; Sang-Chul Lee; Do-Yeon Kwak; Kyeong-Yeoll Lee

    2008-01-01

    Three heat shock protein (HSP) genes (hsp7O, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepidopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40℃) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4℃did not change the expression levels of any hsp in either species.

  6. Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes.

    Science.gov (United States)

    Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu

    2016-03-01

    There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat

  7. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    Full Text Available The stress-inducible small heat shock protein (shsp/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR transcription factor. A sequence (-329/-323, CATGCGA similar to the consensus xenobiotic responsive element (XRE, called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR(-/- mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR(-/- mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD, but had no effect on the αB-crystallin promoter in C(2C(12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions.

  8. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda.

    Science.gov (United States)

    Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent

    2016-10-10

    The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic

  9. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein*

    Science.gov (United States)

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-01-01

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality. PMID:24722986

  10. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.

    Science.gov (United States)

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-05-23

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ΔlapB or Δ(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the Δ(lapA lapB) mutant. Δ(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the Δ(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality.

  11. Gallus Heat shock cognate protein 70, a novel binding partner of Apoptin

    Directory of Open Access Journals (Sweden)

    Chen Kun

    2011-06-01

    Full Text Available Abstract Background Chicken anemia virus (CAV infection of newly hatched chickens induces generalized lymphoid atrophy and causes immunosuppressive. VP3, also known as Apoptin, is non-structural protein of CAV. Apoptin specifically induces apoptosis in transformed or tumor cells but not in normal cells. In particular, there are no known cellular homologues of Apoptin hindering genetic approaches to elucidate its cellular function. Although a number of Apoptin-interacting molecules have been identified, the molecular mechanism underlying Apoptin's action is still poorly understood. To learn more about the molecular mechanism of Apoptin's action, we searched for Apoptin associated proteins. Results Using yeast two-hybrid and colony-life filter approaches we got five positive yeast clones. Through sequencing and BLASTed against NCBI, one of the clones was confirmed containing Gallus heat shock cognate protein 70 (Hsc70. Hsc70 gene was clone into pRK5-Flag plasmid, coimmunoprecipitation assay show both exogenous Hsc70 and endogenous Hsc70 can interact with Apoptin. Truncated Apoptin expression plasmids were made and coimmunoprecipitation were performed, the results show the binding domain of Apoptin with Hsc70 is located between amino acids 30-60. Truncated expression plasmids of Hsc70 were also constructed and coimmunoprecipitation were performed, the results show the peptide-binding and variable domains of Hsc70 are responsible for the binding to Apoptin. Confocal assays were performed and results show that under physiological condition Hsc70 is predominantly distributed in cytoplasm, whereas Hsc70 is translocated into the nuclei and colocalized with Apoptin in the presence of Apoptin in DF-1 cell. Functional studies show that Apoptin markedly down-regulate the mRNA level of RelA/p65 in DF-1 cell. To explore the effect of Hsc70 on Apoptin-mediated RelA/p65 gene expression, we have searched two Hsc70 RNAi sequences, and found that all of them

  12. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  13. The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1.

    Science.gov (United States)

    Xu, L; Ma, X; Bagattin, A; Mueller, E

    2016-01-01

    Heat shock proteins (HSPs) are required for the clearance of damaged and aggregated proteins and have important roles in protein homeostasis. It has been shown that the heat shock transcription factor, HSF1, orchestrates the transcriptional induction of these stress-regulated chaperones; however, the coregulatory factors responsible for the enhancement of HSF1 function on these target genes have not been fully elucidated. Here, we demonstrate that the cold-inducible coactivator, PGC1α, also known for its role as a regulator of mitochondrial and peroxisomal biogenesis, thermogenesis and cytoprotection from oxidative stress, regulates the expression of HSPs in vitro and in vivo and modulates heat tolerance. Mechanistically, we show that PGC1α physically interacts with HSF1 on HSP promoters and that cells and mice lacking PGC1α have decreased HSPs levels and are more sensitive to thermal challenges. Taken together, our findings suggest that PGC1α protects against hyperthermia by cooperating with HSF1 in the induction of a transcriptional program devoted to the cellular protection from thermal insults. PMID:26890141

  14. Heat shock protein 90 (Hsp90) chaperone complex. A molecular target for enhancement of thermosensitivity and radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Kitamoto, Yoshizumi; Sakurai, Hideyuki [Gunma Univ., Maebashi (Japan). School of Medicine; Mitsuhashi, Norio [Tokyo Women' s Medical Coll. (Japan)

    2002-09-01

    Heat shock protein 90 (Hsp90) is a highly conserved heat shock protein in animal and plants, and exists abundantly in the cytoplasm in unstressed condition, accounting for 1-2% in cytoplasmic proteins. Main difference of Hsp90 from other Hsps are its substrate that Hsp90 binds to. These substrates include various signal transduction proteins, kinase, steroid receptors and transcription factors, therefore, Hsp90 plays a key role in maintaining cellular signal transduction networks. Many chaperoned proteins (client proteins) of Hsp90 are associated with cellular proliferation or malignant transformation, thus Hsp90 chaperone complex has been focused as targets for cancer therapy. Among the client proteins, there are several molecules that have been defined as targets or factors for determination or enhancement of radiosensitivity or thermosensitivity. Thus, it is easily speculated that Hsp90 chaperone complex inhibitors that disrupt association of Hsp90 and client protein in combination with radiation or/and heat has potential effect on enhancement of radiosensitivity or thermosensitivity. In this paper, possible mechanisms in enhancing radiosensitivity or thermosensitivity according to the client proteins will be summarized. (author)

  15. The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1.

    Science.gov (United States)

    Xu, L; Ma, X; Bagattin, A; Mueller, E

    2016-02-18

    Heat shock proteins (HSPs) are required for the clearance of damaged and aggregated proteins and have important roles in protein homeostasis. It has been shown that the heat shock transcription factor, HSF1, orchestrates the transcriptional induction of these stress-regulated chaperones; however, the coregulatory factors responsible for the enhancement of HSF1 function on these target genes have not been fully elucidated. Here, we demonstrate that the cold-inducible coactivator, PGC1α, also known for its role as a regulator of mitochondrial and peroxisomal biogenesis, thermogenesis and cytoprotection from oxidative stress, regulates the expression of HSPs in vitro and in vivo and modulates heat tolerance. Mechanistically, we show that PGC1α physically interacts with HSF1 on HSP promoters and that cells and mice lacking PGC1α have decreased HSPs levels and are more sensitive to thermal challenges. Taken together, our findings suggest that PGC1α protects against hyperthermia by cooperating with HSF1 in the induction of a transcriptional program devoted to the cellular protection from thermal insults.

  16. Dynamics of heat shock protein 70 concentrations in peripheral blood lymphocyte lysates during pregnancy in lactating Holstein-Friesian cows.

    Science.gov (United States)

    Yániz, J L; López-Gatius, F; Almería, S; Carretero, T; García-Ispierto, I; Serrano, B; Smith, R F; Dobson, H; Santolaria, P

    2009-11-01

    The aim of this study was to characterize the dynamics of the concentrations of heat shock protein 70 kDa (HSP70) in peripheral blood lymphocytes of lactating Holstein-Friesian dairy cows (Bos taurus) during pregnancy. The detection of pregnancy was carried out and blood samples collected on Days 40, 90, 120, 150, 180, and 210 of gestation from 46 cows (11 primiparous and 35 pluriparous, 34 seropositive and 12 seronegative to Neospora caninum). Peripheral blood lymphocytes were isolated by density gradient centrifugation. Serologic analysis of Neospora infection and determinations of HSP70 concentrations in lymphocyte lysates were carried out using commercial enzyme-linked immunosorbent assay kits. Climate variables were monitored using on-farm data loggers. Heat shock protein 70 concentrations increased in lymphocytes as gestation progressed, particularly in primiparous cows, with no effect from Neospora infection, climate variables, milk production, semen-providing bull, or outcome of gestation (singletons or twins). Our results show that HSP70 concentrations increased in lymphocytes as gestation progressed and were not affected by stressful factors, such as milk production, heat stress, chronic infection (neosporosis), or twin pregnancies.

  17. Construction, Expression and Identification of a Recombinant BCG Vaccine Encoding Human Mycobacterium Tuberculosis Heat Shock Protein 65

    Institute of Scientific and Technical Information of China (English)

    戴五星; 梁靓; 高红; 黄海浪; 陈智浩; 程继忠; 皇甫永穆

    2004-01-01

    Heat shock protein 65 (HSP65) is one of the most important protective immunogens against the tuberculosis infection. The signal sequence of antigen 85B and the whole HSP65 DNA sequence of human Mycobacterium tuberculosis (M. tuberculosis) were amplified from BCG genome and plasmid pCMV-MTHSP65 respectively by polymerase chain reactions (PCR). These two sequences were cloned into the plasmid pBCG-2100 under the control of the promoter of heat shock protein 70 (HSP70) from human M. tuberculosis, yielding the prokaryotic shuttle expression plasmid pBCG-SP-HSP65. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis showed that the two cloned DNA sequences were consistent with those previously reported, and the direction of their inserting into the recombinant was correct and the reading frame had been maintained. The recombinants were electroporated into BCG to construct the recombinant BCG vaccine and induced by heating. The induced expression detected by SDS-PAGE showed that the content of 65 kD protein expressed in recombinant BCG was 35.69 % in total bacterial protein and 74.09 % in the cell lysate supernatants, suggesting that the recombinant HSP65 gene could express in BCG with high efficiency and the expressed proteins were mainly soluble. Western-blot showed that the secretive recombinant proteins could specifically combine with antibody against M.tuberculosis HSP65, indicating that the recombinant proteins possess the biological activity of HSP65.

  18. Heat shock induction of a 65 kDa ATP—binding proteinase in rat C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    XUCUNSHUAN; MARCOMEYER; 等

    1999-01-01

    The 45,55,65 and 100kDa ATP-binding proteinases(ATP-BPases) of the heat-shocked (44℃ for 30 min,recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography.Their molecular masses,isoelectric points (pI),pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9amino acid sequence was determined by Edman degradation,but no homologies to other proteins in the protein data bases were found.30 and 31kDa proteinases can be cleaved from the 45,55 and 65 kDa proteinases to which they are linked.A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.

  19. 热休克蛋白与支气管哮喘%Heat shock proteins and bronchial asthma

    Institute of Scientific and Technical Information of China (English)

    马礼兵; 向旭东

    2011-01-01

    Heat shock proteins are a series of widespread proteins due to heat stress from bacteria to human, which are broadly participate in the process of immune regulation. Bronchial asthma (asthma)is a chronic airway inflammatory disease, which is also considered an autoimmune disease. With asthmatic incidence increased year by year, it causes a global common concern and become a common disease that is seriously danger to public health. Nowadays, the cellular immune dysfunction is considered important to the pathogenesis of asthma. There is growing evidence that heat shock proteins are likely involved in the pathogenesis of asthma.%热休克蛋白是从细菌到人类均广泛存在的一类热应急蛋白质,并且广泛参与了机体的免疫调节过程.支气管哮喘(简称哮喘)是一种气道慢性炎症性疾病,亦被认为是一种自身免疫性疾病,其发病率逐年上升,已成为全球普遍关注、严重危害公众健康的常见病.目前,细胞免疫功能紊乱被视为哮喘的重要发病机制.越来越多的证据表明,热休克蛋白极可能参与哮喘的发病过程.

  20. Magnetically softened iron oxide (MSIO) nanofluid and its application to thermally-induced heat shock proteins for ocular neuroprotection.

    Science.gov (United States)

    Bae, Seongtae; Jeoung, Jin Wook; Jeun, Minhong; Jang, Jung-Tak; Park, Joo Hyun; Kim, Yu Jeong; Lee, Kwan; Kim, Minkyu; Lee, Jooyoung; Hwang, Hey Min; Paek, Sun Ha; Park, Ki Ho

    2016-09-01

    Magnetically softened iron oxide (MSIO) nanofluid, PEGylated (Mn0.5Zn0.5)Fe2O4, was successfully developed for local induction of heat shock proteins (HSPs) 72 in retinal ganglion cells (RGCs) for ocular neuroprotection. The MSIO nanofluid showed significantly enhanced alternating current (AC) magnetic heat induction characteristics including exceptionally high SLP (Specific Loss Power, > 2000 W/g). This phenomenon was resulted from the dramatically improved AC magnetic softness of MSIO caused by the magnetically tailored Mn(2+) and Zn(2+) distributions in Fe3O4. In addition, the MSIO nanofluid with ultra-thin surface coating layer thickness and high monodispersity allowed for a higher cellular uptake up to a 52.5% with RGCs and enhancing "relaxation power" for higher AC heating capability. The RGCs cultured with MSIO nanofluid successfully induced HSPs 72 by magnetic nanofluid hyperthermia (MNFH). Moreover, it was interestingly observed that systematic control of "AC magnetically-induced heating up rate" reaching to a constant heating temperature of HSPs 72 induction allowed to achieve maximized induction efficiency at the slowest AC heating up rate during MNFH. In addition to in-vitro experimental verification, the studies of MSIO infusion behavior using animal models and a newly designed magnetic coil system demonstrated that the MSIO has promising biotechnical feasibility for thermally-induced HSPs agents in future glaucoma clinics. PMID:272945