WorldWideScience

Sample records for archaea

  1. Methanogenic archaea

    International Nuclear Information System (INIS)

    This chapter outlines procedures for enumerating, isolating, culturing and storing methanogens from ruminal digesta. The methanogens, a large and diverse group of Archaea, have unique features that separate them from the bacteria and the eukaryotes. They are the only recognized ruminal microbes belonging to the Archaea and are an integral part of the rumen microbial ecosystem. By scavenging hydrogen gas, methanogens play a key ecological role in keeping the partial pressure of hydrogen low so that fermentation can proceed efficiently. Although about 70 methanogenic species belonging to 2 1 genera have been identified from anaerobic environments, and a range of different methanogens co-exist in the rumen, to date only seven ruminal species have been isolated and purified. The population densities of methanogens in the rumen appear to be influenced by diet, and in particular by the fibre content of the diet. Sheep and cattle fed diets rich in concentrates contained 107-108 and 108- 109 ruminal methanogens/g, respectively, whereas sheep and dairy cows grazing pasture contained 109-1010 ruminal methanogens/g (G.N. Jarvis and K.N. Joblin, unpublished data). With careful application, methanogen population densities can readily be determined using culture methods. These appear to be similar to the population densities determined by culture-independent methods (P. Evans and K.N. Joblin, unpublished data)

  2. Archaea on human skin

    OpenAIRE

    Alexander J Probst; Auerbach, Anna K.; Christine Moissl-Eichinger

    2013-01-01

    The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin mi...

  3. Archaea in biogeochemical cycles.

    Science.gov (United States)

    Offre, Pierre; Spang, Anja; Schleper, Christa

    2013-01-01

    Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth's global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by Thaumarchaeota. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.

  4. Archaea on human skin.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.

  5. Archaea in Yellowstone Lake

    OpenAIRE

    Kan, Jinjun; Clingenpeel, Scott; Macur, Richard E.; Inskeep, William P.; Lovalvo, Dave; Varley, John; Gorby, Yuri; McDermott, Timothy R.; Nealson, Kenneth

    2011-01-01

    The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (∼51 ...

  6. Bioenergetics of the Archaea

    OpenAIRE

    Schäfer, Günter; Engelhard, Martin; Müller, Volker

    1999-01-01

    In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the mol...

  7. Archaea in Symbioses

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2012-01-01

    Full Text Available During the last few years, the analysis of microbial diversity in various habitats greatly increased our knowledge on the kingdom Archaea. At the same time, we became aware of the multiple ways in which Archaea may interact with each other and with organisms of other kingdoms. The large group of euryarchaeal methanogens and their methane oxidizing relatives, in particular, take part in essential steps of the global methane cycle. Both of these processes, which are in reverse to each other, are partially conducted in a symbiotic interaction with different partners, either ciliates and xylophagous animals or sulfate reducing bacteria. Other symbiotic interactions are mostly of unknown ecological significance but depend on highly specific mechanisms. This paper will give an overview on interactions between Archaea and other organisms and will point out the ecological relevance of these symbiotic processes, as long as these have been already recognized.

  8. Gene decay in archaea

    Directory of Open Access Journals (Sweden)

    M. W. J. van Passel

    2007-01-01

    Full Text Available The gene-dense chromosomes of archaea and bacteria were long thought to be devoid of pseudogenes, but with the massive increase in available genome sequences, whole genome comparisons between closely related species have identified mutations that have rendered numerous genes inactive. Comparative analyses of sequenced archaeal genomes revealed numerous pseudogenes, which can constitute up to 8.6% of the annotated coding sequences in some genomes. The largest proportion of pseudogenes is created by gene truncations, followed by frameshift mutations. Within archaeal genomes, large numbers of pseudogenes contain more than one inactivating mutation, suggesting that pseudogenes are deleted from the genome more slowly in archaea than in bacteria. Although archaea seem to retain pseudogenes longer than do bacteria, most archaeal genomes have unique repertoires of pseudogenes.

  9. Genetic techniques for the archaea.

    Science.gov (United States)

    Farkas, Joel A; Picking, Jonathan W; Santangelo, Thomas J

    2013-01-01

    Genetic techniques for the Archaea have undergone a rapid expansion in complexity, resulting in increased exploration of the role of Archaea in the environment and detailed analyses of the molecular physiology and information-processing systems in the third domain of life. Complementary gains in describing the ever-increasing diversity of archaeal organisms have allowed these techniques to be leveraged in new and imaginative ways to elucidate shared and unique aspects of archaeal diversity and metabolism. In this review, we introduce the four archaeal clades for which advanced genetic techniques are available--the methanogens, halophiles, Sulfolobales, and Thermococcales--with the aim of providing an overall profile of the advantages and disadvantages of working within each clade, as essentially all of the genetically accessible archaeal organisms require unique culturing techniques that present real challenges. We discuss the full repertoire of techniques possible within these clades while highlighting the recent advances that have been made by taking advantage of the most prominent techniques and approaches.

  10. Regulated polyploidy in halophilic archaea.

    Directory of Open Access Journals (Sweden)

    Sebastian Breuert

    Full Text Available Polyploidy is common in higher eukaryotes, especially in plants, but it is generally assumed that most prokaryotes contain a single copy of a circular chromosome and are therefore monoploid. We have used two independent methods to determine the genome copy number in halophilic archaea, 1 cell lysis in agarose blocks and Southern blot analysis, and 2 Real-Time quantitative PCR. Fast growing H. salinarum cells contain on average about 25 copies of the chromosome in exponential phase, and their ploidy is downregulated to 15 copies in early stationary phase. The chromosome copy number is identical in cultures with a twofold lower growth rate, in contrast to the results reported for several other prokaryotic species. Of three additional replicons of H. salinarum, two have a low copy number that is not growth-phase regulated, while one replicon even shows a higher degree of growth phase-dependent regulation than the main replicon. The genome copy number of H. volcanii is similarly high during exponential phase (on average 18 copies/cell, and it is also downregulated (to 10 copies as the cells enter stationary phase. The variation of genome copy numbers in the population was addressed by fluorescence microscopy and by FACS analysis. These methods allowed us to verify the growth phase-dependent regulation of ploidy in H. salinarum, and they revealed that there is a wide variation in genome copy numbers in individual cells that is much larger in exponential than in stationary phase. Our results indicate that polyploidy might be more widespread in archaea (or even prokaryotes in general than previously assumed. Moreover, the presence of so many genome copies in a prokaryote raises questions about the evolutionary significance of this strategy.

  11. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W;

    2004-01-01

    in unicellular eukaryotes: the green alga Chlamydomonas reinhardtii, the dinoflagellate Alexandrium tamarense, and the human pathogens Entamoeba spp., Eimera tenella, Toxoplasma gondii, and Giardia lamblia. We compare these sequences to others, particularly those in the complete genome sequences of Archaea...

  12. Where does DNA replication start in archaea?

    OpenAIRE

    Vas, Amit; Leatherwood, Janet

    2000-01-01

    Genome-wide measures of DNA strand composition have been used to find archaeal DNA replication origins. Archaea seem to replicate using a single origin (as do eubacteria) even though archaeal replication factors are more like those of eukaryotes.

  13. Viruses of the Archaea: a unifying view

    DEFF Research Database (Denmark)

    Prangishvili, David; Forterre, Patrick; Garrett, Roger Antony

    2006-01-01

    DNA viruses of the Archaea have highly diverse and often exceptionally complex morphotypes. Many have been isolated from geothermally heated hot environments, raising intriguing questions about their origins, and contradicting the widespread notion of limited biodiversity in extreme environments...

  14. Diversity and seasonal dynamics of airborne archaea

    Science.gov (United States)

    Fröhlich-Nowoisky, J.; Ruzene Nespoli, C.; Pickersgill, D. A.; Galand, P. E.; Müller-Germann, I.; Nunes, T.; Gomes Cardoso, J.; Almeida, S. M.; Pio, C.; Andreae, M. O.; Conrad, R.; Pöschl, U.; Després, V. R.

    2014-11-01

    Archaea are widespread and abundant in many terrestrial and aquatic environments, and are thus outside extreme environments, accounting for up to ~10% of the prokaryotes. Compared to bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of archaea in the atmosphere. By means of DNA analysis and Sanger sequencing targeting the 16S rRNA (435 sequences) and amoA genes in samples of air particulate matter collected over 1 year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne archaea. The detected archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase in bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly predicted methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands (72 sequences) and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role in the dispersal of archaea, including assumed ammonia-oxidizing Thaumarchaeota and methanogens.

  15. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Julie Maupin- Furlow

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  16. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  17. 2007 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Imke Schroeder

    2008-09-18

    The Archaea are a fascinating and diverse group of prokaryotic organisms with deep roots overlapping those of eukaryotes. The focus of this GRC conference, 'Archaea: Ecology Metabolism & Molecular Biology', expands on a number of emerging topics highlighting the evolution and composition of microbial communities and novel archaeal species, their impact on the environment, archaeal metabolism, and research that stems from sequence analysis of archaeal genomes. The strength of this conference lies in its ability to couple reputable areas with new scientific topics in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  18. Functional Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  19. Protein Acetylation in Archaea, Bacteria, and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Jörg Soppa

    2010-01-01

    Full Text Available Proteins can be acetylated at the alpha-amino group of the N-terminal amino acid (methionine or the penultimate amino acid after methionine removal or at the epsilon-amino group of internal lysines. In eukaryotes the majority of proteins are N-terminally acetylated, while this is extremely rare in bacteria. A variety of studies about N-terminal acetylation in archaea have been reported recently, and it was revealed that a considerable fraction of proteins is N-terminally acetylated in haloarchaea and Sulfolobus, while this does not seem to apply for methanogenic archaea. Many eukaryotic proteins are modified by differential internal acetylation, which is important for a variety of processes. Until very recently, only two bacterial proteins were known to be acetylation targets, but now 125 acetylation sites are known for E. coli. Knowledge about internal acetylation in archaea is extremely limited; only two target proteins are known, only one of which—Alba—was used to study differential acetylation. However, indications accumulate that the degree of internal acetylation of archaeal proteins might be underestimated, and differential acetylation has been shown to be essential for the viability of haloarchaea. Focused proteomic approaches are needed to get an overview of the extent of internal protein acetylation in archaea.

  20. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    to honor the archaea pioneers Wolfram Zillig and Karl O. Stetter, the book provides a thorough survey of the field from its controversial beginnings to its ongoing expansion to include aspects of eukaryotic biology. The editors have assembled articles from the premier researchers in this rapidly burgeoning...... and technological context, and include accounts of cutting-edge research developments. The book spans archaeal evolution, physiology, and molecular and cellular biology and will be an essential reference for both graduate students and researchers....

  1. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology.

    Science.gov (United States)

    Khelaifia, S; Drancourt, M

    2012-09-01

    We herein review the state of knowledge regarding the in vitro and in vivo susceptibility of archaea to antimicrobial agents, including some new molecules. Indeed, some archaea colonizing the human microbiota have been implicated in diseases such as periodontopathy. Archaea are characterized by their broad-spectrum resistance to antimicrobial agents. In particular, their cell wall lacks peptidoglycan, making them resistant to antimicrobial agents interfering with peptidoglycan biosynthesis. Archaea are, however, susceptible to the protein synthesis inhibitor fusidic acid and imidazole derivatives. Also, squalamine, an antimicrobial agent acting on the cell wall, proved effective against human methanogenic archaea. In vitro susceptibility data could be used to design protocols for the decontamination of complex microbiota and the selective isolation of archaea in anaerobic culture. PMID:22748132

  2. Are There Rab GTPases in Archaea?

    Science.gov (United States)

    Surkont, Jaroslaw; Pereira-Leal, Jose B

    2016-07-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. PMID:27034425

  3. Archaea: The First Domain of Diversified Life

    Directory of Open Access Journals (Sweden)

    Gustavo Caetano-Anollés

    2014-01-01

    Full Text Available The study of the origin of diversified life has been plagued by technical and conceptual difficulties, controversy, and apriorism. It is now popularly accepted that the universal tree of life is rooted in the akaryotes and that Archaea and Eukarya are sister groups to each other. However, evolutionary studies have overwhelmingly focused on nucleic acid and protein sequences, which partially fulfill only two of the three main steps of phylogenetic analysis, formulation of realistic evolutionary models, and optimization of tree reconstruction. In the absence of character polarization, that is, the ability to identify ancestral and derived character states, any statement about the rooting of the tree of life should be considered suspect. Here we show that macromolecular structure and a new phylogenetic framework of analysis that focuses on the parts of biological systems instead of the whole provide both deep and reliable phylogenetic signal and enable us to put forth hypotheses of origin. We review over a decade of phylogenomic studies, which mine information in a genomic census of millions of encoded proteins and RNAs. We show how the use of process models of molecular accumulation that comply with Weston’s generality criterion supports a consistent phylogenomic scenario in which the origin of diversified life can be traced back to the early history of Archaea.

  4. Diurnally entrained anticipatory behavior in archaea.

    Directory of Open Access Journals (Sweden)

    Kenia Whitehead

    Full Text Available By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors over a wide range of time scales (daily to seasonal. This anticipatory behavior is important to the fitness of diverse species, and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be observed in archaea. Here, we report the first observation of light-dark (LD-entrained diurnal oscillatory transcription in up to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms. The memory of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight (via temperature on O(2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically during nighttime and anoxically during daytime.

  5. Swimming behavior of selected species of Archaea.

    Science.gov (United States)

    Herzog, Bastian; Wirth, Reinhard

    2012-03-01

    The swimming behavior of Bacteria has been studied extensively, at least for some species like Escherichia coli. In contrast, almost no data have been published for Archaea on this topic. In a systematic study we asked how the archaeal model organisms Halobacterium salinarum, Methanococcus voltae, Methanococcus maripaludis, Methanocaldococcus jannaschii, Methanocaldococcus villosus, Pyrococcus furiosus, and Sulfolobus acidocaldarius swim and which swimming behavior they exhibit. The two Euryarchaeota M. jannaschii and M. villosus were found to be, by far, the fastest organisms reported up to now, if speed is measured in bodies per second (bps). Their swimming speeds, at close to 400 and 500 bps, are much higher than the speed of the bacterium E. coli or of a very fast animal, like the cheetah, each with a speed of ca. 20 bps. In addition, we observed that two different swimming modes are used by some Archaea. They either swim very rapidly, in a more or less straight line, or they exhibit a slower kind of zigzag swimming behavior if cells are in close proximity to the surface of the glass capillary used for observation. We argue that such a "relocate-and-seek" behavior enables the organisms to stay in their natural habitat.

  6. Astrobiological studies with extremely halophilic Archaea

    Science.gov (United States)

    Fendrihan, S.; Lotter, H. Stan

    2007-08-01

    Extremely halophilic Archaea were isolated and characterized by both classical and modern molecular biological methods from hypersaline and haloalkaline lakes, salted soils, solar salterns and rock salt deposits (1). The survival of these micro-organisms after embedding in laboratory-made halite was investigated. Their presence in fluid inclusions was demonstrated by staining with the BacLight LIVE/DEAD kit and observation of their fluorescence by microscopy. Following resuspension of cells from halite crystals, a survival of about 0.5 - 4% according to colony forming units was obtained. In previous studies which focussed on the resistance of halophilic archaea to UV radiation or the space environment, survival of a dose of 110 J/m2 (using liquid cultures) and up to 10 000 J/m2 at a range of 200 - 400 nm was reported, when dried Haloarcula sp. in a single layer were exposed on the Biopan facility (2). We exposed a few haloarchaeal strains to a Martian UV simulator lamp with a range of 200 - 400 nm and an intensity of 41.2 W/m2, obtaining a viability of about 51- 67% of cells following different exposure times. Other studies focus on the detection of haloarchaea in halite by Raman microspectroscopy and by NIR-FT-Raman spectroscopy, which are considered to be important future tools for Mars exploration (3). Using the Dilor XY Raman spectrometer with laser excitation at 514.5 nm, equipped with a confocal microscope BX40 (Olympus Corp., Japan) and a Bruker IFS 66 + FRA106 with laser excitation at 1064 nm (Bruker, Germany), instruments, we obtained characteristic carotenoid peaks contained by these microorganisms. 1. Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler G., Gerbl F. Stan Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Review. Environ. Sci. Biotechnol. 5: 203-218. 2. Mancinelli R. L., White M. R., Rothschild L. J. (1998) Biopan survival I : exposure of the osmophiles Synechococcus sp. (Nägeli) and

  7. Experimental fossilisation of viruses from extremophilic Archaea

    Directory of Open Access Journals (Sweden)

    F. Orange

    2011-06-01

    Full Text Available The role of viruses at different stages of the origin of life has recently been reconsidered. It appears that viruses may have accompanied the earliest forms of life, allowing the transition from an RNA to a DNA world and possibly being involved in the shaping of tree of life in the three domains that we know presently. In addition, a large variety of viruses has been recently identified in extreme environments, hosted by extremophilic microorganisms, in ecosystems considered as analogues to those of the early Earth. Traces of life on the early Earth were preserved by the precipitation of silica on the organic structures. We present the results of the first experimental fossilisation by silica of viruses from extremophilic Archaea (SIRV2 – Sulfolobus islandicus rod-shaped virus 2, TPV1 – Thermococcus prieurii virus 1, and PAV1 – Pyrococcus abyssi virus 1. Our results confirm that viruses can be fossilised, with silica precipitating on the different viral structures (proteins, envelope over several months in a manner similar to that of other experimentally and naturally fossilised microorganisms. This study thus suggests that viral remains or traces could be preserved in the rock record although their identification may be challenging due to the small size of the viral particles.

  8. 2003 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Richard F. Shand

    2004-09-21

    The Gordon Research Conference (GRC) on 2003 Archaea: Ecology, Metabolism and Molecular Biology was held at Proctor Academy, Andover, NH from August 3-8, 2003. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. I want to personally thank you for your support of this Conference. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research Conferences does not permit publication of meeting proceedings. If you wish any further details, please feel free to contact me. Thank you, Dr. Richard F. Shand, 2003 Conference Chair.

  9. Tropical Archaea: Diversity associated with the surface microlayer of corals

    Science.gov (United States)

    Kellogg, C.A.

    2004-01-01

    Recent 16S rDNA studies have focused on detecting uncultivated bacteria associated with Caribbean reef corals in an effort to address the ecological roles of coral-associated microbes. Reports of Archaea associated with fishes and marine invertebrates raised the question of whether Archaea might also be part of the coral-associated microbial community. DNA analysis of mucus from 3 reef-building species of Caribbean corals, Montastraea annularis complex, Diploria strigosa and D. labyrinthiformis in the US Virgin Islands yielded 34 groups of archaeal 16S ribotypes (defined at the level of 97% similarity). The majority (75%) was most closely matched by BLAST searches to sequences derived from marine water column samples, whereas the remaining ribotypes were most similar to sequences isolated from anoxic environments (15%) and hydrothermal vents (9%). Unlike previous 16S studies of coral-associated Bacteria, the results do not suggest specific associations between particular archaeal sequences and individual coral species. Marine Archaea (Groups I, II and III) in addition to Thermoplasma-like, methanogen, and marine benthic crenarchaeote phylotypes, were detected in the mucus of tropical corals. The finding of sequences from coral-associated Archaea that are closely related to strict and facultative anaerobes, as well as to uncultivated Archaea from other types of anoxic environments, suggests that anaerobic micro-niches may exist in coral mucus layers. Archaea, with their unique biogeochemical capabilities, broaden the scope of possible interactions between corals and their associated microbial communities.

  10. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J;

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light......-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and distribution of proteorhodopsin genes in Archaea affiliated with the order Thermoplasmatales, in the ocean......'s upper water column. The genomic context and phylogenetic relationships of the archaeal and proteobacterial proteorhodopsins indicate its probable lateral transfer between planktonic Bacteria and Archaea. About 10% of the euryarchaeotes in the photic zone contained the proteorhodopsin gene adjacent...

  11. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are pro

  12. In-Vitro Archaeacidal Activity of Biocides against Human-Associated Archaea

    OpenAIRE

    Saber Khelaifia; Jean Michel Brunel; Michel Drancourt

    2013-01-01

    BACKGROUND: Several methanogenic archaea have been detected in the human intestinal microbiota. These intestinal archaea may contaminate medical devices such as colonoscopes. However, no biocide activity has been reported among these human-associated archaea. METHODOLOGY: The minimal archaeacidal concentration (MAC) of peracetic acid, chlorhexidine, squalamine and twelve parent synthetic derivatives reported in this study was determined against five human-associated methanogenic archaea inclu...

  13. Potential environmental functions of widespread, abundant, uncultured marine archaea

    Science.gov (United States)

    Lloyd, K. G.; Schreiber, L.; Petersen, D. G.; Schramm, A.; Jorgensen, B.

    2012-12-01

    The vast majority of marine subsurface microorganisms are uncultivated, and therefore have unknown metabolisms. Much of the prokaryotes present in the marine subsurface are archaea, and, in turn, much of the archaea fall into the Miscellaneous Crenarchaeotal Group. These organisms are widely distributed globally and are phylogenetically diverse, comprising 17 distinct subgroups, defined by 16S rRNA genes (Kubo et al. 2012). The subgroups do not seem to have any well-defined environmental distribution (i.e., they are all present in different types of marine and terrestrial environments). However, the abundance of sequences from a certain environment type differs among subgroups, and may provide clues to their role in these environments. We sequenced the genome of a single cell of MCG extracted directly from marine sediments. Although coverage was low (~30%), the data quality was high. Conserved genes show that MCG is deeply branching within the newly named "Thaumarchaeota", and contains a complete pathway for the degradation or extracellular proteins. A further search through metagenomic data shows that this process may be widespread in marine sediments. We hypothesize that MCG archaea may be important in anaerobic protein decomposition in marine sediments. Reference Kubo et al., 2012. Archaea of the Miscellaneous Crenarchaeotal Group (MCG) are abundant, diverse, and widespread in marine sediments. ISME Journal, in press, doi:10.1038/ismej.2012.37.

  14. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA

    NARCIS (Netherlands)

    Gaudin, M.; Gauliard, E.; Schouten, S.; Houel-Renault, L.; Lenormand, P.; Marguet, E.; Forterre, P.

    2013-01-01

    Thermococcales are hyperthermophilic archaea found in deep-sea hydrothermal vents. They have been recently reported to produce membrane vesicles (MVs) into their culture medium. Here, we have characterized the mode of production and determined the biochemical composition of MVs from two species of T

  15. Molecular characterization of hydrolytic enzymes from hyperthermophilic archaea.

    NARCIS (Netherlands)

    Voorhorst, W.G.B.

    1998-01-01

    Hyperthermophiles are recently discovered microorganisms which are able to grow optimally above 85 °C. Most hyperthermophiles belong to the Archaea, the third domain of life. One of the main interests in hyperthermophiles to deepen the insight in the way their proteins are stabilized and how to appl

  16. Engineering of ß-glycosidases from hyperthermophilic Archaea

    NARCIS (Netherlands)

    Kaper, T.

    2001-01-01

    Hyperthermophilic Archaea are microorganisms that grow optimally above 80°C. To be able to live at these temperature extremes their cell components display extreme resistance towards thermal degradation. This characteristic is an attractive feature for use of their

  17. On the Response of Halophilic Archaea to Space Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Leuko

    2014-02-01

    Full Text Available Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.

  18. Archaea were widespread in sediments of the Messinian Salinity Crisis

    Science.gov (United States)

    Birgel, Daniel; Peckmann, Jörn

    2015-04-01

    The Messinian salinity crisis (MSC) was among the most extreme and short-lived paleooceanographic events in Earth history and dramatically impacted the depositional environments of the Mediterranean. Many of the Messinian sedimentary sequences reflect environmental variability on extremely short time scales, typified by phenomena like evaporation and high salinities, anoxia, and desiccation. Only few organisms tolerate such severe conditions. Among those are archaea, many of which are especially well adapted to extreme conditions. We studied various MSC locations and deposits to shed light onto the role of archaea in the MSC, focusing on lipid biomarkers. These are (1) primary gypsum with abundant, yet problematic filamentous microfossils from various locations in the Mediterranean, (2) Calcare di Base, limestones from Sicily and Calabria, and (3) Calcare Solfifero, authigenic carbonates associated with native sulfur from Sicily. (1) Primary gypsum beds with abundant filamentous fossils are widespread in the Mediterranean. Archaea were found as important contributor of organic matter in these evaporites. The filaments, however, have previously been interpreted to represent cyanobacteria based on the extraction and amplification of cyanobacterial DNA. Cyanobacteria produce specific and long-lasting biomarkers, but no such compounds were found in the studied deposits, thus, the assignment of the filaments to cyanobacteria necessitates further verification. (2) The Calcare di Base are widespread, genetically heterogeneous Messinian limestones, which are particularly common in Sicily and Calabria. The environmental conditions during their deposition, as well as mechanisms and timing of formation are a matter of debate. The studied Calcare di Base samples were found to contain specific halophilic archaeal signatures and numerous pseudomorphs after halite. (3) The Calcare Solfifero, authigenic carbonates accompanied by elemental sulfur formed in the course of microbial

  19. Ammonia-oxidising archaea--physiology, ecology and evolution.

    Science.gov (United States)

    Schleper, Christa; Nicol, Graeme W

    2010-01-01

    Nitrification is a microbially mediated process that plays a central role in the global cycling of nitrogen and is also of economic importance in agriculture and wastewater treatment. The first step in nitrification is performed by ammonia-oxidising microorganisms, which convert ammonia into nitrite ions. Ammonia-oxidising bacteria (AOB) have been known for more than 100 years. However, metagenomic studies and subsequent cultivation efforts have recently demonstrated that microorganisms of the domain archaea are also capable of performing this process. Astonishingly, members of this group of ammonia-oxidising archaea (AOA), which was overlooked for so long, are present in almost every environment on Earth and typically outnumber the known bacterial ammonia oxidisers by orders of magnitudes in common environments such as the marine plankton, soils, sediments and estuaries. Molecular studies indicate that AOA are amongst the most abundant organisms on this planet, adapted to the most common environments, but are also present in those considered extreme, such as hot springs. The ecological distribution and community dynamics of these archaea are currently the subject of intensive study by many research groups who are attempting to understand the physiological diversity and the ecosystem function of these organisms. The cultivation of a single marine isolate and two enrichments from hot terrestrial environments has demonstrated a chemolithoautotrophic mode of growth. Both pure culture-based and environmental studies indicate that at least some AOA have a high substrate affinity for ammonia and are able to grow under extremely oligotrophic conditions. Information from the first available genomes of AOA indicate that their metabolism is fundamentally different from that of their bacterial counterparts, involving a highly copper-dependent system for ammonia oxidation and electron transport, as well as a novel carbon fixation pathway that has recently been discovered in

  20. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Julien Jorda

    2011-01-01

    Full Text Available Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  1. Classification of Bacteria and Archaea: past, present and future.

    Science.gov (United States)

    Schleifer, Karl Heinz

    2009-12-01

    The late 19th century was the beginning of bacterial taxonomy and bacteria were classified on the basis of phenotypic markers. The distinction of prokaryotes and eukaryotes was introduced in the 1960s. Numerical taxonomy improved phenotypic identification but provided little information on the phylogenetic relationships of prokaryotes. Later on, chemotaxonomic and genotypic methods were widely used for a more satisfactory classification. Archaea were first classified as a separate group of prokaryotes in 1977. The current classification of Bacteria and Archaea is based on an operational-based model, the so-called polyphasic approach, comprised of phenotypic, chemotaxonomic and genotypic data, as well as phylogenetic information. The provisional status Candidatus has been established for describing uncultured prokaryotic cells for which their phylogenetic relationship has been determined and their authenticity revealed by in situ probing. The ultimate goal is to achieve a theory-based classification system based on a phylogenetic/evolutionary concept. However, there are currently two contradictory opinions about the future classification of Bacteria and Archaea. A group of mostly molecular biologists posits that the yet-unclear effect of gene flow, in particular lateral gene transfer, makes the line of descent difficult, if not impossible, to describe. However, even in the face of genomic fluidity it seems that the typical geno- and phenotypic characteristics of a taxon are still maintained, and are sufficient for reliable classification and identification of Bacteria and Archaea. There are many well-defined genotypic clusters that are congruent with known species delineated by polyphasic approaches. Comparative sequence analysis of certain core genes, including rRNA genes, may be useful for the characterization of higher taxa, whereas various character genes may be suitable as phylogenetic markers for the delineation of lower taxa. Nevertheless, there may still be

  2. Biosignatures of methanogenic archaea by Confocal Raman Microspectroscopy (CRM)

    OpenAIRE

    Serrano, P.; Hermelink, A.; Lasch, P.; de Vera, J.P.; Böttger, U.; Wagner, D

    2014-01-01

    Methanogenic archaea are anaerobic chemotrophic microorganisms that meet many of the metabolic and physiological requirements for survival on the martian subsurface. In particular, methanogens from Siberian permafrost are extremely resistant against different types of environmental stresses as well as simulated martian thermo-physical and subsurface conditions, making them promising model organisms for potential life on Mars. Raman spectroscopy is a vibrational spectroscopic technique that ha...

  3. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    OpenAIRE

    Vidya eDe Gannes; Gaius eEudoxie; Dyer, David H.; William James Hickey

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  4. Global Ecological Pattern of Ammonia-Oxidizing Archaea

    OpenAIRE

    Huiluo Cao; Jean-Christophe Auguet; Ji-Dong Gu

    2013-01-01

    BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We condu...

  5. Stable Carbon Isotope Fractionation by Methylotrophic Methanogenic Archaea

    OpenAIRE

    Penger, Jörn; Conrad, Ralf; Blaser, Martin

    2012-01-01

    In natural environments methane is usually produced by aceticlastic and hydrogenotrophic methanogenic archaea. However, some methanogens can use C1 compounds such as methanol as the substrate. To determine the contributions of individual substrates to methane production, the stable-isotope values of the substrates and the released methane are often used. Additional information can be obtained by using selective inhibitors (e.g., methyl fluoride, a selective inhibitor of acetoclastic methanoge...

  6. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  7. Expansion of the Genomic Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Rinke, Christian; Sczyrba, Alex; Malfatti, Stephanie; Lee, Janey; Cheng, Jan-Fang; Stepanauskas, Ramunas; Eisen, Jonathan A.; Hallam, Steven; Inskeep, William P.; Hedlund, Brian P.; Sievert, Stefan M.; Liu, Wen-Tso; Tsiamis, George; Hugenholtz, Philip; Woyke, Tanja

    2011-06-02

    To date the vast majority of bacterial and archaeal genomes sequenced are of rather limited phylogenetic diversity as they were chosen based on their physiology and/ or medical importance. The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project (Wu et al. 2009) is aimed at systematically filling the gaps of the tree of life with phylogenetically diverse reference genomes. However more than 99 percent of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes of these largely mysterious species. These limitations gave rise to the GEBA uncultured project. Here we propose to use single cell genomics to massively expand the Genomic Encyclopedia of Bacteria and Archaea by targeting 80 single cell representatives of uncultured candidate phyla which have no or very few cultured representatives. Generating these reference genomes of uncultured microbes will dramatically increase the discovery rate of novel protein families and biological functions, shed light on the numerous underrepresented phyla that likely play important roles in the environment, and will assist in improving the reconstruction of the evolutionary history of Bacteria and Archaea. Moreover, these data will improve our ability to interpret metagenomics sequence data from diverse environments, which will be of tremendous value for microbial ecology and evolutionary studies to come.

  8. Expansion of the Genomic Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Rinke, Christian; Sczyrba, Alex; Malfatti, Stephanie; Lee, Janye; Cheng, Jan-Fang; Stepanauskas, Ramunas; Eisen, Jonathan A.; Hallam, Steven; Inskeep, William P.; Hedlund, Brian P.; Sievert, Stefan M.; Liu, Wen-Tso; Tsiamis, George; Hugenholtz, Philip; Woyke, Tanja

    2011-03-20

    To date the vast majority of bacterial and archaeal genomes sequenced are of rather limited phylogenetic diversity as they were chosen based on their physiology and/ or medical importance. The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project (Wu et al. 2009) is aimed to systematically filling the gaps of the tree of life with phylogenetically diverse reference genomes. However more than 99percent of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes of these largely mysterious species. These limitations gave rise to the GEBA uncultured project. Here we propose to use single cell genomics to massively expand the Genomic Encyclopedia of Bacteria and Archaea by targeting 80 single cell representatives of uncultured candidate phyla which have no or very few cultured representatives. Generating these reference genomes of uncultured microbes will dramatically increase the discovery rate of novel protein families and biological functions, shed light on the numerous underrepresented phyla that likely play important roles in the environment, and will assist in improving the reconstruction of the evolutionary history of Bacteria and Archaea. Moreover, these data will improve our ability to interpret metagenomics sequence data from diverse environments, which will be of tremendous value for microbial ecology and evolutionary studies to come.

  9. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    Science.gov (United States)

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms. PMID:26750123

  10. Archaea in metazoan diets: implications for food webs and biogeochemical cycling

    OpenAIRE

    Andrew R Thurber; Levin, Lisa A.; Orphan, Victoria J.; Marlow, Jeffrey J.

    2012-01-01

    Although the importance of trophic linkages, including ‘top-down forcing’, on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary sour...

  11. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork

    OpenAIRE

    Grogan, Dennis W.

    2015-01-01

    Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but re...

  12. Exploring the diversity of extremely halophilic archaea in food-grade salts

    OpenAIRE

    Henriet, O.; Fourmentin, J.; Delincé, B.; Mahillon, J

    2014-01-01

    Salting is one of the oldest means of food preservation: adding salt decreases water activity and inhibits microbial development. However, salt is also a source of living bacteria and archaea. The occurrence and diversity of viable archaea in this extreme environment were assessed in 26 food-grade salts from worldwide origin by cultivation on four culture media. Additionally, metagenomic analysis of 16S rRNA gene was performed on nine salts. Viable archaea were observed in 14 salts and colony...

  13. Archaea: From Genomics to Physiology and the Origin of Life

    Science.gov (United States)

    Vothknecht, Ute C.; Tumbula, Debra L.

    1999-01-01

    This document represents a report on a meeting about Archaea. The meeting had an unusually diversified mix of topics all related to Archaea highlighting their differences and similarities with other kingdoms of life. Thus, a large number of scientists from others areas of biology participated in this conference. One-third of the speakers (11 of 33) represented laboratories whose main interests have not been archaea and who have not previously participated in similar symposia or workshops. Thus, this symposium provided a unique opportunity for archaeal researchers to interact in a wider forum. Because of the broad range of topics covered, the conference also introduced many of the participants to new areas of archaeal research. The discussions of genomics, molecular mechanisms of transcription, metabolic pathways and evolution were at a very high level. Talks and posters provided detailed discussions of the state of the current knowledge in RNA processing, transcriptional initiation, chromatin structure, aminoacyl-tRNA synthetases, autotrophic CO2 fixation, Upid biosynthesis and a wide range of other topics. In addition to providing overviews, major areas of scientific argument were clearly delineated, particularly in the discussions of genomics and evolution. Some of the questions raised included: how representative are individual gene trees of organismal evolution, how prevalent is horizontal evolution, how reliable are functional assignments in genomics? On these topics, the different points of view were well represented. The future of any field depends on the enthusiasm and intellectual engagement of young scientists working in the area. Therefore, the participation of 29 graduate and postdoctoral students (out of about 135 participants) was a highlight of the meeting. This was the consequence of funding contributions by NSF and NASA.

  14. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Science.gov (United States)

    Löscher, C. R.; Kock, A.; Könneke, M.; LaRoche, J.; Bange, H. W.; Schmitz, R. A.

    2012-07-01

    The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA) over their bacterial counterparts (AOB) in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O) that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA) were detectable throughout the water column of the eastern tropical North Atlantic (ETNA) and eastern tropical South Pacific (ETSP) Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen in the ocean.

  15. The effects of space relevant environmental factors on halophilic Archaea

    Science.gov (United States)

    Leuko, Stefan; Moeller, Ralf; Rettberg, Petra

    Within the last 50 years, space technology has provided tools for transporting terrestrial (microbial) life beyond Earth's protective shield in order to study its responses to selected conditions of space. Microorganisms are ubiquitous and can be found in almost every environment on Earth. They thrive and survive in a broad spectrum of environments and are true masters in adapting to rapidly changing external conditions. Although microorganisms cannot actively grow under the harsh conditions of outer space or other known planets, some microorganisms might be able to survive for a time in space or other planets as dormant, inactive spores or in similar desiccation-resistant resting states, e.g., enclosed in halite crystals or biofilms. Halite crystals are the realm of halophilic Archaea as they have adapted to life at extreme salt concentrations. They can stay entrapped in such crystals for millions of years without losing viability and therefore the family Halobacteriaceae belongs to the group of microorganisms which may survive space travel or may even be found on other planets. Several members of this family have been utilized in space relevant experiments where they were exposed to detrimental environmental conditions such as UV-C radiation, vacuum, temperature cycles (+60(°) C and -25(°) C) and heavy iron bombardment (150 MeV He, 500 MeV Ar and 500 MeV Fe ions). The viability was evaluated by colony forming unit (cfu) counts as well as with the LIFE/DEAD kit. Results revealed that UV-C radiation (up to 1.000 J/m (2) ) has a considerable effect on the viability, whereas the other tested parameters inflict little damage onto the organisms. Repair of UV-C inflicted damage is efficient and several DNA damage repair genes are up-regulated following exposure. Halophilic archaea display a strong resistance against heavy iron bombardment, with dosages of up to 2.000 Gy 500 MeV Fe ions needed to establish a visible effect on the vitality. Genomic integrity after

  16. Purine biosynthesis in archaea: variations on a theme

    Directory of Open Access Journals (Sweden)

    Brown Anne M

    2011-12-01

    Full Text Available Abstract Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected or Enzyme Commission (E. C. numbers (57 proteins, 7.7%. There were also 57 proteins (7.7% assigned overly generic names and 78 proteins (10.6% without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is

  17. Novel Cardiolipins from Uncultured Methane-Metabolizing Archaea

    Directory of Open Access Journals (Sweden)

    Marcos Y. Yoshinaga

    2012-01-01

    Full Text Available Novel cardiolipins from Archaea were detected by screening the intact polar lipid (IPL composition of microbial communities associated with methane seepage in deep-sea sediments from the Pakistan margin by high-performance liquid chromatography electrospray ionization mass spectrometry. A series of tentatively identified cardiolipin analogues (dimeric phospholipids or bisphosphatidylglycerol, BPG represented 0.5% to 5% of total archaeal IPLs. These molecules are similar to the recently described cardiolipin analogues with four phytanyl chains from extreme halophilic archaea. It is worth noting that cardiolipin analogues from the seep archaeal communities are composed of four isoprenoidal chains, which may contain differences in chain length (20 and 25 carbon atoms and degrees of unsaturation and the presence of a hydroxyl group. Two novel diether lipids, structurally related to the BPGs, are described and interpreted as degradation products of archaeal cardiolipin analogues. Since archaeal communities in seep sediments are dominated by anaerobic methanotrophs, our observations have implications for characterizing structural components of archaeal membranes, in which BPGs are presumed to contribute to modulation of cell permeability properties. Whether BPGs facilitate interspecies interaction in syntrophic methanotrophic consortia remains to be tested.

  18. CRISPR loci reveal networks of gene exchange in archaea

    Directory of Open Access Journals (Sweden)

    Brodt Avital

    2011-12-01

    Full Text Available Abstract Background CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Results Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. Open peer review This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten

  19. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...

  20. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  1. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Loescher

    2012-02-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA and Eastern Tropical South Pacific Oceans (ETSP. Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen

  2. Global ecological pattern of ammonia-oxidizing archaea.

    Directory of Open Access Journals (Sweden)

    Huiluo Cao

    Full Text Available BACKGROUND: The global distribution of ammonia-oxidizing archaea (AOA, which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. METHODOLOGY AND RESULTS: We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water, marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus and a non-monophyletic cluster constituted mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This result suggested the existence of AOA communities with different evolutionary history in the different habitats. CONCLUSION AND SIGNIFICANCE: Based on an up-to-date amoA phylogeny, this

  3. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  4. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia. PMID:26490622

  5. Eubacteria and Archaea community of simultaneous methanogenesis and denitrification granular sludge

    Institute of Scientific and Technical Information of China (English)

    SUN Yujiao; ZUO Jiane; CHEN Lili; WANG Yong

    2008-01-01

    Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and community structure of microbes in the SMD granule in the UASB reactor were investigated by the construction of the Eubacteria and Archaea 16S rDNA clone libraries, fragment length polymorphism, and sequence blast. Real time quantitative-polymerase chain reaction (RTQ-PCR) technique was used to quantify the contents of Eubacteria and Archaea in the SMD granule. The contents of some special predominant methanogens were also investigated. The results indicated that the Methanosaeta and Methanobacteria were the predominant methanogens in all Archaea in the SMD granule, with contents of 71. 59% and 22. 73% in all 88 random Archaea clones, respectively. The diversity of Eubacteria was much more complex than that of Archaea. The low GC positive gram bacteria and Б-Protebacteria were the main predominant Eubacteria species in SMD granule, their contents were 49. 62% and 12. 03% in all 133 random Eubacteria clones respectively. The results of RTQ-PCR indicated that the content of Archaea was less than Eubacteria, the Archaea content in total microorganisms in SMD granule was about 27. 6%.

  6. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  7. Identification of a glycolytic regulon in the Archaea Pyrococcus and Thermococcus

    NARCIS (Netherlands)

    Werken, van de H.J.G.; Verhees, C.H.; Akerboom, A.P.; Vos, de W.M.; Oost, van der J.

    2006-01-01

    The glycolytic pathway of the hyperthermophilic archaea that belong to the order Thermococcales (Pyrococcus, Thermococcus and Palaeococcus) differs significantly from the canonical Embden-Meyerhof pathway in bacteria and eukarya. This archaeal glycolysis variant consists of several novel enzymes, so

  8. Picoheterotroph (Bacteria and Archaea biomass distribution in the global ocean

    Directory of Open Access Journals (Sweden)

    M. R. Landry

    2012-09-01

    Full Text Available We compiled a database of 39 766 data points consisting of flow cytometric and microscopical measurements of picoheterotroph abundance, including both Bacteria and Archaea. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There are data covering all ocean basins and depths except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass is 3.9 ± 3.6 μg C l−1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 × 1029 picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the same as at the same depths in the open ocean. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell−1, we calculate a picoheterotroph carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass. Picoheterotroph biomass is ~2 times higher in the tropics than in the polar oceans. doi:10.1594/PANGAEA.779142

  9. Chaperonin Polymers in Archaea: The Cytoskeleton of Prokaryotes?

    Science.gov (United States)

    Trent, J. D.; Kagawa, H. K.; Zaluzec, N. J.

    1997-07-01

    Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.

  10. A First Analysis of Metallome Biosignatures of Hyperthermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Vyllinniskii Cameron

    2012-01-01

    Full Text Available To date, no experimental data has been reported for the metallome of hyperthermophilic microorganisms although their metal requirements for growth are known to be unique. Here, experiments were conducted to determine (i cellular trace metal concentrations of the hyperthermophilic Archaea Methanococcus jannaschii and Pyrococcus furiosus, and (ii a first estimate of the metallome for these hyperthermophilic species via ICP-MS. The metal contents of these cells were compared to parallel experiments using the mesophilic bacterium Escherichia coli grown under aerobic and anaerobic conditions. Fe and Zn were typically the most abundant metals in cells. Metal concentrations for E. coli grown aerobically decreased in the order Fe > Zn > Cu > Mo > Ni > W > Co. In contrast, M. jannaschii and P. furiosus show almost the reverse pattern with elevated Ni, Co, and W concentrations. Of the three organisms, a biosignature is potentially demonstrated for the methanogen M. jannaschii that may, in part, be related to the metallome requirements of methanogenesis. The bioavailability of trace metals more than likely has varied through time. If hyperthermophiles are very ancient, then the trace metal patterns observed here may begin to provide some insights regarding Earth's earliest cells and in turn, early Earth chemistry.

  11. Bioenergetic and physiological studies of hyperthermophilic archaea. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.

    1999-03-01

    This project focuses on physiological and bioenergetic characteristics of two representative hyperthermophilic archaea: Thermococcus litoralis (T{sub opt} 88 C) and Pyrococcus furiosus (T{sub opt} 98 C). Both are obligately anaerobic heterotrophs which grow in the presence or absence of reducible sulfur compounds. T. litoralis was studied in relation to information previously developed for P. furiosus: effect of sulfur reduction on bioenergetics, preferred fermentation patterns, tungsten requirement, etc. A defined medium was developed for T. litoralis consisting of amino acids, vitamins and nucleotides. This serves as the basis for continuous culture studies probing metabolic response to media changes. P. furiosus and T. litoralis have also been found to produce a polysaccharide in the presence of maltose and yeast extract. The composition and chemical structure of this polysaccharide was investigated as well as the metabolic motivation for its production. A novel and, perhaps, primitive intracellular proteolytic complex (previously designated as protease S66) in P. furiosus was isolated and the gene encoding the subunit of the complex was cloned, sequenced and the protease expressed in active form in Eschericia coli. Among other issues, the role of this complex in protein turnover and stress response was examined in the context of this organism in addition to comparing it to other complexes in eubacterial and eukaryotic cells. Biochemical characteristics of the protease have been measured in addition to examining other proteolytic species in P. furiosus.

  12. Involvement of thermophilic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Davidova, Irene A; Duncan, Kathleen E; Perez-Ibarra, B Monica; Suflita, Joseph M

    2012-07-01

    Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens.

  13. Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Orphan, Victoria J; Hallam, Steven J.; DeLong, Edward F

    2003-01-01

    Anaerobic methanotrophic archaea have recently been identified in anoxic marine sediments, but have not yet been recovered in pure culture. Physiological studies on freshly collected samples containing archaea and their sulfate-reducing syntrophic partners have been conducted, but sample availability and viability can limit the scope of these experiments. To better study microbial anaerobic methane oxidation, we developed a novel continuous-flow anaerobic methane incubation system (AMIS) that...

  14. Bridging domains : a comparison between information processing in Archaea and Eukarya

    OpenAIRE

    Koning, de, H.

    2015-01-01

    Bridging Domains A Comparison between Information Processing in Archaea and Eukarya Studying Information Processing Living cells evolved complex systems to handle the flow of information both accurately and efficiently. These systems are highly comparable between the three domains of life: eukaryotes, bacteria and archaea. The central components of replication, transcription, aminoacylation, and translation are found in every living cell known today, with only relatively small deviations, des...

  15. Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment.

    Directory of Open Access Journals (Sweden)

    Davi Pedroni Barreto

    Full Text Available The study of of the distribution of microorganisms through space (and time allows evaluation of biogeographic patterns, like the species-area index (z. Due to their high dispersal ability, high reproduction rates and low rates of extinction microorganisms tend to be widely distributed, and they are thought to be virtually cosmopolitan and selected primarily by environmental factors. Recent studies have shown that, despite these characteristics, microorganisms may behave like larger organisms and exhibit geographical distribution. In this study, we searched patterns of spatial diversity distribution of bacteria and archaea in a contiguous environment. We collected 26 samples of a lake sediment, distributed in a nested grid, with distances between samples ranging from 0.01 m to 1000 m. The samples were analyzed using T-RFLP (Terminal restriction fragment length polymorphism targeting mcrA (coding for a subunit of methyl-coenzyme M reductase and the genes of Archaeal and Bacterial 16S rRNA. From the qualitative and quantitative results (relative abundance of operational taxonomic units we calculated the similarity index for each pair to evaluate the taxa-area and distance decay relationship slopes by linear regression. All results were significant, with mcrA genes showing the highest slope, followed by Archaeal and Bacterial 16S rRNA genes. We showed that the microorganisms of a methanogenic community, that is active in a contiguous environment, display spatial distribution and a taxa-area relationship.

  16. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  17. In-vitro archaeacidal activity of biocides against human-associated archaea.

    Directory of Open Access Journals (Sweden)

    Saber Khelaifia

    Full Text Available BACKGROUND: Several methanogenic archaea have been detected in the human intestinal microbiota. These intestinal archaea may contaminate medical devices such as colonoscopes. However, no biocide activity has been reported among these human-associated archaea. METHODOLOGY: The minimal archaeacidal concentration (MAC of peracetic acid, chlorhexidine, squalamine and twelve parent synthetic derivatives reported in this study was determined against five human-associated methanogenic archaea including Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter arboriphilicus, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis and two environmental methanogens Methanobacterium beijingense and Methanosaeta concilii by using a serial dilution technique in Hungates tubes. PRINCIPAL FINDINGS: MAC of squalamine derivative S1 was 0.05 mg/L against M. smithii strains, M. oralis, M. arboriphilicus, M. concilii and M. beijingense whereas MAC of squalamine and derivatives S2-S12 varied from 0.5 to 5 mg/L. For M. stadtmanae and M. luminyensis, MAC of derivative S1 was 0.1 mg/L and varied from 1 to ≥ 10 mg/L for squalamine and its parent derivatives S2-S12. Under the same experimental conditions, chlorhexidine and peracetic acid lead to a MAC of 0.2 and 1.5 mg/L, respectively against all tested archaea. CONCLUSIONS/SIGNIFICANCE: Squalamine derivative S1 exhibited a 10-200 higher archaeacidal activity than other tested squalamine derivatives, on the majority of human-associated archaea. As previously reported and due to their week corrosivity and their wide spectrum of antibacterial and antifungal properties, squalamine and more precisely derivative S1 appear as promising compounds to be further tested for the decontamination of medical devices contaminated by human-associated archaea.

  18. Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics.

    Science.gov (United States)

    Pakpour, Sepideh; Scott, James A; Turvey, Stuart E; Brook, Jeffrey R; Takaro, Timothy K; Sears, Malcolm R; Klironomos, John

    2016-08-01

    Archaea are widespread and abundant in soils, oceans, or human and animal gastrointestinal (GI) tracts. However, very little is known about the presence of Archaea in indoor environments and factors that can regulate their abundances. Using a quantitative PCR approach, and targeting the archaeal and bacterial 16S rRNA genes in floor dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bedrooms and common rooms, respectively. In addition, by measuring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal 16S rRNA gene copies in indoor environment would be associated with building characteristics and occupants' activities. Based on the results, Archaea are not equally distributed within houses, and the areas with greater input of outdoor microbiome and higher traffic and material heterogeneity tend to have a higher abundance of Archaea. Nevertheless, more research is needed to better understand causes and consequences of this microbial group in indoor environments. PMID:27098176

  19. Exploring the diversity of extremely halophilic archaea in food-grade salts.

    Science.gov (United States)

    Henriet, Olivier; Fourmentin, Jeanne; Delincé, Bruno; Mahillon, Jacques

    2014-11-17

    Salting is one of the oldest means of food preservation: adding salt decreases water activity and inhibits microbial development. However, salt is also a source of living bacteria and archaea. The occurrence and diversity of viable archaea in this extreme environment were assessed in 26 food-grade salts from worldwide origin by cultivation on four culture media. Additionally, metagenomic analysis of 16S rRNA gene was performed on nine salts. Viable archaea were observed in 14 salts and colony counts reached more than 10(5)CFU per gram in three salts. All archaeal isolates identified by 16S rRNA gene sequencing belonged to the Halobacteriaceae family and were related to 17 distinct genera among which Haloarcula, Halobacterium and Halorubrum were the most represented. High-throughput sequencing generated extremely different profiles for each salt. Four of them contained a single major genus (Halorubrum, Halonotius or Haloarcula) while the others had three or more genera of similar occurrence. The number of distinct genera per salt ranged from 21 to 27. Halorubrum had a significant contribution to the archaeal diversity in seven salts; this correlates with its frequent occurrence in crystallization ponds. On the contrary, Haloquadratum walsbyi, the halophilic archaea most commonly found in solar salterns, was a minor actor of the food-grade salt diversity. Our results indicate that the occurrence and diversity of viable halophilic archaea in salt can be important, while their fate in the gastrointestinal tract after ingestion remains largely unknown. PMID:25217724

  20. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork

    Directory of Open Access Journals (Sweden)

    Dennis W. Grogan

    2015-01-01

    Full Text Available Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but resolving this question will require alternative coping mechanisms to be proposed and tested experimentally. This review evaluates a combination of four enigmatic properties that distinguishes the hyperthermophilic archaea from all other organisms: DNA polymerase stalling at dU, apparent lack of conventional NER, lack of MutSL homologs, and apparent essentiality of homologous recombination proteins. Hypothetical damage-coping strategies that could explain this set of properties may provide new starting points for efforts to define how archaea differ from conventional models of DNA repair and replication fidelity.

  1. Exploring the diversity of extremely halophilic archaea in food-grade salts.

    Science.gov (United States)

    Henriet, Olivier; Fourmentin, Jeanne; Delincé, Bruno; Mahillon, Jacques

    2014-11-17

    Salting is one of the oldest means of food preservation: adding salt decreases water activity and inhibits microbial development. However, salt is also a source of living bacteria and archaea. The occurrence and diversity of viable archaea in this extreme environment were assessed in 26 food-grade salts from worldwide origin by cultivation on four culture media. Additionally, metagenomic analysis of 16S rRNA gene was performed on nine salts. Viable archaea were observed in 14 salts and colony counts reached more than 10(5)CFU per gram in three salts. All archaeal isolates identified by 16S rRNA gene sequencing belonged to the Halobacteriaceae family and were related to 17 distinct genera among which Haloarcula, Halobacterium and Halorubrum were the most represented. High-throughput sequencing generated extremely different profiles for each salt. Four of them contained a single major genus (Halorubrum, Halonotius or Haloarcula) while the others had three or more genera of similar occurrence. The number of distinct genera per salt ranged from 21 to 27. Halorubrum had a significant contribution to the archaeal diversity in seven salts; this correlates with its frequent occurrence in crystallization ponds. On the contrary, Haloquadratum walsbyi, the halophilic archaea most commonly found in solar salterns, was a minor actor of the food-grade salt diversity. Our results indicate that the occurrence and diversity of viable halophilic archaea in salt can be important, while their fate in the gastrointestinal tract after ingestion remains largely unknown.

  2. The TrmB family: a versatile group of transcriptional regulators in Archaea.

    Science.gov (United States)

    Gindner, Antonia; Hausner, Winfried; Thomm, Michael

    2014-09-01

    Microbes are organisms which are well adapted to their habitat. Their survival depends on the regulation of gene expression levels in response to environmental signals. The most important step in regulation of gene expression takes place at the transcriptional level. This regulation is intriguing in Archaea because the eu-karyotic-like transcription apparatus is modulated by bacterial-like transcription regulators. The transcriptional regulator of mal operon (TrmB) family is well known as a very large group of regulators in Archaea with more than 250 members to date. One special feature of these regulators is that some of them can act as repressor, some as activator and others as both repressor and activator. This review gives a short updated overview of the TrmB family and their regulatory patterns in different Archaea as a lot of new data have been published on this topic since the last review from 2008.

  3. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea

    Science.gov (United States)

    Charlesworth, James C.; Burns, Brendan P.

    2015-01-01

    Archaea are an understudied domain of life often found in “extreme” environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications. PMID:26504428

  4. Archaea in metazoan diets: implications for food webs and biogeochemical cycling

    Science.gov (United States)

    Thurber, Andrew R; Levin, Lisa A; Orphan, Victoria J; Marlow, Jeffrey J

    2012-01-01

    Although the importance of trophic linkages, including ‘top-down forcing', on energy flow and ecosystem productivity is recognized, the influence of metazoan grazing on Archaea and the biogeochemical processes that they mediate is unknown. Here, we test if: (1) Archaea provide a food source sufficient to allow metazoan fauna to complete their life cycle; (2) neutral lipid biomarkers (including crocetane) can be used to identify Archaea consumers; and (3) archaeal aggregates are a dietary source for methane seep metazoans. In the laboratory, we demonstrated that a dorvilleid polychaete, Ophryotrocha labronica, can complete its life cycle on two strains of Euryarchaeota with the same growth rate as when fed bacterial and eukaryotic food. Archaea were therefore confirmed as a digestible and nutritious food source sufficient to sustain metazoan populations. Both strains of Euryarchaeota used as food sources had unique lipids that were not incorporated into O. labronica tissues. At methane seeps, sulfate-reducing bacteria that form aggregations and live syntrophically with anaerobic-methane oxidizing Archaea contain isotopically and structurally unique fatty acids (FAs). These biomarkers were incorporated into tissues of an endolithofaunal dorvilleid polychaete species from Costa Rica (mean bulk δ13C=−92±4‰ polar lipids −116‰) documenting consumption of archaeal-bacterial aggregates. FA composition of additional soft-sediment methane seep species from Oregon and California provided evidence that consumption of archaeal-bacterial aggregates is widespread at methane seeps. This work is the first to show that Archaea are consumed by heterotrophic metazoans, a trophic process we coin as ‘archivory'. PMID:22402398

  5. Stress response of methanogenic archaea from Siberian permafrost compared to methanogens from non-permafrost habitats

    OpenAIRE

    Daria Morozova; Dirk Wagner;  

    2007-01-01

    We examined the survival potential of methanogenic archaea exposed to different environmental stress conditions such as low temperature (down to 78.5 °C), high salinity (up to 6 M NaCl), starvation (up to 3 months), long-term freezing (up to 2 years), desiccation (up to 25 days) and oxygen exposure (up to 72 hours). The experiments were conducted with microbial populations of methanogenic archaea from Siberian permafrost and were complemented by experiments on well-studied methanogens from no...

  6. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    Science.gov (United States)

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  7. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  8. Massive Expansion of Marine Archaea During The Early Albian Oceanic Anoxic Event 1B

    Science.gov (United States)

    Kuypers, M. M.; Kuypers, M. M.; Blokker, P.; Erbacher, J.; Kinkel, H.; Pancost, R. D.; Pancost, R. D.; Schouten, S.; Sinninghe Damsté, J. S.

    2001-12-01

    Oceanic anoxic events (OAEs), periods of globally enhanced burial of organic matter (OM) in the marine realm, played an important role in the mid-Cretaceous `greenhouse climate' by effectively reducing atmospheric carbon dioxide concentrations. It is generally believed that these OAEs were caused either by decreased remineralisation or increased production of phytoplanktonic OM. Here we show that enhanced organic carbon (OC) burial during the early Albian OAE1b (~112 My) was caused by a different process. Combined biogeochemical and stable carbon isotopic analyses indicate that black shales from this period contain up to 80% of OC derived from archaea. Archaea-derived isoprenoidal tetraether membrane lipids and free and macromolecularly bound isoprenoid alkanes are abundantly present in these black shales. More specifically the presence of certain ether lipids (cyclic biphytane tetraethers) indicates representatives of the pelagic archaea. To the best of our knowledge this is the earliest fossil evidence for marine planktonic archaea, extending their geological record by more than 60 million years. The diversity of archaeal lipids recovered from the OAE1b black shales suggests that they derive from a multitude of archaeal species. However, the specific 13C enrichment of all such lipids indicates a common `heavy' (13C-rich) carbon source for the archaea and/or a common pathway of carbon-fixation with a reduced 13C fractionation effect compared to the Calvin cycle used by algae, cyanobacteria and higher plants. The large differences (up to 12%) in 13C/12C ratios between the algal biomarkers and the much more abundant archaeal molecular fossils suggest that the latter were not living heterotrophically on photoautotrophic biomass. It seems likely that the archaea present during OAE1b used a chemical energy source (possibly ammonium) for carbon fixation since photoautotrophy within the domain of the Archaea is restricted to only a few species from hypersaline

  9. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event

    DEFF Research Database (Denmark)

    Kuypers, M.M.M.; Blokker, P.; Erbacher, J.;

    2001-01-01

    Biogeochemical and stable carbon isotopic analysis of black-shale sequences deposited during an Albian oceanic anoxic event (∼112 million years ago) indicate that up to 80 weight percent of sedimentary organic carbon is derived from marine, nonthermophilic archaea. The carbon-13 content of archae...

  10. Role of multiprotein bridging factor 1 in archaea: bridging the domains?

    NARCIS (Netherlands)

    Koning, de B.; Blombach, F.; Wu Hao,; Brouns, S.J.J.; Oost, van der J.

    2009-01-01

    MBF1 (multiprotein bridging factor 1) is a highly conserved protein in archaea and eukaryotes. It was originally identified as a mediator of the eukaryotic transcription regulator BmFTZ-F1 (Bombyx mori regulator of fushi tarazu). MBF1 was demonstrated to enhance transcription by forming a bridge bet

  11. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  12. Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano.

    Science.gov (United States)

    Dorador, Cristina; Vila, Irma; Remonsellez, Francisco; Imhoff, Johannes F; Witzel, Karl-Paul

    2010-08-01

    Analyses of clone libraries from water and sediments of different sites from Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano, revealed the presence of five unique clusters of uncultured Archaea that have not been previously reported or specifically assigned. These sequences were distantly related (83-96% sequence identity) to a limited number of other clone sequences and revealed no identity to cultured Archaea. The abundance of Archaea and Bacteria was estimated using qPCR and community composition was examined through the construction of clone libraries of archaeal 16S rRNA gene. Archaea were found to be dominant over Bacteria in sediments from two saline sites (sites H4: 6.31 x 10(4) and site H6: 1.37 x 10(4) microS cm(-1)) and in one of the water samples (freshwater from site H0: 607 muS cm(-1)). Euryarchaeotal sequences were more abundant than crenarchaeotal sequences. Many of the clone sequences (52%) were similar to uncultured archaeal groups found in marine ecosystems having identity values between 99% and 97%. A major fraction of the sequences (40%) were members of Methanobacteria, while others were included in the Marine Benthic Groups B and D, the Miscellaneous Crenarchaeotic Group, the Terrestrial Miscellaneous Euryarchaeotal Group, Marine Group I and Halobacteria. The presence of uncultured archaeal groups in Salar de Huasco extends their known distribution in inland waters, providing new clues about their possible function in the environment.

  13. Archaea Dominate the Ammonia-Oxidizing Community in the Rhizosphere of the Freshwater Macrophyte Littorella uniflora▿

    OpenAIRE

    Herrmann, Martina; Saunders, Aaron M.; Schramm, Andreas

    2008-01-01

    Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced nitrification activity observed in the rhizosphere was due to ammonia-oxidizing Archaea.

  14. Bacteria and Archaea in acidic environments and a key to morphological identification

    Science.gov (United States)

    Robbins, E.I.

    2000-01-01

    Natural and anthropogenic acidic environments are dominated by bacteria and Archaea. As many as 86 genera or species have been identified or isolated from pH <4.5 environments. This paper reviews the worldwide literature and provide tables of morphological characteristics, habitat information and a key for light microscope identification for the non-microbiologist.

  15. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili

    NARCIS (Netherlands)

    Ajon, Malgorzata; Froels, Sabrina; van Wolferen, Marleen; Stoecker, Kilian; Teichmann, Daniela; Driessen, Arnold J. M.; Grogan, Dennis W.; Albers, Sonja-Verena; Schleper, Christa; Ajon, Małgorzata

    2011-01-01

    Archaea, like bacteria and eukaryotes, contain proteins involved in various mechanisms of DNA repair, highlighting the importance of these processes for all forms of life. Species of the order Sulfolobales of hyperthermophilic crenarchaeota are equipped with a strongly UV-inducible type IV pilus sys

  16. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses

    NARCIS (Netherlands)

    Rensen, E.I.; Mochizuki, T,; Quemin, E.R. J.; Schouten, S.; Krupovica, M.; Prangishvili, D.

    2016-01-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Her

  17. Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Dijkstra, Bauke W.; Kok, Jan

    2011-01-01

    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and a

  18. Bridging domains : a comparison between information processing in Archaea and Eukarya

    NARCIS (Netherlands)

    Koning, de B.

    2015-01-01

    Bridging Domains A Comparison between Information Processing in Archaea and Eukarya

    Studying Information Processing Living cells evolved complex systems to handle the flow of information both accurately and efficiently.

  19. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species

    NARCIS (Netherlands)

    van der Maarel, MJEC; Sprenger, W; Haanstra, R; Forney, LJ

    1999-01-01

    A methanogen-specific nested PCR approach was used to detect methanogenic archaea in seawater particles of the North Sea and the feces and the digestive tract of flounder (Platichthys flesus), a fish found in the North Sea. A number of 16S rDNA sequences with 97.6-99.5% similarity to Methanococcoide

  20. Diversity of membrane transport proteins for vitamins in bacteria and archaea

    NARCIS (Netherlands)

    Jähme, Michael; Slotboom, Dirk Jan

    2014-01-01

    BACKGROUND: All organisms use cofactors to extend the catalytic capacities of proteins. Many bacteria and archaea can synthesize cofactors from primary metabolites, but there are also prokaryotes that do not have the complete biosynthetic pathways for all essential cofactors. These organisms are dep

  1. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil

    NARCIS (Netherlands)

    Mertens, J.; Broos, K.; Wakelin, S.A.; Kowalchuk, G.A.; Springael, D.; Smolders, E.

    2009-01-01

    Biological ammonia oxidation had long been thought to be mediated solely by discrete clades of - and -proteobacteria (ammonia-oxidizing bacteria; AOB). However, ammonia-oxidizing Crenarchaeota (ammonia-oxidizing archaea; AOA) have recently been identified and proposed to be the dominant agents of am

  2. Survival of Halophilic Archaea in the Stratosphere as a Mars Analog: A Transcriptomic Approach

    Science.gov (United States)

    DasSarma, S.; DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; Grah, O.; Phillips, T.

    2016-05-01

    On Earth, halophilic Archaea tolerate multiple extreme conditions similar to those on Mars. In order to study their survival, we launched live cultures into Earth’s stratosphere on helium balloons. The effects on survival and transcriptomes were interrogated in the lab.

  3. Exploring the ecophysiology of anaerobic communities of methanotrophic archaea and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Timmers, P.H.A.

    2015-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is a widespread occurring process in anoxic marine sediments. The process is performed by ANaerobic MEthane oxidizing archaea (ANME) and associated sulfate reducing bacteria (SRB). The ANME presumably oxidize methane through reve

  4. Abundances, diversity and seasonality of (non-extremophilic) Archaea in Alpine freshwaters.

    Science.gov (United States)

    Reitschuler, Christoph; Hofmann, Katrin; Illmer, Paul

    2016-06-01

    The objectives of this study were to assess abundances and community compositions of Archaea within a heterogeneous set of freshwater systems in the Austrian Alps. Seasonal changes and geographical differences within Archaea, considering abiotic and biotic factors (e.g. temperature, pH, total organic carbon (TOC), NH4 (+), bacteria, fungi), were analysed in this context. Water samples were collected from 8 lakes, 10 creeks and the river Inn in 2014. Qualitative-quantitative data were derived via a comprehensive set of (quantitative) PCR assays and PCR-DGGE (denaturing gradient gel electrophoresis) based methodology, which was evaluated concerning specificity and reliability either previously or in this study. QPCR-derived archaeal abundances reached values of 10(3) copies mL(-1) on average, with a peak in winter-spring ('Cold Peak'), and covered 0-15 % (average: 1 %) of the microbial populations. This peak correlated with significantly raised TOC and low NH4 (+) levels during the cold seasons. Stagnant waters showed significantly higher archaeal abundances and diversities than flowing ones. Among methanogens, Methanosarcinales were the most common order. PCR-DGGE data showed that the archaeal communities were site-specific and could function as an ecological marker, in contrast to the more heterogeneous and unsteady bacterial and fungal community. This is attributable to the highly heterogeneous community of methanogenic Archaea (MA, Euryarchaeota), while only two species, Nitrosopumilus maritimus and Ca. Nitrososphaera gargensis, were found to be the ubiquitous representatives of ammonia-oxidizing Archaea (AOA, Thaumarchaeota) in Alpine freshwaters. This work emphasises the diversity, distribution and seasonality of non-extremophilic Archaea in Alpine freshwaters, with a first insight into their ecophysiological potential. PMID:27002962

  5. amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China

    OpenAIRE

    Jian eYang; Hongchen eJiang; Hailiang eDong; Huanye eWang; Geng eWu; Weiguo eHou; Weiguo eLiu; Chuanlun eZhang; Yongjuan eSun; Zhongping eLai

    2013-01-01

    All known ammonia-oxidizing archaea (AOA) belong to the phylum Thaumarchaeota within the domain Archaea. AOA possess the diagnostic amoA gene (encoding the alpha subunit of ammonia monooxygenase) and produce lipid biomarker thaumarchaeol. Although the abundance and diversity of amoA gene-encoding archaea (AEA) in freshwater lakes have been well-studied, little is known about AEA ecology in saline/hypersaline lakes. In this study, the distribution of the archaeal amoA gene and thaumarchaeol we...

  6. Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea.

    Directory of Open Access Journals (Sweden)

    Kirill Borziak

    Full Text Available Metagenomic analyses have advanced our understanding of ecological microbial diversity, but to what extent can metagenomic data be used to predict the metabolic capacity of difficult-to-study organisms and their abiotic environmental interactions? We tackle this question, using a comparative genomic approach, by considering the molecular basis of aerobiosis within archaea. Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multienzyme complexes (OADHCs, is essential for metabolism in aerobic bacteria and eukarya. Lipoylation is catalysed either by lipoate protein ligase (LplA, which in archaea is typically encoded by two genes (LplA-N and LplA-C, or by a lipoyl(octanoyl transferase (LipB or LipM plus a lipoic acid synthetase (LipA. Does the genomic presence of lipoylation and OADHC genes across archaea from diverse habitats correlate with aerobiosis? First, analyses of 11,826 biotin protein ligase (BPL-LplA-LipB transferase family members and 147 archaeal genomes identified 85 species with lipoylation capabilities and provided support for multiple ancestral acquisitions of lipoylation pathways during archaeal evolution. Second, with the exception of the Sulfolobales order, the majority of species possessing lipoylation systems exclusively retain LplA, or either LipB or LipM, consistent with archaeal genome streamlining. Third, obligate anaerobic archaea display widespread loss of lipoylation and OADHC genes. Conversely, a high level of correspondence is observed between aerobiosis and the presence of LplA/LipB/LipM, LipA and OADHC E2, consistent with the role of lipoylation in aerobic metabolism. This correspondence between OADHC lipoylation capacity and aerobiosis indicates that genomic pathway profiling in archaea is informative and that well characterized pathways may be predictive in relation to abiotic conditions in difficult-to-study extremophiles. Given the highly variable retention of gene repertoires across

  7. Methanogenic Archaea and oral infections – ways to unravel the black box

    Directory of Open Access Journals (Sweden)

    Hans-Peter Horz

    2011-02-01

    Full Text Available Archaea, organisms that make up the third domain of cellular life are members of the human oral microflora. They are strikingly less diverse than oral bacteria and appear to be relatively rare with respect to their numerical abundance. Since they have been exclusively found in association with oral infections such as periodontitis and apical periodontitis and given their unique physiology and energy metabolism, it is highly plausible that they are more than just secondary colonizers of infected areas, but instead are actively involved in the overall poly-microbial infection process. Conversely, it is a highly challenging task to clearly demonstrate their possible active participation – mostly due to the difficulty to grow them in routine microbiology laboratories. This current review points out the importance for understanding the medical impact of methanogens and aims at devising strategies for elucidating the true function of archaea in the oral ecosystem.

  8. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    -specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification......AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... measurements revealed clear differences in ammonia oxidation rates. The diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was assessed using the ammonia monooxygenase (amoA) gene as functional marker. Both AOA and AOB could be detected in the rhizosphere of all three plant...

  9. The genome of Salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea

    OpenAIRE

    Mongodin, E. F.; Nelson, K. E.; Daugherty, S; DeBoy, R. T.; Wister, J.; Khouri, H; Weidman, J.; Walsh, D.A.; Papke, R. T.; Sanchez Perez, G.; Sharma, A K; Nesbø, C L; Macleod, D; Bapteste, E; Doolittle, W F

    2005-01-01

    Saturated thalassic brines are among the most physically demanding habitats on Earth: few microbes survive in them. Salinibacter ruber is among these organisms and has been found repeatedly in significant numbers in climax saltern crystallizer communities. The phenotype of this bacterium is remarkably similar to that of the hyperhalophilic Archaea (Haloarchaea). The genome sequence suggests that this resemblance has arisen through convergence at the physiological level (different genes produc...

  10. Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions

    OpenAIRE

    Daria Morozova; D. Möhlmann; Dirk Wagner

    2007-01-01

    Since ESA mission Mars Express determined water on Mars, a fundamental requirement for life, as well as the presence of CH4 in the Martian atmosphere, which could only have originated from active volcanism or from biological sources, it is obviously that microbial life could still exist on Mars, for example in the form of subsurface lithoautotrophic ecosystems, which are also exist in permafrost regions on Earth. Present work deals with the resistance investigation of methanogenic archaea fro...

  11. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    OpenAIRE

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  12. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    OpenAIRE

    Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluores...

  13. Accurate Prediction of the Statistics of Repetitions in Random Sequences: A Case Study in Archaea Genomes.

    Science.gov (United States)

    Régnier, Mireille; Chassignet, Philippe

    2016-01-01

    Repetitive patterns in genomic sequences have a great biological significance and also algorithmic implications. Analytic combinatorics allow to derive formula for the expected length of repetitions in a random sequence. Asymptotic results, which generalize previous works on a binary alphabet, are easily computable. Simulations on random sequences show their accuracy. As an application, the sample case of Archaea genomes illustrates how biological sequences may differ from random sequences.

  14. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents

    OpenAIRE

    Christian Hoffmann; Serena Dollive; Stephanie Grunberg; Jun De Chen; Hongzhe Li; Wu, Gary D.; Lewis, James D.; Bushman, Frederic D.

    2013-01-01

    Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi w...

  15. Accurate Prediction of the Statistics of Repetitions in Random Sequences: A Case Study in Archaea Genomes.

    Science.gov (United States)

    Régnier, Mireille; Chassignet, Philippe

    2016-01-01

    Repetitive patterns in genomic sequences have a great biological significance and also algorithmic implications. Analytic combinatorics allow to derive formula for the expected length of repetitions in a random sequence. Asymptotic results, which generalize previous works on a binary alphabet, are easily computable. Simulations on random sequences show their accuracy. As an application, the sample case of Archaea genomes illustrates how biological sequences may differ from random sequences. PMID:27376057

  16. Detection of Ammonia-Oxidizing Archaea in Fish Processing Effluent Treatment Plants

    OpenAIRE

    Devivaraprasad Reddy, A.; Subrahmanyam, Gangavarapu; Shivani Kallappa, Girisha; Karunasagar, Iddya; Karunasagar, Indrani

    2014-01-01

    Ammonia oxidation is the rate limiting step in nitrification and thus have an important role in removal of ammonia in natural and engineered systems with participation of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their relative distribution and activity in fish processing effluent treatment plants (FPETPs) though significant, is hitherto unreported. Presence of AOA in sludge samples obtained from FPETPs was studied by amplification and sequencing of t...

  17. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat

    OpenAIRE

    Biller, Steven J.; Mosier, Annika C.; Wells, George F.; Francis, Christopher A.

    2012-01-01

    Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA) gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 800...

  18. Genomic expansion of Domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling

    Energy Technology Data Exchange (ETDEWEB)

    Castelle, Cindy; Wrighton, Kelly C.; Thomas, Brian C.; Hug, Laura A.; Brown, Christopher T.; Wilkins, Michael J.; Frischkorn, Kyle R.; Tringe, Susannah G.; Singh, Andrea; Markillie, Lye Meng; Taylor, Ronald C.; Williams, Kenneth H.; Banfield, Jillian F.

    2015-03-01

    Domain Archaea is currently represented by one phylum (Euryarchaeota) and two superphyla (TACK and DPANN). However, gene surveys indicate the existence of a vast diversity of uncultivated archaea for which metabolic information is lacking. We sequenced DNA from complex sediment- and groundwater-associated microbial communities sampled prior to and during an acetate biostimulation field experiment to investigate the diversity and physiology of uncultivated subsurface archaea. We sampled 15 genomes that improve resolution of a new phylum within the TACK superphylum and 119 DPANN genomes that highlight a major subdivision within the archaeal domain that separates DPANN from TACK/Euryarchaeota lineages. Within the DPANN superphylum, which lacks any isolated representatives, we defined two new phyla using sequences from 100 newly sampled genomes. The first new phylum, for which we propose the name Woesearchaeota, was defined using 54 new sequences. We reconstructed a complete (finished) genome for an archaeon from this phylum that is only 0.8 Mb in length and lacks almost all core biosynthetic pathways, but has genes encoding enzymes predicted to interact with bacterial cell walls, consistent with a symbiotic lifestyle. The second new phylum, for which we propose the name Pacearchaeota, was defined based on 46 newly sampled archaeal genomes. This phylum includes the first non-methanogen with an intermediate Type II/III RuBisCO. We also reconstructed a complete (1.24 Mb) genome for another DPANN archaeon, a member of the Diapherotrites phylum. Metabolic prediction and transcriptomic data indicate that this organism has a fermentation-based lifestyle. In fact, genomic analyses consistently indicate lack of recognizable pathways for sulfur, nitrogen, methane, oxygen, and metal cycling, and suggest that symbiotic and fermentation-based lifestyles are widespread across the DPANN superphylum. Thus, as for a recently identified superphylum of bacteria with small genomes and no

  19. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil

    OpenAIRE

    Serrano, P; Hermelink, A.; Lasch, P.; de Vera, J.-P.; König, N.; Burckhardt, O.; Wagner, D.

    2015-01-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the 25 production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the diffe...

  20. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems.

    Science.gov (United States)

    Danovaro, Roberto; Molari, Massimiliano; Corinaldesi, Cinzia; Dell'Anno, Antonio

    2016-04-01

    Bacteria and archaea dominate the biomass of benthic deep-sea ecosystems at all latitudes, playing a crucial role in global biogeochemical cycles, but their macroscale patterns and macroecological drivers are still largely unknown. We show the results of the most extensive field study conducted so far to investigate patterns and drivers of the distribution and structure of benthic prokaryote assemblages from 228 samples collected at latitudes comprising 34°N to 79°N, and from ca. 400- to 5570-m depth. We provide evidence that, in deep-sea ecosystems, benthic bacterial and archaeal abundances significantly increase from middle to high latitudes, with patterns more pronounced for archaea, and particularly for Marine Group I Thaumarchaeota. Our results also reveal that different microbial components show varying sensitivities to changes in temperature conditions and food supply. We conclude that climate change will primarily affect deep-sea benthic archaea, with important consequences on global biogeochemical cycles, particularly at high latitudes. PMID:27386507

  1. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda.

    Directory of Open Access Journals (Sweden)

    Vladimír Šustr

    Full Text Available Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens' diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE. The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.

  2. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda).

    Science.gov (United States)

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens' diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.

  3. A review of acquired thermotolerance, heat shock proteins, and molecular chaperones in archaea

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.

    1996-05-01

    Acquired thermotolerance, the associated synthesis of heat-shock proteins (HSPs) under stress conditions, and the role of HSPs as molecular chaperones under normal growth conditions have been studied extensively in eukaryotes and bacteria, whereas research in these areas in archaea is only beginning. All organisms have evolved a variety of strategies for coping with high-temperature stress, and among these strategies is the increased synthesis of HSPs. The facts that both high temperatures and chemical stresses induce the HSPs and that some of the HSPs recognize and bind to unfolded proteins in vitro have led to the theory that the function of HSPs is to prevent protein aggregation in vivo. The facts that some HSPs are abundant under normal growth conditions and that they assist in protein folding in vitro have led to the theory that they assist protein folding in vivo; in this role, they are referred to as molecular chaperones. The limited research on acquired thermotolerance, HSPs, and molecular chaperones in archaea, particularly the hyperthermophilic archaea, suggests that these extremophiles provide a new perspective in these areas of research, both because they are members of a separate phylogenetic domain and because they have evolved to live under extreme conditions.

  4. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages.

    Science.gov (United States)

    Shi, Yu; Huang, Zhou; Han, Shuai; Fan, Shuo; Yang, Hong

    2015-08-01

    Termites are among the few arthropods that emit methane to the atmosphere, which is a significant source of global greenhouse gas due to their huge biomass on earth. In this study, phylogenetic diversity of Archaea of five termite species from different lineages were analyzed based on 16S rRNA genes. Archaea associated with wood-feeding lower termite, R. chinensis were exclusively Methanobrevibacter in the order Methanobacteriales. This type of methanogens was also found in Nasutitermes sp. and Microcerotermes sp. but not in the fungus-cultivating termites, Odontotermes formosanus and Macrotermes barneyi, which harbor Archaea of the order Methanoplasmatales and Methanosarcinales in their guts. Archaeal diversity of wood-feeding higher termites was higher than wood-feeding lower termites. The highest archaeal diversity was found in Nasutitermes sp. In addition to methanogens affiliated with the orders Methanobacteriales, Methanomicrobiales, and Methanoplasmatales, 37% of archaeal clones were affiliated with non-methanogenic Thaumarchaeota. The results of this study will be significant for further understanding of symbiotic relationship between intestinal microbiota and termites.

  5. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    Full Text Available Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.

  6. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    Science.gov (United States)

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-06-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  7. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

    Science.gov (United States)

    Woese, C R; Kandler, O; Wheelis, M L

    1990-06-01

    Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea. PMID:2112744

  8. Geochemistry and Mixing Drive the Spatial Distribution of Free-living Archaea and Bacteria in Yellowstone Lake

    Directory of Open Access Journals (Sweden)

    Jinjun eKan

    2016-02-01

    Full Text Available Yellowstone Lake, the largest subalpine lake in the United States, harbors great novelty and diversity of Bacteria and Archaea. Size-fractionated water samples (0.1-0.8 µm, 0.8-3.0 µm, and 3.0-20 µm were collected from surface photic zone, deep mixing zone, and vent fluids at different locations in the lake by using a remotely operated vehicle (ROV. Quantification with real-time PCR indicated that Bacteria dominated free-living microorganisms with Bacteria/Archaea ratios ranging from 4037:1 (surface water to 25:1 (vent water. Microbial population structures (both Bacteria and Archaea were assessed using 454-FLX sequencing with a total of 662,302 pyrosequencing reads for V1 & V2 regions of 16S rRNA genes. Nonmetric multidimensional scaling (NMDS analyses indicated that strong spatial distribution patterns existed from surface to deep vents for free-living Archaea and Bacteria in the Lake. Along with pH, major vent-associated geochemical constituents including CH4, CO2, H2, DIC (dissolved inorganic carbon, DOC (dissolved organic carbon, SO42-, O2 and metals were likely the major drivers for microbial population structures, however mixing events occurring in the lake also impacted the distribution patterns. Distinct Bacteria and Archaea were present among size fractions, and bigger size fractions included particle-associated microbes (>3 µm and contained higher predicted OTU richness and microbial diversities (genus level than free-living ones (< 0.8 µm. Our study represents the first attempt at addressing the spatial distribution of Bacteria and Archaea in Yellowstone Lake, and our results highlight the variable contribution of Archaea and Bacteria to the hydrogeochemical-relevant metabolism of hydrogen, carbon, nitrogen, and sulfur.

  9. Geochemistry and Mixing Drive the Spatial Distribution of Free-Living Archaea and Bacteria in Yellowstone Lake.

    Science.gov (United States)

    Kan, Jinjun; Clingenpeel, Scott; Dow, Charles L; McDermott, Timothy R; Macur, Richard E; Inskeep, William P; Nealson, Kenneth H

    2016-01-01

    Yellowstone Lake, the largest subalpine lake in the United States, harbors great novelty and diversity of Bacteria and Archaea. Size-fractionated water samples (0.1-0.8, 0.8-3.0, and 3.0-20 μm) were collected from surface photic zone, deep mixing zone, and vent fluids at different locations in the lake by using a remotely operated vehicle (ROV). Quantification with real-time PCR indicated that Bacteria dominated free-living microorganisms with Bacteria/Archaea ratios ranging from 4037:1 (surface water) to 25:1 (vent water). Microbial population structures (both Bacteria and Archaea) were assessed using 454-FLX sequencing with a total of 662,302 pyrosequencing reads for V1 and V2 regions of 16S rRNA genes. Non-metric multidimensional scaling (NMDS) analyses indicated that strong spatial distribution patterns existed from surface to deep vents for free-living Archaea and Bacteria in the lake. Along with pH, major vent-associated geochemical constituents including CH4, CO2, H2, DIC (dissolved inorganic carbon), DOC (dissolved organic carbon), SO4 (2-), O2 and metals were likely the major drivers for microbial population structures, however, mixing events occurring in the lake also impacted the distribution patterns. Distinct Bacteria and Archaea were present among size fractions, and bigger size fractions included particle-associated microbes (> 3 μm) and contained higher predicted operational taxonomic unit richness and microbial diversities (genus level) than free-living ones (<0.8 μm). Our study represents the first attempt at addressing the spatial distribution of Bacteria and Archaea in Yellowstone Lake, and our results highlight the variable contribution of Archaea and Bacteria to the hydrogeochemical-relevant metabolism of hydrogen, carbon, nitrogen, and sulfur. PMID:26973602

  10. Geochemistry and Mixing Drive the Spatial Distribution of Free-Living Archaea and Bacteria in Yellowstone Lake

    Science.gov (United States)

    Kan, Jinjun; Clingenpeel, Scott; Dow, Charles L.; McDermott, Timothy R.; Macur, Richard E.; Inskeep, William P.; Nealson, Kenneth H.

    2016-01-01

    Yellowstone Lake, the largest subalpine lake in the United States, harbors great novelty and diversity of Bacteria and Archaea. Size-fractionated water samples (0.1–0.8, 0.8–3.0, and 3.0–20 μm) were collected from surface photic zone, deep mixing zone, and vent fluids at different locations in the lake by using a remotely operated vehicle (ROV). Quantification with real-time PCR indicated that Bacteria dominated free-living microorganisms with Bacteria/Archaea ratios ranging from 4037:1 (surface water) to 25:1 (vent water). Microbial population structures (both Bacteria and Archaea) were assessed using 454-FLX sequencing with a total of 662,302 pyrosequencing reads for V1 and V2 regions of 16S rRNA genes. Non-metric multidimensional scaling (NMDS) analyses indicated that strong spatial distribution patterns existed from surface to deep vents for free-living Archaea and Bacteria in the lake. Along with pH, major vent-associated geochemical constituents including CH4, CO2, H2, DIC (dissolved inorganic carbon), DOC (dissolved organic carbon), SO42-, O2 and metals were likely the major drivers for microbial population structures, however, mixing events occurring in the lake also impacted the distribution patterns. Distinct Bacteria and Archaea were present among size fractions, and bigger size fractions included particle-associated microbes (> 3 μm) and contained higher predicted operational taxonomic unit richness and microbial diversities (genus level) than free-living ones (<0.8 μm). Our study represents the first attempt at addressing the spatial distribution of Bacteria and Archaea in Yellowstone Lake, and our results highlight the variable contribution of Archaea and Bacteria to the hydrogeochemical-relevant metabolism of hydrogen, carbon, nitrogen, and sulfur. PMID:26973602

  11. Public aquaria as long-term enrichments for investigating planktonic Archaea

    Science.gov (United States)

    Goldenstein, Nadine I.; Warren, Courtney E.; Lipp, Julius S.; Pagani, Mark; Hinrichs, Kai-Uwe

    2016-04-01

    The most abundant group of planktonic Archaea , the so-called Thaumarchaeota, represents 20% of all marine planktonic microorganisms (Karner et al., 2001) and their energy efficient performance of nitrification makes them key players in the global nitrogen- and carbon-cycle (Könneke et al., 2014). Furthermore, planktonic Archaea are considered to be the major producers of specific microbial membrane lipids that are extensively used as paleoproxies in marine climate research (Schouten et al., 2002). Therefore, assessing the parameters controlling the distribution of Archaea in the marine water column is crucial for studies of modern and past marine environments. Although diverse studies utilizing DNA- and biomarker-based approaches have constrained the turnover and distribution of marine Archaea, the environmental factors affecting their abundance and activity (e.g., Wuchter et al., 2006; Bale et al., 2013) are still poorly understood. Further, previous surveys, using enrichment cultivation and pure culture experiments, provided valuable information on adaptation of planktonic Archaea to changes of parameters affecting growth conditions, such as temperature, salinity and growth stage (Elling et al., 2014, 2015). Hence, we know that planktonic Archaea directly adapt their membranes to changing growth conditions, but also that environmental selection for individual phylogenetic groups of these organisms is also reflected in the membrane lipid pool. Extending these studies, this project further aims at constraining the environmental parameters controlling archaeal abundance in the marine environment. Public aquaria, which are comparable to perfectly monitored long-term enrichment cultures, are optimal sampling sites for this task. A comprehensive set of 120 water and substrate samples from fresh, marine and brackish systems exhibiting diverse conditions was selected from 15 public aquaria at the east and west coast of the USA. These samples were examined for their

  12. Archaea and Bacteria in deep lake hypolimnion: in situ dark inorganic carbon uptake

    Directory of Open Access Journals (Sweden)

    Cristiana Callieri

    2014-02-01

    Full Text Available The interest for microorganisms inhabiting the hypolimnion and for their role in biogeochemical cycles of lakes is considerable, but knowledge is far from complete. The presence of chemolithoautotrophic Bacteria and mesophilic Archaea (e.g., Thaumarchaeota assimilating inorganic carbon in the deep hypolimnion of lakes has been ascertained. We measured, for the first time at 350 m in Lake Maggiore (Northern Italy, the prokaryotic in situ dark [14C]HCO3 incorporation with a new custom-made apparatus, which takes samples and adds tracers in situ. Thereby stress factors affecting prokaryotes during sample recovery from the depth were avoided. We tested the new instrument at different depths and conditions, performing parallel conventional on board incubations. We found that dark [14C]HCO3 incorporations had lower standard deviation in in situ incubations with respect to the on board ones, but their means were not statistically different. At 350 m we estimated an uptake of 187.7±15 μg C m–3 d–1, which is in line with the published uptake rates in aquatic systems. By inhibiting the bacterial metabolism, we found that Archaea were responsible for 28% of the total CO2 uptake. At the same depth, Thaumarchaeota, on average, constituted 11% of total DAPI counts. Dark [14C]HCO3 incorporation integrated along the aphotic water column was 65.8±5.2 mg C m–2 d–1 which corresponds to 87% of picophytoplanktonic autotrophic fixation in the euphotic layer. This study provides the first evidence of Bacteria and Archaea dark CO2 fixation in the deep hypolimnion of a subalpine lake and indicates a potentially significant prokaryotic CO2 sink.

  13. Higher-level classification of the Archaea: evolution of methanogenesis and methanogens

    Directory of Open Access Journals (Sweden)

    Éric Bapteste

    2005-01-01

    Full Text Available We used a phylogenetic approach to analyze the evolution of methanogenesis and methanogens. We show that 23 vertically transmitted ribosomal proteins do not support the monophyly of methanogens, and propose instead that there are two distantly related groups of extant archaea that produce methane, which we have named Class I and Class II. Based on this finding, we subsequently investigated the uniqueness of the origin of methanogenesis by studying both the enzymes of methanogenesis and the proteins that synthesize its specific coenzymes. We conclude that hydrogenotrophic methanogenesis appeared only once during evolution. Genes involved in the seven central steps of the methanogenic reduction of carbon dioxide (CO2 are ubiquitous in methanogens and share a common history. This suggests that, although extant methanogens produce methane from various substrates (CO2, formate, acetate, methylated C-1 compounds, these archaea have a core of conserved enzymes that have undergone little evolutionary change. Furthermore, this core of methanogenesis enzymes seems to originate (as a whole from the last ancestor of all methanogens and does not appear to have been horizontally transmitted to other organisms or between members of Class I and Class II. The observation of a unique and ancestral form of methanogenesis suggests that it was preserved in two independent lineages, with some instances of specialization or added metabolic flexibility. It was likely lost in the Halobacteriales, Thermoplasmatales and Archaeoglobales. Given that fossil evidence for methanogenesis dates back 2.8 billion years, a unique origin of this process makes the methanogenic archaea a very ancient taxon.

  14. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota.

    Science.gov (United States)

    Petitjean, Céline; Deschamps, Philippe; López-García, Purificación; Moreira, David

    2015-01-01

    The first 16S rRNA-based phylogenies of the Archaea showed a deep division between two groups, the kingdoms Euryarchaeota and Crenarchaeota. This bipartite classification has been challenged by the recent discovery of new deeply branching lineages (e.g., Thaumarchaeota, Aigarchaeota, Nanoarchaeota, Korarchaeota, Parvarchaeota, Aenigmarchaeota, Diapherotrites, and Nanohaloarchaeota) which have also been given the same taxonomic status of kingdoms. However, the phylogenetic position of some of these lineages is controversial. In addition, phylogenetic analyses of the Archaea have often been carried out without outgroup sequences, making it difficult to determine if these taxa actually define lineages at the same level as the Euryarchaeota and Crenarchaeota. We have addressed the question of the position of the root of the Archaea by reconstructing rooted archaeal phylogenetic trees using bacterial sequences as outgroup. These trees were based on commonly used conserved protein markers (32 ribosomal proteins) as well as on 38 new markers identified through phylogenomic analysis. We thus gathered a total of 70 conserved markers that we analyzed as a concatenated data set. In contrast with previous analyses, our trees consistently placed the root of the archaeal tree between the Euryarchaeota (including the Nanoarchaeota and other fast-evolving lineages) and the rest of archaeal species, which we propose to class within the new kingdom Proteoarchaeota. This implies the relegation of several groups previously classified as kingdoms (e.g., Crenarchaeota, Thaumarchaeota, Aigarchaeota, and Korarchaeota) to a lower taxonomic rank. In addition to taxonomic implications, this profound reorganization of the archaeal phylogeny has also consequences on our appraisal of the nature of the last archaeal ancestor, which most likely was a complex organism with a gene-rich genome. PMID:25527841

  15. Diversity, dynamics and activity of mesophilic Archaea in stratified feshwater lakes. Implications in biogeochemical cycles

    OpenAIRE

    Llirós Dupré, Marc

    2010-01-01

    Aquesta tesi doctoral va estudiar la diversitat (riquesa i abundància), la distribució i la dinàmica de les comunitats planctòniques d'Archaea presents a diferents llacs estratificats temperats d'aigua dolça per aportar evidencies sobre la seva distribució i la seva possible activitat en aquests ecosistemes en relació als cicles biogeoquímics presents en els mateixos. Es varen estudiar dos estanyols d'origen càrstic (l'Estanyol del Vilar durant cinc anys consecutius (2001-2005) i l'Estanyol d...

  16. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China

    Science.gov (United States)

    Liu, D. Y.; Ding, W. X.; Jia, Z. J.; Cai, Z. C.

    2011-02-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability at regional, national, and global levels related to temperature, water table, plant type and methanogenic archaea etc. To understand the underlying factors that induce spatial differences in CH4 emissions, and the relationship between the population of methanogenic archaea and CH4 production potential in natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical soil profiles sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau in the alpine climate zone. The top soil layer had the highest population of methanogens (1.07-8.29 × 109 cells g-1 soil) in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2 = 0.72, P nitrogen concentrations (R2 = 0.76, P affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2 = 0.01, P > 0.05, n = 13), it is related to the dissolved organic carbon concentration (R2 = 0.31, P = 0.05, n = 13). This suggests that the methanogen population might be not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 273.64 μg CH4 kg-1 soil d-1 in the Poyang wetland to 664.59 μg CH4 kg-1 soil d-1 in the Carex lasiocarpa marsh of the Sanjiang Plain. We conclude that CH4 production potential in the freshwater wetlands of Eastern China is mainly affected by the supply of methanogenic substrates rather than temperature; in contrast

  17. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    OpenAIRE

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-01-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, an...

  18. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus

    Directory of Open Access Journals (Sweden)

    Müller Judith

    2009-03-01

    Full Text Available Abstract Background Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown. Results Using protein-protein interaction analysis, we have identified three proteins in Halobacterium salinarum that interact with the chemotaxis (Che proteins CheY, CheD, and CheC2, as well as the flagella accessory (Fla proteins FlaCE and FlaD. Two of the proteins belong to the protein family DUF439, the third is a HEAT_PBS family protein. In-frame deletion strains for all three proteins were generated and analyzed as follows: a photophobic responses were measured by a computer-based cell tracking system b flagellar rotational bias was determined by dark-field microscopy, and c chemotactic behavior was analyzed by a swarm plate assay. Strains deleted for the HEAT_PBS protein or one of the DUF439 proteins proved unable to switch the direction of flagellar rotation. In these mutants, flagella rotate only clockwise, resulting in exclusively forward swimming cells that are unable to respond to tactic signals. Deletion of the second DUF439 protein had only minimal effects. HEAT_PBS proteins could be identified in the chemotaxis gene regions of all motile haloarchaea

  19. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  20. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    Science.gov (United States)

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.

  1. Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid.

    Directory of Open Access Journals (Sweden)

    Salla T Jaakkola

    Full Text Available Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.

  2. Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

    Science.gov (United States)

    Oren, Aharon

    2014-12-13

    Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission. PMID:25368347

  3. Evolutionary patterns in the sequence and structure of transfer RNA: early origins of archaea and viruses.

    Directory of Open Access Journals (Sweden)

    Feng-Jie Sun

    2008-03-01

    Full Text Available Transfer RNAs (tRNAs are ancient molecules that are central to translation. Since they probably carry evolutionary signatures that were left behind when the living world diversified, we reconstructed phylogenies directly from the sequence and structure of tRNA using well-established phylogenetic methods. The trees placed tRNAs with long variable arms charging Sec, Tyr, Ser, and Leu consistently at the base of the rooted phylogenies, but failed to reveal groupings that would indicate clear evolutionary links to organismal origin or molecular functions. In order to uncover evolutionary patterns in the trees, we forced tRNAs into monophyletic groups using constraint analyses to generate timelines of organismal diversification and test competing evolutionary hypotheses. Remarkably, organismal timelines showed Archaea was the most ancestral superkingdom, followed by viruses, then superkingdoms Eukarya and Bacteria, in that order, supporting conclusions from recent phylogenomic studies of protein architecture. Strikingly, constraint analyses showed that the origin of viruses was not only ancient, but was linked to Archaea. Our findings have important implications. They support the notion that the archaeal lineage was very ancient, resulted in the first organismal divide, and predated diversification of tRNA function and specificity. Results are also consistent with the concept that viruses contributed to the development of the DNA replication machinery during the early diversification of the living world.

  4. Genomic Analysis of Deeply-Branching Bacteria and Archaea from IODP Leg 347: Baltic Sea Paleoenvironment

    Science.gov (United States)

    Bird, J. T.; Lloyd, K. G.

    2014-12-01

    Among the diverse inhabitants of the marine subsurface are "deeply-branching" bacteria and archaea, whose recent evolutionary ancestors have eluded isolation and characterization by traditional culture-based methods. By using single-cell genomics, we were able to target members of common deeply-branching mircorganisms found in a sediment core acquired during IODP Leg 347. Cells were separated from sediment layers (37 and 84 meters below the seafloor) deposited at site 60, hole B, near Anholt Island tens to hundreds of thousands of years ago. Ten single amplified genomes from 4 bacterial and 1 archaeal lineages were chosen from the 60 successfully sorted cells. The lineages include: Desulfobacterium sp., OPB41, OP8, NT-B2, Marine Group II archaea. Two lineages have not been genomically sampled before, while all 5 are frequently found in a variety of marine sediment habitats. The genome assemblies range in completeness from 45 - 85% and contain a number of phylogenetically relevant genes that has helped to anchor their position in the tree of life. The metabolic strategies, including putative sulfate reduction and carbon degradation pathways, employed by these cells have allowed them to survive in an environment with diminishing sources of labile carbon substrates.

  5. The Function of Gas Vesicles in Halophilic Archaea and Bacteria: Theories and Experimental Evidence

    Directory of Open Access Journals (Sweden)

    Aharon Oren

    2012-12-01

    Full Text Available A few extremely halophilic Archaea (Halobacterium salinarum, Haloquadratum walsbyi, Haloferax mediterranei, Halorubrum vacuolatum, Halogeometricum borinquense, Haloplanus spp. possess gas vesicles that bestow buoyancy on the cells. Gas vesicles are also produced by the anaerobic endospore-forming halophilic Bacteria Sporohalobacter lortetii and Orenia sivashensis. We have extensive information on the properties of gas vesicles in Hbt. salinarum and Hfx. mediterranei and the regulation of their formation. Different functions were suggested for gas vesicle synthesis: buoying cells towards oxygen-rich surface layers in hypersaline water bodies to prevent oxygen limitation, reaching higher light intensities for the light-driven proton pump bacteriorhodopsin, positioning the cells optimally for light absorption, light shielding, reducing the cytoplasmic volume leading to a higher surface-area-to-volume ratio (for the Archaea and dispersal of endospores (for the anaerobic spore-forming Bacteria. Except for Hqr. walsbyi which abounds in saltern crystallizer brines, gas-vacuolate halophiles are not among the dominant life forms in hypersaline environments. There only has been little research on gas vesicles in natural communities of halophilic microorganisms, and the few existing studies failed to provide clear evidence for their possible function. This paper summarizes the current status of the different theories why gas vesicles may provide a selective advantage to some halophilic microorganisms.

  6. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    Science.gov (United States)

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production. PMID:26369647

  7. Identification of a glycolytic regulon in the archaea Pyrococcus and Thermococcus.

    Science.gov (United States)

    van de Werken, Harmen J G; Verhees, Corné H; Akerboom, Jasper; de Vos, Willem M; van der Oost, John

    2006-07-01

    The glycolytic pathway of the hyperthermophilic archaea that belong to the order Thermococcales (Pyrococcus, Thermococcus and Palaeococcus) differs significantly from the canonical Embden-Meyerhof pathway in bacteria and eukarya. This archaeal glycolysis variant consists of several novel enzymes, some of which catalyze unique conversions. Moreover, the enzymes appear not to be regulated allosterically, but rather at transcriptional level. To elucidate details of the gene expression control, the transcription initiation sites of the glycolytic genes in Pyrococcus furiosus have been mapped by primer extension analysis and the obtained promoter sequences have been compared with upstream regions of non-glycolytic genes. Apart from consensus sequences for the general transcription factors (TATA-box and BRE) this analysis revealed the presence of a potential transcription factor binding site (TATCAC-N(5)-GTGATA) in glycolytic and starch utilizing promoters of P. furiosus and several thermococcal species. The absence of this inverted repeat in Pyrococcus abyssi and Pyrococcus horikoshii probably reflects that their reduced catabolic capacity does not require this regulatory system. Moreover, this phyletic pattern revealed a TrmB-like regulator (PF0124 and TK1769) which may be involved in recognizing the repeat. This Thermococcales glycolytic regulon, with more than 20 genes, is the largest regulon that has yet been described for Archaea.

  8. Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

    Science.gov (United States)

    Xie, W.; Zhang, C. L.; Wang, P.; Zhou, X.; Guo, W.

    2014-12-01

    Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.

  9. Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat

    Directory of Open Access Journals (Sweden)

    Steven J Biller

    2012-07-01

    Full Text Available Archaea play an important role in nitrification and are, thus, inextricably linked to the global carbon and nitrogen cycles. Since the initial discovery of an ammonia monooxygenase α-subunit (amoA gene associated with an archaeal metagenomic fragment, archaeal amoA sequences have been detected in a wide variety of nitrifying environments. Recent sequencing efforts have revealed extensive diversity of archaeal amoA sequences within different habitats. In this study, we have examined over 8000 amoA sequences from the literature and public databases in an effort to understand the ecological factors influencing the distribution and diversity of ammonia-oxidizing archaea (AOA, with a particular focus on sequences from aquatic habitats. This broad survey provides strong statistical support for the hypothesis that different environments contain distinct clusters of AOA amoA sequences, as surprisingly few sequences are found in more than one habitat type. Within aquatic environments, salinity, depth in the water column, and temperature were significantly correlated with the distribution of sequence types. These findings support the existence of multiple distinct aquatic AOA populations in the environment and suggest some possible selective pressures driving the partitioning of AOA amoA diversity.

  10. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yingang, E-mail: fengyg@qibebt.ac.cn [Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 (China); Song, Xiaxia [Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Jinzhong [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xuan, Jinsong [Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cui, Qiu [Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 (China); Wang, Jinfeng [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  11. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China

    Directory of Open Access Journals (Sweden)

    D. Y. Liu

    2011-02-01

    Full Text Available Methane (CH4 emissions from natural wetland ecosystems exhibit large spatial variability at regional, national, and global levels related to temperature, water table, plant type and methanogenic archaea etc. To understand the underlying factors that induce spatial differences in CH4 emissions, and the relationship between the population of methanogenic archaea and CH4 production potential in natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical soil profiles sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau in the alpine climate zone. The top soil layer had the highest population of methanogens (1.07–8.29 × 109 cells g−1 soil in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2 = 0.72, P < 0.001, n = 13 and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2 = 0.76, P < 0.001, n = 13 in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2 = 0.01, P > 0.05, n = 13, it is related to the dissolved organic carbon concentration (R2 = 0.31, P = 0.05, n = 13. This suggests that the methanogen population might be not an effective index for predicting the CH4 production in wetland

  12. Geochemistry and Mixing Drive the Spatial Distribution of Free-Living Archaea and Bacteria in Yellowstone Lake

    OpenAIRE

    Kan, Jinjun; Clingenpeel, Scott; Dow, Charles L.; McDermott, Timothy R.; Macur, Richard E.; Inskeep, William P.; Nealson, Kenneth H

    2016-01-01

    Yellowstone Lake, the largest subalpine lake in the United States, harbors great novelty and diversity of Bacteria and Archaea. Size-fractionated water samples (0.1–0.8, 0.8–3.0, and 3.0–20 μm) were collected from surface photic zone, deep mixing zone, and vent fluids at different locations in the lake by using a remotely operated vehicle (ROV). Quantification with real-time PCR indicated that Bacteria dominated free-living microorganisms with Bacteria/Archaea ratios ranging from 4037:1 (surf...

  13. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    NARCIS (Netherlands)

    Sauder, L.A.; Peterse, F.; Schouten, S.; Neufeld, J.D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidiz

  14. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Pitcher, A.; Villanueva, L.; Hopmans, E.C.; Schouten, S.; Reichart, G.J.; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists;

  15. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China ▿ †

    OpenAIRE

    Jiang, Hongchen; Huang, Qiuyuan; DONG, HAILIANG; WANG, Peng; Wang, Fengping; Li, Wenjun; Zhang, Chuanlun

    2010-01-01

    Using RNA-based techniques and hot spring samples collected from Yunnan Province, China, we show that the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at temperatures higher than 74°C and up to 94°C, suggesting that archaeal nitrification can potentially occur at near boiling temperatures.

  16. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium

    NARCIS (Netherlands)

    Santos, dos A.B.; Cervantes, F.J.; Madrid, de M.P.; Bok, de F.A.M.; Stams, A.J.M.; Lier, van J.B.

    2006-01-01

    The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium was studied. Additionally, the effects of different electron-donating substrates and the redox mediator riboflavin on dye reduction were assessed by using either a methanoge

  17. Growth of anaerobic methane oxidizing archaea and sulfate reducing bacteria in a high pressure membrane-capsule bioreactor

    NARCIS (Netherlands)

    Timmers, P.H.A.; Gieteling, J.; Widjaja-Greefkes, H.C.A.; Plugge, C.M.; Stams, A.J.M.; Lens, P.N.L.; Meulepas, R.J.W.

    2015-01-01

    Anaerobic methane oxidizing communities of archaea (ANME) and sulfate reducing bacteria (SRB) grow slowly, which limits physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated sulfate

  18. Genetic analysis of the br gene in halophilic archaea isolated from Xinjiang region, China

    Institute of Scientific and Technical Information of China (English)

    Xiaohong XU; Min WU; Huibin ZHANG; Zhihu LIU

    2008-01-01

    Some novel members of extremely halophilic archaea, strains AJ 11, AJ 12 and AJ 13, were isolated from the Aularz Lake located in the Altun Mountain National Nature Reserve of Xinjiang, Uygur Autonomous Region in China. Partial DNA fragments encoding a bacteriorho-dopsin (BR), as well as for 16S rRNA of isolated strains, were amplified by PCR and their DNA sequences were determined subsequently. On the basis of homology and phylogenetic analysis of the 16S rDNA, we thought that the isolated strains forming a microbiological population are the members of the genus Natrinema. The results of genetic analysis, such as GC content, transition/transver-sion (Ti/Tv) rate ratios and synonymous substitution rates (Ks) indicate that the br fragments, with a high level of genetic divergence, are faced with both purifying selection and bias mutation pressure. The study provides the basis for use of species and BR proteins resources.

  19. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Kletzin, Arnulf; Raddatz, Guenter;

    2004-01-01

    of taxonomic marker genes (other than 16S rRNA) has been identified that allows the assignment of genome fragments to specific lineages. The complete sequences of two genome fragments identified as being affiliated with Archaea, based on a gene encoding a CDC48 homologue and a thermosome subunit, respectively......Complex genomic libraries are increasingly being used to retrieve complete genes, operons or large genomic fragments directly from environmental samples, without the need to cultivate the respective microorganisms. We report on the construction of three large-insert fosmid libraries in total...... covering 3 Gbp of community DNA from two different soil samples, a sandy ecosystem and a mixed forest soil. In a fosmid end sequencing approach including 5376 sequence tags of approximately 700 bp length, we show that mostly bacterial and, to a much lesser extent, archaeal and eukaryotic genome fragments...

  20. 2001 Gordon Research Conference on Archaea: Ecology [sic], Metabolism. Final progress report [agenda and attendee list

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Charles

    2001-08-10

    The Gordon Research Conference on Archaea: Ecology, Metabolism [and Molecular Biology] was held at Proctor Academy, Andover, New Hampshire, August 5-10, 2001. The conference was attended by 135 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Session topics included the following: Ecology and genetic elements; Genomics and evolution; Ecology, genomes and gene regulation; Replication and recombination; Chromatin and transcription; Gene regulation; Post-transcription processing; Biochemistry and metabolism; Proteomics and protein structure; Metabolism and physiology. The featured speaker addressed the topic: ''Archaeal viruses, witnesses of prebiotic evolution?''

  1. The discovery of archaea origin phosphomannomutase in algae based on the algal transcriptome

    Institute of Scientific and Technical Information of China (English)

    FENG Yanjing; CHI Shan; LIU Cui; CHEN Shengping; YU Jun; WANG Xumin; LIU Tao

    2014-01-01

    Phosphomannomutase (PMM;EC 5.4.2.8) is an enzyme that catalyzes the interconversion reaction between mannose-6-phosphate and mannose-1-phosphate. However, its systematic molecular and functional in-vestigations in algae have not hitherto been reported. In this work, with the accomplishment of the 1 000 Plant Project (OneKP) in which more than 218 species of Chromista, including 19 marine phaeophytes, 22 marine rhodophytes, 171 chlorophytes, 5 cryptophytes, 4 haptophytes, and 5 glaucophytes were sequenced, we used a gene analysis method to analyze the PMM gene sequences in algae and confirm the existence of the PMM gene in the transcriptomic sequencing data of Rhodophyta and Ochrophyta. Our results showed that only one type of PMM with four conserved motifs exists in Chromista which is similar to human PMM. Moreover, the phylogenetic tree revealed that algae PMM possibly originated from archaea.

  2. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  3. Fishery by-product as a nutrient source for bacteria and archaea growth media.

    Science.gov (United States)

    Martone, Celina B; Pérez Borla, Olinda; Sánchez, Jorge J

    2005-02-01

    A highly soluble fish protein hydrolysates (FPH) with an 80% protein (peptide size between 1.5 and 20 kDa) and a low free amino acid content was obtained from hake (Merluccius hubssi) filleting waste [Lat. Am. Appl. Res. 30 (2000) 241]. Assays with Halobacterium salinarum, Escherichia coli, Bacillus subtilis and Staphylococcus epidermidis were performed in order to test that FPH as nutrient source for archaea and eubacteria culture media. Cell growth was evaluated by plate count, and by monitoring turbidity and nucleic acids content in liquid cultures. Neither cell growth nor generation times resulting from control and FPH cultures exhibited statistically significant differences at alpha: 0.05 suggesting that FPH can be used as an alternative substrate for microorganism cultural purposes. PMID:15474942

  4. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea

    Directory of Open Access Journals (Sweden)

    Annarita Poli

    2011-01-01

    Full Text Available Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs, considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species.

  5. Genome of Rice Cluster I archaea--the key methane producers in the rice rhizosphere.

    Science.gov (United States)

    Erkel, Christoph; Kube, Michael; Reinhardt, Richard; Liesack, Werner

    2006-07-21

    Rice fields are a global source of the greenhouse gas methane, which is produced by methanogenic archaea, and by methanogens of Rice Cluster I (RC-I) in particular. RC-I methanogens are not yet available in pure culture, and the mechanistic reasons for their prevalence in rice fields are unknown. We reconstructed a complete RC-I genome (3.18 megabases) using a metagenomic approach. Sequence analysis demonstrated an aerotolerant, H2/CO2-dependent lifestyle and enzymatic capacities for carbohydrate metabolism and assimilatory sulfate reduction, hitherto unknown among methanogens. These capacities and a unique set of antioxidant enzymes and DNA repair mechanisms as well as oxygen-insensitive enzymes provide RC-I with a selective advantage over other methanogens in its habitats, thereby explaining the prevalence of RC-I methanogens in the rice rhizosphere. PMID:16857943

  6. Vertical stratification of bacteria and archaea in sediments of a boreal stratified humic lake

    Science.gov (United States)

    Rissanen, Antti J.; Mpamah, Promise; Peura, Sari; Taipale, Sami; Biasi, Christina; Nykänen, Hannu

    2015-04-01

    Boreal stratified humic lakes, with steep redox gradients in the water column and in the sediment, are important sources of methane (CH4) to the atmosphere. CH4 flux from these lakes is largely controlled by the balance between CH4-production (methanogenesis), which takes place in the organic rich sediment and in the deepest water layers, and CH4-consumption (methanotrophy), which takes place mainly in the water column. While there is already some published information on the activity, diversity and community structure of bacteria in the water columns of these lakes, such information on sediment microbial communities is very scarce. This study aims to characterize the vertical variation patterns in the diversity and the structure of microbial communities in sediment of a boreal stratified lake. Particular focus is on microbes with the potential to contribute to methanogenesis (fermentative bacteria and methanogenic archaea) and to methanotrophy (methanotrophic bacteria and archaea). Two sediment cores (26 cm deep), collected from the deepest point (~6 m) of a small boreal stratified lake during winter-stratification, were divided into depth sections of 1 to 2 cm for analyses. Communities were studied from DNA extracted from sediment samples by next-generation sequencing (Ion Torrent) of polymerase chain reaction (PCR) - amplified bacterial and archaeal 16S rRNA gene amplicons. The abundance of methanogenic archaea was also specifically studied by quantitative-PCR of methyl coenzyme-M reductase gene (mcrA) amplicons. Furthermore, the community structure and the abundance of bacteria were studied by phospholipid fatty acid (PLFA) analysis. Dominant potential fermentative bacteria belonged to families Syntrophaceae, Clostridiaceae and Peptostreptococcaceae. There were considerable differences in the vertical distribution among these groups. The relative abundance of Syntrophaceae started to increase from the sediment surface, peaked at depth layer from 5 to 10 cm (up

  7. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops.

    Directory of Open Access Journals (Sweden)

    Yuejian Mao

    Full Text Available Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR and diversity (barcoded pyrosequencing of key functional genes (nifH, bacterial/archaeal amoA and nosZ and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop, in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA not bacteria (AOB, indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.

  8. Uranium association with halophilic and non-halophilic bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Gillow, J.B.; Dodge, C.J. [Brookhaven National Lab., Upton, NY (United States); Harris, R.; Beveridge, T.J. [Univ. of Guelph, ON (Canada); Papenguth, H.W. [Sandia National Labs., Albuquerque, NM (United States)

    2004-07-01

    We determined the association of uranium with bacteria isolated from the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico, and compared this with known strains of halophilic and non-halophilic bacteria and archaea. Examination of the cultures by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) showed uranium accumulation extracellularly and/or intracellularly to a varying degree. In Pseudomonas fluorescens and Bacillus subtilis uranium was associated with the cell surface and in the latter it was present as irregularly shaped grains. In Halobacterium halobium, the only archeon studied here, uranium was present as dense deposits and with Haloanaerobium praevalens as spikey deposits. Halomonas sp. isolated from the WIPP site accumulated uranium both extracellularly on the cell surface and intracellularly as electron-dense discrete granules. Extended X-ray absorption fine structure (EXAFS) analysis of uranium with the halophilic and non-halophilic bacteria and archaea showed that the uranium present in whole cells was bonded to an average of 2.4 {+-} 0.7 phosphoryl groups at a distance of 3.65 {+-} 0.03 Aa. Comparison of whole cells of Halomonas sp. with the cell wall fragments of lysed cells showed the presence of a uranium bidentate complex at 2.91 {+-} 0.03 Aa with the carboxylate group on the cell wall, and uranyl hydroxide with U-U interaction at 3.71 {+-} 0.03 Aa due to adsorption or precipitation reactions; no U-P interaction was observed. Addition of uranium to the cell lysate of Halomonas sp. resulted in the precipitation of uranium due to the inorganic phosphate produced by the cells. These results show that the phosphates released from bacteria bind a significant amount of uranium. However, the bacterially immobilized uranium was readily solubilized by bicarbonate with concurrent release of phosphate into solution. (orig.)

  9. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea.

    Science.gov (United States)

    Chun, Jongsik; Rainey, Fred A

    2014-02-01

    The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA-DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12,000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11,000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.

  10. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-04-01

    Full Text Available Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park (YNP, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings, the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly

  11. Differences down-under: alcohol-fueled methanogenesis by archaea present in Australian macropodids.

    Science.gov (United States)

    Hoedt, Emily C; Cuív, Páraic Ó; Evans, Paul N; Smith, Wendy J M; McSweeney, Chris S; Denman, Stuart E; Morrison, Mark

    2016-10-01

    The Australian macropodids (kangaroos and wallabies) possess a distinctive foregut microbiota that contributes to their reduced methane emissions. However, methanogenic archaea are present within the macropodid foregut, although there is scant understanding of these microbes. Here, an isolate taxonomically assigned to the Methanosphaera genus (Methanosphaera sp. WGK6) was recovered from the anterior sacciform forestomach contents of a Western grey kangaroo (Macropus fuliginosus). Like the human gut isolate Methanosphaera stadtmanae DSMZ 3091(T), strain WGK6 is a methylotroph with no capacity for autotrophic growth. In contrast, though with the human isolate, strain WGK6 was found to utilize ethanol to support growth, but principally as a source of reducing power. Both the WGK6 and DSMZ 3091(T) genomes are very similar in terms of their size, synteny and G:C content. However, the WGK6 genome was found to encode contiguous genes encoding putative alcohol and aldehyde dehydrogenases, which are absent from the DSMZ 3091(T) genome. Interestingly, homologs of these genes are present in the genomes for several other members of the Methanobacteriales. In WGK6, these genes are cotranscribed under both growth conditions, and we propose the two genes provide a plausible explanation for the ability of WGK6 to utilize ethanol for methanol reduction to methane. Furthermore, our in vitro studies suggest that ethanol supports a greater cell yield per mol of methane formed compared to hydrogen-dependent growth. Taken together, this expansion in metabolic versatility can explain the persistence of these archaea in the kangaroo foregut, and their abundance in these 'low-methane-emitting' herbivores. PMID:27022996

  12. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  13. Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures

    Directory of Open Access Journals (Sweden)

    Pride David T

    2008-09-01

    Full Text Available Abstract Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC, where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of

  14. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    Science.gov (United States)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific

  15. The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs

    Science.gov (United States)

    Hamilton, T. L.; Jewell, T. N. M.; de la Torre, J. R.; Boyd, E. S.

    2014-12-01

    Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a 'bottom up control' on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of < 62°C and by members of the Thaumarcheota at temperatures up to 90°C. Nitrification can thus be considered a 'top down control' on the structure of communities that develop in N limited environments. Our research in Yellowstone National Park (YNP) reveals a strong correspondence between the distribution of ammonia oxidizing archaea (AOA) and nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of

  16. Influence of niche differentiation on the abundance of methanogenic archaea and methane production potential in natural wetland ecosystems across China

    OpenAIRE

    D. Liu; Ding, W.; Jia, Z; Cai, Z.

    2010-01-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability. To understand the underlying factors that induce differences in CH4 emissions from natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical profile soils sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjia...

  17. Rapid and dissimilar response of ammonia oxidising archaea and bacteria to nitrogen and water amendment in two temperate forest soils

    OpenAIRE

    Szukics, Ute; Hackl, Evelyn; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela

    2011-01-01

    Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental ...

  18. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

    OpenAIRE

    Sauder, L.A.; Peterse, F.; Schouten, S; Neufeld, J. D.

    2012-01-01

    The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater treatment plant. Individual RBC stages are arranged in series, with nitrification at each stage creat...

  19. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders

    OpenAIRE

    Gottlieb, K.; Wacher, V.; Sliman, J.; Pimentel, M. (collab.)

    2015-01-01

    Summary Background Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and a possible role for methane as a gasotransmitter. Archaea are the only confirmed biological sources of methane in nature and Methanobrevibacter smithii is the predominant methanogen in the human intestine. Aim To review the biosynthesis and composition of...

  20. Patterns and Determinants of Halophilic Archaea (Class Halobacteria) Diversity in Tunisian Endorheic Salt Lakes and Sebkhet Systems

    OpenAIRE

    Najjari, Afef; Mostafa S Elshahed; Cherif, Ameur; Youssef, Noha H.

    2015-01-01

    We examined the diversity and community structure of members of the halophilic Archaea (class Halobacteria) in samples from central and southern Tunisian endorheic salt lakes and sebkhet (also known as sebkha) systems using targeted 16S rRNA gene diversity survey and quantitative PCR (qPCR) approaches. Twenty-three different samples from four distinct locations exhibiting a wide range of salinities (2% to 37%) and physical characteristics (water, salt crust, sediment, and biofilm) were examin...

  1. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    OpenAIRE

    Pitcher, A.; Villanueva, L; Hopmans, E.C.; Schouten, S.; G. J. Reichart; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of ...

  2. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

    OpenAIRE

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2011-01-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA...

  3. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    OpenAIRE

    Bustamante, Mauricio; Verdejo, Valentina; Zúñiga, Catalina; Espinosa, Fernanda; Orlando, Julieta; Carú, Margarita

    2012-01-01

    Water availability is the main limiting factor in arid soils; however, few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcos...

  4. Distinct Responses in Ammonia-Oxidizing Archaea and Bacteria after Addition of Biosolids to an Agricultural Soil▿

    OpenAIRE

    Kelly, John J.; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S.

    2011-01-01

    The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically dige...

  5. Distribution of Ammonia-Oxidizing Archaea and Bacteria in the Surface Sediments of Matsushima Bay in Relation to Environmental Variables

    OpenAIRE

    Sakami, Tomoko

    2011-01-01

    Ammonia oxidization is the first and a rate-limiting step of nitrification, which is often a critical process in nitrogen removal from estuarine and coastal environments. To clarify the correlation of environmental conditions with the distribution of ammonia oxidizers in organic matter-rich coastal sediments, ammonia-oxidizing archaea (AOA) and bacteria (AOB) ammonia monooxygenase alpha subunit gene (amoA) abundance was determined in sediments of Matsushima Bay located in northeast Japan. The...

  6. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    OpenAIRE

    JulietaOrlando

    2012-01-01

    Water availability is the main limiting factor in arid soils; however few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcosm...

  7. The X-ray Crystal Structure of RNA Polymerase from Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Hirata,A.; Klein, B.; Murakami, K.

    2008-01-01

    The transcription apparatus in Archaea can be described as a simplified version of its eukaryotic RNA polymerase (RNAP) II counterpart, comprising an RNAPII-like enzyme as well as two general transcription factors, the TATA-binding protein (TBP) and the eukaryotic TFIIB orthologue TFB. It has been widely understood that precise comparisons of cellular RNAP crystal structures could reveal structural elements common to all enzymes and that these insights would be useful in analysing components of each enzyme that enable it to perform domain-specific gene expression. However, the structure of archaeal RNAP has been limited to individual subunits3, 4. Here we report the first crystal structure of the archaeal RNAP from Sulfolobus solfataricus at 3.4 Angstroms resolution, completing the suite of multi-subunit RNAP structures from all three domains of life. We also report the high-resolution (at 1.76 Angstroms ) crystal structure of the D/L subcomplex of archaeal RNAP and provide the first experimental evidence of any RNAP possessing an iron-sulphur (Fe-S) cluster, which may play a structural role in a key subunit of RNAP assembly. The striking structural similarity between archaeal RNAP and eukaryotic RNAPII highlights the simpler archaeal RNAP as an ideal model system for dissecting the molecular basis of eukaryotic transcription.

  8. General trends in selectively driven codon usage biases in the domain archaea.

    Science.gov (United States)

    Iriarte, Andrés; Jara, Eugenio; Leytón, Lucía; Diana, Leticia; Musto, Héctor

    2014-10-01

    Since the advent of rapid techniques for sequencing DNA in the mid 70's, it became clear that all codons coding for the same amino acid are not used according to neutral expectations. In the last 30 years, several theories were proposed for explaining this fact. However, the most important concepts were the result of analyses carried out in Bacteria, and unicellular and multicellular eukaryotes like mammals (in other words, in two of the three Domains of life). In this communication, we study the main forces that shape codon usage in Archaeae under an evolutionary perspective. This is important because, as known, the orthologous genes related with the informational system in this Domain (replication, transcription and translation) are more similar to eukaryotes than to Bacteria. Our results show that the effect of selection acting at the level of translation is present in the Domain but mainly restricted to only a phylum (Euryarchaeota) and therefore is not as extended as in Bacteria. Besides, we describe the phylogenetic distribution of translational optimal codons and estimate the effect of selection acting at the level of accuracy. Finally, we discuss these results under some peculiarities that characterize this Domain.

  9. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    KAUST Repository

    Kyrpides, Nikos C.

    2014-08-05

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet\\'s most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet\\'s genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  10. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.

    Science.gov (United States)

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-03-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.

  11. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  12. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    Science.gov (United States)

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  13. A review of ammonia-oxidizing bacteria and archaea in Chinese soils

    Directory of Open Access Journals (Sweden)

    Ji-Zheng eHe

    2012-08-01

    Full Text Available Ammonia (NH3 oxidation, the first and rate-limiting step of nitrification, is a key step in the global Nitrogen (N cycle. Major advances have been made in recent years in our knowledge and understanding of the microbial communities involved ammonia oxidation in a wide range of habitats, including Chinese agricultural soils. In this mini-review, we focus our attention on the distribution and community diversity of ammonia-oxidizing bacteria (AOB and ammonia oxidizing archaea (AOA in Chinese soils with variable soil properties and soil management practices. The niche differentiation of AOB and AOA in contrasting soils have been functionally demonstrated using DNA-SIP (stable isotope probing methods, which have shown that AOA dominate nitrification processes in acidic soils, while AOB dominated in neutral, alkaline and N-rich soils. Finally, we discuss the composition and activity of ammonia oxidizer in paddy soils, as well as the mitigation of the greenhouse gas nitrous oxide (N2O emissions and nitrate leaching via inhibition of nitrification by both AOB and AOA.

  14. Isolation and characterization of halophilic bacteria and archaea from salt ponds in Hangu Saltworks, Tianjin, China

    Science.gov (United States)

    Deng, Yuangao; Xu, Gaochao; Sui, Liying

    2015-07-01

    A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100-200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.

  15. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil.

    Directory of Open Access Journals (Sweden)

    Anne Daebeler

    Full Text Available The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH(3F caused surprisingly little differences in community composition of active methanogenic archaea from a rice field soil. By measuring the natural abundances of carbon isotopes we found that the effective dose for a 90% inhibition of aceticlastic methanogenesis in anoxic paddy soil incubations was <0.75% CH(3F (v/v. The construction of clone libraries as well as t-RFLP analysis revealed that the active community, as indicated by mcrA transcripts (encoding the α subunit of methyl-coenzyme M reductase, a key enzyme for methanogenesis, remained stable over a wide range of CH(3F concentrations and represented only a subset of the methanogenic community. More precisely, Methanocellaceae were of minor importance, but Methanosarcinaceae dominated the active population, even when CH(3F inhibition only allowed for aceticlastic methanogenesis. In addition, we detected mcrA gene fragments of a so far unrecognised phylogenetic cluster. Transcription of this phylotype at methyl fluoride concentrations suppressing aceticlastic methanogenesis suggests that the respective organisms perform hydrogenotrophic methanogenesis. Hence, the application of CH(3F combined with transcript analysis is not only a useful tool to measure and assign in situ acetate usage, but also to explore substrate usage by as yet uncultivated methanogens.

  16. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.

    Science.gov (United States)

    Kyrpides, Nikos C; Hugenholtz, Philip; Eisen, Jonathan A; Woyke, Tanja; Göker, Markus; Parker, Charles T; Amann, Rudolf; Beck, Brian J; Chain, Patrick S G; Chun, Jongsik; Colwell, Rita R; Danchin, Antoine; Dawyndt, Peter; Dedeurwaerdere, Tom; DeLong, Edward F; Detter, John C; De Vos, Paul; Donohue, Timothy J; Dong, Xiu-Zhu; Ehrlich, Dusko S; Fraser, Claire; Gibbs, Richard; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Jansson, Janet K; Keasling, Jay D; Knight, Rob; Labeda, David; Lapidus, Alla; Lee, Jung-Sook; Li, Wen-Jun; Ma, Juncai; Markowitz, Victor; Moore, Edward R B; Morrison, Mark; Meyer, Folker; Nelson, Karen E; Ohkuma, Moriya; Ouzounis, Christos A; Pace, Norman; Parkhill, Julian; Qin, Nan; Rossello-Mora, Ramon; Sikorski, Johannes; Smith, David; Sogin, Mitch; Stevens, Rick; Stingl, Uli; Suzuki, Ken-Ichiro; Taylor, Dorothea; Tiedje, Jim M; Tindall, Brian; Wagner, Michael; Weinstock, George; Weissenbach, Jean; White, Owen; Wang, Jun; Zhang, Lixin; Zhou, Yu-Guang; Field, Dawn; Whitman, William B; Garrity, George M; Klenk, Hans-Peter

    2014-08-01

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  17. Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans.

    Science.gov (United States)

    Bhattacharyya, Anish; Majumder, Niladri Shekhar; Basak, Pijush; Mukherji, Shayantan; Roy, Debojyoti; Nag, Sudip; Haldar, Anwesha; Chattopadhyay, Dhrubajyoti; Mitra, Suparna; Bhattacharyya, Maitree; Ghosh, Abhrajyoti

    2015-01-01

    Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani). The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I) within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS) revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp) with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea) compared to station (Dhulibhashani) with nearly pristine environment (dominated by methanogens). It is indicated that sediment archaeal community patterns were influenced by environmental conditions. PMID:26346219

  18. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2012-01-01

    Full Text Available Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  19. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China.

    Science.gov (United States)

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  20. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    Science.gov (United States)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  1. Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Sun, Renhua; Wen, Donghui

    2015-08-01

    Ammonia was observed as a potential significant factor to manipulate the abundance and activity of ammonia-oxidizing microorganisms (AOMs) in water environments. For the first time, this study confirmed this phenomenon by laboratory cultivation. In a series of estuarine sediment-coastal water microcosms, we investigated the AOM's phylogenetic composition and activity change in response to ammonia concentration. Increase of ammonia concentration promoted bacterial amoA gene abundance in a linear pattern. The ratio of transcribed ammonia-oxidizing bacteria (AOB) amoA gene/ammonia-oxidizing archaea (AOA) amoA gene increased from 0.1 to 43 as NH4 (+)-N increased from less than 0.1 to 12 mg L(-1), and AOA amoA transcription was undetected under 20 mg NH4 (+)-N L(-1). The incubation of stable isotope probing (SIP) microcosms revealed a faster (13)C-NaHCO3 incorporation rate of AOA amoA gene under 0.1 mg NH4 (+)-N L(-1) and a sole (13)C-NaHCO3 utilization of the AOB amoA gene under 20 mg NH4 (+)-N L(-1). Our results indicate that ammonia concentration manipulates the structure of AOM. AOA prefers to live and perform higher amoA transcription activity than AOB in ammonia-limited water environments, and AOB tends to take the first contributor place in ammonia-rich ones. PMID:25797330

  2. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    Science.gov (United States)

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions. PMID:27037935

  3. Potential production of nitrous oxide by archaea in the eastern Tropical North Atlantic Ocean

    Science.gov (United States)

    Loescher, C.; Kock, A.; Bange, H.; Laroche, J.

    2009-04-01

    The greenhouse gas nitrous oxide (N2O) is mainly produced by the processes of nitrification and denitrification. In order to identify the major formation pathway in the eastern tropical North Atlantic Ocean, measurements of dissolved nitrous oxide along vertical profiles were made during a cruise in February 2007. Identification of possible producing organsims took place by DNA and RNA analysis. The present oxygen concentrations, as well as the absence of transcripts of the denitrification key genes nirS/K and nosZ indicate, that N2O formation did not take place via denitrification. However, a positive correlation of N2O with nitrate, as well as excess N2O with the apparent oxygen utilization, suggest that nitrification is the major formation pathway in the study area. Detection of amoA, the key gene for the oxidation of ammonia approved this observation. It was found, that transcripts of amoA deriving from archaea were found throughout the water column, whereas transcripts of bacterial amoA could not be detected. Therefore, a production of N2O via archaeal nitrification is suggested.

  4. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.

    Directory of Open Access Journals (Sweden)

    Nikos C Kyrpides

    2014-08-01

    Full Text Available Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance. However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000. This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  5. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    Science.gov (United States)

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability. PMID:25764551

  6. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  7. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities. PMID:25279954

  8. Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans

    Directory of Open Access Journals (Sweden)

    Anish Bhattacharyya

    2015-01-01

    Full Text Available Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani. The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea compared to station (Dhulibhashani with nearly pristine environment (dominated by methanogens. It is indicated that sediment archaeal community patterns were influenced by environmental conditions.

  9. ADP-bildende Acetyl-CoA Synthetasen aus hyperthermophilen Archaea: Molekularbiologische und biochemische Charakterisierung von neuartigen Enzymen der Acetat-Bildung und ATP-Synthese

    OpenAIRE

    Musfeldt, Meike

    2001-01-01

    Keine deutschsprachige Zusammenfassung vorhanden. Acetyl-CoA synthetase (ADP-forming) (ADP-ACS) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + Pi -> acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ADP-ACS in Archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145 kDa heterotetramers (a2, b2). By using the N-terminal amino acid sequences of both subunits, which are located at different ...

  10. Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship

    Science.gov (United States)

    Bai, Lina; Xie, Ting; Hu, Qingqing; Deng, Changyan; Zheng, Rong; Chen, Wanping

    2015-10-01

    Ferritins are highly conserved proteins that are widely distributed in various species from archaea to humans. The ubiquitous characteristic of these proteins reflects the pivotal contribution of ferritins to the safe storage and timely delivery of iron to achieve iron homeostasis. This study investigated the ferritin genes in 248 genomes from various species, including viruses, archaea, bacteria, and eukarya. The distribution comparison suggests that mammals and eudicots possess abundant ferritin genes, whereas fungi contain very few ferritin genes. Archaea and bacteria show considerable numbers of ferritin genes. Generally, prokaryotes possess three types of ferritin (the typical ferritin, bacterioferritin, and DNA-binding protein from starved cell), whereas eukaryotes have various subunit types of ferritin, thereby indicating the individuation of the ferritin family during evolution. The characteristic motif analysis of ferritins suggested that all key residues specifying the unique structural motifs of ferritin are highly conserved across three domains of life. Meanwhile, the characteristic motifs were also distinguishable between ferritin groups, especially phytoferritins, which show a plant-specific motif. The phylogenetic analyses show that ferritins within the same subfamily or subunits are generally clustered together. The phylogenetic relationships among ferritin members suggest that both gene duplication and horizontal transfer contribute to the wide variety of ferritins, and their possible evolutionary scenario was also proposed. The results contribute to a better understanding of the distribution, characteristic motif, and evolutionary relationship of the ferritin family.

  11. A Phylogenomic Census of Molecular Functions Identifies Modern Thermophilic Archaea as the Most Ancient Form of Cellular Life

    Directory of Open Access Journals (Sweden)

    Arshan Nasir

    2014-01-01

    Full Text Available The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent.

  12. Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution.

    Science.gov (United States)

    Smyshlyaev, Georgy; Voigt, Franka; Blinov, Alexander; Barabas, Orsolya; Novikova, Olga

    2013-12-10

    Although a variety of non-LTR retrotransposons of the L1 superfamily have been found in plant genomes over recent decades, their diversity, distribution, and evolution have yet to be analyzed in depth. Here, we perform comprehensive comparative and evolutionary analyses of L1 retrotransposons from 29 genomes of land plants covering a wide range of taxa. We identify numerous L1 elements in these genomes and detect a striking diversity of their domain composition. We show that all known land plant L1 retrotransposons can be grouped into five major families based on their phylogenetic relationships and domain composition. Moreover, we trace the putative evolution timeline that created the current variants and reveal that evolutionary events included losses and acquisitions of diverse putative RNA-binding domains and the acquisition of an Archaea-like ribonuclease H (RNH) domain. We also show that the latter RNH domain is autonomously active in vitro and speculate that retrotransposons may play a role in the horizontal transfer of RNH between plants, Archaea, and bacteria. The acquisition of an Archaea-like RNH domain by plant L1 retrotransposons negates the hypothesis that RNH domains in non-LTR retrotransposons have a single origin and provides evidence that acquisition happened at least twice. Together, our data indicate that the evolution of the investigated retrotransposons can be mainly characterized by repeated events of domain rearrangements and identify modular evolution as a major trend in the evolution of plant L1 retrotransposons. PMID:24277848

  13. amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Jian eYang

    2013-11-01

    Full Text Available All known ammonia-oxidizing archaea (AOA belong to the phylum Thaumarchaeota within the domain Archaea. AOA possess the diagnostic amoA gene (encoding the alpha subunit of ammonia monooxygenase and produce lipid biomarker thaumarchaeol. Although the abundance and diversity of AEA in freshwater lakes have been well-studied, little is known about amoA gene-encoding archaea (AEA ecology in saline/hypersaline lakes. In this study, the distribution of the archaeal amoA gene and thaumarchaeol were investigated in nine Qinghai-Tibetan lakes with a salinity range from freshwater to salt-saturation (salinity: 325 g/L. The results showed that the archaeal amoA gene was present in hypersaline lakes with salinity up to 160 g/L. The archaeal amoA gene diversity in Tibetan lakes was different from those in other lakes worldwide, suggesting Tibetan lakes (high elevation, strong ultraviolet, and dry climate may host a unique AEA population of different evolutionary origin from those in other lakes. Thaumarchaeol was present in all of the studied hypersaline lakes, even in those where no AEA amoA gene was observed. Future research is needed to determine the ecological function of AEA and possible sources of thaumarchaeol in the Qinghai-Tibetan hypersaline lakes.

  14. A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Pau Richard N

    2003-12-01

    Full Text Available Abstract Background The transition metal molybdenum is essential for life. Escherichia coli imports this metal into the cell in the form of molybdate ions, which are taken up via an ABC transport system. In E. coli and other Proteobacteria molybdenum metabolism and homeostasis are regulated by the molybdate-responsive transcription factor ModE. Results Orthologues of ModE are widespread amongst diverse prokaryotes, but not ubiquitous. We identified probable ModE-binding sites upstream of genes implicated in molybdenum metabolism in green sulphur bacteria and methanogenic Archaea as well as in Proteobacteria. We also present evidence of horizontal transfer of nitrogen fixation genes between green sulphur bacteria and methanogenic Archaea. Conclusions Whereas most of the archaeal helix-turn-helix-containing transcription factors belong to families that are Archaea-specific, ModE is unusual in that it is found in both Archaea and Bacteria. Moreover, its cognate upstream DNA recognition sequence is also conserved between Archaea and Bacteria, despite the fundamental differences in their core transcription machinery. ModE is the third example of a transcriptional regulator with a binding signal that is conserved in Bacteria and Archaea.

  15. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea

    Directory of Open Access Journals (Sweden)

    Inês A. C. ePereira

    2011-04-01

    Full Text Available The number of sequenced genomes of sulfate-reducing organisms (SRO has increased significantly in the recent years, providing an opportunity for a broader perspective into the energy metabolism of such organisms. In this work we carried out a comparative survey of energy metabolism genes found in twenty-five available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H+-pyrophosphatases, complex I homologues, Rnf and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H2, formate, pyruvate, NAD(PH, β-oxidation and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation.

  16. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  17. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  18. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils.

    Science.gov (United States)

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-05-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  19. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    Science.gov (United States)

    Bagchi, Samik; Vlaeminck, Siegfried E; Sauder, Laura A; Mosquera, Mariela; Neufeld, Josh D; Boon, Nico

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  20. Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters.

    Directory of Open Access Journals (Sweden)

    Samik Bagchi

    Full Text Available Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA, as opposed to ammonia-oxidizing bacteria (AOB, were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4-5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥ 81-86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR for bacterial and thaumarchaeal ammonia monooxygenase (amoA genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS based on denaturing gradient gel electrophoresis (DGGE fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater

  1. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

    Science.gov (United States)

    Kim, Jong-Geol; Park, Soo-Je; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Rijpstra, W. Irene C.; Jung, Man-Young; Kim, So-Jeong; Gwak, Joo-Han; Hong, Heeji; Si, Ok-Ja; Lee, SangHoon; Madsen, Eugene L.; Rhee, Sung-Keun

    2016-01-01

    Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes. PMID:27339136

  2. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    Science.gov (United States)

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity. PMID:25744648

  3. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  4. Distribution of Bathyarchaeota (MCG) archaea in the South China Sea sediments and implication of its ecological roles

    Science.gov (United States)

    Tiantian, Y.; Wang, F.; MingYang, N.

    2015-12-01

    Tiantian Yu1,2, Mingyang Niu1,2 and Fengping Wang1,2 1State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai, 200240, China; 2State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China ABSTRACT: Archaea of Bathyarchaeota Phylum (Miscellaneous Crenarchaeotal Group, MCG) are widespread and abundant in various marine and continental environments. However, very little is understood on the metabolisms and ecological roles of this cosmopolitan sedimentary archaea , partly due to obstacles of cultivation. Bathyarchaeota could be divided into large members of subgroups with potentially high genetic heterogeneity, implying different metabolic capabilities and functions in different subgroups. Here, we report our work on investigating Bathyarchaeota abundance and types of subgroups in the South China Sea(SCS) sediments, aim to understand their ecological roles in the carbon cycling. Bathyarchaeota were found the most dominant archaeal group in the sediments of SCS , most of which belong to subgroups MCG-8, MCG-15, MCG-17 and MCG-3. A new pair of 16S rRNA gene primers was designed as the published primers could not cover MCG-15 and MCG-17, which are the most dominant subgroups in the SCS sediments. Comparing with previous primers which used for quantifying the abundance of Bathyarchaeota via Q-PCR, the new primer revealed about an order of magnitude higher abundance in all South China Sea sediments. The relationship of geochemical parameters and MCG subgroups will further be explored to provide the basis for further understanding the metabolic function and biogeochemical roles of these poor-understood sedimentary archaea.

  5. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization.

    Science.gov (United States)

    DeLong, E F; Taylor, L T; Marsh, T L; Preston, C M

    1999-12-01

    Fluorescent in situ hybridization (FISH) using rRNA-specific oligonucleotide probes has emerged as a popular technique for identifying individual microbial cells. In natural samples, however, the signal derived from fluor-labeled oligonucleotide probes often is undetectable above background fluorescence in many cells. To circumvent this difficulty, we applied fluorochrome-labeled polyribonucleotide probes to identify and enumerate marine planktonic archaea and bacteria. The approach greatly enhanced the sensitivity and applicability of FISH with seawater samples, allowing confident identification and enumeration of planktonic cells to ocean depths of 3,400 m. Quantitative whole-cell hybridization experiments using these probes accounted for 90 to 100% of the total 4',6-diamidino-2-phenylindole (DAPI)-stained cells in most samples. As predicted in a previous study (R. Massana, A. E. Murray, C. M. Preston, and E. F. DeLong, Appl. Environ. Microbiol. 63:50-56, 1997), group I and II marine archaea predominate in different zones in the water column, with maximal cell densities of 10(5)/ml. The high cell densities of archaea, extending from surface waters to abyssal depths, suggest that they represent a large and significant fraction of the total picoplankton biomass in coastal ocean waters. The data also show that the vast majority of planktonic prokaryotes contain significant numbers of ribosomes, rendering them easily detectable with polyribonucleotide probes. These results imply that the majority of planktonic cells visualized by DAPI do not represent lysed cells or "ghosts," as was suggested in a previous report. PMID:10584017

  6. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Directory of Open Access Journals (Sweden)

    S. Chen

    2015-10-01

    Full Text Available The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N–NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g−1 h−1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g−1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell−1 h−1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  7. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Science.gov (United States)

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  8. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China

    OpenAIRE

    Jin, Tao; ZHANG, Tong; Lin YE; Lee, On On; Wong, Yue Him; Qian, Pei Yuan

    2011-01-01

    The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28...

  9. Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria▿ †

    OpenAIRE

    Park, Byoung-Joon; Park, Soo-Je; Yoon, Dae-No; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Rhee, Sung-Keun

    2010-01-01

    The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichmen...

  10. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea.

    Directory of Open Access Journals (Sweden)

    Mariam Brenneis

    2007-12-01

    Full Text Available The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5'-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5'-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5'-ends and 3'-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5'-UTRs and 3'-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5'-UTRs and 3'-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3'-UTR (average size 57 nt, and their 3'-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5'-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5'-UTRs of random sequences. Thus, an interaction of

  11. Metagenomic analysis of ammonia oxidizing archaea affiliated with the soil group

    Directory of Open Access Journals (Sweden)

    Christa eSchleper

    2012-06-01

    Full Text Available Ammonia-oxidising archaea (AOA have recently been recognized as a significant component of many microbial communities and represent one of the most abundant prokaryotic groups in the biosphere. However, only few AOA have been successfully cultivated so far and information on the physiology and genomic content remains scarce. We have performed a metagenomic analysis to extend the knowledge of the AOA affiliated with groupI.1b that is widespread in terrestrial habitats and of which no genome sequences has been described yet. A fosmid library was generated from samples of a radioactive thermal cave (46°C in the Austrian Central Alps in which AOA had been found as a major part of the microbial community. Out of sixteen fosmids that possessed either an amoA or 16S rRNA gene affiliating with AOA, five were fully sequenced, four of which grouped with the soil/I.1b (Nitrososphaera- lineage and one with marine/I.1a (Nitrosopumilus- lineage. Phylogenetic analyses of amoBC and an associated conserved gene were congruent with earlier analyses based on amoA and 16S rRNA genes and supported the separation of the soil and marine group. Several putative genes that did not have homologues in currently available marine thaumarchaeota genomes indicated that AOA of the soil group contain specific genes that are distinct from their marine relatives. Potential cis-regulatory elements around conserved promoter motifs found upstream of the amo genes in sequenced (meta- genomes differed in marine and soil group AOA. On one fosmid, a group of genes including amoA and amoB were flanked by identical transposable insertion sequences, indicating that amoAB could potentially be co-mobilized in the form of a composite transposon. This might be one of the mechanisms that caused the greater variation in gene order compared to genomes in the marine counterparts. Our findings highlight the genetic diversity within the two major and widespread lineages of thaumarchaeota.

  12. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    Science.gov (United States)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  13. A sensitive crude oil bioassay indicates that oil spills potentially induce a change of major nitrifying prokaryotes from the Archaea to the Bacteria

    International Nuclear Information System (INIS)

    The sensitivity of nitrifiers to crude oil released by the BP Deepwater Horizon oil spill in Gulf of Mexico was examined using characterized ammonia-oxidizing bacteria and archaea to develop a bioassay and to gain further insight into the ecological response of these two groups of microorganisms to marine oil spills. Inhibition of nitrite production was observed among all the tested ammonia-oxidizing organisms at 100 ppb crude oil. Nitrosopumilus maritimus, a cultured representative of the abundant Marine Group I Archaea, showed 20% inhibition at 1 ppb, a much greater degree of sensitivity to petroleum than the tested ammonia-oxidizing and heterotrophic bacteria. The differing susceptibility may have ecological significance since a shift to bacterial dominance in response to an oil spill could potentially persist and alter trophic interactions influenced by availability of different nitrogen species. - Oil spills potentially induce a change of major nitrifying prokaryotes from the archaea to the bacteria.

  14. Diversity and Distribution of Archaea Community along a Stratigraphic Permafrost Profile from Qinghai-Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Shiping Wei

    2014-01-01

    Full Text Available Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems.

  15. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    Science.gov (United States)

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. PMID:26499486

  16. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  17. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Mark; Romine, Margaret F.; Jennings, Ryan; Jay, Z.; Tringe, Susannah G.; Rusch, Douglas B.; Beam, Jake; McCue, Lee Ann; Inskeep, William P.

    2013-03-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assemblies for a dominant archaeal population inhabiting acidic iron oxide mats in YNP. Detailed analysis of conserved ribosomal and informational processing genes indicate that the replicate assemblies represent a new phylum-level lineage referred to here as 'novel archaeal group 1 (NAG1)'. The NAG1 organisms contain pathways necessary for the catabolism of peptides and complex carbohydrates as well as a bacterial-like Form I CO dehydrogenase complex likely used for energy conservation. Moreover, this novel population contains genes involved in metabolism of oxygen including a Type A heme copper oxidase, a bd-type terminal oxidase and a putative oxygen sensing protoglobin. NAG1 has a variety of unique bacterial-like cofactor biosynthesis and transport genes and a Type3-like CRISPR system. Discovery of NAG1 is critical to our understanding of microbial community structure and function in extant thermophilic iron mats of YNP, and will provide insight regarding the evolution of Archaea in early Earth environments that may have important analogues active in YNP today.

  18. High Concentrations of the Antibiotic Spiramycin in Wastewater Lead to High Abundance of Ammonia-Oxidizing Archaea in Nitrifying Populations.

    Science.gov (United States)

    Zhang, Yu; Tian, Zhe; Liu, Miaomiao; Shi, Zhou Jason; Hale, Lauren; Zhou, Jizhong; Yang, Min

    2015-08-01

    To evaluate the potential effects of antibiotics on ammonia-oxidizing microbes, multiple tools including quantitative PCR (qPCR), 454-pyrosequencing, and a high-throughput functional gene array (GeoChip) were used to reveal the distribution of ammonia-oxidizing archaea (AOA) and archaeal amoA (Arch-amoA) genes in three wastewater treatment systems receiving spiramycin or oxytetracycline production wastewaters. The qPCR results revealed that the copy number ratios of Arch-amoA to ammonia-oxidizing bacteria (AOB) amoA genes were the highest in the spiramycin full-scale (5.30) and pilot-scale systems (1.49 × 10(-1)), followed by the oxytetracycline system (4.90 × 10(-4)), with no Arch-amoA genes detected in the control systems treating sewage or inosine production wastewater. The pyrosequencing result showed that the relative abundance of AOA affiliated with Thaumarchaeota accounted for 78.5-99.6% of total archaea in the two spiramycin systems, which was in accordance with the qPCR results. Mantel test based on GeoChip data showed that Arch-amoA gene signal intensity correlated with the presence of spiramycin (P amoA functional gene structures by variance partitioning analysis. This study revealed the selection of AOA in the presence of high concentrations of spiramycin in activated sludge systems. PMID:26125322

  19. Genome sequencing of methanogenic Archaea Methanosarcina mazei TUC01 strain isolated from an Amazonian Flooded Area

    Science.gov (United States)

    Baraúna, R. A.; Graças, D. A.; Ramos, R. T.; Carneiro, A. R.; Lopes, T. S.; Lima, A. R.; Zahlouth, R. L.; Pellizari, V. H.; Silva, A.

    2013-05-01

    Methanosarcina mazei is a strictly anaerobic methanogen from the Methanosarcinales order. This species is known for its broad catabolic range among methanogens and is widespread throughout diverse environments. The draft genome of a strain cultivated from the sediment of the Tucuruí hydroelectric power station, the fourth largest hydroelectric dam in the world, is described here. Approximately 80% of methane is produced by biogenic sources, such as methanogenic archaea from M. mazei species. Although the methanogenesis pathway is well known, some aspects of the core genome, genome evolution and shared genes are still unclear. A sediment sample from the Tucuruí hydropower station reservoir was inoculated in mineral media supplemented with acetate and methanol. This media was maintained in an H2:CO2 (80:20) atmosphere to enrich and cultivate M. mazei. The enrichment was conducted at 30°C under standard anaerobic conditions. After several molecular and cellular analyses, total DNA was extracted from a non-pure culture of M. mazei, amplified using phi29 DNA polymerase (BioLabs) and finally used as a source template for genome sequencing. The draft genome was obtained after two rounds of sequencing. First, the genome was sequenced using a SOLiD System V3 with a mate-paired library, which yielded 24,405,103 and 24,399,268 reads (50 bp) for the R3 and F3 tags, respectively. The second round of sequencing was performed using the SOLiD 5500 XL platform with a mate-paired library, resulting in a total of 113,588,848 reads (60 bp) for each tag (F3 and R3). All reads obtained by this procedure were filtered using Quality Assessment software, whereby reads with an average quality score below Phred 20 were removed. Velvet and Edena were used to assemble the reads, and Simplifier was used to remove the redundant sequences. After this, a total of 16,811 contigs were obtained. M. mazei GO1 (AE008384) genome was used to map the contigs and generate the scaffolds. We used the

  20. An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea

    Directory of Open Access Journals (Sweden)

    Hauryliuk Vasili

    2011-01-01

    Full Text Available Abstract Background SelB is the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. In archaea, only a subset of methanogens utilizes selenocysteine and encodes archaeal SelB (aSelB. A SelB-like (aSelBL homolog has previously been identified in an archaeon that does not encode selenosysteine, and has been proposed to be a pyrrolysyl-tRNA-specific elongation factor (EF-Pyl. However, elongation factor EF-Tu is capable of binding archaeal Pyl-tRNA in bacteria, suggesting the archaeal ortholog EF1A may also be capable of delivering Pyl-tRNA to the ribosome without the need of a specialized factor. Results We have phylogenetically characterized the aSelB and aSelBL families in archaea. We find the distribution of aSelBL to be wider than both selenocysteine and pyrrolysine usage. The aSelBLs also lack the carboxy terminal domain usually involved in recognition of the selenocysteine insertion sequence in the target mRNA. While most aSelBL-encoding archaea are methanogenic Euryarchaea, we also find aSelBL representatives in Sulfolobales and Thermoproteales of Crenarchaea, and in the recently identified phylum Thaumarchaea, suggesting that aSelBL evolution has involved horizontal gene transfer and/or parallel loss. Severe disruption of the GTPase domain suggests that some family members may employ a hitherto unknown mechanism of nucleotide hydrolysis, or have lost their GTPase ability altogether. However, patterns of sequence conservation indicate that aSelBL is still capable of binding the ribosome and aminoacyl-tRNA. Conclusions Although it is closely related to SelB, aSelBL appears unlikely to either bind selenocysteinyl-tRNA or function as a classical GTP hydrolyzing elongation factor. We propose that following duplication of aSelB, the resultant aSelBL was recruited for binding another aminoacyl-tRNA. In bacteria, aminoacylation with selenocysteine is essential for efficient thermodynamic coupling of SelB binding to t

  1. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel G; Pandey, Deo P; Jaskolska, Milena;

    2009-01-01

    Toxin-antitoxin (TA) loci are common in free-living bacteria and archaea. TA loci encode a stable toxin that is neutralized by a metabolically unstable antitoxin. The antitoxin can be either a protein or an antisense RNA. So far, six different TA gene families, in which the antitoxins are proteins...

  2. Research on metabolic network of extremely halophilic archaea%极端嗜盐古菌代谢网络研究

    Institute of Scientific and Technical Information of China (English)

    丁德武

    2012-01-01

    Extremely halophilic archaea belonging to the euryarchaeota halobium branch, it is a typical population in archaea, and very important to microbial resources. In this article, we mainly study the structure and function of metabolic network about one extremely halophilic archaea: Halobacterium salinarum Rl. We obtain a list of all metabolic reactions in Halobacterium salinarum Rl from published high-quality metabolic models, and represent it with metabolite graph. We analyze functional modules and hubs of the network, and discussed their biological signification.%极端嗜盐古菌(extremely thermophilic archaea)属于广域古菌界盐杆菌科,是古菌域中的典型生理类群,也是重要的极端微生物资源.文章主要对一种极端嗜盐古菌——盐沼盐杆菌(Halobacterium salinarum R1)——代谢网络的结构与功能进行了分析.对高质量盐沼盐杆菌代谢网络数据进行整理,构建了其中所有的代谢反应列表,并用代谢物图来表示.分析了该网络的功能模块和关键节点,并讨论了它们的生物学功能意义.

  3. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.

    Science.gov (United States)

    Wang, Chen; Uversky, Vladimir N; Kurgan, Lukasz

    2016-05-01

    Intrinsically disordered proteins (IDPs) are abundant in various proteomes, where they play numerous important roles and complement biological activities of ordered proteins. Among functions assigned to IDPs are interactions with nucleic acids. However, often, such assignments are made based on the guilty-by-association principle. The validity of the extension of these correlations to all nucleic acid binding proteins has never been analyzed on a large scale across all domains of life. To fill this gap, we perform a comprehensive computational analysis of the abundance of intrinsic disorder and intrinsically disordered domains in nucleiomes (∼548 000 nucleic acid binding proteins) of 1121 species from Archaea, Bacteria and Eukaryota. Nucleiome is a whole complement of proteins involved in interactions with nucleic acids. We show that relative to other proteins in the corresponding proteomes, the DNA-binding proteins have significantly increased disorder content and are significantly enriched in disordered domains in Eukaryotes but not in Archaea and Bacteria. The RNA-binding proteins are significantly enriched in the disordered domains in Bacteria, Archaea and Eukaryota, while the overall abundance of disorder in these proteins is significantly increased in Bacteria, Archaea, animals and fungi. The high abundance of disorder in nucleiomes supports the notion that the nucleic acid binding proteins often require intrinsic disorder for their functions and regulation. PMID:27037624

  4. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs.

    Science.gov (United States)

    Bolduc, Benjamin; Shaughnessy, Daniel P; Wolf, Yuri I; Koonin, Eugene V; Roberto, Francisco F; Young, Mark

    2012-05-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  5. RIM-DB: a taxonomic framework for community structure analysis of methanogenic archaea from the rumen and other intestinal environments

    Directory of Open Access Journals (Sweden)

    Henning Seedorf

    2014-08-01

    Full Text Available Methane is formed by methanogenic archaea in the rumen as one of the end products of feed fermentation in the ruminant digestive tract. To develop strategies to mitigate anthropogenic methane emissions due to ruminant farming, and to understand rumen microbial differences in animal feed conversion efficiency, it is essential that methanogens can be identified and taxonomically classified with high accuracy. Currently available taxonomic frameworks offer only limited resolution beyond the genus level for taxonomic assignments of sequence data stemming from high throughput sequencing technologies. Therefore, we have developed a QIIME-compatible database (DB designed for species-level taxonomic assignment of 16S rRNA gene amplicon data targeting methanogenic archaea from the rumen, and from animal and human intestinal tracts. Called RIM-DB (Rumen and Intestinal Methanogen-DB, it contains a set of 2,379 almost full-length chimera-checked 16S rRNA gene sequences, including 20 previously unpublished sequences from isolates from three different orders. The taxonomy encompasses the recently-proposed seventh order of methanogens, the Methanomassiliicoccales, and allows differentiation between defined groups within this order. Sequence reads from rumen contents from a range of ruminant-diet combinations were taxonomically assigned using RIM-DB, Greengenes and SILVA. This comparison clearly showed that taxonomic assignments with RIM-DB resulted in the most detailed assignment, and only RIM-DB taxonomic assignments allowed methanogens to be distinguished taxonomically at the species level. RIM-DB complements the use of comprehensive databases such as Greengenes and SILVA for community structure analysis of methanogens from the rumen and other intestinal environments, and allows identification of target species for methane mitigation strategies.

  6. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil

    Directory of Open Access Journals (Sweden)

    Mauricio eBustamante

    2012-08-01

    Full Text Available Water availability is the main limiting factor in arid soils; however few studies have examined the effects of drying and rewetting on nitrifiers from these environments. The effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB and archaea (AOA from a semiarid soil of the Chilean sclerophyllous matorral was determined by microcosm assays. The addition of water every 14 days to reach 60% of the WHC significantly increased nitrate content in rewetted soil microcosms (p<0.001. This stimulation of net nitrification by water addition was inhibited by acetylene addition at 100 Pa. The composition of AOA and AOB assemblages from the soils microcosms was determined by clone sequencing of amoA genes (A-amoA and B-amoA, respectively, and the 16S rRNA genes specific for β-proteobacteria (beta-amo. Sequencing of beta-amo genes has revealed representatives of Nitrosomonas and Nitrosospira while B-amoA clones consisted only of Nitrosospira sequences. Furthermore, all clones from the archaeal amoA gene library (A-amoA were related to ‘mesophilic Crenarchaeota’ sequences (actually, reclassified as the phylum Thaumarchaeota. The effect of water availability on both microbial assemblages structure was determined by T-RFLP profiles using the genetic markers amoA for archaea, and beta-amo for bacteria. While AOA showed fluctuations in some T-RFs, AOB structure remained unchanged by water pulses. The relative abundance of AOA and AOB was estimated by the Most Probable Number coupled to Polymerase Chain Reaction (MPN-PCR assay. AOB was the predominant guild in this soil and higher soil water content did not affect their abundance, in contrast to AOA, which slightly increased under these conditions. Therefore, these results suggest that water addition to these semiarid soil microcosms could favor archaeal contribution to ammonium oxidation.

  7. Influence of niche differentiation on the abundance of methanogenic archaea and methane production potential in natural wetland ecosystems across China

    Directory of Open Access Journals (Sweden)

    D. Liu

    2010-10-01

    Full Text Available Methane (CH4 emissions from natural wetland ecosystems exhibit large spatial variability. To understand the underlying factors that induce differences in CH4 emissions from natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical profile soils sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau. The top soil layer had the highest population of methanogens (1.07−8.29×109 cells g−1 soil in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2=0.718, P<0.001, n=13 and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2=0.758, P<0.001, n=13 in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2=0.011, P>0.05, n=13, it is related to the dissolved organic carbon concentration (R2=0.305, P=0.05, n=13. This suggests that the methanogen population is not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 274 μg CH4 kg−1 soil d−1 in the Poyang wetland to 665 μg CH4 kg−1 soil d−1 in the Carex lasiocarpa

  8. Patterns of ^(15)N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS

    OpenAIRE

    Orphan, Victoria J; Turk, Kendra A.; Green, Abigail M.; House, Christopher H.

    2009-01-01

    Methane release from the oceans is controlled in large part by syntrophic interactions between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (DSS), frequently found as organized consortia. An understanding of the specifics of this symbiotic relationship and the metabolic heterogeneity existing between and within individual methane-oxidizing aggregates is currently lacking. Here, we use the microanalytical method FISH-SIMS (fluorescence in situ hybridization-secondary i...

  9. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    OpenAIRE

    Schirmack, Janosch; Alawi, Mashal; Wagner, Dirk

    2015-01-01

    Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would...

  10. In silico analysis of 5'-UTRs highlights the prevalence of Shine-Dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively.

    Science.gov (United States)

    Srivastava, Ambuj; Gogoi, Prerana; Deka, Bhagyashree; Goswami, Shrayanti; Kanaujia, Shankar Prasad

    2016-08-01

    In prokaryotes, a heterogeneous set of protein translation initiation mechanisms such as Shine-Dalgarno (SD) sequence-dependent, SD sequence-independent or ribosomal protein S1 mediated and leaderless transcript-dependent exists. To estimate the distribution of coding sequences employing a particular translation initiation mechanism, a total of 107 prokaryotic genomes were analysed using in silico approaches. Analysis of 5'-untranslated regions (UTRs) of genes reveals the existence of three types of mRNAs described as transcripts with and without SD motif and leaderless transcripts. Our results indicate that although all the three types of translation initiation mechanisms are widespread among prokaryotes, the number of SD-dependent genes in bacteria is higher than that of archaea. In contrast, archaea contain a significantly higher number of leaderless genes than SD-led genes. The correlation analysis between genome size and SD-led & leaderless genes suggests that the SD-led genes are decreasing (increasing) with genome size in bacteria (archaea). However, the leaderless genes are increasing (decreasing) in bacteria (archaea) with genome size. Moreover, an analysis of the start-codon biasness confirms that among ATG, GTG and TTG codons, ATG is indeed the most preferred codon at the translation initiation site in most of the coding sequences. In leaderless genes, however, the codons GTG and TTG are also observed at the translation initiation site in some species contradicting earlier studies which suggested the usage of only ATG codon. Henceforth, the conventional mechanism of translation initiation cannot be generalized as an exclusive way of initiating the process of protein biosynthesis in prokaryotes. PMID:27155047

  11. Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats

    OpenAIRE

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: cont...

  12. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    OpenAIRE

    Magalhães, Catarina M.; Machado, Ana; Frank-Fahle, Béatrice; Lee, Charles K; Cary, S. Craig

    2014-01-01

    The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Va...

  13. amoA Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

    OpenAIRE

    Li, Jialin; Nedwell, David B.; Beddow, Jessica; Alex J Dumbrell; McKew, Boyd A; Thorpe, Emma L.; Whitby, Corinne

    2014-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA comm...

  14. Diversity of Ammonia-Oxidizing Archaea and Bacteria in the Sediments of a Hypernutrified Subtropical Estuary: Bahía del Tóbari, Mexico▿

    OpenAIRE

    Beman, J. Michael; Francis, Christopher A.

    2006-01-01

    Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (...

  15. Abundance and Diversity of Ammonia-Oxidizing Archaea and Bacteria in Sediments of Trophic End Members of the Laurentian Great Lakes, Erie and Superior

    OpenAIRE

    Annette Bollmann; Bullerjahn, George S.; Robert Michael McKay

    2014-01-01

    Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and th...

  16. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary

    Institute of Scientific and Technical Information of China (English)

    Xiao-ran LI; Yi-ping XIAO; Wen-wei REN; Zeng-fu LIU; Jin-huan SHI; Zhe-xue QUAN

    2012-01-01

    Tidal fiats are soil resources of great significance.Nitrification plays a central role in the nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal environments.We determined the abundance as well as composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in different soils during land reclamation process.The abundance of AOA was higher than that of AOB in farm land and wild land while AOA was not detected in tidal flats using real-time polymerase chain reaction (PCR).The different abundances of AOB and AOA were negatively correlated with the salinity.The diversities of AOB and AOA were also investigated using clone libraries by amplification of amoA gene.Among AOB,nearly all sequences belonged to the Nitrosomonas lineage in the initial land reclamation process,i.e.,tidal flats,while both Nitrosomonas and Nitrosospira lineages were detected in later and transition phases of land reclamation process,farm land and wild land.The ratio of the numbers of sequences of Nitrosomonas and Nitrosospira lineages was positively correlated with the salinity and the net nitrification rate.As for AOA,there was no obvious correlation with the changes in the physicochemical properties of the soil.This study suggests that AOB may be more import than AOA with respect to influencing the different land reclamation process stages.

  17. Diversity of Archaea in Icelandic hot springs based on 16S rRNA and chaperonin genes.

    Science.gov (United States)

    Mirete, Salvador; de Figueras, Carolina G; González-Pastor, Jose E

    2011-07-01

    The diversity of archaeal communities growing in four hot springs (65-90 °C, pH 6.5) was assessed with 16S rRNA gene primers specific for the domain Archaea. Overall, mainly uncultured members of the Desulfurococcales, the Thermoproteales and the Korarchaeota, were identified. Based on this diversity, a set of chaperonin heat-shock protein (Hsp60) gene sequences from different archaeal species were aligned to design two degenerate primer sets for the amplification of the chaperonin gene: Ths and Kor (which can also detect the korarchaeotal chaperonin gene from one of the samples). A phylogenetic tree was constructed using the chaperonin sequences retrieved and other sequences from cultured representatives. The Alpha and Beta paralogs of the chaperonin gene were observed within the main clades and orthologs among them. Cultivated representatives from these clades were assigned to either paralog in the chaperonin tree. Uncultured representatives observed in the 16S rRNA gene analysis were found to be related to the Desulfurococcales. The topologies of the 16S rRNA gene and chaperonin phylogenetic trees were compared, and similar phylogenetic relationships were observed. Our results suggest that the chaperonin Hsp60 gene may be used as a phylogenetic marker for the clades found in this extreme environment.

  18. Differential Virus Host-Ranges of the Fuselloviridae of Hyperthermophilic Archaea: Implications for Evolution in Extreme Environments

    Directory of Open Access Journals (Sweden)

    Ruben Michael eCeballos

    2012-08-01

    Full Text Available An emerging model for investigating virus-host interactions in hyperthermophilic Archaea is the Fusellovirus-Sulfolobus system. The host, Sulfolobus, is a hyperthermophilic acidophile endemic to sulfuric volcanic-driven hot springs worldwide. The Fuselloviruses, also known as Sulfolobus Spindle-shaped Viruses (SSVs, are lemon or spindle shaped double-stranded DNA viruses that are also found worldwide. Although a few studies have addressed the host-range for the type virus, SSV1, using common Sulfolobus strains, a comprehensive host-range study for SSV-Sulfolobus systems has not been performed. Herein, we examine six bona fide SSV strains (SSV1, SSV2, SSV3, SSVL1, SSVK1, SSVRH and their respective infection characteristics on multiple hosts from the family Sulfolobaceae. A halo assay was used to determine virus infectivity and host susceptibility. Different SSV strains have different host-ranges with SSV1 exhibiting the narrowest host-range and SSVRH exhibiting the broadest host range. There is no correlation between geographic separation of viruses and their hosts and their relative infectivity and susceptibility. In contrast to previous reports, SSVs can infect hosts beyond the genus Sulfolobus. Furthermore, the Fusellovirus-Sulfolobus system appears to exhibit host-advantage. This work provides a foundation for understanding Fusellovirus biology and virus-host co-evolution in extreme ecosystems, a rapidly emerging field of study.

  19. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria.

    Science.gov (United States)

    Meinhardt, Kelley A; Bertagnolli, Anthony; Pannu, Manmeet W; Strand, Stuart E; Brown, Sally L; Stahl, David A

    2015-04-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) fill key roles in the nitrogen cycle. Thus, well-vetted methods for characterizing their distribution are essential for framing studies of their significance in natural and managed systems. Quantification of the gene coding for one subunit of the ammonia monooxygenase (amoA) by polymerase chain reaction is frequently employed to enumerate the two groups. However, variable amplification of sequence variants comprising this conserved genetic marker for ammonia oxidizers potentially compromises within- and between-system comparisons. We compared the performance of newly designed non-degenerate quantitative polymerase chain reaction primer sets to existing primer sets commonly used to quantify the amoA of AOA and AOB using a collection of plasmids and soil DNA samples. The new AOA primer set provided improved quantification of model mixtures of different amoA sequence variants and increased detection of amoA in DNA recovered from soils. Although both primer sets for the AOB provided similar results for many comparisons, the new primers demonstrated increased detection in environmental application. Thus, the new primer sets should provide a useful complement to primers now commonly used to characterize the environmental distribution of AOA and AOB.

  20. Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system.

    Science.gov (United States)

    Brown, Monisha N; Briones, Aurelio; Diana, James; Raskin, Lutgarde

    2013-01-01

    This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system (RAS) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia-oxidizing populations were examined by targeting 16S rRNA and amoA genes of ammonia-oxidizing bacteria (AOB) and archaea (AOA). The nitrite-oxidizing bacteria (NOB) were investigated by targeting the 16S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to Nitrosomonas marina and Nitrosopumilus maritimus. The NOB detected were related to Nitrospira marina and Nitrospira moscoviensis, and Nitrospira marina-type NOB were more abundant than N. moscoviensis-type NOB. Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira marina-over N. moscoviensis-type NOB. PMID:22775980

  1. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    Science.gov (United States)

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  2. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2014-03-01

    Full Text Available Ammonia-oxidizingarchaea (AOA and ammonia-oxidizing bacteria (AOB play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasechain reaction PCR(qPCR combined with the terminal restrictionfragment length polymorphism(T-RFLP were employed to characterize the abundance, diversity, and communitystructure of the AOA and AOB in 32 freshwater sediments. AOA and AOB wereubiquitous in all sediments, and archaeal amoA far outnumbered bacterial amoA inmost sediments with lower organic matters. The abundance of AOA and AOB did notvary with the freshwater ecological type (macrophyte dominated region and algaedominated region. Based on  the T-RFLP of an amoA gene, this research found that organicmatters in pore water rather than other factors affect the AOA communitystructure in sediments, while the AOB were not significantly different in thefreshwater sediments. Phylogenetic analysis showed that all archaeal amoAsequences fell within either the Crenarchaeotal Group (CG I.1b or the CGI.1asubgroup, and all AOB clustered with genus Nitrosomonas or Nitrosospira. The data obtained inthis study elucidates the role of ammonia-oxidizing archaea andammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.

  3. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  4. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).

  5. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants' receiving area in Hangzhou Bay.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-07-01

    The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River's estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 10(5)-10(7) gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39-5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4 (+)-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge. PMID:26960319

  6. Phylogenetic Diversity of Archaea and the Archaeal Ammonia Monooxygenase Gene in Uranium Mining-Impacted Locations in Bulgaria

    Directory of Open Access Journals (Sweden)

    Galina Radeva

    2014-01-01

    Full Text Available Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA. Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.

  7. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    Science.gov (United States)

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05). PMID:26099334

  8. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea

    Science.gov (United States)

    Zarsky, Jakub D.; Stibal, Marek; Hodson, Andy; Sattler, Birgit; Schostag, Morten; Hansen, Lars H.; Jacobsen, Carsten S.; Psenner, Roland

    2013-09-01

    The aggregation of surface debris particles on melting glaciers into larger units (cryoconite) provides microenvironments for various microorganisms and metabolic processes. Here we investigate the microbial community on the surface of Aldegondabreen, a valley glacier in Svalbard which is supplied with carbon and nutrients from different sources across its surface, including colonies of seabirds. We used a combination of geochemical analysis (of surface debris, ice and meltwater), quantitative polymerase chain reactions (targeting the 16S ribosomal ribonucleic acid and amoA genes), pyrosequencing and multivariate statistical analysis to suggest possible factors driving the ecology of prokaryotic microbes on the surface of Aldegondabreen and their potential role in nitrogen cycling. The combination of high nutrient input with subsidy from the bird colonies, supraglacial meltwater flow and the presence of fine, clay-like particles supports the formation of centimetre-scale cryoconite aggregates in some areas of the glacier surface. We show that a diverse microbial community is present, dominated by the cyanobacteria, Proteobacteria, Bacteroidetes, and Actinobacteria, that are well-known in supraglacial environments. Importantly, ammonia-oxidizing archaea were detected in the aggregates for the first time on an Arctic glacier.

  9. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  10. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    Science.gov (United States)

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  11. Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Gallardo, Antonio; Wallenstein, Matthew D; Maestre, Fernando T

    2013-08-01

    An integrated perspective of the most important factors driving the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in natural ecosystems is lacking, especially in drylands. We evaluated how different climatic, abiotic, and nutrient-related factors determine AOA and AOB abundance in bare and vegetated microsites from grasslands throughout the Mediterranean Basin. We found a strong negative relationship between the abundance of AOA genes and soil fertility (availability of C, N, and P). Aridity and other abiotic factors (pH, sand content, and electrical conductivity) were more important than soil fertility in modulating the AOA/AOB ratio. AOB were more abundant under vegetated microsites, while AOA, highly resistant to stressful conditions, were more abundant in bare ground areas. These results suggest that AOA may carry out nitrification in less fertile microsites, while AOB predominate under more fertile conditions. Our results indicate that the influence of aridity and pH on the relative dominance of AOA and AOB genes is ultimately determined by local-scale environmental changes promoted by perennial vegetation. Thus, in spatially heterogeneous ecosystems such as drylands, there is a mutual exclusion and niche division between these microorganisms, suggesting that they may be functionally complementary. PMID:23550964

  12. [Distribution and Diversity of Ammonium-oxidizing Archaea and Ammonium-oxidizing Bacteria in Surface Sediments of Oujiang River].

    Science.gov (United States)

    Li, Hu; Huang, Fu-yi; Su, Jian-qiang; Hong, You-wei; Yu, Shen

    2015-12-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play important roles in the biogeochemical nitrogen cycle. Rivers are important ecosystems containing a large number of functional microbes in nitrogen cycle. In this study, denaturing gradient gel electrophoresis (DGGE ) and real-time quantitative PCR (qPCR) technology were used to analyze the distribution and diversity of AOA and AOB in sediments from Oujiang. The results showed that the AOA community structure was similar among various sites, while the AOB community structure was significantly different, in which all detected AOB sequences were classified into Nitrosospira and Nitrosomonas, and 90% affiliated to Nitrosospira. The community composition of AOA was influenced by NH₄⁺ and TS, in addition, the AOB composition was affected by NH₄⁺, EC, pH, NO₃⁻, TC and TN. Total sulfur (TS) and electrical conductivity (EC) were the major factors influencing the diversity of AOA and AOB, respectively. AOA abundance was significantly higher than that of AOB. EC, NH₄⁺-N and NO₃⁻-N were the main environmental factors affecting the abundance of AOA and AOB. This study indicated that the community composition and diversity of AOA and AOB were significantly influenced by environmental factors, and AOA might be dominant drivers in the ammonia oxidation process in Oujiang surface sediment. PMID:27012006

  13. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats.

    Directory of Open Access Journals (Sweden)

    Abdelrahim Abubakr

    Full Text Available Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO, decanter cake (DC or palm kernel cake (PKC on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD, decanter cake diet (DCD, palm kernel cake diet (PKCD and CD plus 5% PO diet (CPOD were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0 and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05 DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05 in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.

  14. Temporal Eukarya, Bacteria, and Archaea biodiversity during cultivation of an alkaliphilic algae, Chlorella vulgaris, in an outdoor raceway pond

    Directory of Open Access Journals (Sweden)

    Tisza Ann Szeremy Bell

    2016-01-01

    Full Text Available Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal crop. In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (approximately 9.8. An outdoor raceway pond (200L was inoculated with C. vulgaris and monitored for ten days and then the culture was transferred to a 2,000L raceway pond and cultivated for an additional six days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences, but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic

  15. Identification and characterization of bifunctional proline racemase/hydroxyproline epimerase from archaea: discrimination of substrates and molecular evolution.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Proline racemase (ProR is a member of the pyridoxal 5'-phosphate-independent racemase family, and is involved in the Stickland reaction (fermentation in certain clostridia as well as the mechanisms underlying the escape of parasites from host immunity in eukaryotic Trypanosoma. Hydroxyproline epimerase (HypE, which is in the same protein family as ProR, catalyzes the first step of the trans-4-hydroxy-L-proline metabolism of bacteria. Their substrate specificities were previously considered to be very strict, in spite of similarities in their structures and catalytic mechanisms, and no racemase/epimerase from the ProR superfamily has been found in archaea. We here characterized the ProR-like protein (OCC_00372 from the hyperthermophilic archaeon, Thermococcus litoralis (TlProR. This protein could reversibly catalyze not only the racemization of proline, but also the epimerization of 4-hydroxyproline and 3-hydroxyproline with similar kinetic constants. Among the four (putative ligand binding sites, one amino acid substitution was detected between TlProR (tryptophan at the position of 241 and natural ProR (phenylalanine. The W241F mutant showed a significant preference for proline over hydroxyproline, suggesting that this (hydrophobic and bulky tryptophan residue played an importance role in the recognition of hydroxyproline (more hydrophilic and bulky than proline, and substrate specificity for hydroxyproline was evolutionarily acquired separately between natural HypE and ProR. A phylogenetic analysis indicated that such unique broad substrate specificity was derived from an ancestral enzyme of this superfamily.

  16. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    Science.gov (United States)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  17. Archaea box C/D enzymes methylate two distinct substrate rRNA sequences with different efficiency.

    Science.gov (United States)

    Graziadei, Andrea; Masiewicz, Pawel; Lapinaite, Audrone; Carlomagno, Teresa

    2016-05-01

    RNA modifications confer complexity to the 4-nucleotide polymer; nevertheless, their exact function is mostly unknown. rRNA 2'-O-ribose methylation concentrates to ribosome functional sites and is important for ribosome biogenesis. The methyl group is transferred to rRNA by the box C/D RNPs: The rRNA sequence to be methylated is recognized by a complementary sequence on the guide RNA, which is part of the enzyme. In contrast to their eukaryotic homologs, archaeal box C/D enzymes can be assembled in vitro and are used to study the mechanism of 2'-O-ribose methylation. In Archaea, each guide RNA directs methylation to two distinct rRNA sequences, posing the question whether this dual architecture of the enzyme has a regulatory role. Here we use methylation assays and low-resolution structural analysis with small-angle X-ray scattering to study the methylation reaction guided by the sR26 guide RNA fromPyrococcus furiosus We find that the methylation efficacy at sites D and D' differ substantially, with substrate D' turning over more efficiently than substrate D. This observation correlates well with structural data: The scattering profile of the box C/D RNP half-loaded with substrate D' is similar to that of the holo complex, which has the highest activity. Unexpectedly, the guide RNA secondary structure is not responsible for the functional difference at the D and D' sites. Instead, this difference is recapitulated by the nature of the first base pair of the guide-substrate duplex. We suggest that substrate turnover may occur through a zip mechanism that initiates at the 5'-end of the product.

  18. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    Directory of Open Access Journals (Sweden)

    Shimin eLu

    2016-01-01

    Full Text Available Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in sediment samples (0–50 cm depth collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5–39.9-fold in surface sediments (0–10 cm depth, which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths were grouped into the Nitrosopumilus cluster.

  19. Deep subsurface mine stalactites trap endemic fissure fluid Archaea, Bacteria and Nematoda possibly originating from ancient (inland seas.

    Directory of Open Access Journals (Sweden)

    Gaetan eBorgonie

    2015-08-01

    Full Text Available Stalactites (CaCO3 and salt from water seeps are frequently encountered in ceilings of mine tunnels whenever they intersect water-bearing faults or fractures. To determine whether stalactites could be mineralized traps for indigenous fracture water microorganisms, we analyzed stalactites collected from three different mines ranging in depth from 1.3 to 3.1 km. During sampling in Beatrix gold mine (1.4 km beneath the surface, central South Africa, CaCO3 stalactites growing on the mine tunnel ceiling were collected and discovered, in two cases, to contain a living obligate brackish water/marine nematode species, Monhystrella parvella. After sterilization of the outer surface, mineral layers were physically removed from the outside to the interior, the DNA extracted. Based upon 16S and 18S rRNA gene sequencing, Archaea, Bacteria and Eukarya in different combinations were detected for each layer. . Using CT scan and electron microscopy the inner structure of CaCO3 and salt stalactites were analyzed. CaCO3 stalactites show a complex pattern of lamellae carrying bacterially precipitated mineral structures. Nematoda were clearly identified between these layers confirming that bacteria and nematodes live inside the stalactites and not only in the central straw. Salt stalactites exhibit a more uniform internal structure. Surprisingly, several Bacteria showing highest sequence identities to marine Bacteria were identified. This, together with the observation that the nematode M. parvella recovered from Beatrix gold mine stalactite can only survive in a salty environment makes the origin of the deep subsurface colonization enigmatic. The possibility of a Permian origin is discussed. Our results indicate stalactites are suitable for biodiversity recovery and act as natural traps for microorganisms in the fissure water long after the water that formed the stalactite stopped flowing.

  20. Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake.

    Science.gov (United States)

    Yang, Yuyin; Li, Ningning; Zhao, Qun; Yang, Mengxi; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-08-01

    Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure. PMID:27109114

  1. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-07-01

    Full Text Available Ammonia-oxidizing archaea (AOA have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs, where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments, indicating some difference in ecology and/or physiology of the AOA assemblage. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA. The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP AOA assemblages was investigated using principal component analysis (PCA and redundancy analysis (RDA. In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature was the main factor that correlated with the differences between the AOA communities from the Arabian Sea and those from the ETSP. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

  2. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-01-01

    Full Text Available Since the discovery of ammonia-oxidizing archaea (AOA, new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing Bacteria (AOB. We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF, high (HF, and extra high (XF levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C. Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.

  3. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    Science.gov (United States)

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  4. Exploring the biotechnologial applications in the archaeal domain Explorando as aplicações biotecnológicas do domínio archaea

    Directory of Open Access Journals (Sweden)

    S.M.C. Alquéres

    2007-09-01

    Full Text Available Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. The extremophilic nature of many archaea has stimulated intense efforts to understand the physiological adaptations for living in extreme environments. Their unusual properties make them a potentially valuable resource in the development of novel biotechnological processes and industrial applications as new pharmaceuticals, cosmetics, nutritional supplements, molecular probes, enzymes, and fine chemicals. In the present mini-review, we show and discuss some exclusive characteristics of Archaea domain and the current knowledge about the biotechnological uses of the archaeal enzymes. The topics are: archaeal characteristics, phylogenetic division, biotechnological applications, isolation and cultivation of new microbes, achievements in genomics, and metagenomic.As arqueas representam uma considerável fração dos procariotos nos ecossistemas marinhos e terrestes, indicando que estes organismos devem possuir um grande impacto nos ciclos energéticos. A natureza extremofílica de muitas arqueas tem estimulado intensos esforços para compreender sua adaptação fisiológica a ambientes extremos. Suas propriedades incomus as tornam uma fonte valiosa no desenvolvimento de novos processos biotecnológicos e aplicações industriais como novos fármacos, cosméticos, suplementos nutricionais, sondas moleculares, enzimas e reagentes. Na presente mini-revisão, mostramos e discutimos algumas de suas características exclusivas correlacionando-as com seu potencial biotecnológico e aplicação industrial. Os tópicos são: características das arqueas, divisão filogenética, aplicações biotecnológicas, isolamento e cultivo de novos microrganismos, genoma e metagenoma.

  5. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    Directory of Open Access Journals (Sweden)

    Janosch eSchirmack

    2015-03-01

    Full Text Available Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g. permafrost environments, desert soils and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 %wt of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats

  6. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation.

    Science.gov (United States)

    Schirmack, Janosch; Alawi, Mashal; Wagner, Dirk

    2015-01-01

    Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g., permafrost environments, desert soils, and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs (MRAs) on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 wt% of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats on Earth

  7. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  8. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    OpenAIRE

    Min, Byeng R.; Sandra Solaiman; Raymon Shange; Jong-Su Eun

    2014-01-01

    Eighteen Kiko-cross meat goats (n=6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucida...

  9. Comparative Analysis of 16S rRNA and amoA Genes from Archaea Selected with Organic and Inorganic Amendments in Enrichment Culture

    OpenAIRE

    Xu, Mouzhong; Schnorr, Jon; Keibler, Brandon; Holly M Simon

    2012-01-01

    We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the “root” clade, we detected no corresponding amoA gene. The amoA-contai...

  10. Classification and regression tree (CART analyses of genomic signatures reveal sets of tetramers that discriminate temperature optima of archaea and bacteria

    Directory of Open Access Journals (Sweden)

    Betsey Dexter Dyer

    2008-01-01

    Full Text Available Classification and regression tree (CART analysis was applied to genome-wide tetranucleotide frequencies (genomic signatures of 195 archaea and bacteria. Although genomic signatures have typically been used to classify evolutionary divergence, in this study, convergent evolution was the focus. Temperature optima for most of the organisms examined could be distinguished by CART analyses of tetranucleotide frequencies. This suggests that pervasive (nonlinear qualities of genomes may reflect certain environmental conditions (such as temperature in which those genomes evolved. The predominant use of GAGA and AGGA as the discriminating tetramers in CART models suggests that purine-loading and codon biases of thermophiles may explain some of the results.

  11. Interaction of Extreme Halophilic Archaea With the Evaporites of the Solar Salterns Guerrero Negro Baja California, Mexico

    Science.gov (United States)

    Tamez, P.; Lopez-Cortés, A.

    2008-12-01

    Hypersaline environments have been significant reservoirs for the long-term evolution of specifically adapted microorganisms. Characterized to have higher salt concentrations (up to 35 g/L), they are worldwide distributed and have a commercial significance. Exportadora de Sal, Guerrero Negro, Mexico has a multipond salterns system designed to harvest common salt (NaCl) from sea water. To achieve this purpose, sea water is pumped through a set of shallow ponds where water evaporates and salts concentrate. Sequential precipitation of CaCO3, CaSO4 2H2O and NaCl occurs in a mineral formations call it evaporites. In the interior of those gypsum-encrusted and halite-encrusted minerals, communities of extremely salt-loving archaea prosper. Previous studies have showed the influence of Haloarchaeal cells in the formation of larger fluid inclusions than crystals formed in sterile salt solutions. S-layer envelopes and cells of Haloarcula strain SP8807 contributed to the nucleation of new crystals of NaCl. Given the significance of the scope in phylogenetic archaeal diversity research, this study had a polyphasic approach. SEM micrographs from a 21- 31% (w/v) gradient salt multipond system evaporites, gave an insight profile of the extreme halophilic archaeal communities thriving in the surface of the gypsum and halite evaporites. Halite crystals were form after 21 days of incubation in solid medium with archaeal cells. Both culture and non-culture dependent methods, Nested-PCR-DGGE analysis and sequencing of 16S rDNA amplified fragment genes from environmental samples and isolated strains were used for this purpose. We isolate three strains from Pond 9 (21.07% total salt concentration) and one strain from Cristallizer 20 (25.15% total salt concentration). 16S rDNA signaling gave 99% of similarity with Halogeometricum borinquense, sequence AF002984, two other strains were 99% of similarity with Halobacterium salinarum, sequence AJ496185 these strains shown different colony

  12. Diversity of Ammonia-Oxidizing Archaea and Bacteria Across Physical-Chemical Gradients in San Francisco Bay Estuary Sediments

    Science.gov (United States)

    Mosier, A. C.; Francis, C. A.

    2006-12-01

    A combination of recent metagenomic analyses and the cultivation of a novel, ammonia-oxidizing, marine crenarchaeota revealed the first evidence for nitrification within the Archaeal domain. Further genetic and metagenomic studies demonstrated the presence of ammonia-oxidizing crenarchaea in diverse marine and terrestrial environments. These discoveries challenge the currently accepted view of the global nitrogen cycle and validate the need for further research on microbial diversity and function. In particular, it is imperative to reexamine the microbial communities involved in ammonia oxidation in marine and estuarine sediments, where this process plays a pivotal role in the cycling and removal of nitrogen. Using phylogenetic analyses of ammonia monooxygenase subunit A (amoA) gene sequences, we examined the distribution and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in San Francisco Bay, the largest estuary on the West coast of the United States. The highly impacted bay, encompassing nearly 178,000 km2, effectively connects two estuaries with varying physical-chemical characteristics to the Pacific Ocean. We recovered archaeal and bacterial amoA genes from 11 sites distributed throughout the bay, spanning the northern and southern estuaries and the central region where they connect to the ocean. Richness estimates varied considerably across all sites examined, with archaeal amoA estimates being generally higher than bacterial amoA. Several of the bacterial amoA libraries were represented by fewer than 3 genotypes. Archaeal amoA sequences were phylogenetically diverse and grouped within previously described sediment and soil/sediment clusters. Several sequences were closely related to the only cultivated AOA, Nitrosopumilus maritimus. Both the archaeal and bacterial amoA sequences showed significant regional specificity. Distinct populations exist in the northern and southern estuaries and sequences from the northernmost and southernmost sites

  13. [Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems].

    Science.gov (United States)

    Gao, Jing-feng; Li, Ting; Zhang, Shu-jun; Fan, Xiao-yan; Pan, Kai-ling; Ma, Qian; Yuan, Ya-lin

    2015-08-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite (CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction (PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2.42 x 10(6) copies x g(-1) dry sludge and 6.51 x 10(6) copies x g(-1) dry sludge, respectively. The abundance of AOA in biofilm was 10.1-14.1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1.8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5.2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8.1, subcluster 4.1, subcluster 1.1 and Nitrosopumilus subcluster 5.2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system. PMID:26592025

  14. Impacts of edaphic factors on communities of ammonia-oxidizing archaea, ammonia-oxidizing bacteria and nitrification in tropical soils.

    Directory of Open Access Journals (Sweden)

    Vidya de Gannes

    Full Text Available Nitrification is a key process in soil nitrogen (N dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 10(5 to 10(6 copies archaeal amoA g(-1 soil, but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001 with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF analysis, differed significantly between soils (p<0.001. Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001 while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01. In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera and bacterial amoA (predominanatly Nitrosospira differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001, but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity.

  15. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael;

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea...... that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell....

  16. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  17. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2′-O-methylase, or a C/D sRNP

    Science.gov (United States)

    RENALIER, MARIE-HÉLÈNE; JOSEPH, NICOLE; GASPIN, CHRISTINE; THEBAULT, PATRICIA; MOUGIN, ANNIE

    2005-01-01

    We identified the first archaeal tRNA ribose 2′-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2′-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2′-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2′-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs. PMID:15987815

  18. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  19. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.

    Directory of Open Access Journals (Sweden)

    Sarit Edelheit

    2013-06-01

    Full Text Available The presence of 5-methylcytidine (m(5C in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m(5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis and gram negative (E. coli bacteria, an archaeon (S. solfataricus and a eukaryote (S. cerevisiae, followed by massively parallel sequencing. We were able to recover most previously documented m(5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m(5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m(5C was absent were also discovered. Intriguingly, we detected m(5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m(5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.

  20. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Byeng R. Min

    2014-01-01

    Full Text Available Eighteen Kiko-cross meat goats (n=6 were used to collect gastrointestinal (GI bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB. Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS; 0.17% condensed tannins (CT dry matter (DM; 15% PB and 15% WS (1.6% CT DM, and 30% PB and 0% WS (3.2% CT DM. A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB to 46.5% (control and 47.1% (15% PB. Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%, Methanosphaera (3.3, 2.3, and 3.4%, and Methanobacteriaceae (1.2, 0.6, and 0.7% population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P=0.05 with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats.

  1. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei.

    Science.gov (United States)

    Feng, Guofang; Sun, Wei; Zhang, Fengli; Karthik, Loganathan; Li, Zhiyong

    2016-01-01

    Nitrification directly contributes to the ammonia removal in sponges, and it plays an indispensable role in sponge-mediated nitrogen cycle. Previous studies have demonstrated genomic evidences of nitrifying lineages in the sponge Theonella swinhoei. However, little is known about the transcriptional activity of nitrifying community in this sponge. In this study, combined DNA- and transcript-based analyses were performed to reveal the composition and transcriptional activity of the nitrifiers in T. swinhoei from the South China Sea. Transcriptional activity of ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in this sponge were confirmed by targeting their nitrifying genes,16S rRNA genes and their transcripts. Phylogenetic analysis coupled with RDP rRNA classification indicated that archaeal 16S rRNA genes, amoA (the subunit of ammonia monooxygenase) genes and their transcripts were closely related to Nitrosopumilus-like AOA; whereas nitrifying bacterial 16S rRNA genes, nxrB (the subunit of nitrite oxidoreductase) genes and their transcripts were closely related to Nitrospira NOB. Quantitative assessment demonstrated relative higher abundances of nitrifying genes and transcripts of Nitrosopumilus-like AOA than those of Nitrospira NOB in this sponge. This study illustrated the transcriptional potentials of Nitrosopumilus-like archaea and Nitrospira bacteria that would predominantly contribute to the nitrification functionality in the South China Sea T. swinhoei. PMID:27113140

  2. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  3. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  4. Dominance of ammonia-oxidizing archaea community induced by land use change from Masson pine to eucalypt plantation in subtropical China.

    Science.gov (United States)

    Zhang, Fang-Qiu; Pan, Wen; Gu, Ji-Dong; Xu, Bin; Zhang, Wei-Hua; Zhu, Bao-Zhu; Wang, Yu-Xia; Wang, Yong-Feng

    2016-08-01

    A considerable proportion of Masson pine forests have been converted into eucalypt plantations in the last 30 years in Guangdong Province, subtropical China, for economic reasons, which may affect the ammonia-oxidizing archaea (AOA) community and the process of ammonia transformation. In order to determine the effects of forest conversion on AOA community, AOA communities in a Masson pine (Pinus massoniana) plantation and a eucalypt (Eucalyptus urophylla) plantation, which was converted from the Masson pine, were compared. Results showed that the land use change from the Masson pine to the eucalypt plantation decreased soil nutrient levels. A significant decrease of the potential nitrification rates (PNR) was also observed after the forest conversion (p community change was only a partial reason for the decrease of PNR. PMID:27094186

  5. The effects of various land reclamation scenarios on the succession of soil Bacteria, Archaea, and fungi over the short and long term

    Directory of Open Access Journals (Sweden)

    Junjian eLi

    2016-03-01

    Full Text Available Ecological restoration of mining areas has mainly focused on the succession dynamics of vegetation and the fate of microbial communities remains poorly understood. We examined changes in soil characteristics and plant and microbial communities with increasing reclamation period in an open coal mine. Bacterial, archaeal and fungal communities were assessed by tag-encoded 454 pyrosequencing. At the phylum level, Proteobacteria, Crenarchaeota, and Ascomycota had the highest detected relative abundance within bacteria, archaea, and fungi, respectively. Partial regressions and canonical correspondence analysis demonstrated that vegetation played a major role in bacterial and archaeal diversity and assemblies, and soil characteristics, especially nitrogen, were important for fungal diversity and assemblies. Spearman rank correlation indicated that bacterial and archaeal communities showed synergistic succession with plants; whereas, fungal communities showed no such pattern. Overall, our data suggest that there are different drivers of bacterial, archaeal and fungal succession during secondary succession in a reclaimed open mine.

  6. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-03-01

    Full Text Available A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1 the whole-genome-based and alignment-free CVTree using 179 genomes; (2 the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3 the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation.

  7. Biology and population ecology of uncultured Archaea in natural environments analyzed by taxon-specific molecular markers = Biología y ecología poblacional de Archaeas no cultivadas en ambientes naturales analizadas mediante marcadores moleculares específicos

    OpenAIRE

    Restrepo Ortiz, Claudia Ximena

    2016-01-01

    Tesi realitzada al Centre d'Estudis Avançats de Blanes (CEAB-CSIC) The annual dynamics of three different ammonia-oxidizing archaea (AOA) ecotypes (amoA gene) and of the SAGMCG-1 (Nitrosotalea-like aquatic Thaumarchaeota) group (16S rRNA gene) were studied by newly designed specific primers and quantitative PCR analysis in a deep oligotrophic high mountain lake (Lake Redon, Limnological Observatory of the Pyrenees, Spain). We observed segregated distributions of the main AOA populations, p...

  8. GDGTs of Marine Group II Archaea in the Pearl River Estuary: Toward a Better Understanding of the Bias of TEX86

    Science.gov (United States)

    Zhang, C.; Wang, J. X.; Xie, W.; Chen, S.; Wang, P.

    2014-12-01

    TEX86, calculated based on the distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) from planktonic Thaumarchaeota, is widely used for paleo sea surface temperature reconstruction. Although increasing evidence shows that TEX86 can be affected by multiple environmental variables, little is known about the additional contribution of TEX86-related GDGTs from other planktonic archaeal groups. In this study, we test the hypothesis that GDGTs potentially derived from MG II Archaea affect TEX86 calculations. Analysis of core (C) and intact polar (IP) GDGTs and 454 sequencing and quantitative PCR (qPCR) targeting MG II were performed on suspended particulate matter (SPM) collected along a salinity gradient from the lower Pearl River, its estuary, and the northern South China Sea. The results showed that the community structure varied along the salinity gradient with MG II as the second dominant group in the mixing water and seawater. qPCR data indicated that the abundance of MG II in the mixing water was four to five orders of magnitudes higher than the fresh water and seawater. The Ring Index of archaeal lipids was notably elevated in the Pearl River estuary, which may be attributed to the additional export of cyclopentane moiety-enhanced GDGTs from MG II in the mixing water. Furthermore, a linear correlation was observed between qPCR of MG II and IP-GDGTs derived from phosphate head groups, suggesting that MG II actively produces GDGTs in the water column. These results show strong evidence that MG II synthesizes GDGTs with more cyclopentane moieties, which may bias TEX86 signal derived from GDGTs of Thaumarchaeota. This study highlights that valid interpretation of TEX86 in the geologic record, particularly in coastal oceans, needs to consider the paleo-community structure of planktonic Archaea.

  9. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.

  10. Associative patterns among anaerobic fungi, methanogenic archaea and bacterial communities in response to changes in diet and age in the rumen of dairy cows

    Directory of Open Access Journals (Sweden)

    Sanjay eKumar

    2015-07-01

    Full Text Available The rumen microbiome represents a complex microbial genetic web where bacteria, anaerobic rumen fungi (ARF, protozoa and archaea work in harmony contributing to the health and productivity of ruminants. We hypothesized that the rumen microbiome shifts as the dairy cow advances in lactations and these microbial changes may contribute to differences in productivity between primiparous (first lactation and multiparous (≥ second lactation cows. To this end, we investigated shifts in the ruminal ARF and methanogenic communities in both primiparous (n=5 and multiparous (n=5 cows as they transitioned from a high forage to a high grain diet upon initiation of lactation. A total of 20 rumen samples were extracted for genomic DNA, amplified using archaeal and fungal specific primers, sequenced on a 454 platform and analyzed using QIIME. Community comparisons (Bray-Curtis index revealed the effect of diet (P < 0.01 on ARF composition, while archaeal communities differed between primiparous and multiparous cows (P < 0.05. Among ARF, several lineages were unclassified, however, phylum Neocallimastigomycota showed the presence of three known genera. Abundance of Cyllamyces and Caecomyces shifted with diet whereas, Orpinomyces was influenced by both diet and age. Methanobrevibacter constituted the most dominant archaeal genus across all samples. Co-occurrence analysis incorporating taxa from bacteria, ARF and archaea revealed syntrophic interactions both within and between microbial domains in response to change in diet as well as age of dairy cows. Notably, these interactions were numerous and complex in multiparous cows supporting our hypothesis that the rumen microbiome also matures with age to sustain the growing metabolic needs of the host. This study provides a broader picture of the ARF and methanogenic populations in the rumen of dairy cows and their co-occurrence implicates specific relationships between different microbial domains in response to

  11. Archaea Communities in Pit Mud of Different Quality%不同质量窖泥古菌群落的研究

    Institute of Scientific and Technical Information of China (English)

    杜礼泉; 唐聪; 罗惠波; 黄治国; 苟云凌; 贺新生; 王远成; 饶家权; 王晓刚; 范昌明

    2015-01-01

    采用多聚酶链式反应结合变性梯度凝胶电泳指纹分析技术(PCR-DGGE)对不同质量窖泥中古菌群落结构进行分析,说明了不同质量窖泥古菌种群的复杂性,再次印证了产甲烷菌是窖泥中古菌的优势菌,并在此基础上揭示了窖泥中产甲烷菌种属上的多样性。发现了以最优质窖泥为参照,窖泥质量与其古菌群落间的相似性指数总体呈正相关这一规律,为今后研究窖泥培养、养护和应用提供了理论依据。%In this study, the structures of archaea communities in pit mud of different quality were analyzed by PCR-DGGE. The analytic re-sults proved the complexity of archaea communities in pit mud of different quality. And it also proved that methanogenic bacteria was the domi-nant archaeal in pit mud. Besides, the analytic results revealed the diversity of methanogenic bacteria species. It was found that, with reference to the best pit mud, the quality of pit mud was positively correlated to archaeal community similarity indexes. Those findings provided theoreti-cal evidences for further research on pit mud culture, maintenance and application.

  12. Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone

    Institute of Scientific and Technical Information of China (English)

    Zhixin Li; Wenbiao Jin; Zhaoyun Liang; Yangyang Yue; Junhong Lv

    2013-01-01

    Ammonia-oxidizing archaea (AOA) are widely considered key to ammonia oxidation in various environments.However,little work has been conducted to simultaneously investigate the abundance and diversity of AOA as well as correlations between archaeal amoA genotypes and environmental parameters of different ecosystems at one district.To understand the abundance,diversity,and distribution of AOA in Pearl River Delta of China in response to various habitats,the archaeal amoA genes in soil,marine,river,lake,hot spring and wastewater treatment plant (WWTP) samples were investigated using real-time fluorescent quantitative PCR and clone libraries.Our analyses indicated that the diversity of AOA in various habitats was different and could be clustered into five major clades,i.e.,estuary sediment,marine water/sediment,soil,hot spring and Cluster 1.Phylogenetic analyses revealed that the structure of AOA communities in similar ecological habitats exhibited strong relation.The canonical correspondence method indicated that the AOA community structure was strongly correlated to temperature,pH,total organic carbon,total nitrogen and dissolved oxygen variables.Assessing AOA amoA gene copy numbers,ranging from 6.84 × 106 to 9.45 × 107 copies/g in dry soil/sediment,and 6.06 × 106 to 2.41 × 107 copies/L in water samples,were higher than ammonia-oxidizing bacteria (AOB) by 1-2 orders of magnitude.However,AOA amoA copy numbers were much lower than AOB in WWTP activated sludge samples.Overall,these studies suggested that AOA may be a major contributor to ammonia oxidation in natural habitats but play a minor role in highly aerated activated sludge.The result also showed the ratio of AOA to AOB amoA gene abundance was positively correlated with temperature and less correlated with other environmental parameters.New data from our study provide increasing evidence for the relative abundance and diversity of ammonia-oxidizing archaea in the global nitrogen cycle.

  13. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    Science.gov (United States)

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high-resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5-10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to

  14. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    OpenAIRE

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restrict...

  15. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia.

    Science.gov (United States)

    Zhang, Xinyu; Tang, Yuqian; Shi, Yao; He, Nianpeng; Wen, Xuefa; Yu, Qiang; Zheng, Chunyu; Sun, Xiaomin; Qiu, Weiwen

    2016-01-01

    We used a seven-year urea gradient applied field experiment to investigate the effects of nitrogen (N) applications on soil N hydrolytic enzyme activity and ammonia-oxidizing microbial abundance in a typical steppe ecosystem in Inner Mongolia. The results showed that N additions inhibited the soil N-related hydrolytic enzyme activities, especially in 392 kg N ha(-1 )yr(-1) treatment. As N additions increased, the amoA gene copy ratios of ammonia-oxidizing archaea (AOA) to ammonia-oxidizing bacteria (AOB) decreased from 1.13 to 0.65. Pearson correlation analysis showed that the AOA gene copies were negatively related with NH4(+)-N content. However, the AOB gene copies were positively correlated with NO3(-)-N content. Moderate N application rates (56-224 kg N ha(-1 )yr(-1)) accompanied by P additions are beneficial to maintaining the abundance of AOB, as opposed to the inhibition of highest N application rate (392 kg N ha(-1 )yr(-1)) on the abundance of AOB. This study suggests that the abundance of AOB and AOA would not decrease unless N applications exceed 224 kg N ha(-1 )yr(-1) in temperate grasslands in Inner Mongolia. PMID:27596731

  16. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  17. Different routes to the same ending: comparing the N-glycosylation processes of Haloferax volcanii and Haloarcula marismortui, two halophilic archaea from the Dead Sea

    Science.gov (United States)

    Calo, Doron; Guan, Ziqiang; Naparstek, Shai; Eichler, Jerry

    2012-01-01

    Summary Recent insight into the N-glycosylation pathway of the haloarchaeon, Haloferax volcanii, is helping to bridge the gap between our limited understanding of the archaeal version of this universal post-translational modification and the better-described eukaryal and bacterial processes. To delineate as yet undefined steps of the Hfx. volcanii N-glycosylation pathway, a comparative approach was taken with the initial characterization of N-glycosylation in Haloarcula marismortui, a second haloarchaeon also originating from the Dead Sea. While both species decorate the reporter glycoprotein, the S-layer glycoprotein, with the same N-linked pentasaccharide and employ dolichol phosphate as lipid glycan carrier, species-specific differences in the two N-glycosylation pathways exist. Specifically, Har. marismortui first assembles the complete pentasaccharide on dolichol phosphate and only then transfers the glycan to the target protein, as in the bacterial N-glycosylation pathway. In contrast, Hfx. volcanii initially transfers the first four pentasaccharide subunits from a common dolichol phosphate carrier to the target protein and only then delivers the final pentasaccharide subunit from a distinct dolichol phosphate to the N-linked tetrasaccharide, reminiscent of what occurs in eukaryal N-glycosylation. This study further indicates the extraordinary diversity of N-glycosylation pathways in Archaea, as compared with the relatively conserved parallel processes in Eukarya and Bacteria. PMID:21815949

  18. The Sulfate-Rich and Extreme Saline Sediment of the Ephemeral Tirez Lagoon: A Biotope for Acetoclastic Sulfate-Reducing Bacteria and Hydrogenotrophic Methanogenic Archaea

    Directory of Open Access Journals (Sweden)

    Lilia Montoya

    2011-01-01

    Full Text Available Our goal was to examine the composition of methanogenic archaea (MA and sulfate-reducing (SRP and sulfur-oxidizing (SOP prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain. Thus, adenosine-5′-phosphosulfate (APS reductase α (aprA and methyl coenzyme M reductase α (mcrA gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

  19. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

    Directory of Open Access Journals (Sweden)

    Kateryna V Zhalnina

    Full Text Available The activity of ammonia-oxidizing archaea (AOA leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.

  20. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  1. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  2. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  3. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior.

    Science.gov (United States)

    Bollmann, Annette; Bullerjahn, George S; McKay, Robert Michael

    2014-01-01

    Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA) and Bacteria (AOB). Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA) gene. Diversity was accessed by a pyro-sequencing approach and the obtained sequences were used to determine the phylogeny and alpha and beta diversity of the AOA and AOB populations. In Lake Erie copy numbers of bacterial amoA genes were in the same order of magnitude or even higher than the copy numbers of the archaeal amoA genes, while in Lake Superior up to 4 orders of magnitude more archaeal than bacterial amoA copies were detected. The AOB detected in the samples from Lake Erie belonged to AOB that are frequently detected in freshwater. Differences were detected between the phylogenetic affiliations of the AOA from the two lakes. Most sequences detected in Lake Erie clustered in the Nitrososphaera cluster (Thaumarchaeal soil group I.1b) where as most of the sequences in Lake Superior were found in the Nitrosopumilus cluster (Thaumarchaeal marine group I.1a) and the Nitrosotalea cluster. Pearson correlations and canonical correspondence analysis (CCA) showed that the differences in abundance and diversity of AOA are very likely related to the sampling location and thereby to the different trophic states of the lakes.

  4. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance. PMID:26463999

  5. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China.

    Science.gov (United States)

    Gan, Xian-Hua; Zhang, Fang-Qiu; Gu, Ji-Dong; Guo, Yue-Dong; Li, Zhao-Qing; Zhang, Wei-Qiang; Xu, Xiu-Yu; Zhou, Yi; Wen, Xiao-Ying; Xie, Guo-Guang; Wang, Yong-Feng

    2016-02-01

    In addition to ammonia-oxidizing bacteria (AOB) the more recently discovered ammonia-oxidizing archaea (AOA) can also oxidize ammonia, but little is known about AOA community structure and abundance in subtropical forest soils. In this study, both AOA and AOB were investigated with molecular techniques in eight types of forests at surface soils (0-2 cm) and deep layers (18-20 cm) in Nanling National Nature Reserve in subtropical China. The results showed that the forest soils, all acidic (pH 4.24-5.10), harbored a wide range of AOA phylotypes, including the genera Nitrosotalea, Nitrososphaera, and another 6 clusters, one of which was reported for the first time. For AOB, only members of Nitrosospira were retrieved. Moreover, the abundance of the ammonia monooxygenase gene (amoA) from AOA dominated over AOB in most soil samples (13/16). Soil depth, rather than forest type, was an important factor shaping the community structure of AOA and AOB. The distribution patterns of AOA and AOB in soil layers were reversed: AOA diversity and abundances in the deep layers were higher than those in the surface layers; on the contrary, AOB diversity and abundances in the deep layers were lower than those in the surface layers. Interestingly, the diversity of AOA was positively correlated with pH, but negatively correlated with organic carbon, total nitrogen and total phosphorus, and the abundance of AOA was negatively correlated with available phosphorus. Our results demonstrated that AOA and AOB were differentially distributed in acidic soils in subtropical forests and affected differently by soil characteristics. PMID:26626057

  6. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    Directory of Open Access Journals (Sweden)

    Catarina Maria Magalhães

    2014-09-01

    Full Text Available The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA and bacteria (AOB in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Valley, Beacon Valley and Battleship Promontory. The bacterial communities of these four Dry Valleys have been examined previously, and the results suggested that the extremely localized bacterial diversities are likely driven by the disparate physicochemical conditions associated with these locations. Here we showed that AOB and AOA amoA gene diversity was generally low; only four AOA and three AOB operational taxonomic units (OTUs were identified from a total of 420 AOA and AOB amoA clones. Quantitative PCR analysis of amoA genes revealed clear differences in the relative abundances of AOA and AOB amoA genes among samples from the four Dry Valleys. Although AOB amoA gene dominated the ammonia-oxidizing community in soils from Miers Valley and Battleship Promontory, AOA amoA gene were more abundant in samples from Upper Wright and Beacon Valleys, where the environmental conditions are considerably harsher (e.g., extremely low soil C/N ratios and much higher soil electrical conductivity. Correlations between environmental variables and amoA genes copy numbers, as examined by redundancy analysis (RDA, revealed that higher AOA/AOB ratios were closely related to soils with high salts and Cu contents and low pH. Our findings hint at a dichotomized distribution of AOA and AOB within the Dry Valleys, potentially driven by environmental constraints.

  7. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior.

    Directory of Open Access Journals (Sweden)

    Annette Bollmann

    Full Text Available Ammonia oxidation is the first step of nitrification carried out by ammonia-oxidizing Archaea (AOA and Bacteria (AOB. Lake Superior and Erie are part of the Great Lakes system differing in trophic status with Lake Superior being oligotrophic and Lake Erie meso- to eutrophic. Sediment samples were collected from both lakes and used to characterize abundance and diversity of AOA and AOB based on the ammonia monooxygenase (amoA gene. Diversity was accessed by a pyro-sequencing approach and the obtained sequences were used to determine the phylogeny and alpha and beta diversity of the AOA and AOB populations. In Lake Erie copy numbers of bacterial amoA genes were in the same order of magnitude or even higher than the copy numbers of the archaeal amoA genes, while in Lake Superior up to 4 orders of magnitude more archaeal than bacterial amoA copies were detected. The AOB detected in the samples from Lake Erie belonged to AOB that are frequently detected in freshwater. Differences were detected between the phylogenetic affiliations of the AOA from the two lakes. Most sequences detected in Lake Erie clustered in the Nitrososphaera cluster (Thaumarchaeal soil group I.1b where as most of the sequences in Lake Superior were found in the Nitrosopumilus cluster (Thaumarchaeal marine group I.1a and the Nitrosotalea cluster. Pearson correlations and canonical correspondence analysis (CCA showed that the differences in abundance and diversity of AOA are very likely related to the sampling location and thereby to the different trophic states of the lakes.

  8. Systematic identification of gene families for use as "markers" for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups.

    Directory of Open Access Journals (Sweden)

    Dongying Wu

    Full Text Available With the astonishing rate that genomic and metagenomic sequence data sets are accumulating, there are many reasons to constrain the data analyses. One approach to such constrained analyses is to focus on select subsets of gene families that are particularly well suited for the tasks at hand. Such gene families have generally been referred to as "marker" genes. We are particularly interested in identifying and using such marker genes for phylogenetic and phylogeny-driven ecological studies of microbes and their communities (e.g., construction of species trees, phylogenetic based assignment of metagenomic sequence reads to taxonomic groups, phylogeny-based assessment of alpha- and beta-diversity of microbial communities from metagenomic data. We therefore refer to these as PhyEco (for phylogenetic and phylogenetic ecology markers. The dual use of these PhyEco markers means that we needed to develop and apply a set of somewhat novel criteria for identification of the best candidates for such markers. The criteria we focused on included universality across the taxa of interest, ability to be used to produce robust phylogenetic trees that reflect as much as possible the evolution of the species from which the genes come, and low variation in copy number across taxa. We describe here an automated protocol for identifying potential PhyEco markers from a set of complete genome sequences. The protocol combines rapid searching, clustering and phylogenetic tree building algorithms to generate protein families that meet the criteria listed above. We report here the identification of PhyEco markers for different taxonomic levels including 40 for "all bacteria and archaea", 114 for "all bacteria (greatly expanding on the ∼30 commonly used, and 100 s to 1000 s for some of the individual phyla of bacteria. This new list of PhyEco markers should allow much more detailed automated phylogenetic and phylogenetic ecology analyses of these groups than possible

  9. Physiological and molecular studies of the resistance to ionizing radiations of hyper-thermophilic archaea isolated from deep ocean hydrothermal sources; Etudes physiologiques et moleculaires de la resistance aux rayonnements ionisants d'archaea hyperthermophiles isolees de sources hydrothermales oceaniques profondes

    Energy Technology Data Exchange (ETDEWEB)

    Jolivet, E

    2002-10-15

    In this study, we have first tested in vivo the effect of gamma irradiation on Pyrococcus abyssi, a hyper-thermophilic archaeon, isolated from a deep-sea hydrothermal vent. We have shown that this strain was as radioresistant as P. furiosus but less than Deinococcus radiodurans. The rates of double stranded breaks provoked into DNA following irradiation were monitored by the pulsed-field gel electrophoresis technique (P.F.G.E.) with P. abyssi, P. furiosus, D. radiodurans and Escherichia coli. Results clearly showed that all these rates were similar suggesting that no specific DNA protection system exits in Pyrococcus species. The growth of P. abyssi was efficiently recovered within two hours following the exposure to 2.5 kGy of gamma irradiation. As revealed by P.F.G.E., genomic DNA of P. abyssi totally fragmented after irradiation was efficiently restored within two hours presumably by inter chromosomal homologous recombination. The DNA replication in P. abyssi cells following irradiation at 2.5 kGy was blocked for 90 minutes that corresponds to the decay for repairing damaged DNA. Moreover, following irradiation P. abyssi actively expulse damaged DNA material before DNA replication resumes, preventing the amplification of genetic mutations. We have also showed that at least a subset cf P. abyssi DNA repair and replication proteins, such as RadA, RPA-41 and RFC-S. were constitutively expressed in chromatin bound forms in stationary phase cells. Our results were in agreement with the view that P. abyssi contains a very efficient DNA repair system, which is continuously ready to counteract the DNA damaged caused by the high temperature and/or ionizing radiation. For the first time, three novel hyper-thermophilic archaea species from deep-sea hydrothermal vents more radioresistant than P. abyssi were isolated and characterized, after 'y-irradiation exposures of some enrichment cultures. Thermococcus marinus, Thermococcus radiophilus and Thermococcus

  10. Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin

    Science.gov (United States)

    Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.

    2014-12-01

    Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.

  11. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    Science.gov (United States)

    Case, David H.

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co

  12. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments.

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Case, David H; Orphan, Victoria J

    2016-01-01

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co

  13. Changing roles of ammonia-oxidizing bacteria and archaea in a continuously acidifying soil caused by over-fertilization with nitrogen.

    Science.gov (United States)

    Song, He; Che, Zhao; Cao, Wenchao; Huang, Ting; Wang, Jingguo; Dong, Zhaorong

    2016-06-01

    Nitrification coupled with nitrate leaching contributes to soil acidification. However, little is known about the effect of soil acidification on nitrification, especially on ammonia oxidation that is the rate-limiting step of nitrification and performed by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Serious soil acidification occurs in Chinese greenhouses due to the overuse of N-fertilizer. In the present study, greenhouse soils with 1, 3, 5, 7, and 9 years of vegetable cultivation showed a consistent pH decline (i.e., 7.0, 6.3, 5.6, 4.9, and 4.3). Across the pH gradient, we analyzed the community structure and abundance of AOB and AOA by pyrosequencing and real-time PCR techniques, respectively. The recovered nitrification potential (RNP) method was used to determine relative contributions of AOA and AOB to nitrification potential. The results revealed that soil acidification shaped the community structures of AOA and AOB. In acidifying soil, soil pH, NH3 concentration, and DOC content were critical factors shaping ammonia oxidizer community structure. AOB abundance, but not AOA, was strongly influenced by soil acidification. When soil pH was below 5.0, AOA rather than AOB were responsible for almost all of the RNP. However, when soil pH ranged from 5.6 to 7.0, AOB were the major contributors to RNP. The group I.1a-associatied AOA had more relative abundance in low pH (pH<6.3), whereas group I.1b tended to prefer neutral pH. Clusters 2, 10, and 12 in AOB were more abundant in acidic soil (pH <5.6), while Nitrosomonas-like lineage and unclassified lineage 3 were prevailing in neutral soil and slightly acidic soil (pH, 6.0-6.5), respectively. These results suggested that soil acidification had a profound impact on ammonia oxidation and more specific lineages in AOB occupying different pH-associated niches required further investigation. PMID:26961528

  14. Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches.

    Science.gov (United States)

    Krishnamurthi, S; Chakrabarti, T

    2013-02-01

    The bacterial community structure of a municipal landfill in Chandigarh, India was analysed by culture-dependent as well as culture-independent molecular approaches, and archaeal structure by the latter method. Samples were collected in two phases from the surface and a depth of 0.91 m in June, 2004 and from 0.91 m, 1.52 m and 1.68 m in May, 2005. After serial dilutions, samples were plated onto tryptic soy agar (TSA), plate count agar (PCA), tryptic soy broth agar (TSBA) and TSBA100 (TSBA diluted 100 times and solidified with agarose), and incubated aerobically at 30°C. The number of bacteria (CFU) on different media ranged between 9.4×10⁵g⁻¹ (on PCA) and 1.9×10⁷g⁻¹ (on TSA) (wet weight). The numbers of bacteria enumerated from plates incubated anaerobically (anaerobic agar and reinforced clostridial agar) were 2.1×10⁷and 1.7×10⁶g⁻¹, respectively. Of the 468 isolated and purified bacteria (183 in the first phase and 285 in the second phase), 135 were characterised using phenotypic characteristics as well as 16S rRNA gene sequence analysis. It was found that members of the phylum Firmicutes were overwhelmingly predominant (86.6%) in the landfill, followed by Actinobacteria (9.6%) and Proteobacteria (3.7%). Among the Firmicutes, at least 17 species from the single genus Bacillus were the most abundant inhabitants of the landfill. Detailed polyphasic characterisation of many of these isolates led to the discovery of a novel genus Paenisporosarcina (and the species P. quisquiliarum), a novel species of Microbacterium, M. immunditiarum, and reclassification of Sporosarcina macmurdoensis, Pelagibacillus goriensis, Bacillus silvestris, Bacillus insolitus, Bacillus psychrotolerans and Bacillus psychrodurans. Culture-independent analysis of two 16S rRNA gene libraries also revealed that the phylum Firmicutes was the predominant group in this community. The diversity of Archaea was found to be limited mainly to members of two orders: Methanosarcinales

  15. THE DIVERSITY AND DISTRIBUTION OF ARCHAEA IN GUAYMAS DEEP-SEA HYDROTHERMAL VENT%瓜伊马斯深海热液口古菌分布及多样性研究

    Institute of Scientific and Technical Information of China (English)

    鲁书林; 何莹; 王风平

    2013-01-01

    Due to the dramatic gradients of temperature (up to above 400℃ ) ,pH and chemicals, deep-sea hydrothermal vents have been the focus for studies of the origin and evolution of life on earth and the subseafloor hydrothermal living system is ideal for exploring the origin and evolution of deep-sea life. In this study, the diversity of archaea was investigated at high temperature sediments and chimney from Guaymas hydrothermal vent using cultured-independent technique. Environmental total DNA were directly extracted and used for the quantification and construction of archaea 16S rRNA gene libraries. A total of 79 and 80 clean sequences were obtained from the sediment and chimney samples. Quantitative PCR analysis revealed that the amounts of archaea present in the sediment and chimney were about 1.47×109 copies/g ( wet weight) and 5. 29 × 108 copies/g ( wet weight), respectively. All the clone libraries had the coverage C value more than 80%, the archaea diversity of sediment sample was higher than the chimney. The compositions of archaea community were different between two samples, yet most of archaea belonged to the thermophilic/hyperthermophilic microorganism because of the high temperature environment. In the sediments, most of archaea came from Crenarchaeota domain and the two most dominant groups were the Miscellaneous Crenarchaeota Group ( MCG,43. 04% )and Hot Water Crenarchaeota Group Ⅰ ( HWCG Ⅰ , 20. 25% ) confirmed by archaeal 16S rRNA gene components. The remaining sequences from the sediment sample were related to members of Thermoprotei ( 7. 59%) , Korarchaeota ( 1. 26%) , Methanosarcinales (1. 26%) , Marine Benthic Group D/Deep Hydrothermal Vent Euryarchaeota ( MBGD/DHVE 1, 8. 86%) , DHVE 9 ( 5. 06%) , Miscellaneous Euryarchaeota Group ( MEG, 2. 53%). While the Euryarchaeota domain dominated the chimney sample, in which Thermococcales (47.5%), Marine Benthic Group D ( MBGD )/Deep Hydrothermal Vent Euryarchaeota 1 ( DHVE 1) ( MBGD/DHVE 1

  16. Solution Structure of Archaeoglobus fulgidis Peptidyl-tRNA Hydrolase(Pth2) Provides Evidence for an Extensive Conserved Family of Pth2 Enzymes in Archaea, Bacteria and Eukaryotes.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Robert; Mirkovic, Nebojsa; Goldsmith-Fischman, Sharon; Acton, Thomas; Chiang, Yiwen; Huang, Yuanpeng; Ma, LiChung; Rajan, Paranji K.; Cort, John R.; Kennedy, Michael A.; Liu, Jinfeng; Rost, Burkhard; Honig, Barry; Murray, Diana; Montelione, Gaetano

    2005-11-01

    The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6 kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed b-sheet consisting of four parallel and anti-parallel b-strands, where the a-helices sandwich the b-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii and Sulfolobus solfataricus, reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Database but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.

  17. Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake

    Science.gov (United States)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula

    2016-04-01

    bacterial community occurred. Besides decreasing the availability of methanogenic substrates, the Mn4+/Fe3+ - induced changes in the bacterial community also probably decreased the H2:acetate - ratio in the substrate pool. This led to increase in the relative activity (mRNA level) of some operational taxonomic units assigned to aceticlastic Methanosaetaceae and decrease in the relative activity of hydrogenotrophic Methanoregulaceae in the sediment. CH4 oxidation (0.02 - 0.30 nmol gdw‑1d‑1 in anaerobic and 18 - 73 nmol gdw‑1d‑1in aerobic treatments) took place without EA additions and was enhanced only by O2. This suggests decoupling of the process from the reduction of other inorganic EAs. The results also indicate that Fe3+/Mn4+ - reduction did not increase CH4 oxidation via increased availability of SO42‑ by cryptic sulfur cycle or via increased availability of organic EAs. Furthermore, ANME - archaea were only ≤ 3% of sediment archaeal community and their relative activity was decreased during incubations. Thus, EA driving CH4 oxidation in the anoxic sediments of the lake remains unknown or the process was methanogen-driven via trace methane oxidation.

  18. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    Science.gov (United States)

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels.

  19. 西菲律宾海比科尔陆架深海沉积物古菌多样性研究%The diversity of archaea in deep-sea sediments from the West Philippine Sea Bicol shelf

    Institute of Scientific and Technical Information of China (English)

    格根塔娜; 萨仁高娃; 于心科; 李铁刚; 周伟光

    2011-01-01

    The archaeal diversity and phylogenesis of the sediments samples from the Bicol shelf of the West Philippine Sea for the West Pacific Ocean were analyzed by the 16S rRNA gene clone library method. Totally 465 cloning sequences were obtained and divided into 63 OTUs. Phylogenetic analysis showed that the archaeal sequences were from Crenarchaeota and Euryarchaeota. The majority of the archaeal phylotypes were Marine Benthic Group B (MBGB), Marine Group I (MGI), Miscellaneous Crenarchaeotic Group (MCG), and Marine Benthic Group D. A few sequences fell into Marine Hydrothermal Vent Group (MHVG). The results indicated that the sediment samples of five different layers contained only five groups of archaea. Achaeal community diversity was low, and dominant archaea had some differences in each layers.%通过构建16S rRNA 基因文库, 对西太平洋西菲律宾海东板比科尔陆架5 个不同层位沉积物样品中的古菌的多样性进行了研究, 并获得了465 个有效克隆63 个OTUs (Operational Taxonomic Units)。通过16S rRNA 序列与GenBank 已知序列的同源性比较及构建系统进化树的结果显示, 古菌序列分别来自泉古菌(Crenarchaeota)和广古菌(Euryarchaeota), 以Marine Benthic Group B(MBGB)、Marine GroupI(MGI)、Miscellaneous Crenarchaeotic Group(MCG)和Marine Benthic Group D(MBGD)为主。少量序列为Marine Hydrothermal Vent Group(MHVG)。研究结果表明, 该垂直分布的5 个不同层位的沉积物样品仅有5 个古菌类群, 古菌群落多样性并不高, 且5 个层位中的优势古菌类群稍有差异。研究结果揭示了比科尔陆架深海古菌垂向分布特征, 为今后大范围自然海区古菌生态学研究提供科学参考。

  20. Comparison of communities of both methane-producing and metabolizing archaea and bacteria in sediments between the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes

    Directory of Open Access Journals (Sweden)

    Zhichao eZhou

    2015-02-01

    Full Text Available Communities of methanogens, anaerobic methanotrophic (ANME archaea and aerobic methantrophic bacteria were compared by profiling mcrA and pmoA genes encoded by methyl-coenzyme M reductase alpha subunit and particulate methane monooxygenase alpha subunit, respectively, in sediments of northern South China Sea (nSCS and Mai Po mangrove wetland. Community structures representing by mcrA gene based on 12 clone libraries from nSCS showed separate clusters indicating niche specificity, while, Methanomicrobiales, Methanosarcinales clade 1,2 and Methanomassiliicoccus like groups of methanogens were the most abundant constitutional parts in nSCS sediment samples . Novel clusters specific to the SCS were identified and the phylogeny of mcrA gene-harboring archaea was completely updated. Mai Po mangrove wetland surface layer exhibited lower diversity than subsurface, but similar community structures were shared in both layers. Quantitative PCR was used to detect mcrA gene abundance in all samples: similar abundance of mcrA gene in the surface layers of mangrove (3.4~3.9×106 copies per gram dry weight and of intertidal mudflat (5.5~5.8×106 copies per gram dry weight was observed, but higher abundance (6.9×106 to 1.02×108 copies per gram dry weight was found in subsurface samples of both sediment types. Aerobic methanotrophic bacteria were more abundant in surface layers (6.7~11.1×105 copies per gram dry weight than the subsurface layers (1.2~5.9×105copies per gram dry weight based on pmoA gene. Mangrove surface layers harbored more abundant pmoA gene than intertidal, but fewer abundant pmoA genes in the subsurface layers. Meanwhile, it is also noted that in surface layers of all samples, more pmoA gene copies were detected than the subsurface layers. Reedbed rhizosphere exhibited the highest gene abundance of mcrA gene (8.51×108 copies per g dry weight and pmoA gene (1.56×107 copies per g dry weight.

  1. 极端嗜盐古菌中CRISPR结构的生物信息学分析%Comparative analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) loci in the genomes of halophilic archaea

    Institute of Scientific and Technical Information of China (English)

    张帆; 张兵; 向华; 胡松年

    2009-01-01

    [Objective] Clustered Regularly Interspaeed Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic arehaea, of which the whole genome sequences are available at present time.[Methods] We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarehaeal genomes. [Results] We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilie arehaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. [Conclusion] Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.%[目的]利用生物信息学方法了解目前拥有全基因组序列的极端嗜盐古菌中CRISPR结构的特征.[方法]通过比对,保守性分析,GC含量分析,RNA结构预测等方法对已有全基因组序列的嗜盐古菌基因组进行研究.[结果]在5株嗜盐古菌基因组中发现CRISPR结构,在leader序列内得到具有回文性质的保守motif.发现在大CRISPR结构内repeat序列具有很强的保守性.同时根据第四位碱基的不同,repeat序列可形成两类不同的RNA二级结构.[结论]leader序列中回文结构的发现对其可能为蛋白结合位点的假设提供了进一步的理论依据.Repeat序列RNA二级结构的形成提示其可能介导外源DNA或RNA与CAS编码蛋白的相互作用.

  2. Succession of Abundance and Community Structure of Ammonia-Oxidizing Archaea in Paddy Soil During Flooding%淹水水稻土中氨氧化古菌丰度和群落结构演替特征

    Institute of Scientific and Technical Information of China (English)

    宋亚珩; 王媛媛; 李占明; 王保莉; 曲东

    2014-01-01

    Ammonia-oxidizing archaea(AOA)play an important role in ammonium oxidation in soil ecosystem, and predominate among am-monia-oxidizing prokaryotes in paddy soils. In this study, dynamic changes of abundance and community structures of ammonia-oxidizing archaea were investigated in paddy soils that were flooded for 1 h, 1 d, 5 d, 10 d, 20 d, 30 d, 40 d and 60 d, using sequential analysis and real-time PCR. The abundance of bacteria was 29 times that of crenarchaeota, while AOA was 4 times ammonia-oxidizing bacteria(AOB). Based-on arch-amoA gene, OTU analysis showed that the AOA community structures shifted at different flooding times:T12, a type of AOA and r-strategist organism, was present only at the early flooding time. T4, T5 and T9, k-strategist organisms, existed at the late flooding time. T1, T8 and T16, r-k-strategist symbiotic organisms, appeared during whole flooding period. AOA predominated at the late flooding time. The diversity index of dominant groups was larger at the early flooding than at the middle and late flooding times. Sequencing results showed that all 16 dominant OTU types belonged to crenarchaeota, and had a close relationship with AOA from paddy soil, dry highland soil, red soil and sediments in different regions.%采用淹水非种植水稻土微环境模式系统,对水稻土进行1 h和1、5、10、20、30、40、60 d淹水培养,利用序列分析和Real-time PCR技术分析淹水培养过程中氨氧化古菌(AOA)的丰度和群落结构变化规律。结果表明,淹水水稻土中细菌(Bac)的丰度是泉古菌(Cre)的29倍以上,而氨氧化古菌(AOA)是氨氧化细菌(AOB)的4倍之多,淹水过程改变了细菌、泉古菌、氨氧化细菌和氨氧化古菌的丰度。基于Arch-amoA基因的OTU分析显示淹水过程中AOA的群落结构发生了演替性变化:T12是r策略生存的AOA,仅存在于淹水初期;T4、T5和T9是k策略生存的AOA,存在于淹水后期;T1、T8和T16

  3. Effect of long-term fertilization on abundance and community structure of ammonia-oxidizing archaea in paddy soil%长期施肥对氨氧化古菌丰度及群落结构的影响

    Institute of Scientific and Technical Information of China (English)

    方宇; 景晓明; 王飞; 陈济琛; 林诚; 林新坚

    2015-01-01

    [目的]氨氧化古菌对土壤氮素转化有着重要的作用. 本研究以长期定位施肥黄泥田土壤为研究对象,探讨了长期不同施肥模式对土壤氨氧化古菌数量和多样性的影响,为制定合理的施肥制度提供理论基础. [方法]试验在福建省农科院试验站上进行,以30年长期定位施肥的红壤性水稻土为研究对象,采用荧光定量PCR和克隆文库技术,研究了长期不同施肥模式对氨氧化古菌( ammonia-oxidizing archaea , AOA)丰度及群落结构的影响. 试验设4个处理:1)不施肥(CK);2)单施氮磷钾肥(NPK);3)氮磷钾肥配施牛粪(NPKM);4)氮磷钾肥配施秸秆(NPKS).小区面积为12 m2 ,每个处理设3个重复. 土样采集时间为2012年10月份(水稻收获后) ,测定土壤养分和氨氧化古菌的数量及多样性. [结果] 1)与CK相比,NPKM和NPKS处理显著增加了土壤有机质含量,NPKM和NPKS处理之间无显著差N. 2) 与CK相比,施肥均能提高土壤全氮含量;NPKM和NPKS处理能够显著提高土壤全磷含量,NPKM处理全磷含量最高;仅NPKS处理能显著增加全钾含量. 3)与CK相比,长期施肥均能提高土壤有效氮(AN)、速效磷(AP)和速效钾(AK)的含量,并且NPKM处理AN和AP含量最高,NPKS处理中AK含量最高. 4)与CK相比,长期施肥均对土壤pH值无显著影响. 5) 与CK处理相比,NPKM和NPKS处理的amoA基因拷贝数显著增加,增加幅度分别为168.4%和95.7%;单施化肥处理与CK无显著差N. 土壤氨氧化古菌数量与土壤有机质含量呈显著正相关,与土壤全磷、有效氮、速效磷和速效钾含量呈极显著正相关. 6)长期不同施肥处理影响土壤氨氧化古菌的种群结构,单施化肥增加了土壤AOA的多样性,而化肥配施有机肥则降低了AOA的多样性. 7 )本试验中得到的土壤氨氧化古菌 amoA 基因序列均为不可培养的古菌,包括泉古菌( Crenarchaeote )和奇古菌( Thaumarchaeote ). 本试验所得氨氧化古菌绝

  4. Molecular basis of transcription initiation in Archaea

    OpenAIRE

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J.; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery—commonly known as the Pre-Initiation Complex—is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBp and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65°C. The intact archaeal PIC was isolated ...

  5. Molecular basis of transcription initiation in Archaea.

    Science.gov (United States)

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture. PMID:21326901

  6. Molecular basis of transcription initiation in Archaea.

    Science.gov (United States)

    De Carlo, Sacha; Lin, Shih-Chieh; Taatjes, Dylan J; Hoenger, Andreas

    2010-01-01

    Compared with eukaryotes, the archaeal transcription initiation machinery-commonly known as the Pre-Initiation Complex-is relatively simple. The archaeal PIC consists of the TFIIB ortholog TFB, TBP, and an 11-subunit RNA polymerase (RNAP). The relatively small size of the entire archaeal PIC makes it amenable to structural analysis. Using purified RNAP, TFB, and TBP from the thermophile Pyrococcus furiosus, we assembled the biochemically active PIC at 65ºC. The intact archaeal PIC was isolated by implementing a cross-linking technique followed by size-exclusion chromatography, and the structure of this 440 kDa assembly was determined using electron microscopy and single-particle reconstruction techniques. Combining difference maps with crystal structure docking of various sub-domains, TBP and TFB were localized within the macromolecular PIC. TBP/TFB assemble near the large RpoB subunit and the RpoD/L "foot" domain behind the RNAP central cleft. This location mimics that of yeast TBP and TFIIB in complex with yeast RNAP II. Collectively, these results define the structural organization of the archaeal transcription machinery and suggest a conserved core PIC architecture.

  7. CRISPR/Cas systems in archaea

    OpenAIRE

    Gophna, Uri; Brodt, Avital

    2012-01-01

    CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats) loci have been shown to provide prokaryotes with an adaptive immunity against viruses and plasmids. CRISPR arrays are transcribed and processed into small CRISPR RNA molecules, which base-pair with invading DNA or RNA and lead to its degradation by CRISPR-associated (Cas) protein complexes. New spacers can be acquired by active CRISPR/Cas systems, and thus the sequences of these spacers provide a record of the past “infect...

  8. Dynamic changes of ammonia-oxidizing archaea community structure during aerobic composting of chicken manure%鸡粪好氧堆肥过程中氨氧化古菌群落结构的动态变化

    Institute of Scientific and Technical Information of China (English)

    解开治; 徐培智; 张发宝; 唐拴虎; 顾文杰; 黄旭; 蒋瑞萍; 卢钰升

    2012-01-01

    The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to investigate the community structure and species diversity of ammonia-oxidizing archaea (AOA) during poultry species composting. The results show that the AOA community structure and species diversity at different stages of chicken manure composting are markedly changed, and the band b, which shows 96% similarity to the AOA HH - 2 (GU225872. 1 ) and band m, which shows 99% similarity to the uncultured Crenarchaeote NM-152 ( HQ875225.1 ) , represent the major AOA bacterial species during the composting. The bands c, b, f and i, and the bands m, k, ] and n represent the species of the two populations of bacteria, respectively. Shannon-Weiner index (H) and evenness index (EH) of the AOA colonies are different at different stages of the eomposting, and the following order is : day 30 〉 day 5 〉 day 25 ≈ day 45 〉 day 3 ≈ day 12 〉 day 1 ≈ day 15. The redundancy analysis of the AOA colonies at different stages of the composting shows that the AOA colony evolution is all significantly affected by the composting temperature, whole nitrogen, ammonia nitrogen and nitrate nitrogen (P 〈0. 05 ), while pH is not affected. The AOA community structure is changed markedly on days 1,5, 15, 30 and 45 of the composting. These results indicate that several parameters could control AOA community structure during composting of chicken manure.%应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,研究了好氧堆肥过程氨氧化古菌(ammonia-oxidizingarchaea,AOA)的群落结构和多样性变化。结果表明,不同堆肥时期鸡粪好氧堆肥AOA菌群的群落结构发生了明显的变化。与AOAHH-2(GU225872.1)亲缘关系较近的b条带(相似性96%)和未培养泉古菌属[uncuhured crenarchaeoteNM-152(HQ875225.1)]的m条带(相似性99%)是堆肥过程一直存在的AOA菌属。条带C、b、f、i和条带m、k、1

  9. 根管感染中产甲烷古细菌基于 mcrA 序列的系统发育分析%Phylogenetic analysis of Methanogenic archaea based on mcrA sequence data in endodontic infections

    Institute of Scientific and Technical Information of China (English)

    韦艳霞; 郑纪伟; 杨锋; 刘佃滨

    2014-01-01

    Objective:To analyze the diversity of Methanogenic archaea in endodontic infections and establish the phylogenetic tree based on functional gene mcrA.Methods:Using PCR and a pair of specific primers,mcrA was selectively amplified from total genomic DNA extracted from the microbial community in the root canal of endodontic infections.Positive clones were selected by blue-white screening,and the mcrA sequences were determined by DNA sequencing.Clustalx and Mega 4 software bags were used to analyze mcrA sequences.Phylogenetic analysis was carried out and the phylogenetic tree of methanogenic archaea was established.Results:Four root canals of endodontic infections were analyzed.We found one case positive for Methanogenic archaea.A phylogenetic tree based on functional gene mcrA was established.The mcrA fragments in endodontic infections showed high sequence similarity with Methanobrevi-bacter oralis.Conclusions:The diversity of Methanogenic archaea in the one sample from endodontic infections in this study was con-fined to Methanobrevibacter oralis-like sequence types.%目的:分析根管感染中产甲烷古细菌的多样性,建立基于功能基因--甲基辅酶 M 还原酶(methyl coenzyme M reduc-tase,MCR)基因α亚基(mcrA)的系统发育树。方法:利用一对特异性引物选择性扩增感染根管中产甲烷古细菌的 mcrA 片段,在此基础上建立 mcrA 克隆文库。通过蓝白斑筛选的方法,筛选出阳性重组克隆子,进一步通过基因测序获得重组克隆子中的插入片段 mcrA 序列。利用 Clustalx 和 Mega 4软件包分析 mcrA 序列,对其进行同源性比较和系统发育学分析。结果:4例根管样本的其中1例检出了产甲烷古细菌;构建了基于 mcrA 序列的系统发育树。随机选出的8个 mcrA 克隆片段高度同源,均为类口腔甲烷短杆菌序列型。结论:本例根管感染中产甲烷古细菌的多样性局限于类口腔甲烷短杆菌序列型。

  10. 南美白对虾养殖底泥中氨氧化细菌与氨氧化古菌多态性分析%Diversity of β-Proteobacterial ammonia-oxidizing bacteria and ammonia-oxidizing archaea in shrimp farm sediment

    Institute of Scientific and Technical Information of China (English)

    高利海; 林炜铁

    2011-01-01

    [目的]本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性.[方法]以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库.利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs).[结果]通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira).AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote).AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数日占克隆文库的57.45%.AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%.AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA.[结论]虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用.%[Objective]In order to study the diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in shrimp farm sediment.[Methods]Total microbial DNA was directly extracted from the shrimp farm sediment.The clone library of amoA genes were constructed with β-Proteobacterial-AOB and AOA specific primers.The library was screened by PCR-restriction fragment length polymorphism (RFLP) analysis and clones with unique RFLP patterns were sequenced.[Results]Phylogenetic analyses of the amoA gene fragments showed that all AOB sequences from shrimp farm sediment were affiliated with Nitrosomonas (61.54% ) or Nitrosomonas-like ( 38.46% ) species and

  11. 南海北部陆坡表层沉积物氨氧化古菌多样性初探%Diversity of Ammonia-Oxidizing Archaea in the Surface Sediments of the Northern Continental Slope of the South China Sea

    Institute of Scientific and Technical Information of China (English)

    刘国辉; 吴后波

    2016-01-01

    基于南海北部陆坡不同深度梯度3个站位表层沉积物古菌氨单加氧酶基因(amoA)文库,对3个站位氨氧化古菌进行多样性和系统发育学分析。多种方法构建的系统发育树表明:3个站位所有的amoA基因序列都隶属于奇古菌门中Group I分枝内的Group I.1a系群,且各站位之间氨氧化古菌多样性没有明显的差异。501站位黑色砂质沉积物中古菌amoA基因与该站位的16S rRNA基因的系统发育比对显示:这2种基因标记的系统发育树整体上具有潜在的对应关系,说明对样品的氨氧化古菌多样性分析比较全面且可靠;并进一步暗示该样品中氨的硝化作用主要由奇古菌门下的Group I.1a系群来执行。由此可以推测:Group I.1a系群可能在南海北部表层沉积物中氮素的生物地球化学循环过程中扮演重要的角色。%Surface sediment samples were taken from three sites of different water depths at the northern continental slope of the South China Sea to investigate the community structure of ammonia-oxidizing archaea (AOA). Polymerase chain reaction (PCR) was employedto amplify the archaealammonia monooxygenase αsubunit(amoA) gene of AOA. Amplicons of theamoAgene sequences were used to understand the diversity and phylogenetic relationship of AOA. The main results were as follows: 1) All of thearchaealamoAgenesequences from the three locations were affiliated toGroup I.1aThaumarchaeota; 2)all ofthe archaealamoAgene sequences from the three locations were phylogenetically closely related; and 3) the16S rRNA gene andamoAgene phylogenetic trees were ofcongruent topology.Thaumarchaeota accounted for 40% of the total archaea, indicating that AOA might play an important role in the nitrogen biogeochemical cycling in the surface sediments of the northern continental slope of the South China Sea.

  12. 长期施用氮肥和磷肥对渭北旱塬土壤中氨氧化古菌多样性的影响%Effects of Long-term Nitrogen and Phosphate Fertilization on Diversity of Ammonia-Oxidizing Archaea in Dry Highland Soil of Loess Plateau, China

    Institute of Scientific and Technical Information of China (English)

    武传东; 闫倩; 辛亮; 王保莉; 曲东

    2012-01-01

    Ammonia-oxidizing archaea are likely the most abundant ammonia-oxidizing microbes in natural environment and they also play an important role in nitrification. In order to improve nitrogen use efficiency and explicate the indicating function of ammonia-oxidizing ar-chaea( AOA) on changes of soil quality in the Loess Plateau, AOA community structure diversity was studied. The soil samples used in this research derived from Changwu Agro-ecological Experimental Station on the Loess Plateau, Chinese Academy of Sciences, which had received 23 years continuous fertilization treatments, include CK (control, without fertilizers), LD (unplanted, without fertilizers), N(nitrogen input), P(phosphorus input) and NP(combination of nitrogen and phosphorus fertilizers). The soil AOA community structure diversity was analyzed by restriction fragment length polymorphism(PCR-RFLP) and DNA sequence. Positive clones collected randomly from clone libraries were digested by Rsa I and Msp I, respectively. According to the statistics of diversity index, there were 25, 18, 29, 20 and 30 restriction endonuclease types(OTUs), respectively. The a diversity indices indicated that there was a pronounced difference among five fertilizer treatments. The OTUs were the highest in both P treatment and CK treatment, while the lowest in NP treatment. The rescaled distance matrix tree indicated that the different fertilization had weak convergence of AOA community types with the CK treatment soil. Phylogenetic tree of amoA gene amino acid sequences analysis showed all AOA sequences fell within cluster S and cluster M, but the proportions were different. These results indicated that long-term fertilization resulted in change of AOA community diversity; however, different fertilizer alkaline soil had no significant impact on the species composition of dominant AOA.%采用基于氨单加氧酶基因的PCR-RFLP和DNA测序技术,以黄土高原旱地黑垆土为材料,研究长期施用氮肥和磷肥对

  13. Characteristics of ammonia-oxidizing bacteria and ammonia-oxidizing archaea abundance in soil organic layer under the subalpine/alpine forest%亚高山/高山森林土壤有机层氨氧化细菌和氨氧化古菌丰度特征

    Institute of Scientific and Technical Information of China (English)

    王奥; 吴福忠; 何振华; 徐振锋; 刘洋; 谭波; 杨万勤

    2012-01-01

    Soil ammonia oxidizers play essential roles in nitrogen cycling in many forest ecosystems. Since the compositions and functions of soil ammonia oxidizer could be suffered from obviously seasonal snow cover and freeze-thaw cycles in high latitude/altitude region, there might be significant differences of soil ammonia oxidizer in different periods caused by seasonal freeze-thaw cycles. However, little attention has been paid to the variations of soil ammonia oxidizer in different key periods in subalpine/alpine regions. To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in subalpine and alpine forest, three representative forests ( primitive Abies faxoniana forest, PF; mixed A. faxoniana and Betula albosinensis forest, MF, and secondary A. faxoniana forest, SF) were selected in the alipine/ subalpine region of Western China. Soils were sampled in soil organic layer (OL) due to the sensitive responses to seasonal climate changes. Richness of ammonia oxidizers (ammonia-oxidizing bacteria, AOB; and ammonia-oxidizing archaea, AOA) in soil organic layer were characterized by a real-time quantitative PCR method from targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Based on previous investigations, we focused on nine key stages go through three periods as soil temperature varied ( 1 ) Growing period: including early growing stage, growing stage, and later growing stage. (2 ) Freeze period; including early freezing stage, freezing stage, and later frozen stage. ( 3 ) Thawing period: including early thawing stage, thawing stage and later thawing stage. Amounts of bacterial and archaeal amok gene were detected in soil organic layer under three subalpine and alpine forests. The abundance of both bacterial and archaeal amoA showed similar tendency in different key stages, which significantly decreased from growing period to freeze period and then significantly increased, suggesting the strongly effects of

  14. 牛粪堆肥高温期氨氧化古菌与氨氧化细菌的多样性分析%Diversity of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea at High Temperature Phase during the Livestock Manure Composting Process

    Institute of Scientific and Technical Information of China (English)

    孙志远; 晏磊; 王彦杰; 林匡飞; 李辉; 王伟东

    2013-01-01

    The transmutation and loss of nitrogen materials were effected significantly by ammonia-oxidizing microorganisms during the composting process. In order to detect the diversity of Ammonia-Oxidizing Archaea (AOA)and Ammonia-Oxidizing Bacteria (AOB),the monooxygenase gene (amoA)was used to analyze as the tag at high-temperature phase during the livestock manure composting process. The results showed that Nitrosomonas genus and Nitrosospira genus were the dominant genus of AOB,and the amount of clones accounted for 59.3% and 40.7% among the clone library at the high-temperature period,respectively,and the amount of Nitrosomonas was more dominant than that of the Nitrosospira. For communities of AOA,the amount of AOA resulting from soil were greatly more than that of AOA resulting from sea. The ratio of clones of soil AOA was 94.2%,but the ratio of sea AOA accounted for only 5.8%among all of AOA clones.%堆肥化过程中,氨氧化微生物对堆肥原料的氮素转化和氮损失影响重大。为了分析牛粪堆肥高温期微生物的多样性,研究以氨单加氧酶基因(amoA)为标记,分析了牛粪堆肥高温阶段氨氧化古菌(Ammonia-Oxidizing Archaea,AOA)和氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)菌群多样性。结果表明,在AOB类群中,亚硝化单胞菌属(Nitrosomonas)和亚硝化螺菌属(Nitrosospira)克隆子数量分别占整个克隆文库的59.3%和40.7%,它们是堆肥高温期的优势氨氧化细菌,但是Nitrosomonas的数量比Nitrosospira更占优势。在AOA群落中,soil/sediment菌群占据绝对数量优势,其克隆子数量占AOA文库的94.2%,sea/sediment菌群仅占5.8%。

  15. Past and future species definitions for Bacteria and Archaea

    OpenAIRE

    Rosselló-Mora, Ramón; Amann, Rudolf

    2015-01-01

    © 2015 Elsevier GmbH. Species is the basic unit of biological diversity. However, among the different microbiological disciplines there is an important degree of disagreement as to what this unit may be. In this minireview, we argue that the main point of disagreement is the definition (i.e. the way species are circumscribed by means of observable characters) rather than the concept (i.e. the idea of what a species may be as a unit of biodiversity, the meaning of the patterns of recurrence ob...

  16. Exploring the evolution of protein function in Archaea

    OpenAIRE

    Goncearenco Alexander; Berezovsky Igor N

    2012-01-01

    Abstract Background Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. Results We analyzed distant evo...

  17. Complex archaea that bridge the gap between prokaryotes and eukaryotes.

    Science.gov (United States)

    Spang, Anja; Saw, Jimmy H; Jørgensen, Steffen L; Zaremba-Niedzwiedzka, Katarzyna; Martijn, Joran; Lind, Anders E; van Eijk, Roel; Schleper, Christa; Guy, Lionel; Ettema, Thijs J G

    2015-05-14

    The origin of the eukaryotic cell remains one of the most contentious puzzles in modern biology. Recent studies have provided support for the emergence of the eukaryotic host cell from within the archaeal domain of life, but the identity and nature of the putative archaeal ancestor remain a subject of debate. Here we describe the discovery of 'Lokiarchaeota', a novel candidate archaeal phylum, which forms a monophyletic group with eukaryotes in phylogenomic analyses, and whose genomes encode an expanded repertoire of eukaryotic signature proteins that are suggestive of sophisticated membrane remodelling capabilities. Our results provide strong support for hypotheses in which the eukaryotic host evolved from a bona fide archaeon, and demonstrate that many components that underpin eukaryote-specific features were already present in that ancestor. This provided the host with a rich genomic 'starter-kit' to support the increase in the cellular and genomic complexity that is characteristic of eukaryotes.

  18. Dynamics of ammonia-oxidizing archaea and ammonia-oxidizing bacteria during composting of chicken manure and mushroom cultural waste%鸡粪菌渣好氧堆肥过程中氨氧化古菌及氨氧化细菌群落的动态变化

    Institute of Scientific and Technical Information of China (English)

    邱珊莲; 张少平; 翁伯琦; 罗涛; 林霜霜; 何炎森

    2016-01-01

    以amoA 基因为标记,通过Real-Time PCR和限制性片段长度多态性(Restriction fragment length polymorphism,RFLP)法对鸡粪菌渣好氧堆肥过程中的氨氧化古菌(Ammonia-oxidizing archaea, AOA)和氨氧化细菌(Ammonia-oxidizing bacteria, AOB)进行了丰度及群落结构的分析。结果表明,在堆制初期、好氧发酵高温期及后熟期,AOB的amoA 基因丰度均占主导优势,是AOA的38~992倍。进入好氧发酵高温期,AOA amoA 基因丰度下降至发酵前的0.9%,AOB下降至17.6%,后熟期AOA与AOB的amoA基因丰度与好氧发酵高温期相当。在上述3个阶段AOA与AOB各自存在一个绝对优势菌群,分别为Cluster 3和Nitrosomonas europaea,其中Cluster 3克隆子数目分别占整个克隆文库的70.73%、54.28%、72.45%,Nitrosomonas europaea克隆子数目分别占整个克隆文库的78.44%、93.20%、94.27%。堆肥3个阶段AOA的多样性指数变化不大,Shannon-Wiener值维持在1.53~1.60,但群落结构发生明显演替,随着堆肥温度升高,堆肥前期的一些菌群(Cluster 4、Cluster 5、Cluster 6)逐渐消失,新的菌群Cluster 1出现并成为堆肥中后期的第二大优势菌群。AOB无论是多样性指数还是群落组成,都发生剧烈的变化。AOB在堆肥前期Shannon-Wiener指数值最大(1.47),种群数最多(6个基因簇,分别为 Nitrosomonas europaea Cluster,Nitrosomonas halophila Cluster,Nitrosomonas communis Cluster,Nitrosomonas nitrosa Cluster,Nitrosospira briensis Cluster,Nitrosospira multiformis Cluster);进入高温发酵期,Shannon-Wiener下降至0.45,群落结构单一,只有Nitrosomonas europaea Cluster和Nitrosomonas halophila Cluster;进入后熟期,AOB多样性及种群数得到一定程度的回升。%The transformation and loss of nitrogen in composting materials were affected profoundly by ammonia oxidizers during the com-posting process. The abundance and composition of

  19. 两个 CANON 污水处理系统中氨氧化古菌的丰度和多样性研究%Abundance and Community Composition of Ammonia-Oxidizing Archaea in Two Completely Autotrophic Nitrogen Removal over Nitrite Systems

    Institute of Scientific and Technical Information of China (English)

    高景峰; 李婷; 张树军; 樊晓燕; 潘凯玲; 马谦; 袁亚林

    2015-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification, which was thought to be only performed by ammonia-oxidizing bacteria (AOB). In recent years, ammonia-oxidizing archaea (AOA) was also confirmed to take part in ammonia oxidation. The diversity and abundance of AOA have been investigated in various environments, however, little is known regarding the AOA in the completely autotrophic nitrogen removal over nitrite ( CANON) wastewater treatment process. In this study, the abundance and diversity of AOA were investigated in the biofilm and flocculent activated sludge collected in a lab-scale (L) CANON system and a pilot-scale (P) CANON systems, respectively. The quantitative real time PCR (qPCR) was applied to investigate the abundance of AOA and the diversity of AOA was determined by polymerase chain reaction ( PCR), cloning and sequencing. The qPCR results showed that the average abundance of AOA amoA gene of L and P was 2. 42 × 106 copies·g - 1 dry sludge and 6. 51 × 106 copies·g - 1 dry sludge, respectively. The abundance of AOA in biofilm was 10. 1-14. 1 times higher than that in flocculent activated sludge. For P system, the abundance of AOA in flocculent activated sludge was 1. 8 times higher than that in biofilm. The results indicated that the abundance of AOA might be affected by different sludge morphology. The diversity of AOA in P system was extremely limited, only one OTU was observed, which was classified into Nitrosopumilus subcluster 5. 2. The diversity of AOA in L system was higher, eight OTUs were observed, which were classified into five genera: Nitrososphaera subcluster 9, subcluster 8. 1, subcluster 4. 1, subcluster 1. 1 and Nitrosopumilus subcluster 5. 2. The diversity and abundance of AOA were different in CANON systems with different sludge morphology. AOA may play an important role in ammonia oxidation in CANON system.%近期,氨氧化古菌(ammonia-oxidizing archaea,AOA)在各类环境中的发现,打破了人们原

  20. 氨氧化细菌和氨氧化古菌在百花湖沉积物中的垂直分布%Vertical Distribution of Ammonia Oxidizing Bacteria (AOB)and Ammonia Oxidizing Archaea (AOA)in the Sediments of Lake Baihua

    Institute of Scientific and Technical Information of China (English)

    梁龙; 梁小兵

    2014-01-01

    采用定量氨单加氧酶基因(amoA)的荧光定量 PCR(qPCR)方法,分析了氨氧化细菌(AOB)和氨氧化古菌(AOA)在百花湖沉积物中的垂直分布。以氨单加氧酶基因(amoA)数量来衡量氨氧化细菌(AOB)和氨氧化古菌(AOA),结果表明:百花湖沉积物中 AOA 的 amoA 基因数量在1.74×105~2.00×106拷贝/克沉积物(湿重)之间,且22~30 cm 的各层沉积物中, AOA 的数量是1~21 cm 各层沉积物的2倍左右;AOB 的 amoA 基因在百花湖沉积物中的数量随深度的增加变化不大,其拷贝数在6.10×106~3.88×107拷贝/g 沉积物(湿重)之间;AOB 与 AOA 的 amoA 基因的比例在浅层沉积物和深层沉积物中存在一定的差异。这些结果表明 AOB 和 AOA 都参与百花湖沉积物中的氨氧化作用,从两类微生物的数量来看,AOB 是参与百花湖沉积物中氨氧化作用的主要微生物,而 AOA 对氨氧化作用的贡献则随着沉积物深度的增加而提高。%The vertical distributions of ammonia-oxidizing bacteria (AOB)and ammonia-oxidizing archaea (AOA)in the sediments of Lake Baihua were analyzed using the qPCR method.Abundances of AOA and AOB were analyzed in terms of the amoA gene copy number.The results showed that the numbers of AOA amoA gene were between 1 .74×10 5 ~2.00×10 6 copies/gram sediment (wet),with significant differences between in shallow and deep sedi-ments.In contrast,the quantities of AOB amoA gene were 6.10 × 10 6 ~3.88 × 10 7 copies/gram sediment (wet) with no obvious variation in sediment layers of different depths.The ratios of AOB and AOA such changed within different sediment layers.These results indicated that both AOB and AOA participated in the ammonia oxidizing processes in sediments of the Lake Baihua.We concluded that AOB is the primary ammonia oxidizing microorgan-ism because of its high abundance,while AOA plays a more important role in deep than in shallow sediments of the Lake Baihua.

  1. Effects of Long-term Fertilization on Diversity of AmmoniaOxidizing Archaea Communities and Abundance in Dry Highland Soil of Loess Plateau%长期施肥对黄土旱塬黑垆土氨氧化古菌群落多样性和丰度的影响

    Institute of Scientific and Technical Information of China (English)

    武传东; 辛亮; 李秀颖; 王保莉; 曲东

    2011-01-01

    [Objective] In order to improve the efficiency of nitrogen utilization and explicate the function of ammonia-oxidizing archaea (AOA) under the changes of soil quality in the Loess Plateau, the community structure diversity and abundance of AOA were studied. [Method] The influence of long-term fertilization treatments including CK, M, NM, PM and NPM on soil AOA community structure diversity and amoA gene copy numbers were analyzed by restriction fragment length polymorphism (PCR-RFLP) and real-time PCR. [Result] From the clone libraries of the different fertilization treatments, there were 25,18,29,20 and 30 restriction endonuclease types, respectively. The a diversity indices indicated that there was a pronounced difference among five fertilizer treatments. The OTUs was the highest in NPM treatment and the lowest diversity in M treatment. The rescaled distance matrix tree indicated that the different fertilization had the largest convergence coefficient of AOA community types with the CK treatment soil, so the different fertilization led to significant changes of AOA communities. The amoA gene copy numbers of AOA changes were different among the treatments, whereas the highest copy numbers were detected in the NPM treatment, and had a pronounced difference with other fertilizer treatments. All preponderant sequences of AOA fell within soils/fresh water sediments based on phylogenetic tree of amoA gene amino acid sequences analysis. [Conclusion] Long-term fertilization resulted in changes of AOA community diversity and abundance.%[目的]研究长期不同施肥制度下黄土旱塬黑垆土氨氧化古菌群落多样性和丰度的变化,为提高黄土高原地区氮素利用效率、检测土壤质量变化提供重要依据.[方法]利用PCR-RFLP技术和Real-time PCR技术分析无肥(cK)、有机肥(M)、氮肥+有机肥(NM)、磷肥+有机肥(PM)、氮磷肥+有机肥(NPM)等5种长期施肥处理对土壤氨氧化古菌群落结

  2. 不同施肥方式对红壤蔬菜田氨氧化细菌和氨氧化古菌群落的影响%Effect of Different Fertilization on Ammonia-oxidizing bacteria and Ammonia-oxidizing archaea in Red Soil Vegetable Field

    Institute of Scientific and Technical Information of China (English)

    周志成; 罗葵; 唐前君; 荣湘民; 刘强; 何飞飞

    2015-01-01

    通过构建氨单加氧酶基因(amoA)克隆文库,研究在红壤蔬菜田上只施用磷钾化肥(PK)、只施氮磷钾化肥(NPK)、施用腐熟有机肥(DNPK)和施用新鲜有机肥(FNPK)等4种不同施肥处理的土壤氨氧化细菌(AOB)和氨氧化古菌(AOA)群落多样性及与土壤脲酶活性的相关性。结果表明:施加有机肥处理(DNPK和FNPK)的蔬菜田土壤的AOB文库和AOA文库OTU数量和Shannon指数高于只施用无机肥(NPK和PK)处理的蔬菜田土壤;DNPK和FNPK处理的土壤优势AOB菌群为多形亚硝化叶菌(Nitrosolobus multiformis),比例分别为88.5%和68.5%,NPK和PK处理的土壤优势AOB菌群为亚硝化单胞菌属(Nitrosospira sp.),比例分别为54.8%和65.5%;DNPK、FNPK、NPK和PK处理土壤优势AOA菌群均为阿伯丁土壤亚硝化细杆菌侯选种(CandidatusNitrosotalea devanaterra),比例分别为90.9%、84.4%、77.8%和45.2%;施加有机肥处理(DNPK和FNPK)的土壤脲酶活性和氨氧化微生物的多样性指数都高于只施用无机肥处理(NPK和PK);AOA群落多样性指数与土壤脲酶活性呈显著正相关,而AOB群落多样性与土壤脲酶活性相关性不显著。总体来看,有机肥比无机肥处理提高了AOA和AOB群落多样性,且AOA在红壤蔬菜田土壤氨氧化过程中起着更为重要的作用。%AdoptingamoA gene clone library construction method,this paper studied the diversity of ammonia-oxidizing bacteria(AOB) and ammonia-oxidizing archaea (AOA)and correlations between diversity index and urease activity in red soil vegetable field by different fertilization including decomposed organic fertilizer (DNPK),fresh organic fertilizer(FNPK),Nitrogen,Phosphorus and Potassium chemical fertilizer(NPK), Phosphorus and Potassium chemical fertilizer(PK).The results showed that OTU quantity,Shannon index of AOB library and AOA library represented organic fertilizer (DNPK and FNPK

  3. Effects of Long Term Application of Urea on Ammonia Oxidizing Archaea Community in Black Soil in Northeast China%长期施用尿素对东北黑土中氨氧化古菌群落的影响

    Institute of Scientific and Technical Information of China (English)

    周晶; 姜昕; 周宝库; 马鸣超; 关大伟; 赵百锁; 陈三凤; 李俊

    2016-01-01

    variation. What’s more, phylogenetic analysis demonstrated that the AOA in black soil in the Northeast of China belonged two categories Nitrososphaera andNitrosotalea, 99.3% ofArch-amoA sequences in fertilizer treatment without urea and 90.1% ofArch-amoA sequences in fertilizer treatment with one-time urea addition belonged to Nitrososphaera, and 67.9% ofArch-amoAsequences with two-time urea addition belonged toNitrosotalea.[Conclusion]Our research demonstrated the effects of long-term different fertilization on the ammonia oxidizing archaea community, and found out important factors for determining bacterial structures. AOA Arch-amoA copy numbers and communities in black soil with long term urea addition were strongly affected by different doses of urea. AOA diversity in one-time urea treatments increased while that in two-time urea treatment decreased. It is concluded that soil pH, water soluble organic carbon and nitrate nitrogen concentration were the main factors affecting AOA community variation. The results may be greatly meaningful to the rational utilization of fertilizer and agricultural sustainable development.%【目的】表征34年施肥条件下东北黑土中氨氧化古菌(AOA)群落特征,明确不同尿素水平对其丰度和群落结构的影响,并与土壤化学性质进行关联分析,探讨引起影响东北黑土中AOA群落变化的主效环境因子,为进一步揭示黑土土壤硝化作用过程和机制,以及改良施肥方式提供依据。【方法】依托黑龙江省农业科学院34年长期定位试验,选取3组不同施肥处理:无尿素组(对照CK和磷钾处理PK)、一倍尿素组(单施一倍氮肥处理N1,氮磷处理NP,氮磷钾处理NPK和氮钾处理NK)和二倍尿素组(单施二倍氮肥处理N2)共7个处理的耕层土壤为研究对象,借助454高通量测序和Real-time PCR技术,以AOAArch-amoA基因为分子标靶,解析不同尿素水平对黑土中AOA群落组成和丰度

  4. Biochemical and structural characterization of DNA ligases from bacteria and archaea

    Science.gov (United States)

    Pergolizzi, Giulia; Wagner, Gerd K.; Bowater, Richard P.

    2016-01-01

    DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterization. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5′-phosphate of the DNA end that will ultimately be joined to the 3′-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use β-nicotinamide adenine dinucleotide (β-NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5′-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β-NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesized novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes. PMID:27582505

  5. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples.

    Science.gov (United States)

    Guillén-Navarro, Karina; Herrera-López, David; López-Chávez, Mariana Y; Cancino-Gómez, Máximo; Reyes-Reyes, Ana L

    2015-11-01

    DNA extraction from environmental samples is a critical step for metagenomic analysis to study microbial communities, including those considered uncultivable. Nevertheless, obtaining good quality DNA in sufficient quantities for downstream methodologies is not always possible, and it depends on the complexity and stability of each ecosystem, which could be more problematic for samples from tropical regions because those ecosystems are less stable and more complex. Three laboratory methods for the extraction of nucleic acids from samples representing unstable (decaying coffee pulp and mangrove sediments) and relatively stable (compost and soil) environments were tested. The results were compared with those obtained using two commercial DNA extraction kits. The quality of the extracted DNA was evaluated by PCR amplification to verify the recovery of bacterial, archaeal, and fungal genetic material. The laboratory method that gave the best results used a lysis procedure combining physical, chemical, and enzymatic steps.

  6. Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

    NARCIS (Netherlands)

    Pitcher, A.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and

  7. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean.

    Science.gov (United States)

    Orsi, William D; Smith, Jason M; Liu, Shuting; Liu, Zhanfei; Sakamoto, Carole M; Wilken, Susanne; Poirier, Camille; Richards, Thomas A; Keeling, Patrick J; Worden, Alexandra Z; Santoro, Alyson E

    2016-09-01

    Dissolved organic nitrogen (DON) supports a significant amount of heterotrophic production in the ocean. Yet, to date, the identity and diversity of microbial groups that transform DON are not well understood. To better understand the organisms responsible for transforming high molecular weight (HMW)-DON in the upper ocean, isotopically labeled protein extract from Micromonas pusilla, a eukaryotic member of the resident phytoplankton community, was added as substrate to euphotic zone water from the central California Current system. Carbon and nitrogen remineralization rates from the added proteins ranged from 0.002 to 0.35 μmol C l(-1) per day and 0.03 to 0.27 nmol N l(-1) per day. DNA stable-isotope probing (DNA-SIP) coupled with high-throughput sequencing of 16S rRNA genes linked the activity of 77 uncultivated free-living and particle-associated bacterial and archaeal taxa to the utilization of Micromonas protein extract. The high-throughput DNA-SIP method was sensitive in detecting isotopic assimilation by individual operational taxonomic units (OTUs), as substrate assimilation was observed after only 24 h. Many uncultivated free-living microbial taxa are newly implicated in the cycling of dissolved proteins affiliated with the Verrucomicrobia, Planctomycetes, Actinobacteria and Marine Group II (MGII) Euryarchaeota. In addition, a particle-associated community actively cycling DON was discovered, dominated by uncultivated organisms affiliated with MGII, Flavobacteria, Planctomycetes, Verrucomicrobia and Bdellovibrionaceae. The number of taxa assimilating protein correlated with genomic representation of TonB-dependent receptor (TBDR)-encoding genes, suggesting a possible role of TBDR in utilization of dissolved proteins by marine microbes. Our results significantly expand the known microbial diversity mediating the cycling of dissolved proteins in the ocean.

  8. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges.

    Directory of Open Access Journals (Sweden)

    Stephen A Jackson

    Full Text Available Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ~60% and ~72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (~11% of sequences. Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity identified in sponges, with 4 and 6 dominant OTUs comprising ~88% and ~89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (~0.2% and ~0.3% of sequences were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

  9. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    of nitrogenous organic matter, thereby controlling the productivity of coastal and estuarine environments. Our understanding about the microorganisms involved in ammonia oxidation has evolved substantially in the last two decades with the identification....e., either AOB coupled or/with anammox or nitrite oxidizing bacteria (NOB) and the responses to environmental changes [3-6]. AOA were initially considered as an inhabitant of only the open ocean and extreme environments, but their presence in coastal...

  10. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea

    DEFF Research Database (Denmark)

    Lloyd, Karen; Teske, Andreas; Alperin, Marc J.

    2011-01-01

    versus methane production in sediments from the White Oak River estuary, North Carolina. ANME-1 consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA), the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 exist as single rod...

  11. Highly resistant methanogenic archaea from Siberian permafrost as candidates for the possible life on Mars

    OpenAIRE

    Daria Morozova; Dirk Wagner;  ,

    2007-01-01

    The characterizations of survival potential of microorganisms which are able to thrive in extreme environments are receiving a great attention in astrobiological research as driven by the possibility of their existence in extraterrestrial extreme niches. Speculations about lithoautotrophic subsurface life on Mars are arising since ESA mission Mars Express determined water existence on Mars, fundamental requirement for life, and presence of CH4 in the Martian atmosphere, which could be origina...

  12. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times

    OpenAIRE

    Helga Stan-Lotter; Sergiu Fendrihan

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomuc...

  13. New primers for detecting and quantifying denitrifying anaerobic methane oxidation archaea in different ecological niches.

    Science.gov (United States)

    Ding, Jing; Ding, Zhao-Wei; Fu, Liang; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2015-11-01

    The significance of ANME-2d in methane sink in the environment has been overlooked, and there was no any study evaluating the distribution of ANME-2d in the environment. New primers were thus needed to be designed for following research. In this paper, a pair of primers (DP397F and DP569R) was designed to quantify ANME-2d. The specificity and amplification efficiency of this primer pair were acceptable. PCR amplification of another pair of primers (DP142F and DP779R) generated a single, bright targeted band from the enrichment sample, but yielded faint, multiple bands from the environmental samples. Nested PCR was conducted using the primers DP142F/DP779R in the first round and DP142F/DP569R in the second round, which generated a bright targeted band. Further phylogenetic analysis showed that these targeted bands were ANME-2d-related sequences. Real-time PCR showed that the copies of the 16s ribosomal RNA gene of ANME-2d in these samples ranged from 3.72 × 10(4) to 2.30 × 10(5) copies μg(-1) DNA, indicating that the percentage of ANME-2d was greatest in a polluted river sample and least in a rice paddy sample. These results demonstrate that the newly developed real-time PCR primers could sufficiently quantify ANME-2d and that nested PCR with an appropriate combination of the new primers could successfully detect ANME-2d in environmental samples; the latter finding suggests that ANME-2d may spread in environments. PMID:26300291

  14. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea.

    Science.gov (United States)

    Thombre, Rebecca S; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

  15. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea

    Science.gov (United States)

    Thombre, Rebecca S.; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300–400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death. PMID:27679615

  16. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    OpenAIRE

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nu...

  17. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    Science.gov (United States)

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    Terrestrial sediments are an important global reservoir for methane. Microorganisms in the deep subsurface play a critical role in the methane cycle, yet much remains to be learned about their diversity and metabolisms. To provide more comprehensive insight into the microbiology of the methane cycle in the deep subsurface, we conducted a genome-resolved study of samples collected from the Horonobe Underground Research Laboratory (HURL), Japan. Groundwater samples were obtained from three boreholes from a depth range of between 140 m and 250 m in two consecutive years. Groundwater was filtered and metagenomic DNA extracted and sequenced, and the sequence data assembled. Based on the sequences of phylogenetically informative genes on the assembled fragments, we detected a high degree of overlap in community composition across a vertical transect within one borehole at the two sampling times. However, there was comparatively little similarity observed among communities across boreholes. Spatial and temporal abundance patterns were used in combination with tetranucleotide signatures of assembled genome fragments to bin the data and reconstruct over 200 unique draft genomes, of which 137 are considered to be of high quality (>90% complete). The deepest samples from one borehole were highly dominated by an archaeon identified as ANME-2D; this organism was also present at lower abundance in all other samples from that borehole. Also abundant in these microbial communities were novel members of the Gammaproteobacteria, Saccharibacteria (TM7) and Tenericute phyla. Notably, a ~2 Mbp draft genome for the ANME-2D archaeon was reconstructed. As expected, the genome encodes all of the genes predicted to be involved in the reverse methanogenesis pathway. In contrast with the previously reported ANME2-D genome, the HURL ANME-2D genome lacks the capacity to reduce nitrate. However, we identified many multiheme cytochromes with closest similarity to those of the known Fe-reducing/oxidizing archaeon Ferroglobus placidus. Thus, we suggest that ANME2-D may couple methane oxidation to reduction of ferric iron minerals in the sediment and may be generally important as a link between the iron and methane cycles in deep subsurface environments. Such information has important implications for modeling the global carbon cycle.

  18. A korarchaeal genome reveals insights into the evolution of the Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain J; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Celine; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul; Keller, Martin; Stetter, Karl O.

    2008-06-05

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name,"Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

  19. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community.

    Science.gov (United States)

    Crits-Christoph, Alexander; Gelsinger, Diego R; Ma, Bing; Wierzchos, Jacek; Ravel, Jacques; Davila, Alfonso; Casero, M Cristina; DiRuggiero, Jocelyne

    2016-06-01

    Halite endoliths in the Atacama Desert represent one of the most extreme ecosystems on Earth. Cultivation-independent methods were used to examine the functional adaptations of the microbial consortia inhabiting halite nodules. The community was dominated by haloarchaea and functional analysis attributed most of the autotrophic CO2 fixation to one unique cyanobacterium. The assembled 1.1 Mbp genome of a novel nanohaloarchaeon, Candidatus Nanopetramus SG9, revealed a photoheterotrophic life style and a low median isoelectric point (pI) for all predicted proteins, suggesting a 'salt-in' strategy for osmotic balance. Predicted proteins of the algae identified in the community also had pI distributions similar to 'salt-in' strategists. The Nanopetramus genome contained a unique CRISPR/Cas system with a spacer that matched a partial viral genome from the metagenome. A combination of reference-independent methods identified over 30 complete or near complete viral or proviral genomes with diverse genome structure, genome size, gene content and hosts. Putative hosts included Halobacteriaceae, Nanohaloarchaea and Cyanobacteria. Despite the dependence of the halite community on deliquescence for liquid water availability, this study exposed an ecosystem spanning three phylogenetic domains, containing a large diversity of viruses and predominance of a 'salt-in' strategy to balance the high osmotic pressure of the environment. PMID:26914534

  20. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times

    Directory of Open Access Journals (Sweden)

    Helga Stan-Lotter

    2015-07-01

    Full Text Available Halophilic archaebacteria (Haloarchaea can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite, and some are known from other prokaryotes (dwarfing of cells, reduction of ATP. Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages—remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival.

  1. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates

    Science.gov (United States)

    Sorokin, Dimitry Y.; Toshchakov, Stepan V.; Kolganova, Tatyana V.; Kublanov, Ilya V.

    2015-01-01

    Until recently, extremely halophilic euryarchaeota were considered mostly as aerobic heterotrophs utilizing simple organic compounds as growth substrates. Almost nothing is known on the ability of these prokaryotes to utilize complex polysaccharides, such as cellulose, xylan, and chitin. Although few haloarchaeal cellulases and chitinases were recently characterized, the analysis of currently available haloarchaeal genomes deciphered numerous genes-encoding glycosidases of various families including endoglucanases and chitinases. However, all these haloarchaea were isolated and cultivated on simple substrates and their ability to grow on polysaccharides in situ or in vitro is unknown. This study examines several halo(natrono)archaeal strains from geographically distant hypersaline lakes for the ability to grow on insoluble polymers as a sole growth substrate in salt-saturated mineral media. Some of them belonged to known taxa, while other represented novel phylogenetic lineages within the class Halobacteria. All isolates produced extracellular extremely salt-tolerant cellulases or chitinases, either cell-free or cell-bound. Obtained results demonstrate a presence of diverse populations of haloarchaeal cellulo/chitinotrophs in hypersaline habitats indicating that euryarchaea participate in aerobic mineralization of recalcitrant organic polymers in salt-saturated environments. PMID:26441877

  2. Neuartige Glucose-6-Phosphat Isomerasen und Glucosamin-6-Phosphat Deaminasen in Archaea

    OpenAIRE

    Schlichting, Bettina

    2007-01-01

    In der vorliegenden Arbeit wurden Glucose-6-Phosphat Isomerasen (PGIs) und archaeelle Glucosamin-6-Phosphat Deaminasen (GPDAs) untersucht sowie erstmalig die Aktivität einer archaeellen Glutamin:Fructose-6-Phosphat Transaminase nachgewiesen. Neuartige PGIs aus Methanothermobacter thermoautotrophicus, Methanosphaera stadtmanae, Thermoplasma acidophilum und Salmonella enterica serovar typhimurium sowie eine klassische PGI aus Thermotoga maritima wurden als rekombinante Proteine gereinigt und...

  3. Towards a taxonomy of Bacteria and Archaea based on interactive and cumulative data repositories.

    Science.gov (United States)

    Rosselló-Móra, Ramon

    2012-02-01

    Taxonomy in the second decade of the 21st century is benefiting from technological advances in molecular microbiology, especially those related to genomics. Gene and genome databases are significantly increasing due to intense research activities in the field of molecular ecology and genomics. Taxa, and especially species, are tailored by means of the recognition of a phylogenetic, genomic and phenotypic coherence that reveal their uniqueness in the classification schema. Phylogenetic coherence is mainly revealed by means of 16S rRNA gene analyses for which curated databases such as EzTaxon and LTP provide a valuable tool for tree reconstruction to taxonomy users. On the other hand, in silico full or partial genomic sequence comparisons are called on to substitute cumbersome techniques such as DNA-DNA hybridization (DDH) to genomically circumscribe species. DDH similarity values around 70% would be equivalent to ANI values of 96%. Finally, finding an exclusive phenotypic property for the taxa to be classified is of paramount relevance to producing an operative and predictive classification system. The current methods used for taxonomic classification require significant laboratory experimentation, and generally will not produce interactive databases. The new high-throughput metabolomic technologies, such as ICR-FT and MALDI-TOF mass spectrometry methods, open the door to the construction of metabolic databases for taxonomic purposes. It is to be foreseen that, in the future, taxonomists will benefit significantly from public databases speeding up the classification process. However, serious effort will be needed to harmonize them and to prevent inaccurate material. PMID:21958017

  4. Seasonal Community and Population Dynamics of Pelagic Bacteria and Archaea in a High Mountain Lake

    OpenAIRE

    Pernthaler, Jakob; Glöckner, Frank-Oliver; Unterholzner, Stefanie; Alfreider, Albin; Psenner, Roland; Amann, Rudolf

    1998-01-01

    The seasonal variations in community structure and cell morphology of pelagic procaryotes from a high mountain lake (Gossenköllesee, Austria) were studied by in situ hybridization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and image-analyzed microscopy. Compositional changes and biomass fluctuations within the assemblage were observed both in summer and beneath the winter ice cover and are discussed in the context of physicochemical and biotic parameters. Proteobac...

  5. Fermentation enhancement of methanogenic archaea consortia from an Illinois basin coalbed via DOL emulsion nutrition.

    Science.gov (United States)

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  6. Fermentation enhancement of methanogenic archaea consortia from an Illinois basin coalbed via DOL emulsion nutrition.

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    Full Text Available Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate.

  7. Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea

    Directory of Open Access Journals (Sweden)

    Raddatz Günter

    2007-11-01

    Full Text Available Abstract Background Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. Results A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. Conclusion For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved. For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed.

  8. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil

    NARCIS (Netherlands)

    Daebeler, A.; Gansen, M.; Frenzel, P.

    2013-01-01

    The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH3F) caused surprisingly

  9. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Celine; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul; Keller, Martin; Stetter, Karl O.

    2008-01-07

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, ?Candidatus Korarchaeum cryptofilum,? which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

  10. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    Science.gov (United States)

    Needham, David M; Fuhrman, Jed A

    2016-01-01

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates. PMID:27572439

  11. Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria

    Directory of Open Access Journals (Sweden)

    Ugalde Juan A

    2011-10-01

    Full Text Available Abstract Based on unique, coherent properties of phylogenetic analysis, key amino acid substitutions and structural modeling, we have identified a new class of unusual microbial rhodopsins related to the Anabaena sensory rhodopsin (ASR protein, including multiple homologs not previously recognized. We propose the name xenorhodopsin for this class, reflecting a taxonomically diverse membership spanning five different Bacterial phyla as well as the Euryarchaeotal class Nanohaloarchaea. The patchy phylogenetic distribution of xenorhodopsin homologs is consistent with historical dissemination through horizontal gene transfer. Shared characteristics of xenorhodopsin-containing microbes include the absence of flagellar motility and isolation from high light habitats. Reviewers: This article was reviewed by Dr. Michael Galperin and Dr. Rob Knight.

  12. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  13. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines

    Directory of Open Access Journals (Sweden)

    Renxing eLiang

    2014-03-01

    Full Text Available Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55 oC. Most-probable number (MPN analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy, while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  14. An Antimethanogenic Nutritional Intervention in Early Life of Ruminants Modifies Ruminal Colonization by Archaea

    Directory of Open Access Journals (Sweden)

    Leticia Abecia

    2014-01-01

    Full Text Available The aim of this work was to study whether feeding a methanogen inhibitor from birth of goat kids and their does has an impact on the archaeal population colonizing the rumen and to what extent the impact persists later in life. Sixteen goats giving birth to two kids were used. Eight does were treated (D+ with bromochloromethane after giving birth and over 2 months. The other 8 goats were not treated (D−. One kid per doe in both groups was treated with bromochloromethane (k+ for 3 months while the other was untreated (k−, resulting in four experimental groups: D+/k+, D+/k−, D−/k+, and D−/k−. Rumen samples were collected from kids at weaning and 1 and 4 months after (3 and 6 months after birth and from does at the end of the treating period (2 months. Pyrosequencing analyses showed a modified archaeal community composition colonizing the rumen of kids, although such effect did not persist entirely 4 months after; however, some less abundant groups remained different in treated and control animals. The different response on the archaeal community composition observed between offspring and adult goats suggests that the competition occurring in the developing rumen to occupy different niches offer potential for intervention.

  15. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.

    Science.gov (United States)

    Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K

    2013-10-01

    Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.

  16. Protein–DNA binding dynamics predict transcriptional response to nutrients in archaea

    Science.gov (United States)

    Todor, Horia; Sharma, Kriti; Pittman, Adrianne M. C.; Schmid, Amy K.

    2013-01-01

    Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators. PMID:23892291

  17. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.

    Science.gov (United States)

    McDonald, Daniel; Price, Morgan N; Goodrich, Julia; Nawrocki, Eric P; DeSantis, Todd Z; Probst, Alexander; Andersen, Gary L; Knight, Rob; Hugenholtz, Philip

    2012-03-01

    Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a 'taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408,315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.

  18. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    OpenAIRE

    Horak, Rachel E. A.; Qin, Wei; Schauer, Andy J; Armbrust, E. Virginia; Ingalls, Anitra E; Moffett, James W.; Stahl, David A.; Devol, Allan H.

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcr...

  19. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    Science.gov (United States)

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH. PMID:25501889

  20. Intact polar lipids of ammonia-oxidizing Archaea: structural diversity application in molecular ecology

    NARCIS (Netherlands)

    Pitcher, A.M.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by non-extremophilic Crenarchaeota to interpret the presence,

  1. Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times.

    Science.gov (United States)

    Stan-Lotter, Helga; Fendrihan, Sergiu

    2015-01-01

    Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival-halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages-remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival. PMID:26226005

  2. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

    OpenAIRE

    Woese, C R; Kandler, O.; Wheelis, M. L.

    1990-01-01

    Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, t...

  3. Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples.

    Science.gov (United States)

    Guillén-Navarro, Karina; Herrera-López, David; López-Chávez, Mariana Y; Cancino-Gómez, Máximo; Reyes-Reyes, Ana L

    2015-11-01

    DNA extraction from environmental samples is a critical step for metagenomic analysis to study microbial communities, including those considered uncultivable. Nevertheless, obtaining good quality DNA in sufficient quantities for downstream methodologies is not always possible, and it depends on the complexity and stability of each ecosystem, which could be more problematic for samples from tropical regions because those ecosystems are less stable and more complex. Three laboratory methods for the extraction of nucleic acids from samples representing unstable (decaying coffee pulp and mangrove sediments) and relatively stable (compost and soil) environments were tested. The results were compared with those obtained using two commercial DNA extraction kits. The quality of the extracted DNA was evaluated by PCR amplification to verify the recovery of bacterial, archaeal, and fungal genetic material. The laboratory method that gave the best results used a lysis procedure combining physical, chemical, and enzymatic steps. PMID:26014885

  4. Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea.

    Science.gov (United States)

    Thombre, Rebecca S; Shinde, Vinaya; Thaiparambil, Elvina; Zende, Samruddhi; Mehta, Sourabh

    2016-01-01

    Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death. PMID:27679615

  5. ExtremeDB: a unified web repository of extremophilic archaea and bacteria.

    Directory of Open Access Journals (Sweden)

    Manash Chandra Majhi

    Full Text Available Extremophiles are the microorganisms which can survive under extreme conditions of temperature, pressure, pH, salinity etc. They have gained much attention for their potential role in biotechnological and industrial applications. The large amount of experimental data in the literature is so diverse, that it becomes difficult and time consuming for the researcher to implement it in various areas of research. Therefore, a systematic arrangement of data and redirection in a similar fashion through web interface can assist researchers in analyzing the data as per their requirement. ExtremeDB is a freely available web based relational database which integrates general characteristics, genome-proteome information, industrial applications and recent scientific investigations of the seven major groups of 865 extremophillic microorganisms. The search options are user friendly and analyses tools such as Compare and Extreme BLAST have been incorporated for comparative analysis of two or more extremophiles and determining the sequence similarity of a given protein/nucleotide in relation to other extremophiles respectively. The effort put forth herein in the form of database, would open up new avenues on the potential utility of extremophiles in applied research. ExtremeDB is freely accessible via http://extrem.igib.res.in.

  6. Transcription in Archaea: in vitro transcription assays for mjRNAP.

    Science.gov (United States)

    Smollett, Katherine; Blombach, Fabian; Werner, Finn

    2015-01-01

    The fully recombinant Methanocaldococcus jannaschii RNA polymerase allows for a detailed dissection of the different stages of the transcription. In the previous chapter, we discussed how to purify the different components of the M. jannaschii transcription system, the RNA polymerase subunits, and general transcription factors and how to assemble a functional M. jannaschii enzyme. Standard in vitro transcription assays can be used to examine the different stages of transcription. In this chapter, we describe how some of these assays have been optimized for M. jannaschii RNA polymerase, which transcribes at much higher temperatures than many other transcription complexes.

  7. The influence of sulfate and nitrate on the methane formation by methanogenic archaea in freshwater sediments

    NARCIS (Netherlands)

    Scholten, J.C.M.

    1999-01-01

    In this thesis the effect of inorganic electron acceptors (sulfate and nitrate) on methane emission from freshwater sediments in the Netherlands was investigated. The chosen study area was a polder located between Leiden and Utrecht, and is representative for similar polders in The Netherlan

  8. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225).

    Science.gov (United States)

    Lauer, Antje; Sørensen, Ketil Bernt; Teske, Andreas

    2016-09-06

    Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.

  9. Temporal Eukarya, Bacteria, and Archaea biodiversity during cultivation of an alkaliphilic algae, Chlorella vulgaris, in an outdoor raceway pond

    OpenAIRE

    Tisza Ann Szeremy Bell; Bharath ePrithiviraj; Wahlen, Brad D.; Matthew W Fields; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal crop. In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgari...

  10. Final Report DOE Grant# DE-FG02-98ER62592: Second Cancers, Tumor p53, and Archaea Research

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Samuel M. [Northeast Regional Cancer Institute, Scranton, PA (United States)

    2006-01-14

    The Northeast Regional Cancer Institute conducted cancer surveillance in Northeast Pennsylvania using data from the institute's population-based regional cancer registry and the Pennsylvania Cancer Registry. The results of this surveillance have been used to set priorities for research and outreach activities at the Cancer Institute and selected results have been reported to medical professionals at member hospitals and in the community. One consistent observation of this surveillance was that colorectal cancer was unusually common in Northeast Pennsylvania; incidence was approximately 25% higher than the rate published for NCI's Surveillance Epidemiology and End Results (SEER) Program. In addition, death rates form colorectal cancer in several counties in this region were above the 90Th percentile for colorectal cancer mortality in the United States. As a result of these observations, several activities have been developed to increase awareness of colorectal cancer and the value of screening for this cancer in both the lay and medical communities. Funding from this grant also provided support for a population-based study of cancer risk factors, screening practices, and related behaviors. This project continues beyond the termination of the present grant with funding from other sources. This project gathers data from a representative sample of adults residing in a six county area of Northeast Pennsylvania. Analyses conducted to date of the established risk factors for colorectal cancer have not revealed an explanation for the high incidence of this cancer in this population.

  11. rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea.

    Science.gov (United States)

    Lee, Zarraz May-Ping; Bussema, Carl; Schmidt, Thomas M

    2009-01-01

    A dramatic exception to the general pattern of single-copy genes in bacterial and archaeal genomes is the presence of 1-15 copies of each ribosomal RNA encoding gene. The original version of the Ribosomal RNA Database (rrnDB) cataloged estimates of the number of 16S rRNA-encoding genes; the database now includes the number of genes encoding each of the rRNAs (5S, 16S and 23S), an internally transcribed spacer region, and the number of tRNA genes. The rrnDB has been used largely by microbiologists to predict the relative rate at which microbial populations respond to favorable growth conditions, and to interpret 16S rRNA-based surveys of microbial communities. To expand the functionality of the rrnDB (http://ribosome.mmg.msu.edu/rrndb/index.php), the search engine has been redesigned to allow database searches based on 16S rRNA gene copy number, specific organisms or taxonomic subsets of organisms. The revamped database also computes average gene copy numbers for any collection of entries selected. Curation tools now permit rapid updates, resulting in an expansion of the database to include data for 785 bacterial and 69 archaeal strains. The rrnDB continues to serve as the authoritative, curated source that documents the phylogenetic distribution of rRNA and tRNA genes in microbial genomes.

  12. Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils

    NARCIS (Netherlands)

    Cotta, Simone Raposo; Franco Dias, Armando Cavalcante; Marriel, Ivanildo Evodio; Andreote, Fernando Dini; Seldin, Lucy; van Elsas, Jan Dirk

    2014-01-01

    The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and s

  13. Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization

    Science.gov (United States)

    Xue, Chao; Zhang, Xu; Zhu, Chen; Zhao, Jun; Zhu, Ping; Peng, Chang; Ling, Ning; Shen, Qirong

    2016-06-01

    Archaeal (AOA) and bacterial (AOB) ammonia-oxidizer responses to long-term field fertilization in a Mollisol soil were assessed through pyrosequencing of amoA genes. Long-term fertilization treatments including chemical fertilizer (NPK), NPK plus manure (NPKM), and no fertilization over 23 years altered soil properties resulting in significant shifts in AOA and AOB community composition and abundance. NPK exhibited a strong influence on AOA and AOB composition while the addition of manure neutralized the community change induced by NPK. NPK also led to significant soil acidification and enrichment of Nitrosotalea. Nitrosospira cluster 9 and 3c were the most abundant AOB populations with opposing responses to fertilization treatments. NPKM had the largest abundance of ammonia-oxidizers and highest potential nitrification activity (PNA), suggesting high N loss potential due to a doubling of nutrient input compared to NPK. PNA was strongly correlated to AOA and AOB community composition indicating that both were important in ammonium oxidization in this Mollisol soil. Total N and organic C were the most important factors driving shifts in AOA and AOB community composition. The AOA community was strongly correlated to the activities of all sugar hydrolysis associated soil enzymes and was more responsive to C and N input than AOB.

  14. Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt

    OpenAIRE

    Herfort, L.; Kim, J.H.; M J L Coolen; Abbas, B.; Schouten, S; Herndl, G. J.; Sinninghe Damste, J.S.

    2009-01-01

    Pelagic archaeal phylogenetic diversity and the potential for crenarchaeotal nitrification of Group 1.1a were determined in the rivers Rhine and Têt by 16S rRNA sequencing, catalyzed reported deposition-fluorescence in situ hybridization (CARD–FISH) and quantification of 16S rRNA and functional genes. Euryarchaeota were, for the first time, detected in temperate river water even though a net predominance of crenarchaeotal phylotypes was found. Differences in phylogenic distribution were obser...

  15. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    OpenAIRE

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) a...

  16. Vertical segregation and phylogenetic characterization of ammonia-oxidizing bacteria and archaea in the sediment of a freshwater aquaculture pond

    OpenAIRE

    Shimin eLu; Xingguo eLiu; Qigen eLiu; Zhuojun eMa; Zongfan eWu; Xianlei eZeng; Xu eShi; Zhaojun eGu

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) a...

  17. Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt

    NARCIS (Netherlands)

    Herfort, L.; Kim, J.H.; Coolen, M.J.L.; Abbas, B.; Schouten, S.; Herndl, G.J.; Sinninghe Damste, J.S.

    2009-01-01

    Pelagic archaeal phylogenetic diversity and the potential for crenarchaeotal nitrification of Group 1.1a were determined in the rivers Rhine and Têt by 16S rRNA sequencing, catalyzed reported deposition-fluorescence in situ hybridization (CARD–FISH) and quantification of 16S rRNA and functional gene

  18. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    OpenAIRE

    Xu Sun; Aili Wang; Liuyan Yang; Liyun Guo; Qiankun Chen; Zhinxin Hu; Lijuan Jiang; Lin Xiao

    2014-01-01

    Ammonia-oxidizingarchaea (AOA) and ammonia-oxidizing bacteria (AOB) play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasech...

  19. Avoidance of stochastic RNA interactions can be harnessed to control protein expression levels in bacteria and archaea

    Science.gov (United States)

    Umu, Sinan Uğur; Poole, Anthony M; Dobson, Renwick CJ; Gardner, Paul P

    2016-01-01

    A critical assumption of gene expression analysis is that mRNA abundances broadly correlate with protein abundance, but these two are often imperfectly correlated. Some of the discrepancy can be accounted for by two important mRNA features: codon usage and mRNA secondary structure. We present a new global factor, called mRNA:ncRNA avoidance, and provide evidence that avoidance increases translational efficiency. We also demonstrate a strong selection for the avoidance of stochastic mRNA:ncRNA interactions across prokaryotes, and that these have a greater impact on protein abundance than mRNA structure or codon usage. By generating synonymously variant green fluorescent protein (GFP) mRNAs with different potential for mRNA:ncRNA interactions, we demonstrate that GFP levels correlate well with interaction avoidance. Therefore, taking stochastic mRNA:ncRNA interactions into account enables precise modulation of protein abundance. DOI: http://dx.doi.org/10.7554/eLife.13479.001 PMID:27642845

  20. ADP-abhängige Acyl-CoA Synthetasen in Archaea, Bacteria und Eukarya: Charakterisierung, Funktion und Phylogenie

    OpenAIRE

    Schmidt, Marcel Clemens

    2013-01-01

    ADP-bildende Acetyl-CoA Synthetasen (ACD) gehören wie die Succinyl-CoA Synthetasen (SCS) zur Proteinfamilie der NDP-bildenden Acyl-CoA Synthetasen. Beide Enzyme sind ubiquitär in allen drei Domänen des Lebens vorhanden und katalysieren die NDP- und Pi-abhängige Umsetzung von Acyl-CoA Estern (Acetyl-CoA bzw. Succinyl-CoA) zu den kor-respondierenden Säuren unter der Bildung von NTP über Substratstufenphosphorylierung. Die ACD-Reaktion wurde erstmals in dem Acetat bildenden Protisten Entamo...

  1. Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution

    OpenAIRE

    Smyshlyaev, Georgy; Voigt, Franka; Blinov, Alexander; Barabas, Orsolya; Novikova, Olga

    2013-01-01

    Transposons are jumping genes that constitute a sizeable fraction of eukaryotic genomes. They drive genome evolution and can cause genetic diseases and cancer. Although transposons were first discovered in plants and much of our knowledge about them stems from plants, the most abundant human transposon, L1, has barely been investigated in plants. In this study, we identify plant L1 retrotransposons from a variety of plant genomes and show that, similar to viruses, they evolved in a modular fa...

  2. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.

    Science.gov (United States)

    Lin, T Jennifer; Breves, E A; Dyar, M D; Ver Eecke, H C; Jamieson, J W; Holden, J F

    2014-05-01

    Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture-dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin-section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite-sphalerite-rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pH opt 7-8) heterotroph, while strain Su06 is a mildly acidophilic (pH opt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90-92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs. PMID:24612368

  3. Ardra profiles of bacteria and archaea in mangrove sediments with different levels of contamination in the estuarine complex of Paranaguá, Brazil

    Directory of Open Access Journals (Sweden)

    Catherine Gérikas Ribeiro

    2013-04-01

    Full Text Available The mangrove's sediments from the coastal areas under human activities may contain significant contaminations by hydrocarbons, even when there are no visual evidences of it. The microorganisms are essential to these ecosystems, especially in the control of their chemical environment. Sediment samples were collected in two regions under different environment conditions (pristine and contaminated of the Paranaguá Estuarine Complex (Paranaguá Bay and Laranjeiras Bay, Brazil. Aliphatic hydrocarbons were determined by the GC-FID to assess the status of contamination of the studied areas. The total DNA was extracted from these samples. The 16S rRNA gene was amplified by the PCR reactions with the pair of primers 21F and 958R for the archaeal domain, and 27F and 1492R for the bacterial domain. Comparisons of communities were made by the ARDRA technique, using the HinfI restriction enzyme. The phosphate concentration showed significant differences between the two regions. The aliphatic hydrocarbons analysis showed the presence of unresolved complex mixture (UCM, an indicator of oil contamination, in the samples from the Paranaguá Bay, which was corroborated by the concentration of total aliphatic hydrocarbons. The ARDRA profile indicated that the structure of archaeal and bacterial communities of the sampled areas was very similar. Therefore, the anthropogenic influences in the Paranaguá Bay showed to be not sufficient to produce disturbances in the prokaryotic dominant groups.

  4. Ardra profiles of bacteria and archaea in mangrove sediments with different levels of contamination in the estuarine complex of Paranaguá, Brazil

    OpenAIRE

    Catherine Gérikas Ribeiro; Maria Berenice Reynaud Steffens; Rafael Mazer Etto; Carolina Weigert Galvão; César de Castro Martins; Fábio de Oliveira Pedrosa; Hedda Elisabeth Kolm

    2013-01-01

    The mangrove's sediments from the coastal areas under human activities may contain significant contaminations by hydrocarbons, even when there are no visual evidences of it. The microorganisms are essential to these ecosystems, especially in the control of their chemical environment. Sediment samples were collected in two regions under different environment conditions (pristine and contaminated) of the Paranaguá Estuarine Complex (Paranaguá Bay and Laranjeiras Bay), Brazil. Aliphatic hydrocar...

  5. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production.

  6. Promoter recognition in archaea is mediated by transcription factors: identification of transcription factor aTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein.

    OpenAIRE

    Gohl, H P; Gröndahl, B; Thomm, M

    1995-01-01

    At least two transcription factors, aTFB and aTFA, are required for accurate and faithful in vitro transcription of homologous templates in cell-free extracts from the methanogenic Archaeon Methanococcus thermolithotrophicus. We have recently shown that the function of aTFB can be replaced by eucaryal TATA-binding proteins. Here we demonstrate using template commitment experiments that promoter recognition in an Archaeon is mediated by transcription factors. The archaeal TATA box was identifi...

  7. Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Cozen, Aaron E.; DeLong, Edward F

    2005-01-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using...

  8. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy

    OpenAIRE

    Lee, Hyo Jung; Jeong, Sang Eun; Kim, Pil Joo; Madsen, Eugene L.; Jeon, Che Ok

    2015-01-01

    The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC) concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were similar in the bulk and rhizosphere soils, though methane and TOC concentrations and 16S rRNA gene copies were clearly higher in the rhizosphere soil than in the bulk soil. Oxygen concentrations d...

  9. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota.

    Science.gov (United States)

    Weidler, Gerhard W; Dornmayr-Pfaffenhuemer, Marion; Gerbl, Friedrich W; Heinen, Wolfgang; Stan-Lotter, Helga

    2007-01-01

    Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the "Franz-Josef-Quelle" in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (alpha, beta, gamma, and delta), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (delta-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.

  10. Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 from Sulfolobus solfataricus Protects H9c2 Cardiomyoblasts from Oxidative Stress

    Science.gov (United States)

    Sarcinelli, Carmen; Pizzo, Elio

    2016-01-01

    Peroxiredoxins (Prxs) are ubiquitous thiol peroxidases that are involved in the reduction of peroxides. It has been reported that prokaryotic Prxs generally show greater structural robustness than their eukaryotic counterparts, making them less prone to inactivation by overoxidation. This difference has inspired the search for new antioxidants from prokaryotic sources that can be used as possible therapeutic biodrugs. Bacterioferritin comigratory proteins (Bcps) of the hyperthermophilic archaeon Sulfolobus solfataricus that belong to the Prx family have recently been characterized. One of these proteins, Bcp1, was chosen to determine its antioxidant effects in H9c2 rat cardiomyoblast cells. Bcp1 activity was measured in vitro under physiological temperature and pH conditions that are typical of mammalian cells; the yeast thioredoxin reductase (yTrxR)/thioredoxin (yTrx) reducing system was used to evaluate enzyme activity. A TAT-Bcp1 fusion protein was constructed to allow its internalization and verify the effect of Bcp1 on H9c2 rat cardiomyoblasts subjected to oxidative stress. The results reveal that TAT-Bcp1 is not cytotoxic and inhibits H2O2-induced apoptosis in H9c2 cells by reducing the H2O2 content inside these cells. PMID:27752237

  11. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria : The Medinaut Shipboard Scientific Party

    NARCIS (Netherlands)

    Pancost, Richard D.; Sinninghe Damsté, Jaap S.; de Lint, Saskia; van der Maarel, Marc J.E.C.; Gottschal, JC

    2000-01-01

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear, In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Medite

  12. Bacterial and archaea community present in the Pine Barrens Forest of Long Island, NY: unusually high percentage of ammonia oxidizing bacteria.

    Directory of Open Access Journals (Sweden)

    Vishal Shah

    Full Text Available Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths. The three horizons were 0-10 cm (Horizon O; 11-25 cm (Horizon A and 26-40 cm (Horizon B. Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil.

  13. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy

    Directory of Open Access Journals (Sweden)

    Hyo Jung eLee

    2015-06-01

    Full Text Available The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were similar in the bulk and rhizosphere soils, though methane and TOC concentrations and 16S rRNA gene copies were clearly higher in the rhizosphere soil than in the bulk soil. Oxygen concentrations decreased sharply to below detection limits at the 8 mm depth. Pyrosequencing of 16S rRNA genes showed that bacterial and archaeal communities varied according to the oxic, oxic-anoxic, and anoxic zones, indicating that oxygen is a determining factor for the distribution of bacterial and archaeal communities. Aerobic methanotrophs were maximally observed near the oxic-anoxic interface, while methane, TOC, and methanogens were highest in the rhizosphere soil at 30–200 mm depth, suggesting that methane is produced mainly from organic carbon derived from rice plants and is metabolized aerobically. The relative abundances of type I methanotrophs such as Methylococcus, Methylomonas, and Methylocaldum decreased more drastically than those of type II methanotrophs (such as Methylocystis and Methylosinus with increasing depth. Methanosaeta and Methanoregula were predominant methanogens at all depths, and the relative abundances of Methanosaeta, Methanoregula, and Methanosphaerula, and GOM_Arc_I increased with increasing depth. Based on contrasts between absolute abundances of methanogens and methanotrophs at depths sampled across rhizosphere and bulk soils (especially millimeter-scale slices at the surface, we have identified populations of methanogens (Methanosaeta, Methanoregula, Methanocella, Methanobacterium, and Methanosphaerula and methanotrophs (Methylosarcina, Methylococcus, Methylosinus, and unclassified Methylocystaceae that are likely physiologically active in situ.

  14. Identification of SmtB/ArsR cis elements and proteins in archaea using the Prokaryotic InterGenic Exploration Database (PIGED

    Directory of Open Access Journals (Sweden)

    Michael Bose

    2006-01-01

    Full Text Available Microbial genome sequencing projects have revealed an apparently wide distribution of SmtB/ArsR metal-responsive transcriptional regulators among prokaryotes. Using a position-dependent weight matrix approach, prokaryotic genome sequences were screened for SmtB/ArsR DNA binding sites using data derived from intergenic sequences upstream of orthologous genes encoding these regulators. Sixty SmtB/ArsR operators linked to metal detoxification genes, including nine among various archaeal species, are predicted among 230 annotated and draft prokaryotic genome sequences. Independent multiple sequence alignments of putative operator sites and corresponding winged helix-turn-helix motifs define sequence signatures for the DNA binding activity of this SmtB/ArsR subfamily. Prediction of an archaeal SmtB/ArsR based upon these signature sequences is confirmed using purified Methanosarcina acetivorans C2A protein and electrophoretic mobility shift assays. Tools used in this study have been incorporated into a web application, the Prokaryotic InterGenic Exploration Database (PIGED; http://bioinformatics.uwp.edu/~PIGED/home.htm, facilitating comparable studies. Use of this tool and establishment of orthology based on DNA binding signatures holds promise for deciphering potential cellular roles of various archaeal winged helix-turn-helix transcriptional regulators.

  15. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism

    Directory of Open Access Journals (Sweden)

    Ron S. Ronimus

    2003-01-01

    Full Text Available Enzymes of the gluconeogenic/glycolytic pathway (the Embden-Meyerhof-Parnas (EMP pathway, the reductive tricarboxylic acid cycle, the reductive pentose phosphate cycle and the Entner-Doudoroff pathway are widely distributed and are often considered to be central to the origins of metabolism. In particular, several enzymes of the lower portion of the EMP pathway (the so-called trunk pathway, including triosephosphate isomerase (TPI; EC 5.3.1.1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12/13, phosphoglycerate kinase (PGK; EC 2.7.2.3 and enolase (EC 4.2.1.11, are extremely well conserved and universally distributed among the three domains of life. In this paper, the distribution of enzymes of gluconeogenesis/glycolysis in hyperthermophiles—microorganisms that many believe represent the least evolved organisms on the planet—is reviewed. In addition, the phylogenies of the trunk pathway enzymes (TPIs, GAPDHs, PGKs and enolases are examined. The enzymes catalyzing each of the six-carbon transformations in the upper portion of the EMP pathway, with the possible exception of aldolase, are all derived from multiple gene sequence families. In contrast, single sequence families can account for the archaeal and hyperthermophilic bacterial enzyme activities of the lower portion of the EMP pathway. The universal distribution of the trunk pathway enzymes, in combination with their phylogenies, supports the notion that the EMP pathway evolved in the direction of gluconeogenesis, i.e., from the bottom up.

  16. Archaea Dominate the Ammonia-Oxidizing Community in the Rhizosphere of the Freshwater Macrophyte Littorella uniflora

    DEFF Research Database (Denmark)

    Herrmann, Martina; Saunders, Aaron M.; Schramm, Andreas

    2008-01-01

    Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced...

  17. Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2010-11-01

    Full Text Available Abstract Background In many microbial genomes, a strong preference for a small number of codons can be observed in genes whose products are needed by the cell in large quantities. This codon usage bias (CUB improves translational accuracy and speed and is one of several factors optimizing cell growth. Whereas CUB and the overrepresentation of individual proteins have been studied in detail, it is still unclear which high-level metabolic categories are subject to translational optimization in different habitats. Results In a systematic study of 388 microbial species, we have identified for each genome a specific subset of genes characterized by a marked CUB, which we named the effectome. As expected, gene products related to protein synthesis are abundant in both archaeal and bacterial effectomes. In addition, enzymes contributing to energy production and gene products involved in protein folding and stabilization are overrepresented. The comparison of genomes from eleven habitats shows that the environment has only a minor effect on the composition of the effectomes. As a paradigmatic example, we detailed the effectome content of 37 bacterial genomes that are most likely exposed to strongest selective pressure towards translational optimization. These effectomes accommodate a broad range of protein functions like enzymes related to glycolysis/gluconeogenesis and the TCA cycle, ATP synthases, aminoacyl-tRNA synthetases, chaperones, proteases that degrade misfolded proteins, protectants against oxidative damage, as well as cold shock and outer membrane proteins. Conclusions We made clear that effectomes consist of specific subsets of the proteome being involved in several cellular functions. As expected, some functions are related to cell growth and affect speed and quality of protein synthesis. Additionally, the effectomes contain enzymes of central metabolic pathways and cellular functions sustaining microbial life under stress situations. These findings indicate that cell growth is an important but not the only factor modulating translational accuracy and speed by means of CUB.

  18. Diversity and three-dimensional structures of the alpha Mcr of the methanogenic Archaea from the anoxic region of Tucuruí Lake, in Eastern Brazilian Amazonia

    Directory of Open Access Journals (Sweden)

    Priscila Bessa Santana

    2012-01-01

    Full Text Available Methanogenic archaeans are organisms of considerable ecological and biotechnological interest that produce methane through a restricted metabolic pathway, which culminates in the reaction catalyzed by the Methyl-coenzyme M reductase (Mcr enzyme, and results in the release of methane. Using a metagenomic approach, the gene of the a subunit of mcr (mcrα was isolated from sediment sample from an anoxic zone, rich in decomposing organic material, obtained from the Tucuruí hydroelectric dam reservoir in eastern Brazilian Amazonia. The partial nucleotide sequences obtained were 83 to 95% similar to those available in databases, indicating a low diversity of archaeans in the reservoir. Two orders were identified -the Methanomicrobiales, and a unique Operational Taxonomic Unit (OTU forming a clade with the Methanosarcinales according to low bootstrap values. Homology modeling was used to determine the three-dimensional (3D structures, for this the partial nucleotide sequence of the mcrα were isolated and translated on their partial amino acid sequences. The 3D structures of the archaean mcrα observed in the present study varied little, and presented approximately 70% identity in comparison with the mcrα of Methanopyrus klanderi. The results demonstrated that the community of methanogenic archaeans of the anoxic C1 region of the Tucurui reservoir is relatively homogeneous.

  19. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    Science.gov (United States)

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research. PMID:24204702

  20. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    Directory of Open Access Journals (Sweden)

    Akifumi S Tanabe

    Full Text Available Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research.

  1. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    Science.gov (United States)

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research. PMID:24204702

  2. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior

    OpenAIRE

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J.; Lueders, Tillmann

    2013-01-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (a...

  3. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior

    NARCIS (Netherlands)

    Bergauer, K.; Sintes, E.; van Bleijswijk, J.; Witte, H.; Herndl, G.J.

    2013-01-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating d

  4. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea

    NARCIS (Netherlands)

    De Corte, Daniele; Yokokawa, Taichi; Varela, Marta M.; Agogue, Helene; Herndl, Gerhard J.

    2009-01-01

    Until recently, ammonia oxidation, a key process in the global nitrogen cycle, was thought to be mediated exclusively by a few bacterial groups. It has been shown now, that also Crenarchaeota are capable to perform this initial nitrification step. The abundance of ammonia oxidizing Bacteria and Arch

  5. Shifts in the meso- and bathypelagic archaea communities composition during recovery and short-term handling of decompressed deep-sea samples.

    Science.gov (United States)

    La Cono, Violetta; Smedile, Francesco; La Spada, Gina; Arcadi, Erika; Genovese, Maria; Ruggeri, Gioacchino; Genovese, Lucrezia; Giuliano, Laura; Yakimov, Michail M

    2015-06-01

    Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level. PMID:25682761

  6. Ammonia-oxidizing Bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre.

    Science.gov (United States)

    Lagostina, Lorenzo; Goldhammer, Tobias; Røy, Hans; Evans, Thomas W; Lever, Mark A; Jørgensen, Bo B; Petersen, Dorthe G; Schramm, Andreas; Schreiber, Lars

    2015-06-01

    Sediments across the Namibian continental margin feature a strong microbial activity gradient at their surface. This is reflected in ammonium concentrations of  700 μM in upwelling areas near the coast. Here we address changes in apparent abundance and structure of ammonia-oxidizing archaeal and bacterial communities (AOA and AOB) along a transect of seven sediment stations across the Namibian shelf by analysing their respective ammonia monooxygenase genes (amoA). The relative abundance of archaeal and bacterial amoA (g(-1) DNA) decreased with increasing ammonium concentrations, and bacterial amoA frequently outnumbered archaeal amoA at the sediment-water interface [0-1 cm below seafloor (cmbsf)]. In contrast, AOA were apparently as abundant as AOB or dominated in several deeper (> 10 cmbsf), anoxic sediment layers. Phylogenetic analyses showed a change within the AOA community along the transect, from two clusters without cultured representatives at the gyre to Nitrososphaera and Nitrosopumilus clusters in the upwelling region. AOB almost exclusively belonged to the Nitrosospira cluster 1. Our results suggest that this predominantly marine AOB lineage without cultured representatives can thrive at low ammonium concentrations and is active in the marine nitrogen cycle. PMID:25581373

  7. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilled—making the fuel-production process more efficient. The microorganisms don’t require light, so they can be grown anywhere—inside a dark reactor or even in an underground facility.

  8. 古菌生物标志物古海水温度指标TEX86研究进展%USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY

    Institute of Scientific and Technical Information of China (English)

    赵美训; 李大伟; 邢磊

    2009-01-01

    TEX86是最近几年提出的一个古海水温度重建指标,它是基于由古菌的一个分支Marine Crenarchaeota 所产生的一组生物标志物(GDGTs)的比值.培养实验、水体颗粒物及大洋表层沉积物的研究结果都显示,温度是TEX86指标的主要影响因素,而盐度、营养盐等其他环境因子对TEX86指标无明显影响.由于陆源物质中也含有少量GDGTs,TEX86重建近海温度记录会有较大的误差.但是TEX86和另一个生物标志物指标BlT的同时测定也使TEX86用于近海古温度重建.与通常用的UK37古海水温度指标相比,TEX86指标可以应用于高于29℃的高温海域,目前已被成功地应用于地质历史中高温期古海水温度的重建.TEX86指标将为重建西太平洋古温度记录提供一种有效的方法.

  9. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.

    Science.gov (United States)

    Gruber, Thomas; Köhrer, Caroline; Lung, Birgit; Shcherbakov, Dmitri; Piendl, Wolfgang

    2003-08-14

    The ribosomal protein S8 plays a pivotal role in the assembly of the 30S ribosomal subunit. Using filter binding assays, S8 proteins from mesophilic, and (hyper)thermophilic species of the archaeal genus Methanococcus and from the bacteria Escherichia coli and Thermus thermophilus were tested for their affinity to their specific 16S rRNA target site. S8 proteins from hyperthermophiles exhibit a 100-fold and S8 from thermophiles exhibit a 10-fold higher affinity than their mesophilic counterparts. Thus, there is a striking correlation of affinity of S8 proteins for their specific RNA binding site and the optimal growth temperatures of the respective organisms. The stability of individual rRNA-protein complexes might modulate the stability of the ribosome, providing a maximum of thermostability and flexibility at the growth temperature of the organism.

  10. 产甲烷的常温古细菌和嗜热古细菌的代谢网络比对研究%Studies on the Metabolic Network Alignment of Mesophilic and Thermophilic Methanogenic Archaea

    Institute of Scientific and Technical Information of China (English)

    陈璟; 须文波

    2015-01-01

    生物网络比对是生物体的结构、功能和进化分析的重要研究手段.以从KFGG数据库获得的产甲烷的常温古细菌Methanosarcina acetivorans(M.acetivorans)和嗜热古细菌Methanopyrus kandleri(M.kandleri)的代谢网络为对象,采用了网络比对算法Matching-based Integrative GRAph Aligner(MI-GRAAL)对它们的全局代谢网络以及hub模块网络进行了比对.比对结果表明采用度、聚集系数以及离心率三个度量参数相结合的网络比对结果明显优于其它度量参数的计算结果,且结果更稳定.同时发现常温产甲烷菌M.acetivorans的hub模块与嗜热产甲烷菌M.kandleri的hub模块相似代谢途径的拓扑基本一致,不相似的代谢网络中有81.8%以上的节点都在嗜热产甲烷菌M.kandleri的最紧密的7-核中,推测嗜热菌的耐热性可能与受到胞内酪氨酸的影响.

  11. Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest.

    Science.gov (United States)

    Gschwendtner, Silvia; Tejedor, Javier; Bimüller, Carolin; Bimueller, Carolin; Dannenmann, Michael; Kögel-Knabner, Ingrid; Knabner, Ingrid Kögel; Schloter, Michael

    2014-01-01

    Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N) turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW) exposed site, representing today's climatic conditions, to a southwest (SW) exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average). In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August), 24 and 72 hours after rewetting (August) and after a regeneration period of four weeks (September). To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a different extend, which may impact emission rates of the greenhouse gas N2O. PMID:25462589

  12. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil

    OpenAIRE

    Wagner, Andreas O.; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-01-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol–chloroform–isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yield...

  13. Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest.

    Directory of Open Access Journals (Sweden)

    Silvia Gschwendtner

    Full Text Available Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW exposed site, representing today's climatic conditions, to a southwest (SW exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average. In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August, 24 and 72 hours after rewetting (August and after a regeneration period of four weeks (September. To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a different extend, which may impact emission rates of the greenhouse gas N2O.

  14. The essence of being extremophilic : the role of the unique archaeal membrane lipids

    NARCIS (Netherlands)

    Vossenberg, Jack L.C.M. van de; Driessen, Arnold J.M.; Konings, Wil N.

    1998-01-01

    In extreme environments, mainly Archaea are encountered. The archaeal cytoplasmic membrane contains unique ether lipids that cannot easily be degraded, are temperature- and mechanically resistant, and highly salt tolerant. Moreover, thermophilic and extreme acidophilic Archaea possess membrane-spann

  15. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.

    OpenAIRE

    Qureshi, S A; Khoo, B; Baumann, P; Jackson, S P

    1995-01-01

    The Archaea (archaebacteria) constitute a group of prokaryotes that are phylogenetically distinct from Eucarya (eukaryotes) and Bacteria (eubacteria). Although Archaea possess only one RNA polymerase, evidence suggests that their transcriptional apparatus is similar to that of Eucarya. For example, Archaea contain a homolog of the TATA-binding protein which interacts with the TATA-box like A-box sequence upstream of many archaeal genes. Here, we report the cloning of a Sulfolobus shibatae gen...

  16. Comparative Genomic and Transcriptional Analyses of CRISPR Systems Across the Genus Pyrobaculum

    OpenAIRE

    Bernick, David L.; Cox, Courtney L.; Dennis, Patrick P.; Lowe, Todd M.

    2012-01-01

    Within the domain Archaea, the CRISPR immune system appears to be nearly ubiquitous based on computational genome analyses. Initial studies in bacteria demonstrated that the CRISPR system targets invading plasmid and viral DNA. Recent experiments in the model archaeon Pyrococcus furiosus uncovered a novel RNA-targeting variant of the CRISPR system potentially unique to archaea. Because our understanding of CRISPR system evolution in other archaea is limited, we have taken a comparative genom...

  17. Optimization of selective conditions for the selection of uracil auxotrophs of thermophilic archaea Sulfolobus tokodaii%超嗜热古菌Sulfolobus tokodaii尿嘧啶营养缺陷型筛选条件的最适化及初步筛选

    Institute of Scientific and Technical Information of China (English)

    黄奇洪; 申玉龙; 倪金凤

    2008-01-01

    超嗜热古菌Sulfolobus tokodaii隶属于古菌中的泉古菌(Crenarchaea),硫化叶菌属(Sulfolobus).野生型S.tokodaii*$尿嘧啶相关基因表达的乳清核苷酸转移酶和乳清苷单磷酸脱羧酶可以将5-氟乳清酸(5-FOA)转化成有毒物质5-氟尿嘧啶核苷酸,导致野生型S.tokodaii无法正常生长.根据此原理,通过对筛选条件如5-FOA的质量浓度、紫外诱变时间等的最适化,运用微生物的自发突变或对其进行紫外照射等诱变方法,初步筛选出S.tokodaii的尿嘧啶营养缺陷型菌株.

  18. Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean

    NARCIS (Netherlands)

    Sintes, E.; Ouillon, N.; Herndl, G.J.

    2015-01-01

    Macroecological patterns are found in animals and plants, but also in micro-organisms.Macroecological and biogeographic distribution patterns in marine Archaea, however,have not been studied yet. Ammonia-oxidizing Archaea (AOA) show a bipolar distribution(i.e. similar communities in the northernmost

  19. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernforde Bay (German Baltic)

    DEFF Research Database (Denmark)

    Treude, T.; Kruger, M.; Boetius, A.;

    2005-01-01

    AOM in Eckerntorde Bay. These archaea are known also from other marine methane-rich locations. However, they were not directly associated with sulfate-reducing bacteria. AOM is possibly mediated solely by these archaea that show a mesophilic physiology according to the seasonal temperature changes...

  20. Ecology and membrane lipid distribution of marine Crenarchaeota : Implications for TEX86 paleothermometry

    NARCIS (Netherlands)

    Wuchter, C.

    2006-01-01

    Archaea form one of the three domains of life on Earth and together with the bacteria form the prokaryotes. In the marine environment planktonic Archaea consist of two major groups, the Crenarchaeota and the Euryarchaeota of which the former appears to be the most abundant and may account for ca. 20

  1. Ecology and membrane lipid distribution of marine Crenarchaeota: Implications for TEX86 paleothermometry

    NARCIS (Netherlands)

    Wuchter, Cornelia

    2006-01-01

    Archaea form one of the three domains of life on Earth and together with the bacteria form the prokaryotes. In the marine environment planktonic Archaea consist of two major groups, the Crenarchaeota and the Euryarchaeota of which the former appears to be the most abundant and may account for ca. 20

  2. A re-evaluation of the archaeal membrane lipid biosynthetic pathway

    NARCIS (Netherlands)

    Villanueva, L.; Sinninghe Damsté, J.S.; Schouten, S.

    2014-01-01

    Archaea produce unique membrane lipids in which isoprenoid alkyl chains are bound to glycerol moieties via ether linkages. As cultured representatives of the Archaea have become increasingly available throughout the past decade, archaeat genomic and membrane lipid-composition data have also become a

  3. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study

    DEFF Research Database (Denmark)

    Wakeham, Stuart G.; Amann, Rudi; Freemann, Katherine H.;

    2007-01-01

    ) and sulfate reducing bacteria. We also measured a wide range of bacterial and archaeal lipid biomarkers. Depth distributions of diagnostic biomarkers are matched with zonation of microbial processes, including aerobic bacterial oxidation of methane, oxidation of ammonium by bacteria and archaea, metal...... reduction, and sulfide oxidation at the chemocline, and bacterial sulfate reduction and anaerobic oxidation of methane by archaea in the anoxic zone. Cell densities for archaea and sulfate reducing bacteria are estimated based on water column biomarker concentrations and compared with CARD-FISH results....

  4. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico

    OpenAIRE

    Dillon, Jesse G.; Carlin, Mark; Gutierrez, Abraham; Nguyen, Vivian; McLain, Nathan

    2013-01-01

    The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA) evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA ...

  5. Isolation of a Rhodopsin Producing Extreme Halophilic Archaea from Eejnoor in Inner Mongolia and Analysis of Its bop Gene Sequence and Optimal Growth Conditions%内蒙古额吉淖尔盐碱湖一株产视紫红质的极端嗜盐古菌的分离及其bop基因核心序列及最适生长条件的分析

    Institute of Scientific and Technical Information of China (English)

    宋倩; 韩瑞; 宝力德

    2014-01-01

    从内蒙古额吉淖尔湖分离得到一株产视紫红质的极端嗜盐古菌,初步鉴定为属于Natrinema属;并扩增出了其bop基因,该bop基因序列已在Genbank中注册,编号为KF863690,分析了其核心序列.结果表明bop基因开放阅读框为303 bp,编码101个氨基酸.blastp结果表明该蛋白属于Bac-rhodopsin蛋白家族,具有典型的细菌视紫红质蛋白结构域.利用BLAST进行相似性分析发现bop编码蛋白氨基酸序列与Genbank中编号AAS87571.1、WP-007110705和AFB77278.1的视紫红质蛋白相似性达到98%以上.此结果表明视紫红质蛋白在细菌及古菌中结构上具有很高的保守性,与其质子泵功能紧密相关.最后分析了该菌株的最适生长条件.该菌株在分离培养基中适宜生长的NaC1浓度范围为1.0~3.0 mol/L,适宜生长pH为6.5 ~8.5,适宜生长镁离子浓度为0.4~0.8 mol/L.通过分析比较得出该嗜盐古生菌株生长最适NaC1盐浓度为1.5 mol/L,最适pH值为7.5,最适镁离子浓度为0.4 mol/L.该实验结果为今后进一步研究产视紫红质的极端嗜盐古生菌株的生理生化特征及遗传学特征奠定了基础.

  6. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Michaelis, W.; Seifert, R.; Nauhaus, K.;

    2002-01-01

    of densely aggregated archaea ( phylogenetic ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). If incubated in vitro, these mats perform anaerobic oxidation of methane coupled to sulfate reduction. Obviously, anaerobic microbial consortia can generate both carbonate...

  7. Role of microbes in the ecology of marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; DeSouza, M.J.B.D.; LokaBharathi, P.A.

    Microbes are mostly unicellular microscopic living entities falling under the domains Bacteria, Archaea and Eukarya. They have multiple roles to play in the environment both for their own survival and towards maintaining ecological balance. A few...

  8. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

    NARCIS (Netherlands)

    Jung, M.Y.; Park, S.J.; Min, D.; Kim, J.S.; Rijpstra, W.I.C.; Sinninghe Damsté, J.S.; Kim, G.J.; Madsen, E.L.; Rhee, S.K.

    2011-01-01

    Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain

  9. Biomethanation and Its Potential

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Karakashev, Dimitar Borisov; Batstone, Damien J.;

    2011-01-01

    Biomethanation is a process by which organic material is microbiologically converted under anaerobic conditions to biogas. Three main physiological groups of microorganisms are involved: fermenting bacteria, organic acid oxidizing bacteria, and methanogenic archaea. Microorganisms degrade organic...

  10. "Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Zaparty, Melanie; Esser, Dominik; Gertig, Susanne; Haferkamp, Patrick; Kouril, Theresa; Manica, Andrea; Pham, Trong K.; Reimann, Julia; Schreiber, Kerstin; Sierocinski, Pawel; Teichmann, Daniela; van Wolferen, Marleen; von Jan, Mathias; Wieloch, Patricia; Albers, Sonja V.; Driessen, Arnold J. M.; Klenk, Hans-Peter; Schleper, Christa; Schomburg, Dietmar; van der Oost, John; Wright, Phillip C.; Siebers, Bettina

    2010-01-01

    Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology ("SulfoSYS

  11. Unravelling the structural and mechanistic basis of CRISPR-Cas systems

    NARCIS (Netherlands)

    Oost, van der J.; Westra, E.R.; Jackson, R.N.; Wiedenheft, B.

    2014-01-01

    Bacteria and archaea have evolved sophisticated adaptive immune systems, known as CRISPR–Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins) systems, which target and inactivate invading viruses and plasmids. Immunity is acquired by integrating short fragments

  12. Biomethanation and its potential

    NARCIS (Netherlands)

    Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J.M.

    2011-01-01

    Biomethanation is a process by which organic material is microbiologically converted under anaerobic conditions to biogas. Three main physiological groups of microorganisms are involved: fermenting bacteria, organic acid oxidizing bacteria, and methanogenic archaea. Microorganisms degrade organic ma

  13. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions

    NARCIS (Netherlands)

    Rodriguez, E.; Lopes, A.; Fdz-Polanco, M.; Stams, A.J.M.; Garcia Encina, P.A.

    2012-01-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focu

  14. Ecology and membrane lipid distribution of marine Crenarchaeota : Implications for TEX86 paleothermometry

    OpenAIRE

    Wuchter, Cornelia

    2006-01-01

    Archaea form one of the three domains of life on Earth and together with the bacteria form the prokaryotes. In the marine environment planktonic Archaea consist of two major groups, the Crenarchaeota and the Euryarchaeota of which the former appears to be the most abundant and may account for ca. 20% of all prokaryotic cells in the global ocean. Despite the fact that marine Crenarchaeota constitute a substantial fraction of the picoplankton in the world oceans, little is known about their bas...

  15. Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA

    OpenAIRE

    DasSarma Shiladitya; Coker James A

    2007-01-01

    Abstract Background Archaea are prokaryotic organisms with simplified versions of eukaryotic transcription systems. Genes coding for the general transcription factors TBP and TFB are present in multiple copies in several Archaea, including Halobacterium sp. NRC-1. Multiple TBP and TFBs have been proposed to participate in transcription of genes via recognition and recruitment of RNA polymerase to different classes of promoters. Results We attempted to knock out all six TBP and seven TFB genes...

  16. Factor requirements for transcription in the Archaeon Sulfolobus shibatae.

    OpenAIRE

    Qureshi, S A; Bell, S.D.; Jackson, S P

    1997-01-01

    Archaea (archaebacteria) constitute a domain of life that is distinct from Bacteria (eubacteria) and Eucarya (eukaryotes). Although archaeal cells share many morphological features with eubacteria, their transcriptional apparatus is more akin to eukaryotic RNA polymerases I, II and III than it is to eubacterial transcription systems. Thus, in addition to possessing a 10 subunit RNA polymerase and a homologue of the TATA-binding protein (TBP), Archaea possess a polypeptide termed TFB that is h...

  17. The Influence of Rickettsiologists on Post-Modern Microbiology

    OpenAIRE

    Georgiades, Kalliopi; Merhej, Vicky; Raoult, Didier

    2011-01-01

    Many of the definitions in microbiology are currently false. We have reviewed the great denominations of microbiology and attempted to free microorganisms from the theories of the twentieth century. The presence of compartmentation and a nucleoid in Planctomycetes clearly calls into question the accuracy of the definitions of eukaryotes and prokaryotes. Archaea are viewed as prokaryotes resembling bacteria. However, the name archaea, suggesting an archaic origin of lifestyle, is inconsistent ...

  18. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    OpenAIRE

    Acácio Aparecido Navarrete; Rodrigo Gouvêa Taketani; Lucas William Mendes; Fabiana de Souza Cannavan; Fatima Maria de Souza Moreira; Siu Mui Tsai

    2011-01-01

    The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 a...

  19. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Hansen, Niels R; Garrett, Roger A

    2009-01-01

    Transcripts from spacer sequences within chromosomal repeat clusters [CRISPRs (clusters of regularly interspaced palindromic repeats)] from archaea have been implicated in inhibiting or regulating the propagation of archaeal viruses and plasmids. For the crenarchaeal thermoacidophiles, the chromo......Transcripts from spacer sequences within chromosomal repeat clusters [CRISPRs (clusters of regularly interspaced palindromic repeats)] from archaea have been implicated in inhibiting or regulating the propagation of archaeal viruses and plasmids. For the crenarchaeal thermoacidophiles...

  20. The ABC of ABC-transport in the hyperthermophilic archaeon Pyrococcus furiosus

    OpenAIRE

    Koning, S.

    2003-01-01

    Living organisms of our earth can be divided into two groups, the prokaryotes and the eukaryotes. Eukaryotic cells have a nucleus, a special compartment in the cell, where the genetic material, the DNA is located. The DNA in the prokaryotic cell is floating freely in the cell. The eukaryotes, that is where we belong to, together with animals, plants and fungi. Bacteria and archaea belong to the prokaryotes. Archaea resemble bacteria but in certain features they resemble more the eukaryotes. T...

  1. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities

    OpenAIRE

    Dziewit, Lukasz; Pyzik, Adam; Romaniuk, Krzysztof; Sobczak, Adam; Szczesny, Pawel; Lipinski, Leszek; Bartosik, Dariusz; Drewniak, Lukasz

    2015-01-01

    Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have r...

  2. Virus-mediated archaeal hecatomb in the deep seafloor

    Science.gov (United States)

    Danovaro, Roberto; Dell’Anno, Antonio; Corinaldesi, Cinzia; Rastelli, Eugenio; Cavicchioli, Ricardo; Krupovic, Mart; Noble, Rachel T.; Nunoura, Takuro; Prangishvili, David

    2016-01-01

    Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles. PMID:27757416

  3. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea

    OpenAIRE

    Guo, Li; Feng, Yingang; Zhang, Zhenfeng; Yao, Hongwei; Luo, Yuanming; Wang, Jinfeng; Huang, Li

    2007-01-01

    Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a high...

  4. Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum

    OpenAIRE

    Bernick, David L.; Cox, Courtney L.; Dennis, Patrick P.; Lowe, Todd M.

    2012-01-01

    Within the domain Archaea, the CRISPR immune system appears to be nearly ubiquitous based on computational genome analyses. Initial studies in bacteria demonstrated that the CRISPR system targets invading plasmid and viral DNA. Recent experiments in the model archaeon Pyrococcus furiosus have uncovered a novel RNA-targeting variant of the CRISPR system. Because our understanding of CRISPR system evolution in other archaea is limited, we have taken a comparative genomic and transcriptomic view...

  5. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    OpenAIRE

    Catlett, Jennie L.; Ortiz, Alicia M.; Buan, Nicole R.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron trans...

  6. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    Petra Regine Adelheid Kohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  7. Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle.

    Science.gov (United States)

    Yadav, Ajar Nath; Sharma, Divya; Gulati, Sneha; Singh, Surender; Dey, Rinku; Pal, Kamal Krishna; Kaushik, Rajeev; Saxena, Anil Kumar

    2015-07-28

    Archaea are unique microorganisms that are present in ecological niches of high temperature, pH and salinity. A total of 157 archaea were obtained from thirteen sediment, water and rhizospheric soil samples collected from Rann of Kutch, Gujarat, India. With an aim to screen phosphate solubilizing archaea, a new medium was designed as Haloarchaea P Solubilization (HPS) medium. The medium supported the growth and P solubilization activity of archaea. Employing the HPS medium, twenty isolates showed the P-solubilization. Phosphate solubilizing archaea were identified as seventeen distinct species of eleven genera namely Haloarcula, Halobacterium, Halococcus, Haloferax, Halolamina, Halosarcina, Halostagnicola, Haloterrigena, Natrialba, Natrinema and Natronoarchaeum. Natrinema sp. strain IARI-WRAB2 was identified as the most efficient P-solubilizer (134.61 mg/L) followed by Halococcus hamelinensis strain IARI-SNS2 (112.56 mg/L). HPLC analysis detected seven different kinds of organic acids, namely: gluconic acid, citric acid, formic acid, fumaric acid succinic acid, propionic acid and tartaric acid from the cultures of these isolates. These phosphate solubilizing halophilic archaea may play a role in P nutrition to vegetation growing in these hypersaline soils. This is the first report for these haloarchaea to solubilize considerable amount of P by production of organic acids and lowering of pH.

  8. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Neil F.W.; Thomas, Torsten; Curmi, Paul M.G.; Mattick, John S.; Kuczek, Elizabeth; Slade, Rob; Davis, John; Franzmann, Peter; Boone, David; Rusterholtz, Karl; Feldman, Robert; Gates, Chris; Bench, Shellie; Sowers, Kevin; Kadner, Kristen; Aerts, Andrea; Dehal, Paramvir; Detter, Chris; Glavina, Tijana; Lucas, Susan; Richardson, Paul; Larimer, Frank; Hauser , Frank; Hauser, Loren; Land, Miriam; Cavicchioli, Richard

    2003-03-01

    We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of non-charged polar amino acids, particularly Gln and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15-98 C) was used to generate 1 111 modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent accessible area for more Gln, Thr an hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60 C, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes from psychrophiles to hyperthermophiles.

  9. Relations of microbiome characteristics to edaphic properties of tropical soils from Trinidad

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2015-09-01

    Full Text Available Understanding how community structure of Bacteria, Archaea and Fungi varies as a function of edaphic characteristics is key to elucidating associations between soil ecosystem function and the microbiome that sustains it. In this study, non-managed tropical soils were examined that represented a range of edaphic characteristics, and a comprehensive soil microbiome analysis was done by Illumina sequencing of amplicon libraries that targeted Bacteria (universal prokaryotic 16S rRNA gene primers, Archaea (primers selective for archaeal 16S rRNA genes or Fungi (internal transcribed spacer region. Microbiome diversity decreased in the order: Bacteria > Archaea > Fungi. Bacterial community composition had a strong relationship to edaphic factors while that of Archaea and Fungi was comparatively weak. All communities were significantly more similar within soils, than they were between soils (ANOSIM p < 0.001; bacterial communities were 70-80% alike, while communities of Fungi and Archaea had 40-50% similarity. Communities differed in species turnover patterns, such that two soils with relatively similar bacterial communities could not be predicted to be similar in composition of Archaea or Fungi. Bacterial and archaeal diversity had significant (negative correlations to pH, whereas fungal diversity was not correlated to pH. Edaphic characteristics that best explained variation between soils in bacterial community structure were: total carbon, sodium, magnesium and zinc. For fungi, the best variables were: sodium, magnesium, phosphorus, boron and C/N. Archaeal communities had two sets of edaphic factors of equal strength, one contained sulphur, sodium, and ammonium-N and the other was composed of clay, potassium, ammonium-N, and nitrate-N. Collectively, the data indicate that Bacteria, Archaea and Fungi did not closely parallel one another in community structure development, and thus microbiomes in each soil acquired unique identities. This divergence

  10. Archaeal communities of Arctic methane-containing permafrost.

    Science.gov (United States)

    Shcherbakova, Victoria; Yoshimura, Yoshitaka; Ryzhmanova, Yana; Taguchi, Yukihiro; Segawa, Takahiro; Oshurkova, Victoria; Rivkina, Elizaveta

    2016-10-01

    In the present study, we used culture-independent methods to investigate the diversity of methanogenic archaea and their distribution in five permafrost samples collected from a borehole in the Kolyma River Lowland (north-east of Russia). Total DNA was extracted from methane-containing permafrost samples of different age and amplified by PCR. The resulting DNA fragments were cloned. Phylogenetic analysis of the sequences showed the presence of archaea in all studied samples; 60%-95% of sequences belonged to the Euryarchaeota. Methanogenic archaea were novel representatives of Methanosarcinales, Methanomicrobiales, Methanobacteriales and Methanocellales orders. Bathyarchaeota (Miscellaneous Crenarchaeota Group) representatives were found among nonmethanogenic archaea in all the samples studied. The Thaumarchaeota representatives were not found in the upper sample, whereas Woesearchaeota (formerly DHVEG-6) were found in the three deepest samples. Unexpectedly, the greatest diversity of archaea was observed at a depth of 22.3 m, probably due to the availability of the labile organic carbon and/or due to the migration of the microbial cells during the freezing front towards the bottom. PMID:27312964

  11. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System.

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-07-15

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon.

  12. Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System*

    Science.gov (United States)

    Stachler, Aris-Edda; Marchfelder, Anita

    2016-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is used by bacteria and archaea to fend off foreign genetic elements. Since its discovery it has been developed into numerous applications like genome editing and regulation of transcription in eukaryotes and bacteria. For archaea currently no tools for transcriptional repression exist. Because molecular biology analyses in archaea become more and more widespread such a tool is vital for investigating the biological function of essential genes in archaea. Here we use the model archaeon Haloferax volcanii to demonstrate that its endogenous CRISPR-Cas system I-B can be harnessed to repress gene expression in archaea. Deletion of cas3 and cas6b genes results in efficient repression of transcription. crRNAs targeting the promoter region reduced transcript levels down to 8%. crRNAs targeting the reading frame have only slight impact on transcription. crRNAs that target the coding strand repress expression only down to 88%, whereas crRNAs targeting the template strand repress expression down to 8%. Repression of an essential gene results in reduction of transcription levels down to 22%. Targeting efficiencies can be enhanced by expressing a catalytically inactive Cas3 mutant. Genes can be targeted on plasmids or on the chromosome, they can be monocistronic or part of a polycistronic operon. PMID:27226589

  13. Distribution of Archaeal and Bacterial communities in a subtropical reservoir

    Directory of Open Access Journals (Sweden)

    Laís Américo Soares

    2015-12-01

    Full Text Available Abstract Aim: Microbial communities play a central role in environmental process such as organic matter mineralization and the nutrient cycling process in aquatic ecosystems. Despite their ecological importance, variability of the structure of archaeal and bacterial communities in freshwater remains understudied. Methods In the present study we investigated the richness and density of archaea and bacteria in the water column and sediments of the Itupararanga Reservoir. We also evaluated the relationship between the communities and the biotic and abiotic characteristics. Samples were taken at five depths in the water column next to the dam and three depths next to the reservoir entrance. Results PCR-DGGE evaluation of the archaeal and bacterial communities showed that both were present in the water column, even in oxygenated conditions. Conclusions The density of the bacteria (qPCR was greater than that of the archaea, a result of the higher metabolic plasticity of bacteria compared with archaea.

  14. CrRNA-Protospacer Recognition during CRISPR- Directed DNA Interference Sulfolobus islandicus REY 15A and Structural Studies of CRISPR Binding Proteins (CBP) of Crenarchaeon Sulfolobus

    DEFF Research Database (Denmark)

    Mousaei, Marzieh

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats and associated proteins) is one of the important known immune mechanisms in archaea and bacteria. This adaptive immune system degrades invading genetic elements and protects the cell. Amongst 3 main types I, II and III...... of CRISPR system, two types (I and III) are found in archaea. However, in Sulfolobus species, subtypes IA, I-D, and III-B, III-D and rarely III-A are found. The model organism used for interference and structural studies is S. islandicus REY15A which carries subtypes I-A and III-B (α and β). Besides CRISPR...... ribonucleoprotein complex which is involved directly in defense, there are some less- known parts of the system including CPBs (CRISPR repeat-binding proteins) which are suggested to play a role in transcription. In the first part of my thesis, I provide a brief introduction to archaea and viruses that infect...

  15. Global transcriptional regulator TrmB family members in prokaryotes.

    Science.gov (United States)

    Kim, Minwook; Park, Soyoung; Lee, Sung-Jae

    2016-10-01

    Members of the TrmB family act as global transcriptional regulators for the activation or repression of sugar ABC transporters and central sugar metabolic pathways, including glycolytic, gluconeogenic, and other metabolic pathways, and also as chromosomal stabilizers in archaea. As a relatively newly classified transcriptional regulator family, there is limited experimental evidence for their role in Thermococcales, halophilic archaeon Halobacterium salinarum NRC1, and crenarchaea Sulfolobus strains, despite being one of the extending protein families in archaea. Recently, the protein structures of Pyrococcus furiosus TrmB and TrmBL2 were solved, and the transcriptomic data uncovered by microarray and ChIP-Seq were published. In the present review, recent evidence of the functional roles of TrmB family members in archaea is explained and extended to bacteria.

  16. Effects of using coding potential, sequence conservation and mRNA structure conservation for predicting pyrroly-sine containing genes

    DEFF Research Database (Denmark)

    Have, Christian Theil; Zambach, Sine; Christiansen, Henning

    2013-01-01

    suggested, but the structure does not seem to be present in all pyrrolysine incorporating genes. Results We propose a strategy to predict pyrrolysine encoding genes in genomes of archaea and bacteria. We cluster open reading frames interrupted by the amber codon based on sequence similarity. We rank these...... prediction of pyrrolysine incorporating genes in genomes of bacteria and archaea leading to insights about the factors driving pyrrolysine translation and identification of new gene candidates. The method predicts known conserved genes with high recall and predicts several other promising candidates for...... experimental verification. The method is implemented as a computational pipeline which is available on request....

  17. Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis

    OpenAIRE

    Sébastien Bernacchi; Simon Rittmann; Arne H. Seifert; Alexander Krajete; Christoph Herwig

    2014-01-01

    1. Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. Erdoel, Erdgas, Kohle 126: 342-345.2. Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79: 507-536.3. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125: 171-189.4. Kaster AK, Goenrich M, Seedorf H, et al. (2011) More than...

  18. Changing perspectives on the origin of eukaryotes.

    Science.gov (United States)

    Katz, L A

    1998-12-01

    From the initial application of molecular techniques to the study of microbial organisms, three domains of life emerged, with eukaryotes and archaea as sister taxa. However, recent analyses of an expanding molecular data set reveal that the eukaryotic genome is chimeric with respect to archaea and bacteria. Moreover, there is now evidence that the primitive eukaryotic group `Archezoa' once harbored mitochondia. These discoveries have challenged the traditional stepwise model of the evolution of eukaryotes, in which the nucleus and microtubules evolve before the acquisition of mitochondria, and consequently compel a revision of existing models of the origin of eukaryotic cells. PMID:21238406

  19. Modeling DNA Repair: Approaching In Vivo Techniques in the Hyperthermophile Sulfolobus Solfataricus

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, J.; Fuss, J.; Yannone, S.M.; Tainer, J.A.; Cooper, P.K.

    2005-01-01

    Archaea are found in some of the most extreme environments on earth and represent a third domain of life distinct from Eukarya and Eubacteria. The hyperthermophilic archaeon Sulfolobus solfataricus, isolated from acidic hot springs (80oC, pH 3) in Yellowstone National Park, has emerged as a potential model system for studying human DNA repair processes. Archaea are more closely related to Eukarya than to Eubacteria, suggesting that archaeal DNA repair machinery may model the complex human system much more closely than that of other prokaryotes. DNA repair requires coordinated protein-protein interactions that are frequently transient. Protein complexes that are transient at extreme temperatures where archaea thrive may be more stable at room temperature, allowing for the characterization of otherwise short-lived complexes. However, characterization of these systems in archaea has been limited by the absence of a stable in vivo transformation and expression system. The work presented here is a pilot study in gene cloning and recombinant protein expression in S. solfataricus. Three genes associated with DNA repair were selected for expression: MRE11, PCNA1, and a putative CSB homologue. Though preparation of these recombinant genes followed standard methods, preparation of a suitable vector proved more challenging. The shuttle vector pSSV64, derived from the SSV1 virus and the E. coli vector pBSSK+, was most successfully isolated from the DH5α E. coli strain. Currently, alternative vectors are being designed for more efficient genetic manipulations in S. solfataricus.

  20. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    NARCIS (Netherlands)

    Hollenstein, K.; Comellas-Bigler, M.; Bevers, L.E.; Feiters, M.C.; Meyer-Klaucke, W.; Hagedoorn, P.-L.; Locher, K.P.

    2009-01-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across th