WorldWideScience

Sample records for arc therapy vmat

  1. Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    International Nuclear Information System (INIS)

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.

  2. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    International Nuclear Information System (INIS)

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H and N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used

  3. Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes?

    International Nuclear Information System (INIS)

    Purpose: To compare step-and-shoot intensity-modulated radiotherapy (ss-IMRT) with volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes with a simultaneous integrated boost (SIB). Materials and methods: This retrospective planning study was based on 20 patients composed of prostate cancer (n = 5), postoperative (n = 5) or primary (n = 5) radiotherapy for pharyngeal cancer and for cancer of the paranasal sinuses (n = 5); a SIB with two or three dose levels was planned in all patients. For each patient, one ss-IMRT plan with direct-machine-parameter optimization (DMPO) and VMAT plans with one to three arcs (SmartArc technique) were generated in the Pinnacle planning system. Results: Single arc VMAT improved target coverage and dose homogeneity in radiotherapy for prostate cancer. Two and three VMAT arcs were required to achieve equivalent results compared to ss-IMRT in postoperative and primary radiotherapy for pharyngeal cancer, respectively. In radiotherapy for cancer of the paranasal sinuses, multiarc VMAT resulted in increased spread of low doses to the lenses and decreased target coverage in the region between the orbits. Conclusions: The complexity of the target volume determined whether single arc VMAT was equivalent to ss-IMRT. Multiple arc VMAT improved results compared to single arc VMAT at cost of increased delivery times, increased monitor unites and increased spread of low doses.

  4. Evaluation of dosimetric effect caused by slowing with multi-leaf collimator (MLC leaves for volumetric modulated arc therapy (VMAT

    Directory of Open Access Journals (Sweden)

    Xu Zhengzheng

    2016-03-01

    Full Text Available This study is to report 1 the sensitivity of intensity modulated radiation therapy (IMRT QA method for clinical volumetric modulated arc therapy (VMAT plans with multi-leaf collimator (MLC leaf errors that will not trigger MLC interlock during beam delivery; 2 the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery.

  5. Statistical quality control for volumetric modulated arc therapy (VMAT) delivery using machine log data

    CERN Document Server

    Cheong, Kwang-Ho; Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Kim, Haeyoung; Kim, Kyoung Ju; Han, Tae Jin; Bae, Hoonsik

    2015-01-01

    The aim of this study is to set up statistical quality control for monitoring of volumetric modulated arc therapy (VMAT) delivery error using machine log data. Eclipse and Clinac iX linac with the RapidArc system (Varian Medical Systems, Palo Alto, USA) is used for delivery of the VMAT plan. During the delivery of the RapidArc fields, the machine determines the delivered motor units (MUs) and gantry angle position accuracy and the standard deviations of MU (sigma_MU; dosimetric error) and gantry angle (sigma_GA; geometric error) are displayed on the console monitor after completion of the RapidArc delivery. In the present study, first, the log data was analyzed to confirm its validity and usability; then, statistical process control (SPC) was applied to monitor the sigma_MU and sigma_GA in a timely manner for all RapidArc fields: a total of 195 arc fields for 99 patients. The sigma_MU and sigma_GA were determined twice for all fields, that is, first during the patient-specific plan QA and then again during th...

  6. Ultra-fast treatment plan optimization for volumetric modulated arc therapy (VMAT)

    CERN Document Server

    Men, Chunhua; Jia, Xun; Jiang, Steve B

    2010-01-01

    Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. We consider a cost function consisting two terms, the first which enforces a desired dose distribution while the second guarantees a smooth dose rate variation between successive gantry angles. At each iteration of the column generation method, a subproblem is first solved to generate one more deliverable MLC aperture which potentially decreases the cost function most effectively. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. The iteration of such an algorithm yields a set of deliverable apertures, as well as dose rates, at all gantry angles. Results: The algorithm was preliminarily tested on five prostate and five head-a...

  7. Effect of interfractional shoulder motion on low neck nodal targets for patients treated using volume modulated arc therapy (VMAT

    Directory of Open Access Journals (Sweden)

    Kevin Casey

    2014-03-01

    Full Text Available Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT.Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor site. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs and a second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient’s treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the deformed low neck contours.Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3.Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.-------------------------------------------Cite this article as: Casey K

  8. Single Arc VMAT of H&N patients

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Hansen, Christian Rønn; Johansen, Jørgen;

    2009-01-01

      Background: A few planning systems are currently able to plan volumetric modulated arc therapy (VMAT) which can be delivered on Elekta and Varian accelerators. Pinnacles version of a VMAT algorithm is called SmartArc. SmartArcs capability to modulate complicated treatment plans is to be tested...

  9. Single Arc VMAT of H&N patients

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Hansen, Christian Rønn; Johansen, Jørgen;

      Background: A few planning systems are currently able to plan volumetric modulated arc therapy (VMAT) which can be delivered on Elekta and Varian accelerators. Pinnacles version of a VMAT algorithm is called SmartArc. SmartArcs capability to modulate complicated treatment plans is to be tested...

  10. Application of volumetric modulated arc therapy (VMAT) in a dual-vendor environment

    International Nuclear Information System (INIS)

    The purpose of this study was to assess plan quality and treatment time achievable with the new VMAT optimization tool implemented in the treatment planning system Oncentra MasterPlan® as compared to IMRT for Elekta SynergyS® linear accelerators. VMAT was implemented on a SynergyS® linear accelerator (Elekta Ltd., Crawley, UK) with Mosaiq® record and verify system (IMPAC Medical Systems, Sunnyvale, CA) and the treatment planning system Oncentra MasterPlan® (Nucletron BV, Veenendaal, the Netherlands). VMAT planning was conducted for three typical target types of prostate cancer, hypopharynx/larynx cancer and vertebral metastases, and compared to standard IMRT with respect to plan quality, number of monitor units (MU), and treatment time. For prostate cancer and vertebral metastases single arc VMAT led to similar plan quality as compared to IMRT. For treatment of the hypopharynx/larynx cancer, a second arc was necessary to achieve sufficient plan quality. Treatment time was reduced in all cases to 35% to 43% as compared to IMRT. Times required for optimization and dose calculation, however, increased by a factor of 5.0 to 6.8. Similar or improved plan quality can be achieved with VMAT as compared to IMRT at reduced treatment times but increased calculation times

  11. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT)

    OpenAIRE

    Zhou Xiaojuan; Xu Yong; Zhou Lin; Liu Yongmei; Li Tao; Jiang Xiaoqin; Gong Youling

    2011-01-01

    Abstract Purpose To analyze the differences between the intensity-modulated radiotherapy (IMRT), single/partial-arc volumetric modulated arc therapy (SA/PA-VMAT) techniques in treatment planning for locally advanced lung cancer. Materials and methods 12 patients were retrospectively studied. In each patient's case, several parameters were analyzed based on the dose-volume histograms (DVH) of the IMRT, SA/PA-VMAT plans respectively. Also, each plan was delivered to a phantom for time compariso...

  12. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT)

    International Nuclear Information System (INIS)

    To analyze the differences between the intensity-modulated radiotherapy (IMRT), single/partial-arc volumetric modulated arc therapy (SA/PA-VMAT) techniques in treatment planning for locally advanced lung cancer. 12 patients were retrospectively studied. In each patient's case, several parameters were analyzed based on the dose-volume histograms (DVH) of the IMRT, SA/PA-VMAT plans respectively. Also, each plan was delivered to a phantom for time comparison. The SA-VMAT plans showed the superior target dose coverage, although the minimum/mean/maximum doses to the target were similar. For the total and contralateral lungs, the higher V5/10, lower V20/30 and mean lung dose (MLD) were observed in the SA/PA-VMAT plans (p < 0.05, respectively). The PA-VMAT technique improves the dose sparing (V20, V30 and MLD) of the controlateral lung more notably, comparing to those parameters of the IMRT and SA-VMAT plans respectively. The delivered monitor units (MUs) and treatment times were reduced significantly with VMAT plans, especially PA-VMAT plans (for MUs: mean 458.3 vs. 439.2 vs. 435.7 MUs, p < 0.05 and for treatment time: mean 13.7 vs. 10.6 vs. 6.4 minutes, p < 0.01). The SA-VMAT technique achieves highly conformal dose distribution to the target. Comparing to the IMRT plans, the higher V5/10, lower V20/30 and MLD were observed in the total and contralateral lungs in the VMAT plans, especially in the PA-VMAT plans. The SA/PA-VMAT plans also reduced treatment time with more efficient dose delivering. But the clinical benefit of the VMAT technique for locally advanced lung cancer needs further investigations

  13. Developing a class solution for Prostate Stereotactic Ablative Body Radiotherapy (SABR) using Volumetric Modulated Arc Therapy (VMAT)

    International Nuclear Information System (INIS)

    Background and purpose: To develop a class solution for prostate Stereotactic Ablative Radiotherapy (SABR) using Volumetric Modulated Arc Therapy (VMAT). Materials and methods: Seven datasets were used to compare plans using one 360° arc (1FA), one 210° arc (1PA), two full arcs and two partial arcs. Subsequently using 1PA, fifteen datasets were compared using (i) 6 mm CTV–PTV margins, (ii) 8 mm CTV–PTV margins and (iii) including the proximal SV within the CTV. Monaco™ 3.2 (Elekta™) was used for planning with the Agility™ MLC system (Elekta™). Results: Highly conformal plans were produced using all four arc arrangements. Compared to 1FA, 1PA resulted in significantly reduced rectal doses, and monitor units and estimated delivery times were reduced in six of seven cases. Using 6 mm CTV–PTV margins, planning constraints were met for all fifteen datasets. Using 8 mm margins required relaxation of the uppermost bladder constraint in three cases to achieve adequate coverage, and, compared to 6 mm margins, rectal and bladder doses significantly increased. Including the proximal SV required relaxation of the uppermost bladder and rectal constraints in two cases, and rectal and bladder doses significantly increased. Conclusions: Prostate SABR VMAT is optimal using 1PA. 6 mm CTV–PTV margins, compatible with daily fiducial-based IGRT, are consistently feasible in terms of target objectives and OAR constraints

  14. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT, single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT

    Directory of Open Access Journals (Sweden)

    Zhou Xiaojuan

    2011-10-01

    Full Text Available Abstract Purpose To analyze the differences between the intensity-modulated radiotherapy (IMRT, single/partial-arc volumetric modulated arc therapy (SA/PA-VMAT techniques in treatment planning for locally advanced lung cancer. Materials and methods 12 patients were retrospectively studied. In each patient's case, several parameters were analyzed based on the dose-volume histograms (DVH of the IMRT, SA/PA-VMAT plans respectively. Also, each plan was delivered to a phantom for time comparison. Results The SA-VMAT plans showed the superior target dose coverage, although the minimum/mean/maximum doses to the target were similar. For the total and contralateral lungs, the higher V5/10, lower V20/30 and mean lung dose (MLD were observed in the SA/PA-VMAT plans (p 20, V30 and MLD of the controlateral lung more notably, comparing to those parameters of the IMRT and SA-VMAT plans respectively. The delivered monitor units (MUs and treatment times were reduced significantly with VMAT plans, especially PA-VMAT plans (for MUs: mean 458.3 vs. 439.2 vs. 435.7 MUs, p vs. 10.6 vs. 6.4 minutes, p Conclusions The SA-VMAT technique achieves highly conformal dose distribution to the target. Comparing to the IMRT plans, the higher V5/10, lower V20/30 and MLD were observed in the total and contralateral lungs in the VMAT plans, especially in the PA-VMAT plans. The SA/PA-VMAT plans also reduced treatment time with more efficient dose delivering. But the clinical benefit of the VMAT technique for locally advanced lung cancer needs further investigations.

  15. Evaluation of dosimetric effect caused by slowing with multi-leaf collimator (MLC) leaves for volumetric modulated arc therapy (VMAT)

    Science.gov (United States)

    Wang, Iris Z.; Kumaraswamy, Lalith K.; Podgorsak, Matthew B.

    2016-01-01

    Background This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. Materials and methods. Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as ‘standard’ plans, and the original plans were treated as the ‘slowing MLC’ plans for simulating ‘standard’ plans with leaves moving at relatively lower speed. The measurement of each ‘slowing MLC’ plan using MapCHECK®2 was compared with calculated planar dose of the ‘standard’ plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. Results All ‘slowing MLC’ plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between ‘standard’ and ‘slowing MLC’ plans demonstrated minimal dosimetric changes in targets and organs-at-risk. Conclusions For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans. PMID:27069458

  16. Prostatic displacement during extreme hypofractionated radiotherapy using volumetric modulated arc therapy (VMAT)

    International Nuclear Information System (INIS)

    To determine prostate displacement during extreme hypofractionated volume modulated arc radiotherapy (VMAT) using pre- and post-treatment orthogonal images with three implanted gold seed fiducial markers. A total of 150 image pairs were obtained from 30 patients who underwent extreme hypofractionated radiotherapy to a dose of 40 Gy in five fractions on standard linear accelerators. Position verification was obtained with orthogonal x-rays before and after treatment and were used to determine intra-fraction prostate displacement. The mean prostate displacements were 0.03 ± 1.23 mm (1SD), 0.18 ± 1.55 mm, and 0.37 ± 1.95 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively. The mean 3D displacement was 2.32 ± 1.55 mm. Only 6 (4%) fractions had a 3D displacement of >5 mm. The average time of treatment delivery for a given fraction was 195 ± 59 seconds. The mean intra-fraction prostate displacement during a course of extreme hypofractionated radiotherapy delivered via VMAT, continues to be small. Clinical margins typically used in a similar fixed-angle IMRT treatment are adequate. The use of VMAT in further extreme hypofractionation may limit prostatic motion uncertainties that would be otherwise be associated with longer treatment times

  17. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Elith, Craig A [British Columbia Cancer Agency, Fraser Valley Centre, Surrey, BC (Canada); School of Health Sciences, University of Newcastle, Newcastle, NSW (Australia); Dempsey, Shane E; Warren-Forward, Helen M [School of Health Sciences, University of Newcastle, Newcastle, NSW (Australia); British Columbia Cancer Agency, Fraser Valley Centre, Surrey, BC (Canada)

    2013-09-15

    The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time.

  18. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    International Nuclear Information System (INIS)

    The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time

  19. SU-E-T-389: Effect of Interfractional Shoulder Motion On Low Neck Nodal Targets for Patients Treated Using Volume Modulated Arc Therapy (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, K; Wong, P; Tung, S [MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT). Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs. A second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient's treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the low neck contours. Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan) and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan) for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3. Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.

  20. SU-E-T-389: Effect of Interfractional Shoulder Motion On Low Neck Nodal Targets for Patients Treated Using Volume Modulated Arc Therapy (VMAT)

    International Nuclear Information System (INIS)

    Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT). Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs. A second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient's treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the low neck contours. Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan) and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan) for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3. Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT

  1. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    International Nuclear Information System (INIS)

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality

  2. Comparison of testicular dose delivered by intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in patients with prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Handorf, Elizabeth A. [Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, PA (United States); Price, Robert A.; Cherian, George [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Chen, David Y.; Kutikov, Alexander [Department of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Johnson, Matthew E.; Ma, Chung-Ming Charlie [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Horwitz, Eric M., E-mail: eric.horwitz@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-10-01

    A small decrease in testosterone level has been documented after prostate irradiation, possibly owing to the incidental dose to the testes. Testicular doses from prostate external beam radiation plans with either intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT) were calculated to investigate any difference. Testicles were contoured for 16 patients being treated for localized prostate cancer. For each patient, 2 plans were created: 1 with IMRT and 1 with VMAT. No specific attempt was made to reduce testicular dose. Minimum, maximum, and mean doses to the testicles were recorded for each plan. Of the 16 patients, 4 received a total dose of 7800 cGy to the prostate alone, 7 received 8000 cGy to the prostate alone, and 5 received 8000 cGy to the prostate and pelvic lymph nodes. The mean (range) of testicular dose with an IMRT plan was 54.7 cGy (21.1 to 91.9) and 59.0 cGy (25.1 to 93.4) with a VMAT plan. In 12 cases, the mean VMAT dose was higher than the mean IMRT dose, with a mean difference of 4.3 cGy (p = 0.019). There was a small but statistically significant increase in mean testicular dose delivered by VMAT compared with IMRT. Despite this, it unlikely that there is a clinically meaningful difference in testicular doses from either modality.

  3. SU-E-T-405: Robustness of Volumetric-Modulated Arc Therapy (VMAT) Plans to Systematic MLC Positional Errors

    International Nuclear Information System (INIS)

    Purpose: To evaluate the dosimetric impact of systematic MLC positional errors (PEs) on the quality of volumetric-modulated arc therapy (VMAT) plans. Methods: Five patients with head-and-neck cancer (HN) and five patients with prostate cancer were randomly chosen for this study. The clinically approved VMAT plans were designed with 2–4 coplanar arc beams with none-zero collimator angles in the Pinnacle planning system. The systematic MLC PEs of 0.5, 1.0, and 2.0 mm on both MLC banks were introduced into the original VMAT plans using an in-house program, and recalculated with the same planned Monitor Units in the Pinnacle system. For each patient, the original VMAT plans and plans with MLC PEs were evaluated according to the dose-volume histogram information and Gamma index analysis. Results: For one primary target, the ratio of V100 in the plans with 0.5, 1.0, and 2.0 mm MLC PEs to those in the clinical plans was 98.8 ± 2.2%, 97.9 ± 2.1%, 90.1 ± 9.0% for HN cases and 99.5 ± 3.2%, 98.9 ± 1.0%, 97.0 ± 2.5% for prostate cases. For all OARs, the relative difference of Dmean in all plans was less than 1.5%. With 2mm/2% criteria for Gamma analysis, the passing rates were 99.0 ± 1.5% for HN cases and 99.7 ± 0.3% for prostate cases between the planar doses from the original plans and the plans with 1.0 mm MLC errors. The corresponding Gamma passing rates dropped to 88.9 ± 5.3% for HN cases and 83.4 ± 3.2% for prostate cases when comparing planar doses from the original plans and the plans with 2.0 mm MLC errors. Conclusion: For VMAT plans, systematic MLC PEs up to 1.0 mm did not affect the plan quality in term of target coverage, OAR sparing, and Gamma analysis with 2mm/2% criteria

  4. A dosimetric comparison of volumetric modulated arc therapy (VMAT) and non-coplanar intensity modulated radiotherapy (IMRT) for nasal cavity and paranasal sinus cancer

    International Nuclear Information System (INIS)

    To compare dosimetric parameters of volumetric modulated arc therapy (VMAT) and non-coplanar intensity modulated radiotherapy (IMRT) for nasal cavity and paranasal sinus cancer with regard to the coverage of planning target volume (PTV) and the sparing of organs at risk (OAR). Ten patients with nasal cavity or paranasal sinus cancer were re-planned by VMAT (two-arc) plan and non-coplanar IMRT (7-, 11-, and 15-beam) plans. Planning objectives were to deliver 60 Gy in 30 fractions to 95% of PTV, with maximum doses (Dmax) of <50 Gy to the optic nerves, optic chiasm, and brainstem, <40 Gy to the eyes and <10 Gy to the lenses. The target mean dose (Dmean) to the parotid glands was <25 Gy, and no constraints were applied to the lacrimal glands. Planning was optimized to minimized doses to OAR without compromising coverage of the PTV. VMAT and three non-coplanar IMRT (7-, 11-, and 15-beam) plans were compared using the heterogeneity and conformity indices (HI and CI) of the PTV, Dmax and Dmean of the OAR, treatment delivery time, and monitor units (MUs). The HI and CI of VMAT plan were superior to those of the 7-, 11-, and 15-beam non-coplanar IMRT. VMAT and non-coplanar IMRT (7-, 11-, and 15-beam) showed equivalent sparing effects for the optic nerves, optic chiasm, brainstem, and parotid glands. For the eyes and lenses, VMAT achieved equivalent or better sparing effects when compared with the non-coplanar IMRT plans. VMAT showed lower MUs and reduced treatment delivery time when compared with non-coplanar IMRT. In 10 patients with nasal cavity or paranasal sinus cancer, a VMAT plan provided better homogeneity and conformity for PTV than non-coplanar IMRT plans, with a shorter treatment delivery time, while achieving equal or better OAR-sparing effects and using fewer MUs

  5. Measurement comparison and Monte Carlo analysis for volumetric-modulated arc therapy (VMAT) delivery verification using the ArcCHECK dosimetry system.

    Science.gov (United States)

    Lin, Mu-Han; Koren, Sion; Veltchev, Iavor; Li, Jinsheng; Wang, Lu; Price, Robert A; Ma, C-M

    2013-01-01

    The objective of this study is to validate the capabilities of a cylindrical diode array system for volumetric-modulated arc therapy (VMAT) treatment quality assurance (QA). The VMAT plans were generated by the Eclipse treatment planning system (TPS) with the analytical anisotropic algorithm (AAA) for dose calculation. An in-house Monte Carlo (MC) code was utilized as a validation tool for the TPS calculations and the ArcCHECK measurements. The megavoltage computed tomography (MVCT) of the ArcCHECK system was adopted for the geometry reconstruction in the TPS and for MC simulations. A 10 × 10 cm2 open field validation was performed for both the 6 and 10 MV photon beams to validate the absolute dose calibration of the ArcCHECK system and also the TPS dose calculations for this system. The impact of the angular dependency on noncoplanar deliveries was investigated with a series of 10 × 10 cm2 fields delivered with couch rotation 0° to 40°. The sensitivity of detecting the translational (1 to 10 mm) and the rotational (1° to 3°) misalignments was tested with a breast VMAT case. Ten VMAT plans (six prostate, H&N, pelvis, liver, and breast) were investigated to evaluate the agreement of the target dose and the peripheral dose among ArcCHECK measurements, and TPS and MC dose calculations. A customized acrylic plug holding an ion chamber was used to measure the dose at the center of the ArcCHECK phantom. Both the entrance and the exit doses measured by the ArcCHECK system with and without the plug agreed with the MC simulation to 1.0%. The TPS dose calculation with a 2.5 mm grid overestimated the exit dose by up to 7.2% when the plug was removed. The agreement between the MC and TPS calculations for the ArcCHECK without the plug improved significantly when a 1 mm dose calculation grid was used in the TPS. The noncoplanar delivery test demonstrated that the angular dependency has limited impact on the gamma passing rate (< 1.2% drop) for the 2%-3% dose and 2mm-3 mm

  6. Assessing the Role of Volumetric Modulated Arc Therapy (VMAT) Relative to IMRT and Helical Tomotherapy in the Management of Localized, Locally Advanced, and Post-Operative Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To quantify differences in treatment delivery efficiency and dosimetry between step-and-shoot intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT) for prostate treatment. Methods and Materials: Twenty-five prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated for: prostate alone (n = 5), prostate + seminal vesicles (n = 5), prostate + seminal vesicles + pelvic lymph nodes (n = 5), prostate bed (n = 5), and prostate bed + pelvic lymph nodes (n = 5). Target coverage, dose homogeneity, integral dose, monitor units (MU), and sparing of organs at risk (OAR) were compared across techniques. Time required to deliver each plan was measured. Results: The dosimetric quality of IMRT, VMAT, and HT plans were comparable for target coverage (planning target volume V95%, clinical target volume V100% all >98.7%) and sparing of organs at risk (OAR) for all treatment groups. Although HT resulted in a slightly higher integral dose and mean doses to the OAR, it yielded a lower maximum dose to all OAR examined. VMAT resulted in reductions in treatment times over IMRT (mean = 75%) and HT (mean = 70%). VMAT required 15-38% fewer monitor units than IMRT over all treatment volumes, with the reduction per fraction ranging from 100-423 MU from the smallest to largest volumes. Conclusions: VMAT improves efficiency of delivery for equivalent dosimetric quality as IMRT and HT across various prostate cancer treatment volumes in the intact and postoperative settings.

  7. Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT vs Intensity Modulated Radiation Therapy (IMRT for radiotherapy of mid esophageal carcinoma

    Directory of Open Access Journals (Sweden)

    Tejinder Kataria

    2014-01-01

    Conclusion: VMAT can be a better option in treating mid esophageal carcinoma as compared to IMRT. The VMAT plans resulted in equivalent or superior dose distribution with a reduction in the dose to lung and heart.

  8. Evaluation of volumetric modulated arc therapy (VMAT) with Oncentra MasterPlan® for the treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Several comparison studies have shown the capability of VMAT to achieve similar or better plan quality as IMRT, while reducing the treatment time. The experience of VMAT in a multi vendor environment is limited. We compared the plan quality and performance of VMAT to IMRT and we investigate the effects of varying various user-selectable parameters. IMRT, single arc VMAT and dual arc VMAT were compared for four different head-and-neck tumors. For VMAT, the effect of varying gantry angle spacing and treatment time on the plan quality was investigated. A comparison of monitor units and treatment time was performed. IMRT and dual arc VMAT achieved a similar plan quality, while single arc could not provide an acceptable plan quality. Increasing the number of control points does not improve the plan quality. Dual arc VMAT delivery time is about 30% of IMRT delivery time. Dual arc VMAT is a fast and accurate technique for the treatment of head and neck cancer. It applies similar number of MUs as IMRT, but the treatment time is strongly reduced, maintaining similar or better dose conformity to the PTV and OAR sparing

  9. Sci—Sat AM: Stereo — 08: Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam

    Energy Technology Data Exchange (ETDEWEB)

    Mestrovic, A; Fortin, D; Alexander, A [BC Cancer Agency - Vancouver Island Centre (Canada)

    2014-08-15

    Purpose: To determine the feasibility of using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam for Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer. Methods and Materials: Ten anonymized patient CT data sets were used in this planning study. For each patient CT data set, three sets of contours were generated: 1) low risk, 2) intermediate risk, and 3) high risk scenarios. For each scenario, a single-arc and a double-arc VMAT treatment plans were created. Plans were generated with the Varian Eclipse™ treatment planning system for a Varian TrueBeam™ linac equipped with Millenium 120 MLC. Plans were created using a 10x-FFF beam with a maximum dose rate of 2400 MU/min. Dose prescription was 36.25Gy/5 fractions with the planning objective of covering 99% of the Planning Target Volume with the 95% of the prescription dose. Normal tissue constraints were based on provincial prostate SABR planning guidelines, derived from national and international prostate SABR protocols. Plans were evaluated and compared in terms of: 1) dosimetric plan quality, and 2) treatment delivery efficiency. Results: Both single-arc and double-arc VMAT plans were able to meet the planning goals for low, intermediate and high risk scenarios. No significant dosimetric differences were observed between the plans. However, the treatment time was significantly lower for a single-arc VMAT plans. Conclusions: Prostate SABR treatments are feasible with 10x-FFF VMAT technique. A single-arc VMAT offers equivalent dosimetric plan quality and a superior treatment delivery efficiency, compared to a double-arc VMAT.

  10. Sci—Sat AM: Stereo — 08: Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam

    International Nuclear Information System (INIS)

    Purpose: To determine the feasibility of using Volumetric Modulated Arc Therapy (VMAT) with a 10x Flattening Filter Free (FFF) beam for Stereotactic Ablative Radiotherapy (SABR) for low, intermediate and high risk prostate cancer. Methods and Materials: Ten anonymized patient CT data sets were used in this planning study. For each patient CT data set, three sets of contours were generated: 1) low risk, 2) intermediate risk, and 3) high risk scenarios. For each scenario, a single-arc and a double-arc VMAT treatment plans were created. Plans were generated with the Varian Eclipse™ treatment planning system for a Varian TrueBeam™ linac equipped with Millenium 120 MLC. Plans were created using a 10x-FFF beam with a maximum dose rate of 2400 MU/min. Dose prescription was 36.25Gy/5 fractions with the planning objective of covering 99% of the Planning Target Volume with the 95% of the prescription dose. Normal tissue constraints were based on provincial prostate SABR planning guidelines, derived from national and international prostate SABR protocols. Plans were evaluated and compared in terms of: 1) dosimetric plan quality, and 2) treatment delivery efficiency. Results: Both single-arc and double-arc VMAT plans were able to meet the planning goals for low, intermediate and high risk scenarios. No significant dosimetric differences were observed between the plans. However, the treatment time was significantly lower for a single-arc VMAT plans. Conclusions: Prostate SABR treatments are feasible with 10x-FFF VMAT technique. A single-arc VMAT offers equivalent dosimetric plan quality and a superior treatment delivery efficiency, compared to a double-arc VMAT

  11. Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma

    OpenAIRE

    Tejinder Kataria; Govardhan, H. B.; Deepak Gupta; U Mohanraj; Shyam Singh Bisht; R Sambasivaselli; Goyal, S; A Abhishek; A Srivatsava; Pushpan, L; Kumar, V.; S Vikraman

    2014-01-01

    Aims: Dosimetric comparison of VMAT with IMRT in middle third esophageal cancer for planning target volume (PTV) and organs at risk (OAR). Materials and Methods: Ten patients in various stages from I‒III were inducted in the neo-adjuvant chemoradiation protocol for this study. The prescribed dose was 4500 cGy in 25 fractions. Both VMAT and IMRT plan were generated in all cases and Dose Volume Histogram (DVH) comparative analysis was performed for PTV and OAR. Paired t-test was used for sta...

  12. Clinical Applications of Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  13. Total Body Irradiation using VMAT (RapidArc): A Planning Study of a novel treatment delivery method

    OpenAIRE

    Santam Chakraborty; Suja Cheruliyil; Resmi Bharathan; Geetha Muttath

    2015-01-01

    Purpose: To evaluate the feasibility of using volumetric modulated arc therapy (VMAT) using RapidArc to deliver total body irradiation (TBI) treatment. Methods: VMAT planning was performed a whole body computed tomography (CT) data set using Rapid Arc. The planning target volumes included entire body trimmed to 3 mm below the skin. The organs at risk included the lungs and kidneys. A dose of 12 Gy in 10 fractions was prescribed to the target volume. The VMAT-TBI technique consisted of three i...

  14. Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer

    International Nuclear Information System (INIS)

    We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360deg and 180deg (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (deg/s2), and r.m.s. gantry angle errors (deg). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant dose volume histogram (DVH) differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer. (author)

  15. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer – A planning study

    International Nuclear Information System (INIS)

    Purpose: To compare the dosimetric performance of three different treatment techniques – conformal radiotherapy (CRT), double arcs volumetric modulated arc therapy (RapidArc, RA) and Hybrid-RapidArc (H-RA) for locally-advanced non-small cell lung cancer (NSCLC). Material and methods: CRT, RA and H-RA plans were optimized for 24 stage III NSCLC patients. The target prescription dose was 60 Gy. CRT consisted of 5–7 coplanar fields, while RA comprised of two 204o arcs. H-RA referred to two 204o arcs plus 2 static fields, which accounted for approximately half of the total dose. The plans were optimized to fulfill the departmental plan acceptance criteria. Results: RA and H-RA yielded a 20% better conformity compared with CRT. Lung volume receiving >20 Gy (V20) and mean lung dose (MLD) were the lowest in H-RA (V20 1.7% and 2.1% lower, MLD 0.59 Gy and 0.41 Gy lower than CRT and RA respectively) without jeopardizing the low-dose lung volume (V5). H-RA plans gave the lowest mean maximum spinal cord dose (34.4 Gy, 3.9 Gy < CRT and 2.2 Gy < RA plans) and NTCP of lung. Higher average MU per fraction (addition 52.4 MU) was observed with a reduced treatment time compared with CRT plans. Conclusion: The H-RA technique was superior in dosimetric outcomes for treating locally-advanced NSCLC compared to CRT and RA.

  16. Quasi-VMAT in high-grade glioma radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fadda, G.; Massazza, G.; Zucca, S.; Durzu, S.; Meleddu, G.; Possanzini, M.; Farace, P. [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radio-Oncology

    2013-05-15

    Purpose: To compare a quasi-volumetric modulated arc therapy (qVMAT) with three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) for the treatment of high-grade gliomas. The qVMAT technique is a fast method of radiation therapy in which multiple equispaced beams analogous to those in rotation therapy are radiated in succession. Patients and methods: This study included 12 patients with a planning target volume (PTV) that overlapped at least one organ at risk (OAR). 3D-CRT was planned using 2-3 non-coplanar beams, whereby the field-in-field technique (FIF) was used to divide each field into 1-3 subfields to shield the OAR. The qVMAT strategy was planned with 15 equispaced beams and IMRT was planned using 9 beams with a total of 80 segments. Inverse planning for qVMAT and IMRT was performed by direct machine parameter optimization (DMPO) to deliver a homogenous dose distribution of 60 Gy within the PTV and simultaneously limit the dose received by the OARs to the recommended values. Finally, the effect of introducing a maximum dose objective (max. dose < 54 Gy) for a virtual OAR in the form of a 0.5 cm ring around the PTV was investigated. Results: The qVMAT method gave rise to significantly improved PTV{sub 95%} and conformity index (CI) values in comparison to 3D-CRT (PTV{sub 95%} = 90.7 % vs. 82.0 %; CI = 0.79 vs. 0.74, respectively). A further improvement was achieved by IMRT (PTV{sub 95%} = 94.4 %, CI = 0.78). In qVMAT and IMRT, the addition of a 0.5 cm ring around the PTV produced a significant increase in CI (0.87 and 0.88, respectively), but dosage homogeneity within the PTV was considerably reduced (PTV{sub 95%} = 88.5 % and 92.3 %, respectively). The time required for qVMAT dose delivery was similar to that required using 3D-CRT. Conclusion: These findings suggest that qVMAT should be preferred to 3D-CRT for the treatment of high-grade gliomas. The qVMAT method could be applied in hospitals, for example

  17. Optimising the dosimetric quality and efficiency of post-prostatectomy radiotherapy: a planning study comparing the performance of volumetric-modulated arc therapy (VMAT) with an optimised seven-field intensity-modulated radiotherapy (IMRT) technique

    International Nuclear Information System (INIS)

    The purpose of this study was to compare and evaluate radiotherapy treatment plans using volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) for post-prostatectomy radiotherapy. The quality of radiotherapy plans for 10 patients planned and treated with a seven-field IMRT technique for biochemical failure post-prostatectomy were subsequently compared with 10 prospectively planned single-arc VMAT plans using the same computed tomography data set and treatment planning software. Plans were analysed using parameters to assess for target volume coverage, dose to organs at risk (OAR), biological outcomes, dose conformity and homogeneity, as well as the total monitor units (MU), planning and treatment efficiency. The mean results for the study population are reported for the purpose of comparison. For IMRT, the median dose to the planning target volume, V95% and D95% was 71.1 Gy, 98.9% and 68.3 Gy compared with 71.2 Gy, 99.2% and 68.6 Gy for VMAT. There was no significant difference in the conformity index or homogeneity index. The VMAT plans achieved better sparing of the rectum and the left and right femora with a reduction in the median dose by 7.9, 6.3 and 3.6 Gy, respectively. The total number of monitor units (MU) was reduced by 24% and treatment delivery time by an estimated 3 min per fraction without a significant increase in planning requirements. VMAT can achieve post-prostatectomy radiotherapy plans of comparable quality to IMRT with the potential to reduce dose to OAR and improve the efficiency of treatment delivery.

  18. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  19. Assessing the feasibility of volumetric-modulated arc therapy using simultaneous integrated boost (SIB-VMAT): An analysis for complex head-neck, high-risk prostate and rectal cancer cases

    International Nuclear Information System (INIS)

    Intensity-modulated radiotherapy (IMRT) allowed the simultaneous delivery of different doses to different target volumes within a single fraction, an approach called simultaneous integrated boost (SIB). As consequence, the fraction dose to the boost volume can be increased while keeping low doses to the elective volumes, and the number of fractions and overall treatment time will be reduced, translating into better radiobiological effectiveness. In recent years, volumetric-modulated arc therapy (VMAT) has been shown to provide similar plan quality with respect to fixed-field IMRT but with large reduction in treatment time and monitor units (MUs) number. However, the feasibility of VMAT when used with SIB strategy has few investigations to date. We explored the potential of VMAT in a SIB strategy for complex cancer sites. A total of 15 patients were selected, including 5 head-and-neck, 5 high-risk prostate, and 5 rectal cancer cases. Both a double-arc VMAT and a 7-field IMRT plan were generated for each case using Oncentra MasterPlan treatment planning system for an Elekta Precise linac. Dosimetric indexes for targets and organs at risk (OARs) were compared based on dose-volume histograms. Conformity index, homogeneity index, and dose-contrast index were used for target analyses. The equivalent uniform doses and the normal tissue complication probabilities were calculated for main OARs. MUs number and treatment time were analyzed to score treatment efficiency. Pretreatment dosimetry was performed using 2-dimensional (2D)-array dosimeter. SIB-VMAT plans showed a high level of fluence modulation needed for SIB treatments, high conformal dose distribution, similar target coverage, and a tendency to improve OARs sparing compared with the benchmark SIB-IMRT plans. The median treatment times reduced from 13 to 20 minutes to approximately 5 minutes for all cases with SIB-VMAT, with a MUs reduction up to 22.5%. The 2D-array ion-chambers' measurements reported an agreement

  20. Quasi-VMAT in high-grade glioma radiation therapy

    International Nuclear Information System (INIS)

    Purpose: To compare a quasi-volumetric modulated arc therapy (qVMAT) with three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) for the treatment of high-grade gliomas. The qVMAT technique is a fast method of radiation therapy in which multiple equispaced beams analogous to those in rotation therapy are radiated in succession. Patients and methods: This study included 12 patients with a planning target volume (PTV) that overlapped at least one organ at risk (OAR). 3D-CRT was planned using 2-3 non-coplanar beams, whereby the field-in-field technique (FIF) was used to divide each field into 1-3 subfields to shield the OAR. The qVMAT strategy was planned with 15 equispaced beams and IMRT was planned using 9 beams with a total of 80 segments. Inverse planning for qVMAT and IMRT was performed by direct machine parameter optimization (DMPO) to deliver a homogenous dose distribution of 60 Gy within the PTV and simultaneously limit the dose received by the OARs to the recommended values. Finally, the effect of introducing a maximum dose objective (max. dose 95% and conformity index (CI) values in comparison to 3D-CRT (PTV95% = 90.7 % vs. 82.0 %; CI = 0.79 vs. 0.74, respectively). A further improvement was achieved by IMRT (PTV95% = 94.4 %, CI = 0.78). In qVMAT and IMRT, the addition of a 0.5 cm ring around the PTV produced a significant increase in CI (0.87 and 0.88, respectively), but dosage homogeneity within the PTV was considerably reduced (PTV95% = 88.5 % and 92.3 %, respectively). The time required for qVMAT dose delivery was similar to that required using 3D-CRT. Conclusion: These findings suggest that qVMAT should be preferred to 3D-CRT for the treatment of high-grade gliomas. The qVMAT method could be applied in hospitals, for example, which have limited departmental resources and are not equipped with systems capable of VMAT delivery. (orig.)

  1. SU-E-T-139: Dynamic Conformal Arcs Vs. VMAT for Stereotactic Lung Target Treatment Planning

    International Nuclear Information System (INIS)

    Purpose: To investigate if Dynamic Conformal Arcs (DCA) can be used to achieve similar target coverage and conformality as that of using VMAT for Stereotactic Body Radiation Therapy (SBRT) for Lung cases. Methods: We retrospectively re-planned 11 patients that were treated with SBRT for lung tumors using only a single conformal arc, broken into three or four arc segments and weighted differentially in order to achieve the dosimetric constraints as outlined in RTOG 0915 protocol. These re-plans of using DCA were compared with those of using VMAT in terms of the Planning Tumor Volume (PTV) coverage goals, Maximum Dose 2 cm away (D 2cm), High Dose Spillage, Intermediate Dose Spillage, Lung volume getting 5 Gy (V5), and number of monitor units (MU). Results: Of the 11 cases, only three DCA plans failed the D2cm parameter, and one VMAT plan failed. None of the 11 patients failed the High Dose Spillage in either technique. For Intermediate Dose Spillage, one DCA plan failed and none failed for VMAT plans. The average V5 for DCA was 10.5 percent, with VMAT reporting 11.7 percent. The average number of MU for DCA and VMAT were 2605 and 3451, respectively. Conclusion: DCA is able to achieve very similar treatment planning goals as that of using VMAT in treating SBRT Lung tumors in most cases with simplicity. In addition, the DCA technique produces an acceptable plan with lower V5 in less MU when dose to OAR concerns are at minimum. However, DCA has shown its limitations when the target is close to multiple OAR

  2. Comparative dosimetric analysis of IMRT and VMAT (RapidArc in brain, head and neck, breast and prostate malignancies

    Directory of Open Access Journals (Sweden)

    Mirza Athar Ali

    2015-03-01

    Full Text Available Purpose: Intensity modulated radiotherapy (IMRT in the recent past has established itself as a gold standard for organs at risk (OAR sparing, target coverage and dose conformity. With the advent of a rotational treatment technology such as volumetric modulated arc therapy (VMAT, an inter-comparison is warranted to address the advantages and disadvantages of each technique. Methods: Twenty patients were selected retrospectively from our patient database. Sites included were brain, head and neck, chest wall, and prostate, with five patients for each site. For all the selected patients, both the IMRT and VMAT treatment plans were generated. Plan comparison was done in terms of OAR dose, dose homogeneity index (HI, dose conformity index (CI, target coverage, low isodose volumes, monitor units (MUs, and treatment time.Results: The VMAT showed better sparing of “parotids minus planning target volume (PTV”, spinal cord and head of femur as compared to the IMRT. The lung V40 for VMAT was lower, whereas the lung V10, contralateral lung mean dose, contralateral breast mean dose and mean body dose were lower with IMRT for chest wall cases. Both the VMAT and IMRT achieved comparable HI except for the brain site, where IMRT scored over VMAT. The CI achieved by the IMRT and VMAT were similar except for chest wall cases, whereas the VMAT achieved better dose conformity. The target coverage was comparable with both the plans. The VMAT clearly scored over IMRT in terms of average MUs (486 versus 812 respectively and average treatment time (2.54 minutes versus 5.54 minutes per treatment session. Conclusion: The VMAT (RapidArc has a potential to generate treatment plans for various anatomical sites which are comparable with the corresponding IMRT plans in terms of OAR sparing and plan quality parameters. The VMAT significantly reduces treatment time as compared to the IMRT, thus VMAT can increase the throughput of a busy radiotherapy department.

  3. Optimal partial-arcs in VMAT treatment planning

    CERN Document Server

    Wala, Jeremiah; Chen, Wei; Craft, David

    2012-01-01

    Purpose: To improve the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. Methods and materials: A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial arc with the lowest treatment time. The complete algorithm is called pmerge. Results: Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 seconds. Treatment times...

  4. Total Body Irradiation using VMAT (RapidArc: A Planning Study of a novel treatment delivery method

    Directory of Open Access Journals (Sweden)

    Santam Chakraborty

    2015-01-01

    Full Text Available Purpose: To evaluate the feasibility of using volumetric modulated arc therapy (VMAT using RapidArc to deliver total body irradiation (TBI treatment. Methods: VMAT planning was performed a whole body computed tomography (CT data set using Rapid Arc. The planning target volumes included entire body trimmed to 3 mm below the skin. The organs at risk included the lungs and kidneys. A dose of 12 Gy in 10 fractions was prescribed to the target volume. The VMAT-TBI technique consisted of three isocentres and three overlapping arcs: the head and neck, the chest, and the pelvis. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of 12 Gy was 95% and maximum dose of 109.8%. Mean dose to lung was restricted at 8.6Gy. Results: The total body volume in the study was 15469cm3 and the PTV volume was 11322cm3. The mean dose to PTV was 104%. The homogeneity index was 0.09. Sparing of normal tissues with adequate coverage of skeletal bones was shown to be feasible with Rapid Arc. The study demonstrates that VMAT is feasible for TBI treatment. Unlike conventional TBI chest wall boost with electrons was not required. Conclusion: The technique for total body irradiation using RapidArc VMAT was found feasible and is undergoing further studies prior to clinical use.

  5. Optimization approaches to volumetric modulated arc therapy planning

    International Nuclear Information System (INIS)

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed

  6. Optimization approaches to volumetric modulated arc therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Bortfeld, Thomas; Craft, David [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Alber, Markus [Department of Medical Physics and Department of Radiation Oncology, Aarhus University Hospital, Aarhus C DK-8000 (Denmark); Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg D-69120 (Germany); Bokrantz, Rasmus [RaySearch Laboratories, Stockholm SE-111 34 (Sweden); Chen, Danny [Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Men, Chunhua [Department of Research, Elekta, Maryland Heights, Missouri 63043 (United States); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Papp, Dávid [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Romeijn, Edwin [H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Salari, Ehsan [Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, Kansas 67260 (United States)

    2015-03-15

    Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.

  7. 保乳术后全乳照射 VMAT 与 IMRT 的计量学比较%Dosimetric comparison of volumetric -modulated arc therapy and intensity -modulated radiation therapy for breast cancer

    Institute of Scientific and Technical Information of China (English)

    赵金; 吴文安; 廖娟; 雎岩; 梁静; 宋丽萍

    2016-01-01

    目的:比较保乳术后全乳照射 VMAT 与静态 IMRT 的剂量学差异,探索 VMAT 的可行性。方法:2014年-2015年入组乳腺癌患者10例,左侧、右侧乳腺癌各5例。用 Varian Eclipse 计划系统分别设计双弧VMAT 和5野 IMRT 计划,PTV 处方剂量50Gy 分25次,用 Delta 4进行剂量验证。配对 t 检验比较两组计划PTV、OAR 受量、机器跳数及有效治疗时间。结果:两组计划均能满足临床剂量学要求。 VMAT 与 IMRT相比CI 值分别为(1.01±0.1)和(1.36±0.2)(P <0.05);HI 值分别为(0.124±0.01)和(0.173±0.02)(P <0.05);心脏 V20、V30、Dmean增高(P =0.041、0.012、0.002);肺 V20-V30无明显统计学差异,但是增加了患侧肺的 V5(58.2±3.5)% vs (51.4±4.2)%(P <0.05);机器跳数分别为(452±98)和(786±32)(P <0.05);有效治疗时间(2.5±0.89)min 和(15±1.78)min(P <0.05)。结论:在靶区覆盖率相似前提下,VMAT 可降低部分 OAR 受量,并能改善 CI 值、减少机器跳数、缩短有效治疗时间。Synergy 平台上的 VMAT 计划剂量稳定可靠。%Objective:To compare the dosimetric difference in VMAT and IMRT planning for breast cancer.Methods:Varian Eclipse,ten patients received radiotherapy alone after breast-conserving surgery were randomly selected.For each patient,two plans(VMAT and IMRT)were designed.In each plan,the volume of planning target volume (PTV)received prescription dose was not less than 95%.The dosimetric parameters were assessed with dosevolume histogram (DVH)and mean dose in PTV and organ at risk(OAR).Results:The irradition volume and meandose of heart and V5 of the lung can be increased by VMAT.Better conformal index(CI)and homogeneity index (HI)of PTV can be achieved.The MU and the therapy time can be reduced by the VMAT.Conclusion:The design ofVMAT plan for breast cancer should

  8. Application of the thermoluminescent (TL) and optically stimulated luminescence (OSL) dosimetry techniques to determinate the isodose curves in a cancer treatment planning simulation using Volumetric Modulated Arc Therapy - VMAT

    International Nuclear Information System (INIS)

    The Volumetric Modulated Arc Therapy (VMAT) is an advance technique of Intensity Modulated Radiation Therapy (IMRT). This progress is due to the continuous gantry rotation with the radiation beam modulation providing lower time of the patient treatment. This research aimed the verification of the isodose curves in a simulation of a vertebra treatment with spinal cord protection using the thermoluminescent (TL) and optically stimulated luminescence (OSL) dosimetry techniques and the LiF:Mg,Ti (TLD-100), CaS04:Dy and Al203:C dosimeters and LiF:Mg,Ti micro dosimeters (TLD-100). The dosimeters were characterized using PMMA plates of 30 x 30 x 30 cm3 and different thickness. All irradiations were done using Truebeam STx linear accelerator of Hospital Israelita Albert Einstein, with 6 MV photons beam. After the dosimeter characterization, they were irradiated according the specific planning simulation and using a PMMA phantom developed to VMAT measurements. This irradiation aimed to verify the isodose curves of the treatment simulation using the two dosimetry techniques. All types of dosimeters showed satisfactory results to determine the dose distribution but analysing the complexity of the isodose curves and the proximity of them, the LiF:Mg,Ti micro dosimeter showed the most appropriate for use due to its small dimensions. Regarding the best technique, as both technique showed satisfactory results, the TL technique presents less complex to be used because the most of the radiotherapy departments already have a TL laboratory. The OSL technique requires more care and greater investment in the hospital. (author)

  9. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    OpenAIRE

    Xin Ming; Yuanming Feng; Huan Liu; Ying Zhang; Li Zhou; Jun Deng

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercia...

  10. Single Arc Volumetric Modulated Arc Therapy of head and neck cancer

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Hansen, Christian Rønn; Johansen, Jørgen;

    2010-01-01

    named SmartArc and its capability to generate treatment plans for head and neck cancer was tested. METHODS: Twenty-five patients with oropharyngeal or hypopharyngeal carcinoma, previously treated with IMRT by means of Pinnacle and Elekta accelerators, were replanned with single arc VMAT. The VMAT......BACKGROUND: The quality of Volumetric Modulated Arc Therapy (VMAT) plans is highly dependent on the performance of the optimization algorithm used. Recently new algorithms have become available which are capable of generating VMAT plans for Elekta accelerators. The VMAT algorithm in Pinnacle is...... planning objectives were to achieve clinical target coverage and sparing of the organs at risk (OAR). Comparison with the original clinically used IMRT was made by evaluating (1) dose-volume histograms (DVHs) for PTVs, (2) DVHs for OARs, (3) delivery time and monitor units (MU), and (4) treatment accuracy...

  11. 二维电离室矩阵实时验证 VMAT 剂量价值研究%Real-time patient transit dose verification of volumetric modulated arc therapy by a 2D ionization chamber array

    Institute of Scientific and Technical Information of China (English)

    刘潇; 王运来; 鞠忠建; 徐伟; 金丽媛

    2015-01-01

    Objective To study the real?time dose verification with 2D array ion chamber array in volumetric modulated arc therapy ( VMAT) with a 2D array ion chamber array. Methods The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source?detector distance (SDD) was 140 cm. 8 mm RW3 solid water was added to the 2D array to improve the signal noise ratio. Patient plans for esophageal, prostate and liver cancers were selected to be delivered on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real?time patient transit dose measurements were performed at each fraction. Dose distributions were evaluated using gamma index criteria of 3 mm DTA and 3% dose difference referred to the first time result. Results The gamma index pass rate in the Cheese phantom were about 98%;the gamma index pass rate for esophageal, prostate and liver cancer patient were about 92%, 92% and 94%, respectively. Gamma pass rate for all single fraction were more than 90%. Conclusions The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.%目的:探讨利用二维电离室矩阵进行 VMAT 患者透射剂量实时验证的临床价值。方法将二维电离室矩阵面板粘贴固定在加速器 EPID 探测面板上,源到 EPID 探测面板距离为140 cm。电离室矩阵面板上加8 mm 的 RW3固体水以提高信躁比。选取食管癌、前列腺癌、肝癌患者计划,在圆柱形 Cheese 模体上照射测量5次,研究患者计划在模体中剂量验证的可行性与准确性。患者每次治疗时进行实时测量,第1次测量结果作为参考剂量,利用γ分析比较分次间剂量误差。结果采用3%3 mm 标准,Cheese 模体 VMAT 计划的γ通过率为98%左右,食管癌、前列腺癌和肝癌患者实时照射γ通过率分别约为92%、92%和94%。整个治疗过程中

  12. Volume Modulated Arc Therapy (VMAT for pulmonary Stereotactic Body Radiotherapy (SBRT in patients with lesions in close approximation to the chest wall

    Directory of Open Access Journals (Sweden)

    ThomasJ.FitzGerald

    2013-02-01

    VMAT technology has potential of limiting radiation dose to sensitive chest wall regions in patients with lesions in close approximation to this structure. This would also have potential value to lesions treated with SBRT in other body regions where targets abut critical structures.

  13. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    Science.gov (United States)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  14. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    International Nuclear Information System (INIS)

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  15. Application of the thermoluminescent (TL) and optically stimulated luminescence (OSL) dosimetry techniques to determinate the isodose curves in a cancer treatment planning simulation using Volumetric Modulated Arc Therapy - VMAT; Aplicacao das tecnicas de dosimetria termoluminescente (TL) e luminescencia opticamente estimulada (OSL) na determinacao de curvas de isodose em uma simulacao de tratamento de cancer pela tecnica de radioterapia em arco modulado volumetrico - VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda

    2015-07-01

    The Volumetric Modulated Arc Therapy (VMAT) is an advance technique of Intensity Modulated Radiation Therapy (IMRT). This progress is due to the continuous gantry rotation with the radiation beam modulation providing lower time of the patient treatment. This research aimed the verification of the isodose curves in a simulation of a vertebra treatment with spinal cord protection using the thermoluminescent (TL) and optically stimulated luminescence (OSL) dosimetry techniques and the LiF:Mg,Ti (TLD-100), CaS0{sub 4}:Dy and Al{sub 2}0{sub 3}:C dosimeters and LiF:Mg,Ti micro dosimeters (TLD-100). The dosimeters were characterized using PMMA plates of 30 x 30 x 30 cm{sup 3} and different thickness. All irradiations were done using Truebeam STx linear accelerator of Hospital Israelita Albert Einstein, with 6 MV photons beam. After the dosimeter characterization, they were irradiated according the specific planning simulation and using a PMMA phantom developed to VMAT measurements. This irradiation aimed to verify the isodose curves of the treatment simulation using the two dosimetry techniques. All types of dosimeters showed satisfactory results to determine the dose distribution but analysing the complexity of the isodose curves and the proximity of them, the LiF:Mg,Ti micro dosimeter showed the most appropriate for use due to its small dimensions. Regarding the best technique, as both technique showed satisfactory results, the TL technique presents less complex to be used because the most of the radiotherapy departments already have a TL laboratory. The OSL technique requires more care and greater investment in the hospital. (author)

  16. Risk of radiogenic second cancers following volumetric modulated arc therapy and proton arc therapy for prostate cancer

    Science.gov (United States)

    Rechner, Laura A.; Howell, Rebecca M.; Zhang, Rui; Etzel, Carol; Lee, Andrew K.; Newhauser, Wayne D.

    2012-11-01

    Prostate cancer patients who undergo radiotherapy are at an increased risk to develop a radiogenic second cancer. Proton therapy has been shown to reduce the predicted risk of second cancer when compared to intensity modulated radiotherapy. However, it is unknown if this is also true for the rotational therapies proton arc therapy and volumetric modulated arc therapy (VMAT). The objective of this study was to compare the predicted risk of cancer following proton arc therapy and VMAT for prostate cancer. Proton arc therapy and VMAT plans were created for three patients. Various risk models were combined with the dosimetric data (therapeutic and stray dose) to predict the excess relative risk (ERR) of cancer in the bladder and rectum. Ratios of ERR values (RRR) from proton arc therapy and VMAT were calculated. RRR values ranged from 0.74 to 0.99, and all RRR values were shown to be statistically less than 1, except for the value calculated with the linear-non-threshold risk model. We conclude that the predicted risk of cancer in the bladder or rectum following proton arc therapy for prostate cancer is either less than or approximately equal to the risk following VMAT, depending on which risk model is applied.

  17. SU-E-T-69: Cloud-Based Monte Carlo Patient-Specific Quality Assurance (QA) Method for Volumetric Modulated Arc Therapy (VMAT)

    International Nuclear Information System (INIS)

    Purpose: Patient-specific QA for VMAT is incapable of providing full 3D dosimetric information and is labor intensive in the case of severe heterogeneities or small-aperture beams. A cloud-based Monte Carlo dose reconstruction method described here can perform the evaluation in entire 3D space and rapidly reveal the source of discrepancies between measured and planned dose. Methods: This QA technique consists of two integral parts: measurement using a phantom containing array of dosimeters, and a cloud-based voxel Monte Carlo algorithm (cVMC). After a VMAT plan was approved by a physician, a dose verification plan was created and delivered to the phantom using our Varian Trilogy or TrueBeam system. Actual delivery parameters (i.e., dose fraction, gantry angle, and MLC at control points) were extracted from Dynalog or trajectory files. Based on the delivery parameters, the 3D dose distribution in the phantom containing detector were recomputed using Eclipse dose calculation algorithms (AAA and AXB) and cVMC. Comparison and Gamma analysis is then conducted to evaluate the agreement between measured, recomputed, and planned dose distributions. To test the robustness of this method, we examined several representative VMAT treatments. Results: (1) The accuracy of cVMC dose calculation was validated via comparative studies. For cases that succeeded the patient specific QAs using commercial dosimetry systems such as Delta- 4, MAPCheck, and PTW Seven29 array, agreement between cVMC-recomputed, Eclipse-planned and measured doses was obtained with >90% of the points satisfying the 3%-and-3mm gamma index criteria. (2) The cVMC method incorporating Dynalog files was effective to reveal the root causes of the dosimetric discrepancies between Eclipse-planned and measured doses and provide a basis for solutions. Conclusion: The proposed method offers a highly robust and streamlined patient specific QA tool and provides a feasible solution for the rapidly increasing use of VMAT

  18. An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer

    OpenAIRE

    Nan Zhao; Ruijie Yang; Junjie Wang; Xile Zhang; Jinna Li

    2015-01-01

    The study is to investigate a Hybrid IMRT/VMAT technique which combines intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for the treatment of nonsmall cell lung cancer (NSCLC). Two partial arcs VMAT, 5-field IMRT, and hybrid plans were created for 15 patients with NSCLC. The hybrid plans were combination of 2 partial arcs VMAT and 5-field IMRT. The dose distribution of planning target volume (PTV) and organs at risk (OARs) for hybrid technique was compa...

  19. SmartArc-Based Volumetric Modulated Arc Therapy for Oropharyngeal Cancer: A Dosimetric Comparison With Both Intensity-Modulated Radiation Therapy and Helical Tomotherapy

    International Nuclear Information System (INIS)

    Purpose: To investigate the roles of volumetric modulated arc therapy with SmartArc (VMAT-S), intensity-modulated radiation therapy (IMRT), and helical tomotherapy (HT) for oropharyngeal cancer using a simultaneous integrated boost (SIB) approach. Methods and Materials: Eight patients treated with IMRT were selected at random. Plans were computed for both IMRT and VMAT-S (using Pinnacle TPS for an Elekta Infinity linac) along with HT. A three-dose level prescription was used to deliver 70 Gy, 63 Gy, and 58.1 Gy to regions of macroscopic, microscopic high-risk, and microscopic low-risk disease, respectively. All doses were given in 35 fractions. Comparisons were performed on dose-volume histogram data, monitor units per fraction (MU/fx), and delivery time. Results: VMAT-S target coverage was close to that achieved by IMRT, but inferior to HT. The conformity and homogeneity within the PTV were improved for HT over all strategies. Sparing of the organs at risk (OAR) was achieved with all modalities. VMAT-S (along with HT) shortened delivery time (mean, -38%) and reduced MU/fx (mean, -28%) compared with IMRT. Conclusion: VMAT-S represents an attractive solution because of the shorter delivery time and the lower number of MU/fx compared with IMRT. However, in this complex clinical setting, current VMAT-S does not appear to provide any distinct advantage compared with helical tomotherapy.

  20. Comparative dosimetric analysis of IMRT and VMAT (RapidArc) in brain, head and neck, breast and prostate malignancies

    OpenAIRE

    Mirza Athar Ali; Muntimadugu Babaiah; Nagaraju Madhusudhan; Geomcy George; Shanu Jain; Kuppuswami Ramalingam; Sangaiah Ashok Kumar; Kalyanasundaram Karthikeyan; Ayyalusamy Anantharaman

    2015-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) in the recent past has established itself as a gold standard for organs at risk (OAR) sparing, target coverage and dose conformity. With the advent of a rotational treatment technology such as volumetric modulated arc therapy (VMAT), an inter-comparison is warranted to address the advantages and disadvantages of each technique. Methods: Twenty patients were selected retrospectively from our patient database. Sites included were brain, head and ...

  1. Total Marrow Irradiation With RapidArc Volumetric Arc Therapy

    International Nuclear Information System (INIS)

    Purpose: To develop a volumetric arc therapy (VMAT)-total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods and Materials: VMAT planning was performed for 6 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The organs at risk included the lungs, heart, liver, kidneys, bowels, brain, eyes, and oral cavity. The VMAT-TMI technique consisted of three plans: the head and neck, the chest, and the pelvis, each with three 330o arcs. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of ≥12 Gy was 95%). The treatments were delivered and verified using MapCheck and ion chamber measurements. Results: The VMAT-TMI technique reported in the present study provided comparable dose distributions with respect to the fixed gantry linear accelerator intensity-modulated TMI. RapidArc planning was less subjective and easier, and, most importantly, the delivery was more efficient. RapidArc reduced the treatment delivery time to approximately 18 min from 45 min with the fixed gantry linear accelerator intensity-modulated TMI. When the prescription dose coverage was reduced to 85% from 95% and the mandible and maxillary structures were not included in the planning target volume as reported in a tomotherapy study, a considerable organ at risk dose reduction of 4.2-51% was observed. The average median dose for the lungs and lenses was reduced to 5.6 Gy from 7.2 Gy and 2.4 Gy from 4.5 Gy, respectively. Conclusion: The RapidArc VMAT technique improved the treatment planning, dose conformality, and, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.

  2. Intensity modulated radiotherapy versus volumetric modulated arc therapy in breast cancer: A comparative dosimetric analysis

    OpenAIRE

    KR Muralidhar; Bhudevi Soubhagya; Shabbir Ahmed

    2015-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) has the capacity to optimize the dose distribution. We analyzed the dosimetric differences of plans in treatment planning system (TPS) between VMAT and IMRT in treating breast cancer. Methods: Fourteen patients were simulated, planned, and treated with VMAT using single, double or partial arcs. IMRT treatments were generated using 4 to 5 tangential IMRT fields for the same patients. All treatment plan...

  3. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer.

    Science.gov (United States)

    Lin, Jia-Fu; Yeh, Dah-Cherng; Yeh, Hui-Ling; Chang, Chen-Fa; Lin, Jin-Ching

    2015-01-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p lung irradiated to doses of 20 Gy (V(20 Gy)) and 5 Gy (V(5 Gy)) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer. PMID:26116150

  4. Coplanar VMAT vs. noncoplanar VMAT in the treatment of sinonasal cancer

    International Nuclear Information System (INIS)

    Previous studies showed that noncoplanar intensity-modulated radiotherapy (NC-IMRT) for sinonasal cancer is superior to coplanar intensity-modulated radiotherapy (IMRT). Volumetric-modulated arc therapy (VMAT) is a newly introduced treatment modality, and the performance of noncoplanar VMAT for sinonasal cancer has not been well described to date. To compare the dosimetry difference of noncoplanar VMAT (NC-VMAT), coplanar VMAT (co-VMAT), and NC-IMRT for sinonasal cancer. Ten postoperative patients with sinonasal cancer were randomly selected for planning with NC-VMAT, co-VMAT, and NC-IMRT. Two planning target volumes (PTVs) were contoured representing high-risk and low-risk regions set to receive a median absorbed dose (D50%) of 68 Gy and 59 Gy, respectively. The homogeneity index (HI), conformity index (CI), dose-volume histograms (DVHs), and delivery efficiency were all evaluated. Both NC-VMAT and co-VMAT showed superior dose homogeneity and conformity in PTVs compared with NC-IMRT. There was no significant difference between NC-VMAT and co-VMAT in PTV coverage. Both VMAT plans provided a better protection for organs at risk (OARs) than NC-IMRT plans, and NC-VMAT showed a small improvement over co-VMAT in sparing of OARs. For peripheral doses, the doses to breast, thyroid, and larynx in the NC-IMRT plans were significantly higher than those in both VMAT plans. Compared to NC-VMAT, co-VMAT significantly reduced peripheral doses. NC-VMAT and co-VMAT reduced the average delivery time by 63.2 and 64.2 %, respectively, in comparison with NC-IMRT. No differences in delivery efficiency were observed between the two VMAT plans. Compared to NC-VMAT, co-VMAT showed similar PTV coverage and comparable OAR sparing but significantly reduced peripheral doses and positioning uncertainty. We propose to give priority to coplanar VMAT in the treatment of sinonasal cancer. (orig.)

  5. Sci—Sat AM: Stereo — 03: Dosmetric evaluation of single versus multi-arc VMAT for lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Karan, T; Taremi, M; Comsa, D [Southlake Regional Health Centre, Newmarket, Ontario (Canada); Radiation Medicine Program, University of Toronto, Toronto, Ontatio (Canada); Allibhai, Z; Ryan, M; Le, K [Southlake Regional Health Centre, Newmarket, Ontario (Canada)

    2014-08-15

    Five non-small cell lung cancer patients previously treated with stereotactic body radiation therapy using the VMAT (volumetric modulated arc therapy) technique were selected for this retrospective study. Plans were re-optimized using Pinnacle treatment planning system (v9.0, Philips Medical), with the basis for comparison a two-arc plan involving a 360° arc in addition to a 90° arc with a couch kick. Additionally a single 360° arc was optimized for comparison, as well as a partial arc covering ∼230°, avoiding the contralateral lung. All plans met target coverage criteria as dictated by RTOG0236. Plans were evaluated based on conformity, sparing of organs at risk and practical considerations of delivery. Conformity was best in the two-arc plan; however the decrease seen in one- and partial arc plans was not statistically significant as tested by the Wilcoxon rank sum test. The partial-arc plan resulted in the lowest esophagus and trachea dose and the highest heart dose, however none of the plans exceeded organ at risk tolerances for lung SBRT. Partial arcs resulted in plans with slightly cooler dose distributions, a decrease in low dose spillage and an overall lower mean lung dose. The decrease in treatment time was on average 36 and 40 seconds for single and partial arcs, respectively, with partial arcs requiring the lowest number of MUs. The slight decrease in conformity seen in one-arc plans is offset by an increase in efficiency (optimization and treatment time, MUs) making the implementation of a single or partial-arc treatment technique clinically desirable.

  6. Sci—Sat AM: Stereo — 03: Dosmetric evaluation of single versus multi-arc VMAT for lung SBRT

    International Nuclear Information System (INIS)

    Five non-small cell lung cancer patients previously treated with stereotactic body radiation therapy using the VMAT (volumetric modulated arc therapy) technique were selected for this retrospective study. Plans were re-optimized using Pinnacle treatment planning system (v9.0, Philips Medical), with the basis for comparison a two-arc plan involving a 360° arc in addition to a 90° arc with a couch kick. Additionally a single 360° arc was optimized for comparison, as well as a partial arc covering ∼230°, avoiding the contralateral lung. All plans met target coverage criteria as dictated by RTOG0236. Plans were evaluated based on conformity, sparing of organs at risk and practical considerations of delivery. Conformity was best in the two-arc plan; however the decrease seen in one- and partial arc plans was not statistically significant as tested by the Wilcoxon rank sum test. The partial-arc plan resulted in the lowest esophagus and trachea dose and the highest heart dose, however none of the plans exceeded organ at risk tolerances for lung SBRT. Partial arcs resulted in plans with slightly cooler dose distributions, a decrease in low dose spillage and an overall lower mean lung dose. The decrease in treatment time was on average 36 and 40 seconds for single and partial arcs, respectively, with partial arcs requiring the lowest number of MUs. The slight decrease in conformity seen in one-arc plans is offset by an increase in efficiency (optimization and treatment time, MUs) making the implementation of a single or partial-arc treatment technique clinically desirable

  7. Irradiation craneospinal with the technique of arco therapy intensity (VMAT)

    International Nuclear Information System (INIS)

    The Skullspinal irradiation is a great challenge of planning, because it implies to irradiate a large area of the body, which forces to the use of several isocenters. As a result, the problem of the union of fields appears in areas highly radiosensitive as the spinal cord. The objective of this study is to present our experience, apropos of a case, the use of VMAT technology (RapidArc) irradiation skullspinal to avoid the problems derived from the conventional technique. (Author)

  8. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    International Nuclear Information System (INIS)

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT

  9. Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Douglas A., E-mail: douglas.hoover@lhsc.on.ca; Chen, Jeff Z. [Department of Physics and Engineering, London Regional Cancer Program, London, Ontario N6A 4L6 (Canada); Department of Oncology, Western University, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, Western University, London, Ontario N6A 3K7 (Canada); MacFarlane, Michael [Department of Physics and Engineering, London Regional Cancer Program, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, Western University, London, Ontario N6A 3K7 (Canada); Wong, Eugene [Department of Oncology, Western University, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, Western University, London, Ontario N6A 3K7 (Canada); Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada); Battista, Jerry J. [Department of Physics and Engineering, London Regional Cancer Program, London, Ontario N6A 4L6 (Canada); Department of Oncology, Western University, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, Western University, London, Ontario N6A 3K7 (Canada); Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)

    2015-02-15

    Purpose: To study the feasibility of unified intensity-modulated arc therapy (UIMAT) which combines intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) optimization and delivery to produce superior radiation treatment plans, both in terms of dose distribution and efficiency of beam delivery when compared with either VMAT or IMRT alone. Methods: An inverse planning algorithm for UIMAT was prototyped within the PINNACLE treatment planning system (Philips Healthcare). The IMRT and VMAT deliveries are unified within the same arc, with IMRT being delivered at specific gantry angles within the arc. Optimized gantry angles for the IMRT and VMAT phases are assigned automatically by the inverse optimization algorithm. Optimization of the IMRT and VMAT phases is done simultaneously using a direct aperture optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using a unified optimization technique and compared with clinical IMRT or VMAT plans. Delivery verification was performed with an ArcCheck phantom (Sun Nuclear) on a Varian TrueBeam linear accelerator (Varian Medical Systems). Results: In this prototype implementation, the UIMAT plans offered the same target dose coverage while reducing mean doses to organs at risk by 8.4% for head-and-neck cases, 5.7% for lung cases, and 3.5% for prostate cases, compared with the VMAT or IMRT plans. In addition, UIMAT can be delivered with similar efficiency as VMAT. Conclusions: In this proof-of-concept work, a novel radiation therapy optimization and delivery technique that interlaces VMAT or IMRT delivery within the same arc has been demonstrated. Initial results show that unified VMAT/IMRT has the potential to be superior to either standard IMRT or VMAT.

  10. Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy

    International Nuclear Information System (INIS)

    The aim of the present study was to introduce a new restricted tangential volumetric modulated arc therapy (tVMAT) technique for whole breast irradiation and compare its dosimetric properties to other currently used breast cancer radiotherapy techniques. Ten consecutive women with left-sided breast cancer were enrolled in this retrospective study. Four treatment plans were generated for each patient: 1) standard tangential field-in-field (FinF), 2) tangential intensity modulated radiotherapy (tIMRT), 3) tangential VMAT (tVMAT) with two dual arcs of 50-60° and 4) continuous VMAT (cVMAT) with a dual arc of 240°. The plans were created with Monaco® (tIMRT, tVMAT and cVMAT) and Oncentra® (FinF) treatment planning systems. With both VMAT techniques significantly higher cardiac avoidance, dose coverage and dose homogenity were achieved when compared with FinF or tIMRT techniques (p < 0.01). VMAT techniques also decreased the high dose areas (above 20 Gy) of ipsilateral lung. There were no significant differences in the mean dose of contralateral breast between the tVMAT, tIMRT and FinF techniques. The dose coverage (V47.5 Gy) was greatest with cVMAT. However, with cVMAT the increase of contralateral breast dose was significant. The present results support the hypothesis that the introduced tVMAT technique is feasible for treatment of left-sided breast cancer. With tVMAT dose to heart and ipsilateral lung can be reduced and the dose homogeneity can be improved without increasing the dose to contralateral breast or lung

  11. Dosimetric study of multicriteria optimization volumetric modulated arc therapy (VMAT) planning for prostate cancer%前列腺癌多目标优化VMAT计划剂量学研究

    Institute of Scientific and Technical Information of China (English)

    王昊; 邱杰; 全红; 杨波; 庞廷田; 刘峡; 刘楠; 张福泉

    2015-01-01

    目的 探讨多目标优化在前列腺癌VMAT计划中的应用.方法 随机抽取已接受治疗的14例前列腺癌患者VMAT计划资料.这些计划基于单目标优化,保持优化条件不变,改用多目标优化.配对t检验两种计划剂量学参数差异.结果 两种计划均满足临床要求,与单目标计划相比,多目标计划PTV 95%、100%处方剂量覆盖度增加(P =0.000、0.000),105%处方剂量覆盖度降低(P =0.000),Dmax降低0.35 Gy (P=0.063);直肠V20、V30、V40、V50和Dmean分别降低24.7%、36.8%、31.1%、20.5%和6.8 Gy (P =0.000、0.000、0.000、0.001、0.000),D2cc增加1.4 Gy (P=0.000);膀胱V10、V20、V30、V40、V50和Dmean分别降低5.7%、18.5%、20.9%、12.5%、5.4%和3.5 Gy (P=0.006、0.000、0.000、0.000、0.002、0.000);小肠V10、V20、V30和Dmean多目标计划有优势.结论 多目标计划在满足靶区剂量情况下可以进一步降低OAR剂量,但结果还需进一步研究和评估.%Objective The aim of this study is to evaluate the multicriteria optimization (MCO) in planning volumetric modulated arc therapy (VMAT) for prostate cancer.Methods 14 prostate patients VMAT plans with single criteria optimization,while keeping optimization conditions,new plans were then optimized with MCO,dosimetry parameters comparison were made between both kinds of plans.Results Two kinds of VMAT plans satisfied clinical requirements.To compare with SCO plans,PTV 95% and PTV 100% prescription dose coverage of MCO plans increased (P =0.000,0.000),PTV 105% dose coverage became lower (P =0.000),Dmax decreased 0.35 Gy (P=0.063).V20,V30,V40,V50 and Dme.of the rectum were reduced by about 24.7%,36.8%,31.1%,20.5% and 6.8 Gy respectively (P =0.000,0.000,0.000,0.001,0.000),D2 cc increased 1.4 Gy (P =0.000) ;V10,V20,V30,V40,V50 and D mean of the bladder were reduced by about 5.7 %,18.5 %,20.9%,12.5 %,5.4% and 3.5 Gy respectively (P =0.006,0.000,0.000,0.000,0.002,0.000) ; V10,V20

  12. Multicriteria VMAT optimization

    CERN Document Server

    Craft, David; Wala, Jeremiah; Bortfeld, Thomas

    2011-01-01

    We describe a new optimization technique for planning single arc VMAT (volumetric modulated arc therapy). The technique allows the planner to first navigate the ideal dose distribution space created by forming a 180-beam IMRT Pareto optimal surface. The plan that is selected is then made VMAT deliverable by a simple fluence map merging and sequencing algorithm. Our approach offers significant improvements over existing algorithms. The first is the multicriteria planning aspect, which greatly speeds up planning time and allows the user to select the plan which represents the most desirable compromise between target coverage and organ at risk sparing. The second is the (user-chosen) epsilon-optimality guarantee of the final VMAT plan. Finally, the user can explore the tradeoff between delivery time and plan quality, which is a fundamental aspect of VMAT that cannot be easily investigated with current commercial planning systems.

  13. VMAT planning study in rectal cancer patients

    International Nuclear Information System (INIS)

    To compare the dosimetric differences among fixed field intensity-modulated radiation therapy (IMRT), single-arc volumetric-modulated arc therapy (SA-VMAT) and double-arc volumetric-modulated arc therapy (DA-VMAT) plans in rectal cancer. Fifteen patients with rectal cancer previously treated with IMRT in our institution were selected for this study. For each patient, three plans were generated with the planning CT scan: one using a fixed beam IMRT, and two plans using the VMAT technique: SA-VMAT and DA-VMAT. Dose prescription to the PTV was 50 Gy in 2 Gy per fraction. Dose volume histograms (DVH) for the target volume and the organs at risk (small bowel, bladder, femoral heads and healthy tissue) were compared for these different techniques. Monitor units (MU) and delivery treatment time were also reported. DA-VMAT achieved the highest minimum planning target volume (PTV) dose and the lowest maximal dose, resulting in the most homogeneous PTV dose distribution. DA-VMAT also yielded the best CI, although the difference was not statistically significant. Between SA-VMAT and IMRT, the target dose coverage was largely comparable; however, SA-VMAT was able to achieve a better V95 and V107. VMAT showed to be inferior to IMRT in terms of organ at risk sparing, especially for the small bowel. Compared with IMRT, DA-VMAT increased the V15 of small bowel nearly 55 cc. The MU and treatment delivery time were significantly reduced by the use of VMAT techniques. VMAT is a new radiation technique that combines the ability to achieve highly conformal dose distributions with highly efficient treatment delivery. Considering the inferior role of normal tissue sparing, especially for small bowel, VMAT need further investigation in rectal cancer treatment

  14. Volumetric intensity modulated arc therapy in lung cancer: Current literature review

    Directory of Open Access Journals (Sweden)

    Suresh B Rana

    2013-01-01

    Full Text Available The volumetric intensity modulated arc therapy (VMAT is a novel radiation technique that delivers a highly conformal radiation dose to the target by allowing the simultaneous variation of gantry rotation speed, dose rate and multiple-leaf collimators leaf positions. The aim of this study was to review the current literature on two VMAT systems, RapidArc and SmartArc with main focus on planning studies of lung cancer. A systematic review of available data was conducted using MEDLINE/PubMed with the keywords ′′lung′′ and "VMAT". The published data show that VMAT techniques have clear superiority over three-dimensional conformal radiation therapy with regard to improving dose conformity and sparing of organs at risks (OARs. The data indicates that for lung tumor VMAT and intensity modulated radiation therapy (IMRT provide equivalent dose homogeneity, dose conformity and target volume coverage; however, contradictory results were obtained in terms of OARs sparing. The major advantages of VMAT over IMRT are the reduction in the number of monitor units and faster treatment delivery times without compromising the quality of the treatment plans. Moreover, faster delivery time is more patient-friendly and it minimizes intra-fractional patient motion allowing treatment volumes stay within their respective treatment margins. Current literature data shows that VMAT can be a good option to treat lung cancer; however, data on clinical trials are still lacking. The clinical trials are essential to confirm the safety and efficacy of VMAT techniques.

  15. Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    OpenAIRE

    Wu-Zhe Zhang; Tian-Tian Zhai; Jia-Yang Lu; Jian-Zhou Chen; Zhi-Jian Chen; De-Rui Li; Chuang-Zhen Chen

    2015-01-01

    Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume...

  16. On the use of accelerators dosimetric ally equivalent to the technique RapidArc VMAT

    International Nuclear Information System (INIS)

    Scheduled maintenance and unexpected failures can cause a stop in the operation of accelerators for hours or days. Prolonging treatments cause discomfort, anxiety and decreased chance for cure. Using a second accelerator backup set of the same design and dosimetry, would mitigate the effects of such interruptions. The aim of this study is to determine the safety of using either two accelerators in Rapid Arc VMAT treatments. (Author)

  17. Dose comparisons for conformal, IMRT and VMAT prostate plans

    International Nuclear Information System (INIS)

    Volumetric-modulated arc therapy (VMAT) is a relatively new treatment technique in radiation therapy. A comparison study of conformal, intensity-modulated radiation therapy (IMRT) and single- and double-arc VMAT plans was undertaken to evaluate the dosimetric impact of this new technology in prostate cases. The research questions were as follows: how does VMAT dosimetry compare with IMRT and conformal plans?; does VMAT increase the volume of bowel receiving lower doses?; are one or two VMAT arcs required for standard prostate cases? Eight prostate cancer and post-prostatectomy patients were randomly selected for this study. Conformal, IMRT and single and double Arc VMAT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 75.6 Gy over a course of 42 fractions to the planning target volume (PTV). The Healthy Tissue Conformity Index and the conformation number results revealed the IMRT and two VMAT techniques to have superior dosimetry to the PTV compared with the conformal plans. The maximum dose delivered to the PTV was significantly higher with the single-arc VMAT technique compared with the conformal or double-arc VMAT plans. There were no significant differences between the planning techniques for the bladder and small bowel dosimetry. However, IMRT and VMAT plans delivered less radiation to the rectum and femoral heads, and a single-arc VMAT plan was optimal for the right femoral head and the two VMAT techniques were optimal to the IMRT plans for the left femoral head. Single- and double-arc VMAT consistently resulted in favourable or slightly superior dosimetry when compared with static gantry IMRT for prostate cases. Both the VMAT techniques and static gantry IMRT resulted in superior critical tissue sparing when compared with conformal plans.

  18. Benchmarking the gamma pass score using ArcCHECK for routine dosimetric QA of VMAT plans

    International Nuclear Information System (INIS)

    A minimum expected gamma (γ) pass rate for VMAT plan verification using ArcCHECK was established based on the RTTQA, TGI 19 test cases and 10 clinical plans with varying levels of complexity. The impact of the 'Measurement Uncertainty' parameter as available in the ArcCHECK software on γ pass rate was studied for both global and local γ analysis. Our results show that excluding measurement uncertainty adds tighter tolerance in local γ comparison. From the verification of our benchmark cases we established minimum expected γ pass rates of 85% and 88% for 2%/2mm global and 3%/3mm local tolerance criteria

  19. Experience in verification of radiation technique VMat - Rapid Arc

    International Nuclear Information System (INIS)

    The aim of this paper is to describe an extension of the QA program for linear accelerators and Rapid Arc system for program verification for each dose of irradiation plans formed by this technique for radiotherapy work-place Multiscan Ltd., RC Pardubice. (authors)

  20. Feasibility of single-isocenter, multi-arc non-coplanar volumetric modulated arc therapy for multiple brain tumors using a linear accelerator with a 160-leaf multileaf collimator: a phantom study

    OpenAIRE

    Iwai, Yoshio; Ozawa, Shuichi; Ageishi, Tatsuya; Pellegrini, Roberto; Yoda, Kiyoshi

    2014-01-01

    The feasibility of single isocenter, multi-arc non-coplanar volumetric modulated arc therapy (VMAT) for multiple brain tumors was studied using an Elekta Synergy linear accelerator with an Agility multileaf collimator and a Monaco treatment planning system. Two VMAT radiosurgery plans consisting of a full arc and three half arcs were created with a prescribed dose of 20 Gy in a single fraction. After dose delivery to a phantom, ionization chambers and radiochromic films were used for dose mea...

  1. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jia-Fu [Department of Radiation Physics, Taichung Veterans General Hospital, Taichung, Taiwan (China); Yeh, Dah-Cherng [Department of General Surgery, Taichung Veterans General Hospital, Taichung, Taiwan (China); Yeh, Hui-Ling, E-mail: hlyeh@vghtc.gov.tw [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Chang, Chen-Fa [Department of Radiation Physics, Taichung Veterans General Hospital, Taichung, Taiwan (China); Lin, Jin-Ching [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2015-10-01

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]{sub 50.4} {sub Gy} and p < 0.0001 for HI of PTV{sub 62} {sub Gy}). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V{sub 20} {sub Gy}) and 5 Gy (V{sub 5} {sub Gy}) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer.

  2. Dosimetric comparison of hybrid volumetric-modulated arc therapy, volumetric-modulated arc therapy, and intensity-modulated radiation therapy for left-sided early breast cancer

    International Nuclear Information System (INIS)

    To compare the dosimetric performance of 3 different treatment techniques: hybrid volumetric-modulated arc therapy (hybrid-VMAT), pure-VMAT, and fixed-field intensity-modulated radiation therapy (F-IMRT) for whole-breast irradiation of left-sided early breast cancer. The hybrid-VMAT treatment technique and 2 other treatment techniques—pure-VMAT and F-IMRT—were compared retrospectively in 10 patients with left-sided early breast cancer. The treatment plans of these patients were replanned using the same contours based on the original computed tomography (CT) data sets. Dosimetric parameters were calculated to evaluate plan quality. Total monitor units (MUs) and delivery time were also recorded and evaluated. The hybrid-VMAT plan generated the best results in dose coverage of the target and the dose uniformity inside the target (p < 0.0001 for conformal index [CI]; p = 0.0002 for homogeneity index [HI] of planning target volume [PTV]50.4 Gy and p < 0.0001 for HI of PTV62 Gy). Volumes of ipsilateral lung irradiated to doses of 20 Gy (V20 Gy) and 5 Gy (V5 Gy) by the hybrid-VMAT plan were significantly less than those of the F-IMRT and the pure-VMAT plans. The volume of ipsilateral lung irradiated to a dose of 5 Gy was significantly less using the hybrid-VMAT plan than that using the F-IMRT or the pure-VMAT plan. The total mean MUs for the hybrid-VMAT plan were significantly less than those for the F-IMRT or the pure-VMAT plan. The mean machine delivery time was 3.23 ± 0.29 minutes for the hybrid-VMAT plans, which is longer than that for the pure-VMAT plans but shorter than that for the F-IMRT plans. The hybrid-VMAT plan is feasible for whole-breast irradiation of left-sided early breast cancer

  3. Modulation indices for volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    The aim of this study is to present a modulation index (MI) for volumetric modulated arc therapy (VMAT) based on the speed and acceleration analysis of modulating-parameters such as multi-leaf collimator (MLC) movements, gantry rotation and dose-rate, comprehensively. The performance of the presented MI (MIt) was evaluated with correlation analyses to the pre-treatment quality assurance (QA) results, differences in modulating-parameters between VMAT plans versus dynamic log files, and differences in dose-volumetric parameters between VMAT plans versus reconstructed plans using dynamic log files. For comparison, the same correlation analyses were performed for the previously suggested modulation complexity score (MCSv), leaf travel modulation complexity score (LTMCS) and MI by Li and Xing (MI Li and Xing). In the two-tailed unpaired parameter condition, p values were acquired. The Spearman’s rho (rs) values of MIt, MCSv, LTMCS and MI Li and Xing to the local gamma passing rate with 2%/2 mm criterion were −0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and −0.455 (p = 0.003), respectively. The values of rs to the modulating-parameter (MLC positions) differences were 0.917, −0.635, −0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than the conventional MIs. The MIt showed good performance for the evaluation of the modulation-degree of VMAT plans. (paper)

  4. In-vitro investigation of out-of-field cell survival following the delivery of conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans

    International Nuclear Information System (INIS)

    The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in- and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required. (paper)

  5. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Joao, E-mail: jseco@partners.org [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning [Francis H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  6. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT

    International Nuclear Information System (INIS)

    This study evaluated the secondary cancer risk to various organs due to radiation treatment for breast cancer. Organ doses to an anthropomorphic phantom were measured using a photoluminescent dosimeter (PLD) for breast cancer treatment with 3D conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Cancer risk based on the measured dose was calculated using the BEIR (Biological Effects of Ionizing Radiation) VII models. The secondary dose per treatment dose (50.4 Gy) to various organs ranged from 0.02 to 0.36 Gy for 3D-CRT, but from 0.07 to 8.48 Gy for IMRT and VMAT, indicating that the latter methods are associated with higher secondary radiation doses than 3D-CRT. The result of the homogeneity index in the breast target shows that the dose homogeneity of 3D-CRT was worse than those of IMRT and VMAT. The organ specific lifetime attributable risks (LARs) to the thyroid, contralateral breast and ipsilateral lung per 100 000 population were 0.02, 19.71, and 0.76 respectively for 3D-CRT, much lower than the 0.11, 463.56, and 10.59 respectively for IMRT and the 0.12, 290.32, and 12.28 respectively for VMAT. The overall estimation of LAR indicated that the radiation-induced cancer risk due to breast radiation therapy was lower with 3D-CRT than with IMRT or VMAT. (paper)

  7. SU-E-P-44: The Characteristics and Clinical Application of the ArcCHECK for VMAT Verification

    Energy Technology Data Exchange (ETDEWEB)

    Chengqiang, L [Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117 (China)

    2015-06-15

    Purpose: To evaluate the characteristics and clinical suitability of the ArcCHECK QA system for VMAT verification. Methods: The intrinsic sensitivity,short and long term reproducibility,dose and dose rate dependence,dose per pulsed dependence,field sizes dependence and directional response of the diodes were measured.The results of the diodes were compared with the measurement results of an ionization chamber and calculated results of TPS. Gamma index (3mm distance to agreement and 3% percentage difference ) was used to analyze the dose difference between the calculation and measurement for random selected 211 verified VMAT plans. Results: The ArcCHECK diodes performed well for all tests except directional dependence, which varies from a minimum of −3.9% (seen only when the beam is incident on the diode at 180°) to a maximum of 7.7% (approximately at 255°). Average gamma analysis passing rates with 3mm/3% for 113 NPC,48 cervical cancer and 50 rectal cancer VMAT plans are 93.5%,95.7% and 97.5%, statistical significance has been found between either two of the groups(t=−12.69∼−4.88,all P<0.01). Conclusion: With proposed calibration method,the ArcCHECK QA system is very suitable for VMAT pretreatment verification,the complexity of VMAT plan is the main factor affecting the passing rate.

  8. Evaluation of volumetric modulated arc therapy for postmastectomy treatment

    International Nuclear Information System (INIS)

    To examine the feasibility of volumetric modulated arc therapy (VMAT) for post mastectomy radiotherapy (PMRT). Fifteen PMRT patients previously treated at our clinic with helical tomotherapy (HT) were identified for the study. Planning target volumes (PTV) included the chest wall and regional lymph nodes. A systematic approach to constructing VMAT that met the clinical goals was devised. VMAT plans were then constructed for each patient and compared with HT plans with which they had been treated. The resulting plans were compared on the basis of PTV coverage; dose homogeneity index (DHI) and conformity index (CI); dose to organs at risk (OAR); tumor control probability (TCP), normal tissue complication probability (NTCP) and secondary cancer complication probability (SCCP); and treatment delivery time. Differences were tested for significance using the paired Student’s t-test. Both modalities produced clinically acceptable PMRT plans. VMAT plans showed better CI (p < 0.01) and better OAR sparing at low doses than HT plans, particularly at doses less than 5 Gy. On the other hand, HT plans showed better DHI (p < 0.01) and showed better OAR sparing at higher doses. Both modalities achieved nearly 100% tumor control probability and approximately 1% NTCP in the lungs and heart. VMAT showed lower SCCP than HT (p < 0.01), though both plans showed higher SCCP values than conventional mixed beam (electron-photon) plans reported by our group previously. VMAT plans required 66.2% less time to deliver than HT. Both VMAT and HT provide acceptable treatment plans for PMRT. Both techniques are currently utilized at our institution

  9. Comparative analysis of volumetric-modulated arc therapy and intensity-modulated radiotherapy for base of tongue cancer

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The aim of this study was to compare the various dosimetric parameters of dynamic multileaf collimator (MLC intensity modulated radiation therapy (IMRT plans with volumetric modulated arc therapy (VMAT plans for base of tongue cases. All plans were done in Monaco planning system for Elekta synergy linear accelerator with 80 MLC. IMRT plans were planned with nine stationary beams, and VMAT plans were done for 360° arc with single arc or dual arc. The dose to the planning target volumes (PTV for 70, 63, and 56 Gy was compared. The dose to 95, 98, and 50% volume of PTV were analyzed. The homogeneity index (HI and the conformity index (CI of the PTV 70 were also analyzed. IMRT and VMAT plan showed similar dose coverage, HI, and CI. Maximum dose and dose to 1-cc volume of spinal cord, planning risk volume (PRV cord, and brain stem were compared. IMRT plan and VMAT plan showed similar results except for the 1 cc of PRV cord that received slightly higher dose in VMAT plan. Mean dose and dose to 50% volume of right and left parotid glands were analyzed. VMAT plan gave better sparing of parotid glands than IMRT. In normal tissue dose analyses VMAT was better than IMRT. The number of monitor units (MU required for delivering the good quality of the plan and the time required to deliver the plan for IMRT and VMAT were compared. The number of MUs for VMAT was higher than that of IMRT plans. However, the delivery time was reduced by a factor of two for VMAT compared with IMRT. VMAT plans yielded good quality of the plan compared with IMRT, resulting in reduced treatment time and improved efficiency for base of tongue cases.

  10. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    International Nuclear Information System (INIS)

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ∼63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration

  11. Volumetric modulated arc therapy for nasopharyngeal carcinoma: A dosimetric comparison with TomoTherapy and step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Purpose: Volumetric modulated arc therapy (VMAT), a novel technique, employs a linear accelerator to conduct dynamic modulation rotation radiotherapy. The goal of this study was to compare VMAT with helical tomotherapy (HT) and step-and-shoot intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC) patients with regard to the sparing effect on organs at risk (OARs), dosimetric quality, and efficiency of delivery. Materials and methods: Twenty patients with NPC treated by HT were re-planned by VMAT (two arcs) and IMRT (7–9 fields) for dosimetric comparison. The target area received three dose levels (70, 60, and 54 Gy) in 33 fractions using simultaneous integrated boosts technique. The Philips Pinnacle Planning System 9.0 was adopted to design VMAT, using SmartArc as the planning algorithm. For a fair comparison, the planning target volume (PTV) coverage of the 3 plans was normalized to the same level. Dosimetric comparisons between VMAT, HT, and IMRT plans were analyzed to evaluate (1) coverage, homogeneity, and conformity of PTV, (2) sparing of OARs, (3) delivery time, and (4) monitor units (MUs). Results: The VMAT, HT, and IMRT plans had similar PTV coverage with an average of 96%. There was no significant difference between VMAT and HT in homogeneity, while the homogeneity indices of VMAT (1.06) and HT (1.06) were better than IMRT plans (1.07, p < 0.05). HT plans provided a better conformity index (1.17) than VMAT (1.28, p = 0.01) and IMRT (1.36, p = 0.02). When compared with IMRT, VMAT and HT had a better sparing effect on brain stem and spinal cord (p < 0.05). The effect of parotid sparing was similar between VMAT (mean = 26.3 Gy) and HT (mean = 27.5 Gy), but better than IMRT (mean = 31.3 Gy, p < 0.01). The delivery time per fraction for VMAT (5.7 min) were much lower than for HT (9.5 min, p < 0.01) and IMRT (9.2 min, p < 0.01). Conclusions: Our results indicate that VMAT provides better sparing of normal tissue, homogeneity, and

  12. A modular approach to intensity-modulated arc therapy optimization with noncoplanar trajectories

    Science.gov (United States)

    Papp, Dávid; Bortfeld, Thomas; Unkelbach, Jan

    2015-07-01

    Utilizing noncoplanar beam angles in volumetric modulated arc therapy (VMAT) has the potential to combine the benefits of arc therapy, such as short treatment times, with the benefits of noncoplanar intensity modulated radiotherapy (IMRT) plans, such as improved organ sparing. Recently, vendors introduced treatment machines that allow for simultaneous couch and gantry motion during beam delivery to make noncoplanar VMAT treatments possible. Our aim is to provide a reliable optimization method for noncoplanar isocentric arc therapy plan optimization. The proposed solution is modular in the sense that it can incorporate different existing beam angle selection and coplanar arc therapy optimization methods. Treatment planning is performed in three steps. First, a number of promising noncoplanar beam directions are selected using an iterative beam selection heuristic; these beams serve as anchor points of the arc therapy trajectory. In the second step, continuous gantry/couch angle trajectories are optimized using a simple combinatorial optimization model to define a beam trajectory that efficiently visits each of the anchor points. Treatment time is controlled by limiting the time the beam needs to trace the prescribed trajectory. In the third and final step, an optimal arc therapy plan is found along the prescribed beam trajectory. In principle any existing arc therapy optimization method could be incorporated into this step; for this work we use a sliding window VMAT algorithm. The approach is demonstrated using two particularly challenging cases. The first one is a lung SBRT patient whose planning goals could not be satisfied with fewer than nine noncoplanar IMRT fields when the patient was treated in the clinic. The second one is a brain tumor patient, where the target volume overlaps with the optic nerves and the chiasm and it is directly adjacent to the brainstem. Both cases illustrate that the large number of angles utilized by isocentric noncoplanar VMAT plans

  13. Radiotherapy for unresectable sinonasal cancers: Dosimetric comparison of intensity modulated radiation therapy with coplanar and non-coplanar volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Background and purpose: To compare volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) plans for treatment of unresectable paranasal sinuses cancers (PNSCs) with different clinical presentations. Material and methods: Four patients treated for primary target volume only (group 1), four requiring elective nodal irradiation (group 2) and four with positive nodes in macroscopic disease (group 3) were selected. For each patient were generated 7 fields IMRT, coplanar VMAT (c-VMAT) and non-coplanar VMAT (nc-VMAT) treatment plans. Total doses were 70 Gy and 54 Gy to high dose planning target volume (HD-PTV) and low-dose-PTV, respectively. Dose–volume histogram, conformity and homogeneity index (CI and HI), and monitor units (MUs) per Gy were evaluated. Results: VMAT provided significantly better target coverage, in terms of V100% (Volume encompassed by the isodose 100%), than IMRT, in particular when nc-VMAT was used. In general, organ at risk sparing is similar with the three approaches, although nc-VMAT can allow a statistically significant reduction of dose to contralateral parotid gland and cochlea for all three groups. Conclusions: VMAT can offer significant improvement of treatment for all unresectable PNSCs over existing IMRT techniques. In particular, nc-VMAT may be a further advantage for those patients with sinonasal cancers and involvement of the nodes in whom large volumes and complex/irregular shape have to be irradiated, even if clinical benefits should be established in the future

  14. Intensity modulated radiotherapy versus volumetric modulated arc therapy in breast cancer: A comparative dosimetric analysis

    Directory of Open Access Journals (Sweden)

    KR Muralidhar

    2015-01-01

    Full Text Available Purpose: Intensity modulated radiotherapy (IMRT and volumetric modulated arc therapy (VMAT has the capacity to optimize the dose distribution. We analyzed the dosimetric differences of plans in treatment planning system (TPS between VMAT and IMRT in treating breast cancer. Methods: Fourteen patients were simulated, planned, and treated with VMAT using single, double or partial arcs. IMRT treatments were generated using 4 to 5 tangential IMRT fields for the same patients. All treatment plans were planned for 50 Gy in 25 fractions. The VMAT and IMRT plans were compared using the planning target volume (PTV dose and doses to the other organs at risk (OARs. Results: For the PTV, comparable minimum, mean, maximum, median, and modal dose as well equivalent sphere diameter of the structure (Equis were observed between VMAT and IMRT plans and found that these values were significantly equal in both techniques. The right lung mean and modal doses were considerably higher in VMAT plans while maximum value was considerably lower when compared with IMRT plans. The left lung mean and modal doses were higher with VMAT while maximum doses were higher in IMRT plans. The mean dose to the heart and maximum dose to the spinal cord was lower with IMRT. The mean dose to the body was higher in VMAT plans while the maximum dose was higher in IMRT plans. Conclusion: Four field tangential IMRT delivered comparable PTV dose with generally less dose to normal tissues in our breast cancer treatment study. The IMRT plans typically had more favourable dose characteristics to the lung, heart, and spinal cord and body dose when compared with VMAT. The only minor advantage of VMAT for breast cases was slightly better PTV coverage.

  15. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    International Nuclear Information System (INIS)

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability

  16. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Wang, Junjie, E-mail: junjiewang47@yahoo.com [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Xu, Feng [Department of Biomedical Engineering, Peking University Third Hospital, Beijing (China); Li, Hua [Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing (China); Zhang, Xile [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China)

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  17. Critical structure sparing in stereotactic ablative radiotherapy for central lung lesions: helical tomotherapy vs. volumetric modulated arc therapy.

    Directory of Open Access Journals (Sweden)

    Alexander Chi

    Full Text Available BACKGROUND: Helical tomotherapy (HT and volumetric modulated arc therapy (VMAT are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT. Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs when stereotactic ablative radiotherapy (SABR is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. METHODS: 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0 plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV. Target and OAR dose parameters were compared. Each technique's ability to meet dose constraints was further investigated. RESULTS: HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints (p = 0.0004. All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. CONCLUSION: HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing.

  18. An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer.

    Science.gov (United States)

    Zhao, Nan; Yang, Ruijie; Wang, Junjie; Zhang, Xile; Li, Jinna

    2015-01-01

    The study is to investigate a Hybrid IMRT/VMAT technique which combines intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for the treatment of nonsmall cell lung cancer (NSCLC). Two partial arcs VMAT, 5-field IMRT, and hybrid plans were created for 15 patients with NSCLC. The hybrid plans were combination of 2 partial arcs VMAT and 5-field IMRT. The dose distribution of planning target volume (PTV) and organs at risk (OARs) for hybrid technique was compared with IMRT and VMAT. The monitor units (MUs) and treatment delivery time were also evaluated. Hybrid technique significantly improved the target conformity and homogeneity compared with IMRT and VMAT. The mean delivery time of IMRT, VMAT, and hybrid plans was 280 s, 114 s, and 327 s, respectively. The mean MUs needed for IMRT, VMAT, and hybrid plans were 933, 512, and 737, respectively. Hybrid technique reduced V5, V10, V30, and MLD of normal lung compared with VMAT and spared the OARs better with fewer MUs with the cost of a little higher V5, V10, and mean lung dose (MLD) of normal lung compared with IMRT. Hybrid IMRT/VMAT can be a viable radiotherapy technique with better plan quality. PMID:26539515

  19. An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2015-01-01

    Full Text Available The study is to investigate a Hybrid IMRT/VMAT technique which combines intensity modulated radiation therapy (IMRT and volumetric modulated arc therapy (VMAT for the treatment of nonsmall cell lung cancer (NSCLC. Two partial arcs VMAT, 5-field IMRT, and hybrid plans were created for 15 patients with NSCLC. The hybrid plans were combination of 2 partial arcs VMAT and 5-field IMRT. The dose distribution of planning target volume (PTV and organs at risk (OARs for hybrid technique was compared with IMRT and VMAT. The monitor units (MUs and treatment delivery time were also evaluated. Hybrid technique significantly improved the target conformity and homogeneity compared with IMRT and VMAT. The mean delivery time of IMRT, VMAT, and hybrid plans was 280 s, 114 s, and 327 s, respectively. The mean MUs needed for IMRT, VMAT, and hybrid plans were 933, 512, and 737, respectively. Hybrid technique reduced V5, V10, V30, and MLD of normal lung compared with VMAT and spared the OARs better with fewer MUs with the cost of a little higher V5, V10, and mean lung dose (MLD of normal lung compared with IMRT. Hybrid IMRT/VMAT can be a viable radiotherapy technique with better plan quality.

  20. Sci—Fri AM: Mountain — 05: Unified Optimization and Delivery of Intensity-modulated Radiation Therapy and Volume-modulated Arc Therapy

    International Nuclear Information System (INIS)

    Purpose: To study the feasibility of a unified intensity-modulated arc therapy (UIMAT) that combines IMRT and VMAT optimization and delivery in order to produce efficient and superior radiation treatment plans. Methods: Inverse planning for UIMAT was prototyped on the Pinnacle treatment planning system (Philips Medical Systems). UIMAT integrates IMRT and VMAT delivery in the same arc where IMRT was delivered with gantry speed close to zero. Optimal gantry angles for the IMRT phases were selected automatically by the inverse optimization algorithm. Optimization of the VMAT phases and IMRT phases were done simultaneously using Pinnacle's direct machine parameter optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using our unified technique and compared with clinical VMAT or IMRT plans. Delivery verification was performed on an ArcCheck phantom (Sun Nuclear) and delivered in clinical mode on a Varian TrueBeam linear accelerator. Results: In this prototype implementation, compared to the VMAT or IMRT plans, with the plans normalized to the same dose coverage to the planning target volumes, the UIMAT plans produced improved OAR sparing for head and neck cases, while for lung and prostate cases, the dosimetric improvements for OARs were not as significant. In this proof-of-concept work, we demonstrated that a novel radiation therapy delivery technique combining VMAT and IMRT delivery in the same arc is feasible. Initial results showed UIMAT has the potential to be superior to either standard IMRT or VMAT

  1. Sci—Fri AM: Mountain — 05: Unified Optimization and Delivery of Intensity-modulated Radiation Therapy and Volume-modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J; Hoover, D [Department of Oncology, Department of Medical Biophysics, London Health Science Centre, London, ON (Canada); MacFarlane, M [London Health Science Centre, London, ON (Canada); Wong, E [Department of Oncology, Department of Medical Biophysics, Department of Physics and Astronomy, University of Western Ontario (Canada)

    2014-08-15

    Purpose: To study the feasibility of a unified intensity-modulated arc therapy (UIMAT) that combines IMRT and VMAT optimization and delivery in order to produce efficient and superior radiation treatment plans. Methods: Inverse planning for UIMAT was prototyped on the Pinnacle treatment planning system (Philips Medical Systems). UIMAT integrates IMRT and VMAT delivery in the same arc where IMRT was delivered with gantry speed close to zero. Optimal gantry angles for the IMRT phases were selected automatically by the inverse optimization algorithm. Optimization of the VMAT phases and IMRT phases were done simultaneously using Pinnacle's direct machine parameter optimization algorithm. Five treatment plans each for prostate, head and neck, and lung were generated using our unified technique and compared with clinical VMAT or IMRT plans. Delivery verification was performed on an ArcCheck phantom (Sun Nuclear) and delivered in clinical mode on a Varian TrueBeam linear accelerator. Results: In this prototype implementation, compared to the VMAT or IMRT plans, with the plans normalized to the same dose coverage to the planning target volumes, the UIMAT plans produced improved OAR sparing for head and neck cases, while for lung and prostate cases, the dosimetric improvements for OARs were not as significant. In this proof-of-concept work, we demonstrated that a novel radiation therapy delivery technique combining VMAT and IMRT delivery in the same arc is feasible. Initial results showed UIMAT has the potential to be superior to either standard IMRT or VMAT.

  2. SU-E-T-631: Commissioning and Comprehensive Evaluation of the ArcCHECK Cylindrical Diode Array for VMAT QA

    International Nuclear Information System (INIS)

    Purpose: Commissioning and comprehensive evaluation of ArcCHECK phantom for dosimetry of VMAT QA, using 6MV photon beam with and without the flattening filter. Methods: ArcCHECK was evaluated for response dependency on linac dose rate, instantaneous dose rate, radiation field size, beam angle and couch insertion. Scatter dose characterization, consistency and symmetry of response, dosimetric accuracy of fixed aperture arcs and clinical VMAT plans were investigated. Measurements were done using TrueBeam™ STx accelerator (Console version 1.6) with a 6 MV beam with and without flattening filter. Reference dose-grids were calculated using Eclipse TPS Analytical Anisotropic Algorithm (AAA version 10.0.39). Planned doses were calculated using symmetric 2mm 3D dose grids with 4 degree angular resolution defaulted to each control point. Gamma evaluations were performed in absolute dose mode, with default normalization to maximum dose in the curved plane and a low dose threshold of 10% to restrict the analysis to clinically relevant areas. Global and local gamma indices at 3mm/3% and 2mm/2% level were computed using SNC software (version 6.0). Results: Results of gamma analysis demonstrated an overall agreement between ArcCHECK measured and TPS calculated reference doses. Field size dependency was within 0.5% of the reference. Dose-rate based dependency was well within 1% of the TPS reference and the angular dependency was ±3% of the reference, as tested for BEV angles. At the level of 3%/3mm, narrow and wide open arcs as well as clinical VMAT cases demonstrated high level of dosimetry accuracy in global gamma passing rates for both 6X and 6F beams. At the level of 2%/2mm two VMAT cases involving the narrow heavily modulated arcs demonstrated lower passing rates. Conclusion: ArcCHECK phantom with latest software and hardware upgrades is suitable for VMAT QA. For higher sensitivity of 2%/2mm gamma analysis, we intend to use it as one of the VMAT QA evaluation metrics

  3. Comparison of plan optimization for single and dual volumetric-modulated arc therapy versus intensity-modulated radiation therapy during post-mastectomy regional irradiation

    OpenAIRE

    Zhao, Li-Rong; ZHOU, YI-BING; Sun, Jian-Guo

    2016-01-01

    The aim of the present study was to investigate volumetric-modulated arc therapy (VMAT) with single arc (1ARC) and dual arc (2ARC), and intensity-modulated radiation therapy (IMRT), and to evaluate the quality and delivery efficiency of post-mastectomy regional irradiation. A total of 24 female patients who required post-mastectomy regional irradiation were enrolled into the current study, and 1ARC, 2ARC and IMRT plans were designed for each individual patient. The quality of these plans was ...

  4. Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery

    Energy Technology Data Exchange (ETDEWEB)

    Papp, Dávid, E-mail: Papp.David@mgh.harvard.edu; Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 30 Fruit Street, Boston, Massachusetts 02114 (United States)

    2014-01-15

    Purpose: The authors propose a novel optimization model for volumetric modulated arc therapy (VMAT) planning that directly optimizes deliverable leaf trajectories in the treatment plan optimization problem, and eliminates the need for a separate arc-sequencing step. Methods: In this model, a 360° arc is divided into a given number of arc segments in which the leaves move unidirectionally. This facilitates an algorithm that determines the optimal piecewise linear leaf trajectories for each arc segment, which are deliverable in a given treatment time. Multileaf collimator constraints, including maximum leaf speed and interdigitation, are accounted for explicitly. The algorithm is customized to allow for VMAT delivery using constant gantry speed and dose rate, however, the algorithm generalizes to variable gantry speed if beneficial. Results: The authors demonstrate the method for three different tumor sites: a head-and-neck case, a prostate case, and a paraspinal case. The authors first obtain a reference plan for intensity modulated radiotherapy (IMRT) using fluence map optimization and 20 intensity-modulated fields in equally spaced beam directions, which is beyond the standard of care. Modeling the typical clinical setup for the treatment sites considered, IMRT plans using seven or nine beams are also computed. Subsequently, VMAT plans are optimized by dividing the 360° arc into 20 corresponding arc segments. Assuming typical machine parameters (a dose rate of 600 MU/min, and a maximum leaf speed of 3 cm/s), it is demonstrated that the optimized VMAT plans with 2–3 min delivery time are of noticeably better quality than the 7–9 beam IMRT plans. The VMAT plan quality approaches the quality of the 20-beam IMRT benchmark plan for delivery times between 3 and 4 min. Conclusions: The results indicate that high quality treatments can be delivered in a single arc with 20 arc segments if sufficient time is allowed for modulation in each segment.

  5. Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery

    International Nuclear Information System (INIS)

    Purpose: The authors propose a novel optimization model for volumetric modulated arc therapy (VMAT) planning that directly optimizes deliverable leaf trajectories in the treatment plan optimization problem, and eliminates the need for a separate arc-sequencing step. Methods: In this model, a 360° arc is divided into a given number of arc segments in which the leaves move unidirectionally. This facilitates an algorithm that determines the optimal piecewise linear leaf trajectories for each arc segment, which are deliverable in a given treatment time. Multileaf collimator constraints, including maximum leaf speed and interdigitation, are accounted for explicitly. The algorithm is customized to allow for VMAT delivery using constant gantry speed and dose rate, however, the algorithm generalizes to variable gantry speed if beneficial. Results: The authors demonstrate the method for three different tumor sites: a head-and-neck case, a prostate case, and a paraspinal case. The authors first obtain a reference plan for intensity modulated radiotherapy (IMRT) using fluence map optimization and 20 intensity-modulated fields in equally spaced beam directions, which is beyond the standard of care. Modeling the typical clinical setup for the treatment sites considered, IMRT plans using seven or nine beams are also computed. Subsequently, VMAT plans are optimized by dividing the 360° arc into 20 corresponding arc segments. Assuming typical machine parameters (a dose rate of 600 MU/min, and a maximum leaf speed of 3 cm/s), it is demonstrated that the optimized VMAT plans with 2–3 min delivery time are of noticeably better quality than the 7–9 beam IMRT plans. The VMAT plan quality approaches the quality of the 20-beam IMRT benchmark plan for delivery times between 3 and 4 min. Conclusions: The results indicate that high quality treatments can be delivered in a single arc with 20 arc segments if sufficient time is allowed for modulation in each segment

  6. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    OpenAIRE

    Vincent Wing Cheung Wu; Man In Pun; Cho Pan Lam; To Wing Mok; Wah Wai Mok

    2014-01-01

    This study compared the performance of volumetric modulated arc therapy (VMAT) techniques: single arc volumetric modulated arc therapy (SA-VMAT) and double arc volumetric modulated arc therapy (DA-VMAT) with the static beam conventional intensity modulated radiotherapy (C-IMRT) for non-small-cell lung carcinoma (NSCLC). Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV) and organs at risk (OARs) was used for planning. Using th...

  7. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Pawlik, Timothy M. [Department of Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Ford, Eric [Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA (United States); Herman, Joseph M., E-mail: jherma15@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States)

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  8. Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery

    CERN Document Server

    Papp, Dávid

    2013-01-01

    We propose a novel optimization model for volumetric modulated arc therapy (VMAT) planning that directly optimizes deliverable leaf trajectories in the treatment plan optimization problem, and eliminates the need for a separate arc-sequencing step. In this model, a 360-degree arc is divided into a given number of arc segments in which the leaves move unidirectionally. This facilitates an algorithm that determines the optimal piecewise linear leaf trajectories for each arc segment, which are deliverable in a given treatment time. Multi-leaf collimator (MLC) constraints, including maximum leaf speed and interdigitation, are accounted for explicitly. The algorithm is customized to allow for VMAT delivery using constant gantry speed and dose rate, however, the algorithm generalizes to variable gantry speed if beneficial. We demonstrate the method for three different tumor sites: a head-and-neck case, a prostate case, and a paraspinal case. For that purpose, we first obtain a reference plan for intensity modulated...

  9. Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.

    Directory of Open Access Journals (Sweden)

    Wu-Zhe Zhang

    Full Text Available To compare plans using volumetric-modulated arc therapy (VMAT with conventional sliding window intensity-modulated radiation therapy (c-IMRT to treat upper thoracic esophageal cancer (EC.CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F and VMAT with a single arc (1A, two arcs (2A, or three arcs (3A. The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64. The dose-volume histogram data, the number of monitoring units (MUs and the treatment time (TT for the different plans were compared.All of the plans generated similar dose distributions for PTVs and organs at risk (OARs, except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT.The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.

  10. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Ming, X; Zhang, Y [Tianjin University, Tianjin (China); Yale University, New Haven, CT, US (United States); Feng, Y [Tianjin University, Tianjin (China); Zhou, L [West China Hospital, Sichuan (China); Yale University, New Haven, CT, US (United States); Deng, J [Yale University, New Haven, CT, US (United States)

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{sub 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.

  11. Intensity-modulated radiotherapy and volumetric-modulated arc therapy for malignant pleural mesothelioma after extrapleural pleuropneumonectomy

    OpenAIRE

    Krayenbuehl, J; Riesterer, O; Graydon, S; Dimmerling, P; Kloeck, S; Ciernik, I F

    2013-01-01

    Radiotherapy reduces the local relapse rate after pleuropneumonectomy of malignant pleural mesothelioma (MPM). The optimal treatment technique with photons remains undefined. Comparative planning for intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) was performed. Six MPM patients with significant postoperative intrathoracic air cavities were planned with IMRT and VMAT. A dose comparison for the targets and organ at risks (OAR) was performed. Robustness was a...

  12. An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer

    Directory of Open Access Journals (Sweden)

    Bora Tas

    2016-01-01

    Full Text Available To investigate the dose-volume variations of planning target volume (PTV and organ at risks (OARs in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0® with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°, and for double arc VMAT plans (0–0°, 15°–345, 30–330°, 45–315°, 60–300°, 75–285°, 90–270° using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI, dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx® and three-dimensional IBA Compass® program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm analysis. A higher D95 (PTV were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60–300° and 75–285° collimator angles. However, lower rectum doses obtained for 75–285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV, we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate

  13. An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer.

    Science.gov (United States)

    Tas, Bora; Bilge, Hatice; Ozturk, Sibel Tokdemir

    2016-01-01

    To investigate the dose-volume variations of planning target volume (PTV) and organ at risks (OARs) in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT) when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0(®) with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV) volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°), and for double arc VMAT plans (0-0°, 15°-345, 30-330°, 45-315°, 60-300°, 75-285°, 90-270°) using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI), dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV) calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx(®) and three-dimensional IBA Compass(®) program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm) analysis. A higher D95 (PTV) were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60-300° and 75-285° collimator angles. However, lower rectum doses obtained for 75-285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV), we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm) analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate cancer patients in our

  14. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  15. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    International Nuclear Information System (INIS)

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis

  16. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  17. SU-E-T-584: Optical Tracking Guided Patient-Specific VMAT QA with ArcCHECK

    International Nuclear Information System (INIS)

    Purpose: To investigate the novel use of an in-house optical tracking system (OTS) to improve the efficacy of VMAT QA with a cylindrical dosimeter (ArcCHECK™). Methods: The translational and rotational setup errors of ArcCHECK are convoluted which makes it challenging to position the device efficiently and accurately. We first aligned the ArcCHECK to the machine cross-hair at three cardinal angles (0°, 90°, and 270°) to establish a reference position. Four infrared reflective markers were attached to the back of the device. An OTS with 0.2mm/0.2° accuracy was used to control its setup uncertainty. Translational uncertainties of 1 mm and 2 mm in three directions (in, right, and up) were applied on the device. Four open beams of various field sizes and six clinical VMAT arcs were delivered and measured for all simulated setup errors. The measurements were compared with Pinnacle™ calculations using Gamma analysis to evaluate the impact of setup uncertainty. This study also evaluated the improvement in setup reproducibility and efficiency with the aid of the OTS. Results: For open beams, with 3%/3mm, the mean passing rates dropped by less than 5% for all shifts; with 2%/2mm, two significant drops(>5%) were observed: 15.38±6.75% for 2 mm lateral shift and 9.35±4.88% for 2 mm longitudinal shift. For VMAT arcs, the mean passing rates using 2%/2mm dropped by 10.47±7.46% and 22.02±11.39% for 1 and 2 mm shift, respectively. With 3%/3mm, significant drop only occurred with 2 mm longitudinal shift (13.73±8.30%). Setup time could be reduced by >15 min with the aid of the OTS. Conclusion: OTS is an effective tool for separating translational and rotational uncertainties. The current VMAT QA solution was not strongly sensitive to translation errors of 2mm with widely accepted criterion (3%/3mm). This finding raises concerns regarding the efficacy of such QA system in detecting errors in the dynamic VMAT delivery

  18. SU-E-T-584: Optical Tracking Guided Patient-Specific VMAT QA with ArcCHECK

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q; Park, C; Lu, B; Barraclough, B; Lebron, S; Li, J; Liu, C; Yan, G [University of Florida, Gainesville, FL (United States)

    2015-06-15

    Purpose: To investigate the novel use of an in-house optical tracking system (OTS) to improve the efficacy of VMAT QA with a cylindrical dosimeter (ArcCHECK™). Methods: The translational and rotational setup errors of ArcCHECK are convoluted which makes it challenging to position the device efficiently and accurately. We first aligned the ArcCHECK to the machine cross-hair at three cardinal angles (0°, 90°, and 270°) to establish a reference position. Four infrared reflective markers were attached to the back of the device. An OTS with 0.2mm/0.2° accuracy was used to control its setup uncertainty. Translational uncertainties of 1 mm and 2 mm in three directions (in, right, and up) were applied on the device. Four open beams of various field sizes and six clinical VMAT arcs were delivered and measured for all simulated setup errors. The measurements were compared with Pinnacle™ calculations using Gamma analysis to evaluate the impact of setup uncertainty. This study also evaluated the improvement in setup reproducibility and efficiency with the aid of the OTS. Results: For open beams, with 3%/3mm, the mean passing rates dropped by less than 5% for all shifts; with 2%/2mm, two significant drops(>5%) were observed: 15.38±6.75% for 2 mm lateral shift and 9.35±4.88% for 2 mm longitudinal shift. For VMAT arcs, the mean passing rates using 2%/2mm dropped by 10.47±7.46% and 22.02±11.39% for 1 and 2 mm shift, respectively. With 3%/3mm, significant drop only occurred with 2 mm longitudinal shift (13.73±8.30%). Setup time could be reduced by >15 min with the aid of the OTS. Conclusion: OTS is an effective tool for separating translational and rotational uncertainties. The current VMAT QA solution was not strongly sensitive to translation errors of 2mm with widely accepted criterion (3%/3mm). This finding raises concerns regarding the efficacy of such QA system in detecting errors in the dynamic VMAT delivery.

  19. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    International Nuclear Information System (INIS)

    Purpose: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. Materials and methods: For 13 patients, four treatment combinations were compared; 3D-conformal RT (i.e., forward IMRT) in free-breathing 3D-CRT(FB), 3D-CRT(vmDIBH), 2 partial arcs VMAT(FB), and VMAT(vmDIBH). Prescribed dose was 42.56 Gy in 16 fractions. For 10 additional patients, 3D-CRT and VMAT in vmDIBH only were also compared. Results: Dose conformity, PTV coverage, ipsilateral and total lung doses were significantly better for VMAT plans compared to 3D-CRT. Mean heart dose (Dmean,heart) reduction in 3D-CRT(vmDIBH) was between 0.9 and 8.6 Gy, depending on initial Dmean,heart (in 3D-CRT(FB) plans). VMAT(vmDIBH) reduced the Dmean,heart further when Dmean,heart was still >3.2 Gy in 3D-CRT(vmDIBH). Mean contralateral breast dose was higher for VMAT plans (2.7 Gy) compared to 3DCRT plans (0.7 Gy). Conclusions: VMAT and 3D-CRT(vmDIBH) significantly reduced heart dose for patients treated with locoregional RT of left-sided breast cancer. When Dmean,heart exceeded 3.2 Gy in 3D-CRT(vmDIBH) plans, VMAT(vmDIBH) resulted in a cumulative heart dose reduction. VMAT also provided better target coverage and reduced ipsilateral lung dose, at the expense of a small increase in the dose to the contralateral breast

  20. Coplanar VMAT vs. noncoplanar VMAT in the treatment of sinonasal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Zhong-Hua; Mu, Jin-Ming; Mo, Jun-Chong; Gao, Ming; Li, Qi-Lin; Gu, Wen-Dong; Pei, Hong-Lei [The Third Affiliated Hospital, Soochow University, Department of Radiation Oncology, Changzhou (China); Jiang, Jing-Ting; Li, Xiao-Dong; Chen, Lu-Jun [The Third Affiliated Hospital, Soochow University, Department of Tumor Biological Treatment, Changzhou (China); Jin, Jian-Xue [Elekta China Co. Ltd, Department of Radiation Physics, Beijing, Chaoyang District (China)

    2014-10-08

    Previous studies showed that noncoplanar intensity-modulated radiotherapy (NC-IMRT) for sinonasal cancer is superior to coplanar intensity-modulated radiotherapy (IMRT). Volumetric-modulated arc therapy (VMAT) is a newly introduced treatment modality, and the performance of noncoplanar VMAT for sinonasal cancer has not been well described to date. To compare the dosimetry difference of noncoplanar VMAT (NC-VMAT), coplanar VMAT (co-VMAT), and NC-IMRT for sinonasal cancer. Ten postoperative patients with sinonasal cancer were randomly selected for planning with NC-VMAT, co-VMAT, and NC-IMRT. Two planning target volumes (PTVs) were contoured representing high-risk and low-risk regions set to receive a median absorbed dose (D{sub 50} {sub %}) of 68 Gy and 59 Gy, respectively. The homogeneity index (HI), conformity index (CI), dose-volume histograms (DVHs), and delivery efficiency were all evaluated. Both NC-VMAT and co-VMAT showed superior dose homogeneity and conformity in PTVs compared with NC-IMRT. There was no significant difference between NC-VMAT and co-VMAT in PTV coverage. Both VMAT plans provided a better protection for organs at risk (OARs) than NC-IMRT plans, and NC-VMAT showed a small improvement over co-VMAT in sparing of OARs. For peripheral doses, the doses to breast, thyroid, and larynx in the NC-IMRT plans were significantly higher than those in both VMAT plans. Compared to NC-VMAT, co-VMAT significantly reduced peripheral doses. NC-VMAT and co-VMAT reduced the average delivery time by 63.2 and 64.2 %, respectively, in comparison with NC-IMRT. No differences in delivery efficiency were observed between the two VMAT plans. Compared to NC-VMAT, co-VMAT showed similar PTV coverage and comparable OAR sparing but significantly reduced peripheral doses and positioning uncertainty. We propose to give priority to coplanar VMAT in the treatment of sinonasal cancer. (orig.) [German] Fruehere Studien zeigten, dass die nichtkoplanare intensive modulierte

  1. Development of a novel ArcCHECK{sup Trade-Mark-Sign} insert for routine quality assurance of VMAT delivery including dose calculation with inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Fakir, H.; Gaede, S.; Mulligan, M.; Chen, J. Z. [Department of Physics, London Regional Cancer Program, London, Ontario N6A 4L6 (Canada)

    2012-07-15

    Purpose: To design a versatile, nonhomogeneous insert for the dose verification phantom ArcCHECK{sup Trade-Mark-Sign} (Sun Nuclear Corp., FL) and to demonstrate its usefulness for the verification of dose distributions in inhomogeneous media. As an example, we demonstrate it can be used clinically for routine quality assurance of two volumetric modulated arc therapy (VMAT) systems for lung stereotactic body radiation therapy (SBRT): SmartArc{sup Registered-Sign} (Pinnacle{sup 3}, Philips Radiation Oncology Systems, Fitchburg, WI) and RapidArc{sup Registered-Sign} (Eclipse{sup Trade-Mark-Sign }, Varian Medical Systems, Palo Alto, CA). Methods: The cylindrical detector array ArcCHECK{sup Trade-Mark-Sign} has a retractable homogeneous acrylic insert. In this work, we designed and manufactured a customized heterogeneous insert with densities that simulate soft tissue, lung, bone, and air. The insert offers several possible heterogeneity configurations and multiple locations for point dose measurements. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT were generated and copied to ArcCHECK{sup Trade-Mark-Sign} for each inhomogeneity configuration. Dose delivery was done on a Varian 2100 ix linac. The evaluation of dose distributions was based on gamma analysis of the diode measurements and point doses measurements at different positions near the inhomogeneities. Results: The insert was successfully manufactured and tested with different measurements of VMAT plans. Dose distributions measured with the homogeneous insert showed gamma passing rates similar to our clinical results ({approx}99%) for both treatment-planning systems. Using nonhomogeneous inserts decreased the passing rates by up to 3.6% in the examples studied. Overall, SmartArc{sup Registered-Sign} plans showed better gamma passing rates for nonhomogeneous measurements. The discrepancy between calculated and measured point doses was increased up to 6.5% for the nonhomogeneous

  2. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    International Nuclear Information System (INIS)

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes

  3. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Energy Technology Data Exchange (ETDEWEB)

    Sapkaroski, Daniel, E-mail: daniel.sapkaroski@gmail.com; Osborne, Catherine; Knight, Kellie A [Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, School of Biomedical Sciences, Monash University, Clayton, Vic. (Australia)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  4. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    Science.gov (United States)

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes. PMID:26229679

  5. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study

    International Nuclear Information System (INIS)

    Compared to static beam Intensity-Modulated Radiation Therapy (IMRT), the main advantage of Volumetric Modulated Arc Therapy (VMAT) is a shortened delivery time, which leads to improved patient comfort and possibly smaller intra-fraction movements. This study aims at a treatment planner-independent comparison of radiotherapy treatment planning of IMRT and VMAT for head-and-neck cancer performed by several institutes and based on the same CT- and contouring data. Five institutes generated IMRT and VMAT plans for five oropharyngeal cancer patients using either Pinnacle3 or Oncentra Masterplan to be delivered on Elekta linear accelerators. Comparison of VMAT and IMRT plans within the same patient and institute showed significantly better sparing for almost all OARs with VMAT. The average mean dose to the parotid glands and oral cavity was reduced from 27.2 Gy and 39.4 Gy for IMRT to 25.0 Gy and 36.7 Gy for VMAT, respectively. The dose conformity at 95% of the prescribed dose for PTVboost and PTVtotal was 1.45 and 1.62 for IMRT and 1.37 and 1.50 for VMAT, respectively. The average effective delivery time was reduced from 13:15 min for IMRT to 5:54 min for VMAT. Independently of institution-specific optimization strategies, the quality of the VMAT plans including double arcs was superior to step-and-shoot IMRT plans including 5–9 beam ports, while the effective treatment delivery time was shortened by ~50% with VMAT

  6. Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation

    NARCIS (Netherlands)

    Osman, S.O.; Hol, S.; Poortmans, P.M.P.; Essers, M.

    2014-01-01

    PURPOSE: To investigate the effects of using volumetric modulated arc therapy (VMAT) and/or voluntary moderate deep inspiration breath-hold (vmDIBH) in the radiation therapy (RT) of left-sided breast cancer including the regional lymph nodes. MATERIALS AND METHODS: For 13 patients, four treatment co

  7. Comparison of Prostate IMRT and VMAT Biologically Optimised Treatment Plans

    International Nuclear Information System (INIS)

    Recently, a new radiotherapy delivery technique has become clinically available-volumetric modulated arc therapy (VMAT). VMAT is the delivery of IMRT while the gantry is in motion using dynamic leaf motion. The perceived benefit of VMAT over IMRT is a reduction in delivery time. In this study, VMAT was compared directly with IMRT for a series of prostate cases. For 10 patients, a biologically optimized seven-field IMRT plan was compared with a biologically optimized VMAT plan using the same planning objectives. The Pinnacle RTPS was used. The resultant target and organ-at-risk dose-volume histograms (DVHs) were compared. The normal tissue complication probability (NTCP) for the IMRT and VMAT plans was calculated for 3 model parameter sets. The delivery efficiency and time for the IMRT and VMAT plans was compared. The VMAT plans resulted in a statistically significant reduction in the rectal V25Gy parameter of 8.2% on average over the IMRT plans. For one of the NTCP parameter sets, the VMAT plans had a statistically significant lower rectal NTCP. These reductions in rectal dose were achieved using 18.6% fewer monitor units and a delivery time reduction of up to 69%. VMAT plans resulted in reductions in rectal doses for all 10 patients in the study. This was achieved with significant reductions in delivery time and monitor units. Given the target coverage was equivalent, the VMAT plans were superior.

  8. Multicriteria optimization informed VMAT planning

    International Nuclear Information System (INIS)

    We developed a patient-specific volumetric-modulated arc therapy (VMAT) optimization procedure using dose-volume histogram (DVH) information from multicriteria optimization (MCO) of intensity-modulated radiotherapy (IMRT) plans. The study included 10 patients with prostate cancer undergoing standard fractionation treatment, 10 patients with prostate cancer undergoing hypofractionation treatment, and 5 patients with head/neck cancer. MCO-IMRT plans using 20 and 7 treatment fields were generated for each patient on the RayStation treatment planning system (clinical version 2.5, RaySearch Laboratories, Stockholm, Sweden). The resulting DVH of the 20-field MCO-IMRT plan for each patient was used as the reference DVH, and the extracted point values of the resulting DVH of the MCO-IMRT plan were used as objectives and constraints for VMAT optimization. Weights of objectives or constraints of VMAT optimization or both were further tuned to generate the best match with the reference DVH of the MCO-IMRT plan. The final optimal VMAT plan quality was evaluated by comparison with MCO-IMRT plans based on homogeneity index, conformity number of planning target volume, and organ at risk sparing. The influence of gantry spacing, arc number, and delivery time on VMAT plan quality for different tumor sites was also evaluated. The resulting VMAT plan quality essentially matched the 20-field MCO-IMRT plan but with a shorter delivery time and less monitor units. VMAT plan quality of head/neck cancer cases improved using dual arcs whereas prostate cases did not. VMAT plan quality was improved by fine gantry spacing of 2 for the head/neck cancer cases and the hypofractionation-treated prostate cancer cases but not for the standard fractionation–treated prostate cancer cases. MCO-informed VMAT optimization is a useful and valuable way to generate patient-specific optimal VMAT plans, though modification of the weights of objectives or constraints extracted from resulting DVH of MCO

  9. Multicriteria optimization informed VMAT planning.

    Science.gov (United States)

    Chen, Huixiao; Craft, David L; Gierga, David P

    2014-01-01

    We developed a patient-specific volumetric-modulated arc therapy (VMAT) optimization procedure using dose-volume histogram (DVH) information from multicriteria optimization (MCO) of intensity-modulated radiotherapy (IMRT) plans. The study included 10 patients with prostate cancer undergoing standard fractionation treatment, 10 patients with prostate cancer undergoing hypofractionation treatment, and 5 patients with head/neck cancer. MCO-IMRT plans using 20 and 7 treatment fields were generated for each patient on the RayStation treatment planning system (clinical version 2.5, RaySearch Laboratories, Stockholm, Sweden). The resulting DVH of the 20-field MCO-IMRT plan for each patient was used as the reference DVH, and the extracted point values of the resulting DVH of the MCO-IMRT plan were used as objectives and constraints for VMAT optimization. Weights of objectives or constraints of VMAT optimization or both were further tuned to generate the best match with the reference DVH of the MCO-IMRT plan. The final optimal VMAT plan quality was evaluated by comparison with MCO-IMRT plans based on homogeneity index, conformity number of planning target volume, and organ at risk sparing. The influence of gantry spacing, arc number, and delivery time on VMAT plan quality for different tumor sites was also evaluated. The resulting VMAT plan quality essentially matched the 20-field MCO-IMRT plan but with a shorter delivery time and less monitor units. VMAT plan quality of head/neck cancer cases improved using dual arcs whereas prostate cases did not. VMAT plan quality was improved by fine gantry spacing of 2 for the head/neck cancer cases and the hypofractionation-treated prostate cancer cases but not for the standard fractionation-treated prostate cancer cases. MCO-informed VMAT optimization is a useful and valuable way to generate patient-specific optimal VMAT plans, though modification of the weights of objectives or constraints extracted from resulting DVH of MCO-IMRT or

  10. Multicriteria optimization informed VMAT planning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huixiao; Craft, David L.; Gierga, David P., E-mail: dgierga@partners.org

    2014-04-01

    We developed a patient-specific volumetric-modulated arc therapy (VMAT) optimization procedure using dose-volume histogram (DVH) information from multicriteria optimization (MCO) of intensity-modulated radiotherapy (IMRT) plans. The study included 10 patients with prostate cancer undergoing standard fractionation treatment, 10 patients with prostate cancer undergoing hypofractionation treatment, and 5 patients with head/neck cancer. MCO-IMRT plans using 20 and 7 treatment fields were generated for each patient on the RayStation treatment planning system (clinical version 2.5, RaySearch Laboratories, Stockholm, Sweden). The resulting DVH of the 20-field MCO-IMRT plan for each patient was used as the reference DVH, and the extracted point values of the resulting DVH of the MCO-IMRT plan were used as objectives and constraints for VMAT optimization. Weights of objectives or constraints of VMAT optimization or both were further tuned to generate the best match with the reference DVH of the MCO-IMRT plan. The final optimal VMAT plan quality was evaluated by comparison with MCO-IMRT plans based on homogeneity index, conformity number of planning target volume, and organ at risk sparing. The influence of gantry spacing, arc number, and delivery time on VMAT plan quality for different tumor sites was also evaluated. The resulting VMAT plan quality essentially matched the 20-field MCO-IMRT plan but with a shorter delivery time and less monitor units. VMAT plan quality of head/neck cancer cases improved using dual arcs whereas prostate cases did not. VMAT plan quality was improved by fine gantry spacing of 2 for the head/neck cancer cases and the hypofractionation-treated prostate cancer cases but not for the standard fractionation–treated prostate cancer cases. MCO-informed VMAT optimization is a useful and valuable way to generate patient-specific optimal VMAT plans, though modification of the weights of objectives or constraints extracted from resulting DVH of MCO

  11. Volumetric Modulated Arc Therapy for Delivery of Prostate Radiotherapy: Comparison With Intensity-Modulated Radiotherapy and Three-Dimensional Conformal Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Volumetric modulated arc therapy (VMAT) is a novel form of intensity-modulated radiotherapy (IMRT) optimization that allows the radiation dose to be delivered in a single gantry rotation of up to 360o, using either a constant dose rate (cdr-VMAT) or variable dose rate (vdr-VMAT) during rotation. The goal of this study was to compare VMAT prostate RT plans with three-dimensional conformal RT (3D-CRT) and IMRT plans. Patients and Methods: The 3D-CRT, five-field IMRT, cdr-VMAT, and vdr-VMAT RT plans were created for 10 computed tomography data sets from patients undergoing RT for prostate cancer. The parameters evaluated included the doses to organs at risk, equivalent uniform doses, dose homogeneity and conformality, and monitor units required for delivery of a 2-Gy fraction. Results: The IMRT and both VMAT techniques resulted in lower doses to normal critical structures than 3D-CRT plans for nearly all dosimetric endpoints analyzed. The lowest doses to organs at risk and most favorable equivalent uniform doses were achieved with vdr-VMAT, which was significantly better than IMRT for the rectal and femoral head dosimetric endpoints (p < 0.05) and significantly better than cdr-VMAT for most bladder and rectal endpoints (p < 0.05). The vdr-VMAT and cdr-VMAT plans required fewer monitor units than did the IMRT plans (relative reduction of 42% and 38%, respectively; p = 0.005) but more than for the 3D-CRT plans (p = 0.005). Conclusion: The IMRT and VMAT techniques achieved highly conformal treatment plans. The vdr-VMAT technique resulted in more favorable dose distributions than the IMRT or cdr-VMAT techniques, and reduced the monitor units required compared with IMRT

  12. Volumetric Modulated Arc Therapy for Spine Radiosurgery: Superior Treatment Planning and Delivery Compared to Static Beam Intensity Modulated Radiotherapy

    Directory of Open Access Journals (Sweden)

    Leor Zach

    2016-01-01

    Full Text Available Purpose. Spine stereotactic radiosurgery (SRS delivers an accurate and efficient high radiation dose to vertebral metastases in 1–5 fractions. We aimed to compare volumetric modulated arc therapy (VMAT to static beam intensity modulated radiotherapy (IMRT for spine SRS. Methods and Materials. Ten spine lesions of previously treated SRS patients were planned retrospectively using both IMRT and VMAT with a prescribed dose of 16 Gy to 100% of the planning target volume (PTV. The plans were compared for conformity, homogeneity, treatment delivery time, and safety (spinal cord dose. Results. All evaluated parameters favored the VMAT plan over the IMRT plans. Dmin in the IMRT was significantly lower than in the VMAT plan (7.65 Gy/10.88 Gy, p<0.001, the Dice Similarity Coefficient (DSC was found to be significantly better for the VMAT plans compared to the IMRT plans (0.77/0.58, resp., p  value<0.01, and an almost 50% reduction in the net treatment time was calculated for the VMAT compared to the IMRT plans (6.73 min/12.96 min, p<0.001. Conclusions. In our report, VMAT provides better conformity, homogeneity, and safety profile. The shorter treatment time is a major advantage and not only provides convenience to the painful patient but also contributes to the precision of this high dose radiation therapy.

  13. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    OpenAIRE

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Davis, Scott C.; Zhang, Rongxiao; Pogue, Brian W.; Fox, Colleen J.; Gladstone, David J.

    2014-01-01

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water.

  14. A search for optimal radiation therapy technique for lung tumours stereotactic body radiation therapy (SBRT) : dosimetric comparison of 3D conformal radiotherapy, static gantry intensity modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with flattening filter (FF) or flattening filter-free (FFF) beams

    OpenAIRE

    Chiu, Siu-hau; 招兆厚

    2013-01-01

    Materials/Methods: Ten patients who underwent thoracic SBRT with primary stage I (T1/2N0) lung cancer or oligometastatic lung lesion, with PTV diameter ≤ 5cm were selected and were immobilized with Easyfoam or Vac-Lock. Planned/treated with inspiratory breath-hold (25 seconds, 70 to 80% of vital capacity) assisted with Active Breathing Control (ABC). Four treatment plans: non-coplanar 3DCRT, coplanar static gantry IMRT, coplanar VMAT (FF) and VMAT (FFF) were generated. Field arrangements,...

  15. Verification of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom

    International Nuclear Information System (INIS)

    Purpose: Volumetric modulated arc therapy (VMAT) treatment planning studies have been reported to provide good target coverage and organs at risk (OARs) sparing in total marrow irradiation (TMI). A comprehensive dosimetric study simulating the clinical situation as close as possible is a norm in radiotherapy before a technique can be used to treat a patient. Without such a study, it would be difficult to make a reliable and safe clinical transition especially with a technique as complicated as VMAT-TMI. To this end, the dosimetric feasibility of VMAT-TMI technique in terms of treatment planning, delivery efficiency, and the most importantly three dimensional dose distribution accuracy was investigated in this study. The VMAT-TMI dose distribution inside a humanlike Rando phantom was measured and compared to the dose calculated using RapidArc especially in the field junctions and the inhomogeneous tissues including the lungs, which is the dose-limiting organ in TMI. Methods: Three subplans with a total of nine arcs were used to treat the planning target volume (PTV), which was determined as all the bones plus the 3 mm margin. Thermoluminescent detectors (TLDs) were placed at 39 positions throughout the phantom. The measured TLD doses were compared to the calculated plan doses. Planar dose for each arc was verified using mapcheck. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of 0.5% (range: -4.3% and 6.6%) from the calculated dose in the junctions and in the inhomogeneous medium including the lungs. Conclusions: The results from this study suggest that RapidArc VMAT technique is dosimetrically accurate, safe, and efficient in delivering TMI within clinically acceptable time frame.

  16. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  17. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    International Nuclear Information System (INIS)

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle3 and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by ≤70% with VMAT.

  18. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  19. High dose for prostate irradiation with image guided radiotherapy: Contribution of intensity modulation arc-therapy

    International Nuclear Information System (INIS)

    Purpose: To compare two Intensity Modulated Radiation Therapy (IMRT) techniques for prostate cancer: the Volumetric Modulated Arc Therapy (VMAT) and the 'Step and Shoot' technique (S and S). Materials and methods: VMAT and S and S plans (RX 18 MV) were created and compared (Wilcoxon test) for 10 patients. The dosimetric goal of both treatments was to deliver 46 Gy to the seminal vesicles and 80 Gy to the prostate, while respecting the dose constrains in the organs at risk of toxicity. For one patient, the two techniques were compared for dose painting and escalation in target volumes defined on MRI and registered thanks to intra-prostatic fiducial. Results: VMAT, compared to S and S, offered: an increase of the PTV2s (prostate) volume receiving 77 to 80 Gy and a decrease of V82 and V83; a decrease of V4 to V6, V16 to V23, and V69 to V73 for the rectal wall; a decrease of V25 for the bladder wall; a decrease of V21 to V43 for the femoral heads; a decrease of V26 to V44 and V72 to V80 but an increase of V1 to V21 and V49 to V60 for the healthy tissues. The Conformal Index 'COIN' was better with VMAT than S and S (0.60 to 0.66). The delivered MU were significantly reduced with VMAT (8% mean) as well as the delivery time (4 min to 1.5 min). VMAT allowed delivering theoretically 90 Gy in the peripheral zone and 100 Gy in the tumor. Conclusion: In case of prostate irradiation, VMAT shows improvement compared with S and S. In particular, organs at risk are better spared, the delivery time is shortened and the number of delivered UM is decreased. (authors)

  20. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold [Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States); Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States)

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  1. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    International Nuclear Information System (INIS)

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  2. Feasibility of constant dose rate VMAT in the treatment of nasopharyngeal cancer patients

    International Nuclear Information System (INIS)

    To investigate the feasibility of constant dose rate volumetric modulated arc therapy (CDR-VMAT) in the treatment of nasopharyngeal cancer (NPC) patients and to introduce rotational arc radiotherapy for linacs incapable of dose rate variation. Twelve NPC patients with various stages treated previously using variable dose rate (VDR) VMAT were enrolled in this study. CDR-VMAT, VDR-VMAT and mutlicriteria optimization (MCO) VMAT plans were generated for each patient on RayStation treatment planning system with identical objective functions and the dosimetric differences among these three planning schemes were evaluated and compared. Non dosimetric parameters of optimization time, delivery time and delivery accuracy were also evaluated. The planning target volume of clinical target volume (PTV-CTV) coverage of CDR-VMAT was a bit inferior to those of VDR- and MCO-VMAT. The V93 (p = 0.01) and V95 (percent volume covered by isodose line) (p = 0.04) for CDR-VMAT, VDR-VMAT and MCO-VMAT were 98.74% ± 0.31%, 99.76% ± 0.16%, 99.38% ± 0.43%, and 98.40% ± 0.48%, 99.53% ± 0.28%, 99.07% ± 0.52%, respectively. However, the CDR-VMAT showed a better dose homogeneity index (HI) (p = 0.01) in PTV-CTV. No significant difference in other target coverage parameters was observed. There was no significant difference in OAR sparing among these three planning schemes except for a higher maximum dose (Dmax) on the brainstem for CDR-VMAT. The brainstem Dmax of CDR-VMAT, VDR-VMAT and MCO-VMAT were 54.26 ± 3.21 Gy, 52.19 ± 1.65 Gy, and 52.79 ± 4.77 Gy, respectively. The average delivery time (p < 0.01) and the average percent γ passing rates (p = 0.02) of CDR-VMAT, VDR-VMAT and MCO-VMAT were 7.01 ± 0.43 min, 4.75 ± 0.07 min, 4.01 ± 0.28 min, and 95.75% ± 2.57%, 97.65% ± 1.45%, 97.36% ± 2.45%, respectively. CDR-VMAT offers an additional option of rotational arc radiotherapy for linacs incapable of dose rate variation with a lower initial cost. Its plan quality was acceptable but

  3. New possibilities for volumetric-modulated arc therapy using the Agility trademark 160-leaf multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Bluemer, Nadine; Scherf, Christian; Koehn, Janett; Kara, Eugen; Loutfi-Krauss, Britta; Imhoff, Detlef; Roedel, Claus; Ramm, Ulla; Licher, Joerg [Universitaetsklinikum Frankfurt, Klinik fuer Strahlentherapie und Onkologie, Frankfurt am Main (Germany)

    2014-11-15

    This study compares the quality of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans optimized for an Elekta Agility trademark (Elekta, Stockholm, Sweden) multileaf collimator (MLC; leaf width 5 mm) and an Elekta MLCi2 (leaf width 10 mm) for complex target volumes (anal, AC; head and neck, H and N and prostate cancer, PC). For plan comparisons, 15 patients who had been treated with IMRT or VMAT using the MLCi2 were selected. For each patient, a retrospective treatment plan using the MLCi2 for the technique not applied was created, as were treatment plans for both techniques using the Agility trademark MLC. Dose-volume histograms (DHVs) for planning target volumes (PTVs) and organs at risk (OARs) were compared. Further parameters relating to dose conformity, dose homogeneity and mean dose (D{sub mean}) to the PTV, compliance with the intended OAR dose criteria and overall dose to normal tissue were analyzed. Verification measurements were performed and optimization and treatment times were compared. Compared to the MLCi2 plans, the Agility trademark IMRT and VMAT plans show better or equivalent results in terms of PTV dose conformity and homogeneity. Compliance with the intended OAR dose criteria does not differ according to technique or MLC type. Slight differences are shown for dose distributions in OARs and normal tissue. Verification measurements show that all plans fulfill the acceptance criteria of a minimum of 95 % matched dose points for the 3 %/3 mm γ criterion. Optimization times for the VMAT plans increase compared to the IMRT plans, whereas treatment times decrease. With the MLCi2, treatment of complex target volumes with VMAT was only possible with compromises in terms of target coverage. Using the Agility trademark MLC, even complex target volumes can be treated with VMAT without compromising target coverage or resulting in higher exposure of OARs or normal tissue. (orig.) [German] Diese Studie vergleicht die

  4. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    Directory of Open Access Journals (Sweden)

    Vincent Wing Cheung Wu

    2014-01-01

    Full Text Available This study compared the performance of volumetric modulated arc therapy (VMAT techniques: single arc volumetric modulated arc therapy (SA-VMAT and double arc volumetric modulated arc therapy (DA-VMAT with the static beam conventional intensity modulated radiotherapy (C-IMRT for non-small-cell lung carcinoma (NSCLC. Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV and organs at risk (OARs was used for planning. Using the same dose constraints and planning objectives, the C-IMRT, SA-VMAT, and DA-VMAT plans were optimized. C-IMRT consisted of 7 static beams, while SA-VMAT and DA-VMAT plans consisted of one and two full gantry rotations, respectively. No significant difference was found among the three techniques in target homogeneity and conformity. Mean lung dose in C-IMRT plan was significantly lower than that in DA-VMAT plan P=0.04. The ability of OAR sparing was similar among the three techniques, with no significant difference in V20, V10, or V5 of normal lungs, spinal cord, and heart. Less MUs were required in SA-VMAT and DA-VMAT. Besides, SA-VMAT required the shortest beam on time among the three techniques. In treatment of early stage NSCLC, no significant dosimetric superiority was shown by the VMAT techniques over C-IMRT and DA-VMAT over SA-VMAT.

  5. Volumetric Modulated Arc Radiotherapy for Early Stage Non-Small-Cell Lung Carcinoma: Is It Better Than the Conventional Static Beam Intensity Modulated Radiotherapy?

    International Nuclear Information System (INIS)

    This study compared the performance of volumetric modulated arc therapy (VMAT) techniques: single arc volumetric modulated arc therapy (SA-VMAT) and double arc volumetric modulated arc therapy (DA-VMAT) with the static beam conventional intensity modulated radiotherapy (C-IMRT) for non-small-cell lung carcinoma (NSCLC). Twelve stage I and II NSCLC patients were recruited and their planning CT with contoured planning target volume (PTV) and organs at risk (OARs) was used for planning. Using the same dose constraints and planning objectives, the C-IMRT, SA-VMAT, and DA-VMAT plans were optimized. C-IMRT consisted of 7 static beams, while SA-VMAT and DA-VMAT plans consisted of one and two full gantry rotations, respectively. No significant difference was found among the three techniques in target homogeneity and conformity. Mean lung dose in C-IMRT plan was significantly lower than that in DA-VMAT plan(Ρ =0.04). The ability of OAR sparing was similar among the three techniques, with no significant difference in V20, V10, or V5 of normal lungs, spinal cord, and heart. Less MUs were required in SA-VMAT and DA-VMAT. Besides, SA-VMAT required the shortest beam on time among the three techniques. In treatment of early stage NSCLC, no significant dosimetric superiority was shown by the VMAT techniques over C-IMRT and DA-VMAT over SA-VMAT.

  6. Accuracy of Dose Delivery in Multiple Breath-Hold Segmented Volumetric Modulated Arc Therapy: A Static Phantom Study

    International Nuclear Information System (INIS)

    Purpose. Accuracy of dose delivery in multiple breath-hold segmented volumetric modulated arc therapy (VMAT) was evaluated in comparison to non interrupted VMAT using a static phantom. Material and Methods. Five VMAT plans were evaluated. A Synergy linear accelerator (Elekta AB, Stockholm, Sweden) was employed. A VMAT delivery sequence was divided into multiple segments according to each of the predefined breath-hold periods (10, 15, 20, 30, and 40 seconds). The segmented VMAT delivery was compared to non interrupted VMAT delivery in terms of the isocenter dose and pass rates of a dose difference of 1% with a dose threshold of 10% of the maximum dose on a central coronal plane using a two-dimensional dosimeter, MatriXX Evolution (IBA Dosimetry, Schwarzenbruck, Germany). Results. Means of the isocenter dose differences were 0.5%, 0.2%, 0.2%, 0.0%, and 0.0% for the beam-on-times between interrupts of 10, 15, 20, 30, and 40 seconds, respectively. Means of the pass rates were 85%, 99.9%, 100%, 100%, and 100% in the same order as the above. Conclusion. Our static phantom study indicated that the multiple breath-hold segmented VMAT maintains stable and accurate dose delivery when the beam-on-time between interrupts is 15 seconds or greater

  7. Peripheral dose measurements in cervical cancer radiotherapy: a comparison of volumetric modulated arc therapy and step-and-shoot IMRT techniques

    OpenAIRE

    Jia, Ming X; ZHANG, XU; Yin, Ce; Feng, Ge; Li, Na; Gao, Song; Liu, Da W

    2014-01-01

    Purpose The aim of this study was to investigate the peripheral doses resulting from volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) techniques in cervical cancer radiotherapy. Methods Nine patients with cervical cancer had treatment planned with both VMAT and IMRT. A specially designed phantom was used for this study, with ion chambers placed at interest points approximating the position of the breast, thyroid, and lens. The peripheral doses at the phantom...

  8. A dosimetric comparative study: Volumetric modulated arc therapy vs intensity-modulated radiation therapy in the treatment of nasal cavity carcinomas

    International Nuclear Information System (INIS)

    The purpose of this study was to evaluate the differences between volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) in the treatment of nasal cavity carcinomas. The treatment of 10 patients, who had completed IMRT treatment for resected tumors of the nasal cavity, was replanned with the Philips Pinnacle3 Version 9 treatment-planning system. The IMRT plans used a 9-beam technique whereas the VMAT (known as SmartArc) plans used a 3-arc technique. Both types of plans were optimized using Philips Pinnacle3 Direct Machine Parameter Optimization algorithm. IMRT and VMAT plans' quality was compared by evaluating the maximum, minimum, and mean doses to the target volumes and organs at risk, monitor units (MUs), and the treatment delivery time. Our results indicate that VMAT is capable of greatly reducing treatment delivery time and MUs compared with IMRT. The reduction of treatment delivery time and MUs can decrease the effects of intrafractional uncertainties that can occur because of patient movement during treatment delivery. VMAT's plans further reduce doses to critical structures that are in close proximity to the target volume

  9. Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy

    OpenAIRE

    Virén, Tuomas; Heikkilä, Janne; Myllyoja, Kimmo; Koskela, Kristiina; Lahtinen, Tapani; Seppälä, Jan

    2015-01-01

    Background The aim of the present study was to introduce a new restricted tangential volumetric modulated arc therapy (tVMAT) technique for whole breast irradiation and compare its dosimetric properties to other currently used breast cancer radiotherapy techniques. Method Ten consecutive women with left-sided breast cancer were enrolled in this retrospective study. Four treatment plans were generated for each patient: 1) standard tangential field-in-field (FinF), 2) tangential intensity modul...

  10. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    OpenAIRE

    Sapkaroski, Daniel; Osborne, Catherine; Knight, Kellie A

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerg...

  11. A synthetic diamond diode in volumetric modulated arc therapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Zani, Margherita; Bucciolini, Marta; Casati, Marta; Talamonti, Cinzia [Dipartimento di Scienze biomediche, sperimentali e cliniche, Università degli Studi di Firenze - Azienza Ospedaliero Universitaria Careggi, Largo Brambilla 3, I-50134 Firenze (Italy); Marinelli, Marco; Prestopino, Giuseppe; Tonnetti, Alessia; Verona-Rinati, Gianluca [INFN-Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma (Italy)

    2013-09-15

    Purpose: The aim of this work is to investigate the behavior of a single crystal diamond diode (SCDD) for volumetric modulated arc therapy (VMAT) dose verifications. This delivery technique is one of the most severe test of a dosimeter performance due to the modulation of the dose rate achieved by simultaneously changing the velocity of the gantry and the position of the collimator leaves. The performed measurements with VMAT photon beams can therefore contribute to an overall global validation of the device to be used in dose distribution verifications.Methods: The SCDD response to 6 MVRX has been tested and compared with reference ionization chambers and treatment planning system (TPS) calculations in different experiments: (a) measurements of output factors for small field sizes (square fields of side ranging between 8 mm and 104 mm) by SCDD and A1SL ionization chamber; (b) angular dependence evaluation of the entire experimental set-up by SCDD, A1SL, and Farmer ionization chambers; and (c) acquisition of dose profiles for a VMAT treatment of a pulmonary disease in latero-lateral and gantry-target directions by SCDD and A1SL ionization chamber.Results: The output factors measured by SCDD favorably compare with the ones obtained by A1SL, whose response is affected by the lack of charged particle equilibrium and by averaging effect when small fields are involved. From the experiment on angular dependence, a good agreement is observed among the diamond diode, the ion chambers, and the TPS. In VMAT profiles, the absorbed doses measured by SCDD and A1SL compare well with the TPS calculated ones. An overall better agreement is observed in the case of the diamond dosimeter, which is also showing a better accuracy in terms of distance to agreement in the high gradient regions.Conclusions: Synthetic diamond diodes, whose performance were previously studied for conformal and IMRT radiotherapy techniques, were found to be suitable detectors also for dosimetric measurements

  12. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    Science.gov (United States)

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  13. Development and Evaluation of Multiple Isocentric Volumetric Modulated Arc Therapy Technique for Craniospinal Axis Radiotherapy Planning

    International Nuclear Information System (INIS)

    Purpose: To develop and compare a volumetric modulated arc therapy (VMAT) technique with conventional radiotherapy for craniospinal irradiation with respect to improved dose conformity and homogeneity in the planning target volume (PTV) and to reduced dose to organs at risk (OAR). Methods and Materials: Conventional craniospinal axis radiotherapy plans of 5 patients were acquired. The median (range) length of the PTV was 58.9 (48.1–83.7) cm. The 6-MV VMAT plans were inversely planned with one isocenter near the base of the brain and the minimum number of isocenters required for the specified lengths of spine. The plans were optimized with high weighting for PTV coverage and low weighting for OAR sparing. Conformity and heterogeneity indices, dose–volume histograms, mean doses, and non-PTV integral doses from the two plans (prescription dose 23.4 Gy in 13 fractions) were compared. Results: The median (range) conformity index of VMAT was 1.22 (1.09–1.45), compared with 1.69 (1.44–2.67) for conventional plans (p = 0.04). The median (range) heterogeneity index was also lower for VMAT compared with conventional plans: 1.04 (1.03–1.07) vs. 1.12 (1.09–1.19), respectively (p = 0.04). A significant reduction of mean and maximum doses was observed in the heart, thyroid, esophagus, optic nerves, and eyes with VMAT when compared with conventional plans. A decrease in body V10Gy was observed, but for 4 of 5 patients non-PTV integral dose was increased with VMAT when compared with the conventional plans. Conclusions: A VMAT technique to treat the craniospinal axis significantly reduces OAR dose, potentially leading to lower late organ toxicity. However, this is achieved at the expense of increased low-dose volumes, which is inherent to the technique, carrying a potentially increased risk of secondary malignancies.

  14. SU-E-T-84: Comparison of Three Different Systems for Patient-Specific Quality Assurance: Cranial Stereotactic Radiosurgery Using VMAT with Multiple Non Coplanar Arcs

    International Nuclear Information System (INIS)

    Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered. The purpose of the study is to compare three different dosimeters for pre-treatment QA. Methods: Nineteen patients (affected by neurinomas, brain metastases, and by meningiomas) were treated with VMAT plans computed on a Monte Carlo based TPS. Gafchromic films inside a slab phantom (GF), 3-D cylindrical phantom with two orthogonal diodes array (DA), and 3-D cylindrical phantom with a single rotating ionization chambers array (ICA), have been evaluated. The dosimeters are, respectively, characterized by a spatial resolution of: 0.4 (in our method), 5 and 2.5 mm. For GF we used a double channel method for calibration and reading protocol; for DA and ICA we used the 3-D dose distributions reconstructed by the two software sold with the dosimeters. With the need of a common system for analyze different measuring approaches, we used an in-house software that analyze a single coronal plane in the middle of the phantoms and Gamma values (2% / 2 mm and 3% / 3 mm) were computed for all patients and dosimeters. Results: The percentage of points with gamma values less than one was: 95.7% for GF, 96.8% for DA and 95% for ICA, using 3%/3mm criteria, and 90.1% for GF, 92.4% for DA and 92% for ICA, using 2% / 2mm gamma criteria. Tstudent test p-values obtained by comparing the three datasets were not statistically significant for both gamma criteria. Conclusion: Gamma index analysis is not affected by different spatial resolution of the three dosimeters

  15. 3D EPID based dosimetry for pre-treatment verification of VMAT – methods and challenges

    International Nuclear Information System (INIS)

    This article presents an overview of pre-treatment verification of volumetric modulated arc therapy (VMAT) with electronic portal imaging devices (EPIDs). Challenges to VMAT verification with EPIDs are discussed including EPID sag/flex during rotation, acquisition using cine-mode imaging, image artefacts during VMAT and determining the gantry angle for each image. The major methods that have been proposed to verify VMAT with EPIDs are introduced including those using or adapting commercial software systems and non-commercial implementations. Both two-dimensional and three-dimensional methods are reviewed.

  16. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    International Nuclear Information System (INIS)

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on the location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm3) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs

  17. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.

    2015-10-01

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on the location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.

  18. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    International Nuclear Information System (INIS)

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  19. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Oelfke, Uwe [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom and Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2015-05-15

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  20. Peripheral dose measurements in cervical cancer radiotherapy: a comparison of volumetric modulated arc therapy and step-and-shoot IMRT techniques

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the peripheral doses resulting from volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) techniques in cervical cancer radiotherapy. Nine patients with cervical cancer had treatment planned with both VMAT and IMRT. A specially designed phantom was used for this study, with ion chambers placed at interest points approximating the position of the breast, thyroid, and lens. The peripheral doses at the phantom interest points were measured and compared between the VMAT and IMRT techniques. VMAT provides a potential dosimetric advantage compared with IMRT. The mean (± standard deviation) peripheral dose to the breast point for 1 fraction (2 Gy) during VMAT measured 5.13 ± 0.96 mGy, compared with 9.04 ± 1.50 mGy for IMRT. At the thyroid and lens interest points, the mean (± standard deviation) peripheral dose during VMAT was 2.19 ± 0.33 and 2.16 ± 0.28 mGy, compared with 7.07 ± 0.76 and 6.97 ± 0.91 mGy for IMRT, respectively. VMAT reduced the monitor units used by 28% and shortened the treatment delivery time by 54% compared with IMRT. While the dosimetric results are similar for both techniques, VMAT results in a lower peripheral dose to the patient and reduces the monitor-unit usage and treatment delivery time compared with IMRT

  1. Cherenkov imaging during volumetric modulated arc therapy for real-time radiation beam tracking and treatment response monitoring

    Science.gov (United States)

    Andreozzi, Jacqueline M.; Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-03-01

    External beam radiotherapy utilizes high energy radiation to target cancer with dynamic, patient-specific treatment plans. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high energy beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to track the radiation beam on the surface of the patient in real-time, even for complex cases such as volumetric modulated arc therapy (VMAT). Two patients undergoing VMAT of the head and neck were imaged and analyzed, and the viability of the system to provide clinical feedback was established.

  2. Use of two-dimensional chamber arrays in volumetric modulated arc therapy treatment verification

    International Nuclear Information System (INIS)

    Volumetric modulated arc therapy (VMAT) requires, as another kind of intensity-modulated radiation therapy (IMRT), patient-specific QA procedures. This work analyzes the method carried out in our institution for VMAT treatment verification. Our hypothesis is that traditional IMRT QA is valid for VMAT technique. Results obtained for absolute point-dose measurements with ion chamber are presented, as well as comparison with treatment planning system calculations (mean difference of (-0.50 ± 0.43)%). In addition, different setups with 2D ion chamber array for dose distributions comparison are analyzed. These detectors are the basis of our QA procedure. Advantages and disadvantages of those setups are shown. The present study includes results for 111 patients treated with VMAT technique from different disease sites. We conclude that 2D ion chamber arrays traditionally used in IMRT QA are valid detectors for rotational techniques if these arrays are used together with additional devices (phantoms, accessories) that allow us to obtain as much information as possible. (Author)

  3. SU-E-T-28: A Treatment Planning Comparison of Volumetric Modulated Arc Therapy Vs. Proton Therapy for Post-Mastectomy Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M; Zhang, R; Sanders, M; Newhauser, W [Louisiana State University, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: The delivery of post-mastectomy radiotherapy (PMRT) can be challenging for patients with left-sided breast cancer due to the PTV size and proximity to critical organs. This study investigates the use of protons for PMRT in a clinically-representative cohort of patients, and quantitatively compares volumetric modulated arc therapy (VMAT) to proton therapy to have an evidence-based rationale for selecting a treatment modality for these patients. Methods: Eight left-sided PMRT patients previously treated at our clinic with VMAT were identified for the study. PTVs included the chest wall and regional lymph nodes. Passively scattered (PS) and intensity modulated proton therapy (IMPT) plans were constructed using the Eclipse proton planning system. The resulting plans were compared to the original VMAT plan on the basis of PTV coverage; dose homogeneity index (DHI) and conformity index (CI); dose to organs at risk (OAR); tumor control probability (TCP), normal tissue complication probability (NTCP) and secondary cancer complication probability (SCCP). Differences were tested for significance using the paired Student's t-test (p<0.01). Results: All modalities produced clinically acceptable PMRT plans. The comparison demonstrated proton treatment plans provide significantly lower NTCP values for the heart and the lung while maintaining significantly better CI and DHI. At a prescribed dose of 50.4 Gy (RBE) in the PTV, the calculated mean NTCP value for the patients decreased from 1.3% to 0.05% for the whole heart (cardiac mortality) and from 3.8% to 1.1% for the lungs (radiation pneumonitis) for both proton therapy plans from VMAT plans. Both proton modalities showed a significantly lower SCCP for the contralateral breast compared to VMAT. Conclusion: All three plans (VMAT, PS, and IMPT) provide acceptable treatment plans for PMRT. However, proton therapy shows a significant advantage over VMAT with regards to sparing OARs and may be more advantageous for

  4. SU-E-T-28: A Treatment Planning Comparison of Volumetric Modulated Arc Therapy Vs. Proton Therapy for Post-Mastectomy Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: The delivery of post-mastectomy radiotherapy (PMRT) can be challenging for patients with left-sided breast cancer due to the PTV size and proximity to critical organs. This study investigates the use of protons for PMRT in a clinically-representative cohort of patients, and quantitatively compares volumetric modulated arc therapy (VMAT) to proton therapy to have an evidence-based rationale for selecting a treatment modality for these patients. Methods: Eight left-sided PMRT patients previously treated at our clinic with VMAT were identified for the study. PTVs included the chest wall and regional lymph nodes. Passively scattered (PS) and intensity modulated proton therapy (IMPT) plans were constructed using the Eclipse proton planning system. The resulting plans were compared to the original VMAT plan on the basis of PTV coverage; dose homogeneity index (DHI) and conformity index (CI); dose to organs at risk (OAR); tumor control probability (TCP), normal tissue complication probability (NTCP) and secondary cancer complication probability (SCCP). Differences were tested for significance using the paired Student's t-test (p<0.01). Results: All modalities produced clinically acceptable PMRT plans. The comparison demonstrated proton treatment plans provide significantly lower NTCP values for the heart and the lung while maintaining significantly better CI and DHI. At a prescribed dose of 50.4 Gy (RBE) in the PTV, the calculated mean NTCP value for the patients decreased from 1.3% to 0.05% for the whole heart (cardiac mortality) and from 3.8% to 1.1% for the lungs (radiation pneumonitis) for both proton therapy plans from VMAT plans. Both proton modalities showed a significantly lower SCCP for the contralateral breast compared to VMAT. Conclusion: All three plans (VMAT, PS, and IMPT) provide acceptable treatment plans for PMRT. However, proton therapy shows a significant advantage over VMAT with regards to sparing OARs and may be more advantageous for

  5. Volumetric-modulated arc therapy planning using multicriteria optimization for localized prostate cancer.

    Science.gov (United States)

    Ghandour, Sarah; Matzinger, Oscar; Pachoud, Marc

    2015-01-01

    The purpose of this work is to evaluate the volumetric-modulated arc therapy (VMAT) multicriteria optimization (MCO) algorithm clinically available in the RayStation treatment planning system (TPS) and its ability to reduce treatment planning time while providing high dosimetric plan quality. Nine patients with localized prostate cancer who were previously treated with 78 Gy in 39 fractions using VMAT plans and rayArc system based on the direct machine parameter optimization (DMPO) algorithm were selected and replanned using the VMAT-MCO system. First, the dosimetric quality of the plans was evaluated using multiple conformity metrics that account for target coverage and sparing of healthy tissue, used in our departmental clinical protocols. The conformity and homogeneity index, number of monitor units, and treatment planning time for both modalities were assessed. Next, the effects of the technical plan parameters, such as constraint leaf motion CLM (cm/°) and maximum arc delivery time T (s), on the accuracy of delivered dose were evaluated using quality assurance passing rates (QAs) measured using the Delta4 phantom from ScandiDos. For the dosimetric plan's quality analysis, the results show that the VMAT-MCO system provides plans comparable to the rayArc system with no statistical difference for V95% (p < 0.01), D1% (p < 0.01), CI (p < 0.01), and HI (p < 0.01) of the PTV, bladder (p < 0.01), and rectum (p < 0.01) constraints, except for the femoral heads and healthy tissues, for which a dose reduction was observed using MCO compared with rayArc (p < 0.01). The technical parameter study showed that a combination of CLM equal to 0.5 cm/degree and a maximum delivery time of 72 s allowed the accurate delivery of the VMAT-MCO plan on the Elekta Versa HD linear accelerator. Planning evaluation and dosimetric measurements showed that VMAT-MCO can be used clinically with the advantage of enhanced planning process efficiency by reducing the treatment planning time

  6. Superior liver sparing by combined coplanar/noncoplanar volumetric-modulated arc therapy for hepatocellular carcinoma: A planning and feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yi-Chun; Tsai, Chiao-Ling; Hsu, Feng-Ming [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Jian-Kuen, Wu [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan (China); Chien-Jang, Wu [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan (China); Cheng, Jason Chia-Hsien, E-mail: jasoncheng@ntu.edu.tw [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (China); Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan (China)

    2013-01-01

    Compared with step-and-shoot intensity-modulated radiotherapy (sIMRT) and tomotherapy, volumetric-modulated arc therapy (VMAT) allows additional arc configurations in treatment planning and noncoplanar (NC) delivery. This study was first to compare VMAT planning with sIMRT planning, and the second to evaluate the toxicity of coplanar (C)/NC-VMAT treatment in patients with hepatocellular carcinoma (HCC). Fifteen patients with HCC (7 with left-lobe and 8 with right-lobe tumors) were planned with C-VMAT, C/NC-VMAT, and sIMRT. The median total dose was 49 Gy (range: 40 to 56 Gy), whereas the median fractional dose was 3.5 Gy (range: 3 to 8 Gy). Different doses/fractionations were converted to normalized doses of 2 Gy per fraction using an α/β ratio of 2.5. The mean liver dose, volume fraction receiving more than 10 Gy (V10), 20 Gy (V20), 30 Gy (V30), effective volume (V{sub eff}), and equivalent uniform dose (EUD) were compared. C/NC-VMAT in 6 patients was evaluated for delivery accuracy and treatment-related toxicity. Compared with sIMRT, both C-VMAT (p = 0.001) and C/NC-VMAT (p = 0.03) had significantly improved target conformity index. Compared with C-VMAT and sIMRT, C/NC-VMAT for treating left-lobe tumors provided significantly better liver sparing as evidenced by differences in mean liver dose (p = 0.03 and p = 0.007), V10 (p = 0.003 and p = 0.009), V20 (p = 0.006 and p = 0.01), V30 (p = 0.02 and p = 0.002), V{sub eff} (p = 0.006 and p = 0.001), and EUD (p = 0.04 and p = 0.003), respectively. For right-lobe tumors, there was no difference in liver sparing between C/NC-VMAT, C-VMAT, and sIMRT. In all patients, dose to more than 95% of target points met the 3%/3 mm criteria. All 6 patients tolerated C/NC-VMAT and none of them had treatment-related ≥ grade 2 toxicity. The C/NC-VMAT can be used clinically for HCC and provides significantly better liver sparing in patients with left-lobe tumors.

  7. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    International Nuclear Information System (INIS)

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. For the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential

  8. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org [Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Shen, Xinglei; Yu, Yan; Xiao, Ying; Shi, Wenyin [Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Biswas, Tithi [Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC (United States); Werner-Wasik, Maria; Harrison, Amy S. [Department of Radiation Oncology, Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States)

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. For the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.

  9. Dosimetric dependence on the collimator angle in prostate volumetric modulated arc therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Isa

    2014-12-01

    Full Text Available Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV and organs-at-risk (OARs in prostate volumetric modulated arc therapy (VMAT when varying collimator angle. The collimator angle has the largest impact and is worth considering, so, its awareness is essential for a planner to produce an optimal prostate VMAT plan in a reasonable time frame. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o were created systematically using a Harold heterogeneous pelvis phantom. The conformity index (CI, homogeneity index (HI, gradient index (GI, machine monitor units (MUs, dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. On the other hand, the dose-volume histogram and mean and maximum doses of the OARs such as the bladder, rectum and femoral heads for different collimator angles were determined from the plans.Results: There was no significant difference, based on the planned dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. A higher CI (0.53 and lower HI (0.064 were found in the 45o collimator angle. In addition, the 15o collimator angle provided a lower value of HI similar to the 45o collimator angle. Collimator angles of 75o and 90o were found to be good for rectum sparing, and collimator angles of 75o and 30o were found to be good for sparing of right and left femur, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: Our study indicates that the dosimetric results provide support and guidance to allow the clinical radiation physicists to make careful decisions in implementing suitable collimator angles to improve the PTV coverage and OARs sparing in prostate VMAT.

  10. Statistical process control analysis for patient-specific IMRT and VMAT QA

    International Nuclear Information System (INIS)

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7%±3.7% for IMRT and 96.7%±2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0. (author)

  11. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  12. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  13. Effect of the Collimator Angle on Dosimetric Verification of the Volumetric Modulated Arc Therapy

    CERN Document Server

    Kim, Yong Ho; Kim, Won Taek; Kim, Dong Won; Ki, Yongkan; Lee, Juhye; Bae, Jinsuk; Park, Dahl

    2015-01-01

    Collimator angle is usually rotated when planning volumetric modulated arc therapy (VMAT) due to the leakage of radiation between multi-leaf collimator (MLC) leaves. We studied the effect of the collimator angles on the results of dosimetric verification of the VMAT plans for head and neck patients. We studied VMAT plans for 10 head and neck patients. We made 2 sets of VMAT plans for each patient. Each set was composed of 10 plans with collimator angles of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 degrees. Plans in the first set were optimized individually and plans in the second set shared the 30 degree collimator angle optimization. Two sets of plans were verified using the 2-dimensional ion chamber array MatriXX (IBA Dosimetry, Germany). The comparison between the calculation and measurements were made by the $\\gamma$-index analysis. The $\\gamma$-index (2\\%/2 mm) and (3\\%/3 mm) passing rates had negative correlations with the collimator angle. Maximum difference between $\\gamma$-index (3\\%/3 mm) passing rates o...

  14. Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison

    Institute of Scientific and Technical Information of China (English)

    Li Yin; Bo Xu; Guang-Ying Zhu; Hao Wu; Jian Gong; Jian-Hao Geng; Fan Jiang; An-Hui Shi; Rong Yu; Yong-Heng Li; Shu-Kui Han

    2012-01-01

    AIM:To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC).METHODS:Twenty patients with EC were selected,including 5 cases located in the cervical,the upper,the middle and the lower thorax,respectively.Five plans were generated with the eclipse planning system:three using c-IMRT with 5 fields (5F),7 fields (7F) and 9 fields (9F),and two using VMAT with a single arc (1A) and double arcs (2A).The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction,5 d a week.Plans were normalized to 95% of the PTV that received 100% of the prescribed dose.We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs,spinal cord and heart.Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported.RESULTS:Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations.The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased.The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans,with the following exceptions:in cervical and upper thoracic EC,the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (SF 0.62,7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09).Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81).The humeral head doses were significantly increased in VMAT as against c-IMRT.In the middle and lower thoracic EC,CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy),and homogeneity was almost similar between VMAT and c-IMRT.V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12

  15. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors

    Science.gov (United States)

    Moteabbed, Maryam; Yock, Torunn I.; Paganetti, Harald

    2014-06-01

    The incidence of second malignant tumors is a clinically observed adverse late effect of radiation therapy, especially in organs close to the treatment site, receiving medium to high doses (>2.5 Gy). For pediatric patients, choosing the least toxic radiation modality is of utmost importance, due to their high radiosensitivity and small size. This study aims to evaluate the risk of second cancer incidence in the vicinity of the primary radiation field, for pediatric patients with brain/head and neck tumors and compare four treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). For a cohort of six pediatric patients originally treated with PPT, additional PBS, IMRT and VMAT plans were created. Dose distributions from these plans were used to calculate the excess absolute risk (EAR) and lifetime attributable risk (LAR) for developing a second tumor in soft tissue and skull. A widely used risk assessment formalism was employed and compared with a linear model based on recent clinical findings. In general, LAR was found to range between 0.01%-2.8% for PPT/PBS and 0.04%-4.9% for IMRT/VMAT. PBS was associated with the lowest risk for most patients using carcinoma and sarcoma models, whereas IMRT and VMAT risks were comparable and the highest among all modalities. The LAR for IMRT/VMAT relative to PPT ranged from 1.3-4.6 for soft tissue and from 3.5-9.5 for skull. Larger absolute LAR was observed for younger patients and using linear risk models. The number of fields used in proton therapy and IMRT had minimal effect on the risk. When planning treatments and deciding on the treatment modality, the probability of second cancer incidence should be carefully examined and weighed against the possibility of developing acute side effects for each patient individually.

  16. The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors

    International Nuclear Information System (INIS)

    The incidence of second malignant tumors is a clinically observed adverse late effect of radiation therapy, especially in organs close to the treatment site, receiving medium to high doses (>2.5 Gy). For pediatric patients, choosing the least toxic radiation modality is of utmost importance, due to their high radiosensitivity and small size. This study aims to evaluate the risk of second cancer incidence in the vicinity of the primary radiation field, for pediatric patients with brain/head and neck tumors and compare four treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). For a cohort of six pediatric patients originally treated with PPT, additional PBS, IMRT and VMAT plans were created. Dose distributions from these plans were used to calculate the excess absolute risk (EAR) and lifetime attributable risk (LAR) for developing a second tumor in soft tissue and skull. A widely used risk assessment formalism was employed and compared with a linear model based on recent clinical findings. In general, LAR was found to range between 0.01%–2.8% for PPT/PBS and 0.04%–4.9% for IMRT/VMAT. PBS was associated with the lowest risk for most patients using carcinoma and sarcoma models, whereas IMRT and VMAT risks were comparable and the highest among all modalities. The LAR for IMRT/VMAT relative to PPT ranged from 1.3–4.6 for soft tissue and from 3.5–9.5 for skull. Larger absolute LAR was observed for younger patients and using linear risk models. The number of fields used in proton therapy and IMRT had minimal effect on the risk. When planning treatments and deciding on the treatment modality, the probability of second cancer incidence should be carefully examined and weighed against the possibility of developing acute side effects for each patient individually. (paper)

  17. Feasibility of single-isocenter, multi-arc non-coplanar volumetric modulated arc therapy for multiple brain tumors using a linear accelerator with a 160-leaf multileaf collimator: a phantom study.

    Science.gov (United States)

    Iwai, Yoshio; Ozawa, Shuichi; Ageishi, Tatsuya; Pellegrini, Roberto; Yoda, Kiyoshi

    2014-09-01

    The feasibility of single isocenter, multi-arc non-coplanar volumetric modulated arc therapy (VMAT) for multiple brain tumors was studied using an Elekta Synergy linear accelerator with an Agility multileaf collimator and a Monaco treatment planning system. Two VMAT radiosurgery plans consisting of a full arc and three half arcs were created with a prescribed dose of 20 Gy in a single fraction. After dose delivery to a phantom, ionization chambers and radiochromic films were used for dose measurement. The first VMAT radiosurgery plan had nine targets inside the phantom, and the doses were measured by the chambers at two different points and by the films on three sagittal and three coronal planes. The differences between the calculated dose and the dose measured by a Farmer ionization chamber and a pinpoint ionization chamber were radiosurgery plan was based on a clinical 14 brain metastases. Differences between calculated and film-measured doses were evaluated on two sagittal planes. The average pass rates of the gamma indices on the planes under each of 3%/3 mm and 2%/2 mm criteria were 97.8% and 88.8%, respectively. It was confirmed that single-isocenter, non-coplanar multi-arc VMAT radiosurgery for multiple brain metastases was feasible using Elekta Synergy with Agility and Monaco treatment planning systems. It was further shown that film dosimetry was accurately performed for a dose of up to nearly 25 Gy. PMID:24944266

  18. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy (IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer. Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293) for 3D-CRT; 824 (range 641–1083) for IMRT; and 403 (range 333–489) for VMAT (P < 0.05). Average treatment delivery time were 2:25min (range 2:01–3:09) for 3D-CRT; 4:39 (range 3:41–6:40) for IMRT; and 1:14 (range 1:13–1:14) for VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum. VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours

  19. A Dosimetric Comparison of Tomotherapy and Volumetric Modulated Arc Therapy in the Treatment of High-Risk Prostate Cancer With Pelvic Nodal Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Methods and Materials: Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. Results: For WPRT, HT was able to provide a higher D98% than VMAT (44.3 ± 0.3 Gy and 43.9 ± 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 ± 0.3 Gy and 49.1 ± 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 ± 0.009) than with VMAT (0.80 ± 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 ± 0.1 vs 7.4 ± 0.6 min, respectively; P=.002, and 1.5 ± 0.05 vs 3.7 ± 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. Conclusion: VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time.

  20. SU-E-T-16: A Hybrid VMAT/IMRT Technique for the Treatment of Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Purpose: To investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC). Methods: 2 full arcs VMAT, 9-field IMRT and Hybrid VMAT/IMRT plans were created for 10 patients with NPC. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 7 IMRT fields. The dose distribution of planning target volume (PTV) and organs at risk (OARs) for Hybrid VMAT/IMRT was compared with IMRT and VMAT. The monitor units (MUs) were also evaluated. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity compared with IMRT and VMAT for PTV70 and PTV54. For PTV70 and PTV60, the Hybrid VMAT/IMRT technique significantly improved target dose conformity compared with IMRT (0.62 vs 0.47; p<0.05 and 0.64 vs 0.58; p<0.05, respectively) and VMAT (0.62 vs 0.43; p<0.05 and 0.64 vs 0.6; p<0.05, respectively). The near maximum dose (D2%) of temporomandibular joint (TMJ), temporal lobe and mandible for Hybrid plans were 5.5%, 7.9% and 5.2% lower than IMRT plans (p<0.05). The mean dose of TMJ, temporal lobe, mandible and unspecified tissue for Hybrid plans were 12.8%, 11.4%, 4.2% and 4.1% lower than IMRT plans (p<0.05). The mean dose of right parotid, mandible and unspecified tissue for Hybrid plans were 3.3%, 2.4% and 3.1% lower than VMAT plans (p<0.05). The mean MUs needed for IMRT, VMAT and Hybrid plans were 2256, 507 and 1394, respectively. Conclusion: Hybrid VMAT/IMRT technique significantly improved the target dose homogeneity and conformity compared with IMRT and VMAT and reduced the dose of OARs and unspecified tissue compared with IMRT with fewer MUs. Compared with VMAT, Hybrid VMAT/IMRT technique can better protect parotid gland, mandible and unspecified tissue. Ruijie Yang was funded by the grant project: National Natural Science Foundation of China (No. 81071237). Other authors have no competing interest for this work

  1. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning

    OpenAIRE

    Sarkar, B.; Pradhan, A.; A Munshi

    2016-01-01

    Introduction: Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monit...

  2. Dosimetric comparison for volumetric modulated arc therapy and intensity-modulated radiotherapy on the left-sided chest wall and internal mammary nodes irradiation in treating post-mastectomy breast cancer

    OpenAIRE

    Zhang, Qian; Yu, Xiao Li; Hu, Wei Gang; Chen, Jia Yi; Wang, Jia Zhou; Ye, Jin Song; Guo, Xiao Mao

    2015-01-01

    Background The aim of the study was to evaluate the dosimetric benefit of applying volumetric modulated arc therapy (VMAT) on the post-mastectomy left-sided breast cancer patients, with the involvement of internal mammary nodes (IMN). Patients and methods The prescription dose was 50 Gy delivered in 25 fractions, and the clinical target volume included the left chest wall (CW) and IMN. VMAT plans were created and compared with intensity-modulated radiotherapy (IMRT) plans on Pinnacle treatmen...

  3. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy

    OpenAIRE

    Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; DUMA, MARCIANA NONA

    2015-01-01

    Background The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Methods Twenty SBRT patients, ten lung cases and ten liver cases, ...

  4. SU-E-T-542: Comparison of Stereotactic Radiosurgery (SRS) of Brain Lesions Using Gamma Knife, VMAT, IMRT, and Conformal Arcs

    Energy Technology Data Exchange (ETDEWEB)

    Li, S; Charpentier, P; Chan, P; Neicu, T; Miyamoto, C [Temple University Hospital, Phila., PA (United States)

    2014-06-01

    Purpose: To compare dose distributions in stereotactic radiation surgery of brain lesions using gamma Knife, VMAT, conformal arcs, and IMRT in order to provide an optimal treatment. Methods: Dose distributions from single shot of 4C model of Gamma Knife at the helmet collimation sizes of 4, 8, 14, and 18 mm in diameter were compared with full arcs with the square shapes of 4×4 (or 5×5), 8×8 (or 10×10), and spherical shapes of 16 or 20 mm in diameter using EDR3 films in the same gamma knife QA phantom. Plans for ten SRS cases with single and multiple lesions were created in gamma knife plans and Pinnacle plans. The external beam plans had enlarged field size by 2-mm and used single conformal full circle arc for solitary lesion and none coplanar arcs/beams for multiple lesions. Coverage, conformity index, dose to critical organs, and integral dose to the brain and nearby critical structures were compared on all plans. Structures and dose matrices were registered in a Velocity deformable image registration system. Results: Single full circle arc from Elekta beam-modulate MLC (4-mm leaf thickness) and agility MLC (5-mm leaf thickness) have larger penumbra and less flatness than that of Gamma Knife single shot. None-coplanar arcs or beams were required to achieve similar dose distribution. In general, Gamma Knife plans provided significant less integral dose than that of linac-based plans. Benefits of IMRT and VMAT versus gamma Knife and conformal arcs were not significant. Conclusion: Our dose measurement and treatment planning evaluation clearly demonstrated dose distribution differences amount current popular SRS modalities for small solitary and multiple brain lesions. The trend of using MLC shape beams or arcs to replace conventional cones should be revisited in order to keep lower integral dose if the late correlates with some radiation-induced side effects. Pilot grant from Elekta LLC.

  5. VMAT techniques for lymph node-positive left sided breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, Marlies; Lutterbach, Johannes; Bjoernsgard, Mari; Reichmann, Ursula; Bartelt, Susanne [Lake Constance Radiation Oncology Center Singen, Friedrichshafen (Germany); Georg, Dietmar [Medical Univ. Vienna/AKH Vienna (Austria). Dept. of Radiooncology; Medical Univ. Vienna (Austria). Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology

    2015-09-01

    To investigate the plan quality of two different volumetric modulated arc therapy (VMAT) techniques for lymph node-positive left-sided breast cancer. Two VMAT plans were generated for 10 lymph node-positive left-sided breast cancer patients: one plan using one single segment of a full rotation, typically an arc segment of 230 (1s-VMAT); and a second plan consisting of 2 small tangential arc segments of about 50 (2s-VMAT). For plan comparison, various dose and dose volume metrics (D{sub mean}, D{sub 98%}, D{sub 2%} for target volumes, D{sub 2%}, D{sub mean} and V{sub x%} for organs at risk (OAR)) were evaluated. Both techniques fulfilled both clinical target dose and OAR goals. 1s-VMAT achieved a slightly better homogeneity and better target coverage (D{sub 2%} = 54.2 ± 0.7 Gy, D{sub 98%} = 30.3 ± 1.8 Gy) compared to 2s-VMAT (D{sub 2%} = 55.0 ± 1.1 Gy, D{sub 98%} = 29.9 ± 1.7 Gy). For geometrical reasons, OAR sparing was noticeable but not significant better using 2s-VMAT, particularly heart and contralateral breast. The heart received a mean dose of 4.4 ± 0.8 Gy using 1s-VMAT and 3.3 ± 1.0 Gy using 2s-VMAT; the contralateral breast received 1.5 ± 0.3 Gy and 0.9 ± 0.3 Gy, respectively. A VMAT technique based on two small tangential arc segments enables improved OAR sparing; the differences between the two techniques in target coverage and homogeneity are minor. Patient age and -anatomy must be considered for each individual case when deciding which technique to be used.

  6. VMAT techniques for lymph node-positive left sided breast cancer

    International Nuclear Information System (INIS)

    To investigate the plan quality of two different volumetric modulated arc therapy (VMAT) techniques for lymph node-positive left-sided breast cancer. Two VMAT plans were generated for 10 lymph node-positive left-sided breast cancer patients: one plan using one single segment of a full rotation, typically an arc segment of 230 (1s-VMAT); and a second plan consisting of 2 small tangential arc segments of about 50 (2s-VMAT). For plan comparison, various dose and dose volume metrics (Dmean, D98%, D2% for target volumes, D2%, Dmean and Vx% for organs at risk (OAR)) were evaluated. Both techniques fulfilled both clinical target dose and OAR goals. 1s-VMAT achieved a slightly better homogeneity and better target coverage (D2% = 54.2 ± 0.7 Gy, D98% = 30.3 ± 1.8 Gy) compared to 2s-VMAT (D2% = 55.0 ± 1.1 Gy, D98% = 29.9 ± 1.7 Gy). For geometrical reasons, OAR sparing was noticeable but not significant better using 2s-VMAT, particularly heart and contralateral breast. The heart received a mean dose of 4.4 ± 0.8 Gy using 1s-VMAT and 3.3 ± 1.0 Gy using 2s-VMAT; the contralateral breast received 1.5 ± 0.3 Gy and 0.9 ± 0.3 Gy, respectively. A VMAT technique based on two small tangential arc segments enables improved OAR sparing; the differences between the two techniques in target coverage and homogeneity are minor. Patient age and -anatomy must be considered for each individual case when deciding which technique to be used.

  7. Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom

    International Nuclear Information System (INIS)

    We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification. (author)

  8. Clinical experience transitioning from IMRT to VMAT for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA (United States); Bar-Ad, Voichita; Siglin, Joshua [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA (United States); Cognetti, David; Curry, Joseph [Department of Otolaryngology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA (United States); Tuluc, Madalina [Department of Pathology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA (United States); Harrison, Amy S. [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA (United States)

    2013-07-01

    To quantify clinical differences for volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in terms of dosimetric endpoints and planning and delivery time, twenty head and neck cancer patients have been considered for VMAT using Nucletron Oncentra MasterPlan delivered via an Elekta linear accelerator. Differences in planning time between IMRT and VMAT were estimated accounting for both optimization and calculation. The average delivery time per patient was obtained retrospectively using the record and verify software. For the dosimetric comparison, all contoured organs at risk (OARs) and planning target volumes (PTVs) were evaluated. Of the 20 cases considered, 14 had VMAT plans approved. Six VMAT plans were rejected due to unacceptable dose to OARs. In terms of optimization time, there was minimal difference between the two modalities. The dose calculation time was significantly longer for VMAT, 4 minutes per 358 degree arc versus 2 minutes for an entire IMRT plan. The overall delivery time was reduced by 9.2 ± 3.9 minutes for VMAT (51.4 ± 15.6%). For the dosimetric comparison of the 14 clinically acceptable plans, there was almost no statistical difference between the VMAT and IMRT. There was also a reduction in monitor units of approximately 32% from IMRT to VMAT with both modalities demonstrating comparable quality assurance results. VMAT provides comparable coverage of target volumes while sparing OARs for the majority of head and neck cases. In cases where high dose modulation was required for OARs, a clinically acceptable plan was only achievable with IMRT. Due to the long calculation times, VMAT plans can cause delays during planning but marked improvements in delivery time reduce patient treatment times and the risk of intra-fraction motion.

  9. Clinical Outcomes of Volume-Modulated Arc Therapy in 205 Patients with Nasopharyngeal Carcinoma: An Analysis of Survival and Treatment Toxicities.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    Full Text Available To investigate the clinical efficacy and treatment toxicity of volume-modulated arc therapy (VMAT for nasopharyngeal carcinoma (NPC.205 VMAT-treated NPC patients from our cancer center were prospectively entrolled. All patients received 68-70 Gy irradiation based on the planning target volume of the primary gross tumor volume. Acute and late toxicities were graded according to the Common Terminology Criteria for Adverse Events v3.0 and Radiation Therapy Oncology Group Late Radiation Morbidity Scoring Criteria.The median follow-up period was 37.3 months (range, 6.3-45.1 months. The 3-year estimated local failure-free survival, regional failure-free survival, locoregional failure-free survival, distant metastasis-free survival, disease-free survival and overall survival were 95.5%, 97.0%, 94.0%, 92.1%, 86.8% and 97.0%, respectively. Cox regression analysis showed primary gross tumor volume, N stage and EBV-DNA to be independent predictors of VMAT outcomes (P < 0.05. The most common acute and late side effects were grade 2-3 mucositis (78% and xerostomia (83%, 61%, 34%, and 9% at 3, 6, 12 and 24 months after VMAT, respectively.VMAT for the primary treatment of NPC achieved very high locoregional control with a favorable toxicity profile. The time-saving benefit of VMAT will enable more patients to receive precision radiotherapy.

  10. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: Plan quality, delivery efficiency and accuracy

    International Nuclear Information System (INIS)

    Purpose: Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are arc-based approaches to IMRT delivery. The objective of this study is to compare VMAT to both HT and fixed field IMRT in terms of plan quality, delivery efficiency, and accuracy. Methods: Eighteen cases including six prostate, six head-and-neck, and six lung cases were selected for this study. IMRT plans were developed using direct machine parameter optimization in the Pinnacle3 treatment planning system. HT plans were developed using a Hi-Art II planning station. VMAT plans were generated using both the Pinnacle3 SmartArc IMRT module and a home-grown arc sequencing algorithm. VMAT and HT plans were delivered using Elekta's PreciseBeam VMAT linac control system (Elekta AB, Stockholm, Sweden) and a TomoTherapy Hi-Art II system (TomoTherapy Inc., Madison, WI), respectively. Treatment plan quality assurance (QA) for VMAT was performed using the IBA MatriXX system while an ion chamber and films were used for HT plan QA. Results: The results demonstrate that both VMAT and HT are capable of providing more uniform target doses and improved normal tissue sparing as compared with fixed field IMRT. In terms of delivery efficiency, VMAT plan deliveries on average took 2.2 min for prostate and lung cases and 4.6 min for head-and-neck cases. These values increased to 4.7 and 7.0 min for HT plans. Conclusions: Both VMAT and HT plans can be delivered accurately based on their own QA standards. Overall, VMAT was able to provide approximately a 40% reduction in treatment time while maintaining comparable plan quality to that of HT.

  11. Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases – the first Australian experience

    International Nuclear Information System (INIS)

    Volumetric modulated arc therapy (VMAT) can deliver intensity modulated radiotherapy (IMRT) like dose distributions in a short time; this allows the expansion of IMRT treatments to palliative situations like brain metastases (BMs). VMAT can deliver whole brain radiotherapy (WBRT) with hippocampal avoidance and a simultaneous integrated boost (SIB) to achieve stereotactic radiotherapy (SRT) for BMs. This study is an audit of our experience in the treatment of brain metastases with VMAT in our institution. Metastases were volumetrically contoured on fused diagnostic gadolinium enhanced T1 weighted MRI/planning CT images. Risk organs included hippocampus, optic nerve, optic chiasm, eye, and brain stem. The hippocampi were contoured manually as one paired organ with assistance from a neuroradiologist. WBRT and SIB were integrated into a single plan. Thirty patients with 73 BMs were treated between March 2010 and February 2012 with VMAT. Mean follow up time was 3.5 months. For 26 patients, BMs arose from primary melanoma and for the remaining four patients from non-small cell lung cancer (n= 2), primary breast cancer, and sarcoma. Mean age was 60 years. The male to female ratio was 2:1. Five patients were treated without hippocampal avoidance (HA) intent. The median WBRT dose was 31 Gy with a median SIB dose for BMs of 50 Gy, given over a median of 15 fractions. Mean values for BMs were as follows: GTV = 6.9 cc, PTV = 13.3 cc, conformity index = 8.6, homogeneity index = 1.06. Mean and maximum hippocampus dose was 20.4 Gy, and 32.4 Gy, respectively, in patients treated with HA intent. Mean VMAT treatment time from beam on to beam off for one fraction was 3.43 minutes, which compared to WBRT time of 1.3 minutes. Twenty out of 25 assessable lesions at the time of analysis were controlled. Treatment was well tolerated; grade 4 toxicity was reported in one patient. The median overall survival was 9.40 months VMAT for BMs is feasible, safe and associated with a similar

  12. Treatment of lung cancer using volumetric modulated arc therapy and image guidance: A case study

    International Nuclear Information System (INIS)

    Background. Volumetric modulated arc therapy (VMAT) is a radiotherapy technique in which the gantry rotates while the beam is on. Gantry speed, multileaf collimator (MLC) leaf position and dose rate vary continuously during the irradiation. For optimum results, this type of treatment should be subject to image guidance. The application of VMAT and image guidance to the treatment of a lung cancer patient is described. Material and methods. In-house software AutoBeam was developed to facilitate treatment planning for VMAT beams. The algorithm consisted of a fluence optimisation using the iterative least-squares technique, a segmentation and then a direct-aperture optimisation. A dose of 50 Gy in 25 fractions was planned, using a single arc with 35 control points at 10 deg intervals. The resulting plan was transferred to a commercial treatment planning system for final calculation. The plan was verified using a 0.6cm3 ionisation chamber and film in a rectangular phantom. The patient was treated supine on a customised lung board and imaged daily with cone-beam CT for the first three days then weekly thereafter. Results. The VMAT plan provided slightly improved coverage of the planning target volume (PTV) and slightly lower volume of lung irradiated to 20 Gy (V20) than a three-field conformal plan (PTV minimum dose 85.0 Gy vs. 81.8 Gy and lung V20 31.5% vs. 34.8%). The difference between the measured and planned dose was -1.1% (measured dose lower) and 97.6% of the film passed a gamma test of 3% and 3mm. The VMAT treatment required 90s for delivery of a single fraction of 2 Gy instead of 180s total treatment time for the conformal plan. Conclusion. VMAT provides a quality dose distribution with a short treatment time as shown in an example of a lung tumour. The technique should allow for more efficient delivery of high dose treatments, such as used for hypofractionated radiotherapy of small volume lung tumours, and the technique may also be used in conjunction with

  13. A Comparison of Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Frontal and Temporal High-Grade Gliomas

    International Nuclear Information System (INIS)

    Purpose: Volumetric modulated arc therapy (VMAT), the predecessor to Varian's RapidArc, is a novel extension of intensity-modulated radiotherapy (IMRT) wherein the dose is delivered in a single gantry rotation while the multileaf collimator leaves are in motion. Leaf positions and the weights of field samples along the arc are directly optimized, and a variable dose rate is used. This planning study compared seven-field coplanar IMRT (cIMRT) with VMAT for high-grade gliomas that had planning target volumes (PTVs) overlapping organs at risk (OARs). Methods and Materials: 10 previously treated patients were replanned to 60 Gy in 30 fractions with cIMRT and VMAT using the following planning objectives: 98% of PTV covered by 95% isodose without violating OAR and hotspot dose constraints. Mean OAR doses were maximally decreased without reducing PTV coverage or violating hotspot constraints. We compared dose-volume histogram data, monitor units, and treatment times. Results: There was equivalent PTV coverage, homogeneity, and conformality. VMAT significantly reduced maximum and mean retinal, lens, and contralateral optic nerve doses compared with IMRT (p < 0.05). Brainstem, chiasm, and ipsilateral optic nerve doses were similar. For 2-Gy fractions, mean monitor units were as follows: cIMRT = 789 ± 112 and VMAT = 363 ± 45 (relative reduction 54%, p = 0.002), and mean treatment times (min) were as follows: cIMRT = 5.1 ± 0.4 and VMAT = 1.8 ± 0.1 (relative reduction 65%, p = 0.002). Conclusions: Compared with cIMRT, VMAT achieved equal or better PTV coverage and OAR sparing while using fewer monitor units and less time to treat high-grade gliomas.

  14. Dose rate mapping of VMAT treatments

    Science.gov (United States)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min‑1 and 12 Gy min‑1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min‑1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  15. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer

    OpenAIRE

    Shyam Pokharel

    2013-01-01

    Purpose: This study investigated the dosimetric impact of mixing low and high energy treatment plans for prostate cancer treated with volumetric modulated arc therapy (VMAT) technique in the form of RapidArc.Methods: A cohort of 12 prostate cases involving proximal seminal vesicles and lymph nodes was selected for this retrospective study. For each prostate case, the single-energy plans (SEPs) and mixed-energy plans (MEPs) were generated.  First, the SEPs were created using 6 mega-voltage (MV...

  16. Volumetric modulated arc therapy for lung stereotactic radiation therapy can achieve high local control rates

    International Nuclear Information System (INIS)

    The aim of this study was to report the outcome of primary or metastatic lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). From October 2010 to December 2013, consecutive 67 lung cancer patients received single-arc VMAT-SBRT using an Elekta-synergy system. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on 10 respiratory phases computed tomography (CT) datasets from 4-dimensional (4D) CT and merged into internal target volumes (ITVs). The planning target volume (PTV) margin was isotropically taken as 5 mm. Treatment was performed with a D95 prescription of 50 Gy (43 cases) or 55 Gy (12 cases) in 4 fractions for peripheral tumor or 56 Gy in 7 fractions (12 cases) for central tumor. Among the 67 patients, the median age was 73 years (range, 59–95 years). Of the patients, male was 72% and female 28%. The median Karnofsky performance status was 90-100% in 39 cases (58%) and 80-90% in 20 cases (30%). The median follow-up was 267 days (range, 40–1162 days). Tissue diagnosis was performed in 41 patients (61%). There were T1 primary lung tumor in 42 patients (T1a in 28 patients, T1b in 14 patients), T2 in 6 patients, three T3 in 3 patients, and metastatic lung tumor in 16 patients. The median mean lung dose was 6.87 Gy (range, 2.5-15 Gy). Six patients (9%) developed radiation pneumonitis required by steroid administration. Actuarial local control rate were 100% and 100% at 1 year, 92% and 75% at 2 years, and 92% and 75% at 3 years in primary and metastatic lung cancer, respectively (p = 0.59). Overall survival rate was 83% and 84% at 1 year, 76% and 53% at 2 years, and 46% and 20% at 3 years in primary and metastatic lung cancer, respectively (p = 0.12). Use of VMAT-based delivery of SBRT in primary in metastatic lung tumors demonstrates high local control rates and low risk of normal tissue complications

  17. Comparison of organ-at-risk sparing and plan robustness for spot-scanning proton therapy and volumetric modulated arc photon therapy in head-and-neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Barten, Danique L. J., E-mail: d.barten@vumc.nl; Tol, Jim P.; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F. A. R. [Department of Radiotherapy, VU University Medical Center, De Boelelaan 1118, Amsterdam 1081 HV (Netherlands)

    2015-11-15

    Purpose: Proton radiotherapy for head-and-neck cancer (HNC) aims to improve organ-at-risk (OAR) sparing over photon radiotherapy. However, it may be less robust for setup and range uncertainties. The authors investigated OAR sparing and plan robustness for spot-scanning proton planning techniques and compared these with volumetric modulated arc therapy (VMAT) photon plans. Methods: Ten HNC patients were replanned using two arc VMAT (RapidArc) and spot-scanning proton techniques. OARs to be spared included the contra- and ipsilateral parotid and submandibular glands and individual swallowing muscles. Proton plans were made using Multifield Optimization (MFO, using three, five, and seven fields) and Single-field Optimization (SFO, using three fields). OAR sparing was evaluated using mean dose to composite salivary glands (Comp{sub Sal}) and composite swallowing muscles (Comp{sub Swal}). Plan robustness was determined for setup and range uncertainties (±3 mm for setup, ±3% HU) evaluating V95% and V107% for clinical target volumes. Results: Averaged over all patients Comp{sub Sal}/Comp{sub Swal} mean doses were lower for the three-field MFO plans (14.6/16.4 Gy) compared to the three-field SFO plans (20.0/23.7 Gy) and VMAT plans (23.0/25.3 Gy). Using more than three fields resulted in differences in OAR sparing of less than 1.5 Gy between plans. SFO plans were significantly more robust than MFO plans. VMAT plans were the most robust. Conclusions: MFO plans had improved OAR sparing but were less robust than SFO and VMAT plans, while SFO plans were more robust than MFO plans but resulted in less OAR sparing. Robustness of the MFO plans did not increase with more fields.

  18. Does VMAT for treatment of NSCLC patients increase the risk of pneumonitis compared to IMRT ? - a planning study

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Hansen, Olfred; Brink, Carsten

    2012-01-01

    Volumetric modulated arc therapy (VMAT) for treatment of non-small cell lung cancer (NSCLC) patients potentially changes the risk of radiation-induced pneumonitis (RP) compared to intensity modulated radiation therapy (IMRT) if the dose to the healthy lung is changed significantly. In this study......, clinical IMRT plans were used as starting point for VMAT optimization and differences in risk estimates of RP between the two plan types were evaluated....

  19. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    Energy Technology Data Exchange (ETDEWEB)

    Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara [Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland (Australia); Burmeister, Elizabeth [Nursing Practice Development Unit, Princess Alexandra Hospital and Research Centre for Clinical and Community Practice Innovation, Griffith University, Brisbane, Queensland (Australia); Foote, Matthew [Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland (Australia); Diamantina Institute, University of Queensland, Brisbane, Queensland (Australia)

    2014-06-15

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneity included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.

  20. Dosimetric Comparison of Volumetric Modulated Arc Therapy, Static Field Intensity Modulated Radiation Therapy, and 3D Conformal Planning for the Treatment of a Right-Sided Reconstructed Chest Wall and Regional Nodal Case

    Directory of Open Access Journals (Sweden)

    Vishruta A. Dumane

    2014-01-01

    Full Text Available We compared 3D conformal planning, static field intensity modulated radiation therapy (IMRT, and volumetric modulated arc therapy (VMAT to investigate the suitable treatment plan and delivery method for a right-sided reconstructed chest wall and nodal case. The dose prescribed for the reconstructed chest wall and regional nodes was 50.4 Gy. Plans were compared for target coverage and doses of the lungs, heart, contralateral breast, and healthy tissue. All plans achieved acceptable coverage of the target and IMNs. The best right lung sparing achieved with 3D was a V20 Gy of 31.09%. Compared to it, VMAT reduced the same by 10.85% and improved the CI and HI over 3D by 18.75% and 2%, respectively. The ipsilateral lung V5 Gy to V20 Gy decreased with VMAT over IMRT by as high as 17.1%. The contralateral lung V5 Gy was also lowered with VMAT compared to IMRT by 16.22%. The MU and treatment beams were lowered with VMAT over IMRT by 30% and 10, respectively, decreasing the treatment time by >50%. VMAT was the treatment plan and delivery method of choice for this case due to a combination of improved lung sparing and reduced treatment time without compromising target coverage.

  1. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    International Nuclear Information System (INIS)

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneity included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI

  2. Establishing an optimized patient-specific verification program for volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Quality assurance (QA) of volumetric modulated arc therapy (VMAT) increases the workload significantly. We compared the results from 4 verification methods to establish an efficient VMAT QA. Planning for VMAT treatments was carried out for 40 consecutive patients. Pretreatment verifications were carried out with ion chamber array Physikalish-Technische Werkstätten (PTW729), electronic portal dosimetry (EPID), ion chamber measurements, and independent dose calculation with Diamond program. 2D analyses were made using the gamma analysis (3 mm distance to agreement and 3% dose difference relative to maximum, 10% dose threshold). Average point dose difference calculated by Eclipse relative to ion chamber measurements and Diamond were 0.1%±0.9% and 0.6%±2.2%, respectively. Average pass rate for PTW729 was 99.2%±1.9% and 98.3%±1.3% for EPID. The total required time (linac occupancy time given in parentheses) for each QA method was: PTW729 43.5 minutes (26.5 minutes), EPID 14.5 minutes (2.5 minutes), ion chamber 34.5 minutes (26.5 minutes), and Diamond 12.0 minutes (0 minute). The results were consistent and allowed us to establish an optimized protocol, considering safety and accuracy as well as workload, consisting of 2 verification methods: EPID 2D analysis and independent dose calculation

  3. Comparing four volumetric modulated arc therapy beam arrangements for the treatment of early-stage prostate cancer

    International Nuclear Information System (INIS)

    This study compared four different volumetric modulated arc therapy (VMAT) beam arrangements for the treatment of early-stage prostate cancer examining plan quality and the impact on a radiotherapy department's resources. Twenty prostate cases were retrospectively planned using four VMAT beam arrangements (1) a partial arc (PA), (2) one arc (1A), (3) one arc plus a partial arc (1A + PA) and (4) two arcs (2A). The quality of the dose distributions generated were compared by examining the overall plan quality, the homogeneity and conformity to the planning target volume (PTV), the number of monitor units and the dose delivered to the organs at risk. Departmental resources were considered by recording the planning time and beam delivery time. Each technique produced a plan of similar quality that was considered adequate for treatment; though some differences were noted. The 1A, 1A + PA and 2A plans demonstrated a better conformity to the PTV which correlated to improved sparing of the rectum in the 60–70 Gy range for the 1A + PA and 2A techniques. The time needed to generate the plans was different for each technique ranging from 13.1 min for 1A + PA to 17.8 min for 1A. The PA beam delivery time was fastest with a mean time of 0.9 min. Beam-on times then increased with an increase in the number of arcs up to an average of 2.2 min for the 2A technique. Which VMAT technique is best suited for clinical implementation for the treatment of prostate cancer may be dictated by the individual patient and the availability of departmental resources

  4. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Craig [Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213 (United States); Yang, Yong, E-mail: yangy2@upmc.edu; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States)

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc

  5. SU-E-T-138: Dosimetric Verification For Volumetric Modulated Arc Therapy Cranio-Spinal Irradiation Technique

    International Nuclear Information System (INIS)

    Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for each US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely

  6. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT

  7. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M; Rehman, J; Khan, M [The Islaimia University of Bahawalpur, Bahawalpur, Punjab (Pakistan); Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2014-06-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT.

  8. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior–posterior direction, with systematic (∑) and random (σ) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%±19.8% of treatment time. Real-time tracking reduced prostate motion to ∑=0.01 mm and σ = 0.55 mm in the anterior–posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%±4.6% and 99.7%±0.4% of the time, respectively. Without real-time tracking, pass rates based on a γ index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  9. Influence of increment of gantry angle and number of arcs on esophageal volumetric modulated arc therapy planning in Monaco planning system: A planning study

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The objective of this study was to analyze the influence of the increment of gantry angle and the number of arcs on esophageal volumetric modulated arc therapy plan. All plans were done in Monaco planning system for Elekta Synergy linear accelerator with 80 multileaf collimator (MLC. Volumetric modulated arc therapy (VMAT plans were done with different increment of gantry angle like 15 o , 20 o , 30 o and 40 o . The remaining parameters were similar for all the plans. The results were compared. To compare the plan quality with number of arcs, VMAT plans were done with single and dual arc with increment of gantry angle of 20 o . The dose to gross tumor volume (GTV for 60 Gy and planning target volume (PTV for 48 Gy was compared. The dosimetric parameters D 98% , D 95% , D 50% and D max of GTV were analyzed. The homogeneity index (HI and conformity index (CI of GTV were studied and the dose to 98% and 95% of PTV was analyzed. Maximum dose to spinal cord and planning risk volume of cord (PRV cord was compared. The Volume of lung receiving 10 Gy, 20 Gy and mean dose was analyzed. The volume of heart receiving 30 Gy and 45 Gy was compared. The volume of normal tissue receiving greater than 2 Gy and 5 Gy was compared. The number of monitor units (MU required to deliver the plans were compared. The plan with larger increment of gantry angle proved to be superior to smaller increment of gantry angle plans in terms of dose coverage, HI, CI and normal tissue sparing. The number of arcs did not make any difference in the quality of the plan.

  10. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    International Nuclear Information System (INIS)

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS

  11. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Weight loss or gain during the course of radiation therapy for prostate cancer can alter the planned dose to the target volumes and critical organs. Typically, source-to-surface distance (SSD) measurements are documented by therapists on a weekly basis to ensure that patients' exterior surface and isocenter-to-skin surface distances remain stable. The radiation oncology team then determines whether the patient has undergone a physical change sufficient to require a new treatment plan. The effect of weight change (SSD increase or decrease) on intensity-modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) dosimetry is not well known, and it is unclear when rescanning or replanning is needed. The purpose of this study was to determine the effects of weight change (SSD increase or decrease) on IMRT or VMAT dose delivery in patients with prostate cancer and to determine the SSD change threshold for replanning. Whether IMRT or VMAT provides better dose stability under weight change conditions was also determined. We generated clinical IMRT and VMAT prostate and seminal vesicle treatment plans for varying SSDs for 10 randomly selected patients with prostate cancer. The differences due to SSD change were quantified by a specific dose change for a specified volume of interest. The target mean dose, decreased or increased by 2.9% per 1-cm SSD decrease or increase in IMRT and by 3.6% in VMAT. If the SSD deviation is more than 1 cm, the radiation oncology team should determine whether to continue treatment without modifications, to adjust monitor units, or to resimulate and replan

  12. Volumetric-modulated arc therapy for left-sided breast cancer and all regional nodes improves target volumes coverage and reduces treatment time and doses to the heart and left coronary artery, compared with a field-in-field technique

    International Nuclear Information System (INIS)

    We compared two intensity-modulated radiotherapy techniques for left-sided breast treatment, involving lymph node irradiation including the internal mammary chain. Inverse planned arc-therapy (VMAT) was compared with a forward-planned multi-segment technique with a mono-isocenter (MONOISO). Ten files were planned per technique, delivering a 50-Gy dose to the breast and 46.95 Gy to nodes, within 25 fractions. Comparative endpoints were planning target volume (PTV) coverage, dose to surrounding structures, and treatment delivery time. PTV coverage, homogeneity and conformality were better for two arc VMAT plans; V95%PTV-T was 96% for VMAT vs 89.2% for MONOISO. Homogeneity index (HI)PTV-T was 0.1 and HIPTV-N was 0.1 for VMAT vs 0.6 and 0.5 for MONOISO. Treatment delivery time was reduced by a factor of two using VMAT relative to MONOISO (84 s vs 180 s). High doses to organs at risk were reduced (V30left lung = 14% using VMAT vs 24.4% with MONOISO; dose to 2% of the volume (D2%)heart = 26.1 Gy vs 32 Gy), especially to the left coronary artery (LCA) (D2%LCA = 34.4 Gy vs 40.3 Gy). However, VMAT delivered low doses to a larger volume, including contralateral organs (mean dose [Dmean]right lung = 4 Gy and Dmeanright breast = 3.2 Gy). These were better protected using MONOISO plans (Dmeanright lung = 0.8 Gy and Dmeanright breast = 0.4 Gy). VMAT improved PTV coverage and dose homogeneity, but clinical benefits remain unclear. Decreased dose exposure to the LCA may be clinically relevant. VMAT could be used for complex treatments that are difficult with conventional techniques. Patient age should be considered because of uncertainties concerning secondary malignancies. (author)

  13. SU-E-T-31: Alternative VMAT Technique Reduces Total Monitor Units for Lung SBRT

    International Nuclear Information System (INIS)

    Purpose: To investigate an alternative approach to VMAT optimization for hypofractionation lung treatment which increases average aperture opening and results in lower total Monitor Units (MU) without significantly sacrificing plan quality. Methods: Benchmark Volumetric Modulated Arc Therapy (bVMAT) plans were generated for 10 lung Stereotactic Body radiotherapy (SBRT) cases using Eclipse Version 11.0.42 (Varian Medical Systems) without a maximum MU constraint. Prescriptions ranged from 40 to 54Gy in 3 to 5 fractions. AAA dose calculation and PRO fluence based optimization was utilized. Two comparison VMAT plans were generated for each case, one that forced an initial “open” mlc aperture conformal to the tumor as a starting condition (oVMAT) with similar optimization parameters and arc geometries, and one that repeated the bVMAT optimization but added a maximum MU constraint (muVMAT). All plans used two arcs with lengths between 168 to 230 degrees. PTV D 95% and Dmean, lung V20 Gy, chest wall V30 Gy, average aperture opening and MU's were compared. Statistical significance was evaluated using Wilcoxon signed rank test. Results: Average PTV D(95), PTV mean and lung V20Gy over all plans was 99.2 ± 1.7%, 103.3 ± 0.6% and 7.8 ± 2.4% respectively. The average chest wall V30Gy was 61 ± 61 cc and ranged between 0 to 166 cc. There were no significant differences between the three techniques for the dosimetric quantities. MUs were reduced by 11 ±11% (p<0.01) and 25 ± 5% (p<0.01) and the average aperture size was increased by 13.7 ± 14% (p=0.02) and 35.8 ± 10% (p<0.01) with muVMAT and oVMAT, respectively, compared to bVMAT. Conclusion: oVMAT and muVMAT techniques were both able to increase average aperture size and reduce total MU compared to the benchmark VMAT plan, but the magnitude of the changes observed for oVMAT was larger

  14. Use of volumetric-modulated arc therapy for treatment of Hodgkin lymphoma

    International Nuclear Information System (INIS)

    To evaluate volumetric-modulated arc therapy (VMAT) for treatment of Hodgkin lymphoma (HL) in patients where conventional radiotherapy was not deliverable. A planning computed tomography (CT) scan was acquired for a twelve-year-old boy with Stage IIIB nodular sclerosing HL postchemotherapy with positive positron emission tomography scan. VMAT was used for Phase 1 (19.8 Gy in 11 fractions) and Phase 2 (10.8 Gy in 6 fractions) treatment plans. Single anticlockwise arc plans were constructed using SmartArc (Philips Radiation Oncology Systems, Fitchburg, WI) with control points spaced at 4°. The inverse-planning objectives were to uniformly irradiate the planning target volume (PTV) with the prescription dose while keeping the volume of lung receiving greater than 20 Gy (V20Gy) to less than 30% and minimize the dose to the other adjacent organs at risk (OAR). Pretreatment verification was conducted and the treatment delivery was on an MLCi Synergy linear accelerator (Elekta Ltd, Crawley, UK). The planning results were retrospectively confirmed in a further 4 patients using a single PTV with a prescribed dose of 19.8 Gy in 11 fractions. Acceptable dose coverage and homogeneity were achieved for both Phase 1 and 2 plans while keeping the lung V20Gy at 22.5% for the composite plan. The beam-on times for Phase 1 and Phase 2 plans were 109 and 200 seconds, respectively, and the total monitor units were 337.2 MU and 292.5 MU, respectively. The percentage of measured dose points within 3% and 3 mm for Phase 1 and Phase 2 were 92% and 98%, respectively. Both plans were delivered successfully. The retrospective planning study showed that VMAT improved PTV dose uniformity and reduced the irradiated volume of heart and lung, although the volume of lung irradiated to low doses increased. Two-phased VMAT offers an attractive option for large volume sites, such as HL, giving a high level of target coverage and significant OAR sparing together with efficient delivery

  15. Use of volumetric-modulated arc therapy for treatment of Hodgkin lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk [Joint Department of Physics, Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom); Bedford, James L. [Joint Department of Physics, Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom); Taj, Mary [Paediatric Oncology, Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom); Saran, Frank H. [Radiotherapy Department, Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom)

    2013-01-01

    To evaluate volumetric-modulated arc therapy (VMAT) for treatment of Hodgkin lymphoma (HL) in patients where conventional radiotherapy was not deliverable. A planning computed tomography (CT) scan was acquired for a twelve-year-old boy with Stage IIIB nodular sclerosing HL postchemotherapy with positive positron emission tomography scan. VMAT was used for Phase 1 (19.8 Gy in 11 fractions) and Phase 2 (10.8 Gy in 6 fractions) treatment plans. Single anticlockwise arc plans were constructed using SmartArc (Philips Radiation Oncology Systems, Fitchburg, WI) with control points spaced at 4°. The inverse-planning objectives were to uniformly irradiate the planning target volume (PTV) with the prescription dose while keeping the volume of lung receiving greater than 20 Gy (V{sub 20} {sub Gy}) to less than 30% and minimize the dose to the other adjacent organs at risk (OAR). Pretreatment verification was conducted and the treatment delivery was on an MLCi Synergy linear accelerator (Elekta Ltd, Crawley, UK). The planning results were retrospectively confirmed in a further 4 patients using a single PTV with a prescribed dose of 19.8 Gy in 11 fractions. Acceptable dose coverage and homogeneity were achieved for both Phase 1 and 2 plans while keeping the lung V{sub 20} {sub Gy} at 22.5% for the composite plan. The beam-on times for Phase 1 and Phase 2 plans were 109 and 200 seconds, respectively, and the total monitor units were 337.2 MU and 292.5 MU, respectively. The percentage of measured dose points within 3% and 3 mm for Phase 1 and Phase 2 were 92% and 98%, respectively. Both plans were delivered successfully. The retrospective planning study showed that VMAT improved PTV dose uniformity and reduced the irradiated volume of heart and lung, although the volume of lung irradiated to low doses increased. Two-phased VMAT offers an attractive option for large volume sites, such as HL, giving a high level of target coverage and significant OAR sparing together with

  16. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    International Nuclear Information System (INIS)

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm3 ± 1.0 cm3 and 28.52 cm3 ± 3.22 cm3, respectively. For the PTV, the average values of D2% and D98% were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D100% mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met

  17. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Bender, Edward [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Tomé, Wolfgang A., E-mail: wtome@montefiore.org [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States)

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  18. Clinical practice and evaluation of electronic portal imaging device for VMAT quality assurance

    International Nuclear Information System (INIS)

    Volumetric-modulated arc therapy (VMAT) is a novel extension of the intensity-modulated radiation therapy (IMRT) technique, which has brought challenges to dose verification. To perform VMAT pretreatment quality assurance, an electronic portal imaging device (EPID) can be applied. This study's aim was to evaluate EPID performance for VMAT dose verification. First, dosimetric characteristics of EPID were investigated. Then 10 selected VMAT dose plans were measured by EPID with the rotational method. The overall variation of EPID dosimetric characteristics was within 1.4% for VMAT. The film system serving as a conventional tool for verification showed good agreement both with EPID measurements ([94.1 ± 1.5]% with 3 mm/3% criteria) and treatment planning system (TPS) calculations ([97.4 ± 2.8]% with 3 mm/3% criteria). In addition, EPID measurements for VMAT presented good agreement with TPS calculations ([99.1 ± 0.6]% with 3 mm/3% criteria). The EPID system performed the robustness of potential error findings in TPS calculations and the delivery system. This study demonstrated that an EPID system can be used as a reliable and efficient quality assurance tool for VMAT dose verification

  19. Assessing dose rate distributions in VMAT plans

    Science.gov (United States)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  20. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (rs) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MISPORT) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The rs values of

  1. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, So-Yeon [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Il Han [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon [Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744, (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744 (Korea, Republic of); Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 433-270 (Korea, Republic of); Carlson, Joel [Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Suwon 433-270 (Korea, Republic of); and others

    2014-11-01

    Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r

  2. Impact of pitch angle setup error and setup error correction on dose distribution in volumetric modulated arc therapy for prostate cancer.

    Science.gov (United States)

    Takemura, Akihiro; Togawa, Kumiko; Yokoi, Tomohiro; Ueda, Shinichi; Noto, Kimiya; Kojima, Hironori; Isomura, Naoki; Kumano, Tomoyasu

    2016-07-01

    In volumetric modulated arc therapy (VMAT) for prostate cancer, a positional and rotational error correction is performed according to the position and angle of the prostate. The correction often involves body leaning, and there is concern regarding variation in the dose distribution. Our purpose in this study was to evaluate the impact of body pitch rotation on the dose distribution regarding VMAT. Treatment plans were obtained retrospectively from eight patients with prostate cancer. The body in the computed tomography images for the original VMAT plan was shifted to create VMAT plans with virtual pitch angle errors of ±1.5° and ±3°. Dose distributions for the tilted plans were recalculated with use of the same beam arrangement as that used for the original VMAT plan. The mean value of the maximum dose differences in the dose distributions between the original VMAT plan and the tilted plans was 2.98 ± 0.96 %. The value of the homogeneity index for the planning target volume (PTV) had an increasing trend according to the pitch angle error, and the values of the D 95 for the PTV and D 2ml, V 50, V 60, and V 70 for the rectum had decreasing trends (p pitch angle error caused by body leaning had little effect on the dose distribution; in contrast, the pitch angle correction reduced the effects of organ displacement and improved these indexes. Thus, the pitch angle setup error in VMAT for prostate cancer should be corrected. PMID:26873139

  3. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    Science.gov (United States)

    Lin, Mu-Han; Li, Jinsheng; Price, Robert A., Jr.; Wang, Lu; Lee, Chung-Chi; Ma, C.-M.

    2013-02-01

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm3 insert. The per cent depth dose distributions of a 3 × 3 cm2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose-volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose calculation

  4. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm3 insert. The per cent depth dose distributions of a 3 × 3 cm2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose–volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose

  5. Optimized Volumetric Modulated Arc Therapy Versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma Without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy); Ragona, Riccardo; Piva, Cristina; Scafa, Davide; Fiandra, Christian [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy); Fusella, Marco; Giglioli, Francesca Romana [Medical Physics, AOU Città della Salute e della Scienza Hospital, Torino (Italy); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Ricardi, Umberto [Department of Oncology, Radiation Oncology, University of Torino, Torino (Italy)

    2015-05-01

    Purpose: The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LAR{sub VMAT}-to-LAR{sub 3D-CRT}) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). Results: The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. Conclusions: In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by

  6. Fast approximate delivery of fluence maps: the VMAT case

    OpenAIRE

    Balvert, Marleen; Craft, David

    2016-01-01

    In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for volumetric modulated arc therapy (VMAT). At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. This model was presented for the single map case in a companion paper (Fast approximate delivery of fluence maps: the ...

  7. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Dante E., E-mail: droa@uci.edu [Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine-Medical Center, Orange, CA (United States); Schiffner, Daniel C.; Zhang Juying; Dietrich, Salam N.; Kuo, Jeffrey V.; Wong, Jason; Ramsinghani, Nilam S.; Al-Ghazi, Muthana S.A.L. [Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine-Medical Center, Orange, CA (United States)

    2012-10-01

    Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CI{sub RTOG}), homogeneity index (HI{sub RTOG}), inverse Paddick Conformity Index (PCI), D{sub mean} and D5-D95. OAR sparing was analyzed in terms of D{sub max} and D{sub mean}. Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times {+-} SD for IMRT and 1-arc and 2-arc treatments were 10.5 {+-} 7.3, 2.6 {+-} 1.6, and 3.0 {+-} 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery

  8. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets

    International Nuclear Information System (INIS)

    Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CIRTOG), homogeneity index (HIRTOG), inverse Paddick Conformity Index (PCI), Dmean and D5–D95. OAR sparing was analyzed in terms of Dmax and Dmean. Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times ± SD for IMRT and 1-arc and 2-arc treatments were 10.5 ± 7.3, 2.6 ± 1.6, and 3.0 ± 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery of SRS and SBRT to intracranial and

  9. Volumetric intensity modulated arc therapy for stereotactic body radiosurgery in oligometastatic breast and gynecological cancers: feasibility and clinical results.

    Science.gov (United States)

    Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Torre, Gabriella; Corrado, Giacomo; Legge, Francesco; Gambacorta, Maria Antonietta; Tagliaferri, Luca; Mignogna, Samantha; Scambia, Giovanni; Valentini, Vincenzo; Morganti, Alessio G; Ferrandina, Gabriella

    2014-11-01

    In the present study, the preliminary results of the first stereotactic body radiosurgery (SRS) experience with volumetric intensity modulated arc therapy (VMAT) in oligometastatic breast and recurrent gynecological tumors (OBRGT) are reported in terms of feasibility, toxicity and efficacy. Patients were treated in a head-first supine treatment position on a customized body frame immobilization shell. SRS-VMAT treatment plans were optimized using the ERGO++ treatment planning system. Response assessment was performed 8-12 weeks after treatment by morphologic imaging modalities, or if feasible, also by functional imaging. Thirty-six lesions in 24 consecutive patients (median age, 63 years; range, 40-81) were treated: 13.9% had primary or metastatic lung lesions, 30.5% had liver metastases, 36.1% had bone lesions, 16.7% had lymph node metastases and 2.8% had a primary vulvar melanoma. The median dose was 18 Gy (BED2 Gy, α/β: 10=50.4 Gy), the minimal dose was 12 Gy (BED2 Gy, α/β: 10=26.4 Gy) and the maximal dose was 28 Gy (BED2 Gy, α/β: 10=106.4 Gy). Seven patients (29.2%) experienced acute toxicity, which however was grade 2 in only 1 case. Moreover, only 3 patients (12.5%) developed late toxicity of which only 1 was grade 2. Objective response rate was 77.7% including 16 lesions achieving complete response (44.4%) and 12 lesions achieving partial response (33.3%). The median duration of follow-up was 15.5 months (range, 6-50). Recurrence/progression within the SRS-VMAT treated field was observed in 6 patients (total lesions=7) with a 2-year inside SRS-VMAT field disease control expressed on a per lesion basis of 69%. Recurrence/progression of disease outside the SRS-VMAT field was documented in 15 patients; the 2-year outside SRS-VMAT field metastasis‑free survival, expressed on a per patient basis, was 35%. Death due to disease was documented in 6 patients and the 2-year overall survival was 58%. Although the maximum tolerated dose was

  10. Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    To report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites. All treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan. Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data. In validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle. There was no remarkable difference between the SC and XVMC calculations in the high-dose regions. The difference observed in the low-dose regions may

  11. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling*

    Science.gov (United States)

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B.; LoSasso, Thomas; Mageras, Gig

    2016-01-01

    Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds’ degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%–8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measurement also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single element point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  12. Dose calculation for hypofractionated volumetric-modulated arc therapy: approximating continuous arc delivery and tongue-and-groove modeling.

    Science.gov (United States)

    Yang, Jie; Tang, Grace; Zhang, Pengpeng; Hunt, Margie; Lim, Seng B; LoSasso, Thomas; Mageras, Gig

    2016-01-01

     Hypofractionated treatments generally increase the complexity of a treatment plan due to the more stringent constraints of normal tissues and target coverage. As a result, treatment plans contain more modulated MLC motions that may require extra efforts for accurate dose calculation. This study explores methods to minimize the differences between in-house dose calculation and actual delivery of hypofractionated volumetric-modulated arc therapy (VMAT), by focusing on arc approximation and tongue-and-groove (TG) modeling. For dose calculation, the continuous delivery arc is typically approximated by a series of static beams with an angular spacing of 2°. This causes significant error when there is large MLC movement from one beam to the next. While increasing the number of beams will minimize the dose error, calculation time will increase significantly. We propose a solution by inserting two additional apertures at each of the beam angle for dose calculation. These additional apertures were interpolated at two-thirds' degree before and after each beam. Effectively, there were a total of three MLC apertures at each beam angle, and the weighted average fluence from the three apertures was used for calculation. Because the number of beams was kept the same, calculation time was only increased by about 6%-8%. For a lung plan, areas of high local dose differences (> 4%) between film measurement and calculation with one aperture were significantly reduced in calculation with three apertures. Ion chamber measure-ment also showed similar results, where improvements were seen with calculations using additional apertures. Dose calculation accuracy was further improved for TG modeling by developing a sampling method for beam fluence matrix. Single ele-ment point sampling for fluence transmitted through MLC was used for our fluence matrix with 1 mm resolution. For Varian HDMLC, grid alignment can cause fluence sampling error. To correct this, transmission volume averaging was

  13. SU-E-T-606: A Novel Integrated VMAT/IMRT Technique For the Treatment of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, N; Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate a novel Integrated VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for non-small cell lung cancer (NSCLC). Methods: 2 partial arcs VMAT, 5-field IMRT and Integrated VMAT/IMRT plans were created for 17 patients with NSCLC. The Integrated VMAT/IMRT technique consisted of 2 partial VMAT arcs and 5 IMRT fields. The dose distribution of planning target volume (PTV) and organs at risk (OARs) for Integrated VMAT/IMRT was compared with IMRT and VMAT. The monitor units (MUs) and treatment delivery time were also evaluated. For each plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Integrated VMAT/IMRT significantly improved the target conformity and homogeneity. The V30 of normal lung for Integrated plans was significantly lower than IMRT plans (8.4% vs 9.2%; p<0.05). The V5 and mean lung dose (MLD) of normal lung for Integrated plans were 9.8% and 4.6% lower than VMAT plans (p<0.05). The maximum dose of spinal cord for Integrated plans was 4.9 Gy lower than IMRT plans (p<0.05). The mean delivery time of IMRT, VMAT and Integrated plans was 280 s, 114 s, and 327 s, respectively. The mean MUs needed for IMRT, VMAT and Integrated plans were 933, 512, and 737, respectively. The gamma pass rates were beyond 90% at the 3%/3 mm criteria when the gantry angles were set to 0° for pretreatment verification. Conclusion: Integrated VMAT/IMRT technique significantly reduced V5, V10 and MLD of normal lung compared with VMAT, and the irradiated volume of the OARs receiving medium to high dose with fewer MUs compared with IMRT. Integrated VMAT/IMRT technique can be a feasible radiotherapy technique with better plan quality and accurately delivered on the linear accelerator. Ruijie Yang was funded by the grant project: National Natural Science Foundation of China (No. 81071237). Other authors have no competing interest for this work.

  14. SU-E-T-606: A Novel Integrated VMAT/IMRT Technique For the Treatment of Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate a novel Integrated VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for non-small cell lung cancer (NSCLC). Methods: 2 partial arcs VMAT, 5-field IMRT and Integrated VMAT/IMRT plans were created for 17 patients with NSCLC. The Integrated VMAT/IMRT technique consisted of 2 partial VMAT arcs and 5 IMRT fields. The dose distribution of planning target volume (PTV) and organs at risk (OARs) for Integrated VMAT/IMRT was compared with IMRT and VMAT. The monitor units (MUs) and treatment delivery time were also evaluated. For each plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Integrated VMAT/IMRT significantly improved the target conformity and homogeneity. The V30 of normal lung for Integrated plans was significantly lower than IMRT plans (8.4% vs 9.2%; p<0.05). The V5 and mean lung dose (MLD) of normal lung for Integrated plans were 9.8% and 4.6% lower than VMAT plans (p<0.05). The maximum dose of spinal cord for Integrated plans was 4.9 Gy lower than IMRT plans (p<0.05). The mean delivery time of IMRT, VMAT and Integrated plans was 280 s, 114 s, and 327 s, respectively. The mean MUs needed for IMRT, VMAT and Integrated plans were 933, 512, and 737, respectively. The gamma pass rates were beyond 90% at the 3%/3 mm criteria when the gantry angles were set to 0° for pretreatment verification. Conclusion: Integrated VMAT/IMRT technique significantly reduced V5, V10 and MLD of normal lung compared with VMAT, and the irradiated volume of the OARs receiving medium to high dose with fewer MUs compared with IMRT. Integrated VMAT/IMRT technique can be a feasible radiotherapy technique with better plan quality and accurately delivered on the linear accelerator. Ruijie Yang was funded by the grant project: National Natural Science Foundation of China (No. 81071237). Other authors have no competing interest for this work

  15. Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    This case study presents a rare case of left-sided breast cancer in a patient with funnel chest, which is a technical challenge for radiation therapy planning. To identify the best treatment technique for this case, 3 techniques were compared: conventional tangential fields (3D conformal radiotherapy [3D-CRT]), intensity-modulated radiotherapy (IMRT), and volumetric-modulated arc therapy (VMAT). The plans were created for a SynergyS® (Elekta, Ltd, Crawley, UK) linear accelerator with a BeamModulator™ head and 6-MV photons. The planning system was Oncentra Masterplan® v3.3 SP1 (Nucletron BV, Veenendal, Netherlands). Calculations were performed with collapsed cone algorithm. Dose prescription was 50.4 Gy to the average of the planning target volume (PTV). PTV coverage and homogeneity was comparable for all techniques. VMAT allowed reducing dose to the ipsilateral organs at risk (OAR) and the contralateral breast compared with IMRT and 3D-CRT: The volume of the left lung receiving 20 Gy was 19.3% for VMAT, 26.1% for IMRT, and 32.4% for 3D-CRT. In the heart, a D15% of 9.7 Gy could be achieved with VMAT compared with 14 Gy for IMRT and 46 Gy for 3D-CRT. In the contralateral breast, D15% was 6.4 Gy for VMAT, 8.8 Gy for IMRT, and 10.2 Gy for 3D-CRT. In the contralateral lung, however, the lowest dose was achieved with 3D-CRT with D10% of 1.7 Gy for 3D-CRT, and 6.7 Gy for both IMRT and VMAT. The lowest number of monitor units (MU) per 1.8-Gy fraction was required by 3D-CRT (192 MU) followed by VMAT (518 MU) and IMRT (727 MU). Treatment time was similar for 3D-CRT (3 min) and VMAT (4 min) but substantially increased for IMRT (13 min). VMAT is considered the best treatment option for the presented case of a patient with funnel chest. It allows reducing dose in most OAR without compromising target coverage, keeping delivery time well below 5 minutes

  16. Randomized Algorithms For High Quality Treatment Planning in Volumetric Modulated Arc Therapy

    CERN Document Server

    Yang, Yu; Wen, Zaiwen

    2015-01-01

    In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the propo...

  17. Which IMRT? From -step and shoot- to VMAT: Physicist point of view

    International Nuclear Information System (INIS)

    Intensity-modulated radiation therapy (IMRT) is essential to have a dose distribution matching with the planning target volume (PTV) in case of concave-shape target. Today IMRT delivery techniques with linear accelerator can be divided into two classes: techniques with fixed gantry, called 'step and shoot' (S and S) and 'sliding window' (SW), and rotational techniques, called intensity modulated arc therapy (IMAT) and volumetric modulated arc therapy (VMAT). We discuss about constraints for IMRT implementation from dosimetric planning to treatment delivery. We compare S and S and VMAT performances concerning dose distribution quality, efficiency and delivery time. We describe quality controls that must be implemented and the methods for analysis and follow-up performances. VMAT tends to yield similar dose distribution to MRT with fixed gantry. VMAT also decreases monitor units as well as treatment delivery time to less than 5 minutes. However, VMAT is an IMRT technique more difficult to master than S and S technique because there are more variable parameters. (authors)

  18. Total body irradiation with volumetric modulated arc therapy: Dosimetric data and first clinical experience

    International Nuclear Information System (INIS)

    To implement total body irradiation (TBI) using volumetric modulated arc therapy (VMAT). We applied the Varian RapidArc™ software to calculate and optimize the dose distribution. Emphasis was placed on applying a homogenous dose to the PTV and on reducing the dose to the lungs. From July 2013 to July 2014 seven patients with leukaemia were planned and treated with a VMAT-based TBI-technique with photon energy of 6 MV. The overall planning target volume (PTV), comprising the whole body, had to be split into 8 segments with a subsequent multi-isocentric planning. In a first step a dose optimization of each single segment was performed. In a second step all these elements were calculated in one overall dose-plan, considering particular constraints and weighting factors, to achieve the final total body dose distribution. The quality assurance comprised the verification of the irradiation plans via ArcCheck™ (Sun Nuclear), followed by in vivo dosimetry via dosimeters (MOSFETs) on the patient. The time requirements for treatment planning were high: contouring took 5–6 h, optimization and dose calculation 25–30 h and quality assurance 6–8 h. The couch-time per fraction was 2 h on day one, decreasing to around 1.5 h for the following fractions, including patient information, time for arc positioning, patient positioning verification, mounting of the MOSFETs and irradiation. The mean lung dose was decreased to at least 80 % of the planned total body dose and in the central parts to 50 %. In two cases we additionally pursued a dose reduction of 30 to 50 % in a pre-irradiated brain and in renal insufficiency. All high dose areas were outside the lungs and other OARs. The planned dose was in line with the measured dose via MOSFETs: in the axilla the mean difference between calculated and measured dose was 3.6 % (range 1.1–6.8 %), and for the wrist/hip-inguinal region it was 4.3 % (range 1.1–8.1 %). TBI with VMAT provides the benefit of satisfactory dose

  19. Reducing the dosimetric impact of positional errors in field junctions for craniospinal irradiation using VMAT

    CERN Document Server

    Strojnik, Andrej; Peterlin, Primoz

    2016-01-01

    Aim: To improve treatment plan robustness with respect to small shifts in patient position during the VMAT treatment by ensuring a linear ramp-like dose profile in treatment field overlap regions. Background: Craniospinal irradiation (CSI) is considered technically challenging because the target size exceeds the maximal field size, which necessitates using abutted or overlapping treatment fields. Volumetric modulated arc therapy (VMAT) is increasingly being examined for CSI, as it offers both better dose homogeneity and better dose conformance while also offering a possibility to create field junctions which are more robust towards small shifts in patient position during the treatment. Materials and Methods: A VMAT treatment plan with three isocenters was made for a test case patient. Three groups of overlapping arc field pairs were used; one for the cranial and two for the spinal part. In order to assure a ramp-like dose profile in the field overlap region, the upper spinal part was optimised first, with dos...

  20. Volumetric intensity-modulated arc therapy vs. 3-dimensional conformal radiotherapy for primary chemoradiotherapy of anal carcinoma. Effects on treatment-related side effects and survival

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Hanne Elisabeth; Droege, Leif Hendrik; Hennies, Steffen; Herrmann, Markus Karl; Wolff, Hendrik Andreas [University Medical Center Goettingen, Dept. of Radiotherapy and Radiooncology, Goettingen (Germany); Gaedcke, Jochen [University Medical Center Goettingen, Dept. of General Surgery, Goettingen (Germany)

    2015-11-15

    Primary chemoradiotherapy (CRT) is the standard treatment for locally advanced anal carcinoma. This study compared volumetric intensity-modulated arc therapy (VMAT) to 3-dimensional conformal radiotherapy (3DCRT) in terms of treatment-related side effects and survival. From 1992-2014, 103 consecutive patients with anal carcinoma UICC stage I-III were treated. Concomitant CRT consisted of whole pelvic irradiation, including the iliac and inguinal lymph nodes, with 50.4 Gy (1.8 Gy per fractions) by VMAT (n = 17) or 3DCRT (n = 86) as well as two cycles of 5-fluorouracil and mitomycin C. Acute organ and hematological toxicity were assessed according to the Common Terminology Criteria (CTC) for Adverse Events version 3.0. Side effects ≥ grade 3 were scored as high-grade toxicity. High-grade acute organ toxicity CTC ≥ 3 (P < 0.05), especially proctitis (P = 0.03), was significantly reduced in VMAT patients. The 2-year locoregional control (LRC) and disease-free survival (DFS) were both 100 % for VMAT patients compared with 80 and 73 % for 3DCRT patients. VMAT was shown to be a feasible technique, achieving significantly lower rates of acute organ toxicity and promising results for LRC and DFS. Future investigations will aim at assessing the advantages of VMAT with respect to late toxicity and survival after a prolonged follow-up time. (orig.) [German] Die primaere Radiochemotherapie (RCT) gilt als Standardtherapie fuer lokal fortgeschrittene Analkarzinome. In dieser Studie wurde die volumetrisch modulierte Rotationstherapie (''volumetric intensity-modulated arc therapy'', VMAT) mit der klassischen dreidimensionalen konformalen Radiotherapie (3DCRT) hinsichtlich therapieassoziierter Nebenwirkungen und Ueberleben verglichen. Von 1992-2014 wurden 103 aufeinanderfolgende Patienten mit einem Analkarzinom im UICC-Stadium I-III behandelt. Die kombinierte RCT bestand aus der Bestrahlung des gesamten Beckens inklusive der iliakalen und der inguinalen

  1. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    International Nuclear Information System (INIS)

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  2. Dosimetric comparison of treatment techniques IMRT and VMAT for breast cancer; Comparacion dosimetrica de las tecnicas de tratamiento IMRT y VMAT para cancer en mama

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, G. L. [Universidad Nacional de Ingenieria, Maestria en Fisica Medica, Av. Tupac Amaru s/n, Rimac, Lima 25 (Peru); Garcia, B. G., E-mail: gerlup@hotmail.com [Red AUNA, Clinica Delgado, Av. Angamos Cdra. 4 esquina Gral. Borgono, Miraflores, Lima (Peru)

    2015-10-15

    In this study the dosimetric distribution was compared in the different treatment techniques such as Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) in female patients with breast cancer with stage II-B and III-A, 6 cases (both calculated on VMAT and IMRT) were studied, comparison parameter that are taken into account are: compliance rate, homogeneity index, monitor units, volume dose 50 Gy (D-50%) and 5 Gy (D-5%) volume dose. Comparisons are made in primary tumor volume to optimize treatment in patients with breast cancer, with IMRT using Step, Shoot and VMAT Monte Carlo algorithm, in addition to the organs at risk; the concern to make this work is due to technological advances in radiotherapy and the application of new treatment techniques, that increase the accuracy allowing treatment dose climbing delivering a higher dose to the patient. (Author)

  3. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans

    International Nuclear Information System (INIS)

    The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. The dosimetric impact of using AAA instead of AXB, and grid size 2.5 mm instead of 1.0 mm for VMAT treatment plans was evaluated. The clinical plan quality of AXB VMAT was assessed using 45 stage I and 73 stage III patients, and was compared with published results, planned with VMAT and hybrid-VMAT techniques. The dosimetric impact on near-minimum PTV dose (D98%) using AAA instead of AXB was large (underdose up to 12.3%) for stage I and very small (underdose up to 0.8%) for stage III lung treatments. There were no significant differences for dose volume histogram (DVH) values between grid sizes. The calculation time was significantly higher for AXB grid size 1.0 than 2.5 mm (p < 0.01). The clinical quality of the VMAT plans was at least comparable with clinical qualities given in literature of lung treatment plans with VMAT and hybrid-VMAT techniques. The average mean lung dose (MLD), lung V20Gy and V5Gy in this study were respectively 3.6 Gy, 4.1% and 15.7% for 45 stage I patients and 12.4 Gy, 19.3% and 46.6% for 73 stage III lung patients. The average contra-lateral lung dose V5Gy-cont was 35.6% for stage III patients. For stereotactic and conventional lung treatments, VMAT calculated with AXB grid size 2.5 mm resulted in accurate dose calculations. No hybrid technique was needed to obtain the dose constraints. AXB is recommended instead of AAA for avoiding serious overestimation of the minimum target doses compared to the actual delivered dose

  4. Sci—Sat AM: Stereo — 02: Implementation of a VMAT class solution for kidney SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Sonier, M; Lalani, N; Korol, R [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Chu, W [Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada)

    2014-08-15

    An emerging treatment option for inoperable primary renal cell carcinoma and oligometastatic adrenal lesions is stereotactic body radiation therapy (SBRT). At our center, kidney SBRT treatments were originally planned with IMRT. The goal was to plan future patients using VMAT to improve treatment delivery efficiency. The purpose of this work was twofold: 1) to develop a VMAT class solution for the treatment of kidney SBRT; and, 2) to assess VMAT plan quality when compared to IMRT plans. Five patients treated with IMRT for kidney SBRT were reviewed and replanned in Pinnacle using a single VMAT arc with a 15° collimator rotation, constrained leaf motion and 4° gantry spacing. In comparison, IMRT plans utilized 7–9 6MV beams, with various collimator rotations and up to 2 non-coplanar beams for maximum organ-at-risk (OAR) sparing. Comparisons were made concerning target volume conformity, homogeneity, dose to OARs, treatment time and monitor units (MUs). There was no difference in MUs; however, VMAT reduced the treatment time from 13.0±2.6min, for IMRT, to 4.0±0.9min. The collection of target and OAR constraints and SmartArc parameters, produced a class solution that generated VMAT plans with increased target homogeneity and improved 95% conformity index calculated at < 1.2. In general, the VMAT plans displayed a reduced maximum point dose to nearby OARs with increased intermediate dose to distant OARs. Overall, the introduction of a VMAT class solution for kidney SBRT improves efficiency by reducing treatment planning and delivery time.

  5. Sci—Sat AM: Stereo — 02: Implementation of a VMAT class solution for kidney SBRT

    International Nuclear Information System (INIS)

    An emerging treatment option for inoperable primary renal cell carcinoma and oligometastatic adrenal lesions is stereotactic body radiation therapy (SBRT). At our center, kidney SBRT treatments were originally planned with IMRT. The goal was to plan future patients using VMAT to improve treatment delivery efficiency. The purpose of this work was twofold: 1) to develop a VMAT class solution for the treatment of kidney SBRT; and, 2) to assess VMAT plan quality when compared to IMRT plans. Five patients treated with IMRT for kidney SBRT were reviewed and replanned in Pinnacle using a single VMAT arc with a 15° collimator rotation, constrained leaf motion and 4° gantry spacing. In comparison, IMRT plans utilized 7–9 6MV beams, with various collimator rotations and up to 2 non-coplanar beams for maximum organ-at-risk (OAR) sparing. Comparisons were made concerning target volume conformity, homogeneity, dose to OARs, treatment time and monitor units (MUs). There was no difference in MUs; however, VMAT reduced the treatment time from 13.0±2.6min, for IMRT, to 4.0±0.9min. The collection of target and OAR constraints and SmartArc parameters, produced a class solution that generated VMAT plans with increased target homogeneity and improved 95% conformity index calculated at < 1.2. In general, the VMAT plans displayed a reduced maximum point dose to nearby OARs with increased intermediate dose to distant OARs. Overall, the introduction of a VMAT class solution for kidney SBRT improves efficiency by reducing treatment planning and delivery time

  6. Acceptance for clinical use of a treatment planning system with IMRT and VMAT techniques

    International Nuclear Information System (INIS)

    Purpose: In this work the set of measurements and results to test the reliability of the calculated absorbed dose by our treatment planning system (TPS) for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) is reported. Method: A set of measures was performed, both point and planar absorbed dose, selecting a set of conventional and IMRT and VMAT treatment fields. A gamma criteria 3 mm distance to agreement and 3% dose difference (referred to the maximum dose) was used for the planar distribution analysis, using a 10% of maximum dose as threshold. Based on this set of measures the confidence limits were calculated for the IMRT and VMAT plans, and compared with the reference values given in AAPM TG119 document. Results: The average percentage deviation of point dose measures was lower than 0.5% for conventional fields and lower than 1% for IMRT and VMAT fields. Calculated confidence limits were 3.6% and 4.6% for point dose and almost zero for planar dose distributions, for IMRT and VMAT respectively. Conclusions: Our confidence levels improve significantly the AAPM TG119 reference levels both for point and planar doses, thus ensuring the reliability of the TPS performing IMRT and VMAT dose calculations. (Author) 17 refs.

  7. Automated Volumetric Modulated Arc Therapy Treatment Planning for Stage III Lung Cancer: How Does It Compare With Intensity-Modulated Radio Therapy?

    International Nuclear Information System (INIS)

    Purpose: To compare the quality of volumetric modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) plans generated by an automated inverse planning system with that of dosimetrist-generated IMRT treatment plans for patients with stage III lung cancer. Methods and Materials: Two groups of 8 patients with stage III lung cancer were randomly selected. For group 1, the dosimetrists spent their best effort in designing IMRT plans to compete with the automated inverse planning system (mdaccAutoPlan); for group 2, the dosimetrists were not in competition and spent their regular effort. Five experienced radiation oncologists independently blind-reviewed and ranked the three plans for each patient: a rank of 1 was the best and 3 was the worst. Dosimetric measures were also performed to quantitatively evaluate the three types of plans. Results: Blind rankings from different oncologists were generally consistent. For group 1, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.6, 2.13, and 2.18, respectively. The auto-VMAT plans in group 1 had 10% higher planning tumor volume (PTV) conformality and 24% lower esophagus V70 (the volume receiving 70 Gy or more) than the manual IMRT plans; they also resulted in more than 20% higher complication-free tumor control probability (P+) than either type of IMRT plans. The auto- and manual IMRT plans in this group yielded generally comparable dosimetric measures. For group 2, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.55, 1.75, and 2.75, respectively. Compared to the manual IMRT plans in this group, the auto-VMAT plans and auto-IMRT plans showed, respectively, 17% and 14% higher PTV dose conformality, 8% and 17% lower mean lung dose, 17% and 26% lower mean heart dose, and 36% and 23% higher P+. Conclusions: mdaccAutoPlan is capable of generating high-quality VMAT and IMRT treatment plans for stage III lung cancer. Manual IMRT plans could achieve quality

  8. Automated Volumetric Modulated Arc Therapy Treatment Planning for Stage III Lung Cancer: How Does It Compare With Intensity-Modulated Radio Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Enzhuo M. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Joe Y.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Xia Tingyi [Department of Radiation Oncology, Beijing 301 Hospital, Beijing (China); Yuan Zhiyong [Department of Radiation Oncology, Tianjin Medical University Cancer Hospital and Institute, Tianjin (China); Liu Hui [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Zhongshan University Hospital, Guangzhou (China); Li, Xiaoqiang; Wages, Cody A.; Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang Xiaodong, E-mail: xizhang@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-09-01

    Purpose: To compare the quality of volumetric modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) plans generated by an automated inverse planning system with that of dosimetrist-generated IMRT treatment plans for patients with stage III lung cancer. Methods and Materials: Two groups of 8 patients with stage III lung cancer were randomly selected. For group 1, the dosimetrists spent their best effort in designing IMRT plans to compete with the automated inverse planning system (mdaccAutoPlan); for group 2, the dosimetrists were not in competition and spent their regular effort. Five experienced radiation oncologists independently blind-reviewed and ranked the three plans for each patient: a rank of 1 was the best and 3 was the worst. Dosimetric measures were also performed to quantitatively evaluate the three types of plans. Results: Blind rankings from different oncologists were generally consistent. For group 1, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.6, 2.13, and 2.18, respectively. The auto-VMAT plans in group 1 had 10% higher planning tumor volume (PTV) conformality and 24% lower esophagus V70 (the volume receiving 70 Gy or more) than the manual IMRT plans; they also resulted in more than 20% higher complication-free tumor control probability (P+) than either type of IMRT plans. The auto- and manual IMRT plans in this group yielded generally comparable dosimetric measures. For group 2, the auto-VMAT, auto-IMRT, and manual IMRT plans received average ranks of 1.55, 1.75, and 2.75, respectively. Compared to the manual IMRT plans in this group, the auto-VMAT plans and auto-IMRT plans showed, respectively, 17% and 14% higher PTV dose conformality, 8% and 17% lower mean lung dose, 17% and 26% lower mean heart dose, and 36% and 23% higher P+. Conclusions: mdaccAutoPlan is capable of generating high-quality VMAT and IMRT treatment plans for stage III lung cancer. Manual IMRT plans could achieve quality

  9. Hair-sparing whole brain radiotherapy with volumetric arc therapy in patients treated for brain metastases: dosimetric and clinical results of a phase II trial

    International Nuclear Information System (INIS)

    To report the dosimetric results and impact of volumetric arc therapy (VMAT) on temporary alopecia and hair-loss related quality of life (QOL) in whole brain radiotherapy (WBRT). The potential of VMAT-WBRT to reduce the dose to the hair follicles was assessed. A human cadaver was treated with both VMAT-WBRT and conventional opposed field (OF) WBRT, while the subcutaneously absorbed dose was measured by radiochromic films and calculated by the planning system. The impact of these dose reductions on temporary alopecia was examined in a prospective phase II trial, with the mean score of hair loss at 1 month after VMAT-WBRT (EORTC-QOL BN20) as a primary endpoint and delivering a dose of 20 Gy in 5 fractions. An interim analysis was planned after including 10 patients to rule out futility, defined as a mean score of hair loss exceeding 56.7. A secondary endpoint was the global alopecia areata severity score measured with the “Severity of Alopecia Tool” (SALT) with a scale of 0 (no hair loss) to 100 (complete alopecia). For VMAT-WBRT, the cadaver measurements demonstrated a dose reduction to the hair follicle volume of 20.5% on average and of 41.8% on the frontal-vertex-occipital medial axis as compared to OF-WBRT. In the phase II trial, a total of 10 patients were included before the trial was halted due to futility. The EORTC BN20 hair loss score following WBRT was 95 (SD 12.6). The average median dose to the hair follicle volume was 12.6 Gy (SD 0.9), corresponding to a 37% dose reduction compared to the prescribed dose. This resulted in a mean SALT-score of 75. Compared to OF-WBRT, VMAT-WBRT substantially reduces hair follicle dose. These dose reductions could not be related to an improved QOL or SALT score

  10. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    International Nuclear Information System (INIS)

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl2). Methods: PAGAT gel containing MgCl2 as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 T MRI system (GE), and dose calibration curves were obtained using T2 relaxation rate (R2 = 1/T2). Dose rate (100-600 MU min−1) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm3) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA

  11. Optimized Volumetric Modulated Arc Therapy Versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma Without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to evaluate the risks of second cancers and cardiovascular diseases associated with an optimized volumetric modulated arc therapy (VMAT) planning solution in a selected cohort of stage I/II Hodgkin lymphoma (HL) patients treated with either involved-node or involved-site radiation therapy in comparison with 3-dimensional conformal radiation therapy (3D-CRT). Methods and Materials: Thirty-eight patients (13 males and 25 females) were included. Disease extent was mediastinum alone (n=8, 21.1%); mediastinum plus unilateral neck (n=19, 50%); mediastinum plus bilateral neck (n=11, 29.9%). Prescription dose was 30 Gy in 2-Gy fractions. Only 5 patients had mediastinal bulky disease at diagnosis (13.1%). Anteroposterior 3D-CRT was compared with a multiarc optimized VMAT solution. Lung, breast, and thyroid cancer risks were estimated by calculating a lifetime attributable risk (LAR), with a LAR ratio (LARVMAT-to-LAR3D-CRT) as a comparative measure. Cardiac toxicity risks were estimated by calculating absolute excess risk (AER). Results: The LAR ratio favored 3D-CRT for lung cancer induction risk in mediastinal alone (P=.004) and mediastinal plus unilateral neck (P=.02) presentations. LAR ratio for breast cancer was lower for VMAT in mediastinal plus bilateral neck presentations (P=.02), without differences for other sites. For thyroid cancer, no significant differences were observed, regardless of anatomical presentation. A significantly lower AER of cardiac (P=.038) and valvular diseases (P<.0001) was observed for VMAT regardless of disease extent. Conclusions: In a cohort of patients with favorable characteristics in terms of disease extent at diagnosis (large prevalence of nonbulky presentations without axillary involvement), optimized VMAT reduced heart disease risk with comparable risks of thyroid and breast cancer, with an increase in lung cancer induction probability. The results are however strongly influenced by the different

  12. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse

    International Nuclear Information System (INIS)

    The newest release of the Eclipse (Varian) treatment planning system (TPS) includes an optimizing engine for Elekta volumetric-modulated arc therapy (VMAT) planning. The purpose of this study was to evaluate this new algorithm and to compare it to intensity-modulated radiation therapy (IMRT) for various disease sites by creating single- and double-arc VMAT plans. A total of 162 plans were evaluated in this study, including 38 endometrial, 57 head and neck, 12 brain, 10 breast and 45 prostate cancer cases. The real-life IMRT plans were developed during routine clinical cases using the TPS Eclipse. VMAT plans were generated using a preclinical version of Eclipse with tumor-region-specific optimizing templates without interference of the operator: with one full arc (1A) and with two full arcs (2A), and with partial arcs for breast and prostate with hip implant cases. All plans were evaluated based on target coverage, homogeneity and conformity. The organs at risk (OARs) were analyzed according to plan objectives, such as the mean and maximum doses. If one or more objectives were exceeded, the plan was considered clinically unacceptable, and a second VMAT plan was created by adapting the optimization penalties once. Compared to IMRT, single- and double-arc VMAT plans showed comparable or better results concerning the target coverage: the maximum dose in the target for 1A is the same as that for IMRT; for 2A, an average reduction of 1.3% over all plans was observed. The conformity showed a statistically significant improvement for both 1A (+3%) and 2A (+6%). The mean total body dose was statistically significant lower for the considered arc techniques (IMRT: 16.0 Gy, VMAT: 15.3 Gy, p < 0.001). However, the sparing of OARs shows individual behavior that depends strongly on the different tumor regions. A clear difference is found in the number of monitor units (MUs) per plan: VMAT shows a reduction of 31%. These findings demonstrate that based on optimizing templates with

  13. 3D dosimetry by compass program with array detector for volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    The aim of this study was to analyze the accuracy of dose of volumetric modulated arc therapy using the home-made phantom, a glass detector, GafChromic Film, ion chamber and a compass program with matrixx detector. We measured the isodose curve in the RTtarget, LTtagert and G4 using the compass program and Matrixx detector with homemade multi-purpose VMAT phantom, three times a day measured by five days. Measurements were compared with the calculated values. Compass analysis program was used to analysis relative iso dose curve. As a result, average passing rate were 85.22% ± 1., 89.96% ± 2. and 95.14 % ± 1.18. Compass analysis program and Matrixx detector are useful dose verification tools for Volumetric Modulated Arc Therapy. However, doses were somewhat different between calculated dose and measured dose at steep dose gradient region and low dose region. We recommend that absolute dose be necessary to be measured using the glass detector and ion chamber at region.

  14. TH-C-12A-05: Dynamic Couch Motion for Improvement of Radiation Therapy Trajectories in DCA and VMAT

    International Nuclear Information System (INIS)

    Purpose: To investigate the potential improvement in dosimetric external beam radiation therapy plan quality using an optimized dynamic gantry and couch motion trajectory which minimizes exposure to the organs at risk. Methods: Patient-specific anatomical information of head-and-neck and cranial cancer patients was used to quantify the geometric overlap between target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocentre as a function of gantry and couch angle. QUANTEC dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a Varian Truebeam linac using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm includes weighting factors which can be used to balance the implementation of absolute minimum values of overlap, with the clinical practicality of largescale couch motion and delivery time. Optimized trajectories were calculated for cranial DCA treatments and for head-and-neck VMAT treatments and compared to conventional DCA and VMAT treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicates a decrease in dose to the organs-at-risk between 4.64% and 6.82% (2.39 and 3.52 Gy) of the prescription dose per patient per organ at risk. Conclusion: Using simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk

  15. Using an EPID for patient-specific VMAT quality assurance

    International Nuclear Information System (INIS)

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  16. A Comprehensive Comparison of IMRT and VMAT Plan Quality for Prostate Cancer Treatment

    International Nuclear Information System (INIS)

    Purpose: We performed a comprehensive comparative study of the plan quality between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of prostate cancer. Methods and Materials: Eleven patients with prostate cancer treated at our institution were randomly selected for this study. For each patient, a VMAT plan and a series of IMRT plans using an increasing number of beams (8, 12, 16, 20, and 24 beams) were examined. All plans were generated using our in-house–developed automatic inverse planning (AIP) algorithm. An existing eight-beam clinical IMRT plan, which was used to treat the patient, was used as the reference plan. For each patient, all AIP-generated plans were optimized to achieve the same level of planning target volume (PTV) coverage as the reference plan. Plan quality was evaluated by measuring mean dose to and dose–volume statistics of the organs at risk, especially the rectum, from each type of plan. Results: For the same PTV coverage, the AIP-generated VMAT plans had significantly better plan quality in terms of rectum sparing than the eight-beam clinical and AIP-generated IMRT plans (p < 0.0001). However, the differences between the IMRT and VMAT plans in all the dosimetric indices decreased as the number of beams used in IMRT increased. IMRT plan quality was similar or superior to that of VMAT when the number of beams in IMRT was increased to a certain number, which ranged from 12 to 24 for the set of patients studied. The superior VMAT plan quality resulted in approximately 30% more monitor units than the eight-beam IMRT plans, but the delivery time was still less than 3 min. Conclusions: Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating prostate cancer.

  17. Dosimetric comparison of treatment techniques IMRT and VMAT for breast cancer

    International Nuclear Information System (INIS)

    In this study the dosimetric distribution was compared in the different treatment techniques such as Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) in female patients with breast cancer with stage II-B and III-A, 6 cases (both calculated on VMAT and IMRT) were studied, comparison parameter that are taken into account are: compliance rate, homogeneity index, monitor units, volume dose 50 Gy (D-50%) and 5 Gy (D-5%) volume dose. Comparisons are made in primary tumor volume to optimize treatment in patients with breast cancer, with IMRT using Step, Shoot and VMAT Monte Carlo algorithm, in addition to the organs at risk; the concern to make this work is due to technological advances in radiotherapy and the application of new treatment techniques, that increase the accuracy allowing treatment dose climbing delivering a higher dose to the patient. (Author)

  18. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique

    International Nuclear Information System (INIS)

    Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p < 0.05 respectively

  19. SU-E-T-444: Quantitatively Comparison of Low Dose Spillage Outside of PTV Edge in Arc Therapy Modalities

    International Nuclear Information System (INIS)

    Purpose: To quantitatively compare low dose spillage outside of PTV edge in arc therapy modalities Methods: The machines used in the study are Tomotherapy Hi-Arc and Varian 21EX with millennium120 MLC. TPS are TomoPlaning and RayStation for VMAT, respectively. The phantom is a 30cm diameter cylindrical solid water (TOMOTHERAPY, TOMOPHANTOM ASSY). The PTV is 4cm length with ellipsoidal sectional shape with major axis=5cm, minor axis=3cm in the axial plane and reversed in the coronal plane. The PTV volume is created with interpolation. It is located at the center of the phantom. The prescribed dose is 1000x5 cGy to 95% the PTV. The isocenter is set co-centered with the PTV. EBT-3 film was used to measure iso-dose lines at the center plane. Film dosimetry is performed with the RIT, v6.2. Results: the study shows: (1) dose falloff gradient is usually uneven, depending on the PTV shape in the gantry rotation plane. For an elliptical shape, the low dose spillage is wider in the minor axis direction than that in the major axis direction. The more a shape is closer to circular, the more even gradient is all directions; (2)for a circular shape (CAX plane in this study), the maximum dose in % of Rx dose at 2cm from PTV is 55% for Tomo, vs. 70% for VMAT (3) the most rapid dose falloff rang is between 95%–80% IDL for both modalities. Conclusion: Tomo has more rapid dose falloff outside of PTV. In some areas, the gradient is double for Tomo helical than that for LINAC VMAT at same points. Future work will examine the differences between optimization of doses and inherent delivery limitations

  20. Study on feasibility of preoperative neoadjuvant chemoradiotherapy based on volumetric modulated arc therapy for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Objective: To investigate the feasibility of preoperative neoadjuvant chemoradiotherapy (NCRT) based on volumetric modulated arc therapy (VMAT) for locally advanced rectal cancer (LARC). Methods: A retrospective analysis was performed on 162 patients with LARC who received NCRT plus surgery (and postoperative chemotherapy) in our hospital from April 2011 to April 2013. These patients included 113 males and 49 females, with a median age of 56 years (23-84 years). Of all patients, 22, 11, and 5 had stage Ⅱa,Ⅱb,and Ⅱc disease, respectively, and 1, 58, and 65 had stage Ⅲa, Ⅲb, and Ⅲc disease, respectively. All patients received single-arc VMAT, with target doses of 50 Gy/25 fractions for PTV1 and 46 Gy/25 fractions for PTV2, as well as induction and concurrent chemotherapy (median 3 cycles), with Xelox regimen (capecitabine 1000 mg/m2 plus oxaliplatin 100 mg/m2 or 130 mg/m2) as the main chemotherapy protocol. Results: All patients received radiotherapy, and only 2 of them discontinued radiotherapy due to grade 3 diarrhea. The overall incidence rates of grade 3 hematological and nonhematological toxicities among all patients during chemoradiotherapy were 9.3% and 16.0%, respectively. Surgery was performed after a median interval of 53.5 days (34-86 days). After surgery,the pathological complete response rate, R0 resection rate,and sphincter preservation rate for low rectal cancer were 30.2%, 100%, and 45.9%, respectively. Among all patients, 16.7% developed postoperative complications, and no one died within 30 days after surgery; 85.2%, 87.1%, and 88.9% showed decreases in T stage, N stage,and clinical stage,respectively. Conclusions: Preoperative NCRT based on VMAT for LARC is safe and feasible, but its effect on long-term survival needs further observation. (authors)

  1. Large planning target volume in whole abdomen radiation therapy in ovarian cancers - a comparison between volumetric arc and fixed beam based intensity modulation in ovarian cancers: a comparison between volumetric arc and fixed beam based intensity modulation

    International Nuclear Information System (INIS)

    Aim of this study is to assess dosimetric characteristics of multiple iso-centre volumetric-modulated arc therapy for the treatment of a large PTV in whole abdomen and ovarian cancers and in comparison with IMRT. Two patients with Epithelial Ovarian Cancer (EOC) underwent CT-simulation in supine position with vacuum cushion and acquired CT-image with 3 mm slice thickness. IMRT and VMAT plans were generated with multiple isocenter using Eclipse Planning System (V10.0.39) for (6 MV photon) Varian UNIQUE Performance Linac equipped with a Millennium-120 MLC and optimised with Progressive Resolution optimizer (PRO3) for prescription 36 Gy to the whole abdomen (PTVWAR) and 45 Gy with daily fraction of 1.8 Gy to the pelvis and pelvic nodes (PTVPelvis) with Simultaneous Integrated Boost and calculated with AAA algorithm in 2.5 mm grid resolution. Mean, V95%, V90%, V107% and uniformity number (Uniformity was defined as US-95%=D5%-D95%/Dmean) was calculated for Planning Target Volumes (PTVs). Organs at Risk (OAR's) were analysed statistically in terms of dose and volume. MU and delivery time were compared. Pre-treatment quality assurance was scored with Gamma Agreement Index (GAl) with 3% and 3 mm thresholds with EPID as well as corresponding Dynalog files were generated and analysed. Feasibility and deliverability of VMAT plans showed to be a solution for the treatment planning and delivery for a large PTV volume (PTV-WAR) treatments, surrounded by critical structures such as liver, spinal canal, and kidneys, offering good dosimetric features with significant logistic improvements compared to IMRT. VMAT combines the advantages of faster delivery and lower number of monitor units (MU). It would help to reduce potential risk of secondary malignancy. VMAT(RapidArc) showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT

  2. Assessing the Dosimetric Impact of Real-Time Prostate Motion During Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Purpose: To develop a method for dose reconstruction by incorporating the interplay effect between aperture modulation and target motion, and to assess the dosimetric impact of real-time prostate motion during volumetric modulated arc therapy (VMAT). Methods and Materials: Clinical VMAT plans were delivered with the TrueBeam linac for 8 patients with prostate cancer. The real-time target motion during dose delivery was determined based on the 2-dimensional fiducial localization using an onboard electronic portal imaging device. The target shift in each image was correlated with the control point with the same gantry angle in the VMAT plan. An in-house-developed Monte Carlo simulation tool was used to calculate the 3-dimensional dose distribution for each control point individually, taking into account the corresponding real-time target motion (assuming a nondeformable target with no rotation). The delivered target dose was then estimated by accumulating the dose from all control points in the plan. On the basis of this information, dose–volume histograms and 3-dimensional dose distributions were calculated to assess their degradation from the planned dose caused by target motion. Thirty-two prostate motion trajectories were analyzed. Results: The minimum dose to 0.03 cm3 of the gross tumor volume (D0.03cc) was only slightly degraded after taking motion into account, with a minimum value of 94.1% of the planned dose among all patients and fractions. However, the gross tumor volume receiving prescription dose (V100%) could be largely affected by motion, dropping below 60% in 1 trajectory. We did not observe a correlation between motion magnitude and dose degradation. Conclusions: Prostate motion degrades the delivered dose to the target in an unpredictable way, although its effect is reduced over multiple fractions, and for most patients the degradation is small. Patients with greater prostate motion or those treated with stereotactic body radiation therapy would

  3. Verification of volumetric-modulated arc therapy plan by long-file analysis of linear accelerator

    International Nuclear Information System (INIS)

    Objective: To verify the dose delivery accuracy of volumetric-modulated arc therapy plan by log-file analysis of linear accelerator that can be created when a dynamic delivery occurs. Methods: Accelerator log file in binary format recorded the accelerator execution plan for each control point corresponding to the gantry angle, multi-leaf collimator leave position, cumulative machine monitor units (MU). These information were read from the accelerator log file with Matlab7.1, then the original control points in the plan file replaced the corresponding information for the log,which generated a new plan. New plan was exported into the planning system to recalculate the dose. The volume dose histogram (DVH) and dose distribution was contrasted to determine the accuracy of the accelerator plan of implementation between two plans. Results: Compared with the original plan, gantry angle difference over ± 1° accounted for about 35% of the entire arc of control points in 4 of 12 arcs and the percentage of the leave error of ±0.5 mm was about 95%. MU error of a single control point was larger, but the cumulative MU for each are was small which was located between-0.09% to 0.11% in the selected 12 arcs. Between the targets, the maximum dose,minimum dose, the mean dose differences were from -0.07% to 0.42%, -0.38% to 0.40%, 0.03% to 0.08%, respectively. The maximum dose and mean dose differences of organs at risks were located from -1.16% to 2.51%, -1.21% to 3.12%, respectively. Conclusions: Accelerator log-file analysis to verify the VMAT plan nan be supplied to the experimental method supplement. (authors)

  4. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jian-Jian [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Chang, Zheng; Horton, Janet K.; Wu, Qing-Rong Jackie; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In

  5. Poster — Thur Eve — 17: In-phantom and Fluence-based Measurements for Quality Assurance of Volumetric-driven Adaptation of Arc Therapy

    International Nuclear Information System (INIS)

    During volumetric modulated arc therapy (VMAT) of head and neck cancer, some patients lose weight which may result in anatomical deviations from the initial plan. If these deviations are substantial a new treatment plan can be designed for the remainder of treatment (i.e., adaptive planning). Since the adaptive treatment process is resource intensive, one possible approach to streamlining the quality assurance (QA) process is to use the electronic portal imaging device (EPID) to measure the integrated fluence for the adapted plans instead of the currently-used ArcCHECK device (Sun Nuclear). Although ArcCHECK is recognized as the clinical standard for patient-specific VMAT plan QA, it has limited length (20 cm) for most head and neck field apertures and has coarser detector spacing than the EPID (10 mm vs. 0.39 mm). In this work we compared measurement of the integrated fluence using the EPID with corresponding measurements from the ArcCHECK device. In the past year nine patients required an adapted plan. Each of the plans (the original and adapted) is composed of two arcs. Routine clinical QA was performed using the ArcCHECK device, and the same plans were delivered to the EPID (individual arcs) in integrated mode. The dose difference between the initial plan and adapted plan was compared for ArcCHECK and EPID. In most cases, it was found that the EPID is more sensitive in detecting plan differences. Therefore, we conclude that EPID provides a viable alternative for QA of the adapted head and neck plans and should be further explored

  6. SU-E-T-550: Modulation Index for VMAT

    International Nuclear Information System (INIS)

    Purpose: To present modulation indices (MIs) for volumetric modulated arc therapy (VMAT). Methods: A total of 40 VMAT plans were retrospectively selected. To investigate the delivery accuracy of each VMAT plan, gamma passing rates, differences in modulating parameters between plans and log files, and differences between the original plans and the plans reconstructed with the log files were acquired. A modulation index (MIt) was designed by multiplications of the weighted quantifications of MLC speeds, MLC accelerations, gantry accelerations and dose-rate variations. Textural features including angular second moment, inverse difference moment, contrast, variance, correlation and entropy were calculated from the fluences of each VMAT plan. To test the performance of suggested MIs, Spearman’s rank correlation coefficients (r) with the plan delivery accuracy were calculated. Conventional modulation indices for VMAT including the modulation complexity score for VMAT (MCSv), leaf travel modulation complexity score (LTMCS) and MI by Li & Xing were calculated, and their correlations were also analyzed in the same way. Results: The r values of contrast (particular displacement distance, d = 1), variance (d = 1), MIt, MCSv, LTMCS and MI by Li&Xing to the local gamma passing rates with 2%/2 mm were 0.547 (p < 0.001), 0.519 (p < 0.001), −0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and −0.455 (p = 0.003), respectively. The r values of those to the MLC errors were −0.863, −0.828, 0.917, −0.635, − 0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than did the conventional modulation indices. Conclusion: The MIt, contrast (d = 1) and variance (d = 1) showed good performance to predict the VMAT delivery accuracy showing higher correlations to the results of various types of verification methods for VMAT. This work was in part supported by the National Research Foundation of

  7. Tumor volume threshold for achieving improved conformity in VMAT and Gamma Knife stereotactic radiosurgery for vestibular schwannoma

    International Nuclear Information System (INIS)

    Background and purpose: Recent advances in multileaf collimator field shaping technology and inverse planning software have resulted in highly conformal LINAC based stereotactic radiosurgery (SRS) plans with minimal dose to critical structures. This modeling study compares Gamma Knife (GK) and LINAC SRS for vestibular schwannoma (VS). Materials and methods: 76 treatment plans from nineteen patients with VS were planned using GK forward planning and volumetric arc therapy (VMAT) inverse planning software. VMAT plans were generated with 1 coplanar, 3 and 5 non-coplanar arcs. Dose to normal structures and beam-on time (dose rate 600 MU/min) were compared using Kruskal–Wallis and Dunn’s post hoc test. Results: Median tumor volume was 1.2 cm3 (range 0.1–4.8 cm3). A peripheral tumor dose of 12 Gy was prescribed. Tumor coverage was >99.8%. VMAT plans had lower target D2% and mean dose, as well as decreased beam-on time, compared to GK plans (p < 0.0001). Paddick conformity index in VMAT 5 arc plans was superior to that of GK plans for targets >0.5 cm3 (p = 0.002). Similar dose to cochlea, normal brain tissue and brainstem was observed. Conclusion: VMAT should be considered as a safe, alternative modality to GK for VS SRS treatment, especially for tumors larger than 0.5 cm3

  8. A dose-volume intercomparison of volumetric-modulated arc therapy, 3D static conformal, and rotational conformal techniques for portal vein tumor thrombus in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    We created volumetric-modulated arc therapy (VMAT) plans for portal vein tumor thrombus (PVTT) in hepatocellular carcinoma, and compared the results with those from three-dimensional conformal radiotherapy (3D-CRT) and rotational conformal radiotherapy (R-CRT) plans. CT scan data from 10 consecutive patients with PVTT treated with 3D-CRT between January 2008 and January 2010 were utilized in the analysis. We analyzed the dosimetric properties of the plans for the 10 patients using the three different techniques with three different isocenter doses of 50, 56 and 60 Gy in 2-Gy fractions. The D95, Dmean, homogeneity index and conformity index were compared for the planning target volume (PTV). The Dmean, V20 and V30 were also compared for normal livers. The monitor units (MUs) and the treatment time were also evaluated. The normal liver V30 for VMAT was significantly less than that for 3D-CRT for the prescribed doses of 56 and 60 Gy (P<0.05). It was also found that the normal liver V30 resulting from 3D-CRT was prohibitively increased when the prescribed dose was increased in two steps. For PTV D95, we found no significant differences between the three techniques for the 50- and 56-Gy prescriptions, or between VMAT and the other techniques for the 60-Gy prescription. The differences in the MUs and treatment times were not statistically significant between VMAT and 3D-CRT. We have demonstrated that VMAT may be a more advantageous technique for dose escalation reaching 60 Gy in the treatment of PVTT due to the reduced normal liver V30. (author)

  9. Dosimetric comparison of three different treatment modalities for total scalp irradiation. The conventional lateral photon–electron technique, helical tomotherapy, and volumetric-modulated arc therapy

    International Nuclear Information System (INIS)

    The aim of this study was to compare lateral photon–electron (LPE), helical tomotherapy (HT), and volumetric-modulated arc therapy (VMAT) plans for total scalp irradiation. We selected a single adult model case and compared the dosimetric results for the three plans. All plans mainly used 6-MV photon beams, and the prescription dose was 60 Gy in 30 fractions. First, we compared the LPE, HT and VMAT plans, with all plans including a 1-cm bolus. We also compared HT plans with and without the bolus. The conformity indices for LPE, HT and VMAT were 1.73, 1.35 and 1.49, respectively. The HT plan showed the best conformity and the LPE plan showed the worst. However, the plans had similar homogeneity indexes. The dose to the hippocampus was the highest in the VMAT plan, with a mean of 6.7 Gy, compared with 3.5 Gy in the LPE plan and 4.8 Gy in the HT plan. The doses to the optical structures were all within the clinically acceptable range. The beam-on time and monitor units were highest in the HT plan. The HT plans with and without a bolus showed similar target coverage and organ-at-risk (OAR) sparing. The HT plan showed the best target coverage and conformity, with low doses to the brain and hippocampus. This plan also had the advantage of not necessarily requiring a bolus. Although the VMAT plan showed better conformity than the LPE plan and acceptable OAR sparing, the dose to the hippocampus should be considered when high doses are prescribed. (author)

  10. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    International Nuclear Information System (INIS)

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Both VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number

  11. SU-E-P-51: Dosimetric Comparison to Organs at Risk Sparing Using Volumetric-Modulated Arc Therapy Versus Intensity-Modulated Radiotherapy in Postoperative Radiotherapy of Left-Sided Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, L; Deng, G [Department of Oncology, Shandong University School of Medicine, Jinan, Shandong (China); Xie, J; Cheng, J; Liang, N; Zhang, J [Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandon, Jinan, Shandong (China); Zhang, J; Luo, H [Division of Oncology, Department of Graduate, Weifang Medical College, 2610, Jinan, Shandong (China)

    2015-06-15

    Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Both VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.

  12. Under conditions of large geometric miss, tumor control probability can be higher for static gantry intensity-modulated radiation therapy compared to volume-modulated arc therapy for prostate cancer.

    Science.gov (United States)

    Balderson, Michael; Brown, Derek; Johnson, Patricia; Kirkby, Charles

    2016-01-01

    The purpose of this work was to compare static gantry intensity-modulated radiation therapy (IMRT) with volume-modulated arc therapy (VMAT) in terms of tumor control probability (TCP) under scenarios involving large geometric misses, i.e., those beyond what are accounted for when margin expansion is determined. Using a planning approach typical for these treatments, a linear-quadratic-based model for TCP was used to compare mean TCP values for a population of patients who experiences a geometric miss (i.e., systematic and random shifts of the clinical target volume within the planning target dose distribution). A Monte Carlo approach was used to account for the different biological sensitivities of a population of patients. Interestingly, for errors consisting of coplanar systematic target volume offsets and three-dimensional random offsets, static gantry IMRT appears to offer an advantage over VMAT in that larger shift errors are tolerated for the same mean TCP. For example, under the conditions simulated, erroneous systematic shifts of 15mm directly between or directly into static gantry IMRT fields result in mean TCP values between 96% and 98%, whereas the same errors on VMAT plans result in mean TCP values between 45% and 74%. Random geometric shifts of the target volume were characterized using normal distributions in each Cartesian dimension. When the standard deviations were doubled from those values assumed in the derivation of the treatment margins, our model showed a 7% drop in mean TCP for the static gantry IMRT plans but a 20% drop in TCP for the VMAT plans. Although adding a margin for error to a clinical target volume is perhaps the best approach to account for expected geometric misses, this work suggests that static gantry IMRT may offer a treatment that is more tolerant to geometric miss errors than VMAT. PMID:27067229

  13. Determination of action thresholds for electromagnetic tracking system-guided hypofractionated prostate radiotherapy using volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: Hypofractionated prostate radiotherapy may benefit from both volumetric modulated arc therapy (VMAT) due to shortened treatment time and intrafraction real-time monitoring provided by implanted radiofrequency(RF) transponders. The authors investigate dosimetrically driven action thresholds (whether treatment needs to be interrupted and patient repositioned) in VMAT treatment with electromagnetic (EM) tracking. Methods: VMAT plans for five patients are generated for prescription doses of 32.5 and 42.5 Gy in five fractions. Planning target volume (PTV) encloses the clinical target volume (CTV) with a 3 mm margin at the prostate-rectal interface and 5 mm elsewhere. The VMAT delivery is modeled using 180 equi-spaced static beams. Intrafraction prostate motion is simulated in the plan by displacing the beam isocenter at each beam assuming rigid organ motion according to a previously recorded trajectory of the transponder centroid. The cumulative dose delivered in each fraction is summed over all beams. Two sets of 57 prostate motion trajectories were randomly selected to form a learning and a testing dataset. Dosimetric end points including CTV D95%, rectum wall D1cc, bladder wall D1cc, and urethra Dmax, are analyzed against motion characteristics including the maximum amplitude of the anterior-posterior (AP), superior-inferior (SI), and left-right components. Action thresholds are triggered when intrafraction motion causes any violations of dose constraints to target and organs at risk (OAR), so that treatment is interrupted and patient is repositioned. Results: Intrafraction motion has a little effect on CTV D95%, indicating PTV margins are adequate. Tight posterior and inferior action thresholds around 1 mm need to be set in a patient specific manner to spare organs at risk, especially when the prescription dose is 42.5 Gy. Advantages of setting patient specific action thresholds are to reduce false positive alarms by 25% when prescription dose is low, and

  14. Determination of action thresholds for electromagnetic tracking system-guided hypofractionated prostate radiotherapy using volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng; Mah, Dennis; Happersett, Laura; Cox, Brett; Hunt, Margie; Mageras, Gig [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York 10467 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States)

    2011-07-15

    Purpose: Hypofractionated prostate radiotherapy may benefit from both volumetric modulated arc therapy (VMAT) due to shortened treatment time and intrafraction real-time monitoring provided by implanted radiofrequency(RF) transponders. The authors investigate dosimetrically driven action thresholds (whether treatment needs to be interrupted and patient repositioned) in VMAT treatment with electromagnetic (EM) tracking. Methods: VMAT plans for five patients are generated for prescription doses of 32.5 and 42.5 Gy in five fractions. Planning target volume (PTV) encloses the clinical target volume (CTV) with a 3 mm margin at the prostate-rectal interface and 5 mm elsewhere. The VMAT delivery is modeled using 180 equi-spaced static beams. Intrafraction prostate motion is simulated in the plan by displacing the beam isocenter at each beam assuming rigid organ motion according to a previously recorded trajectory of the transponder centroid. The cumulative dose delivered in each fraction is summed over all beams. Two sets of 57 prostate motion trajectories were randomly selected to form a learning and a testing dataset. Dosimetric end points including CTV D95%, rectum wall D1cc, bladder wall D1cc, and urethra Dmax, are analyzed against motion characteristics including the maximum amplitude of the anterior-posterior (AP), superior-inferior (SI), and left-right components. Action thresholds are triggered when intrafraction motion causes any violations of dose constraints to target and organs at risk (OAR), so that treatment is interrupted and patient is repositioned. Results: Intrafraction motion has a little effect on CTV D95%, indicating PTV margins are adequate. Tight posterior and inferior action thresholds around 1 mm need to be set in a patient specific manner to spare organs at risk, especially when the prescription dose is 42.5 Gy. Advantages of setting patient specific action thresholds are to reduce false positive alarms by 25% when prescription dose is low, and

  15. Online adaptation and verification of VMAT

    International Nuclear Information System (INIS)

    Purpose: This work presents a method for fast volumetric modulated arc therapy (VMAT) adaptation in response to interfraction anatomical variations. Additionally, plan parameters extracted from the adapted plans are used to verify the quality of these plans. The methods were tested as a prostate class solution and compared to replanning and to their current clinical practice. Methods: The proposed VMAT adaptation is an extension of their previous intensity modulated radiotherapy (IMRT) adaptation. It follows a direct (forward) planning approach: the multileaf collimator (MLC) apertures are corrected in the beam’s eye view (BEV) and the monitor units (MUs) are corrected using point dose calculations. All MLC and MU corrections are driven by the positions of four fiducial points only, without need for a full contour set. Quality assurance (QA) of the adapted plans is performed using plan parameters that can be calculated online and that have a relation to the delivered dose or the plan quality. Five potential parameters are studied for this purpose: the number of MU, the equivalent field size (EqFS), the modulation complexity score (MCS), and the components of the MCS: the aperture area variability (AAV) and the leaf sequence variability (LSV). The full adaptation and its separate steps were evaluated in simulation experiments involving a prostate phantom subjected to various interfraction transformations. The efficacy of the current VMAT adaptation was scored by target mean dose (CTVmean), conformity (CI95%), tumor control probability (TCP), and normal tissue complication probability (NTCP). The impact of the adaptation on the plan parameters (QA) was assessed by comparison with prediction intervals (PI) derived from a statistical model of the typical variation of these parameters in a population of VMAT prostate plans (n = 63). These prediction intervals are the adaptation equivalent of the tolerance tables for couch shifts in the current clinical practice

  16. Online adaptation and verification of VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be [KU Leuven Department of Oncology, Laboratory of Experimental Radiotherapy, Herestraat 49, Leuven 3000, Belgium and KU Leuven Medical Imaging Research Center, Herestraat 49, Leuven 3000 (Belgium); Defraene, Gilles; Depuydt, Tom; Haustermans, Karin [KU Leuven Department of Oncology, Laboratory of Experimental Radiotherapy, Herestraat 49, Leuven 3000 (Belgium); Van Herck, Hans [KU Leuven Medical Imaging Research Center, Herestraat 49, Leuven 3000, Belgium and KU Leuven Department of Electrical Engineering (ESAT), PSI, Center for Processing Speech and Images, Leuven 3000 (Belgium); Maes, Frederik [KU Leuven Department of Electrical Engineering (ESAT), PSI, Center for Processing Speech and Images, Leuven 3000, Belgium and KU Leuven iMinds - Medical IT Department, Leuven 3000 (Belgium); Van den Heuvel, Frank [Department of Oncology, MRC-CR-UK Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford OX1 2JD (United Kingdom)

    2015-07-15

    Purpose: This work presents a method for fast volumetric modulated arc therapy (VMAT) adaptation in response to interfraction anatomical variations. Additionally, plan parameters extracted from the adapted plans are used to verify the quality of these plans. The methods were tested as a prostate class solution and compared to replanning and to their current clinical practice. Methods: The proposed VMAT adaptation is an extension of their previous intensity modulated radiotherapy (IMRT) adaptation. It follows a direct (forward) planning approach: the multileaf collimator (MLC) apertures are corrected in the beam’s eye view (BEV) and the monitor units (MUs) are corrected using point dose calculations. All MLC and MU corrections are driven by the positions of four fiducial points only, without need for a full contour set. Quality assurance (QA) of the adapted plans is performed using plan parameters that can be calculated online and that have a relation to the delivered dose or the plan quality. Five potential parameters are studied for this purpose: the number of MU, the equivalent field size (EqFS), the modulation complexity score (MCS), and the components of the MCS: the aperture area variability (AAV) and the leaf sequence variability (LSV). The full adaptation and its separate steps were evaluated in simulation experiments involving a prostate phantom subjected to various interfraction transformations. The efficacy of the current VMAT adaptation was scored by target mean dose (CTV{sub mean}), conformity (CI{sub 95%}), tumor control probability (TCP), and normal tissue complication probability (NTCP). The impact of the adaptation on the plan parameters (QA) was assessed by comparison with prediction intervals (PI) derived from a statistical model of the typical variation of these parameters in a population of VMAT prostate plans (n = 63). These prediction intervals are the adaptation equivalent of the tolerance tables for couch shifts in the current clinical

  17. Verification of individual dosimetric plan in VMAT technique

    International Nuclear Information System (INIS)

    Full text: Introduction: Verification of each individual dose plan scheduled for Volumetric Modulated Arc Therapy (VMAT), takes place before the start and during the radiotherapy course. The complexity of the method and parameters of VMAT accelerator that affect the distribution of dose, determine the need for such a phantom in the application of modern radiotherapy techniques for verification of plan and conduct of the system quality control. Materials and methods: For this purpose, the matrices of detectors placed in the phantom have been used, and the calculated distribution of the target system with the measured dose of the detector has been checked. Such a matrix which is specifically designed for verification of individual radiotherapy plans in VMAT is ArcCheck ™, which plans must be checked before the first radiation and weekly during the radiotherapy course. A second method for verifying is by using a detector for verification of the patient position (DVPP). The detector is calibrated and configured and allows the determination of the dose in a plane using the specialized program EPIQA. Results: The results obtained in two ways are compared. Conclusion: The software allows fast and accurate comparison of the calculations of the dosimetry plan with data obtained from DVPP, and presents the results of gamma analysis when comparing as a gamma index

  18. Volumetric Arc Therapy and Intensity-Modulated Radiotherapy for Primary Prostate Radiotherapy With Simultaneous Integrated Boost to Intraprostatic Lesion With 6 and 18 MV: A Planning Comparison Study

    International Nuclear Information System (INIS)

    Purpose: The aim of the present study was to compare intensity-modulated radiotherapy (IMRT) with volumetric arc therapy (VMAT), in the treatment of prostate cancer with maximal dose escalation to the intraprostatic lesion (IPL), without violating the organ-at-risk constraints. Additionally, the use of 6-MV photons was compared with 18-MV photons for all techniques. Methods and Materials: A total of 12 consecutive prostate cancer patients with an IPL on magnetic resonance imaging were selected for the present study. Plans were made for three IMRT field setups (three, five, and seven fields) and one VMAT field setup (single arc). First, optimal plans were created for every technique using biologic and physical planning aims. Next, an additional escalation to the IPL was planned as high as possible without violating the planning aims of the first step. Results: No interaction between the technique and photon energy (p = .928) occurred. No differences were found between the 6- and 18-MV photon beams, except for a reduction in the number of monitor units needed for 18 MV (p < .05). All techniques, except for three-field IMRT, allowed for dose escalation to a median dose of ≥93 ± 6 Gy (mean ± standard deviation) to the IPL. VMAT was superior to IMRT for rectal volumes receiving 20-50 Gy (p < .05). Conclusion: VMAT allowed for dose escalation to the IPL with better sparing of the rectum than static three-, five-, and seven-field IMRT setups. High-energy photons had no advantage over low-energy photons.

  19. Dosimetric Impact of Breathing Motion in Lung Stereotactic Body Radiotherapy Treatment Using Image-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rao Min, E-mail: min.mrao@gmail.com [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, Washington (United States); Wu Jianzhou; Cao Daliang; Wong, Tony; Mehta, Vivek; Shepard, David; Ye Jinsong [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, Washington (United States)

    2012-06-01

    Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.

  20. Volumetric-modulated arc therapy vs conventional fixed-field intensity-modulated radiotherapy in a whole-ventricular irradiation: A planning comparison study

    International Nuclear Information System (INIS)

    This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor units were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered

  1. Feasibility of stereotactic body radiation therapy with volumetric modulated arc therapy and high intensity photon beams for hepatocellular carcinoma patients

    International Nuclear Information System (INIS)

    To report technical features, early outcome and toxicity of stereotactic body radiation therapy (SBRT) treatments with volumetric modulated arc therapy (RapidArc) for patients with hepatocellular carcinoma (HCC). Twenty patients (22 lesions) were prospectively enrolled in a feasibility study. Dose prescription was 50Gy in 10 fractions. Seven patients (35%) were classified as AJCC stage I-II while 13 (65%) were stages III-IV. Eighteen patients (90%) were Child-Pugh stage A, the remaining were stage B. All patients were treated with RapidArc technique with flattening filter free (FFF) photon beams of 10MV from a TrueBeam linear accelerator. Technical, dosimetric and early clinical assessment was performed to characterize treatment and its potential outcome. Median age was 68 years, median initial tumor volume was 124 cm3 (range: 6–848). Median follow-up time was 7.4 months (range: 3–13). All patients completed treatment without interruption. Mean actuarial overall survival was of 9.6 ± 0.9 months (95%C.L. 7.8-11.4), median survival was not reached; complete response was observed in 8/22 (36.4%) lesions; partial response in 7/22 (31.8%), stable disease in 6/22 (27.3%), 1/22 (4.4%) showed progression. Toxicity was mild with only 1 case of grade 3 RILD and all other types were not greater than grade 2. Concerning dosimetric data, Paddick conformity index was 0.98 ± 0.02; gradient index was 3.82 ± 0.93; V95% to the clinical target volume was 93.6 ± 7.7%. Mean dose to kidneys resulted lower than 3.0Gy; mean dose to stomach 4.5 ± 3.0Gy; D1cm3 to spinal cord was 8.2 ± 4.5Gy; D1% to the esophagus was 10.2 ± 9.7Gy. Average beam on time resulted 0.7 ± 0.2 minutes (range: 0.4-1.4) with the delivery of an average of 4.4 partial arcs (range: 3–6) of those 86% non-coplanar. Clinical results could suggest to introduce VMAT-RapidArc as an appropriate SBRT technique for patients with HCC in view of a prospective dose escalation trial

  2. Texture analysis on the edge-enhanced fluence of VMAT

    International Nuclear Information System (INIS)

    Textural features of edge-enhanced fluence were analysed to quantify modulation degree of volumetric modulated arc therapy (VMAT) plans. Twenty prostate and twenty head and neck VMAT plans were retrospectively selected. Fluences of VMAT plans were generated by integration of monitor units shaped by multi-leaf collimators (MLCs) at each control point. When generating fluences, the values of pixels representing MLC tips were doubled to prevent smearing out of small or irregular fields (edge-enhancement). Six kinds of textural features, including angular second moment, inverse difference moment, contrast, variance, correlation and entropy, were calculated with particular displacement distances (d) of 1, 5 and 10. Plan delivery accuracy was evaluated by gamma-index method, mechanical parameter differences between plan and delivery and differences in dose-volumetric parameters between plan and delivery. Spearman’s correlation coefficients (rs) were calculated between the values of textural features and VMAT delivery accuracy. The rs values of contrast (d = 1) with edge-enhancement to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were 0.546 (p < 0.001), 0.744 (p < 0.001) and 0.487 (p = 0.001), respectively. Those with local 2%/2 mm, 1%/2 mm and 2%/1 mm were 0.588, 0.640 and 0.644, respectively (all with p < 0.001). The rs values of contrast (d = 1) to MLC and gantry angle errors were -0.853 and 0.655, respectively (all with p < 0.001). The contrast (d = 1) showed statistically significant rs values in 11 dose-volumetric parameter differences from a total of 35 cases, and generally showed better correlations to plan delivery accuracy than did previously suggested textural features with non-edge-enhanced fluences, as well as conventional modulation indices. Contrast (d = 1) with edge-enhanced fluences could be used as modulation index for VMAT

  3. Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate the dosimetric consequences of inaccurate isocenter positioning during treatment of total marrow (lymph-node) irradiation (TMI-TMLI) using volumetric modulated arc therapy (VMAT).Methods: Four patients treated with TMI and TMLI were randomly selected from the internal database. Plans were optimized with VMAT technique. Planning target volume (PTV) included all the body bones; for TMLI, lymph nodes and spleen were considered into the target, too. Dose prescription to PTV was 12 Gy in six fractions, two times per day for TMI, and 2 Gy in single fraction for TMLI. Ten arcs on five isocenters (two arcs for isocenter) were used to cover the upper part of PTV (i.e., from cranium to middle femurs). For each plan, three series of random shifts with values between −3 and +3 mm and three between −5 and +5 mm were applied to the five isocenters simulating involuntary patient motion during treatment. The shifts were applied separately in the three directions: left–right (L-R), anterior–posterior (A-P), and cranial–caudal (C-C). The worst case scenario with simultaneous random shifts in all directions simultaneously was considered too. Doses were recalculated for the 96 shifted plans (24 for each patient).Results: For all shifts, differences 100 cm3. Maximum doses increased up to 15% for C-C shifted plans. PTV covered by the 95% isodose decreased of 2%–8% revealing target underdosage with the highest values in C-C direction.Conclusions: The correct isocenter repositioning of TMI-TMLI patients is fundamental, in particular in C-C direction, in order to avoid over- and underdosages especially in the overlap regions. For this reason, a dedicated immobilization system was developed in the authors' center to best immobilize the patient

  4. Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Navarria, Piera; Reggiori, Giacomo; Tomatis, Stefano; Alongi, Filippo; Scorsetti, Marta [Department of Radiation Oncology, Humanitas Clinical and Research Center, Rozzano, Milan 20089 (Italy); Castagna, Luca; Sarina, Barbara [Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Milan 20089 (Italy); Nicolini, Giorgia; Fogliata, Antonella; Cozzi, Luca [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona 6500 (Switzerland)

    2013-11-15

    Purpose: To evaluate the dosimetric consequences of inaccurate isocenter positioning during treatment of total marrow (lymph-node) irradiation (TMI-TMLI) using volumetric modulated arc therapy (VMAT).Methods: Four patients treated with TMI and TMLI were randomly selected from the internal database. Plans were optimized with VMAT technique. Planning target volume (PTV) included all the body bones; for TMLI, lymph nodes and spleen were considered into the target, too. Dose prescription to PTV was 12 Gy in six fractions, two times per day for TMI, and 2 Gy in single fraction for TMLI. Ten arcs on five isocenters (two arcs for isocenter) were used to cover the upper part of PTV (i.e., from cranium to middle femurs). For each plan, three series of random shifts with values between −3 and +3 mm and three between −5 and +5 mm were applied to the five isocenters simulating involuntary patient motion during treatment. The shifts were applied separately in the three directions: left–right (L-R), anterior–posterior (A-P), and cranial–caudal (C-C). The worst case scenario with simultaneous random shifts in all directions simultaneously was considered too. Doses were recalculated for the 96 shifted plans (24 for each patient).Results: For all shifts, differences <0.5% were found for mean doses to PTV, body, and organs at risk with volumes >100 cm{sup 3}. Maximum doses increased up to 15% for C-C shifted plans. PTV covered by the 95% isodose decreased of 2%–8% revealing target underdosage with the highest values in C-C direction.Conclusions: The correct isocenter repositioning of TMI-TMLI patients is fundamental, in particular in C-C direction, in order to avoid over- and underdosages especially in the overlap regions. For this reason, a dedicated immobilization system was developed in the authors' center to best immobilize the patient.

  5. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    Science.gov (United States)

    Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David

    2010-11-01

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly

  6. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    International Nuclear Information System (INIS)

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly

  7. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Rao Min; Cao Daliang; Chen Fan; Ye Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David, E-mail: min.mrao@gmail.co [Department of Radiation Oncology, Swedish Cancer Institute, 1221 Madison St Seattle, WA 98104 (United States)

    2010-11-07

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle{sup 3} TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle{sup 3} TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle{sup 3} SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable

  8. Validation and experience of a year with an independent calculation software for VMAT fields; Validacion y experencia de un ano con un software de calculo independiente para campos VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Mata Colodro, F.; Serna Berna, A.; Puchades Puchades, V.; Ramos Amores, D.

    2013-07-01

    It is widely accepted that in the process of quality control prior to any treatment must be a redundant and independent (CRI) calculation of the dose or monitor units obtained by treatment Planner. In the case of 3D (3D CRT) conformed radiotherapy treatments these calculations could even be done manually using basic dosimetric data. However, intensity-modulated fields requires a more complex software. Diamond (PTW) is an application that allows to calculate fields with modulation of intensity and, in particular, in addition to conventional fields, fields VMAT (volumetric modulated arc therapy). In this work the validation and findings presented after one year of clinical experience with VMAT fields. (Author)

  9. Feasibility of accelerated partial breast irradiation with volumetric-modulated arc therapy in elderly and frail patients

    International Nuclear Information System (INIS)

    Accelerated partial breast irradiation (APBI) is an option for adjuvant radiotherapy according to ASTRO and ESTRO recommendations. Among the available techniques, volumetric-modulated arc therapy (VMAT) is attractive but has not been extensively studied for APBI. This study assessed its feasibility, tolerance and early oncological outcomes. We analysed the data of nine patients (median age 74 years) with ten lesions (one bilateral cancer) treated from May 2011 to July 2012 with APBI using VMAT. The radiation oncologist delineated the surgical tumour bed, and added an 18 mm isotropic margin to obtain the planning target volume (PTV). The dose was 40 Gy prescribed in 4 Gy fractions given twice a day over five days. Patients were regularly followed for toxicities and oncological outcomes. Mean PTV was 100.0 cm3 and 95 % of the PTV received a mean dose of 99.7 % of the prescribed dose. Hot spots represented 0.3 % of the PTV. 6.2 %, 1.6 % and 0.3 % of the ipsilateral lung volume received 5 Gy (V5Gy), 10 Gy (V10Gy) and 20 Gy (V20Gy), respectively. Regarding the contralateral lung, V5Gy was 0.3 %, and V10Gy and V20Gy were nil. V5Gy accounted for 3.1 % of the heart. An average 580 monitor units were delivered. No acute or late grade ≥ 2 toxicities were observed. With a median follow-up of 26 months, no relapses occurred. In our study, VMAT allowed optimal dosimetry with consequential high therapeutic ratio in elderly and frail patients

  10. A Treatment Planning and Acute Toxicity Comparison of Two Pelvic Nodal Volume Delineation Techniques and Delivery Comparison of Intensity-Modulated Radiotherapy Versus Volumetric Modulated Arc Therapy for Hypofractionated High-Risk Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To perform a comparison of two pelvic lymph node volume delineation strategies used in intensity-modulated radiotherapy (IMRT) for high risk prostate cancer and to determine the role of volumetric modulated arc therapy (VMAT). Methods and Materials: Eighteen consecutive patients accrued to an ongoing clinical trial were identified according to either the nodal contouring strategy as described based on lymphotropic nanoparticle-enhanced magnetic resonance imaging technology (9 patients) or the current Radiation Therapy Oncology Group (RTOG) consensus guidelines (9 patients). Radiation consisted of 45 Gy to prostate, seminal vesicles, and lymph nodes, with a simultaneous integrated boost to the prostate alone, to a total dose of 67.5 Gy delivered in 25 fractions. Prospective acute genitourinary and gastrointestinal toxicities were compared at baseline, during radiotherapy, and 3 months after radiotherapy. Each patient was retrospectively replanned using the opposite method of nodal contouring, and plans were normalized for dosimetric comparison. VMAT plans were also generated according to the RTOG method for comparison. Results: RTOG plans resulted in a significantly lower rate of genitourinary frequency 3 months after treatment. The dosimetric comparison showed that the RTOG plans resulted in both favorable planning target volume (PTV) coverage and lower organs at risk (OARs) and integral (ID) doses. VMAT required two to three arcs to achieve adequate treatment plans, we did not observe consistent dosimetric benefits to either the PTV or the OARs, and a higher ID was observed. However, treatment times were significantly shorter with VMAT. Conclusion: The RTOG guidelines for pelvic nodal volume delineation results in favorable dosimetry and acceptable acute toxicities for both the target and OARs. We are unable to conclude that VMAT provides a benefit compared with IMRT.

  11. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    Science.gov (United States)

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for

  12. An experimental evaluation of the Agility MLC for motion-compensated VMAT delivery

    International Nuclear Information System (INIS)

    An algorithm for dynamic multileaf-collimator (dMLC) tracking of a target performing a known a priori, rigid-body motion during volumetric modulated arc therapy (VMAT), has been experimentally validated and applied to investigate the potential of the Agility (Elekta AB, Stockholm, Sweden) multileaf-collimator (MLC) for use in motion-compensated VMAT delivery. For five VMAT patients, dosimetric measurements were performed using the Delta4 radiation detector (ScandiDos, Uppsala, Sweden) and the accuracy of dMLC tracking was evaluated using a gamma-analysis, with threshold levels of 3% for dose and 3 mm for distance-to-agreement. For a motion trajectory with components in two orthogonal directions, the mean gamma-analysis pass rate without tracking was found to be 58.0%, 59.0% and 60.9% and was increased to 89.1%, 88.3% and 93.1% with MLC tracking, for time periods of motion of 4 s, 6 s and 10 s respectively. Simulations were performed to compare the efficiency of the Agility MLC with the MLCi MLC when used for motion-compensated VMAT delivery for the same treatment plans and motion trajectories. Delivery time increases from a static-tumour to dMLC-tracking VMAT delivery were observed in the range 0%–20% for the Agility, and 0%–57% with the MLCi, indicating that the increased leaf speed of the Agility MLC is beneficial for MLC tracking during lung radiotherapy. (paper)

  13. Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency.

    Science.gov (United States)

    Thomas, Evan M; Popple, Richard A; Prendergast, Brendan M; Clark, Grant M; Dobelbower, Michael C; Fiveash, John B

    2013-01-01

    Flattening filter-free (FFF) beams are available on an increasing number of commercial linear accelerators. FFF beams have higher dose rates than flattened beams of equivalent energy which can lead to increased efficiency of treatment delivery, especially in conjunction with increased FFF beam energy and arc-based delivery configurations. The purpose of this study is to quantify and assess the implications of improved treatment efficiency for several FFF delivery options on common types of linac applicable radiotherapy. Eleven characteristic cases representative of a variety of clinical treatment sites and prescription doses were selected from our patient population. Treatment plans were generated for a Varian TrueBeam linear accelerator. For each case, a reference plan was created using DMLC IMRT with 6MV flat beams. From the same initial objectives, plans were generated using DMLC IMRT and volumetric-modulated arc therapy (VMAT) with 6 MV FFF and 10 MV FFF beams (max. dose rates of 1400 and 2400 MU/min, respectively). The plans were delivered to a phantom; beam-on time, total treatment delivery time, monitor units (MUs), and integral dose were recorded. For plans with low dose fractionations (1.8-2.0 & 3.85 Gy/fraction), mean beam-on time difference between reference plan and most efficient FFF plan was 0.56 min (41.09% decrease); mean treatment delivery time difference between the reference plan and most efficient FFF plan was 1.54 min (range: 0.31-3.56 min), a relative improvement of 46.1% (range: 29.2%-59.2%). For plans with high dose fractionations (16-20 Gy/fraction), mean beam-on time difference was 6.79 min (74.9% decrease); mean treatment delivery time difference was 8.99 min (range: 5.40-13.05 min), a relative improvement of 71.1% (range: 53.4%- 82.4%). 10 MV FFF VMAT beams generated the most efficient plan, except in the spine SBRT case. The distribution of monitor unit counts did not vary by plan type. In cases where respiratory motion management would

  14. Electron arc therapy: physical measurement and treatment planning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, D.D.; Peacock, L.M.; Gibbs, F.A. Jr.; Stewart, J.R.

    1985-05-01

    An electron beam arc therapy technique has been developed for the treatment of the post-mastectomy chest wall using a clinical linear accelerator modified for arc therapy. The effects on the dose distribution of primary X ray collimators, secondary cerrobend blocks attached to the accelerator accessory tray, and tertiary cerrobend casting of the treatment area on the patient's thorax have been investigated. A computerized treatment planning program has been developed to aid in visualization and optimization of dose distributions. A simple technique to estimate the width variation in the secondary collimator necessary to compensate for radial patient thickness changes in the cephalocaudad direction is described. Electron beam energies of 6 MeV, 9 MeV, 12 MeV, 15 MeV, and 18 MeV have been studied. The physical measurements needed to implement this technique are described, and a comparison of electron arc therapy dose distributions with other standard treatment techniques is presented.

  15. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γavg < 0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  16. SU-E-T-522: A Multi-Isocenter VMAT Technique for Cranio-Spinal Irradiation

    International Nuclear Information System (INIS)

    Purpose: Develop a matching VMAT field technique and investigate planning feasibility for treating the entire central nervous system (CNS) using Cranio-Spinal Irradiation (CSI) . Methods: Two patients diagnosed with acute myeloid leukemia (AML) presented with CNS involvement, received CSI, and were included in this study. The patients were treated with the traditional CSI technique: prone position, opposing lateral brain fields, two posterior fields (upper and lower spine), and 5mm junction shifts to improve dose uniformity. The patients were retrospectively re-planned using volumetric arc therapy (VMAT). The spine and brain were contoured to create the clinical target volume (CTV) as well as normal tissues including kidneys, lung and heart for optimization. Three isocenters were used for planning: brain, upper and lower spine. The beams were allowed to overlap by approximately 10cm. Entire 360 degree rotations were used for the brain fields and posterior 120 degree arcs were used for the spine fields. The dosimetric coverage of the target between the VMAT and traditional plans was compared, as well as the dose to normal tissues. Results: Both VMAT plans achieved improved dose uniformity in the CTV (standard deviation < 2%), and reduced hot spots (<110%). Dose to the heart was reduced, with the V10 being 12.7% and 28.2%, compared to 44.6% and 50.2%, respectively, for the traditional plan. Dose to the total lung V5 increased for the VMAT plans for both patients (21.6% and 27.8% compared to 12% and 13% respectively). The results for the kidneys were mixed with the mean dose increasing for one patient and decreasing for the other . Conclusion: The efficacy of planning CSI treatments using a matching VMAT technique was demonstrated. The developed technique has the potential to improve dose uniformity to the target while at the same time reduce the risk of under or over dosing the spine

  17. SU-E-T-522: A Multi-Isocenter VMAT Technique for Cranio-Spinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, M; Chi, P; Tung, S; Pinnix, C; Dabaja, B [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Develop a matching VMAT field technique and investigate planning feasibility for treating the entire central nervous system (CNS) using Cranio-Spinal Irradiation (CSI) . Methods: Two patients diagnosed with acute myeloid leukemia (AML) presented with CNS involvement, received CSI, and were included in this study. The patients were treated with the traditional CSI technique: prone position, opposing lateral brain fields, two posterior fields (upper and lower spine), and 5mm junction shifts to improve dose uniformity. The patients were retrospectively re-planned using volumetric arc therapy (VMAT). The spine and brain were contoured to create the clinical target volume (CTV) as well as normal tissues including kidneys, lung and heart for optimization. Three isocenters were used for planning: brain, upper and lower spine. The beams were allowed to overlap by approximately 10cm. Entire 360 degree rotations were used for the brain fields and posterior 120 degree arcs were used for the spine fields. The dosimetric coverage of the target between the VMAT and traditional plans was compared, as well as the dose to normal tissues. Results: Both VMAT plans achieved improved dose uniformity in the CTV (standard deviation < 2%), and reduced hot spots (<110%). Dose to the heart was reduced, with the V10 being 12.7% and 28.2%, compared to 44.6% and 50.2%, respectively, for the traditional plan. Dose to the total lung V5 increased for the VMAT plans for both patients (21.6% and 27.8% compared to 12% and 13% respectively). The results for the kidneys were mixed with the mean dose increasing for one patient and decreasing for the other . Conclusion: The efficacy of planning CSI treatments using a matching VMAT technique was demonstrated. The developed technique has the potential to improve dose uniformity to the target while at the same time reduce the risk of under or over dosing the spine.

  18. FEASIBILITY FOR USING HYPOFRACTIONATED STEREOTACTIC VOLUMETRIC MODULATED ARC RADIOTHERAPY (VMAT) WITH ADAPTIVE PLANNING FOR TREATMENT OF THYMOMA IN RABBITS: 15 CASES.

    Science.gov (United States)

    Dolera, Mario; Malfassi, Luca; Mazza, Giovanni; Urso, Gaetano; Sala, Massimo; Marcarini, Silvia; Carrara, Nancy; Pavesi, Simone; Finesso, Sara; Kent, Michael S

    2016-05-01

    Thymoma is a relatively common tumor in rabbits. Treatment with surgery, radiation therapy, and chemotherapy alone or in combination has been reported with varying outcomes. Stereotactic volumetric modulated arc radiotherapy delivered in a hypofractionated manner allows high doses of radiation to be delivered to the target volume while allowing sparing of adjacent critical structures. This therapy is ideally suited for thymomas in rabbits given their size, the difficulty of multiple anesthesia episodes and the complexity of the radiotherapy plans required due to the tumor's proximity to the heart, lungs, and mediastinal structures. Fifteen rabbits with thymoma were prospectively recruited for this observational, single institution, single arm clinical study. All rabbits were imaged with both computed tomography (CT) and magnetic resonance imaging (MRI). A total dose of 40 Gy in six fractions was delivered using a single arc over an 11-day period with repeat CT simulation done every other fraction for adaptive planning. Follow-up evaluation was done through repeat CT and MRI imaging and revealed complete responses using the Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Two rabbits had died at 618 and 718 days, 10 were alive and three were lost to follow-up. Observed acute and late effects were graded according to the Veterinary Radiation Therapy Oncology Group (VRTOG) criteria and were found to be minimal. PMID:26748539

  19. A moving blocker-based strategy for simultaneous megavoltage and kilovoltage scatter correction in cone-beam computed tomography image acquired during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate a moving blocker-based approach in estimating and correcting megavoltage (MV) and kilovoltage (kV) scatter contamination in kV cone-beam computed tomography (CBCT) acquired during volumetric modulated arc therapy (VMAT). Methods and materials: During the concurrent CBCT/VMAT acquisition, a physical attenuator (i.e., “blocker”) consisting of equally spaced lead strips was mounted and moved constantly between the CBCT source and patient. Both kV and MV scatter signals were estimated from the blocked region of the imaging panel, and interpolated into the unblocked region. A scatter corrected CBCT was then reconstructed from the unblocked projections after scatter subtraction using an iterative image reconstruction algorithm based on constraint optimization. Experimental studies were performed on a Catphan® phantom and an anthropomorphic pelvis phantom to demonstrate the feasibility of using a moving blocker for kV–MV scatter correction. Results: Scatter induced cupping artifacts were substantially reduced in the moving blocker corrected CBCT images. Quantitatively, the root mean square error of Hounsfield units (HU) in seven density inserts of the Catphan phantom was reduced from 395 to 40. Conclusions: The proposed moving blocker strategy greatly improves the image quality of CBCT acquired with concurrent VMAT by reducing the kV–MV scatter induced HU inaccuracy and cupping artifacts

  20. SU-E-T-644: Evaluation of Angular Dependence Correction for 2D Array Detector Using for Quality Assurance of Volumetric Modulated Arc Therapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry angle on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy

  1. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Tailor, Ramesh C. [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States); Isa, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Princess Margaret Cancer Center, University Health Network, Toronto, Ontario (Canada); Afzal, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur (Pakistan); Chow, James [Princess Margaret Cancer Center, University Health Network, Toronto, Ontario (Canada); Ibbott, Geoffrey S. [Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetime risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.

  2. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    International Nuclear Information System (INIS)

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle3, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetime risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques

  3. 食管癌VMAT与IMRT的剂量学比较%The application of volumetric modulated arc therapy in esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    刘丽虹; 王澜; 韩春; 张靖; 田华; 李晓宁

    2015-01-01

    目的 比较食管癌VMAT与静态IMRT的剂量学差异,探索VMAT的可行性.方法 2011-2012年入组食管癌患者30例,颈段、胸下段各5例,胸上段、胸中段各10例.用医科达Oncentra 4.1计划系统分别设计单弧VMAT和IMRT计划,PTV处方剂量60Gy分30次.用Delta 4进行剂量验证.配对t检验或Wilcoxon符号检验比较两组计划PTV、OAR受量、机器跳数及有效治疗时间.结果 两组计划均能满足临床剂量学要求.与IMRT相比VMAT的CI值好(P =0.008),脊髓Dmax更低(P=0.032),但心脏V30、V40、Dmean增高(P=0.041、0.012、0.002);颈段病变VMAT的肺V5-V15及MLD增高(P=0.002~0.022、0.022);胸上段病变VMAT的心脏V30、Dmwan增高(P=0.030、0.026),脊髓Dmax减低(P=0.006);胸中段病变VMAT的肺V10-V20减低(P =0.015~0.041);胸下段病变两组计划各项指标相近(P=0.262~0.998).3 mm/3%标准下γ通过率VMAT为92.75%,IMRT为92.98% (P =0.826).机器跳数VMAT为460.66 MU,IMRT为522.55 MU,平均减少11.84% (P =0.001).有效治疗时间VMAT为139.6 s,IMRT为298.73 s,缩短了53.27%(P=0.000).结论 在靶区覆盖率相似前提下,VMAT可降低部分OAR受量,并能改善CI值、减少机器跳数、缩短有效治疗时间.Synergy平台上的VMAT计划剂量稳定可靠.%Objective To compare the dosimetric difference between volumetric modulated arc therapy (VMAT) and static intensity modulated radiotherapy (IMRT) for esophageal carcinoma.Methods Thirty patients were selected in this study,including 5 cases in the cervical,5 the lower thorax,10 the upper thorax and 10 the middle thorax.VMAT plans with a single arc and IMRT plans with five fields designed for each patients.Planning target volume (PTV) were prescribed to 60 Gy in 30 fractions.Delta 4 was used to verifie the dosimetric of treatment plans.Using paired t-test or Wilcoxon signed-test to compare the dose distribution on planning and organs at risk (OAR).The monitor units and treatment time were also evaluated to

  4. SU-E-J-99: Reconstruction of Cone Beam CT Image Using Volumetric Modulated Arc Therapy Exit Beams

    International Nuclear Information System (INIS)

    Purpose: To test the possibility of obtaining an image of the treated volume during volumetric modulated arc therapy (VMAT) with exit beams. Method: Using a Varian Clinac 21EX and MVCT detector the following three sets of detector projection data were obtained for cone beam CT reconstruction with and without a Catphan 504 phantom. 1) 72 projection images from 20 × 16 cm2 open beam with 3 MUs, 2) 72 projection images from 20 × 16 cm2 MLC closed beam with 14 MUs. 3) 137 projection images from a test RapicArc QA plan. All projection images were obtained in ‘integrated image’ mode. We used OSCaR code to reconstruct the cone beam CT images. No attempts were made to reduce scatter or artifacts. Results: With projection set 1) we obtained a good quality MV CBCT image by optimizing the reconstruction parameters. Using projection set 2) we were not able to obtain a CBCT image of the phantom, which was determined to be due to the variation of interleaf leakage with gantry angle. From projection set 3), we were able to obtain a weak but meaningful signal in the image, especially in the target area where open beam signals were dominant. This finding suggests that one might be able to acquire CBCT images with rough body shape and some details inside the irradiated target area. Conclusion: Obtaining patient images using the VMAT exit beam is challenging but possible. We were able to determine sources of image degradation such as gantry angle dependent interleaf leakage and beams with a large scatter component. We are actively working on improving image quality

  5. Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance.

    Science.gov (United States)

    Barnes, Michael P; Greer, Peter B

    2016-01-01

    In volumetric-modulated arc therapy (VMAT) treatment delivery perfect beam symmetry is assumed by the planning system. This study aims to test this assump-tion and present a method of measuring time-resolved beam symmetry measure-ment during a VMAT delivery that includes extreme variations of dose rate and gantry speed. The Sun Nuclear IC Profiler in gantry mount was used to measure time-resolved in-plane and cross-plane profiles during plan delivery from which symmetry could be determined. Time-resolved symmetry measurements were performed throughout static field exposures at cardinal gantry angles, conformal arcs with constant dose rate and gantry speed, and during a VMAT test plan with gantry speed and dose rate modulation. Measurements were performed for both clockwise and counterclockwise gantry rotation and across four Varian 21iX lin-acs. The symmetry was found to be generally constant throughout the static field exposures to within 0.3% with an exception on one linac of up to 0.7%. Agreement in symmetry between cardinal angles was always within 1.0% and typically within 0.6%. During conformal arcs the results for clockwise and counterclockwise rotation were in agreement to within 0.3%. Both clockwise and counterclockwise tended to vary in similar manner by up to 0.5% during arc consistent with the cardinal gantry angle static field results. During the VMAT test plan the symmetry generally was in agreement with the conformal arc results. Greater variation in symmetry was observed in the low-dose-rate regions by up to 1.75%. All results were within clinically acceptable levels using the tolerances of NCS Report 24 (2015). PMID:27074485

  6. Peripheral dose from neutrons and photons in the radiation treatment of pelvic tumors with conventional technique or VMAT. A review; Periphere Neutronen- und Photonendosis bei der Radiotherapie von Tumoren des Beckens mit konventioneller Technik oder VMAT. Eine Literaturuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, P. [Medizinische Univ. Graz (Austria). Comprehensive Cancer Center

    2015-07-01

    Peripheral neutron and photon doses from external beam radiation therapy are associated with the risk of carcinogenesis in organs distant to the treated volume. In the irradiation of tumors and target volumes in the pelvis with convention photon-radiotherapy beams with high nominal energies (above 15 MeV) are typically used. During the last years volumetric modulated arc therapy (VMAT) techniques have gained a wide-spread use for pelvic treatments. The beam-energies that are primarily used in VMAT are below 10 MeV. Therefore, a reduction in peripheral dose due to the absence of neutrons can be expected when VMAT is utilized. On the other hand the number of monitor units is increased in increased in VMAT, as compared to conventional unmodulated fields, by a factor of two to three. This leads to an increase in transmission dose from the machine's treatment head, such that the potential benefit might be outbalanced. The question, whether the increasing use of VMAT might lead to a reduction of peripheral dose, is the subject of several studies. Those studies use either measurements in phantom settings or Monte-Carlo simulations. A systematic review of the literature shows diverging, and sometimes even contradictory, findings. Therefore, the issue of peripheral dose and the risk for secondary malignancies requires further investigation. In our opinion, the focus should be put on measurements and simulations, but also on modelling of dose-response correlations.

  7. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y [Hiroshima Heiwa Clinic, Hiroshima (Japan); Hayashi, S [Hiroshima International University, Hiroshima (Japan); Miyazawa, M [R-TECH.INC, Toukyo (Japan)

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 T MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.

  8. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience.

    Science.gov (United States)

    Cilla, Savino; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Ianiro, Anna; Viola, Pietro; Craus, Maurizio; Valentini, Vincenzo; Piermattei, Angelo; Morganti, Alessio G

    2016-01-01

    We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. For a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36min/Gy. The mean number of monitor units was 3162, i.e., 121.6MU/Gy. Pretreatment verification (3%-3mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta VMAT

  9. Peripheral dose from neutrons and photons in the radiation treatment of pelvic tumors with conventional technique or VMAT. A review

    International Nuclear Information System (INIS)

    Peripheral neutron and photon doses from external beam radiation therapy are associated with the risk of carcinogenesis in organs distant to the treated volume. In the irradiation of tumors and target volumes in the pelvis with convention photon-radiotherapy beams with high nominal energies (above 15 MeV) are typically used. During the last years volumetric modulated arc therapy (VMAT) techniques have gained a wide-spread use for pelvic treatments. The beam-energies that are primarily used in VMAT are below 10 MeV. Therefore, a reduction in peripheral dose due to the absence of neutrons can be expected when VMAT is utilized. On the other hand the number of monitor units is increased in increased in VMAT, as compared to conventional unmodulated fields, by a factor of two to three. This leads to an increase in transmission dose from the machine's treatment head, such that the potential benefit might be outbalanced. The question, whether the increasing use of VMAT might lead to a reduction of peripheral dose, is the subject of several studies. Those studies use either measurements in phantom settings or Monte-Carlo simulations. A systematic review of the literature shows diverging, and sometimes even contradictory, findings. Therefore, the issue of peripheral dose and the risk for secondary malignancies requires further investigation. In our opinion, the focus should be put on measurements and simulations, but also on modelling of dose-response correlations.

  10. Physical aspects of electron-beam arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khan, F.M.; Fullerton, G.D.; Lee, J.M.F.; Moore, V.C.; Levitt, S.H.

    1977-08-01

    The effect of different parameters on dose distribution in electron-beam arc therapy was studied in order to develop a technique for routine clinical use. A special diaphragm was designed to facilitate telecentric rotation. Dosimetry was performed with an ion chamber, film, and LiF powder in cylindrical polystyrene phantoms and an Alderson Rando phantom. Dose distributions were evaluated with regard to dose homogeneity, and a method of sharpening the dose fall-off near the ends of the arc was proposed. Criteria for selection of isocenter depth and field size were developed. Methods of dose calculation, calibration, and treatment planning are discussed.

  11. Reirradiation of spinal column metastases. Comparison of several treatment techniques and dosimetric validation for the use of VMAT

    International Nuclear Information System (INIS)

    For reirradiation of spinal column metastases, intensity-modulated radiation therapy (IMRT) reduces the dose to the spinal cord, while allowing longer treatment times. We analyzed the potential of volumetric modulated arc therapy (VMAT) to reduce treatment time and number of monitor units (MU). In CT datasets of 9 patients with spinal column metastases, the planned target volume (PTV) encompassed the macroscopic tumor including the spinal cord or medullary cone, respectively. The prescribed dose for the target was 40 Gy, but median spinal cord dose was intended to be < 26 Gy. We compared a posterior (3D-PA) static field technique, a two-field wedge technique (3D-wedge) and 5-/7-beam IMRT with VMAT. Conformity index (CI), homogeneity index (HI40), dose volume histogram (DVH) parameters, treatments delivery time (T), and MU were analyzed. Dosimetry was validated with EDR2-film/ionization chambers. PTV coverage was insufficient for 3D-conformal radiotherapy (3D-CRT) when spinal cord tolerance was respected. The IMRT approach provided excellent results but has the longest treatment time. VMAT produced dose distributions similar to IMRT with shorter treatment times (VMAT: mean 4:49 min; IMRT: mean 6:50 min) and fewer MU (VMAT: 785; IMRT: 860). Reduced conformity and increased homogeneity for VMAT when compared to IMRT were observed. An absolute deviation between measured and calculated dose of +0.70 ± 3.69% was recorded. γ-Index analysis showed an agreement of 91.33 ± 3.53% for the 5%/5 mm criteria. For this paradigm, VMAT produces high quality treatment plans with homogeneity/conformity similar to static IMRT, shorter treatment times, and fewer MU. Verification measurements showed good agreement between calculation and delivered dose, leading to clinical implementation. (orig.)

  12. A novel technique for VMAT QA with EPID in cine mode on a Varian TrueBeam linac

    International Nuclear Information System (INIS)

    Volumetric modulated arc therapy (VMAT) is a relatively new treatment modality for dynamic photon radiation therapy. Pre-treatment quality assurance (QA) is necessary and many efforts have been made to apply electronic portal imaging device (EPID)-based IMRT QA methods to VMAT. It is important to verify the gantry rotation speed during delivery as this is a new variable that is also modulated in VMAT. In this paper, we present a new technique to perform VMAT QA using an EPID. The method utilizes EPID cine mode and was tested on Varian TrueBeam in research mode. The cine images were acquired during delivery and converted to dose matrices after profile correction and dose calibration. A sub-arc corresponding to each cine image was extracted from the original plan and its portal image prediction was calculated. Several analyses were performed including 3D γ analysis (2D images + gantry angle axis), 2D γ analysis, and other statistical analyses. The method was applied to 21 VMAT photon plans of 3 photon energies. The accuracy of the cine image information was investigated. Furthermore, this method's sensitivity to machine delivery errors was studied. The pass rate (92.8 ± 1.4%) for 3D γ analysis was comparable to those from Delta4 system (99.9 ± 0.1%) under similar criteria (3%, 3 mm, 5% threshold and 2° angle to agreement) at 6 MV. The recorded gantry angle and start/stop MUs were found to have sufficient accuracy for clinical QA. Machine delivery errors can be detected through combined analyses of 3D γ, gantry angle, and percentage dose difference. In summary, we have developed and validated a QA technique that can simultaneously verify the gantry angle and delivered MLC fluence for VMAT treatment.This technique is efficient and its accuracy is comparable to other QA methods. (paper)

  13. Plan averaging for multicriteria navigation of sliding window IMRT and VMAT

    International Nuclear Information System (INIS)

    Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetric average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step

  14. Plan averaging for multicriteria navigation of sliding window IMRT and VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Craft, David, E-mail: dcraft@partners.org; Papp, Dávid; Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-02-15

    Purpose: To describe a method for combining sliding window plans [intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT)] for use in treatment plan averaging, which is needed for Pareto surface navigation based multicriteria treatment planning. Methods: The authors show that by taking an appropriately defined average of leaf trajectories of sliding window plans, the authors obtain a sliding window plan whose fluence map is the exact average of the fluence maps corresponding to the initial plans. In the case of static-beam IMRT, this also implies that the dose distribution of the averaged plan is the exact dosimetric average of the initial plans. In VMAT delivery, the dose distribution of the averaged plan is a close approximation of the dosimetric average of the initial plans. Results: The authors demonstrate the method on three Pareto optimal VMAT plans created for a demanding paraspinal case, where the tumor surrounds the spinal cord. The results show that the leaf averaged plans yield dose distributions that approximate the dosimetric averages of the precomputed Pareto optimal plans well. Conclusions: The proposed method enables the navigation of deliverable Pareto optimal plans directly, i.e., interactive multicriteria exploration of deliverable sliding window IMRT and VMAT plans, eliminating the need for a sequencing step after navigation and hence the dose degradation that is caused by such a sequencing step.

  15. Optimization of verification pretreatment of plans of radiotherapy treatment with the technique of arcoterapia with RapidArc VMAT intensity-modulated

    International Nuclear Information System (INIS)

    The pretreatment verification of plans arcoterapia intensity modulated (VMAT) increases the workload on the services of radio physics. These checks focus with two objectives: First, check the dose calculation system for treatment planning; and second verify that the accelerator is able to administer treatment as has been planned. There are different commercial solutions to facilitate this procedure. The purpose of this paper is to compare the efficiency of four sets of independent verification to establish an optimal protocol. (Author)

  16. Dosimetric Verification Using 2D Planar Diode Arrays and 3D Cylindrical Diode Arrays in IMRT and VMAT

    International Nuclear Information System (INIS)

    Introduction: Dosimetric verification of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) before treatment is necessary due to the complexity of delivery beams. This work aims to evaluate the performance of 2D planar and 3D cylindrical diode arrays for patient specific QA in IMRT and VMAT. Methods: MapCHECK and ArcCHECK were studied for their properties before clinical use. The clinical performance was demonstrated with IMRT and VMAT plans, the measured results were compared with the calculation from Eclipse treatment planning. The gamma index of 3% /3mm with 10% threshold dose were the criteria of agreement between measured and calculated. Results: MapCHECK and ArcCHECK showed linearly dose response and demonstrated a short term and long term reproducibility within ± 0.2 and ± 2%, the repeatability rate effect was within ± 0.1 and ± 0.25 %, respectively. The dose rate response was within ± 1% for both detectors. The field size dependence was the same as ionization chamber response. The variation in energy response was within ± 4.5% for MapCHECK and ± 2% for ArcCHECK. The measured beam profile of open and 30° of hard and enhance dynamic wedge showed good agreement with calculated dose. Both detectors showed the excellent percentage passing for all 15 IMRT and VMAT plans. For IMRT, The average of the % pass of MapCHECK was 97.31 with the mean gamma of 0.45. The average number of detector was 344.80, while the average of the % pass of ArcCHECK was 97.21 with the mean gamma of 0.46. The average number of detector was 1049.31. For VMAT, The average of the % pass of MapCHECK was 98.55 with the mean gamma of 0.37. The average number of detector was 410, while the average of the % pass of ArcCHECK was 97.04 with the mean γ of 0.43. The average number of detector was 1054. Discussion: The more detectors of ArcCHECK than MapCHECK make more dose measurement points that increase the chance of dose difference. In addition, Map

  17. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery.

    Science.gov (United States)

    Hunt, Margie A; Sonnick, Mark; Pham, Hai; Regmi, Rajesh; Xiong, Jian-Ping; Morf, Daniel; Mageras, Gig S; Zelefsky, Michael; Zhang, Pengpeng

    2016-01-01

    The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios. Automatic registra-tion of kV images and single MV frames or MV SA-DTS reconstructed with arc lengths from 2° to 7° with the appropriate reference fiducial template images was performed using special purpose-built software. Clinical feasibility was evaluated by retrospectively analyzing images acquired over four or five sessions for each of three patients undergoing hypofractionated prostate radiotherapy. The standard deviation of the registration error in phantom using MV SA-DTS was similar to single MV images for the static and prostate motion scenarios (σ = 0.25 mm). Under respiratory motion conditions, the standard deviation of the registration error increased to 0.7mm and 1.7 mm for single MV and MV SA-DTS, respectively. Registration failures were observed with the respiratory scenario only and were due to motion-induced fiducial blurring. For the three patients studied, the mean and standard deviation of the difference between automatic registration using 4° MV SA-DTS and manual registration using single MV images results was 0.07±0.52mm. The MV SA-DTS results in patients were, on average, superior to single-frame MV by nearly 1 mm - significantly more than what was observed in phantom. The best MV SA-DTS results were observed with arc lengths of 3° to 4°. Registration failures in patients using MV SA-DTS were primarily due to blockage of the gold seeds by the MLC. The failure rate varied from 2% to 16%. Combined MV SA

  18. Simultaneous MV-kV imaging for intrafractional motion management during volumetric-modulated arc therapy delivery*

    Science.gov (United States)

    Hunt, Margie A.; Sonnick, Mark; Pham, Hai; Regmi, Rajesh; Xiong, Jian-ping; Morf, Daniel; Mageras, Gig S.; Zelefsky, Michael; Zhang, Pengpeng

    2016-01-01

    The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios. Automatic registration of kV images and single MV frames or MV SA-DTS reconstructed with arc lengths from 2° to 7° with the appropriate reference fiducial template images was performed using special purpose-built software. Clinical feasibility was evaluated by retrospectively analyzing images acquired over four or five sessions for each of three patients undergoing hypofractionated prostate radiotherapy. The standard deviation of the registration error in phantom using MV SA-DTS was similar to single MV images for the static and prostate motion scenarios (σ = 0.25 mm). Under respiratory motion conditions, the standard deviation of the registration error increased to 0.7mm and 1.7 mm for single MV and MV SA-DTS, respectively. Registration failures were observed with the respiratory scenario only and were due to motion-induced fiducial blurring. For the three patients studied, the mean and standard deviation of the difference between automatic registration using 4° MV SA-DTS and manual registration using single MV images results was 0.07±0.52mm. The MV SA-DTS results in patients were, on average, superior to single-frame MV by nearly 1 mm — significantly more than what was observed in phantom. The best MV SA-DTS results were observed with arc lengths of 3° to 4°. Registration failures in patients using MV SA-DTS were primarily due to blockage of the gold seeds by the MLC. The failure rate varied from 2% to 16%. Combined MV SA

  19. Dosimetric comparison of two arcs VMAT plan and IMRT plan for breast cancer post-mastectomy%乳腺癌根治术后双弧VMAT与IMRT计划的剂量学比较

    Institute of Scientific and Technical Information of China (English)

    王佳浩; 李夏东; 邓清华; 吴稚冰; 夏冰; 赖建军; 唐荣军

    2014-01-01

    Objective To analyze the biophysical dosimetric characteristics and clinical application ability of VMAT technology for breast cancer post-mastectomy.Methods 28 patients with breast cancer (10 at left side and the other at right side) were planned in different ways respectively.One was two 90 degree arc VMAT plan and the other were 5 beam IMRT plan.The dosimetric parameters of two different plans including tumor control probability (TCP),conformity index(CI),homogeneity index (HI),V95and V110 in target,normal tissue complication probability (NTCP),V5,V20,V30 for ipsilateral lung,NCTP,D V25 for heart,D for the contralateral breast in OARs,MU and times were compared.Results The average tumor control probability (TCP) in VMAT and IMRT group was(96 ±2)% and (90 ±2)% (t =-6.28,P < 0.01),respectively.The PTV dose average homogeneity index (HI) of VMAT plans was better than that of IMRT plan (0.15 ±0.04 vs 0.22 ±0.02,t =13.29,P <0.01).For cancer position in left side,the mean dose of heart was decreased by 433.24 cGy in the VMAT plan.The NTCP of the hearts in VMAT plans had statistically significant difference compared with IMRT plans [(1.00±0.12)% vs (1.70±0.13)%,t =2.14,P <0.05].For plans of right breast cancer,the average mean dose of hearts in two control group was (3.27 ± 0.26) Gy and (6.00 ± 0.47) Gy (t =9.21,P<0.01).The total monitor unit (MU) was 530.7 in the VMAT arm and 693.9 in the IMRT arm (t =9.58,P <0.01).The treatment time was shorter in VMAT arm (t =8.40,P <0.05).Conclusions VMAT plans have better clinical value and more superior biophysical dosimetric characteristics for breast cancer post-mastectomy.%目的 比较乳腺癌根治术后双弧的容积旋转调强放射治疗(VMAT)与5野的静态调强放射治疗(IMRT)2种计划之间的剂量学差异,评估VMAT技术在乳腺癌根治术后的剂量学特点与应用能力.方法 选取28例乳腺癌根治术后患者(左侧10例,右侧18例),分别制定双90

  20. Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities

    Science.gov (United States)

    Lin, Mu-Han; Price, Robert A., Jr.; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C.-M.

    2013-11-01

    Many tumor cells demonstrate hyperradiosensitivity at doses below ˜50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (˜20 cGy/pulse and effective dose rate 6.7 cGy min-1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min-1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (˜20 cGy arc-1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min-1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10-1.38 HI 1.04-1.10) and the VMAT (CI 1.08-1.26 HI 1.05-1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of

  1. SU-E-T-269: Quality Assurance of Spine Volumetric Modulated Arc Therapy with Flattening Filter Free Beams Using Gafchromic EBT3 Films

    International Nuclear Information System (INIS)

    Purpose: We implemented the Gafchromic film-based patient specific QA of volumetric modulated arc therapy (VMAT) with flattening-filter free (FFF) beams for spine metastases and validated the accuracy of fast arc delivery. Methods: EBT3 films and a homemade cylindrical QA phantom were employed for dosimetric verification of VMATs. For 14 FFF VMAT plans (10 with 10-MV FFF beams and 4 with 6-MV FFF beams), the doses were recalculated on the phantom and delivered by a TrueBeam STx accelerator equipped with a high-definition 120 leaf MLC. The EBT3 films were scanned using an Epson 10000XL scanner through the FilmQA Pro software. All the irradiated film images were converted to dose map using a calibration response curve. The resulting dose map of film measurement was compared with treatment plan and evaluated using gamma analysis with dose tolerance of 2% within 2 mm. In addition, the point-dose measurement in the phantom using an ion chamber was evaluated as a reference in a ratio of measured and planned doses. Results: The gamma pass rates averaged over all FFF plans for composite-field measurements were 96.0 ± 3.6% (88.9%–99.5%). When adopting a tolerance level of 3% - 3 mm, the gamma pass rates were improved with the ranges from 98% to 100%. In addition, dose profiles and dose distributions showed that spinal cord was protected by the rapid dose fall-off and by delivering the treatment with high precision. In point-dose measurements, the average differences between the measured and planned doses were 0.5% ± 1.0% of the prescription dose. Conclusion: We demonstrated that Gafchromic EBT3 film would be an effective patient-specific QA tool, especially for VMAT of spine SBRT with treatment of small fields and highly gradient dose distributions. The results of film QA verified that the dosimetric accuracy of spine SBRT utilizing RapidArc with FFF beams in our institution is reliable

  2. Development of a novel quality assurance system based on rolled-up and rolled-out radiochromic films in volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: To develop a cylindrical phantom with rolled-up radiochromic films and dose analysis software in the rolled-out plane for quality assurance (QA) in volumetric modulated arc therapy (VMAT). Methods: The phantom consists of an acrylic cylindrical body wrapped with radiochromic film inserted into an outer cylindrical shell of 5 cm thickness. The rolled-up films with high spatial resolution enable detection of specific dose errors along the arc trajectory of continuously irradiated and modulated beams in VMAT. The developed dose analysis software facilitates dosimetric evaluation in the rolled-up and rolled-out planes of the film; the calculated doses on the corresponding points where the rolled-up film was placed were reconstructed into a rectangular dose matrix equivalent to that of the rolled-out plane of the film. The VMAT QA system was implemented in 3 clinical cases of prostate, nasopharynx, and pelvic metastasis. Each calculated dose on the rolled-out plane was compared with measurement values by modified gamma evaluation. Detected positions of dose disagreement on the rolled-out plane were also distinguished in cylindrical coordinates. The frequency of error occurrence and error distribution were summarized in a histogram and in an axial view of rolled-up plane to intuitively identify the corresponding positions of detected errors according to the gantry angle. Results: The dose matrix reconstructed from the developed VMAT QA system was used to verify the measured dose distribution along the arc trajectory. Dose discrepancies were detected on the rolled-out plane and visualized on the calculated dose matrix in cylindrical coordinates. The error histogram obtained by gamma evaluation enabled identification of the specific error frequency at each gantry angular position. The total dose error occurring on the cylindrical surface was in the range of 5%-8% for the 3 cases. Conclusions: The developed system provides a practical and reliable QA method to

  3. TH-E-BRE-04: An Online Replanning Algorithm for VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Ahunbay, E; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States); Moreau, M [Elekta, Inc, Verona, WI (Italy)

    2014-06-15

    Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filtered (FF) and flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT planning system ((Monaco, Elekta), enabling the output of detailed beam/machine parameters of original VMAT plans generated based on planning CTs for FF or FFF beams. A SAM algorithm, previously developed for fixed-beam IMRT, was modified to allow the algorithm to correct for interfractional variations (e.g., setup error, organ motion and deformation) by morphing apertures based on the geometric relationship between the beam's eye view of the anatomy from the planning CT and that from the daily CT for each control point. The algorithm was tested using daily CTs acquired using an in-room CT during daily IGRT for representative prostate cancer cases along with their planning CTs. The algorithm allows for restricted MLC leaf travel distance between control points of the VMAT delivery to prevent SAM from increasing leaf travel, and therefore treatment delivery time. Results: The VMAT plans adapted to the daily CT by SAM were found to improve the dosimetry relative to the IGRT repositioning plans for both FF and FFF beams. For the adaptive plans, the changes in leaf travel distance between control points were < 1cm for 80% of the control points with no restriction. When restricted to the original plans' maximum travel distance, the dosimetric effect was minimal. The adaptive plans were delivered successfully with similar delivery times as the original plans. The execution of the SAM algorithm was < 10 seconds. Conclusion: The SAM algorithm can quickly generate deliverable online-adaptive VMAT plans based on the anatomy of the day for both FF and FFF beams.

  4. A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery

    International Nuclear Information System (INIS)

    Kilovoltage cone-beam CT (kV CBCT) can be acquired during the delivery of volumetric modulated arc therapy (VMAT), in order to obtain an image of the patient during treatment. However, the quality of such CBCTs is degraded by megavoltage (MV) scatter from the treatment beam onto the imaging panel. The objective of this paper is to introduce a novel MV scatter correction method for simultaneous CBCT during VMAT, and to investigate its effectiveness when compared to other techniques. The correction requires the acquisition of a separate set of images taken during VMAT delivery, while the kV beam is off. These images—which contain only the MV scatter contribution on the imaging panel—are then used to correct the corresponding kV/MV projections. To test this method, CBCTs were taken of an image quality phantom during VMAT delivery and measurements of contrast to noise ratio were made. Additionally, the correction was applied to the datasets of three VMAT prostate patients, who also received simultaneous CBCTs. The clinical image quality was assessed using a validated scoring system, comparing standard CBCTs to the uncorrected simultaneous CBCTs and a variety of correction methods. Results show that the correction is able to recover some of the low and high-contrast signal to noise ratio lost due to MV scatter. From the patient study, the corrected CBCT scored significantly higher than the uncorrected images in terms of the ability to identify the boundary between the prostate and surrounding soft tissue. In summary, a simple MV scatter correction method has been developed and, using both phantom and patient data, is shown to improve the image quality of simultaneous CBCTs taken during VMAT delivery. (paper)

  5. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Shyam Pokharel

    2013-10-01

    Full Text Available Purpose: This study investigated the dosimetric impact of mixing low and high energy treatment plans for prostate cancer treated with volumetric modulated arc therapy (VMAT technique in the form of RapidArc.Methods: A cohort of 12 prostate cases involving proximal seminal vesicles and lymph nodes was selected for this retrospective study. For each prostate case, the single-energy plans (SEPs and mixed-energy plans (MEPs were generated.  First, the SEPs were created using 6 mega-voltage (MV energy for both the primary and boost plans. Second, the MEPs were created using 16 MV energy for the primary plan and 6 MV energy for the boost plan. The primary and boost MEPs used identical beam parameters and same dose optimization values as in the primary and boost SEPs for the corresponding case. The dosimetric parameters from the composite plans (SEPs and MEPs were evaluated. Results: The dose to the target volume was slightly higher (on average <1% in the SEPs than in the MEPs. The conformity index (CI and homogeneity index (HI values between the SEPs and MEPs were comparable. The dose to rectum and bladder was always higher in the SEPs (average difference up to 3.7% for the rectum and up to 8.4% for the bladder than in the MEPs. The mean dose to femoral heads was higher by about 0.8% (on average in the MEPs than in the SEPs. The number of monitor units and integral dose were higher in the SEPs compared to the MEPs by average differences of 9.1% and 5.5%, respectively.Conclusion: The preliminary results from this study suggest that use of mixed-energy VMAT plan for high-risk prostate cancer could potentially reduce the integral dose and minimize the dose to rectum and bladder, but for the higher femoral head dose.-----------------------------------------------Cite this article as:Pokharel S. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer. Int J Cancer Ther Oncol 2013;1(1:01011.DOI: http

  6. Clinical utility of RapidArcTM radiotherapy technology

    Directory of Open Access Journals (Sweden)

    Infusino E

    2015-11-01

    Full Text Available Erminia Infusino Department of Radiotherapy, Campus Bio-Medico University Hospital, Rome, Italy Abstract: RapidArcTM is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360° and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT, compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords "RapidArc", "Volumetric modulated arc radiotherapy", and "Intensity-modulated radiotherapy". Keywords: IMRT, VMAT, SBRT, SRS, treatment planning software 

  7. The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H and N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was 1.24±2.06 and 1.4±2.9% for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was 2.06±0.64% and 2.21±0.74% for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were 98.3±1.5% and the confidence limits were 3.78%. In case of VMAT, the average percentage were 98.2±1.1% and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

  8. Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities

    International Nuclear Information System (INIS)

    Many tumor cells demonstrate hyperradiosensitivity at doses below ∼50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (∼20 cGy/pulse and effective dose rate 6.7 cGy min−1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min−1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (∼20 cGy arc−1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min−1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10–1.38; HI 1.04–1.10) and the VMAT (CI 1.08–1.26; HI 1.05–1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 c

  9. Simultaneous in-field boost for patients with 1 to 4 brain metastasis/es treated with volumetric modulated arc therapy: a prospective study on quality-of-life

    International Nuclear Information System (INIS)

    To assess treatment toxicity and patients' survival/quality of life (QoL) after volumetric modulated arc therapy (VMAT) with simultaneous in-field boost (SIB) for cancer patients with 1 - 4 brain metastases (BM) treated with or without surgery. Between March and December 2010, 29 BM patients (total volume BM, < 40 cm3) aged < 80 years, KPS ≥ 70, RPA < III were included in this prospective trial. Whole brain VMAT (30 Gy) and a SIB to the BM (40 Gy) was delivered in 10 fraction. Mean age was 62.1 ± 8.5 years. Fifteen (51.7%) underwent surgery. KPS and MMSE were prospectively assessed. A self-assessed questionnaire was used to assess the QoL (EORTC QLQ-C30 with -BN20 module). As of April 2011 and after a mean FU of 5.4 ± 2.8 months, 14 (48.3%) patients died. The 6-month overall survival was 55.1%. Alopecia was only observed in 9 (31%) patients. In 3-month survivors, KPS was significantly (p = 0.01) decreased. MMSE score remained however stable (p = 0.33). Overall, QoL did decrease after VMAT. The mean QLQ-C30 global health status (p = 0.72) and emotional functional (p = 0.91) scores were decreased (low QoL). Physical (p = 0.05) and role functioning score (p = 0.01) were significantly worse and rapidly decreased during treatment. The majority of BN20 domains and single items worsened 3 months after VMAT except headaches (p = 0.046) and bladder control (p = 0.26) which improved. The delivery of 40 Gy in 10 fractions to 1 - 4 BM using VMAT was achieved with no significant toxicity. QoL, performance status, but not MMSE, was however compromised 3 months after treatment in this selected cohort of BM patients

  10. Dose distribution assessment (comparison) in the target volume treated with VMAT given by the planning system and evaluated by TL dosimeters

    International Nuclear Information System (INIS)

    Volumetric-modulated arc therapy (VMAT) is a relatively new therapy technique in which treatment is delivered using a cone beam that rotates around the patient. The radiation is delivered in a continuous gantry rotation while the cone beam is modulated by the intertwining of dynamic multileaf collimators (MLCs). Studies of VMAT plans have shown reduction in the treatment delivery time and monitor units (MU) comparable to IMRT plans improving major comfort to the patient and reducing uncertainties associated with patient movement during treatment. The treatment using VMAT minimizes the biological effects of radiation to critical structures near to the target volumes and produces excellent dose distributions. The dosimetry of ionizing radiation is essential for the radiological protection programs for quality assurance and licensing of equipment. For radiation oncology a quality assurance program is essentially to maintain the quality of patient care. As the VMAT is a new technique of radiation therapy it is important to optimize quality assurance mechanisms to ensure that tests are performed in order to preserve the patient and the equipment. This paper aims to determinate the dose distribution in the target volume (tumor to be treated) and the scattered dose distribution in the risk organs for VMAT technique comparing data given by the planning system and thermoluminescent (TL) response. (author)

  11. Comparison of Gafchromic EBT2 and EBT3 for patient-specific quality assurance: Cranial stereotactic radiosurgery using volumetric modulated arc therapy with multiple noncoplanar arcs

    Energy Technology Data Exchange (ETDEWEB)

    Fiandra, Christian; Fusella, Marco; Filippi, Andrea Riccardo; Ricardi, Umberto; Ragona, Riccardo [Department of Oncology, Radiation Oncology Unit, University of Torino, Turin 10126 (Italy); Giglioli, Francesca Romana [Medical Physics Unit, Azienda Ospedaliera Città della Salute e della Scienza, Turin 10126 (Italy); Mantovani, Cristina [Radiation Oncology Department, Azienda Ospedaliera Città della Salute e della Scienza, Turin 10126 (Italy)

    2013-08-15

    Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered (up to 30 Gy). Gafchromic{sup TM} EBT2 and EBT3 films may be considered the dosimeter of choice, and the authors here provide some additional data about uniformity correction for this new generation of radiochromic films.Methods: A new analysis method using blue channel for marker dye correction was proposed for uniformity correction both for EBT2 and EBT3 films. Symmetry, flatness, and field-width of a reference field were analyzed to provide an evaluation in a high-spatial resolution of the film uniformity for EBT3. Absolute doses were compared with thermoluminescent dosimeters (TLD) as baseline. VMAT plans with multiple noncoplanar arcs were generated with a treatment planning system on a selected pool of eleven patients with cranial lesions and then recalculated on a water-equivalent plastic phantom by Monte Carlo algorithm for patient-specific QA. 2D quantitative dose comparison parameters were calculated, for the computed and measured dose distributions, and tested for statistically significant differences.Results: Sensitometric curves showed a different behavior above dose of 5 Gy for EBT2 and EBT3 films; with the use of inhouse marker-dye correction method, the authors obtained values of 2.5% for flatness, 1.5% of symmetry, and a field width of 4.8 cm for a 5 × 5 cm{sup 2} reference field. Compared with TLD and selecting a 5% dose tolerance, the percentage of points with ICRU index below 1 was 100% for EBT2 and 83% for EBT3. Patients analysis revealed statistically significant differences (p < 0.05) between EBT2 and EBT3 in the percentage of points with gamma values <1 (p= 0.009 and p= 0.016); the percent difference as well as

  12. Use of FDG-PET to guide dose prescription heterogeneity in stereotactic body radiation therapy for lung cancers with volumetric modulated arc therapy: a feasibility study

    International Nuclear Information System (INIS)

    The aim of this study was to assess if FDG-PET could guide dose prescription heterogeneity and decrease arbitrary location of hotspots in SBRT. For three patients with stage I lung cancer, a CT-simulation and a FDG-PET were registered to define respectively the PTVCT and the biological target volume (BTV). Two plans involving volumetric modulated arc therapy (VMAT) and simultaneous integrated boost (SIB) were calculated. The first plan delivered 4 × 12 Gy within the PTVCT and the second plan, with SIB, 4 × 12 Gy and 13.8 Gy (115% of the prescribed dose) within the PTVCT and the BTV respectively. The Dmax-PTVCT had to be inferior to 60 Gy (125% of the prescribed dose). Plans were evaluated through the D95%, D99% and Dmax-PTVCT, the D2 cm, the R50% and R100% and the dice similarity coefficient (DSC) between the isodose 115% and BTV. DSC allows verifying the location of the 115% isodose (ideal value = 1). The mean PTVCT and BTV were 36.7 (±12.5) and 6.5 (±2.2) cm3 respectively. Both plans led to similar target coverage, same doses to the OARs and equivalent fall-off of the dose outside the PTVCT. On the other hand, the location of hotspots, evaluated through the DSC, was improved for the SIB plans with a mean DSC of 0.31 and 0.45 for the first and the second plans respectively. Use of PET to decrease arbitrary location of hotspots is feasible with VMAT and SIB for lung cancer

  13. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    International Nuclear Information System (INIS)

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm3 of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm3 of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered

  14. A planning study investigating dual-gated volumetric arc stereotactic treatment of primary renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, Thomas, E-mail: thomas.devereux@petermac.org [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Pham, Daniel [Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Supple, Jeremy [School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne (Australia); Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-04-01

    This is a planning study investigating the dosimetric advantages of gated volumetric-modulated arc therapy (VMAT) to the end-exhale and end-inhale breathing phases for patients undergoing stereotactic treatment of primary renal cell carcinoma. VMAT plans were developed from the end-inhale (VMATinh) and the end-exhale (VMATexh) phases of the breathing cycle as well as a VMAT plan and 3-dimensional conformal radiation therapy plan based on an internal target volume (ITV) (VMATitv). An additional VMAT plan was created by giving the respective gated VMAT plan a 50% weighting and summing the inhale and exhale plans together to create a summed gated plan. Dose to organs at risk (OARs) as well as comparison of intermediate and low-dose conformity was evaluated. There was no difference in the volume of healthy tissue receiving the prescribed dose for the planned target volume (PTV) (CI100%) for all the VMAT plans; however, the mean volume of healthy tissue receiving 50% of the prescribed dose for the PTV (CI50%) values were 4.7 (± 0.2), 4.6 (± 0.2), and 4.7 (± 0.6) for the VMATitv, VMATinh, and VMATexh plans, respectively. The VMAT plans based on the exhale and inhale breathing phases showed a 4.8% and 2.4% reduction in dose to 30 cm{sup 3} of the small bowel, respectively, compared with that of the ITV-based VMAT plan. The summed gated VMAT plans showed a 6.2% reduction in dose to 30 cm{sup 3} of the small bowel compared with that of the VMAT plans based on the ITV. Additionally, when compared with the inhale and the exhale VMAT plans, a 4% and 1.5%, respectively, reduction was observed. Gating VMAT was able to reduce the amount of prescribed, intermediate, and integral dose to healthy tissue when compared with VMAT plans based on an ITV. When summing the inhale and exhale plans together, dose to healthy tissue and OARs was optimized. However, gating VMAT plans would take longer to treat and is a factor that needs to be considered.

  15. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors

    Science.gov (United States)

    Asuni, G.; van Beek, T. A.; Venkataraman, S.; Popescu, I. A.; McCurdy, B. M. C.

    2013-06-01

    The aim of this work is to describe and validate a new general research tool that performs Monte Carlo (MC) simulations for volumetric modulated arc therapy (VMAT) and dynamic intensity modulated radiation therapy (DIMRT), simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system. The tool is generalized to handle either entrance or exit detectors and provides the simulated dose for the individual control-points of the time-dependent VMAT and DIMRT deliveries. The MC simulation tool was developed with the EGSnrc radiation transport. For the individual control point simulation, we rotate the patient/phantom volume only (i.e. independent of the gantry and planar detector geometries) using the gantry angle in the treatment planning system (TPS) DICOM RP file such that each control point has its own unique phantom file. After MC simulation, we obtained the total dose to the phantom by summing dose contributions for all control points. Scored dose to the sensitive layer of the planar detector is available for each control point. To validate the tool, three clinical treatment plans were used including VMAT plans for a prostate case and a head-and-neck case, and a DIMRT plan for a head-and-neck case. An electronic portal imaging device operated in ‘movie’ mode was used with the VMAT plans delivered to cylindrical and anthropomorphic phantoms to validate the code using an exit detector. The DIMRT plan was delivered to a novel transmission detector, to validate the code using an entrance detector. The total MC 3D absolute doses in patient/phantom were compared with the TPS doses, while 2D MC doses were compared with planar detector doses for all individual control points, using the gamma evaluation test with 3%/3 mm criteria. The MC 3D absolute doses demonstrated excellent agreement with the TPS doses for all the tested plans, with about 95% of voxels having γ 90% of percentage pixels with γ <1. We found that over

  16. Optimization of verification pretreatment of plans of radiotherapy treatment with the technique of arcoterapia with RapidArc VMAT intensity-modulated; Optimizacion de la verificacion pretratamiento de los planes de tratamiento radioterapico con la tecnica de arcoterapia con intensidad modulada RapidArc VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Serna Berna, A.; Puchades Puchades, V.; Mata Cologro, F.; Ramos Amores, D.

    2013-07-01

    The pretreatment verification of plans arcoterapia intensity modulated (VMAT) increases the workload on the services of radio physics. These checks focus with two objectives: First, check the dose calculation system for treatment planning; and second verify that the accelerator is able to administer treatment as has been planned. There are different commercial solutions to facilitate this procedure. The purpose of this paper is to compare the efficiency of four sets of independent verification to establish an optimal protocol. (Author)

  17. Phase I-II study of hypofractionated simultaneous integrated boost using volumetric modulated arc therapy for adjuvant radiation therapy in breast cancer patients: a report of feasibility and early toxicity results in the first 50 treatments

    International Nuclear Information System (INIS)

    To report results in terms of feasibility and early toxicity of hypofractionated simultaneous integrated boost (SIB) approach with Volumetric Modulated Arc Therapy (VMAT) as adjuvant treatment after breast-conserving surgery. Between September 2010 and May 2011, 50 consecutive patients presenting early-stage breast cancer were submitted to adjuvant radiotherapy with SIB-VMAT approach using RapidArc in our Institution (Istituto Clinico Humanitas ICH). Three out of 50 patients were irradiated bilaterally (53 tumours in 50 patients). All patients were enrolled in a phase I-II trial approved by the ICH ethical committee. All 50 patients enrolled in the study underwent VMAT-SIB technique to irradiate the whole breast with concomitant boost irradiation of the tumor bed. Doses to whole breast and surgical bed were 40.5 Gy and 48 Gy respectively, delivered in 15 fractions over 3 weeks. Skin toxicities were recorded during and after treatment according to RTOG acute radiation morbidity scoring criteria with a median follow-up of 12 months (range 8–16). Cosmetic outcomes were assessed as excellent/good or fair/poor. The median age of the population was 68 years (range 36–88). According to AJCC staging system, 38 breast lesions were classified as pT1, and 15 as pT2; 49 cases were assessed as N0 and 4 as N1. The maximum acute skin toxicity by the end of treatment was Grade 0 in 20/50 patients, Grade 1 in 32/50, Grade 2 in 0 and Grade 3 in 1/50 (one of the 3 cases of bilateral breast irradiation). No Grade 4 toxicities were observed. All Grade 1 toxicities had resolved within 3 weeks. No significant differences in cosmetic scores on baseline assessment vs. 3 months and 6 months after the treatment were observed: all patients were scored as excellent/good (50/50) compared with baseline; no fair/poor judgment was recorded. No other toxicities or local failures were recorded during follow-up. The 3-week course of postoperative radiation using VMAT with SIB showed to be

  18. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    International Nuclear Information System (INIS)

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT

  19. On the possible benefits of a hybrid VMAT technique in the treatment of non–small cell lung cancer

    International Nuclear Information System (INIS)

    To assess, using clinical cases, the potential of a hybrid technique for the treatment of non–small cell lung cancer (NSCLC)-blending volumetric-modulated arc therapy (VMAT) and conformal radiation therapy (CRT) fields, and to consider potential issues with implementation of such a technique. Eight clinical cases already treated with CRT were used for a planning study comparing target coverage and organs at risk (OAR) sparing between CRT and hybrid VMAT (VMATh). Quality assurance (QA) implications of the resultant hybrid plans are discussed. The hybrid technique resulted in superior target conformity or improved sparing of OAR or both. The hybrid technique shows promise, but the QA implications of motion at treatment need careful consideration

  20. 容积旋转调强放射治疗技术行全骨髓照射的可行性研究%The feasibility study on total marrow irradiation with rapid arc volumetric arc therapy

    Institute of Scientific and Technical Information of China (English)

    解传滨; 徐寿平; 俞伟; 曲宝林; 鞠忠建; 葛瑞刚; 巩汉顺; 徐伟; 丛小虎

    2014-01-01

    Objective: To explore the feasible and dosimetry characteristics of a volumetric arc therapy (VMAT) total marrow irradiation (TMI) technique for patients with hematologic malignancies. Methods: VMAT planning was performed for 8 patients using RapidArc technology. The planning target volume consisted of all the bones in the body from the head to the mid-femur, excluding the extremities, except for the humerus, plus a 3.0-mm margin. The plans were prescribed to ensure, at a minimum, 95%planning target volume dose coverage with the prescription dose(12 Gy/10 F). The treatments were delivered and verified using ArcCHECK measurements. The plans were evaluated using isodose plots, dose volume histograms, dose homogeneity indexes, total MU and treatment times. Results:The VMAT-TMI technique reported in the present study provided preferable dose distributions, The average mean dose and maximum dose for PTV were 12.85 Gy and 14.85 Gy, The average D1 and D99 were 11.25 Gy and 13.77 Gy. The mean dose for organs were less than 6 Gy beside the head and neck organs such as brian,eye,oral cavity and paritid. The machine MU and treatment delivery time were 2608 MU and 16.5 minutes. the γ-analysis pass rate for head-neck, chest-abdomen, pelvic were 98.9%±1.9%,98.4%±1.8%,97.4%±2.1% for all RapidArc plans. Conclusion: The RapidArc VMAT technique improved the treatment planning and achieved seamlessly between the beams, most importantly, treatment delivery efficiency. The results from our study suggest that the RapidArc VMAT technology can be expected to facilitate the clinical transition of TMI.%目的:探讨RapidArc容积旋转调强放射治疗技术(VMAT)行全骨髓照射(TMI)的可行性及其剂量学特点。方法:选取8例已行全身扫描的患者,照射靶区包括除前臂和手以外的全身骨髓,采用Eclipse 10.0计划系统自动勾画模块进行靶区勾画并外放3 mm生成PTV,处方剂量为12 Gy/10 F,采用单弧多中心衔接的方法设

  1. Study of Inter- and Intra-fraction Motion in Brain Tumor Patients Undergoing VMAT Treatment

    International Nuclear Information System (INIS)

    Conforming dose to the tumor and sparing normal tissue can be challenging for brain tumors with complex shapes in close proximity to critical structures. The goal of this study was to evaluate the inter- and intra-fraction motion in brain tumor patients undergoing volumetric modulated arc therapy (VMAT). The image matching software was found to be very sensitive to the choice of the region of matching. It is recommended to use the same region of interest for comparing the image sets and perform the automatic matching based on bony landmarks in brain tumor cases. (Author)

  2. Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer

    International Nuclear Information System (INIS)

    Purpose: Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Materials and methods: Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Results: Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Conclusion: Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively

  3. NOTE: Evaluation of the Delta4 phantom for IMRT and VMAT verification

    Science.gov (United States)

    Bedford, James L.; Lee, Young K.; Wai, Philip; South, Christopher P.; Warrington, Alan P.

    2009-05-01

    The Delta4 diode array phantom (Scandidos, Uppsala, Sweden) was evaluated for verification of segmental intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) on an Elekta linear accelerator (Crawley UK). The device was tested for angular sensitivity by irradiating it from 36 different gantry angles, and the responses of the device to various step-and-shoot segment doses and dose rates were evaluated using an ionization chamber as a comparison. The phantom was then compared with ionization chamber and film results for two prostate and pelvic nodes IMRT plans, two head and neck IMRT plans and two lung VMAT plans. These plans were calculated using Pinnacle3 (Philips Radiation Oncology Systems, Madison, WI). The uniformity of angular response was better than 0.5% over the range of gantry angles. The uniformity of response of the Delta4 to different segment monitor units and dose rates was better than 0.5%. The assessment of the IMRT and VMAT plans showed that the Delta4 measured a dose within 2.5% of the ionization chamber, and compared to film recorded a slightly larger region (range -2% to +7%) agreeing with the planned dose to within 3% and 3 mm. The Delta4 is a complex device and requires careful benchmarking, but following the successful completion of these measurements, the Delta4 has been introduced into clinical use.

  4. Results of 1 year of clinical experience with independent dose calculation software for VMAT fields

    Directory of Open Access Journals (Sweden)

    Juan Fernando Mata Colodro

    2014-01-01

    Full Text Available It is widely accepted that a redundant independent dose calculation (RIDC must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT technique implies a comprehensive quality assurance (QA program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS, here in use. RIDC were performed with the commercial software; Diamond ® (PTW which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD. For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans.

  5. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, V., E-mail: vhernandezmasgrau@gmail.com; Abella, R. [Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona 43204 (Spain); Calvo, J. F. [Department of Radiation Oncology, Hospital Quirón, Barcelona 08023 (Spain); Jurado-Bruggemann, D. [Department of Medical Physics, Institut Català d’Oncologia, Girona 17007 (Spain); Sancho, I. [Department of Medical Physics, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08908 (Spain); Carrasco, P. [Department of Medical Physics, Hospital de la Santa Creu i Sant Pau, Barcelona 08041 (Spain)

    2015-04-15

    Purpose: Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. Methods: The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100 000 clinical treatments and in-house software was used to compute the number of tolerance faults as a function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Results: Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Conclusions: Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended.

  6. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

    International Nuclear Information System (INIS)

    Purpose: Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. Methods: The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100 000 clinical treatments and in-house software was used to compute the number of tolerance faults as a function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Results: Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Conclusions: Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended

  7. Addition to our technical center arco therapy volume (VMAT) in the treatment of prostate cancer; Incorporacion en nuestro centro de la tecnica de arcoterapia volumetrica (VMAT) en el tratamiento de cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, J. C.; Cabrera, P.; Luis, J.; Perucha, M.; Sanchez, G.; Herrador, M.; Ortiz, M. J.

    2011-07-01

    The purpose of this paper is the description of the incorporation of the treatment technique radiotherapy Arcoterapia Volumetric (VMAT) in our hospital, patients with prostate cancer risk. The technological complexity of this type, which vary simultaneously the influence of radiation, the blades of the multileaf collimator (MLC) and the angular velocity of the accelerator head, determine a major challenge in designing the plan and verify the feasibility treatments.

  8. SU-E-T-325: The New Evaluation Method of the VMAT Plan Delivery Using Varian DynaLog Files and Modulation Complexity Score (MCS)

    International Nuclear Information System (INIS)

    Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify system of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy

  9. Modulation index for VMAT considering both mechanical and dose calculation uncertainties

    International Nuclear Information System (INIS)

    The aim of this study is to present a modulation index considering both mechanical and dose calculation uncertainties for volumetric modulated arc therapy (VMAT). As a modulation index considering only mechanical uncertainty of VMAT, MIt has been previously suggested. In this study, we developed a weighting factor which represents dose calculation uncertainty based on the aperture shapes of fluence maps at every control point of VMAT plans. In order to calculate the weighting factor, the thinning algorithm of image processing techniques was applied to measure field aperture irregularity. By combining this weighting factor with the previously suggested modulation index, MIt, comprehensive modulation index (MIc) was designed. To evaluate the performance of MIc, gamma passing rates, differences in mechanical parameters between plans and log files and differences in dose-volume parameters between plans and the plans reconstructed from log files were acquired with a total of 52 VMAT plans. Spearman’s correlation coefficients (rs) between the values of MIc and measures of VMAT delivery accuracy were calculated. The rs values of MIc (f = 0.5) to global gamma passing rates with 2%/2 mm, 1%/2 mm and 2%/1 mm were  −0.728,−0.847 and  −0.617, respectively (p  <  0.001). Those to local gamma passing rates were  −0.765,−0.767 and  −0.748, respectively (p  <  0.001). The rs values of MIc (f = 0.5) to multi-leaf collimator and gantry angle errors were 0.800 and  −0.712, respectively (p  <  0.001). The MIc (f = 0.5) showed a total of 20 rs values (p  <  0.05) to the differences in dose-volumetric parameters from a total of 35 tested cases. The MIc (f = 0.5) demonstrated considerable power to predict VMAT delivery accuracy showing strong correlations to various measures of VMAT delivery accuracy. (paper)

  10. Intensity-Modulated Arc Therapy for Pediatric Posterior Fossa Tumors

    International Nuclear Information System (INIS)

    Purpose: To compare intensity-modulated arc therapy (IMAT) to noncoplanar intensity-modulated radiation therapy (IMRT) in the treatment of pediatric posterior fossa tumors. Methods and Materials: Nine pediatric patients with posterior fossa tumors, mean age 9 years (range, 6–15 years), treated using IMRT were chosen for this comparative planning study because of their tumor location. Each patient’s treatment was replanned to receive 54 Gy to the planning target volume (PTV) using five different methods: eight-field noncoplanar IMRT, single coplanar IMAT, double coplanar IMAT, single noncoplanar IMAT, and double noncoplanar IMAT. For each method, the dose to 95% of the PTV was held constant, and the doses to surrounding critical structures were minimized. The different plans were compared based on conformity, total linear accelerator dose monitor units, and dose to surrounding normal tissues, including the entire body, whole brain, temporal lobes, brainstem, and cochleae. Results: The doses to the target and critical structures for the various IMAT methods were not statistically different in comparison with the noncoplanar IMRT plan, with the following exceptions: the cochlear doses were higher and whole brain dose was lower for coplanar IMAT plans; the cochleae and temporal lobe doses were lower and conformity increased for noncoplanar IMAT plans. The advantage of the noncoplanar IMAT plan was enhanced by doubling the treatment arc. Conclusion: Noncoplanar IMAT results in superior treatment plans when compared to noncoplanar IMRT for the treatment of posterior fossa tumors. IMAT should be considered alongside IMRT when treatment of this site is indicated.

  11. Analysis of direct clinical consequences of MLC positional errors in volumetric-modulated arc therapy using 3D dosimetry system.

    Science.gov (United States)

    Nithiyanantham, Karthikeyan; Mani, Ganesh K; Subramani, Vikraman; Mueller, Lutz; Palaniappan, Karrthick K; Kataria, Tejinder

    2015-01-01

    In advanced, intensity-modulated external radiotherapy facility, the multileaf collimator has a decisive role in the beam modulation by creating multiple segments or dynamically varying field shapes to deliver a uniform dose distribution to the target with maximum sparing of normal tissues. The position of each MLC leaf has become more critical for intensity-modulated delivery (step-and-shoot IMRT, dynamic IMRT, and VMAT) compared to 3D CRT, where it defines only field boundaries. We analyzed the impact of the MLC positional errors on the dose distribution for volumetric-modulated arc therapy, using a 3D dosimetry system. A total of 15 VMAT cases, five each for brain, head and neck, and prostate cases, were retrospectively selected for the study. All the plans were generated in Monaco 3.0.0v TPS (Elekta Corporation, Atlanta, GA) and delivered using Elekta Synergy linear accelerator. Systematic errors of +1, +0.5, +0.3, 0, -1, -0.5, -0.3 mm were introduced in the MLC bank of the linear accelerator and the impact on the dose distribution of VMAT delivery was measured using the COMPASS 3D dosim-etry system. All the plans were created using single modulated arcs and the dose calculation was performed using a Monte Carlo algorithm in a grid size of 3 mm. The clinical endpoints D95%, D50%, D2%, and Dmax,D20%, D50% were taken for the evaluation of the target and critical organs doses, respectively. A significant dosimetric effect was found for many cases even with 0.5 mm of MLC positional errors. The average change of dose D 95% to PTV for ± 1 mm, ± 0.5 mm, and ±0.3mm was 5.15%, 2.58%, and 0.96% for brain cases; 7.19%, 3.67%, and 1.56% for head and neck cases; and 8.39%, 4.5%, and 1.86% for prostate cases, respectively. The average deviation of dose Dmax was 5.4%, 2.8%, and 0.83% for brainstem in brain cases; 8.2%, 4.4%, and 1.9% for spinal cord in H&N; and 10.8%, 6.2%, and 2.1% for rectum in prostate cases, respectively. The average changes in dose followed a linear

  12. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fogliata, Antonella [Oncology Inst. of Southern Switzerland, Medical Physics Unit, Bellinzona (Switzerland)], e-mail: Antonella.Fogliata-Cozzi@eoc.ch; Scorsetti, Marta; Navarria, Piera [IRCCS Instituto Clinico Humanitas, Radiation Oncology, Rozzano, Milan (Italy)] [and others

    2013-04-15

    Background: To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Material and methods: Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. Results: All plans acceptably met the criteria of target coverage (V{sub 95%} >90-95%) and bone sparing (D{sub 1cm}{sup 3} <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted 5% higher than corresponding ones computed as dose to medium. Conclusion: High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma.

  13. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy

    International Nuclear Information System (INIS)

    Background: To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Material and methods: Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. Results: All plans acceptably met the criteria of target coverage (V95% >90-95%) and bone sparing (D1cm3 <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted 5% higher than corresponding ones computed as dose to medium. Conclusion: High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma

  14. 38: Optimization of electron arc therapy doses by dynamic collimator control

    International Nuclear Information System (INIS)

    The problem of delivering a uniform dose to a large curved surface such as a patient's chest wall has been addressed by the technique of electron arc therapy. Prospective computer simulations show that a dramatic improvement in dose uniformity can, in many clinical situations, be achieved by dynamic shaping of the electron arc collimator, under computer control, as a function of gantry angle and distance superior or inferior to the central plane. Computer optimization techniques applied to the design of a multivane dynamic electron arc collimator is presented, along with representative treatment plans resulting from inclusion of this dynamic technique in electron arc therapy. 17 refs.; 5 figs

  15. Fast approximate delivery of fluence maps: the VMAT case

    CERN Document Server

    Balvert, Marleen

    2016-01-01

    In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for volumetric modulated arc therapy (VMAT). At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. This model was presented for the single map case in a companion paper (Fast approximate delivery of fluence maps: the single map case). The resulting large-scale, non-convex optimization problem was solved using a heuristic approach. The single-map approach cannot directly be applied to the full arc case due to the large increase in model size, the issue of allocating delivery times to each of the arc segments, and the fact that the ending leaf positions for one map will be the starting leaf positions for the next map. In this article the method proposed in \\cite{dm1} is extended to solve the full map treatment planning problem. We test ...

  16. Automated VMAT treatment planning for stage III lung cancer: how does it compare with IMRT?

    Science.gov (United States)

    Quan, Enzhuo M.; Chang, Joe Y.; Liao, Zhongxing; Xia, Tingyi; Yuan, Zhiyong; Liu, Hui; Li, Xiaoqiang; Wages, Cody A.; Mohan, Radhe; Zhang, Xiaodong

    2012-01-01

    Purpose To compare the quality of volumetric modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) plans generated by an automated inverse planning system with that of dosimetrist-generated IMRT treatment plans for patients with stage III lung cancer. Methods and Materials Two groups of eight patients with stage III lung cancer were randomly selected. For group I, the dosimetrists spent their best effort in designing IMRT plans to compete with the automated inverse planning system (mdaccAutoPlan); for group II, the dosimetrists were not in competition and spent their regular effort. Five experienced radiation oncologists independently blind-reviewed and ranked the three plans for each patient, a rank of “1” being the best and “3” the worst. Dosimetric measures were also performed to quantitatively evaluate the three types of plans. Results Blind rankings from different oncologists were generally consistent. For group I, the auto-VMAT, auto-IMRT, and manual-IMRT plans received average ranks of 1.6, 2.13, and 2.18, respectively. The auto-VMAT plans in group I had 10% higher PTV conformality and 24% lower esophagus V70 than the manual-IMRT plans; they also resulted in over 20% higher complication-free tumor control probability (p+) than either type of IMRT plans. The auto- and manual-IMRT plans in this group yielded generally comparable dosimetric measures. For group II, the auto-VMAT, auto-IMRT, and manual-IMRT plans received average ranks of 1.55, 1.75, and 2.75, respectively. Compared to the manual-IMRT plans in this group, the auto-VMAT plans and the auto-IMRT plans showed, respectively, 17% and 14% higher PTV dose conformality, 8% and 17% lower mean lung dose, 17% and 26% lower mean heart dose, and 36% and 23% higher p+. Conclusions mdaccAutoPlan is capable of generating high-quality VMAT and IMRT treatment plans for stage III lung cancer. Manual-IMRT plans could achieve quality similar to auto-IMRT plans if best effort were spent

  17. A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array

    Science.gov (United States)

    Dance, Michael J.

    With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with

  18. SU-F-BRD-05: Dosimetric Comparison of Protocol-Based SBRT Lung Treatment Modalities: Statistically Significant VMAT Advantages Over Fixed- Beam IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Best, R; Harrell, A; Geesey, C; Libby, B; Wijesooriya, K [University of Virginia, Charlottesville, VA (United States)

    2014-06-15

    Purpose: The purpose of this study is to inter-compare and find statistically significant differences between flattened field fixed-beam (FB) IMRT with flattening-filter free (FFF) volumetric modulated arc therapy (VMAT) for stereotactic body radiation therapy SBRT. Methods: SBRT plans using FB IMRT and FFF VMAT were generated for fifteen SBRT lung patients using 6 MV beams. For each patient, both IMRT and VMAT plans were created for comparison. Plans were generated utilizing RTOG 0915 (peripheral, 10 patients) and RTOG 0813 (medial, 5 patients) lung protocols. Target dose, critical structure dose, and treatment time were compared and tested for statistical significance. Parameters of interest included prescription isodose surface coverage, target dose heterogeneity, high dose spillage (location and volume), low dose spillage (location and volume), lung dose spillage, and critical structure maximum- and volumetric-dose limits. Results: For all criteria, we found equivalent or higher conformality with VMAT plans as well as reduced critical structure doses. Several differences passed a Student's t-test of significance: VMAT reduced the high dose spillage, evaluated with conformality index (CI), by an average of 9.4%±15.1% (p=0.030) compared to IMRT. VMAT plans reduced the lung volume receiving 20 Gy by 16.2%±15.0% (p=0.016) compared with IMRT. For the RTOG 0915 peripheral lesions, the volumes of lung receiving 12.4 Gy and 11.6 Gy were reduced by 27.0%±13.8% and 27.5%±12.6% (for both, p<0.001) in VMAT plans. Of the 26 protocol pass/fail criteria, VMAT plans were able to achieve an average of 0.2±0.7 (p=0.026) more constraints than the IMRT plans. Conclusions: FFF VMAT has dosimetric advantages over fixed beam IMRT for lung SBRT. Significant advantages included increased dose conformity, and reduced organs-at-risk doses. The overall improvements in terms of protocol pass/fail criteria were more modest and will require more patient data to establish difference

  19. SU-F-BRD-05: Dosimetric Comparison of Protocol-Based SBRT Lung Treatment Modalities: Statistically Significant VMAT Advantages Over Fixed- Beam IMRT

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study is to inter-compare and find statistically significant differences between flattened field fixed-beam (FB) IMRT with flattening-filter free (FFF) volumetric modulated arc therapy (VMAT) for stereotactic body radiation therapy SBRT. Methods: SBRT plans using FB IMRT and FFF VMAT were generated for fifteen SBRT lung patients using 6 MV beams. For each patient, both IMRT and VMAT plans were created for comparison. Plans were generated utilizing RTOG 0915 (peripheral, 10 patients) and RTOG 0813 (medial, 5 patients) lung protocols. Target dose, critical structure dose, and treatment time were compared and tested for statistical significance. Parameters of interest included prescription isodose surface coverage, target dose heterogeneity, high dose spillage (location and volume), low dose spillage (location and volume), lung dose spillage, and critical structure maximum- and volumetric-dose limits. Results: For all criteria, we found equivalent or higher conformality with VMAT plans as well as reduced critical structure doses. Several differences passed a Student's t-test of significance: VMAT reduced the high dose spillage, evaluated with conformality index (CI), by an average of 9.4%±15.1% (p=0.030) compared to IMRT. VMAT plans reduced the lung volume receiving 20 Gy by 16.2%±15.0% (p=0.016) compared with IMRT. For the RTOG 0915 peripheral lesions, the volumes of lung receiving 12.4 Gy and 11.6 Gy were reduced by 27.0%±13.8% and 27.5%±12.6% (for both, p<0.001) in VMAT plans. Of the 26 protocol pass/fail criteria, VMAT plans were able to achieve an average of 0.2±0.7 (p=0.026) more constraints than the IMRT plans. Conclusions: FFF VMAT has dosimetric advantages over fixed beam IMRT for lung SBRT. Significant advantages included increased dose conformity, and reduced organs-at-risk doses. The overall improvements in terms of protocol pass/fail criteria were more modest and will require more patient data to establish difference

  20. Commissioning and validation of COMPASS system for VMAT patient specific quality assurance

    Science.gov (United States)

    Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.

    2016-03-01

    Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.

  1. SU-E-T-483: Treatment Planning Study of Volumetric Modulated Arc Therapy for Left-Sided Breast and Chestwall Cancers

    International Nuclear Information System (INIS)

    Purpose: To perform the comparison of dose distributions and dosevolume- histograms generated by VMAT and conventional field-in-field technique for left-sided breast and chestwall cancers; to determine whether VMAT offers more dosimetric benefits than does the field-in-field technique. Methods: All VMAT and field-in-filed plans were produced in Eclipse(version 10). Five plans were generated for left-sided breast and leftsided chestwall with supraclavicular nodes, respectively. A clockwise arc (CW) and a counter-clockwise arc (CCW) were used with start and stop angles being 310o±10o and 140o±10o. Collimator angles were 30o for CW and 330o for CCW. The conformity index (CI) is the ratio of V95% over PTV. The homogeneity index (HI) is the ratio of the difference between D2% and D98% over the prescribed dose. The V5, as an indicator of low dose bath to organs-at-risk, was used for ipsilateral lung, heart, contralateral lung, and contralateral breast. The V20, as an indicator of radiation pneumonitis, was used for ipsilateral lung. Results: Breast/chestwall VMAT delivers much higher low dose bath to ipsilateral lung, contralateral lung and contralateral breast/chestwall for both intact breast and chestwall with nodes. V5 for heart is increased in VMAT plans. V20 for ipsilateral lung is lower in VMAT plans. PTV coverage is similar for both techniques. For one particular chestwall patient with supraclavicular and internal mammary nodes, VMAT offers superior dose coverage of PTVs with slightly more low-dose-wash to heart, contralateral lung and contralateral breast. Conclusion: This study indicates that there is generally no benefit using VMAT for left-sided intact breast, due to large low-dose-bath (5Gy) to normal tissues with insignificant improvement in PTV coverage. Dosimetric benefits will be seen in VMAT plans for some chestwall patients with large size, and/or internal mammary nodes, etc. Whether a chestwall patient is treated with VMAT should be carefully

  2. Applications of two-step intensity modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: Organs at risk sometimes are surrounded by the target volume. At a first glance it seems to be impossible, to spare the organs at risk, i.e. the spinal cord, without underdosage of parts of the concave target volume. A fast method called ''two-step intensity modulated arc therapy'' (two-step IMAT) will be shown that avoids underdosage in the target volume near such organs at risk. Materials and Methods: Simple rotational techniques reduce the dose to the surrounded organ, however, the blocking of the organ at risk spoils the homogeneity of dose in the target volume in the vicinity of the organ. A further narrow rotation field, tangential to the concave part of the target volume, increases the dose there and homogenizes the dose distribution without deteriorating the dose in the organ at risk significantly. Results: Some cases show that the two-step IMAT and its modifications guarantee a sufficient dose homogeneity in the target volume surrounding an organ at risk. Besides basic theoretical considerations exemplary solutions for head and neck tumors, tumors adjacent to the spinal cord and mamma carcinoma of patients with extremely arched chest are demonstrated. Conclusion: Double rotation techniques can provide sufficient dose homogeneity for concave target volumes with excellent sparing of the surrounded organ at risk. They are not time consuming and can be used until IMRT will be applied routinely with adequate time load and effort. (orig.)

  3. Dosimetric comparison of the simultaneous integrated boost in whole-breast irradiation after breast-conserving surgery: IMRT, IMRT plus an electron boost and VMAT.

    Directory of Open Access Journals (Sweden)

    Sangang Wu

    Full Text Available To compare the target volume coverage and doses to organs at risks (OARs using three techniques that simultaneous integrated boost (SIB in whole-breast irradiation (WBI after breast-conserving surgery, including intensity-modulated radiation therapy (IMRT, IMRT plus an electron boost (IMRT-EB, and volumetric-modulated arc therapy (VMAT.A total of 10 patients with early-stage left-sided breast cancer after breast-conserving surgery were included in this study. IMRT, IMRT-EB and VMAT plans were generated for each patient.The conformity index (CI of the planning target volumes evaluation (PTV-Eval of VMAT was significantly superior to those of IMRT and IMRT-EB (P 0.05.Considered the target volume coverage and radiation dose delivered to the OARs (especially the heart and lung, IMRT may be more suitable for the SIB in WBI than IMRT-EB and VMAT. Additional clinical studies with a larger sample size will be needed to assess the long-term feasibility and efficacy of SIB using different radiotherapy techniques.

  4. Development and clinical evaluation of automatic fiducial detection for tumor tracking in cine megavoltage images during volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Azcona, Juan Diego [Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Oncology, Division of Radiation Physics, Clinica Universidad de Navarra, Pamplona, Navarra 31008 (Spain); Li Ruijiang; Mok, Edward; Hancock, Steven; Xing Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2013-03-15

    Purpose: Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. Methods: The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image, with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning

  5. Development and clinical evaluation of automatic fiducial detection for tumor tracking in cine megavoltage images during volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Purpose: Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. Methods: The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image, with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning

  6. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT

    Science.gov (United States)

    Podesta, Mark; Nijsten, Sebastiaan M. J. J. G.; Persoon, Lucas C. G. G.; Scheib, Stefan G.; Baltes, Christof; Verhaegen, Frank

    2014-08-01

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  7. VMAT and dose painting in ENT: which impact of the dose delivered to organs at risk; VMAT et 'dose painting' en ORL: quel impact sur la dose delivree aux organes a risque?

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, C.; Chajon, E.; Louvel, G.; Devillers, A.; Olivier, M.; Crevoisier, R. de; Manens, J.P. [Centre Eugene-Marquis, Rennes (France); Simon, A. [LTSI, Inserm 0642, Rennes (France)

    2011-10-15

    The authors report the assessment of the feasibility of a dose escalation in ENT by using the Volumetric Modulated Arc Therapy (VMAT) on the basis of doses received by organs at risk and sane tissues. Seven patients have been treated with two different strategies regarding dose prescription. Dose is delivered in 35 fractions according to a standard strategy and to a 'dose painting' strategy which comprises two additional dose levels. Treatment plans have been computed. Received doses have been measured and compared. Measurements with thermo-luminescent sensors have been performed on an anthropomorphic phantom to assess the dose outside of the treatment field. Short communication

  8. High dose for prostate irradiation with image guided radiotherapy: Contribution of intensity modulation arc-therapy; Haute dose dans la prostate par radiotherapie guidee par l'image: apport de l'arctherapie avec modulation d'intensite du faisceau

    Energy Technology Data Exchange (ETDEWEB)

    Jouyaux, B.; De Crevoisier, R.; Manens, J.P.; Bellec, J.; Chira, C.; Le Prise, E.; Lafond, C. [Centre Eugene-Marquis, 35 - Rennes (France); De Crevoisier, R.; Manens, J.P.; Cazoulat, G.; Haigron, P.; Lafond, C. [Inserm, U642, 35 - Rennes (France); Universite de Rennes-1, LTSI, 35 - Rennes (France)

    2010-12-15

    Purpose: To compare two Intensity Modulated Radiation Therapy (IMRT) techniques for prostate cancer: the Volumetric Modulated Arc Therapy (VMAT) and the 'Step and Shoot' technique (S and S). Materials and methods: VMAT and S and S plans (RX 18 MV) were created and compared (Wilcoxon test) for 10 patients. The dosimetric goal of both treatments was to deliver 46 Gy to the seminal vesicles and 80 Gy to the prostate, while respecting the dose constrains in the organs at risk of toxicity. For one patient, the two techniques were compared for dose painting and escalation in target volumes defined on MRI and registered thanks to intra-prostatic fiducial. Results: VMAT, compared to S and S, offered: an increase of the PTV2s (prostate) volume receiving 77 to 80 Gy and a decrease of V{sub 82} and V{sub 83}; a decrease of V{sub 4} to V{sub 6}, V{sub 16} to V{sub 23}, and V{sub 69} to V{sub 73} for the rectal wall; a decrease of V{sub 25} for the bladder wall; a decrease of V{sub 21} to V{sub 43} for the femoral heads; a decrease of V{sub 26} to V{sub 44} and V{sub 72} to V{sub 80} but an increase of V{sub 1} to V{sub 21} and V{sub 49} to V{sub 60} for the healthy tissues. The Conformal Index 'COIN' was better with VMAT than S and S (0.60 to 0.66). The delivered MU were significantly reduced with VMAT (8% mean) as well as the delivery time (4 min to 1.5 min). VMAT allowed delivering theoretically 90 Gy in the peripheral zone and 100 Gy in the tumor. Conclusion: In case of prostate irradiation, VMAT shows improvement compared with S and S. In particular, organs at risk are better spared, the delivery time is shortened and the number of delivered UM is decreased. (authors)

  9. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectumoverlap) or PTV and bladder (Bladderoverlap) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectumoverlap and Bladderoverlap correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V45 and bladder V50 with R2 = 0.78 and R2 = 0.83, respectively, and predicted the boost plan rectum V30 and bladder V30 with R2 = 0.53 and R2 = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p overlap to predict bladder V80 >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  10. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani [Dept. of Radiation Oncology, New York Methodist Hospital, Brooklyn (United States)

    2013-12-15

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum{sub overlap}) or PTV and bladder (Bladder{sub overlap}) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum{sub overlap} and Bladder{sub overlap} correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V{sub 45} and bladder V{sub 50} with R{sup 2} = 0.78 and R{sup 2} = 0.83, respectively, and predicted the boost plan rectum V{sub 30} and bladder V{sub 30} with R{sup 2} = 0.53 and R{sup 2} = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladder{sub overlap} to predict bladder V{sub 80} >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  11. Time-resolved versus time-integrated portal dosimetry: the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy

    Science.gov (United States)

    Schyns, Lotte E. J. R.; Persoon, Lucas C. G. G.; Podesta, Mark; van Elmpt, Wouter J. C.; Verhaegen, Frank

    2016-05-01

    The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.

  12. Physical and biological pretreatment quality assurance of the head and neck cancer plan with the volumetric modulated arc therapy

    Science.gov (United States)

    Park, So-Hyun; Lee, Dong-Soo; Lee, Yun-Hee; Lee, Seu-Ran; Kim, Min-Ju; Suh, Tae-Suk

    2015-09-01

    The aim of this work is to demonstrate both the physical and the biological quality assurance (QA) aspects as pretreatment QA of the head and neck (H&N) cancer plan for the volumetric modulated arc therapy (VMAT). Ten H&N plans were studied. The COMPASS® dosimetry analysis system and the tumor control probability (TCP) and the normal tissue complication probability (NTCP) calculation free program were used as the respective measurement and calculation tools. The reliability of these tools was verified by a benchmark study in accordance with the TG-166 report. For the physical component of QA, the gamma passing rates and the false negative cases between the calculated and the measured data were evaluated. The biological component of QA was performed based on the equivalent uniform dose (EUD), TCP and NTCP values. The evaluation was performed for the planning target volumes (PTVs) and the organs at risks (OARs), including the eyes, the lens, the parotid glands, the esophagus, the spinal cord, and the brainstem. All cases had gamma passing rates above 95% at an acceptance tolerance level with the 3%/3 mm criteria. In addition, the false negative instances were presented for the PTVs and OARs. The gamma passing rates exhibited a weak correlation with false negative cases. For the biological QA, the physical dose errors affect the EUD and the TCP for the PTVs, but no linear correlation existed between them. The EUD and NTCP for the OARs were shown the random differences that could not be attributed to the dose errors from the physical QA. The differences in the EUD and NTCP between the calculated and the measured results were mainly demonstrated for the parotid glands. This study describes the importance and the necessity of improved QA to accompany both the physical and the biological aspects for accurate radiation treatment.

  13. Quasi real time in vivo dosimetry for VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Fidanzio, A.; Azario, L. [Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00146 (Italy); Porcelli, A. [U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Greco, F. [U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00146 (Italy); Cilla, S. [U.O di Fisica Sanitaria, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso 86100, Italy and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00146 (Italy); Grusio, M. [Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Balducci, M.; Valentini, V. [U.O.C di Radioterapia, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Piermattei, A., E-mail: a.piermattei@rm.unicatt.it [Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00168 (Italy)

    2014-06-15

    Purpose: Results about the feasibility of a method for quasi real timein vivo dosimetry (IVD) at the isocenter point for volumetric modulated arc therapy (VMAT) are here reported. The method is based on correlations between the EPID signal and the dose on the beam central axis. Moreover, the γ-analysis of EPID images was adopted to verify off-axis reproducibility of fractionated plan delivery. Methods: An algorithm to reconstructin vivo the isocenter dose, D{sub iso}, for RapidArc treatments has been developed. 20 VMAT plans, optimized with two opposite arcs, for prostate, pancreas, and head treatments have been delivered by a Varian linac both to a conic PMMA phantom with elliptical section and to patients. The ratios R between reconstructed D{sub iso} and the planned doses were determined for phantom and patient irradiations adopting an acceptance criterion of ±5%. In total, 40 phantom checks and 400 patient checks were analyzed. Moreover, 3% and 3 mm criteria were adopted for portal image γ-analysis to assess patient irradiation reproducibility. Results: The average ratio R, between reconstructed and planned doses for the PMMA phantom irradiations was equal to 1.007 ± 0.024. When the IVD method was applied to the 20 patients, the average R ratio was equal to 1.003 ± 0.017 and 96% of the tests were within the acceptance criteria. The portal image γ-analysis supplied 88% of the tests within the pass rates γ{sub mean} ≤ 0.4 and P{sub γ<1} ≥ 98%. All the warnings were understood comparing the CT and the cone beam CT images and in one case a patient's setup error was detected and corrected for the successive fractions. Conclusions: This preliminary experience suggests that the method is able to detect dosimetric errors in quasi real time at the end of the therapy session. The authors intend to extend this procedure to other pathologies with the integration of in-room imaging verification by cone beam CT.

  14. Multi-GPU implementation of a VMAT treatment plan optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhen, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Folkerts, Michael; Tan, Jun; Jia, Xun, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Jiang, Steve B., E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States); Peng, Fei [Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2015-06-15

    Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is

  15. Multi-GPU implementation of a VMAT treatment plan optimization algorithm

    International Nuclear Information System (INIS)

    Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is

  16. Physical aspects of the angle-beta concept in electron arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pla, M.; Podgorsak, E.B.; Pla, C.; Freeman, C.R.; Souhami, L.; Guerra, J. (Department of Radiation Oncology, McGill University, Montreal, Quebec (Canada))

    1991-06-01

    A technique for the determination of treatment parameters that are required to achieve a desired depth dose distribution in electron arc therapy is discussed and a method for calculating isodose distributions is presented. Both the treatment technique and the dose calculation method rely on the angle beta concept, which uniquely describes the dependence of the radial percentage depth doses in electron arc therapy on the nominal field width, isocenter depth, and virtual source-axis distance. The angle beta concept is discussed in detail and the electron pseudo-arc therapy technique used at McGill is described. Also presented is the method used to achieve dose homogeneity in target volumes treated with the pseudo-arc technique.

  17. SU-E-T-583: Operated Left Breast and Chest Wall Radiotherapy: A Dosimetric Comparison Between 3DCRT, IMRT and VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B [AMRI Cancer Centre and GLA university, Mathura, Kolkata, West bengal (India); Roy, S [AMRI Cancer Centre, Kolkata, Kolkata, West bengal (India); Munshi, A [Fortis Memorial Research Institute, Gurgon, haryana (India); Pradhan, A [GLA University, Mathura, Uttar Pradesh (India)

    2015-06-15

    Purpose: To evaluate the comparative dosimetric efficacy between field and field 3DCRT(FnF), multiple field Intensity modulated radiotherapy (SnS IMRT) and, partial arc volumetric modulated arc therapy (VMAT) in case of post operative left side breast and chest wall irradiation. Methods: CT study set of fifteen post-operative left breast and chest wall patient was tested for a treatment plan of 50Gy in 25 fraction using partial arc VMAT, SnSIMRT and tangential beam 3DCRT . 3DCRT FnF gantry angle was ranging for left medial tangential 290±17{sup 0} and Lt lateral tangential l14°±12{sup 0}. For IMRT four fixed beam at gantry angle G130{sup 0} G110{sup 0} G300{sup 0} and G330{sup 0} was used, in case of insufficient dose another beam G150{sup 0} was added. In case of partial arc VMAT, lateral tangential arc G130{sup 0}-G100{sup 0} and medial tangential arc G280{sup 0}-G310{sup 0}. Inverse optimization was opted to cover at least 95%PTV by 95% prescription dose (RxD) and a strong weightage on reduction of heart and lung dose. PTV coverage was evaluated for it’s clinically acceptability depending on the tumor spatial location and its quadrant. Out of the three plans, any one was used for the actual patient treatment. Results: Dosimetric analysis done for breast PTV, left lung, heart and the opposite breast. PTV mean dose and maximum dose was 5129.8±214.8cGy, 4749.0±329.7cGy, 5024.6±73.4cGy and 5855.2±510.7cGy, 5340.7±146.1cGy, 5347.2±196.8cGy for FnF, VMAT and IMRT respectively. Ipsilateral lung volume receiving 20Gy and 5Gy was 23.6±9.5cGy and 32.7±10.3cGy for FnF, 18.6±8.7cGy and 38.8±15.2cGy for VMAT and 25.7±9.6cGy and 50.7±8.4cGy for IMRT respectively. Heart mean and 2cc dose was 867.9±456.7cGy and 5038.5±184.3cGy for FnF, 532.6±263cGy and 3632.1±990.6 for VMAT, 711±229.9cGy and 4421±463.7cGy for IMRT respectively. VMAT shows minimum contralateral breast dose 168±113.8cGy. Conclusion: VMAT shows a better tumor conformity, minimum heart

  18. Volumetric Modulated Arc Therapy Planning for Primary Prostate Cancer With Selective Intraprostatic Boost Determined by {sup 18}F-Choline PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Yu [Department of Medical Physics, University of Nevada Las Vegas, Las Vegas, Nevada (United States); Wu, Lili [Department of Medical Physics, University of Nevada Las Vegas, Las Vegas, Nevada (United States); Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong (China); Hirata, Emily; Miyazaki, Kyle; Sato, Miles [Hamamatsu/Queen' s PET Imaging Center and Departments of Radiation Oncology and Oncology Research, The Queen' s Medical Center, Honolulu, Hawaii (United States); Kwee, Sandi A., E-mail: kwee@hawaii.edu [Hamamatsu/Queen' s PET Imaging Center and Departments of Radiation Oncology and Oncology Research, The Queen' s Medical Center, Honolulu, Hawaii (United States); John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii (United States)

    2015-04-01

    Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through

  19. A comparison of several modulated radiotherapy techniques for head and neck cancer and dosimetric validation of VMAT

    International Nuclear Information System (INIS)

    Purpose: Volumetric modulated arc therapy (VMAT) has the potential to shorten treatment times for fluence modulated radiotherapy. We compared dose distributions of VMAT, step-and-shoot IMRT and serial tomotherapy for typical head and neck (H and N) planning target volumes (PTV) with sparing of one parotid, a complex paradigm and a situation often encountered in H and N radiotherapy. Finally, we validated the dosimetric accuracy of VMAT delivery. Material and methods: Based on CT datasets of 10 patients treated for H and N cancer (PTV1:60 Gy/PTV2:56 Gy) with IMRT (7/9 fields), serial tomotherapy (MIMiC) and VMAT were compared with regard to plan quality and treatment efficiency. Plan quality was assessed by calculating homogeneity/conformity index (HI/CI), mean dose to parotid and brain stem and the maximum dose to the spinal cord. For plan efficiency evaluation, total treatment time (TTT) and number of monitor units (MU) were considered. A dosimetric evaluation of VMAT was performed using radiosensitive film, ion chamber and 2D-array. Results: For MIMiC/IMRT7F/IMRT9F/VMAT, mean CI was 1.98/2.23/2.23/1.82, HIPTV1 was 1.12/1.20/1.20/1.11 and HIPTV2 was 1.11/1.15/1.13/1.12. Mean doses to the shielded parotid were 19.5 Gy/14.1 Gy/13.9 Gy/14.9 Gy and the spinal cord received maximum doses of 43.6 Gy/40.8 Gy/41.6 Gy/42.6 Gy. The mean MU’s were 2551/945/925/521 and the mean TTT was 12.8 min/7.6 min/8.5 min/4.32 min. The ion chamber measurements showed an absolute deviation of 0.08 ± 1.10% and 98.45 ± 3.25% pixels passed γ-analyses for 3%/3 mm and 99.95 ± 0.09% for 5%/5 mm for films. 2D-array measurements reported an agreement for 3%/3 mm of 95.65 ± 2.47%–98.33 ± 0.65% and for 5%/5 mm 99.79 ± 0.24%–99.92 ± 0.09% depending on the measurement protocol. Conclusion: All treatment paradigms produced plans of excellent quality and dosimetric accuracy with IMRT providing best OAR sparing and VMAT being the most efficient treatment option in our comparison of

  20. Evaluation the implementation of volumetric modulated arc therapy QA in the radiation therapy treatment according to various factors by using the portal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Hyeon; Bae, Sun Myung; Seo, Dong Rin; Kang, Tae Young; Baek, Geum Mun [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)

    2015-12-15

    The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Test was used for TrueBeam STx{sup TM} (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  1. Arc therapy for total body irradiation – A robust novel treatment technique for standard treatment rooms

    International Nuclear Information System (INIS)

    Background and purpose: We developed a simple and robust total body irradiation (TBI) method for standard treatment rooms that obviates the need for patient translation devices. Methods and materials: Two generic arcs with rectangular segments for a patient thickness of 16 and 20 cm (arc16/arc20) were generated. An analytical fit was performed to determine the weights of the arc segments depending on patient thickness and gantry angle. Stability and absolute dose for both arcs were measured using EBT3 films in a range of solid water slab phantom thicknesses. Additionally ionization chamber measurements were performed every 10 cm at a source surface distance (SSD) of ∼200 cm. Results: The measured standard deviation for arc16 is ±3% with a flatness ⩽9.0%. Arc20 had a standard deviation of ±3% with a flatness ⩽7.3% for all measured thicknesses. The theoretical curves proved to be accurate for the prediction of the segment weightings for the two arcs. In vivo measurements for the first 22 clinical patients showed a dose deviation of less than 3%. Conclusions: Arc therapy is a convenient and stable method for TBI. This cost-effective approach has been introduced clinically, obviating the need for field patches and to physically move the patient

  2. Volumetric modulated arc therapy with flattening filter free beams for isolated abdominal/pelvic lymph nodes: report of dosimetric and early clinical results in oligometastatic patients

    International Nuclear Information System (INIS)

    SBRT is a safe and efficient strategy to locally control multiple metastatic sites. While research in the physics domain for Flattening Filter Free Beams (FFF) beams is increasing, there are few clinical data of FFF beams in clinical practice. Here we reported dosimentric and early clinical data of SBRT and FFF delivery in isolated lymph node oligometastatic patients. Between October 2010 and March 2012, 34 patients were treated with SBRT for oligometastatic lymph node metastasis on a Varian TrueBeamTM treatment machine using Volumetric Modulated Arc Therapy (RapidArc). We retrospectively evaluated a total of 25 patients for isolated lymph node metastases in abdomen and/or pelvis treated with SBRT and FFF (28 treatments). Acute toxicity was recorded. Local control evaluation was scored by means of CT scan and/or PET scan. All dosimetric results are in line with what published for the same type of stereotactic abdominal lymph node metastases treatments and fractionation, using RapidArc. All 25 FFF SBRT patients completed the treatment. Acute gastrointestinal toxicity was minimal: one patient showed Grade 1 gastrointestinal toxicity. Three other patients presented Grade 2 toxicity. No Grade 3 or higher was recorded. All toxicities were recovered within one week. The preliminary clinical results at the median follow up of 195 days are: complete response in 12 cases, partial response in 11, stable disease in 5, with an overall response rate of 82%; no local progression was recorded. Data of dosimetrical findings and acute toxicity are excellent for patients treated with SBRT with VMAT using FFF beams. Preliminary clinical results showed a high rate of local control in irradiated lesion. Further data and longer follow up are needed to assess late toxicity and definitive clinical outcomes

  3. Volumetric modulated arc therapy with flattening filter free beams for isolated abdominal/pelvic lymph nodes: report of dosimetric and early clinical results in oligometastatic patients

    Directory of Open Access Journals (Sweden)

    Alongi Filippo

    2012-12-01

    Full Text Available Abstract Background SBRT is a safe and efficient strategy to locally control multiple metastatic sites. While research in the physics domain for Flattening Filter Free Beams (FFF beams is increasing, there are few clinical data of FFF beams in clinical practice. Here we reported dosimentric and early clinical data of SBRT and FFF delivery in isolated lymph node oligometastatic patients. Methods Between October 2010 and March 2012, 34 patients were treated with SBRT for oligometastatic lymph node metastasis on a Varian TrueBeamTM treatment machine using Volumetric Modulated Arc Therapy (RapidArc. We retrospectively evaluated a total of 25 patients for isolated lymph node metastases in abdomen and/or pelvis treated with SBRT and FFF (28 treatments. Acute toxicity was recorded. Local control evaluation was scored by means of CT scan and/or PET scan. Results All dosimetric results are in line with what published for the same type of stereotactic abdominal lymph node metastases treatments and fractionation, using RapidArc. All 25 FFF SBRT patients completed the treatment. Acute gastrointestinal toxicity was minimal: one patient showed Grade 1 gastrointestinal toxicity. Three other patients presented Grade 2 toxicity. No Grade 3 or higher was recorded. All toxicities were recovered within one week. The preliminary clinical results at the median follow up of 195 days are: complete response in 12 cases, partial response in 11, stable disease in 5, with an overall response rate of 82%; no local progression was recorded. Conclusions Data of dosimetrical findings and acute toxicity are excellent for patients treated with SBRT with VMAT using FFF beams. Preliminary clinical results showed a high rate of local control in irradiated lesion. Further data and longer follow up are needed to assess late toxicity and definitive clinical outcomes.

  4. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    International Nuclear Information System (INIS)

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V18 Gy), stomach (mean and V20 Gy), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V18 Gy), liver (mean dose), total bowel (V20 Gy and mean dose), and small bowel (V15 Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy

  5. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  6. An in vivo dose verification method for SBRT–VMAT delivery using the EPID

    International Nuclear Information System (INIS)

    Purpose: Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT–VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In this work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT–VMAT delivery. Methods: The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their “forward” model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their “inverse” model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient’s density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT–VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT–VMAT plan. The

  7. An in vivo dose verification method for SBRT–VMAT delivery using the EPID

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: peter.mccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Van Uytven, E.; Van Beek, T.; Asuni, G. [Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2015-12-15

    Purpose: Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT–VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In this work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT–VMAT delivery. Methods: The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their “forward” model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their “inverse” model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient’s density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT–VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT–VMAT plan. The

  8. TH-C-12A-09: Planning and Delivery of the Fully Dynamic Trajectory Modulated Arc Therapy: Application to Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, J; Atwood, T; Fahimian, B; Chin, E; Hristov, D [Department of Radiation Oncology, Stanford University, CA (United States); Otto, K [Department of Physics, University of British Columbia, BC (Canada)

    2014-06-15

    Purpose: A novel trajectory modulated arc therapy (TMAT) system was developed that uses source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement. MLC motion and dose rate were fully optimized for dynamic beam delivery. This work presents a platform for planning deliverable TMAT on a collision free coronal trajectory and evaluates its benefit for accelerated partial breast irradiation (APBI) in a prone position. Methods: The TMAT algorithm was built on VMAT with modifications (physical properties on couch movement were defined) and enhancements (pencil beam dose calculation engine to support extended SSDs) to make it feasible for TMAT delivery. A Matlab software environment for TMAT optimization and dose calculation was created to allow any user specified motion axis. TMAT delivery was implemented on Varian TrueBeamTM STx via XML scripts. 10 prone breast irradiation cases were evaluated in VMAT and compared with a 6- field non-coplanar IMRT plan. Patient selection/exclusion criteria and structure contouring followed the guidelines of NSABP B-39/RTOG 0413 protocol. Results: TMAT delivery time was ∼4.5 minutes. 251.5°±7.88° of non-isocentric couch arc was achieved by the optimized trajectory with 180– 210 control points at 1°–2° couch increments. The improved dose distribution by TMAT was most clearly observed by the marked reduction in the volume of irradiated normal breast tissue in the high dose region. The ratios of the normal breast tissue volume receiving more than 50%, 80% and 100% of the prescription dose for TMAT versus IMRT were: V50%(TMAT/IMRT) = 78.38%±13.03%, V80%(TMAT/IMRT) = 44.19%±9.04% and V100% (TMAT/IMRT) = 9.96%±7.55%, all p≤0.01. Conclusion: The study is the first demonstration of planning and delivery implementation of a fully dynamic APBI TMAT system with continuous couch motion. TMAT achieved significantly improved dosimetry over noncoplanar IMRT on dose volume parameters

  9. Volumetric modulated arc therapy is superior to conventional intensity modulated radiotherapy - a comparison among prostate cancer patients treated in an Australian centre

    International Nuclear Information System (INIS)

    Radiotherapy technology is expanding rapidly. Volumetric Modulated Arc Therapy (VMAT) technologies such as RapidArc® (RA) may be a more efficient way of delivering intensity-modulated radiotherapy-like (IM) treatments. This study is an audit of the RA experience in an Australian department with a planning and economic comparison to IM. 30 consecutive prostate cancer patients treated radically with RA were analyzed. Eight RA patients treated definitively were then completely re-planned with 3D conformal radiotherapy (3D); and a conventional sliding window IM technique; and a new RA plan. The acceptable plans and their treatment times were compared and analyzed for any significant difference. Differences in staff costs of treatment were computed and analyzed. Thirty patients had been treated to date with eight being treated definitely to at least 74 Gy, nine post high dose brachytherapy (HDR) to 50.4Gy and 13 post prostatectomy to at least 64Gy. All radiotherapy courses were completed with no breaks. Acute rectal toxicity by the RTOG criteria was acceptable with 22 having no toxicity, seven with grade 1 and one had grade 2. Of the eight re-planned patients, none of the 3D (three-dimensional conformal radiotherapy) plans were acceptable based on local guidelines for dose to organs at risk. There was no statistically significant difference in planning times between IM and RA (p = 0.792). IM had significantly greater MUs per fraction (1813.9 vs 590.2 p < 0.001), total beam time per course (5.2 vs 3.1 hours, p = 0.001) and average treatment staff cost per patient radiotherapy course ($AUD489.91 vs $AUD315.66, p = 0.001). The mean saving in treatment staff cost for RA treatment was $AUD174.25 per patient. 3D was incapable of covering a modern radiotherapy volume for the radical treatment of prostate cancer. These volumes can be treated via conventional IM and RA. RA was significantly more efficient, safe and cost effective than IM. VMAT technologies are a superior way of

  10. Re-irradiating spinal column metastases using IMRT and VMAT with and without flattening filter - a treatment planning study

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the potential of the flattening filter free (FFF) mode of a linear accelerator for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for patients with in-field recurrence of vertebral metastases. An Elekta Synergy Linac with Agility™ head is used to simulate the treatment of ten patients with locally recurrent spinal column metastases. Four plans were generated for each patient treating the vertebrae sparing the spinal cord: Dual arc VMAT and nine field step and shoot IMRT each with and without flattening filter. Plan quality was assessed considering target coverage and sparing of the spinal cord and normal tissue. All plans were verified by a 2D-ionisation-chamber-array, peripheral doses were measured and compared to calculations. Delivery times were measured and compared. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Target coverage, homogeneity index and conformity index were comparable for both flat and flattening filter free beams. The volume of the spinal cord receiving the allowed maximum dose to keep the risk of radiation myelopathy at 0 % was at the same time significantly reduced to below the clinically relevant 1 ccm using FFF mode. In addition the mean dose deposited in the surrounding healthy tissue was significantly reduced in the FFF mode. All four techniques showed equally good gamma scores for plan verification. FFF plans required considerably more MU per fraction dose. Regardless of the large number of MU, out-of-field point dose was significantly lower for FFF plans, with an average reduction of 33 % and mean delivery time was significantly reduced by 22 % using FFF beams. When compared to IMRT FF, VMAT FFF offered even a reduction of 71 % in delivery time and 45 % in peripheral dose. FFF plans showed a significant improvement in sparing of normal tissue and the spinal cord, keeping target coverage and homogeneity comparable

  11. Implementation of dosimetric quality control on IMRT and VMAT treatments in radiotherapy using diodes

    International Nuclear Information System (INIS)

    To implement quality control of IMRT and VMAT treatments Rapid Arc radiotherapy using diode array. Were tested 90 patients with IMRT and VMAT Rapid Arc, comparing the planned dose to the dose administered, used the Map-Check-2 and Arc-Check of Sun Nuclear, they using the gamma factor for calculating and using comparison parameters 3% / 3m m. The statistic shows that the quality controls of the 90 patients analyzed, presented a percentage of diodes that pass the test between 96,7% and 100,0% of the irradiated diodes. Implemented in Clinical ALIADA Oncologia Integral, the method for quality control of IMRT and VMAT treatments Rapid Arc radiotherapy using diode array. (Author)

  12. Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA)

    International Nuclear Information System (INIS)

    Purpose: To propose single-isocenter dynamic conformal arcs (SIDCA), a novel technique for radiosurgery of multiple brain metastases, and to compare SIDCA with volumetric modulated arc therapy (VMAT) and multiple-isocenter dynamic conformal arcs (MIDCA) for plan quality. Methods and materials: SIDCA, MIDCA, and VMAT plans were created on 6 patients with 3–5 metastases. Plans were evaluated using Radiation Therapy Oncology Group conformity index (RCI), Paddick conformity index (PCI), gradient index (GI), volumes that received more than 100% (V100%), 50% (V50%), 25% (V25%) and 10% (V10%) of prescription dose, total monitor units (MUs), and delivery time (DT). Results: SIDCA achieved conformal plans (RCI = 1.38 ± 0.12, PCI = 0.72 ± 0.06) with steep dose fall-off (GI = 3.97 ± 0.51). MIDCA plans had comparable plan quality and MUs as SIDCA, but 52% longer DT. The VMAT plans had better conformity (RCI = 1.15 ± 0.09, p < 0.01 and PCI = 0.86 ± 0.06, p < 0.01) than SIDCA, worse GI (4.34 ± 0.46, p < 0.01), higher V25% (p = 0.05) and V10% (p = 0.02), 49% less MUs and 46% shorter DT. Conclusions: All three techniques achieved conformal plans with steep dose fall-off from targets. SIDCA plans had similar plan quality as MIDCA but more efficient to delivery. SIDCA plans had lower peripheral dose spread than VMAT; VMAT plans had better conformity and faster delivery time than SIDCA

  13. Clinical application of RapidArc volumetric modulated arc therapy as a component in whole brain radiation therapy for poor prognostic, four or more multiple brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Lee, Kyu Chan; Choi, Jin Ho; Kim, Hye Young; Lee, Seok Ho; Sung, Ki Hoon; Kim, Yun Mi [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2012-06-15

    To determine feasibility of RapidArc in sequential or simultaneous integrated tumor boost in whole brain radiation therapy (WBRT) for poor prognostic patients with four or more brain metastases. Nine patients with multiple ({>=}4) brain metastases were analyzed. Three patients were classified as class II in recursive partitioning analysis and 6 were class III. The class III patients presented with hemiparesis, cognitive deficit, or apraxia. The ratio of tumor to whole brain volume was 0.8-7.9%. Six patients received 2-dimensional bilateral WBRT, (30 Gy/10- 12 fractions), followed by sequential RapidArc tumor boost (15-30 Gy/4-10 fractions). Three patients received RapidArc WBRT with simultaneous integrated boost to tumors (48-50 Gy) in 10-20 fractions. The median biologically effective dose to metastatic tumors was 68.1 Gy10 and 67.2 Gy10 and the median brain volume irradiated more than 100 Gy3 were 1.9% (24 cm3) and 0.8% (13 cm3) for each group. With less than 3 minutes of treatment time, RapidArc was easily applied to the patients with poor performance status. The follow-up period was 0.3-16.5 months. Tumor responses among the 6 patients who underwent follow-up magnetic resonance imaging were partial and stable in 3 and 3, respectively. Overall survival at 6 and 12 months were 66.7% and 41.7%, respectively. The local progression-free survival at 6 and 12 months were 100% and 62.5%, respectively. RapidArc as a component in whole brain radiation therapy for poor prognostic, multiple brain metastases is an effective and safe modality with easy application.

  14. Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments

    International Nuclear Information System (INIS)

    Purpose: Respiratory motion is a non-negligible source of uncertainty in radiotherapy. A common approach is to delineate the target volume in all respiratory phases (ITV) and to calculate a treatment plan using the average reconstruction of the four-dimensional computed tomography (4DCT) scans. In this study the extent of the interplay effect caused by interaction between dynamic dose delivery and respiratory tumor motion, as well as other motion effects were investigated. These effects are often ignored when the ITV concept is used. Methods and Materials: Nine previously treated patients with in ten abdominal or thoracic cancer lesions (3 liver, 3 adrenal glands and 4 lung lesions) were selected for this planning study. For all patients, phase-sorted respiration-correlated 4DCT scans were taken, and volumetric modulated arc therapy (VMAT) treatments were planned using the ITV concept. Margins from ITV to planning target volume (PTV) of 3-10 mm were used. Plans were optimized and dose distributions were calculated on the average reconstruction of the 4DCT. 4D dose distributions were calculated to evaluate motion effects, caused by the interference of dynamic treatment delivery with respiratory tumor motion and inhomogeneously planned target dose. These calculations were performed on the phase-sorted CT series with a respiration-correlated assignment of the treatment plan's monitor units (MU) to the respiration phases of the 4DCT. The 4D dose was accumulated with rigid as well as deformable registrations of the CT series and compared to the original 3D dose distribution. Maximum, minimum and mean doses to ITV and PTV, and maximum or mean doses to organs at risk (OAR), were compared after rigid accumulation. The dose variation in the gross tumor volume (GTV) was compared after deformable registration. Results: Using rigid registrations, variations in the investigated dose parameters between 3D and 4D dose calculations were found to be within -2.1% to 1.4% for

  15. Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ehrbar, Stefanie; Lang, Stephanie; Stieb, Sonja; Riesterer, Oliver; Stark, Luisa Sabrina; Guckenberger, Matthias; Kloeck, Stephan [University Hospital Zuerich (Switzerland). Dept. of Radiation Oncology

    2016-05-01

    Purpose: Respiratory motion is a non-negligible source of uncertainty in radiotherapy. A common approach is to delineate the target volume in all respiratory phases (ITV) and to calculate a treatment plan using the average reconstruction of the four-dimensional computed tomography (4DCT) scans. In this study the extent of the interplay effect caused by interaction between dynamic dose delivery and respiratory tumor motion, as well as other motion effects were investigated. These effects are often ignored when the ITV concept is used. Methods and Materials: Nine previously treated patients with in ten abdominal or thoracic cancer lesions (3 liver, 3 adrenal glands and 4 lung lesions) were selected for this planning study. For all patients, phase-sorted respiration-correlated 4DCT scans were taken, and volumetric modulated arc therapy (VMAT) treatments were planned using the ITV concept. Margins from ITV to planning target volume (PTV) of 3-10 mm were used. Plans were optimized and dose distributions were calculated on the average reconstruction of the 4DCT. 4D dose distributions were calculated to evaluate motion effects, caused by the interference of dynamic treatment delivery with respiratory tumor motion and inhomogeneously planned target dose. These calculations were performed on the phase-sorted CT series with a respiration-correlated assignment of the treatment plan's monitor units (MU) to the respiration phases of the 4DCT. The 4D dose was accumulated with rigid as well as deformable registrations of the CT series and compared to the original 3D dose distribution. Maximum, minimum and mean doses to ITV and PTV, and maximum or mean doses to organs at risk (OAR), were compared after rigid accumulation. The dose variation in t