WorldWideScience

Sample records for arc remelt process

  1. Auxiliary particle filter-model predictive control of the vacuum arc remelting process

    Science.gov (United States)

    Lopez, F.; Beaman, J.; Williamson, R.

    2016-07-01

    Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.

  2. Metals purification by improved vacuum arc remelting

    Science.gov (United States)

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  3. Macrosegregation Behavior of Ti-10V-2Fe-3Al Alloy During Vacuum Consumable Arc Remelting Process

    Science.gov (United States)

    Yang, Zhijun; Kou, Hongchao; Li, Jinshan; Hu, Rui; Chang, Hui; Zhou, Lian

    2011-02-01

    The effects of melting current and magnetic field in vacuum consumable arc remelting (VAR) process on the macrosegregation of Ti-10V-2Fe-3Al ingot are investigated in this paper. The results show that Fe content increases gradually from the bottom to the top of ingots along axial direction and the degree of macrosegregation is greater in the radial direction in the middle of the ingot versus the top and bottom. The macrosegregation rate of Fe element is higher with melting current of 2.6 kA than that of 1.7 kA in Ti-10V-2Al-3Fe ingot. There are two forces, buoyancy and Lorentz forces which arise from the flow of current through the pool of VAR when without magnetic stirring, but a new Lorentz force arising from the presence of external inductors occurs with adding magnetic stirring which decreases the macrosegregation rate of Fe element in Ti-10V-2Fe-3Al.

  4. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process - Inclusions characterization and modeling

    Science.gov (United States)

    Descotes, V.; Bellot, J.-P.; Perrin-Guérin, V.; Witzke, S.; Jardy, A.

    2016-07-01

    Titanium Nitride (TiN) inclusions are commonly observed in a Maraging steel containing Nitrogen and Titanium and remelted in a VAR furnace. They can be easily detected by optical microscopy. A nucleus is observed next to a large number of TiN inclusions. A TEM analysis was carried out on a biphasic nucleus composed of a calcium sulfide (CaS) and a spinel (MgAl2O4), surrounded by a TiN particle. An orientation relationship between these three phases was revealed, which suggests a heterogeneous germination of the TiN particle on the nucleus by epitaxial growth. Based on this observation, on thermodynamic considerations and on previous work, a model has been developed and coupled to a numerical simulation of the VAR process to study the formation and evolution of a TiN distribution in the VAR ingot. Microsegregation is modeled using the lever rule, while the kinetics of precipitation is mainly driven by the supersaturation of the liquid bath. This model highlights the influence of the melt rate on the final size of TiN particles.

  5. Refusion of zircaloy scraps by VAR (vacuum arc remelting): preliminary results; Fusao de cavacos de zircaloy por VAR: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.A.T.; Mucsi, C.S.; Sato, I.M.; Rossi, J.L.; Martinez, L.G., E-mail: lgallego@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Correa, H.P.S. [Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Orlando, M.T.D. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)

    2010-07-01

    Fuel elements and structural components of the core of PWR nuclear reactors are made in zirconium alloys known as Zircaloy. Machining chips and shavings resulting from the manufacturing of these components can not be discarded as scrap, once these alloys are strategic materials for the nuclear area, have high costs and are not produced in Brazil on an industrial bases and, consequently, are imported for the manufacture of nuclear fuel. The reuse of Zircaloy chips has economic, strategic and environmental aspects. In this work is proposed a process for recycling Zircaloy scraps using a VAR (vacuum arc remelting) furnace in order to obtain ingots suitable for the manufacture of components of the reactors. The ingots obtained are being studied in order to verify the influence of processing on composition and microstructure of the remelted material. In this work are presented preliminary results of the composition of obtained ingots compared to start material and the resulting microstructure. (author)

  6. Effects of electrode immersion depth and remelting rate on electroslag remelting process

    Institute of Scientific and Technical Information of China (English)

    Song Jinchun; Wang Changzhou; Li Song

    2014-01-01

    In the electroslag remelting process, the electrode molten state is a critical factor determining the ingot quality, while the electrode immersion depth and melting rate are key factors for the stability of the electroslag re-melting process. Studies were carried out to investigate the microscopic and macroscopic effects of electrode immersion depth and melting rate on the potential distribution and heat density in the slag bath,and on the depth and shape of the molten bath. Based on the ifnite element method and the numerical solution method, the effect of the electrode immersion depth on the slag bath heat density was researched; the relationship between the electrode immersion depth and the slag resistance was obtained; and the unsteady-state model of the solidiifcation process of the re-melting ingot was solved using the ifnite difference method. The mathematical model and physical model of the electrode melting process were established and solved; and the corresponding curves between the electrode molten-state and slag-bath physical parameters were obtained. The experimental results veriifed the simulated results studied in this paper.

  7. Effect of mold rotation on the bifilar electroslag remelting process

    Science.gov (United States)

    Shi, Xiao-fang; Chang, Li-zhong; Wang, Jian-jun

    2015-10-01

    A novel electroslag furnace with a rotating mold was fabricated, and the effects of mold rotational speed on the electroslag remelting process were investigated. The results showed that the chemical element distribution in ingots became uniform and that their compact density increased when the mold rotational speed was increased from 0 to 28 r/min. These results were attributed to a reasonable mold speed, which resulted in a uniform temperature in the slag pool and scattered the metal droplets randomly in the metal pool. However, an excessive rotational speed caused deterioration of the solidification structure. When the mold rotational speeds was increased from 0 to 28 r/min, the size of Al2O3 inclusions in the electroslag ingot decreased from 4.4 to 1.9 μm. But the excessive mold rotational speed would decrease the ability of the electroslag remelting to remove the inclusions. The remelting speed gradually increased, which resulted in reduced power consumption with increasing mold rotational speed. This effect was attributed to accelerated heat exchange between the consumable electrode and the molten slag, which resulted from mold rotation. Nevertheless, when the rotational speed reached 28 r/min, the remelting speed did not change because of limitations of metal heat conduction. Mold rotation also improved the surface quality of the ingots by promoting a uniform temperature distribution in the slag pool.

  8. Mass Transfer Model of Desulfurization in the Electroslag Remelting Process

    Science.gov (United States)

    Hou, Dong; Jiang, Zhou-Hua; Dong, Yan-Wu; Li, Yang; Gong, Wei; Liu, Fu-Bin

    2017-02-01

    Experimental and theoretical studies have been carried out to investigate the effects of the slag on desulfurization during the electroslag remelting (ESR) process with a focus of developing a mass transfer model to understand the mechanism of desulfurization. Stainless steel 1Cr21Ni5Ti was used as the electrode and remelted with two different kinds of slags using a 50-kg ESR furnace. The contents of sulfur along the axial direction of product ingots were analyzed. It was found that the sulfur content of 350 ppm in the electrode is reduced to 71 to 95 ppm in the ingot by remelting with the slag containing 5 wt pct of CaO, and lowered more to 47 to 59 ppm with another slag having 20 wt pct CaO. On the basis of the penetration and film theories, the theoretical model developed in this work well elucidates the kinetics of desulfurization revealing the mechanism of sulfur transfer during the ESR process. The calculation results obtained from the model agree well with the experimental results. The model indicates that when sulfur content in electrode is given, there is a corresponding minimum value of sulfur content in the ingot due to the kinetics limit. This lowest sulfur content cannot be further reduced even with increasing L S (sulfur distribution coefficient between metal and slag phases) or decreasing sulfur content in the slag. Constant addition of extra amount of CaO to the molten slag with the increase of sulfur content in the slag during the remelting process can improve the macrosegregation of sulfur distributed along the axial direction of ESR ingots. Since the rate-determining steps of the sulfur mass transfer lie in the metal phase, adding calcium as deoxidizer can change mass transfer of sulfur and thus promote desulfurization further during the ESR process.

  9. Development and application of a new freckle criterion for technical remelting processes

    Directory of Open Access Journals (Sweden)

    Böttger B.

    2014-01-01

    Full Text Available In technical solidification processes like Electro Slag (ESR or Vacuum Arc Remelting (VAR, freckles present a serious type of defects which limit the maximum ingot size for many grades of steels and superalloys. Therefore, modelling of freckle formation is an important task for optimizing industrial remelting processes. Practically all present freckle models are based on a critical Rayleigh number. They are inspired by the “classical” assumption that freckles are caused by an inversion of the liquid density in the semisolid region. Plumes of the lighter segregated liquid evolve through perturbation of the metastable layering of the melt in the mushy zone, a mechanism which motivates its description via Rayleigh criteria. But these models are not suitable for materials like Alloy 718 which do not show a liquid density inversion, but nevertheless are prone to freckle formation in technical remelting processes. In this paper, a criterion is developed which – instead of using a Rayleigh number – is based on the evaluation of the non-isothermal component of an instantaneous down-hill flow of heavy segregated melt in a melt pool with axial symmetry. With knowledge of the exact pool geometry and the shape and properties of the mushy zone, the occurrence of freckles can be predicted. The model is applied to a technical ESR casting for which temperature fields and microstructural parameters have been obtained using CFD and 3D phase-field modelling, respectively. Furthermore, the implications are discussed which the new model offers for the understanding of freckles in technical remelting processes.

  10. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel.

    Science.gov (United States)

    Laforest, Guylaine; Duchesne, Josée

    2006-07-31

    Electric arc furnace dust (EAFD) is a toxic waste product made in the remelting of scrap steel. The results of a Toxicity Characteristic Leaching Procedure (TCLP) conducted on a sample of EAFD originating from the remelting of stainless steel scrap showed that the total Cr and Cr (VI) liquor concentrations (9.7 and 6.1 mg/L, respectively) exceeded the Toxicity Characteristic Regulatory Level (TCRL). The EAFD showed a complex heterogeneous mineralogy with spinel minerals group predominance. A sequential extractions method has permitted the determination of the amount of available metals (potentially mobile component) from the EAFD as follows: Cr (3%), Ni (6%), Pb (49%) and Zn (40%). Solubility controls on Cr, Pb, Zn and Ni were identified in the EAFD. This means that the Cr, Pb, Zn and Ni concentrations in solution were controlled by the solubility of some phases from EAFD. The concentrations of Ni and Zn, which are metals not regulated by TCRL were below 0.41 and 1.3 mg/L, respectively. The solubility control on Pb was sufficient to decrease its concentration (<0.24 mg/L) to a level below the TCRL. However, the control on Cr was not sufficient to decrease its concentration (between 117 and 331 mg/L) to below the TCRL.

  11. Segregation of Niobium During Electroslag Remelting Process

    Institute of Scientific and Technical Information of China (English)

    DONG Yan-wu; JIANG Zhou-hua; LI Zheng-bang

    2009-01-01

    Experiment was carried out after the process parameters were calculated by the model previously established.The relationship between interdendritic spacing and local solidification time (LST) mainly determined by process parameters was exposed.Furthermore,the extent of segregation was studied.The results indicate that LST and interdendritic spacing are the largest and the amount of Laves phase as a result of the niobium segregation is the highest in the center of the ingot,whereas the opposite results are obtained at the edge of ingot.The extent of element segregation and the amount of Laves phase can be reduced when appropriate parameters are used.Therefore,the duration of subsequent homogenization treatments for 718 is shortened and the alloy quality is improved.

  12. Influence of the Mold Current on the Electroslag Remelting Process

    Science.gov (United States)

    Hugo, Mathilde; Dussoubs, Bernard; Jardy, Alain; Escaffre, Jessica; Poisson, Henri

    2016-08-01

    The electroslag remelting process is widely used to produce high value-added alloys. The use of numerical simulation has proven to be a valuable way to improve its understanding. In collaboration with Aubert & Duval, the Institute Jean Lamour has developed a numerical transient model of the process. The consumable electrode is remelted within a mold assumed to be electrically insulated by the solidified slag skin. However, this assumption has been challenged by some recent studies: the solidified slag skin may actually allow a part of the melting current to reach the mold. In this paper, the evolution of our model, in order to take into account this possibility, is presented and discussed. Numerical results are compared with experimental data, while several sensitivity studies show the influence of some slag properties and operating parameters on the quality of the ingot. Even, a weakly conductive solidified slag skin at the inner surface of the mold may be responsible for a non-negligible amount of current circulating between the slag and crucible, which in turn modifies the fluid flow and heat transfer in the slag and ingot liquid pool. The fraction of current concerned depends mainly on the electrical conductivities of both the liquid and solidified slag.

  13. Computational and experimental analysis of a U-6w/oNb vacuum consumable arc remelted ingot. A progress report for the Sandia macrosegregation study

    Energy Technology Data Exchange (ETDEWEB)

    Zanner, F. J.; Bertram, L. A.

    1981-04-01

    A computer code (ZAP) has been developed to simulate the thermodynamic, magnetohydrodynamic, and fluid flow conditions in the liquid and solid-liquid regions of a solidifying ingot during vacuum consumable arc remelting. The code is coupled and constrained with experimentally determined measurements of boundary conditions and melt parameters such as melt rate, melt current, and melt time. The work reported presents one preliminary step in the coupled experimental-numerical process. A 538 kg U-6w/oNb ingot was remelted to obtain regions of constant melting current of 2 through 6 kA in 1 kA increments. The melt was simulated numerically using inputs for the code that were obtained from this experiment. Results of this numerical simulation are compared to experimental results obtained from ingot radiography and chemical analysis.

  14. Study on Thixojoining Process Using Partial Remelting Method

    Directory of Open Access Journals (Sweden)

    M. N. Mohammed

    2013-01-01

    Full Text Available Cold-work tool steel is considered to be a nonweldable metal due to its high percentage content of carbon and alloy elements. The application of a new process of the semisolid joining of two dissimilar metals is proposed. AISI D2 cold-work tool steel was thixojoined to 304 stainless steel by using a partial remelting method. After thixojoining, microstructural examination including metallographic analysis, energy dispersive spectroscopy (EDS, and Vickers hardness tests was performed. From the results, metallographic analyses along the joint interface between semisolid AISI D2 and stainless steel showed a smooth transition from one to another and neither oxides nor microcracking was observed. Hardness values obtained from the points in the diffusion zone were much higher than those in the 304 stainless steel but lower than those in the AISI D2 tool steel. The study revealed that a new type of nonequilibrium diffusion interfacial structure was constructed at the interface of the two different types of steel. The current work successfully confirmed that avoidance of a dendritic microstructure in the semisolid joined zone and high bonding quality components can be achieved without the need for force or complex equipment when compared to conventional welding processes.

  15. Tribological resistance of high speed steel HS 6-5-2 remelted with electric arc

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2009-07-01

    Full Text Available The intensity of tribological wear of the high speed steel HS 6-5-2 remelted with the GTAW method has been compared to the heat treatment steel in a conventional way. Moreover, the types of the wear appeared during the friction. The tribiological research, were done in the technically dry friction conditions on a testing machine of the pin-on-disc T-01M. The smallest intensity of wear was shown by the high speed steel remelted with the parameters leading to obtain the biggest speed of cooling of the molten metal. The main wear type appearing during the research, was the abrasion and adhesive wear.

  16. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy; Desenvolvimento de processos de reciclagem de cavacos de zircaloy via refusao em forno eletrico a arco e metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Alberto Tavares

    2014-09-01

    PWR reactors employ, as nuclear fuel, UO{sub 2} pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  17. Observations of melt rate as a function of arc power, CO pressure, and electrode gap during vacuum consumable arc remelting of Inconel 718

    Science.gov (United States)

    Zanner, F. J.; Bertram, L. A.; Adasczik, C.; O'Brien, T.

    1984-01-01

    Statistically designed experiments were conducted at two different production melt shops to evaluate the influence of arc power, CO pressure, and electrode gap on melt rate. Approximately 11,000 kg of Inconel 718 alloy 0.4 m diameter electrodes were vacuum consumable arc remelted into 0.5 m diameter ingots. Analysis of the experimental results revealed that melting efficiency (melting rate/kW) was maximized when CO pressure and electrode gap were held at low levels. Under these conditions, the heat distribution (created by the vacuum arc) on the electrode tip and the molten pool exhibited macro uniformity. Increased CO pressure and/or electrode gap depressed the melt rate, and at 13.3 Pa (100 microns) and a 0.050 m electrode gap, this depression exceeds 46 pct. Increasing these parameters also changed the arc behavior to that of a constricted arc with a highly localized heat input. It is hypothesized that the change from the usual diffuse arc to this constricted arc results in intense Lorentz pumping in a localized region of the molten pool atop the ingot causing fluid flow transients. These transients could, in turn, create solidification defects.

  18. The influence of GTAW processing parameters on a geometry of remelted of C45 steel

    Directory of Open Access Journals (Sweden)

    S. Adamiak

    2008-03-01

    Full Text Available The work presented test rcsul ts OF voltagc cffcct of electric arc current and thc ratc of flow in relation to the sample on gcometry oi thcsurface layer during remelting of 45 stccl with cunccntratcd hcat flux using GTAW mcthod. Thc rcmclting of surface laycr of C45 stcclwith a siablc fccd ratc of welding hcad equalling 200 mmlrnin and wi[h Ihc intcnsity of clcctric arc current ranging from SO to 300A andstable intensity or clcctric arc currcnt 300 A, the rare of hcad fccd was changed From the valuc of 200 mmlmin 10 800 mmlmin. Dcprh.width and thc arca of ohtaincd laycrs wcre mcasured. The inrcrrelation bctlvccn thc intensity of electric arc current and tlic rate of rrs advance in relation Io Ihc treatcd tnaterial. and the gcometry of rcrncltcd laycrs was dctcrmincd.

  19. RESEARCH AND DEVELOPMENT OF NEW SUPERALLOY REMELTING PROCES

    Institute of Scientific and Technical Information of China (English)

    W.Xie

    2005-01-01

    Shanghai No.5 Steel Co., Ltd.has recently introduced a set of 5-ton protective atmosphere electroslag remelting furnace and a set of 10-ton helium-cooling vacuum arc remelting furnace,both of them are the first one of its kind in China.With these equipment, remelting processes about alloy GH4169, GH2132 and GH738 were researched, the process of producing alloy GH4169 by VIM+ VAR+ESR triplex-process was developed, and their effects were discussed.

  20. Effect of Current Frequency on Droplet Evolution During Magnetic-Field-Controlled Electroslag Remelting Process Via Visualization Method

    Science.gov (United States)

    Wang, Huai; Zhong, Yunbo; Li, Qiang; Fang, Yipeng; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2017-02-01

    A transparent physical model was set up to investigate the influence of the remelting current frequencies on droplet evolution during the magnetic-field-controlled electroslag remelting process. Physical simulation experiments were done under the remelting current of 8 A with frequencies ranging from 10 to 500 Hz, and a transverse static magnetic field (TSMF) of 0.7 T was superimposed simultaneously. The high-speed camera was used to record the evolution behavior of the droplet. Representative processes of formation and detachment of the droplets were observed under different conditions. The results showed that there was little influence of the current frequencies on the evolution behavior of the droplet without the external magnetic field. Nevertheless, if a TSMF was introduced, the liquid droplet's neck would be smashed into a lot of smaller droplets when the remelting current frequencies were lower than 100 Hz, while the smashing effect disappeared when the frequencies were higher than 100 Hz. The mechanism of the smashing effect was discussed. Statistical work was done to obtain the quantitative data to give a clear result revealing the influence of the remelting current frequencies on droplet evolution. The decrease in the diameter of the liquid droplets would remarkably increase the interface area and shorten the migrating distance of the inclusions in the droplets, which meant that a higher purifying efficiency could be expected.

  1. Purification technology of flue gas from remelting process of aluminum alloy tailings

    Institute of Scientific and Technical Information of China (English)

    李彩亭; 曾光明; 魏先勋; 袁兴中; 王丽平

    2002-01-01

    Through a practical example of treatment of the flue gas from the remelting process of aluminum alloy tailings, the design and calculation method of exhaust hood, as well as the principles and the equipments of dust removal, smoke abatement and harmful gas elimination were studied. Combination of centrifugal and wet dust removal can purify the dust high efficiently. The carbon black and harmful gases in the flue gas can be removed by adding a small quantity of activator to the absorption solution. The application results are that the dedusting efficiency is 97.43%, Cl2 control efficiency is 88.03%, the exhaust fume blackness is lower than Ringelman number I, and the purification device resistance is 1126Pa.

  2. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: Implication for the formation of the Dexing porphyry copper deposit, Southeastern China

    Science.gov (United States)

    Liu, Xuan; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Li, Qiu-Li; Yang, Yue-Heng; Liu, Yongsheng

    2012-10-01

    The Dexing copper deposit in southeastern China is a typical non-arc porphyry deposit, the origin of which has been a topic of debate for several decades. Here we present new results from U-Pb geochronology, whole-rock chemistry and Sr-Nd-Hf-O isotopic investigations on the ore-forming granodioritic porphyry. LA-ICPMS zircon U-Pb data suggest that the granodioritic porphyry was formed in the Middle Jurassic (ca. 172.5 Ma) probably associated with lithospheric thinning driven by either sub-continental lithospheric mantle delamination or asthenospheric upwelling. The porphyry displays both arc-like and adakitic trace element signatures. The adakitic features suggest that HREE (heavy rare earth elements)-rich minerals such as garnet and hornblende, in the absence of plagioclase resided in the source region. The arc-like signatures are broadly comparable with those of the proximal Neoproterozoic island arc rocks including the keratophyre from Shuangxiwu Group and associated granitoids indicating a potential genetic relationship. The porphyry has chondritic ɛNd(t) of - 0.28 to 0.25 and radiogenic ɛHf(t) of 2 to 7, and correspondingly, uniform two stage depleted mantle Nd model ages of 940-980 Ma and Hf model ages of 800-1100 Ma (mean ~ 920 Ma). On Nd and Hf isotopic evolution diagrams, these values are markedly similar to those of the adjacent Neoproterozoic arc rocks when calculated forward to the Mid-Jurassic. Zircons of the porphyry show mantle-like oxygen isotope characters with δ18O values clustering in the range of 4.7-5.9‰, similar to the values for the Neoproterozoic arc rocks mentioned above. The geochemical and isotopic features recorded in our study suggest mantle-derived magmas with no significant supracrustal input for the source of the porphyry. With regard to the source of the Cu ore, we consider a model involving the remelting of sulfide-bearing arc-related lower crustal source. Furthermore, the occurrence of a Neoproterozoic VMS (volcanic massive

  3. Effect of mold rotation on inclusion distribution in bearing steel during electroslag remelting process

    Institute of Scientific and Technical Information of China (English)

    Chang Lizhong; Shi Xiaofang; Wang Runxi; Cong Junqiang; Li Tao

    2014-01-01

    To remove the inclusions in the ingots by conventional electroslag remelting (ESR), the bearing steel was prepared using ESR process but with mold rotation in this study. Experimental results show a reduction in amount of large inclusions when the mold rotation rate is 6 r·min-1, and the inclusions are uniformly distributed in the ESR ingot. As comparison with the electroslag ingots of conventional ESR (stationary mold), the portion of the Al2O3 inclusions smal er than 1 μm in size increase from 38% to 41.4%, whereas that of the SiO2 inclusions increases from 48% to 74% in the ingots when mold rotation is applied. This phenomenon is caused by the decrease in metal droplet size, resulting in large contact area between the slag pool and metal droplets in ESR process with mold rotation. Moreover, the metal droplets have relatively long movement routes, leading to long metal contact time between the slag pool and metal droplets when a relative motion between the consumable electrodes and mold is present. However, when the mold rotation rate is increased to 45 r·min-1, inclusion removing effect decreases. An excessive rotation rate causes wild motion in the slag pool, which drives the molten metal droplets to move violently, and as a result, the slag is entrapped into the metal pool, decreasing the ability of slag absorbing inclusions.

  4. reMelting curve analysis as a tool for enrichment monitoring in the SELEX process.

    Science.gov (United States)

    Vanbrabant, Jeroen; Leirs, Karen; Vanschoenbeek, Katrijn; Lammertyn, Jeroen; Michiels, Luc

    2014-02-07

    Current aptamer selection procedures enable limited control and transparency on how the DNA selection pool is evolving. Affinity tests and binding analyses are not always informative. Here we show that real-time PCR provides a valuable tool for the follow-up of aptamer selection. Limited time, work and amount of amplified ssDNA make this an interesting instrument to set-up a SELEX design and monitor the enrichment of oligonucleotides. reMelting Curve Analysis (rMCA) after reannealing under stringent conditions provides information about enrichment, compared to a random library. Monitoring the SELEX process and optimising conditions by means of the proposed methods can increase the selection efficiency in a controlled way. rMCA is applied in enrichment simulations and three different selection procedures. Our results imply that rMCA can be used for different SELEX designs and different targets. SELEX pool diversity analysis by rMCA has been proven to be a useful, reproducible tool to detect and evaluate enrichment of specific binding aptamers while the selection procedure is being performed.

  5. Microstructure evolution of an Mg-Zn-Nd-Zr magnesium alloy during recrystallization and partial remelting process

    Directory of Open Access Journals (Sweden)

    Tao Jianquan

    2013-07-01

    Full Text Available To obtain a spheroidal microstructure of a semi-solid Mg-Zn-Nd-Zr alloy, which is favorable for the subsequent thixocasting process, the recrystallization and partial remelting (RAP method was used in this study, and the microstructure evolution of the alloy and the mechanism of the shape factor change during the RAP process were invesigated. The as-cast Mg-Zn-Nd-Zr alloy was prepared in a metal mold and then extruded into bars with an extrusion ratio of 16:1. Partial remelting was carried out on the extruded samples at 589 ℃ (at a heating rate of 0.5 ℃·s-1 for different holding times ranging from 0 to 90 min. To examine the effect of heating rate, partial remelting of samples at the heating rate of 2 ℃·s-1 was also performed. Results show that the extruded microstructure rapidly evolutes into recrystallized grains in the semi-solid state; the liquid film initially forms at grain boundaries during the partial remelting, and then gradually changes from continuous into discontinuous state with the increase of holding time; this results in the agglomeration of adjacent grains and the decrease in shape factor. The value of shape factor increases continuously with holding time at first and reaches the maximum 0.62 when holding for 60 min, while decreases rapidly after a prolonged holding time. Moreover, local melting, mainly due to the inhomogeneous deformation during extrusion, becomes more significant and less uniformly distributed at a relatively higher reheating rate. The Mg-Zn-Nd-Zr magnesium alloy components have been thixo-cast successfully using the RAP method, which strongly proves the feasibility of RAP process in Mg-Zn-Nd-Zr alloy.

  6. Effects of compressing and remelting in SIMA processing on semi-solid structure evolution of an Al-Zn wrought alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Changming; ZOU Maohua

    2003-01-01

    Structure evolution of an Al-Zn wrought alloy in remelting processing in the strain induced melt activated (SIMA)semi-solid procedure was observed, and effects of factors, the remelting temperature, the holding time, and the compression strain, on structures and grain sizes of the alloy were investigated. The results show that (1) the proper temperature of remelting is in the range of 610 to 615℃; (2) the grain size in specimen with greater compression strain is smaller than that with smaller compression strain in condition of the same remelting temperature and holding time, and the grain size in local area with great local equivalent strain is smaller than that with small one; (3) liquid occurs in form of cluster in matrix during remelting and its quantity increases with remelting time increasing; liquid in specimen with great compression strain occurs earlier than that with small one, and quantity of liquid in the center of specimen with greater local equivalent strain is greater than that in the two ends of it; (4) distortion energy after deforming in matrix of the alloy is the significant factor to activate melting of matrix at local area with great local equivalent strain.

  7. Laser Remelting of Plasma Sprayed Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    Gang ZHANG; Yong LIANG; Yingna WU; Zhongchao FENG; Bingchun ZHANG; Fangjun LIU

    2001-01-01

    A CO2 continuous wave laser with defocused beam was used for remelting the surface of plasma sprayed ZrO2-8 wt pct Y2O3 (8YSZ)/Ni22Cr10AlY thermal barrier coatings (TBCs) on GH536 superalloy substrate. Two main laser processing parameters, power and travel speed, were adopted to produce a completely remelted layer, and their effects on remelted appearance,remelting depth, density and diameter of depression, space of segment crack and remelted microstructure were evaluated. With energy of 4.0 to 8.0 J.mm-2, an appropriate laser processing for applicable remelted layer was suggested.

  8. Vacuum Arc Melting Processes for Biomedical Ni-Ti Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Tsai De-Chang

    2015-01-01

    Full Text Available This study primarily involved using a vacuum arc remelting (VAR process to prepare a nitinol shape-memory alloy with distinct ratios of alloy components (nitinol: 54.5 wt% to 57 wt%. An advantage of using the VAR process is the adoption of a water-cooled copper crucible, which effectively prevents crucible pollution and impurity infiltration. Optimising the melting production process enables control of the alloy component and facilitates a uniformly mixed compound during subsequent processing. This study involved purifying nickel and titanium and examining the characteristics of nitinol alloy after alloy melt, including its microstructure, mechanical properties, phase transition temperature, and chemical components.

  9. Fabrication and Characterization of Functionally Graded Al/SiCp Composites Produced by Remelting and Sedimentation Process

    Science.gov (United States)

    Pourmajidian, Maedeh; Akhlaghi, Farshad

    2013-12-01

    A new process termed here as remelting and sedimentation (RAS) was developed to produce functionally graded Al/SiC composites with a smooth concentration gradient of SiC particles along the height of samples, as opposed to a step change. For this purpose, first settling velocities of different-sized SiC particles in aluminum A356 melt were measured, and the results exhibited a reasonably good agreement with those predicted via the modified Stokes law. Then slices of particulate Al/SiC composites with different SiC contents of 5, 10, 15, and 20 vol.% were stacked in a cast iron mold and heated at 650 °C resulting in remelting and unification of the different composite parts. Considering the preliminary settling experiments, the composite slurry was held at this temperature for three different times to investigate the optimum holding time for obtaining a smooth gradient of SiC concentration along the height of the sample. After quenching, the samples were sectioned and subjected to metallographic studies and hardness measurements. The results confirmed that holding the melt for 60 s provides sufficient settling and redistribution of SiC particles and results in successful production of a functionally graded material.

  10. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  11. Multivariable PID Decoupling Control Method of Electroslag Remelting Process Based on Improved Particle Swarm Optimization (PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2014-02-01

    Full Text Available A mathematical model of electroslag remelting (ESR process is established based on its technical features and dynamic characteristics. A new multivariable self-tuning proportional-integral-derivative (PID controller tuned optimally by an improved particle swarm optimization (IPSO algorithm is proposed to control the two-input/two-output (TITO ESR process. An adaptive chaotic migration mutation operator is used to tackle the particles trapped in the clustering field in order to enhance the diversity of the particles in the population, prevent premature convergence and improve the search efficiency of PSO algorithm. The simulation results show the feasibility and effectiveness of the proposed control method. The new method can overcome dynamic working conditions and coupling features of the system in a wide range, and it has strong robustness and adaptability.

  12. Numerical investigations of the electroslag remelting process for alloy 718; Numerische Untersuchungen des Elektroschlacke-Umschmelzprozesses fuer Alloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Giesselmann, Nils

    2014-07-01

    In this dissertation the development of a simulation strategy is presented, which enables a detailed description of relevant regions to appropriately model the electroslag remelting process. One of the challenges is to ensure a sufficient efficiency of the numerical model so that it can be used to perform extensive parametric studies. This is achieved by combining multiple computational domains and coupling the simulation codes ANSYS FLUENT and ANSYS EMAG. Therefore the electroslag remelting process is divided into a droplet simulation and models that account for the fluid flow in the slag and fluid flow and solidification in the metal pool. The droplet simulation considers the multiphase flow and the interaction of fluid flow and magneto hydrodynamics to simulate the behavior of the metal droplets passing through the slag layer. The Lorentz force is the main driving force for the fluid flow established in the slag region, which causes the liquid metal film on the electrode's bottom surface to be transported to the centerline. Therefore it was found that no metal droplets detach near the electrode's edge. Instead they accumulate at a certain characteristic radius. Between this radius and the centerline metal droplets form and detach homogeneously. The fluid flow in the slag region is directed to the centerline near the electrode's bottom surface, points downwards on the centerline, moves outwards near the phase boundary to the metal pool and is directed upwards at the surface of the copper mold. In the case of the smaller scale IME remelting plant, metal droplets only occur on the centerline. The steady state simulation of the electroslag remelting process developed during this work introduces a static phase boundary, which separates the slag and the metal region. The formulation of the static phase boundary drastically reduced the time required until convergence is achieved. The simulation model has been extensively validated by comparing the

  13. Study on Abrasiveness of Argon Arc Remelted Quenching Area of Alloy Cast Iron Camshaft%合金铸铁凸轮轴氩弧重熔淬火硬化层的磨损试验研究

    Institute of Scientific and Technical Information of China (English)

    李泉华; 张祝君

    2001-01-01

    研究了合金铸铁凸轮轴氩弧重熔淬火后强化层的组织、耐磨性及磨损机理。试验结果表明,合金铸铁凸轮轴氩弧重熔硬化层具有较高的抗擦伤性能和疲劳磨损性能,优良的热稳定性和莱氏体枝晶显著细化是提高耐磨性的主要因素。%The microstructure,wear-resisting and abrasive mechanism of argon arc remelting area of alloyed casting iron camshaft is studied.The result showed that the properties of wear-resisting and fatigue-resisting of the argon arc remelted harding area is high. The heat stability and fine ledeburite is the main reason for the increase of the wear-resisting.

  14. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  15. Leaching Process Investigation of Secondary Aluminum Dross: The Effect of CO2 on Leaching Process of Salt Cake from Aluminum Remelting Process

    Science.gov (United States)

    Li, Peng; Guo, Min; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2012-10-01

    For the recycling/disposal of aluminum dross/salt cake from aluminum remelting, aqueous leaching offers an interesting economic process route. One major obstacle is the reaction between the AlN present in the dross and the aqueous phase, which can lead to the emission of NH3 gas, posing a serious environmental problem. In the current work, a leaching process using CO2-saturated water is attempted with a view to absorb the ammonia formed in situ. The current results show that at a solid-to-liquid ratio of 1:20 and 3 hours at 291 K (18 °C), the extraction of Na and K from the dross could be kept as high as 95.6 pct and 95.9 pct respectively. At the same time, with continuous CO2 bubbling, the mass of escaping NH3 gas decreased from 0.25 mg in pure water down to dross residue, toward the synthesis of AlON from the leach residues.

  16. TiAl合金真空自耗熔炼过程的数值模拟%Numerical Simulation of Vacuum Remelting Process for TiAl Alloy

    Institute of Scientific and Technical Information of China (English)

    高帆; 王新英; 王磊; 韩鹏彪; 张继

    2011-01-01

    通过数值模拟研究了直径为180 mm的TiAl合金铸锭的真空自耗冶炼过程,获得了TiAl合金真空自耗熔炼过程中熔炼温度、熔炼速度和冷却能力对金属熔池温度梯度、熔池形状和糊状区宽度的影响规律.结果表明,随熔炼温度升高,熔池深度增加,其形状由碗状向V形转变,熔炼温度对熔池中温度梯度和凝固前沿糊状区宽度影响较小;随熔炼速度增加,熔池中温度梯度显著减小,糊状区宽度和熔池深度则明显降低;随冷却能力增加,糊状区宽度明显减小,熔池中温度梯度和熔池深度略有减小.%Numerical simulation of vacuum arc remelting process of TiAl alloy with 180 mm in diameter was carried out to understand effects of melting temperature, melting velocity and cooling rate on temperature gradient in metal pool, melting pool shape and mushy zone width. The results show that with increasing in melting temperature, depth of melting pool is increased, and its shape is transformed from bowl shape to V-shape. Meanwhile, melting temperature has the slight effects on temperature gradient in melting pool and mushy zone width at solidification front. With the increase of melting velocity, temperature gradient is greatly decreased, and mushy zone width and melting pool depth are obviously decreased also. With the improvement of cooling rate, mushy zone width is greatly decreased with the slight decrease of temperature gradient and melting pool depth.

  17. Wear properties of H13 with micron scale and nano scale grains bionic units processed by laser remelting

    Science.gov (United States)

    Zhang, Peng; Zhou, Hong; Wang, Cheng-tao; Liu, Yan; Ren, Lu-quan

    2013-12-01

    By simulating the cuticles of some soil animals, a combination of soft part (untreated substrate) and hard part (laser remelting area) structure was designed on metal surface to get an improved performance. Different specimens were prepared which contained units with micro and nano scale grains. The microstructures were observed by environmental field emission scanning electron microscopy. X-ray diffraction was used to identify the phases. The results of these tests indicate that due to the rapid solidification condition in the water, nano scale grains have a high microhardness between 1300 and 1000 HV. Retained austenite was found in it. Some of them transform to martensite in block on ring wear test. Specimens with bionic unit have a better wear resistance. Especially, the units with nano grains bring a further enhancement. The alternate soft and hard in macroscopic (substrate and laser remelting area) and microscopic (austenite and martensite) structure played a key role in improving the H13 wear resistance.

  18. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process

    Science.gov (United States)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.

    2017-08-01

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze-on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  19. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  20. Investigation on Surface Hardening of Cast Iron by Tungsten Inert Gas Arc Remelting%铸铁表面钨极氩弧重熔强化的研究

    Institute of Scientific and Technical Information of China (English)

    姚军; 梁文心

    2000-01-01

    为了提高铸铁表面的耐磨性,以HT200为试验材料,用钨极氩弧对其进行了局部重熔强化的系统研究,得出了相关工艺参数对重熔处理后表层组织和性能的影响规律。同时与镍基自熔合金喷焊及铸铁激冷处理表面强化法做了对比试验,结果表明,铸铁钨极氩弧重熔后激冷法是有效提高其耐磨性,发挥自身潜力,降低成本的一项新工艺。%To improve the resistance to abrasion for surface of cast iron,the wear resistibility of grey cast iron HT200 is increased by employing inert gas tungsten arc remelt and fast solidified.The effect of current and arc moving rate on the chilling layer microstructure and some properties are studied.The results are compared with those of spray coating by nickel alloys and cast iron chilled treating and it proved that rapid chilling of A-type cast iron by tungsten inert shielded gas arc melting as an energy source is much better and cheaper technique than others.And also promises to provide a new method for controlling microstructure and properties.

  1. GlidArc-assisted processing of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski, A.; Wesolowska, K. (ECP, La Ferte St Aubin (France)), Email: echph@wanadoo.fr

    2009-07-01

    Power generation or chemical applications of biogas can be difficult when CH{sub 4} content is too low and / or in the presence of sulphur compounds. We therefore propose two reformers based on electric discharges (GlidArc) that strike directly either in a poor biogas or in waste CO{sub 2} + H{sub 2}S mixture generated during biogas cleaning. Direct application of GlidArc discharges to the poor biogas enhances its flammability through a partial conversion of CH{sub 4} + CO{sub 2} into hydrogen and carbon monoxide (synthesis gas). Any level of sulphur (and other impurities) is accepted. Roughly 40 % of injected electric power is transferred into upgraded biogas as its additional chemical enthalpy. A few percent of resultant H{sub 2} and CO inside the biogas makes it more flammable, and therefore better to fuel an engine or gas turbine. As a result of biogas purification via amines-washing technologies, one gets concentrated pollutants in CO{sub 2} matrix. Instead of classical neutralisation, we propose H{sub 2}Svalorisation through the SulfArc process converting all H{sub 2}S into additional amounts of synthesis gas, while neutral elemental sulphur is removed from the system. Generated syngas can be injected into the main biogas flow to enhance its flammability. (orig.)

  2. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    杨飞; 马瑞光; 吴翊; 孙昊; 纽春萍; 荣命哲

    2012-01-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  3. Numerical Investigation of Influence of Electrode Immersion Depth on Heat Transfer and Fluid Flow in Electroslag Remelting Process

    Science.gov (United States)

    Wang, Qiang; Cai, Hui; Pan, Liping; He, Zhu; Liu, Shuang; Li, Baokuan

    2016-12-01

    The influence of the electrode immersion depth on the electromagnetic, flow and temperature fields, as well as the solidification progress in an electroslag remelting furnace have been studied by a transient three-dimensional coupled mathematical model. Maxwell's equations were solved by the electrical potential approach. The Lorentz force and Joule heating were added into the momentum and energy conservation equations as a source term, respectively, and were updated at each time step. The volume of fluid method was invoked to track the motion of the metal droplet and slag-metal interface. The solidification was modeled by an enthalpy-porosity formulation. An experiment was carried out to validate the model. The total amount of Joule heating decreases from 2.13 × 105 W to 1.86 × 105 W when the electrode immersion depth increases from 0.01 m to 0.03 m. The variation law of the slag temperature is different from that of the Joule heating. The volume average temperature rises from 1856 K to 1880 K when the immersion depth increases from 0.01 m to 0.02 m, and then drops to 1869 K if the immersion depth continuously increases to 0.03 m. As a result, the deepest metal pool, which is around 0.03 m, is formed when the immersion depth is 0.02 m.

  4. Process characteristics of fibre-laser-assisted plasma arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Schnick, M; Rose, S; Demuth, C; Beyer, E; Fuessel, U, E-mail: achim.mahrle@iws.fraunhofer.de [Dresden University of Technology, Institute of Surface and Manufacturing Technology, PO Box, D-01062 Dresden (Germany)

    2011-08-31

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  5. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  6. Rapid magmatic processes accompany arc-continent collision: the Western Bismarck arc, Papua New Guinea

    Science.gov (United States)

    Cunningham, Heather; Gill, Jim; Turner, Simon; Caulfield, John; Edwards, Louise; Day, Simon

    2012-11-01

    New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.

  7. Residual stresses in a surface remelting of castings made of cobalt alloy MAR-M509 with a plasma generated in electric arc

    Directory of Open Access Journals (Sweden)

    Z. Opiekun

    2010-01-01

    Full Text Available The manuscript presents the results of measurements of residual stresses (RS in partial meltings of casting surfaces made of cobalt alloy MAR-M509. The partial meltings were made with an argon plasma beam by GTAW method. The values of RS were deter-mined by X-ray diffraction method in grazing incident geometry, by g-sin2ψ method and in Bragg-Brentano (BB geometry. It has been stated that RS values depend on the parameters of partial melting process. It has been claimed that compressive stresses, which are present in the thin layer up to ca 2 μm, convert to tensile stresses in deeper layers of partial meltings.

  8. Process characteristics of fibre-laser-assisted plasma arc welding

    OpenAIRE

    Mahrle, A; SCHNICK, M; Rose, S; Demuth, C; Beyer, E.; Füssel, U

    2011-01-01

    Abstract Experimental and theoretical investigations on fibre-laser assisted plasma arc welding (LAPW) have been performed. Welding experiments were carried out on aluminium and steel sheets. In case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In case of aluminium weldin...

  9. Investigation on the stepping arc stud welding process

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhang Jianxun; Fu Jifei; Zhang Youquan

    2005-01-01

    Through the investigation on traditional arc stud welding process, a new welding gun and its control system were developed in this paper. The stepping arc stud welding gun was mainly made by a stepping motor as actuating unit and a screw-driven device as moving unit. A control system with a MCS-51 single-chip microcomputer as main control component was used to realize the new stud welding procedure. This new welding process with stepping stud welding gun is named as stepping arc stud welding. In the new welding process, the stud action can be looked as constituted by some micro steps. The setting and adjusting of the stepping arc welding gun behavior parameters are accomplished independently. It is indicated from the results of process tests and bending test that the stepping arc stud welding process is practicable.

  10. Impact of electro slag remelting on 14 109 steel properties

    Directory of Open Access Journals (Sweden)

    Pribulová A.

    2017-03-01

    Full Text Available The Electro Slag Remelting (ESR is one of the remelting processes in the field of metal refinery. In this process, the slag plays various roles, such as heat generation, protection of melt, and chemical refining. The main objective of the experiments described in this article was to identify the most appropriate slag composition for the electro slag remelting of the steel in order to achieve the chemical composition compliant with the standard applicable to the given steel, minimum sulphur content, minimum contents of oxide and sulphide inclusions, as well as mechanical properties corresponding to the standard applicable to the steel STN 14 109. Ten electrodes were remelted, whereas the remelting was carried out under 8 slags. The used slags containing 70% of CaF2 and 30% of Al2O3 with different addition of CaO, the slags consisted of the same components as previous slags, whereas the ratio of individual components was 1:1:1, and with SiO2 and MgO and slag without Al2O3. With regard to all the above mentioned facts, the slag types which may be regarded as the most appropriate for the STN 14 109 steel remelting are the basic slags containing 70% of CaF2 - 30% of Al2O3 with added 30 and 45 weight % of CaO.

  11. A coupled model of TiN inclusion growth in GCr15SiMn during solidification in the electroslag remelting process

    Institute of Scientific and Technical Information of China (English)

    Liang Yang; Guo-guang Cheng; Shi-jian Li; Min Zhao; Gui-ping Feng; Tao Li

    2015-01-01

    TiN inclusions observed in an ingot produced by electroslag remelting (ESR) are extremely harmful to GCr15SiMn steel. There-fore, accurate predictions of the growth size of these inclusions during steel solidification are significant for clean ESR ingot production. On the basis of our previous work, a coupled model of solute microsegregation and TiN inclusion growth during solidification has been estab-lished. The results demonstrate that compared to a non-coupled model, the coupled model predictions of the size of TiN inclusions are in good agreement with experimental results using scanning electron microscopy with energy disperse spectroscopy (SEM-EDS). Because of high cooling rate, the sizes of TiN inclusions in the edge area of the ingots are relatively small compared to the sizes in the center area. Dur-ing the ESR process, controlling the content of Ti in the steel is a feasible and effective method of decreasing the sizes of TiN inclusions.

  12. The influence of the arc plasma treatment on the structure and microhardness 100Cr6 bearing steel

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2010-04-01

    Full Text Available The effect of arc plasma treatment on structure and microhardness of 100Cr6 steel was investigated. Four different the current intensity has been used to remelting surface of the steel. SEM and LM microscopes have been used to evaluate microstructure of remelted zone (RZ. In the remelting zone (RZ were obtained characteristic for rapid crystallization process the dendritic cell structure. Inside the dendritic cells in dependency to current intensity of arc, the martensite or bainite and retained austenite was observed. On the boundaries of the dendritic cells as a result of segregation of C and Cr the alloyed cementite is formed. The cooling rate of the remelted zone is higher than the cooling rate obtained in the classical heat treatment. The maximum hardness 840 HV0,1 was measured in material after treatment with a smaller current intensity of arc plasma – 60A. Increases of the current intensity of arc plasma from 60 A to 110 A (for fixed speed rate of source lead to increases the depth of the remelted zone from 1,5 to 2,3 mm.

  13. Partial Remelting of Thixotropic Magnesium-Rare Earth Alloy from Near Non- Equilibrium- Liquidus Casting

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during partial remelting processing, however, coarsening and polygonization as occurred holding time prolonged. The refining and globularity of the thixotropic alloys are promoted after further alloyed by Y, RE, Nd and/or Ag, and the results vary with those addition. The remelting structure of ZK60-2Ca-1Y alloy is finer than its base alloy. And the effect of RE, especially Ag, on the refinement of microstructure is notable, but Nd does nothing on it. There is little impact of remelting temperature fluctuation on partial remelted microstructure as holding time in general. On the contrary, it is more sensitive at longer holding time. The quality thixotropic silver-contained alloy can be achieved by remelted partially at 600 ℃ for 10 min.

  14. Simulation of the Electric Signal During the Formation and Departure of Droplets in the Electroslag Remelting Process

    Science.gov (United States)

    Kharicha, A.; Wu, M.; Ludwig, A.; Karimi-Sibaki, E.

    2016-04-01

    In the ESR process, it is very difficult to make experimental observations of the phenomena occurring within the molten slag. At present, the state of the process is solely evaluated from the variation of the measured electric variables. The present paper proposes the use of 3D numerical model to explore the complex coupling existing between the electrodynamics and the phase distribution during the process. The droplet formation during melting of an electrode under the action of a strong DC current is simulated with a multiphase-magnetohydrodynamic approach. A volume-of-fluid approach is used for the interface tracking, and the potential formulation is used to determine the electric and magnetic fields. The Lorentz force and the Joule heating are recalculated at each time step as a function of the phase distribution. The evolution of the electric resistance of the system during the droplet formation and departure is reported. The results are compared with the measurements made in experimental and industrial-scale ESR processes. Two values of metal/slag interfacial tension of 1 and 0.1 N m-1 are explored. The effects of the control system as well as the presence of a horizontal magnetic field are also investigated. These results open the possibility to link online the voltage signal variation with real physical phenomena happening during the process.

  15. Distribution Behavior of Aluminum and Titanium Between Nickel-Based Alloys and Molten Slags in the Electro Slag Remelting (ESR) Process

    Science.gov (United States)

    Yang, Jun Gil; Park, Joo Hyun

    2017-08-01

    The equilibrium reaction between Ni alloys and CaO-Al2O3-CaF2-TiO2 system electroslag remelting (ESR) slags was investigated in the temperature range of 1773 K to 1873 K (1500 °C to 1600 °C) at p(O2) = 10-16 atm in order to obtain the optimized composition of the slags for producing Ni alloys with various Al and Ti ratios. In addition, the temperature dependence of the reaction equilibria between the ESR slags and Ni alloys was also evaluated. The stable ionic species of titanium in the ESR slag under the present experimental conditions was experimentally confirmed to be mainly Ti4+ ( i.e., TiO2) by X-ray photoelectron spectroscopy analysis of the quenched samples. The activity-composition relationship of TiO2 and Al2O3 in the ESR slag was determined as a function of the Al/Ti ratio of the alloys and the CaF2 content of the slags in conjunction with the activity ratio of Al to Ti in the alloys calculated from the FactSageTM 7.0 software. The temperature dependence of the activity-composition relationship of TiO2 and Al2O3 in the slag showed good linear correlations, and the equilibrium content ratio of TiO2 to Al2O3 at a fixed activity ratio increased with increasing temperature, which was expected based on the standard enthalpy change of the reaction. Thus, higher amounts of TiO2 should be added at higher operation temperatures in the ESR process. A 120 kg scale pilot ESR test (2000 A and 16 V) was performed to produce a commercial grade Ni-based superalloy based on the activity-composition relationship of the slag components obtained in the present study. Consequently, the contents of Al and Ti in the solidified ESR ingot were nearly the same as that of the original electrode throughout the entire length (280 mm) after the ESR process.

  16. Modelling of the arc reattachment process in plasma torches

    Energy Technology Data Exchange (ETDEWEB)

    Trelles, J P; Pfender, E; Heberlein, J V R [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-09-21

    The need to improve plasma spraying processes has motivated the development of computational models capable of describing the arc dynamics inside plasma torches. Although progress has been made in the development of such models, the realistic simulation of the arc reattachment process, a central part of the arc dynamics inside plasma torches, is still an unsolved problem. This study presents a reattachment model capable of mimicking the physical reattachment process as part of a local thermodynamic equilibrium description of the plasma flow. The fluid and electromagnetic equations describing the plasma flow are solved in a fully-coupled approach by a variational multi-scale finite element method, which implicitly accounts for the multi-scale nature of the flow. The effectiveness of our modelling approach is demonstrated by simulations of a commercial plasma spraying torch operating with Ar-He under different operating conditions. The model is able to match the experimentally measured peak frequencies of the voltage signal, arc lengths and anode spot sizes, but produces voltage drops exceeding those measured. This finding, added to the apparent lack of a well-defined cold boundary layer all around the arc, points towards the importance of non-equilibrium effects inside the torch, especially in the anode attachment region.

  17. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  18. Improving thermal barrier coatings by laser remelting.

    Science.gov (United States)

    Múnez, C J; Gómez-García, J; Sevillano, F; Poza, P; Utrilla, M V

    2011-10-01

    Thermal barrier coatings are extensively used to protect metallic components in applications where the operating conditions include aggressive environment at high temperatures. These coatings are usually processed by thermal spraying techniques and the resulting microstructure includes thin and large splats, associated with the deposition of individual droplets, with porosity between splats. This porosity reduces the oxidation and corrosion resistance favouring the entrance of aggressive species during service. To overcome this limitation, the top coat could be modified by laser glazing reducing surface roughness and sealing open porosity. ZrO2(Y2O3) top coat and NiCrAlY bond coating were air plasma sprayed onto an Inconel 600 Ni base alloy. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. This layer inhibited the ingress of aggressive species and delayed bond coat oxidation.

  19. Application of microcomputers for electric arc heating processes. Session 2. 2b N. 2. 2. 13

    Energy Technology Data Exchange (ETDEWEB)

    Gitarts, D.A.; Izakson-Demidov, Y.A.; Kalistratov, V.A.; Edemsky, V.M.

    1984-01-01

    Control systems employed with furnaces for steel production and for smelting of ores together with installations of electroslag and vacuum-arc remelting equipments are described. Details of mathematical models and control algorithms is given in addition to the schematic electrical circuits and lists of component parts of the control systems. The particular feature of the mathematical model is the application of the general state parameters and the static methods for their identification and adaptation. The variety of control system types employed in electroheat and having the possibility of using microcomputers, allows for expediency by using a single system approach for designing algorithm, a programme and the hardware to be used. Provision of the hardware to be employed for the real-time system, is based on a developed system of interruptions and use of a single library of hard and software modules, the latter having a general design of its layout for the different systems.

  20. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  1. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  2. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    NIU Chunping; DING Juwen; YANG Fei; DONG Delong; RONG Mingzhe; XU Dan

    2016-01-01

    In this paper,a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB).The distributions of pressure,temperature,gas flow and current density of the arc plasma in the arc region are calculated,and the factors influencing the commutation process are analyzed according to the calculated results.Based on the airflow in the arc chamber,the causes of arc commutation asynchrony and the back commutation are investigated.It indicates that a reasonable contact space design is crucial to a successful arc commutation process.To verify the simulation results,the influence of contact space on arc voltage and arc commutation is tested.This research can provide methods and references to the optimization of ACB design.

  3. The influence of arc plasma electric and laser treatment on the structure and properties of the high speed steel

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2009-07-01

    Full Text Available The examination of the structure, hardness and abrasion resistance of surface layer of high speed steel: HS 2-10-1-8, HS 6-5-2 and HS 10-2-5-8 after arc plasma and laser welding are presented in the paper. They are compared with the properties obtained after conventional hardening. Diode laser of continuous operation and GTAW (Gas Tungsten Arc Welding method were used. As a result of concentrated energy beam treatment applied to a steels surface layer, the structures characteristic of rapid solidification / crystallization process were obtained. The treatment of the steel by arc plasma electric with a single remelted track about 7 mm width does not lead to growth of the mechanical and tribological properties of high speed steels. The growth of microhardness as well as low the coefficient Archard of the high speed steel after remelting on the surface single track about 6 mm width by diode laser using can be obtained.

  4. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  5. Pool power control in remelting systems

    Science.gov (United States)

    Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.

    2011-12-13

    An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.

  6. Effects of process parameters on arc shape and penetration in twin-wire indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Shun-shan ZHANG; Mei-qing CAO; Dong-ting WU; Zeng-da ZOU

    2009-01-01

    In this study, the effects of variable parameters on arc shape and depth of penetration in twin-wire indirect arc gas shielded welding were investigated. The variation of arc shape caused by changes of the parameters was recorded by a high-speed camera,and the depths of penetration of specimen were measured after bead welding by an optical microscope. Experiments indicated that proper parameters give birth to a concentrated and compressed welcimg arc, which Would increase the depth of penetration as the incensement of the arc foice Several pnncipal parameters including toe distance ot twin wires intersecting point to base metal,the included angle,and the content of shielding gas were determined. The arc turned more concentrated and the depth of penetration increased obviously as the welding current increased,the arc turned brighter while unobvlous change of penetration occurred as the arc voltage increased,and the deepest penetration was obtained when the welding speed was 10.5 mm/s..

  7. The Role of Water Vapor and Dissociative Recombination Processes in Solar Array Arc Initiation

    Science.gov (United States)

    Galofar, J.; Vayner, B.; Degroot, W.; Ferguson, D.

    2002-01-01

    Experimental plasma arc investigations involving the onset of arc initiation for a negatively biased solar array immersed in low-density plasma have been performed. Previous studies into the arc initiation process have shown that the most probable arcing sites tend to occur at the triple junction involving the conductor, dielectric and plasma. More recently our own experiments have led us to believe that water vapor is the main causal factor behind the arc initiation process. Assuming the main component of the expelled plasma cloud by weight is water, the fastest process available is dissociative recombination (H2O(+) + e(-) (goes to) H* + OH*). A model that agrees with the observed dependency of arc current pulse width on the square root of capacitance is presented. A 400 MHz digital storage scope and current probe was used to detect arcs at the triple junction of a solar array. Simultaneous measurements of the arc trigger pulse, the gate pulse, the arc current and the arc voltage were then obtained. Finally, a large number of measurements of individual arc spectra were obtained in very short time intervals, ranging from 10 to 30 microseconds, using a 1/4 a spectrometer coupled with a gated intensified CCD. The spectrometer was systematically tuned to obtain optical arc spectra over the entire wavelength range of 260 to 680 nanometers. All relevant atomic lines and molecular bands were then identified.

  8. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    Science.gov (United States)

    Draut, Amy; Clift, Peter D.

    2013-01-01

    Records of ancient intraoceanic arc activity, now preserved in continental suture zones, are commonly used to reconstruct paleogeography and plate motion, and to understand how continental crust is formed, recycled, and maintained through time. However, interpreting tectonic and sedimentary records from ancient terranes after arc–continent collision is complicated by preferential preservation of evidence for some arc processes and loss of evidence for others. In this synthesis we examine what is lost, and what is preserved, in the translation from modern processes to the ancient record of intraoceanic arcs. Composition of accreted arc terranes differs as a function of arc–continent collision geometry. ‘Forward-facing’ collision can accrete an oceanic arc on to either a passive or an active continental margin, with the arc facing the continent and colliding trench- and forearc-side first. In a ‘backward-facing’ collision, involving two subduction zones with similar polarity, the arc collides backarc-first with an active continental margin. The preservation of evidence for contemporary sedimentary and tectonic arc processes in the geologic record depends greatly on how well the various parts of the arc survive collision and orogeny in each case. Preservation of arc terranes likely is biased towards those that were in a state of tectonic accretion for tens of millions of years before collision, rather than tectonic erosion. The prevalence of tectonic erosion in modern intraoceanic arcs implies that valuable records of arc processes are commonly destroyed even before the arc collides with a continent. Arc systems are most likely to undergo tectonic accretion shortly before forward-facing collision with a continent, and thus most forearc and accretionary-prism material in ancient arc terranes likely is temporally biased toward the final stages of arc activity, when sediment flux to the trench was greatest and tectonic accretion prevailed. Collision geometry

  9. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  10. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    Science.gov (United States)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  11. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  12. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the salt slags produced. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates for over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tons of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  13. The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge%The Main Plasma Chemical Process of Nitric Oxide Production by Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    杨旗; 胡辉; 陈卫鹏; 许杰; 张锦丽; 吴双

    2011-01-01

    By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.

  14. Optimization of Gas Metal Arc Welding Process Parameters

    Science.gov (United States)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  15. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Institute of Scientific and Technical Information of China (English)

    VeronicaA.B.Almeida; AnaSofiaC.M.D'Oliveira

    2004-01-01

    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  16. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Institute of Scientific and Technical Information of China (English)

    Ver(o)nica A. B. Almeida; Ana Sofia C. M. D'Oliveira

    2004-01-01

    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  17. The influence of laser re-melting on microstructure and hardness of gas-nitrided steel

    Directory of Open Access Journals (Sweden)

    Panfil Dominika

    2016-12-01

    Full Text Available In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P, ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones

  18. Microstructure Evolution of Mg-Gd-Y-Zn-Zr Magnesium Alloy During Partial Remelting

    Directory of Open Access Journals (Sweden)

    Jianquan TAO

    2014-12-01

    Full Text Available The article deals with the research on the microstructure evolution of Mg-Gd-Y-Zn-Zr magnesium alloy through partial remelting process. It aims at finding out what effects the microstructure of semi-solid Mg-Gd-Y-Zn-Zr alloy will result in under different remelting temperatures and holding times. Based on the results, if to raise the remelting temperature and to prolong the holding time, the size of solid grain will tend to expand and its spheroidization degree also begins to show improvement. In addition, the grain shows tendency of coarsening when the holding time increases. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6483

  19. Microstructure Evolution of Mg-Gd-Y-Zn-Zr Magnesium Alloy During Partial Remelting

    Directory of Open Access Journals (Sweden)

    Jianquan TAO

    2014-12-01

    Full Text Available The article deals with the research on the microstructure evolution of Mg-Gd-Y-Zn-Zr magnesium alloy through partial remelting process. It aims at finding out what effects the microstructure of semi-solid Mg-Gd-Y-Zn-Zr alloy will result in under different remelting temperatures and holding times. Based on the results, if to raise the remelting temperature and to prolong the holding time, the size of solid grain will tend to expand and its spheroidization degree also begins to show improvement. In addition, the grain shows tendency of coarsening when the holding time increases. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6483

  20. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    Science.gov (United States)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-08-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  1. Laser remelting of Ti6AL4V using high power diode laser

    Science.gov (United States)

    Amaya-Vázquez, M. R.; Sánchez-Amaya, J. M.; Boukha, Z.; El Amrani, K.; Botana, F. J.

    2012-04-01

    Titanium alloys present excellent mechanical and corrosion properties, being widely employed in different industries such as medical, aerospace, automotive, petrochemical, nuclear and power generation, etc. Ti6Al4V is the α-β alloy most employed in industry. The modification of its properties can be achieved with convectional heat treatments and/or with laser processing. Laser remelting (LR) is a technology applied to Ti6Al4V by other authors with excimer and Nd-Yag laser with pure argon shielding gas to prevent risk of oxidation. In the present contribution, laser remelting has been applied for the first time to Ti6Al4V with a high power diode laser (with pure argon as shielding gas). Results showed that remelted samples (with medium energy densities) have higher microhardness and better corrosion resistance than Ti6Al4V base metal.

  2. One-knob self-optimizing fuzzy control of CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    俞建荣; 蒋力培

    2002-01-01

    A new one-knob self-optimizing fuzzy control system of CO2 arc welding is established based on the synthetic performance evaluation of droplet transfer process. It includes two kinds of self-optimizing fuzzy controllers: the arc voltage controller and the current waveform controller. The fuzzy control principle and the key points of the control patterns are presented. Through on-line detecting, computing of characteristic parameters and one-knob self-optimizing adjusting, the characteristic parameters and welding variables can be adjusted to suitable ranges under the control of the arc voltage controller. Meanwhile the current waveform controller is active in the rear-time stage of the short-circuiting and the instant of re-triggering arc. The experiment results show that the control and its algorithm can improve the synthetic performance of arc welding process apparently.

  3. Laser guided and stabilized gas metal arc welding processes (LGS-GMA)

    Science.gov (United States)

    Hermsdorf, Jörg; Barroi, Alexander; Kaierle, Stefan; Overmeyer, Ludger

    2013-05-01

    The demands of the industry are cheap and fast production of highly sophisticated parts without compromises in product quality. To realize this requirement, we have developed a laser guided and stabilized gas metal arc process (LGS-GMA welding). The new welding process is based on a gas metal arc process using low power laser radiation for stabilization. The laser stabilization of gas metal arcs welding is applied to joint welding and cladding. With only 400 W laser power and a focal spot of 1.6 mm the laser radiation is mainly interacting with the arc plasma in order to guide and stabilize it. In joint welding up to 100% increase in welding speed is possible, at equal penetration depth. The guidance effect also enables the process to weld in challenging situations like different sheet thicknesses. Used for cladding, the enhanced process stability allows low penetration depth with dilutions of only 3%. Coatings with up to 63 HRC were achieved.

  4. Numerical Simulation of the Eddy Current Effects on the Arc Splitting Process

    Institute of Scientific and Technical Information of China (English)

    杨飞; 荣命哲; 吴翊; 孙昊; 马瑞光; 纽春萍

    2012-01-01

    This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.

  5. Influence and Analysis of Concentrate Degree of Plasma Arc for Heat Process of Hardening Treatment

    Institute of Scientific and Technical Information of China (English)

    WANGShuo-gui; YANHong-ri

    2004-01-01

    According to the practicable model of the plasma arc surtace quench, the influence law ot me heat process, cooling course, temperature field about surface quench treatment by plasma arc due to the concentrate degree of plasma arc heat source are discussed in this paper. It shows that the concentrate degree of plasma arc heat source can change the width of the hardening zone and can not change the maximum harden depth. With the increase of the concentrate degree, the area of the heat influence zone is decreased and its shape is narrowed after the heat source. Relative to cooling rate, the influence of the heat source concentrate degree for heat absorption is bigger. The correctness of the practical model are proved with experimental results for quench hardening of 45# steel by plasma arc.

  6. Arc sensing system for automatic weld seam tracking (II) ——Signal processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Due to violent disturbance of the welding arc, signal processingis the key problem of application of the sensor. By means of the new technique the arc sensor can recognize not only V-groove but also lap joint and butt joint. The sensor has good recognition ability even for welding process with very large current disturbance, e.g. pulsed arc and short circuit welding process, etc. The proposed technique is developed on the basis of modern digital filtering theory and mathematic transformation of the signals from time domain into frequency domain.

  7. In-process electrical discharge dressing of arc-shaped metal bonded diamond wheels

    Science.gov (United States)

    Wang, Kai; Fan, Fei; Tian, Guoyu; Zhang, Feihu; Liu, Zhongde

    2016-10-01

    Due to the high hardness of SiC ceramics, the wear of the arc-shaped metal bonded diamond wheels is very serious during the grinding process of large-aperture aspheric SiC mirrors. The surface accuracy and surface/sub-surface quality of the aspheric mirror will be affected seriously if the grinding wheel is not timely dressed. Therefore, this paper focus on the in-process dressing of the arc-shaped metal bonded diamond wheels. In this paper, the application of the asymmetric arc profile grinding wheel in the grinding of aspheric mirrors is discussed first. Then a rotating cup-shaped electrode in-process electro discharge dressing device for the arc-shaped wheels is developed based on the analysis. The dressing experiments are carried out with the device. The experimental results show that the in-process dressing device can did the dressing for the asymmetric and symmetric arc-shaped wheel. The profile error of the arc can reach to 3μm with the in-process dressing device.

  8. Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting

    Energy Technology Data Exchange (ETDEWEB)

    Hu, X.G. [General Research Institute for Nonferrous Metals, Beijing (China); University of Science and Technology Beijing, Beijing (China); Zhu, Q., E-mail: zhu.qiang@grinm.com [General Research Institute for Nonferrous Metals, Beijing (China); Lu, H.X.; Zhang, F.; Li, D.Q.; Midson, S.P. [General Research Institute for Nonferrous Metals, Beijing (China)

    2015-11-15

    The aim of this paper is to characterize both microstructural evolution and thixoformability during partial melting of semi-solid 319s alloy. The thixoformability criteria of 319s was initially investigated by thermodynamic analysis. In-situ observation of partial re-melting was performed by a Confocal Laser Scanning Microscope to determine the effect of heating rate on melting characteristics. Meanwhile, the microstructural evolution of 319s alloy at extremely low heating rate was also investigated in order to understand the mechanism of re-melting process. The studies demonstrated that 319s alloy is suitable for thixocasting because of the controllable liquid fraction in the operating window of 15 °C. The process window was effected by both temperature and heating time. The primary particles evolution in 319s alloy can be divided into four stages, and the coarsening rate during isothermal test is 227 μm{sup 3}/s. The effective method to obtain desirable microstructure is to manage the time in the semi-solid state by controlling heating rate and soaking time. - Highlights: • The thixoformability of 319s is discussed by using SPSC and thermodynamic analysis. • The re-melting processes at different heating rate are in-situ observed. • We identified the four stages of microstructural evolution during re-melting. • The coarsening rate K for 319s during isothermal test is identified. • The variation tendency of Si particle size with increasing time is reported.

  9. 实验室规模和工业规模电渣重熔过程中电磁行为%Electromagnetic behavior for laboratory scale and industrial scale electroslag remelting process

    Institute of Scientific and Technical Information of China (English)

    刘福斌; 李永旺; 姜周华; 李花兵; 耿鑫; 陈旭

    2015-01-01

    电渣重熔过程中电磁现象对重熔过程和铸锭的最终质量有着直接的影响。利用数值模拟的方法研究电渣重熔过程中的电磁行为(电流密度、磁场强度、电磁力和焦耳热)。利用文献实测磁场强度验证模型,模拟结果与测量的电渣重熔渣池内的磁场强度吻合良好。研究结果表明:在工业规模电渣重熔过程中,电流的集肤效应更为明显;随着电流频率的增加,靠近电极外表面的电流密度增加;在此基础上,进一步分析实验室规模电渣重熔和工业规模电渣重熔过程的电流密度、磁场强度、电磁力和焦耳热的分布特征。%The electromagnetic phenomena occurring in the electroslag remelting (ESR) have a significant influence on the performance and the quality of ingot product. The electromagnetic phenomena (current density, magnetic field intensity, electromagnetic force and Joule heating) of ESR system were described by numerical simulation. Moreover, the model was verified according to the magnetic field intensity measured results reported. There is a good agreement between the calculated results and the measured results in slag bath. The results show that the skin effect is remarkable in industrial scale ESR system. The current density at electrode surface increases with the increase of working current frequency. Furthermore, the characteristic of current density distribution, magnetic field intensity, electromagnetic force and Joule heating in the slag bath during laboratory scale and industrial scale ESR process were analyzed.

  10. 工艺参数对激光重熔等离子喷涂Ni基WC复合涂层影响%Effect of Process Parameters on Plasma-Sprayed Ni-Based and WC Composited Coatings by Laser Remelting

    Institute of Scientific and Technical Information of China (English)

    王东生; 田宗军; 屈光; 杨斌; 沈理达; 黄因慧

    2012-01-01

    The effects of laser remelting parameters on microstructure and properties of nickel (Ni) -based and tungsten carbide (WC) composited coatings prepared by plasma spraying were studied. The microstructural characteristics, microhardness, fiction and wear behaviour of the coatings were investigated using scanning electron microscopy (SEM), microhardness measurement and a ball—on-disk tribometer. The results show that the defects of as -sprayed coating like lamellar stacking microstructure and pores were eliminated by laser remelting, and the remelted coating possessed a denser microstructure. With the increase of the laser power, the burning loss and dissolve of the WC particles is increased, while the dilution of the coating becomes large. The laser-remelted samples had higher hardness, better wear resistance than the as-sprayed coating. Laser power has a great impact on the coating and an optimized process parameter is help to achieve appropriate melting of WC particles, which lead to retain a high proportion of hard phase in the coating, good combination between the WC particles and the Ni-base matrix alloy, so that the coating owns high microhardness and wear resistance.%采用激光重熔工艺对等离子喷涂预置Ni基WC复合涂层进行处理,研究了激光工艺参数对涂层微观组织和性能的影响.用扫描电镜(SEM)、显微硬度计和球-盘式摩擦磨损机分析了涂层微观结构、显微硬度和高温摩擦磨损特性.结果表明,激光重熔消除了等离子喷涂层的片层状结构、孔隙等缺陷,涂层致密性提高;随着激光功率的增加,WC颗粒烧损和溶解增多,同时涂层稀释率变大;激光重熔处理后涂层的显微硬度和磨损性能显著高于原等离子喷涂层,但激光功率对其有较大的影响,工艺参数的合理选择有利于WC颗粒适当熔化,从而在涂层中保留较高比例的硬质相,同时使WC颗粒与Ni基体的结合较强,达到较高的显微硬度和耐磨性能.

  11. Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; K Shanmugam; V Balasubramanian

    2009-01-01

    The effect of autogeneous arc welding processes on tensile and impact properties of ferritic stainless steel conformed to AISI 409M grade is studied.Rolled plates of 4 mm thickness have been used as the base material for preparing single pass butt welded jointa.Tensile and impact properties,microhardness,microstructure,and fracture surface morphology of continuous current gas tungsten arc welding (CCGTAW),pulsed current gas tungsten arc welding (PCGTAW),and plasma arc welding (PAW) joints are evaluated and the results are compared.It is found that the PAW joints of ferritic stainless steel show superior tensile and impact properties when compared with CCGTAW and PCGTAW joints,and this is mainly due to lower heat input,finer fusion zone grain diameter,and higher fusion zone hardness.

  12. Proposition of a modification to the VAR process and its application in the consolidation of pressed zircaloy chips and the evaluation of the dynamical system of the electric arc; Proposicao de um processo alternativo a fusao via forno VAR para a consolidacao de cavacos prensados de zircaloy e estudo do sistema dinamico do arco eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Mucsi, Cristiano Stefano

    2005-07-01

    The objective of this work is the investigation of a new process as an alternative to the Vacuum Arc Remelting technology in the consolidation of Zircaloy chips. A procedure is proposed for the recycling of primary Zircaloy scraps by means of a modified VAR furnace. The performed studies were made in order to optimise the low cost new devices added to existing VAR furnace prototype, find ideal operational conditions, evaluate data acquisition system and the electric arc dynamical system in order to made viable the automated control of the modified VAR prototype. A funnel-crucible special device was developed and installed in a VAR prototype furnace allowing ingots to be obtained from pressed chips. This indicated the viability of creation of a new process for the consolidation of Zircaloy chips. The voltage of the electric arc during the melting runs was digitally recorded allowing the evaluation of the electric arc dynamics by using the topological invariant of the system: correlation dimension and the higher Liapunov exponent. (author)

  13. NUMERICAL SIMULATION OF TEMPERATURE FIELDS IN ELECTROSLAG REMELTING SLAB INGOTS

    Institute of Scientific and Technical Information of China (English)

    L.Z.Chang; B.Z.Li

    2008-01-01

    The method based on transient heat transfer model is adopted to simulate electro-slag remelting process.The calculated results of the model show that the process is in the quasi-steady state,and the shape of pool remains unchanged when the height of ingot is approximately 2.5-3 times the thickness of slab ingot.The change in the shape of pool is found to be strongly dependent on the pattern of melting rate,and hence,the power input;the depth of the molten pool increases with the increase in melting speed. It is concluded that a transient heat transfer model has to be used to obtain reliable input information for the entire operating time.

  14. Predicting Melting Behavior of an Industrial Electroslag Remelting Ingot

    Science.gov (United States)

    Yanke, Jeff; Fezi, Kyle; Fahrmann, Mike; Krane, Matthew John M.

    Electroslag remelting (ESR) is a secondary melting process used to cast stainless steel and superalloy ingots. In this process, current flows through a consumable electrode immersed in an electrically resistive slag, providing the heat to melt the electrode. Droplets from the electrode sink through the slag, pooling at the bottom of the mold and forming the final ingot. The electrode melt rate is a key parameter, affecting the probability of surface and macrosegregation defects. This work uses an axisymmetric model to simulate flow, heat and mass transfer, solidification, and electromagnetics in the production of industrial scale ESR ingots. The simulated melt rate, sump shape, and surface defects are qualitatively similar to measured data. However, quantitative comparisons are difficult to obtain due to large uncertainty in slag properties and lack of electrode motion in the present model.

  15. Residual stress state in titanium alloy remelted using GTAW method

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2009-04-01

    Full Text Available Test materials comprised two-phase titanium alloy Ti6Al4V (Grade5. The surface of the tested alloy was remelted by means of TIG welding method using variable current-voltage parameters. The investigations aimed to determine surface geometry and residual stresses in the remelted surface layer in the investigated alloy.

  16. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  17. Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

    Science.gov (United States)

    Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.

    2012-02-01

    The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.

  18. Evaluation model for process stability of short-circuiting arc welding

    Institute of Scientific and Technical Information of China (English)

    Cai Yan; Yang Hailan; Hua Xueming; Wu Yixiong

    2008-01-01

    stability of welding process is the prerequisite and assurance for ideal joint. The structure of stability model and its optimization are the key to on-line evaluation technology of arc welding. Characteristic parameters are extracted from the single transfer period while variation coefficients of the characteristic parameters are concerned for whole welding process of continuous drop transfer. Based on the characteristic parameters and their variation coefficients, stability model of short-circuit arc welding process is established by partial-least-square regression (PLSR) that can overcome multicollinearity of input parameters. The experiment results show that this model can meet the requirement of accuracy.

  19. Simulation of droplet transfer process and current waveform control of CO2 arc welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simulation system used in the arc welding short-circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical experiments. The simulation system can be used to simulate and test the current waveform control parameters with welding variables. By this simulation system, the influence regularities of the current waveform control parameters in the CO2 arc welding droplet short-circuit transfer process can be got. Moreover, the basic mode of real-time current waveform control can be also established by the simulation testing.

  20. The Effect of Process Parameters on Twin Wire Arc Spray Pattern Shape

    Directory of Open Access Journals (Sweden)

    Allison Lynne Horner

    2015-04-01

    Full Text Available A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was most affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Coating deposition rate was most affected by arc current.

  1. Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Xu, Fu-Qian; Huang, Shao-Bin; Liao, Wei-Tung; Wang, Lin-Chi; Chang, Yu-Cheng; Chang-Chien, Guo-Ping

    2014-01-01

    Besides the Waelz process, the submerged arc furnace (SAF) process has also been extensively used to retain metals from ashes and scraps in the metallurgical industry. However, very little is known about the formation and depletion of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from this thermal process. In this study, an electric arc furnace (EAF) dust treatment plant adopting the SAF process was investigated and compared to the plant adopting the Waelz process. The predominant contributor of PCDD/F I-TEQ input was the EAF dusts, accounting for 98.4% of the total. The PCDD/F contents in the generated fly ashes of the SAF were extremely low, as almost all the organic compounds for PCDD/F formation were decomposed by the high operating temperatures (1500-1700 °C) of the SAF. Therefore, the PCDD/F emission factor of the SAF process (46.9 μg I-TEQ/tonne-EAF dust) was significantly lower than that of the Waelz process (840-1120 μg I-TEQ/tonne-EAF dust). Its PCDD/F output/input ratios (0.23 and 0.50 based on mass and toxicity) were also lower than those of the Waelz process plant (0.62 and 1.19). Therefore, the SAF process is superior to the Waelz process in reducing the potential of PCDD/F formation.

  2. Plasma Processes : Arc root dynamics in high power plasma torches – Evidence of chaotic behavior

    Indian Academy of Sciences (India)

    A K Das

    2000-11-01

    Although plasma torches have been commercially available for about 50 years, areas such as plasma gun design, process efficiency, reproducibility, plasma stability, torch lives etc. have remained mostly unattended. Recent torch developments have been focusing on the basic understanding of the plasma column and its dynamics inside the plasma torch, the interaction of plasma jet and the powders, the interaction of the plasma jet with surroundings and the impingement of the jet on the substrate. Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper reviews the current state of understanding of these fluctuations as well as the dynamics of arc root movement in plasma torches. The work done at the author’s laboratory on studying the fluctuations in arc voltage, arc current, acoustic emissions and optical emissions are also presented. These fluctuations are observed to be chaotic and interrelated. Real time monitoring and controlling the arc instabilities through chaos characterization parameters can greatly contribute to the understanding of electrode erosion as well as improvement of plasma torch lifetime.

  3. Established and Adapted Diagnostic Tools for Investigation of a Special Twin-Wire Arc Spraying Process

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Zimmermann, Stephan; Schein, Jochen

    2016-10-01

    In the LDS® ( Lichtbogendrahtspritzen) process, a twin-wire arc spraying (TWAS) process developed by Daimler AG, the gas injection and feed to the arc play a crucial role in separating the molten particles from the wire ends. This paper describes an investigation of the gas and particle behavior according to individual LDS® process parameters. Coating problems are not considered. The measurements are separated into two different parts: "cold" (without arc and particles) and "hot" (with arc and particles). The results provide the first detailed understanding of the effect of different LDS® process parameters. A correlation between the gas parameter settings and the particle beam properties was found. Using established and adapted diagnostic tools, as also applied for conventional TWAS processes, this special LDS® process was investigated and the results (gas and particle behavior) validated, thereby allowing explanation and comparison of the diagnostic methods, which is the main focus of this paper. Based on error analysis, individual instabilities, limits, and deviations during the gas determinations and particle measurements are explained in more detail. The paper concludes with presentation of the first particle-shadow diagnostic results and main statements regarding these investigations.

  4. Fatigue Life and Microstructure after Multiple Remelting of A359 Matrix Composites Reinforced with SiC Particles

    Directory of Open Access Journals (Sweden)

    Klasik A.

    2016-12-01

    Full Text Available The article presents the results of fatigue life tests and microstructure examinations of A359 alloy matrix composites (F3S.10S and F3S.30S containing 10 and 30wt% of SiC particles, subjected to multiple remelting by conventional gravity casting. Mechanical characteristics were determined in a modified low cycle fatigue (MLCF test, enabling rapid estimation of fatigue life and other mechanical parameters in practice of any material. Qualitative and quantitative metallographic examinations were also carried out. The quantitative evaluation of microstructure was performed by computer image analysis. A set of geometrical parameters of the reinforcing particles, pores and eutectic precipitates present in the metal matrix was determined. The relationships between the mechanical parameters, structural characteristics and the number of remelting operations were presented. It was found that up to the fourth remelting, the mechanical characteristics, including fatigue life, are slightly deteriorated but decrease gradually in the subsequent operations of remelting. The observed effect is mainly due to the shrinkage porosity occurring as a result of gravity casting. To eliminate this defect, the use of squeeze casting process was recommended. It has also been shown that multiple remelting can be an easy and economically well-founded alternative to other more expensive recycling methods.

  5. Lubricated wear of NiCrBSi coatings partially remelted with laser; Desgaste lubricado de recubrimientos NiCrBSi refundidos parcialmente con laser

    Energy Technology Data Exchange (ETDEWEB)

    Vijande, R.; Cuetos, J. M.; Cortizo, J. L.; Rodriguez, E.; Noriega, A.

    2009-07-01

    Plasma sprayed nickel based coatings are widely used at the industry due to their good wear behaviour. The laser remelting of these coatings eliminates or strongly decreases their porosity and increases their microhardness and adherence with the substrate. In this work, we define the laser meshing as the partial re fusion of the coatings surface. This technique is applied to a NiCrBSi coating in order to achieve better anti-wear outcomes, combining the advantages of plasma spraying and laser remelting. The results are experimentally verificated and they quantify themselves attending to the variables percentage of remelted surface and angle of meshing cord (remelting trace of successive parallel tracks by a laser beam). The experimental process is developed following the DOE methodology, to optimize both the test process and the objective function of minimum wear in lubricated contact. (Author) 18 refs.

  6. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    Institute of Scientific and Technical Information of China (English)

    S. YUGESWARAN; V. SELVARAJAN; L. LUSVARGHI; A. I. Y. TOK; D. SIVA RAMA KRISHNA

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3 : 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the com-posites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.

  7. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  8. Comparative process analysis of fullerene production by the arc and the radio-frequency discharge methods.

    Science.gov (United States)

    Marković, Z; Todorović-Marković, B; Mohai, I; Farkas, Z; Kovats, E; Szepvolgyi, J; Otasević, D; Scheier, P; Feil, S; Romcević, N

    2007-01-01

    In this work, comparative analysis of processes in carbon arc and radio frequency (RF) plasma during fullerene synthesis has been presented. The kinetic model of fullerene formation developed earlier has been verified in both types of plasma reactors. The fullerene yield depended on carbon concentration, velocity of plasma flame and rotational temperature of C2 radicals predominantly. When mean rotational temperature of C2 radicals was 3000 K, the fullerene yield was the highest regardless of the type of used reactor. The zone of fullerene formation is larger significantly in RF plasma reactor compared to arc reactor.

  9. Process Parameter Optimization of the Pulsed Current Argon Tungsten Arc Welding of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    M.Balasubramanian; V.Jayabalan; V.Balasubramanian

    2008-01-01

    The selection of process parameters for obtaining optimal tensile properties in the pulsed current gas tungsten arc welding is presented. The tensile properties include ultimate tensile strength, yield strength and notch tensile strength. All these characteristics are considered together in the selection of process parameters by modified taguchi method to analyse the effect of each welding process parameter on tensile properties. Experimental results are furnished to illustrate the approach.

  10. ARC Code TI: Block-GP: Scalable Gaussian Process Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — Block GP is a Gaussian Process regression framework for multimodal data, that can be an order of magnitude more scalable than existing state-of-the-art nonlinear...

  11. Synthetically quantitative evaluation function of characteristic parameters on CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The statistical probability and their variation regularity of the measurable characteristic parameters in the CO2 arc welding droplet short-circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short-circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short-circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short-circuiting transfer process of CO2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short-circuiting transfer process with a variety of welding variables.

  12. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  13. A Study on Process Characteristics and Performance of Hot Wire Gas Tungsten Arc Welding Process for High Temperature Materials

    OpenAIRE

    Padmanaban MR,Anantha; Neelakandan, Baskar; Kandasamy,Devakumaran

    2016-01-01

    Hot wire gas tungsten arc welding (HW-GTAW) process is the one where the filler wire is pre-heated close to its melting point before it is fed in to the arc. The effect of HW-GTAW parameters such as welding current, hot wire current and the wire feed rate during welding of super ASS 304H stainless steel tubes were evaluated in terms of heat input, voltage-current (V-I) characteristics and weld bead characteristics such as bead weight and geometry. The results obtained indicate that for a cons...

  14. Novel graphene production: an aqueous arc discharge process

    OpenAIRE

    Kim, Sejung

    2015-01-01

    Graphene plays important roles in technological developments regarding electronic device, environment and energy management and the motivation to prepare two-dimensional (2D) nanomaterials. As the pioneer for 2D nanomaterials, graphene has been shown to be not only thermodynamically stable, but also superior in terms of electronic and mechanical properties and that it can be processed into a wide variety of novel materials. However, they are still limited to the challenges such as multi-stack...

  15. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  16. Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology

    Science.gov (United States)

    Gulyaev, I. P.; Dolmatov, A. V.; Kharlamov, M. Yu.; Gulyaev, P. Yu.; Jordan, V. I.; Krivtsun, I. V.; Korzhyk, V. M.; Demyanov, O. I.

    2015-12-01

    In the present paper, we report on the results of an experimental study of heat- and mass-transfer processes in a Plazer 30-PL-W plasma-jet facility used for arc-plasma wire spraying. Using an original optical diagnostic system, we have studied melting behavior of the metal wire, break up and atomization of liquid metal. For the first time, experimental data on the in-flight velocity and temperature of spray particles in arc-plasma wire spraying were obtained. In spite of moderate particle velocities (about 50 m/s), the obtained steel coatings proved to have a low porosity of 1.5%. While studying the spraying process of tungsten wire, we observed the occurrence of anomalous high-velocity (over 4000 m/s) outbursts ejected from the surface of liquid metal droplets. The nature of such outbursts calls for further study.

  17. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  18. Obtaining and processing Daymet data using Python and ArcGIS

    Science.gov (United States)

    Bohms, Stefanie

    2013-01-01

    This set of scripts was developed to automate the process of downloading and mosaicking daily Daymet data to a user defined extent using ArcGIS and Python programming language. The three steps are downloading the needed Daymet tiles for the study area extent, converting the netcdf file to a tif raster format, and mosaicking those rasters to one file. The set of scripts is intended for all levels of experience with Python programming language and requires no scripting by the user.

  19. An analysis of the dynamic resistance and the instantaneous energy of the CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenmin; Xue Jiaxiang; Dong Fei; Yang Guohua; Lu Xiaoming

    2007-01-01

    A self-developed welding dynamic arc wavelet analyzer was adopted to analyze and assess the welding process of two CO2 arc welding machines. The experimental results indicate that the instantaneous energy can reflect the influence of the welding current and voltage on dynamic arc characteristic synthetically. Through calculating and analyzing the instantaneous energy, the energy during arc ignition and short circuit in CO2 welding process can be confirmed rationally, thus the foundation for the accurate design and control of the welding current and voltage can be provided. By reducing the ripple disturbance of the dynamic resistance, avoiding peak current and voltage waveform,and enhancing the transition frequency of short circuit suitably, the stability of the welding arc and the weld appearance can be improved.

  20. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  1. Research on the controller of an arc welding process based on a PID neural network

    Institute of Scientific and Technical Information of China (English)

    Kuanfang HE; Shisheng HUANG

    2008-01-01

    A controller based on a PID neural network(PIDNN)is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process.The new method syncretizes the PID control strategy and neural network to control the welding process intelligently,so it has the merit of PID control rules and the trait of better information disposal ability of the neural network.The results of simulation show that the controller has the properties of quick response,low overshoot quick convergence and good stable accuracy,which meet the requirements for control of the welding process.

  2. "Learning Arc": The process of resolving concerns through student-student discourse

    Science.gov (United States)

    Stewart, Sean; Angarita, Maria Paula; Durden, Jared; Sawtelle, Vashti

    2013-01-01

    In reformed classrooms that utilize student-student interactions, a student's concerns can often be resolved through student-student discourse with minimal to no direct input from the instructor. To gain insight into such interactions, we used video data from a Florida International University reformed introductory physics classroom. We micro-analyzed a segment in which the discourse between a group of students leads to the resolution of a concern. In this study, we identified a pattern of discourse which we are calling a "Learning Arc." In this paper, we present the "Learning Arc" as a 3-stage process by which students use discourse as a means to achieve a consensus that resolves a concern.

  3. Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model

    Institute of Scientific and Technical Information of China (English)

    CUI Xinglei; ZHOU Xue; ZHAI Guofu; PENG Xiyuan

    2016-01-01

    Evaporation erosion of the contacts is one of the fundamental failure mechanisms for relays.In this paper,the evaporation erosion characteristics are investigated for the copper contact pair breaking a resistive direct current (dc) 30 V/10 A circuit in the air.Molten pool simulation of thc contacts is coupled with the gas dynamics to cMculate the evaporation rate.A simplified arc model is constructed to obtain the contact voltage and current variations with time for the prediction of the current density and the heat flux distributions flowing from the arc into the contacts.The evaporation rate and mass variations with time during the breaking process are presented.Experiments are carried out to verify the simulation results.

  4. Properties of AlSi9Mg Alloy Matrix Composite Reinforced with Short Carbon Fibre after Remelting

    Directory of Open Access Journals (Sweden)

    Łągiewka M.

    2015-09-01

    Full Text Available The presented work describes the results of examination of the mechanical properties of castings made either of AlSi9Mg alloy matrix composite reinforced with short carbon fibre or of the pure AlSi9Mg alloy. The tensile strength, the yield strength, Young’s modulus, and the unit elongation were examined both for initial castings and for castings made of the remelted composite or AlSi9Mg alloy. After preparing metallographic specimens, the structure of the remelted materials was assessed. A few non-metallic inclusions were observed in the structure of the remelted composite, not occurring in the initial castings. Mechanical testing revealed that all the examined properties of the initial composite material exceed those of the non-reinforced matrix. A decrease in mechanical properties was stated both for the metal matrix and for the composite after the remelting process, but this decrease was so slight that it either does not preclude them from further use or does not restrict the range of their application.

  5. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Science.gov (United States)

    Safari, A.; Gheisari, Kh.; Farbod, M.

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni-Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100-200 nm and was dependent on the production conditions.

  6. Discussion the Development of Image-Process Tools Based on ArcGIS%浅谈基于ArcGIS的影像处理工具集开发

    Institute of Scientific and Technical Information of China (English)

    周津津; 陈少锋; 刘晓娟

    2014-01-01

    随着数字省、数字城市的建设,对现势性好、分辨率高的正射影像需求呈现多样化。本文主要介绍Python脚本在ArcGIS软件影像处理中的应用,实现高效处理影像的同时,确保影像质量满足项目建设的要求。%With the construction of digital province and digital city , the demand for and current situation good and high -resolution digital orthophoto map presents various .This paper mainly introduced the application of Python script to image processing in ArcGIS , which could process images efficiently and make sure the quality of images satisfy the project construction requirement .

  7. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    Science.gov (United States)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  8. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    Science.gov (United States)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  9. Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer

    Science.gov (United States)

    Bonek, Mirosław; Śliwa, Agata; Mikuła, Jarosław

    2016-12-01

    Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the penetration depth of remelted surface. Simulated penetration depth and molten pool profile have a good match with the experimental results. The depth values obtained in simulation are very close to experimental data. Regarding the shape of molten pool, the little differences have been noted. The heat flux input considered in simulation is only part of the mechanism for heating; thus, the final shape of solidified molten pool will depend

  10. The influence of the arc plasma treatment on the structure and microhardness C120U carbon tool steel

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2010-01-01

    Full Text Available paper. They are compared with the properties obtained after conventional hardening. The GTAW (Gas Tungsten Arc Welding method was used. The remelted zone consists of dendritic cells and columnar crystals. Inside the columnar crystals dependent to current arc plasma intensity the martensite or lower bainite was observed. The cooling rate of the remelted zone is similar to the cooling rate obtained in the classical heat treatment. The maximum hardness 650 HV0,1 was measured in material after treatment with a smaller current intensity of arc plasma – 60A. Increases of the current intensity of arc plasma from 60 A to 110 A (for fixed speed rate of source lead to increases the depth of the remelted zone from 1,2 to 3,1 mm. Thickness of the heat affected zone in the all specimens was similar (1,9 to 2,1 mm.

  11. Solidification and remelting of Al through Al2O3 fibrous preform under centrifugal force

    Institute of Scientific and Technical Information of China (English)

    HU Guo-xin; LIU Jian-ju; ZHANG Li-xiang; TIAN Qin-wei

    2006-01-01

    The solidification and remelting of molten aluminum through a porous preform under centrifugal force field were modeled numerically. The results show that the transient solidification and remelting phenomena appear on the infiltration front and can be divided into two distinct regions: the remelting region and solid-liquid congruent melting region. The decrease of porosity always results in the increase of moving velocity difference between the infiltration front and the remelting front, which leads to the increase of the solid-liquid congruent region extent. But for the decrease of the rotational frequency, the difference of moving velocity between infiltration front and remelting front decreases, which leads to the decrease of regional extent. The infiltration front moving velocity is mainly influenced by the centrifugal infiltration pressure, whereas the remelting front moving velocity is mainly influenced by the material thermodynamics. The transient solidification and remelting phenomena are the intercoupling results between the centrifugal infiltration dynamics and the material thermodynamics.

  12. Design of a robust fuzzy controller for the arc stability of CO(2) welding process using the Taguchi method.

    Science.gov (United States)

    Kim, Dongcheol; Rhee, Sehun

    2002-01-01

    CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.

  13. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  14. Effect of heat input on dilution and heat affected zone in submerged arc welding process

    Indian Academy of Sciences (India)

    Hari Om; Sunil Pandey

    2013-12-01

    Submerged arc welding (SAW) is a fusion joining process, known for its high deposition capabilities. This process is useful in joining thick section components used in various industries. Besides joining, SAW can also be used for surfacing applications. Heat Affected Zone (HAZ) produced within the base metal as a result of tremendous heat of arc is of big concern as it affects the performance of welded/surfaced structure in service due to metallurgical changes in the affected region. This work was carried out to investigate the effect of polarity and other SAW parameters on HAZ size and dilution and to establish their correlations. Influence of heat input on dilution and heat affected zone was then carried out. Four levels of heat input were used to study their effect on % dilution and HAZ area at both the electrode positive and electrode negative polarities. Proper management of heat input in welding is important, because power sources can be used more efficiently if one knows how the same heat input can be applied to get the better results. Empirical models have been developed using statistical technique.

  15. The Origin of Voluminous Dacite (vs. Andesite) at Mature, Thick Continental Arcs: A Reflection of Processes in the Deep Crust

    Science.gov (United States)

    Lange, R. A.

    2013-12-01

    An outstanding question is why some continental arc segments are characterized by voluminous eruptions of dacite (65-70 wt% SiO2), whereas others erupt more andesite (58-64 wt% SiO2) than any other magma type. An example of the former is the Altiplano-Puna region of the central Andean arc, which has erupted a predominance of dacite over all magma types 10-1 Ma (de Silva, 1989). In contrast, a 200-km arc segment of the Mexican volcanic arc (Michoacán-Guanajuato arc segment) has erupted ~75% andesite, ~26% basaltic andesite and 20%) of hornblende-rich (~40%) gabbronorite in the deep crust, driven by mantle-derived basalt intrusions at depths of 30-40 km. The absence of any dacite or rhyolite along this arc segment indicates that interstitial liquid from crystal-rich andesites never segregated to form eruptible magma. Thus, little upper-crust differentiation occurred along this arc segment. On the basis of phase-equilibrium experiments in the literature (e.g., Sisson et al., 2005), it is proposed that rhyolite and dacite did form during partial melting of the lower arc crust, but at melt fractions too low (≤15%) to permit efficient transport to the upper crust (Vigneresse and Tikoff, 1999). It is further proposed that the reason why dacite is so abundant at mature thick continental arcs (e.g., Altiplano-Puno complex) may be because mantle-derived basalts are primarily emplaced at similar depths (~30-40 km) in continental arc crustal columns. If so, in the central Andean arc, a depth of 30-40 km is within the middle dioritic crust (Graeber and Asch, 1999). Partial melts of hornblende diorite (vs. hornblende gabbro) are predicted to be dacitic (vs. andesitic) at melt fractions of 20-25%, which permits transport to the upper crust. It is therefore proposed that it is deep crustal processes that determine whether andesite or dacite is the most voluminous magma type emplaced into the upper crust and erupted at arcs.

  16. Laser remelting of Al-1.5 wt%Fe alloy surfaces: Numerical and experimental analyses

    Science.gov (United States)

    Bertelli, Felipe; Meza, Elisangela S.; Goulart, Pedro R.; Cheung, Noé; Riva, Rudimar; Garcia, Amauri

    2011-04-01

    A 3D heat transfer mathematical model based on the finite element method is applied to the laser surface remelting (LSR) process with a view to simulating temperature fields and melt pool dimensions. The theoretical predictions furnished by the model are validated against LSR experimental results from tests carried out in the present study with Al-1.5 wt%Fe alloy samples. The work also encompasses an analysis of microstructural and microhardness variations throughout the resulting treated and untreated zones. A remarkable effect of the LSR treatment on the mechanical and corrosion resistance of the treated samples is shown.

  17. Electropolishing of Re-melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design

    Science.gov (United States)

    Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A.

    2016-07-01

    This three-level three-factor full factorial study describes the effects of electropolishing using deep eutectic solvents on the surface roughness of re-melted 316L stainless steel samples produced by the selective laser melting (SLM) powder bed fusion additive manufacturing method. An improvement in the surface finish of re-melted stainless steel 316L parts was achieved by optimizing the processing parameters for a relatively environmentally friendly (`green') electropolishing process using a Choline Chloride ionic electrolyte. The results show that further improvement of the response value-average surface roughness ( Ra) can be obtained by electropolishing after re-melting to yield a 75% improvement compared to the as-built Ra. The best Ra value was less than 0.5 μm, obtained with a potential of 4 V, maintained for 30 min at 40 °C. Electropolishing has been shown to be effective at removing the residual oxide film formed during the re-melting process. The material dissolution during the process is not homogenous and is directed preferentially toward the iron and nickel, leaving the surface rich in chromium with potentially enhanced properties. The re-melted and polished surface of the samples gave an approximately 20% improvement in fatigue life at low stresses (approximately 570 MPa). The results of the study demonstrate that a combination of re-melting and electropolishing provides a flexible method for surface texture improvement which is capable of delivering a significant improvement in surface finish while holding the dimensional accuracy of parts within an acceptable range.

  18. Thermal design of a pressure electroslag remelting furnace applied for 5; Diseno termico de un horno presurizado de refusion por electroescoria de 5 Kg

    Energy Technology Data Exchange (ETDEWEB)

    Cruz M, J.P

    1999-07-01

    Actual work defines the thermal design methodology for pressure electroslag remelting furnaces (P ESR) of variable capacity, applied for 5 Kg. It begins with classification and description of secondary refining furnaces, after PESR process and the concept of thermal design are described. Next, in base of the steel weight to remelt (5 Kg); ingot, crucible and electrode dimensions are obtained. These elements will be inside of pressure vessel whose thickness are determined according to ASMECode (Section 8, Division 1, U G-27). It was developed a computer program, where the furnace capacity can be modified, so like other conditions, and display principal dimensions of the furnace. Current and voltage are obtained from the heat necessary to remelt the ingot and the heat transfer in the crucible, is analysed because of it is the most critical element. It was selected too the equipment to registry temperatures and pressure in base of thermocouple characteristics. (Author)

  19. Double-sided gas tungsten arc welding process on TC4 titanium alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-ming; BAI Yan; YANG Tian-dong

    2005-01-01

    TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85 % elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line,and the interior of grains are α and α' structures. The coarse columned and equiaxed grains, which interlace martensitic structures α' and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.

  20. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  1. Computational modeling in the primary processing of titanium: A review

    Science.gov (United States)

    Venkatesh, Vasisht; Wilson, Andrew; Kamal, Manish; Thomas, Matthew; Lambert, Dave

    2009-05-01

    Process modeling is increasingly becoming a vital tool for modern metals manufacturing. This paper reviews process modeling initiatives started at TIMET over the last decade for the primary processing of titanium alloys. SOLAR, a finite volume-based numerical model developed at the Ecole de Mine at Nancy, has been successfully utilized to optimize vacuum arc remelting process parameters, such as electromagnetic stirring profiles in order to minimize macrosegregation and improve ingot quality. Thermo-mechanical modeling of heat treating, billet forging, and slab rolling is accomplished via the commercial finite element analysis model, DEFORM, to determine heating times, cooling rates, strain distributions, etc.

  2. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    Science.gov (United States)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 – 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  3. A comparison of the economics of materials processing with solar furnaces and high-intensity arc lamps

    Science.gov (United States)

    Kolb, Gregory J.

    The cost and performance of treating materials with a solar furnace were compared to similar treatment with high-intensity electric-arc lamps. Qualitative results indicate that because of the long focal length of the solar furnace, it is capable of performing much dirtier materials processing tasks than the arc lamp. Quantitative results indicate that if the furnace is located in a good solar region, the solar furnace can beat the economics of the lamp by as much as a factor of three under certain operating scenarios. In other scenarios, the lamp is more cost effective. The scenario that appears most promising for the furnace is batch processing that employs flux levels near 500 W/sq cm or greater. At lower flux levels, or in assembly-line-type processing tasks, the arc lamp is preferred.

  4. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    CERN Document Server

    Peng, Y C; Yang, Y R; Hsieh, W Y; Hsieh, Y F

    1999-01-01

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules.

  5. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    Energy Technology Data Exchange (ETDEWEB)

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  6. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  7. 基于 Python 的 ArcGIS 地理数据批处理%The Batch Processing of ArcGIS Geographic Data Based on Python

    Institute of Scientific and Technical Information of China (English)

    方圣辉; 张玉贤; 佃袁勇; 毕创; 任赳龙

    2015-01-01

    ArcGIS地理处理工具一般只针对单个数据集执行,而运用Python脚本语言可以实现地理数据的批处理。本文以原始DEM影像插值生成特定空间分辨率的DEM影像为例,给出数据批处理的具体实现过程。%ArcGIS geoprocessing tools are usually used to process single dataset , however , the batch processing of geographic data can be achieved by using Python language .This article represents the specific processes of achieving the batch processing of geographic data , and gives an example of generating DEM images of specific special resolution with original DEM images .

  8. Evaluation of the graphite electrode arc melter for processing heterogeneous waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Turner, Paul C.; Soelberg, N.R. (Idaho National Engineering Laboratory); Anderson, G.L. (Idaho National Engineering Laboratory)

    1996-01-01

    The U.S. Bureau of Mines (USBM) conducted a series of 4 demonstration melting tests in a 3-phase AC graphite electrode arc furnace at its Albany Research Center (ALRC) thermal treatment facility in Albany, Oregon (now part of the U.S. Department of Energy, DOE). The scope of these tests provides a unique opportunity to evaluate a single melting technology regarding its applicability to the treatment of several different heterogeneous mixed wastes. The current system can continuously process combustible-bearing wastes at feedrates to 682 kg/h (1,500 lb/h), continuously tap slag or glass, and intermittently tap metal products, and includes a close-coupled thermal oxidizer and air pollution control system (APCS). The 4 demonstration melting tests were conducted in cooperation with the American Society of Mechanical Engineers (ASME), the Idaho National Engineering Laboratory (INEL), and the Westinghouse Hanford Company (WHC).

  9. Electric Arc Locator in Photovoltaic Power Systems Using Advanced Signal Processing Techniques

    OpenAIRE

    Digulescu, Angela; Candel, Ion; Dahmani, Jawad; Ioana, Cornel; Vasile, Gabriel

    2013-01-01

    International audience; In this paper, we present two techniques for the localization of electric arcs produced in photovoltaic power systems. High order statistic analysis (HOSA) and recurrence plot analysis (RPA) have already proven successful in detecting the partial discharges associated with the production of an electric arc in a high voltage power system. However, this solves only the first half of the problem, since a localization of the arc also needed. Using a four sensors array dete...

  10. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)

    2017-05-15

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  11. Relationship between geometric welding parameters and optical-acoustic emissions from electric arc in GMAW-S process

    Directory of Open Access Journals (Sweden)

    E. Huanca Cayo

    2011-05-01

    Full Text Available Purpose: Show the relationship between geometric characteristics of the weld bead and the optical-acoustic emissions from electric arc during welding in the GMAW-S process.Design/methodology/approach: Bead on plate welding experiments was carried out setting different process parameters. Every welding parameter group was set aiming to reach a high stability level what guarantee a geometrical uniformity in the weld beads. In each experiment was simultaneously acquired arc voltage, welding current, infrared and acoustic emissions; from them were computed parameters as arc power, acoustic peaks rate and infrared radiation rate. It was used a tri-dimensional LASER scanner for to acquire geometrical information from the weld beads surface as width and height of the bead. Depth penetration was measured from sectional cross cutting of weld beads.Findings: Previous analysis showed that the arc emission parameters reach a stationary state with different characteristic for each experiment group which means that there is some correlation level between them. Posterior analysis showed that from infrared parameter is possible to monitoring external weld bead geometry and principally its penetration depth. From acoustic parameter is possible to monitoring principally the external weld bead geometry. Therefore is concluded that there is a close relation between the arc emissions and the weld bead geometry and that them could be used to measuring the welding geometrical parameters.Research limitations/implications: After analysis it was noticed that the infrared sensing has a better performance than acoustic sensing in the depth penetration monitoring. Infrared sensing also sources some information about external geometric parameters that in conjunction with the acoustic sensing is possible to have reliable information about weld bead geometry. This method of sensing geometric parameters could be applied in other welding processes, but is necessary to have

  12. Study of Raw Materials Treatment by Melting and Gasification Process in Plasma Arc Reactor

    Directory of Open Access Journals (Sweden)

    Peter KURILLA

    2010-12-01

    Full Text Available The world consumption of metals and energy has increased in last few decades and it is still increasing. Total volume production results to higher waste production. Raw material basis of majority metals and fossil fuels for energy production is more complex and current waste treatment has long term tendency. Spent power cells of different types have been unneeded and usually they are classified as dangerous waste. This important issue is the main topic of the thesis, in which author describes pyrometallurgical method for storage batteries – power cells and catalysts treatment. During the process there were tested a trial of spent NiMH, Li – ion power cells and spent copper catalysts with metal content treatment by melting and gasification process in plasma arc reactor. The synthetic gas produced from gasification process has been treated by cogenerations micro turbines units for energy recovery. The metal and slag from treatment process are produced into two separately phases and they were analyzing continually.

  13. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  14. Analytical model describing the relationship between laser power, beam velocity and melt pool depth in the case of laser (re)melting, -alloying and -dispersing

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.; Beckmann, Leo H.J.F.

    1997-01-01

    Laser surface treatment, more specifically laser - (re)melting, -alloying and -dispersing, are techniques for improving wear, fatigue and erosion resistance of mechanical parts, using high power lasers. Analytical models which decrease these processes in a simplified way can be helpful for (a)

  15. Influence and Analysis of Concentrate Degree of Plasma Arc for Heat Process of Hardening Treatment

    Institute of Scientific and Technical Information of China (English)

    WANG Shuo-gui; YAN Hong-ri

    2004-01-01

    According to the practicable model of the plasma arc surface quench, the influence law of the heat process、cooling course、 temperature field about surface quench treatment by plasma arc due to the concentrate degree of plasma arc heat source are discussed in this paper. It shows that the concentrate degree of plasma arc heat source can change the width of the hardening zone and can not change the maximum harden depth. With the increase of the concentrate degree, the area of the heat influence zone is decreased and its shape is narrowed after the heat source. Relative to cooling rate, the influence of the heat source concentrate degree for heat absorption is bigger. The correctness of the practical model are proved with experimental results for quench hardening of 45# steel by plasma arc.

  16. Effect of annealing process on TiN/TiC bilayers grown by pulsed arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Rivera, L., E-mail: lramosr@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia); Escobar, D.; Benavides-Palacios, V.; Arango, P.J.; Restrepo-Parra, E. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia)

    2012-08-15

    In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 Degree-Sign C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 Degree-Sign C, TiO{sub 2} phase begun to appear and it was well observed at 500 Degree-Sign C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.

  17. Deposição por plasma com arco transferido Hardfacing by plasma transfer arc process

    Directory of Open Access Journals (Sweden)

    Víctor Vergara Díaz

    2010-03-01

    Full Text Available Em virtude do Processo de Soldagem Plasma com Alimentação de Pó ter similaridades com o Processo de Soldagem Plasma com Alimentação de Arame, foi realizado um estudo comparativo entre ambos os processos utilizando-se a liga a base de cobalto comercialmente conhecida como Stellite 6, como material de adição na forma de pó e arame. A pesquisa foi realizada com a expectativa de ser aplicada nas operações de revestimentos de superfícies, em especial em pás de turbinas hidráulicas desgastadas por cavitação. A seleção do material de adição a ser empregado depende da natureza do mecanismo de desgaste encontrado. No Labsolda, a liga Stellite 6 vem sendo uma das mais utilizadas, por apresentar uma excelente resistência ao desgaste erosivo por cavitação. Foi avaliada a influência da vazão de gás de plasma a partir dos valores de diluição, dimensões do cordão, dureza e microestrutura. O Processo de Soldagem Plasma com Alimentação de Pó foi o que produziu o melhor acabamento superficial, menor diluição, melhor molhamento e maior largura. Com isto abre-se uma nova perspectiva para revestimentos metálicos e neste contexto se insere a recuperação por soldagem de partes erodidas de turbinas hidráulicas.The Plasma powder transferred arc welding process, which uses feed stock in the powder form, has similarities with Plasma wire transferred arc welding. This work describes a comparative study of the two processes using a Cobalt-based alloy commercially known as Stellite 6. This Co-based alloy is recognized for its superior cavitation erosion resistance. The aim of this work is to investigate the potential of PTA coatings for the protection and refurbishiment hydraulic turbine blades. Coatings were evaluated for the influence of Plasma gas flow rate on coating dilution, geometry, hardness and microstructure. Coatings processed with the atomized Stellite 6 powder feestock showed a superior surface quality, lower dilution

  18. Analysis of the solidified structure of rheocast and VADER processed nickel-base superalloy

    Science.gov (United States)

    Apelian, D.; Cheng, J.-J. A.

    1986-01-01

    Conventional 'ingot' processing of highly alloyed compositions results in a cast product which suffers from extensive macrosegregation, hot tears, and heterogeneities. By controlling the solidification journey, one can produce a fine grained cast product. This is achieved by manipulating the melt in the mushy zone. Rheocasting and vacuum arc double electrode remelting (VADER) are two such technologies where the melt is processed in the mushy zone. IN-100, a nickel based superalloy, was rheocast as well as VADER processed. The resultant cast structures are analyzed, compared and discussed both onmicro- and macrostructural levels. The effect of the rheocast processing variables (stirring seed, time and temperature) on the cast microstructure are also discussed.

  19. KEYHOLE IMAGE PROCESSING OF VARIABLE POLARITY PLASMA ARC WELDING BASED ON WAVELET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to realize the feedback control for variable polarity plasma arc welding (VPPAW) formation in the welding process, the geometrical sizes of the keyhole image must be extracted. With the properties of multiscale edge through the wavelet theory, the edge points were detected by getting the maximum modules of the gradient vector in the dircetion towards which the gradient vector points in the image plane. At coarse scales, the local maxima of modules have different positions and only detected the sharp edge. At fine scale, there are many maxima created by the image noise. The best scale where the edges are well discriminated from noises is discussed by the multiscale transform. At last, a new method of peak analysis for threshold selection is provided. It is based on the wavelet transform which provides a multiscale analysis of the information of the histogram. Many experiments show these ways are effective for the keyhole image to get the geometry parameters of the keyhole in the real-time VPPAW image processing.

  20. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.

  1. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  2. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  3. The record of magma chamber processes in plagioclase phenocrysts at Thera Volcano, Aegean Volcanic Arc, Greece

    Science.gov (United States)

    Stamatelopoulou-Seymour, Karen; Vlassopoulos, Dimitrios; Pearce, Thomas H.; Rice, Craig

    1990-01-01

    Lavas and pyroclastic rocks throughout the volcanic stratigraphy of the Tertiary-Quaternary volcanic complex of Thera in the Aegean island arc display inhomogenous plagioclase populations and phenocryst resorption textures, interpreted as indicative of magma mixing. Plagioclase zoning characteristics studied by Nomarski and laser interferometry techniques establish three main categories of plagioclase: (i) inherited plagioclase (nucleated in endmember prior to initial mixing event) (ii) in situ plagioclase (nucleated in mixed or hybrid magma) and (iii) xenocrystic plagioclase. Nomarski contrast images and linearized compositional zoning profiles reveal striking differences between calcic and sodic plagioclases, depending on the composition of the lava in which they are hosted. These differences reflect the contrasting effects of changes in physical-chemical parameters in basic vis-a-vis more acidic melts during magma mixing and/or influx of new magma into the subvolcanic magma chamber, as well as the influence of magma chamber dynamics on plagioclase equilibration. Variations in bulk major and trace element abundances of Thera volcanic products reflect the dominant overprint of crystal fractionation, but decoupling between major and trace element fractionation models and variations in incompatible trace element distributions are all indicative of magma mixing processes, consistent with compositional and textural zoning in plagioclases.

  4. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.

    Science.gov (United States)

    Youcai, Z; Stanforth, R

    2000-12-30

    In this study, a novel and integrated hydrometallurgical process for the production of zinc powder from electric arc furnace (EAF) dust in alkaline medium is reported. The dust is firstly hydrolysed in water, and then fused in caustic soda at 350 degrees C for 1h, followed by leaching in alkaline solution in which both zinc and lead are effectively extracted. Zinc powder is then produced by electrowinning from the leach solution after the lead is selectively removed by precipitation using sodium sulphide as precipitant. The EAF dust tested contained 25% Zn, 1.8% Pb and 33% Fe. It was found that 38% of zinc and 68% of lead could be extracted from the dust when leached directly in caustic soda solution. Leaching of zinc increased to 80% when dust was directly fused with caustic soda followed by alkaline leaching. However, the leaching further increased to 95% when the dust was hydrolysed first with water before fusion. Zinc powder with a purity of 99.95% was then produced by electrowinning from the lead depleted solution. Stainless electrodes were used as both anode and cathode.

  5. Mathematical modelling of convective processes in a weld pool under electric arc surfacing

    Science.gov (United States)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.

    2017-01-01

    The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.

  6. Influence of waxes remelting used in investment casting on their thermal properties and linear shrinkage

    Directory of Open Access Journals (Sweden)

    K. Grzeskowiak

    2015-04-01

    Full Text Available This paper presents the results of thermal properties and linear shrinkage of jewelry waxes utilized in investment casting. Three types of jewelry waxes were cyclically processed (by heating, holding in a molten state and coolingin the temperature range between 25 and 90 °C for about 7 hours. The samples were tested after 5th, 10th and 15thcycle. The remelting was designed to simulate the process of waxes reusability for production of patterns. Changes in thermal properties of waxes were determined using differential scanning calorimetry (DSC and linear shrinkage values were specified. The conducted examinations allowed to establish the way of multiple utilization of waxes in producing precise models.

  7. Quality Evaluation of Remelted A356 Scraps

    Directory of Open Access Journals (Sweden)

    Yuksel C.

    2016-09-01

    Full Text Available A356 is one of the widely used aluminium casting alloy that has been used in both sand and die casting processes. Large amounts of scrap metal can be generated from the runner systems and feeders. In addition, chips are generated in the machined parts. The surface area with regard to weight of chips is so high that it makes these scraps difficult to melt. Although there are several techniques evolved to remedy this problem, yet the problem lies in the quality of the recycled raw material. Since recycling of these scrap is quite important due to the advantages like energy saving and cost reduction in the final product, in this work, the recycling efficiency and casting quality were investigated. Three types of charges were prepared for casting: %100 primary ingot, %100 scrap aluminium and fifty-fifty scrap aluminium and primary ingot mixture were used. Melt quality was determined by calculating bifilm index by using reduced pressure test. Tensile test samples were produced by casting both from sand and die moulds. Relationship between bifilm index and tensile strength were determined as an indication of correlation of melt quality. It was found that untreated chips decrease the casting quality significantly. Therefore, prior to charging the chips into the furnace for melting, a series of cleaning processes has to be used in order to achieve good quality products.

  8. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    Science.gov (United States)

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  9. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    Science.gov (United States)

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2).

  10. Microstructural Analyses of ATI 718Plus® Produced by Wire-ARC Additive Manufacturing Process

    Science.gov (United States)

    Asala, G.; Khan, A. K.; Andersson, J.; Ojo, O. A.

    2017-06-01

    A detailed microstructural study of ATI 718Plus superalloy produced by the wire-arc additive manufacturing (WAAM) process was performed through the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe micro-analysis (EPMA), and electron backscatter diffraction (EBSD). Extensive formation of eutectic solidification microconstituents including Laves and MC-type carbide phases, induced by micro-segregation, are observed in the build of the alloy in the as-deposited condition. Notwithstanding the significant segregation of niobium (Nb), which has been reported to promote the formation of the δ-phase in ATI 718Plus, only η-phase particles are observed in the deposit. Excessive precipitation of η-phase particles is found to be linked to Laves phase particles that are partially dissolved in the deposit after post-deposition heat treatment (PDHT). The EBSD analysis shows a high textured build in the directions with only a few misoriented grains at the substrate-deposit boundary and the top of the deposit. Investigation on the hardness of the build of the alloy, in the as-deposited condition, showed a softened zone about 2 mm wide at the deposited metal heat affected zone (DMHAZ), which has not been previously reported and potentially damaging to the mechanical properties. An extensive analysis with the use of both microstructural characterization tools and theoretical calculations shows that the DMHAZ has the lowest volume fraction of strengthening precipitates (γ' and γ″) in terms of their number density, which therefore induces the observed softness. Delayed re-precipitation kinetics and the extent of the precipitation of γ' and γ″ in the DMHAZ which is related to the diffusion of segregated solute elements from the interdendritic regions are attributed to this phenomenon. The microstructural analyses discussed in this work are vital to adequate understanding of properties of ATI 718Plus produced by the additive

  11. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces.

    Science.gov (United States)

    Odabasi, Mustafa; Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Elbir, Tolga; Bayram, Abdurrahman

    2017-01-01

    Polychlorinated naphthalene (PCN) emissions of scrap iron processing steel plants were explored by measuring concentrations in stack gases of five plants, in the atmosphere (n=11) at a site close to those plants, and in soil at several sites in the region (n=40) in Aliaga, Izmir, Turkey. Observed stack-gas Σ32PCN levels from the plants without scrap preheating (189±157ngNm(-3), average±SD, n=4) showed that they are substantial PCN emitting sources. Stack-gas Σ32PCN level for the plant with scrap preheating was considerably higher (1262ngNm(-3)). Similarly, Σ32PCN emission factor for this plant was substantially higher (11.9mgton(-1)) compared to those without scrap preheating (1.30±0.98mgton(-1)). Results have also suggested that the investigated steel plants emit large quantities of fugitive particle-phase PCNs. Measured soil Σ32PCN concentrations that are considered to be representative of the atmospheric levels were greatly variable in the region, ranging between 0.003 and 10.02μgkg(-1) (dry wt). Their spatial distribution showed that main PCN sources in the region were the iron-steel plants. Ambient air levels (1620±800pgm(-3)) were substantially higher than ones observed around the world and in the study area verifying that the steel plants with electric arc furnaces (EAFs) are important PCN sources. Investigation of possible mechanisms suggested that the combustion processes also contribute to emissions from EAFs in addition to evaporation of PCNs present in the scrap iron.

  12. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  13. Microstructural Analyses of ATI 718Plus® Produced by Wire-ARC Additive Manufacturing Process

    Science.gov (United States)

    Asala, G.; Khan, A. K.; Andersson, J.; Ojo, O. A.

    2017-09-01

    A detailed microstructural study of ATI 718Plus superalloy produced by the wire-arc additive manufacturing (WAAM) process was performed through the use of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron probe micro-analysis (EPMA), and electron backscatter diffraction (EBSD). Extensive formation of eutectic solidification microconstituents including Laves and MC-type carbide phases, induced by micro-segregation, are observed in the build of the alloy in the as-deposited condition. Notwithstanding the significant segregation of niobium (Nb), which has been reported to promote the formation of the δ-phase in ATI 718Plus, only η-phase particles are observed in the deposit. Excessive precipitation of η-phase particles is found to be linked to Laves phase particles that are partially dissolved in the deposit after post-deposition heat treatment (PDHT). The EBSD analysis shows a high textured build in the 〈100〉 directions with only a few misoriented grains at the substrate-deposit boundary and the top of the deposit. Investigation on the hardness of the build of the alloy, in the as-deposited condition, showed a softened zone about 2 mm wide at the deposited metal heat affected zone (DMHAZ), which has not been previously reported and potentially damaging to the mechanical properties. An extensive analysis with the use of both microstructural characterization tools and theoretical calculations shows that the DMHAZ has the lowest volume fraction of strengthening precipitates ( γ' and γ″) in terms of their number density, which therefore induces the observed softness. Delayed re-precipitation kinetics and the extent of the precipitation of γ' and γ″ in the DMHAZ which is related to the diffusion of segregated solute elements from the interdendritic regions are attributed to this phenomenon. The microstructural analyses discussed in this work are vital to adequate understanding of properties of ATI 718Plus produced by the

  14. Laser Surface Remelting of Medium Ni-Cr Infinite Chilling Cast Iron Roll

    Institute of Scientific and Technical Information of China (English)

    YAO Jian-hua; ZHANG Qun-li; XIE Song-jing

    2004-01-01

    Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave CO2 laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remelted layer by optical microscope shows that the laser remelted layer consists of three zones, which is the melting zone, the transition zone and the heat affected zone. The size of the dendrite of the melting zone is only in the 1/10 to 1/30 range of that of the substrate. The distribution of the hardness of the laser remelted layer was detected, and the carrying capacity of rolling steel was also field-tested. The results show that both the hardness of the remelted layer and the carrying capacity all increase,especially, the carrying capacity was 50% increased compared with the substrate.

  15. Laser Surface Remelting of Medium Ni-Cr Infinite Chilling Cast Iron Roll

    Institute of Scientific and Technical Information of China (English)

    YAOJian-hua; ZHANGQun-li; XIESong-jing

    2004-01-01

    Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave CO2 laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remelted layer by optical microscope shows that the laser remelted layer consists of three zones, which is the melting zone, the transition zone and the heat affected zone. The size of the dendrite of the melting zone is only in the 1/10 to 1/30 range of that of the substrate. The distribution of the hardness of the laser remelted layer was detected, and the carrying capacity of rolling steel was also field-tested. The results show that both the hardness of the remelted layer and the carrying capacity all increase, especially, the carrying capacity was 50% increased compared with the substrate.

  16. A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

    1997-02-01

    Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

  17. Analysis of the Vacuum Arc Interruption Process in Aviation Intermediate-Frequency Power Supply Systems

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2017-03-01

    Full Text Available In this paper, we present our research into the interruption performance of vacuum circuit breakers in aviation intermediate-frequency (360 Hz to 800 Hz power supply systems. Intermediate-frequency vacuum arc experiments were carried out in interrupters with a diameter of 41 mm and CuCr50 alloy contact material. The results show that, as the frequency and peak value of the current increase, both the peak value and rise rate of the intermediate-frequency vacuum arc voltage also increase, and the interruption ability decreases. However, compared to the power frequency current at the same value, the erosion of the contacts is weaker over a shorter arc period. When the vacuum arc reignites, metal droplets are emitted from the contacts. The drive force is from the center of the contact to the edge. If the density of the plasmas and metal vapors and the number of the metal droplets reaches a certain level, the arc may break down, which will cause the interruption to fail.

  18. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    Science.gov (United States)

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and an increase in the sediment contribution (higher Th/Nb, La/Sm, and Pb isotopic ratios) from Mt. Pagan to South Pagan could reflect systematic cross-arc or irregular along-arc melting variations. These observations indicate that the length scale of compositional heterogeneity in the mantle wedge beneath Mariana arc volcanoes is small (~10km).

  19. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    Science.gov (United States)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-08-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters ( i.e., laser power ( P), welding current ( A), distance between laser and arc ( D), and welding speed ( V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  20. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Fujia Xu; Yaohui Lv; Yuxin Liu; Fengyuan Shu; Peng He; Binshi Xu

    2013-01-01

    Pulsed plasma arc deposition (PPAD),which combines pulsed plasma cladding with rapid prototyping,is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing.In the present research,PPAD was successfully used to fabricate the Ni-based superalloy Inconel 625 components.The microstructures and mechanical properties of deposits were investigated by scanning electron microscopy (SEM),optical microscopy (OM),transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS),microhardness and tensile testers.It was found that the as-deposited structure exhibited homogenous columnar dendrite structure,which grew epitaxially along the deposition direction.Moreover,some intermetallic phases such as Laves phase,minor MC (NbC,TiC) carbides and needle-like δ-Ni3Nb were observed in γ-Ni matrix.Precipitation mechanism and distribution characteristics of these intermetallic phases in the as-deposited 625 alloy sample were analyzed.In order to evaluate the mechanical properties of the deposits,microhardness was measured at various location (including transverse plane and longitudinal plane).The results revealed hardness was in the range of 260-285 HVo.2.In particular,microhardness at the interface region between two adjacent deposited layers was slightly higher than that at other regions due to highly refined structure and the disperse distribution of Laves particles.Finally,the influence of precipitation phases and fabrication strategies on the tensile properties of the as-deposited samples was investigated.The failure modes of the tensile specimens were analyzed with fractography.

  1. Numerical Simulation of Gas Flow During Arcing Process for 252 kV Puffer Circuit Breakers%Numerical Simulation of Gas Flow During Arcing Process for 252 kV Puffer Circuit Breakers

    Institute of Scientific and Technical Information of China (English)

    吴军辉; 王小华; 马志瀛; 荣命哲; 闫静

    2011-01-01

    A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.

  2. Gliding arc surface modification of carrot nanofibre coating - perspective for composite processing

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Berglund, L; Aitomäki, Y

    2016-01-01

    Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials, these c......Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials...

  3. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann;

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt......-joint with a V-groove with varying root gapthe system demonstrated increased welding quality compared to the system with no control. The system was implemented with a low cost vision system, which makes the system interesting to apply in industrial welding automation systems....

  4. The formation mechanism of CO2 and its conversion in the process of coal gasification under arc plasma conditions

    Science.gov (United States)

    He, Xiaojun; Zheng, Mingdong; Qiu, Jieshan; Zhao, Zongbin; Ma, Tengcai

    2006-05-01

    The carbon dioxide (CO2) formation mechanism and co-conversion of CO2 with coal was investigated in the process of coal gasification in a steam medium at atmospheric pressure under arc plasma conditions in a tube-type setup. The arc plasma was diagnosed in situ by optical emission spectroscopy and the gas products were analysed by gas chromatography. CO2 yields are correlated with the quantitative emission peak intensity of the active species in plasma when the operating parameter is changed. The results show that the greater the emission peak intensity of the CH radicals, C2 radicals, OH radicals or O atoms, the smaller the CO2 yield is, which means that the CO2 formation process is inhibited by increasing the concentration of the mentioned active species under arc plasma conditions. On the basis of the diagnosis results, co-conversion of CO2 and coal in a steam medium under plasma conditions was carried out in the same setup and the results show that CO2 conversion reaches 88.6% while the concentration of CO + H2 reaches 87.4%; at the same time, coal conversion is in the range 54.7-68.7%, which proves that co-conversion of CO2 and coal in a steam medium under plasma conditions might be a prospective way to utilize CO2 and the production of synthesis gas.

  5. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  6. Study on Arc Stability Evaluation Index of CO2 Arc Welding Process%CO2气体保护焊电弧稳定性评价指标研究

    Institute of Scientific and Technical Information of China (English)

    李慧敏; 凌泽民; 何建

    2016-01-01

    The Hannover analyzer was used to acquire the signal result of voltage and current.The voltage-current waveform,probability distribution diagram of voltage and current (PDD) and frequency distribution of short-circuit time,arcing time,weighted arcing time,and the short-circuit cycle time (CFD) were automatically generated.The main influenced factors of arc droplet transfer and weld seam formation based on the analysis of the electrical characteristics of the arc process were obtained.The results show that the main factors which influence the arc process characteristics and weld appearance are weld current and arc voltage.Arc voltage influences the droplet diameter,stability of arc,spatter and the width of weld.When the arc voltage is lower,the transition process is unstable and the spatter is bigger.When the arc voltage is higher,mixed transition appears.When the arc voltage is 18V,the stability of arc is better.The welding current can affect wire melting speed,the frequency of transition,spatter,and weld seam quality and so on.When the current is lower,the broken arc phenomenon appears,and the fromation of weld seam is bad.While the higher welding current,the bigger spatter and the bad stability of the arc,and the invalid short circuit appear.When the welding current is 160A,smaller spatter and better weld seam formation can be obtained.%本试验采用汉诺威焊接质量分析仪对电弧电压和焊接电流信号进行采集,并自动生成电压电流波形图、电弧电压和焊接电流的概率密度分布图(PDD图)及短路时间、燃弧时间、加权燃弧时间、短路周期的频次分布图(CFD图),并分析电弧过程的电特性,找到熔滴过渡以及焊缝成形的主要影响因素.结果表明:电弧电压和电流对短路过渡有明显影响.电弧电压影响电弧稳定性、飞溅大小、焊缝熔宽等.电压偏低,过渡过程不稳定,飞溅较大;电压偏高,将会出现混合过渡;当电弧电压在18V时,电弧稳定性

  7. Crustal construction along arc-backarc transition zone in the Japan Sea and implications for seismogenic processes

    Science.gov (United States)

    Kodaira, S.; No, T.; Sato, T.; Sato, H.

    2014-12-01

    The Japan Sea, which is a backarc basin between Japanese island arc and the Asian continent, has a unique setting in terms of a formation process as well as a seismogenic process. The opening of the Japan Sea was initiated by crustal rifting and the separation of Japan Island Arcs from the Asian continent in the early Oligocene (~ 32 Ma), with subsequent ocean floor spreading in the late Oligocene (~ 28 Ma). Then, the opening stopped, between 10 and 3.5 Ma, and at 3.5 Ma, the crustal shortening occurred under a strong compressional stress regime in the eastern margin of the Japan Sea. Several seismic surveys had been conducted in this region since the last more than two decades, however, a conclusive discussion concerning a crustal construction in the arc-backarc transition zone had not been made, due to lack of resolution of structural models and sparse distribution of profiles. Moreover, magnitude-7 class earthquakes repeatedly occurred along this margin, such as, the 1964 Niigata earthquake (M7.5), 1983 Nihonkai-Chubu earthquake (M7.7), 1993 Hokkaido Nansei-oki earthquake (M7.8), and those events are recognized to have compressional fault mechanisms by reflecting a present-day stress regime. However, structural factor controlling the distribution and mechanism of those compressional events has not been well studied. In order to understand a crustal formation process in this margin and its relation to the seismogenic process at the present, we have been carrying our series of active-source seismic survey to cover the eastern margin of the central to northern Japan Sea. Results from those surveys successfully mapped a distribution of the arc crust, the oceanic crust and the amorously thick oceanic crust in the transition zone. From a comparison the rupture zones of the magnitude-7 class earthquake with the detailed crustal structure, we conclude that the large compressional events, more than M>7.5, occurred in a seismogenic zone fault which used to be formed a

  8. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    Science.gov (United States)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  9. Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting

    Science.gov (United States)

    Bartosinski, M.; Hassan-Pour, S.; Friedrich, B.; Ratiev, S.; Ryabtsev, A.

    2016-07-01

    This paper focuses on deoxidation of titanium alloys produced by aluminothermic reduction (ATR) and subsequent homogenizing and alloying by vacuum induction melting (VIM). The main goal of the performed research work is to outline the deoxidation limit during pressure electro slag remelting (PESR) of the described material. To obtain electrodes for deoxidation, a Ti-24Al-16V masteralloy was produced by ATR and afterwards melted in a 0.5 litre calcium- zirconate (lab scale) or 14 litres high purity calcia (pilot scale) crucibles with continuous addition of Ti-sponge after reaching liquid state in order to obtain a final Ti-6Al-4V alloy. During melting, in both cases evaporation of calcium was noticed. The cast ingots were analysed for oxygen using inert gas fusion method, matrix and alloying elements were analysed by XRF. Results show oxygen levels between 0.5 and 0.95 wt.-% for the ingots which were melted in calcium-zirconate crucibles and approx. 1 - 1.2 wt.-% for the material produced by utilization of calcia crucibles. The subsequent deoxidation was carried out in lab and pilot scale electroslag remelting furnaces using a commercially pure calcium fluoride slag and metallic calcium as deoxidation agent. It could be shown, that deoxidation of the highly contaminated material is possible applying this method to a certain limit. Pilot scale trials showed a reduction of oxygen contents by 1500 - 3500 ppm. Oxygen levels in lab scale trials showed weaker deoxidation effects. In order to describe the achieved deoxidation effects in a quantitative way, the analyzed oxygen contents of the obtained ingots are compared with calculated data resulting from a mathematical kinetic model. The modelled datasets are in good agreement with experimental oxygen values.

  10. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust

    Science.gov (United States)

    Cooper, George F.; Davidson, Jon P.; Blundy, Jon D.

    2016-10-01

    The Lesser Antilles Volcanic Arc is remarkable for the abundance and variety of erupted plutonic xenoliths. These samples provide a window into the deeper crust and record a more protracted crystallisation history than is observed from lavas alone. We present a detailed petrological and in situ geochemical study of xenoliths from Martinique in order to establish their petrogenesis, pre-eruptive storage conditions and their contribution to construction of the sub-volcanic arc crust. The lavas from Martinique are controlled by crystal-liquid differentiation. Amphibole is rarely present in the erupted lavas, but it is a very common component in plutonic xenoliths, allowing us to directly test the involvement of amphibole in the petrogenesis of arc magmas. The plutonic xenoliths provide both textural and geochemical evidence of open system processes and crystal `cargos'. All xenoliths are plagioclase-bearing, with variable proportions of olivine, spinel, clinopyroxene, orthopyroxene and amphibole, commonly with interstitial melt. In Martinique, the sequence of crystallisation varies in sample type and differs from other islands of the Lesser Antilles arc. The compositional offset between plagioclase (~An90) and olivine (~Fo75), suggests crystallisation under high water contents and low pressures from an already fractionated liquid. Texturally, amphibole is either equant (crystallising early in the sequence) or interstitial (crystallising late). Interstitial amphibole is enriched in Ba and LREE compared with early crystallised amphibole and does not follow typical fractionation trends. Modelling of melt compositions indicates that a water-rich, plagioclase-undersaturated reactive melt or fluid percolated through a crystal mush, accompanied by the breakdown of clinopyroxene, and the crystallisation of amphibole. Geothermobarometry estimates and comparisons with experimental studies imply the majority of xenoliths formed in the mid-crust. Martinique cumulate xenoliths are

  11. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Riva, Rudimar [Department of Aerospace Science and Technology, Institute for Advanced Studies (IEAv), Sao Jose dos Campos 12227-000, SP (Brazil)

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  12. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-09-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  13. Two-dimensional time-dependent modelling of fume formation in a pulsed gas metal arc welding process

    Science.gov (United States)

    Boselli, M.; Colombo, V.; Ghedini, E.; Gherardi, M.; Sanibondi, P.

    2013-06-01

    Fume formation in a pulsed gas metal arc welding (GMAW) process is investigated by coupling a time-dependent axi-symmetric two-dimensional model, which takes into account both droplet detachment and production of metal vapour, with a model for fume formation and transport based on the method of moments for the solution of the aerosol general dynamic equation. We report simulative results of a pulsed process (peak current = 350 A, background current 30 A, period = 9 ms) for a 1 mm diameter iron wire, with Ar shielding gas. Results showed that metal vapour production occurs mainly at the wire tip, whereas fume formation is concentrated in the fringes of the arc in the spatial region close to the workpiece, where metal vapours are transported by convection. The proposed modelling approach allows time-dependent tracking of fumes also in plasma processes where temperature-time variations occur faster than nanoparticle transport from the nucleation region to the surrounding atmosphere, as is the case for most pulsed GMAW processes.

  14. Wear and corrosion resistance of laser remelted and plasma sprayed Ni and Cr coatings on copper

    Institute of Scientific and Technical Information of China (English)

    梁工英; 黄俊达; 安耿

    2004-01-01

    Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 8 - 12 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.

  15. Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

    Science.gov (United States)

    2013-05-23

    Technology Laboratory, Watertown, MA, 1992 2. J.G. Holmes and B.J. Resnick, Flexible Robot Arc Welding System, Soc. Manuf. Eng., 1979, MS (79) 3. U.S...Process, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Vol. 4, p 3059–3064 19. Z. Bingul and G.E. Cook, A Real-Time...Prediction Model of Electrode Extension for GMAW, IEEE/ASME Trans. Mechatron ., 2006, 11, p 47–54 20. T.P. Quinn, R.B. Madigan, and T.A. Siewert, An

  16. Usage of Thermodynamic Activity for Optimization of Power Expenses in Respect of Casting Process in Arc Steel-Melting Furnace

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The equilibrium between carbon and oxygen has been investigated during oxidizing refining in an arc steel-melting furnace. It is shown that there is a possibility to apply an equilibrium thermodynamic. It has been established that during oxidizing refining FeO concentration in slag practically does not depend on C concentration in metal. It is demonstrated that in a number of cases metal carbon oxidation is characterized by the presence of a transit period that may be attributed to incomplete slag-formation process.

  17. Remelting of metallurgical fines using thermal plasma; Refusao de finos metalurgicos via plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, L.C.; Neto F, J.B.F.; Bender, O.W.; Collares, M.P

    1992-12-31

    A plasma furnace was developed for remelting of ferro alloys and silicon fines. The furnace capacity was about 4 Kg of silicon and power about 50 kW. The fine (20 to 100 mesh) was fed into the furnace directly at the high temperature zone. This system was tested for remelting silicon fines and the results in the recovery of silicon was about 95% and it took place a refine of aluminium and calcium. (author) 10 refs., 4 figs., 2 tabs.

  18. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  19. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel.

  20. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  1. The effect of remelting on the melt and casting quality in Al–7%Si–Mg castings

    Energy Technology Data Exchange (ETDEWEB)

    Eisaabadi B, Ghasem [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Foundry Technology Center, Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Department of Materials Science and Engineering, Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Tiryakioğlu, Murat, E-mail: m.tiryakioglu@unf.edu [School of Engineering, University of North Florida Jacksonville, FL 32224 (United States); Davami, Parviz [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kim, Shae-Kwang; Yoon, Yong Ok; Yeom, Gil-Yong; Kim, Nam-Seok [Foundry Technology Center, Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2014-05-01

    An experiment was conducted to determine whether allowing an aluminum melt to solidify in the crucible and later remelting it would improve the quality of the melt and the casting. To investigate this, data were collected through reduced pressure test, density measurement, metallography, X-ray radiography and tensile testing and analyzed statistically. Results indicated that remelting improved the quality of the melt by reduction of the number of defects in the casting and their area and volume fractions. The improvement in elongation of remelted specimens was found to be statistically significant. Analysis of deformation characteristics showed that the improvement in elongation is due to the improved casting quality after remelting.

  2. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  3. Effects of welding wire composition and welding process on the weld metal toughness of submerged arc welded pipeline steel

    Institute of Scientific and Technical Information of China (English)

    De-liang Ren; Fu-ren Xiao; Peng Tian; Xu Wang; Bo Liao

    2009-01-01

    The effects of alloying elements in welding wires and submerged arc welding process on the microstructures and low-temperature impact toughness of weld metals have been investigated.The results indicate that the optimal contents of alloying elements in welding wires can improve the low-temperature impact toughness of weld metals because the proentectoid ferrite and bainite formations can be suppressed,and the fraction of acicular ferrite increases.However,the contents of alloying elements need to vary along with the welding heat input.With the increase in welding heat input,the contents of alloying elements in welding wires need to be increased accordingly.The microstructures mainly consisting of acicular ferrite can be obtained in weld metals after four-wire submerged arc welding using the wires with a low carbon content and appropriate contents of Mn,Mo,Ti-B,Cu,Ni,and RE,resulting in the high low-temperature impact toughness of weld metals.

  4. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  5. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  6. Twin-wire Submerged Arc Welding Process of a High-strength Low-alloy Steel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiuzhi; XU Qinghua; YIN Niandong; XIAO Xinhua

    2011-01-01

    The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA)subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.

  7. The Influence of Laser Surface Remelting on the Microstructure of EN AC-48000 Cast Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-12-01

    Full Text Available Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 μm. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.

  8. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  9. Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS

    Science.gov (United States)

    Boroushaki, Soheil; Malczewski, Jacek

    2008-04-01

    This paper focuses on the integration of GIS and an extension of the analytical hierarchy process (AHP) using quantifier-guided ordered weighted averaging (OWA) procedure. AHP_OWA is a multicriteria combination operator. The nature of the AHP_OWA depends on some parameters, which are expressed by means of fuzzy linguistic quantifiers. By changing the linguistic terms, AHP_OWA can generate a wide range of decision strategies. We propose a GIS-multicriteria evaluation (MCE) system through implementation of AHP_OWA within ArcGIS, capable of integrating linguistic labels within conventional AHP for spatial decision making. We suggest that the proposed GIS-MCE would simplify the definition of decision strategies and facilitate an exploratory analysis of multiple criteria by incorporating qualitative information within the analysis.

  10. Influences of the microstructure on the wear resistance of cobalt-based ahoy coatings obtained by plasma transferred arc process

    Institute of Scientific and Technical Information of China (English)

    HOU Qingyu; GAO Jiasheng

    2005-01-01

    The microstructure, substructure, and wear characteristic of cobalt-based alloy coatings obtained by plasma transferred arc (PTA) process were investigated using optical metallurgical microscope, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and dry sand abrasion tester (DSAT). The aging effect on the structure and wear resistance of the cobalt-based PTA coating was also studied. The results show that the as-welded coating consists of cobalt-based solid solution with face-centered cubic structure and hexagonal (Cr, Fe)7C3. There are a lot of stacking faults existing in the cobalt-based solid solution. After aging at 600℃ for 60 h, the microstructure becomes coarse, and another carbide (Cr, Fe)23C6 precipitates. As a result, the wear mass loss of the aged sample is higher than that of the as-welded sample.

  11. Numerical Analysis of Two-Way Interaction between Weld-Pool and Arc for GTA Welding Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical model to describe the heat transfer and fluid flow in the mutually coupled weld pool and arc by an interactive free surface of the pool for a stationary gas tungsten arc welding (GTAW) is developed. The two sets of governing equations and auxiliary formulas, controlling the weld pool and plasma arc systems respectively, were solved by a finite difference method. A boundary-fitted coordinate system was adopted because the free surface has a curved and unknown shape during welding. The results of this work provide a fundamental basis for predicting the behavior of an integrated weld pool and arc system from first principles.

  12. Laser surface remelting and hardening of an automotive shaft sing a high-power fiber laser

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2007-12-01

    Full Text Available An automotive shaft was surface-remelted and hardened using a 2 kW fiber laser and an adapted linear axis whose rotating axis produced helical tracks at 120 RPM. The process variable was the laser power, ranging from 300 to 1100 W, which produced two regions in the material: a martensitic region (MR and a partially transformed region (PTR. The MR is formed after rapid solidification or austenitization followed by rapid cooling (10(7 K.s-1. The PTR is composed of martensite, unchanged pearlite and proeutectoid ferrite. The maximum case depth was about 0.3 mm. The microhardness inside the martensitic regions are at least double that of the base material, i.e. between 800 than 600 HV compared to 300 HV. Thermal simulations using a modified Rosenthal formalism help elucidate the phase transformation inside the material and show good agreement with experimental results. The experimental laser-steel absorptivities were measured; they ranged between 38 and 59% depending on the laser power and the amount of liquid at the surface.

  13. Effect of the Remelting on Transformations in Co-Cr-Mo Prosthetics Alloy

    Directory of Open Access Journals (Sweden)

    B. Kacprzyk

    2013-07-01

    Full Text Available In the article we were studing the impact of the remelting on transformations in Co-Cr-Mo prosthetics alloy. The TDA curves were analyzed, the microstructure was examined, the analysis of the chemical composition and hardness using the Brinell method was made. It was found that the obtained microstructure of the alloys that we studied do not differ significantly. In all four samples, microscopic images were similar to each other. The volume, size and distribution of the phases remain similar. Analysis of the chemical composition showed that all the samples fall within the compositions provided for the test alloy. Further to this the hardness of the samples, regardless of the number of remeltings did not show any significant fluctuations and remained within the error limit.After analyzing all the results, it can be concluded that the remeltings of the alloys should not have a significant impact on their properties. Secondarily melted alloys can be used for prosthetics works.

  14. Microhardness changes of surface layer of HS 6-5-2 steel in the areas overlapping remelting obtained with the use of GTAW method

    OpenAIRE

    A. Bylica; Dziedzic, A.

    2008-01-01

    The work presents test results of microhardness of surface layer of HS 6-5-2 high-speed steel from areas overlapping remelting. Thesurface layer of the steel was remelted using the GTAW method. The microhardness was measured using the Vickers method. The workshows that the area, where the heat influence zone of the second remelting overlapping on the first remelting zone is characterizes by the microhardness lower about approx. 200 HV0,065.

  15. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    Science.gov (United States)

    Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-06-01

    A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.

  16. Improved Workability of the Nanocomposited AgSnO2 Contact Material and Its Microstructure Control During the Arcing Process

    Science.gov (United States)

    Wang, Yaping; Li, Haiyan

    2017-02-01

    There are two major weaknesses for the AgSnO2 contacts used in the low voltage switch devices. One is poor workability, which causes the AgSnO2 materials to hardly deform into the required shape. Another is the increased contact resistance after arcing, which, in turn, causes an unfavorable temperature rise in the switches. In this article, the nanocomposited AgSnO2 materials were developed to overcome the weaknesses. The nanosized SnO2 powders with or without CuO additive were prepared by the chemical precipitation method. The SnO2 powders and Ag powders were high energy milled together to obtain AgSnO2 composite powders, which were then sintered, hot pressed and extruded. It was found that the SnO2 particles mainly distribute in the interior of Ag grains with Ag film on the grain boundary. The hardness of AgSnO2 composites and the wetting angle of Ag melt on SnO2 particles decreased with the addition of a small amount of CuO. By the combining effect of Ag film on grain boundary and the addition of CuO, the elongation and workability of the AgSnO2 materials improved. The experiments of rapid solidification revealed that more SnO2 particles with CuO addition were engulfed in the Ag matrix than those without CuO, which inhibited the redistribution of SnO2 particles on the contact surface during the arcing process. The industrial type test in the 45A contactor suggested that the nanocomposited AgSnO2 materials are suitable to be used as contacts in low voltage switches.

  17. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Schaltegger, Urs; Brooks, C. Kent; Naslund, H. Richard

    2012-11-01

    This paper presents a new high-precision zircon U-Pb geochronological view on the crystallization and assembly process of one of the most important and intensely studied intrusive bodies on Earth—the Skaergaard intrusion in East Greenland. With analytical uncertainties of a few tens of thousands of years, we were able to resolve several important events during cooling of this intrusion. Initial cooling of the shallowly intruded ˜300 km3 of tholeiitic basaltic magma from liquidus to zircon saturation at ˜1000 °C is recorded by a precise zircon crystallization age of 55.960±0.018 Ma of an intercumulus gabbroic pegmatite in the lower portion of the intrusion. Based on this zircon crystallization age and a published cooling model we estimate the "true" age of emplacement to be ˜56.02 Ma. The last portions of Skaergaard appear to crystallize completely ˜100 ka after emplacement as recorded by abundant ˜55.91-55.93 Ma zircons in the Sandwich Horizon (SH), where lower and upper solidification fronts met. Intrusion of an isotopically distinct new magma batch, the ˜600 m thick Basistoppen Sill, into the solidified upper portion of Skaergaard, happened at 55.895±0.018 Ma, suggesting close timing between crystallization of evolved rocks around the SH and intrusion of the Basistoppen Sill. The novel result of this work is the demonstration that zircons in the SH, >100 m below the Basistoppen contact, have a bimodal age distribution, with the youngest population of 55.838±0.019 Ma postdating intrusion of the Basistoppen Sill by 57±37 ka. Oxygen isotope analyses reveal that SH zircons are low and heterogeneous with respect to δ18O. These results support the proposed conclusion that the SH crystallized twice: it was fully crystalline, then hydrothermally-altered by low-δ18O surface waters and subsequently partially remelted, triggered by heat of the Basistoppen Sill. The low-degree partial melt generated during remelting partially migrated upward by intergranular

  18. Atmosphere corrosion behavior of plasma sprayed and laser remelted coatings on copper

    Institute of Scientific and Technical Information of China (English)

    Gongying Liang; T. T. Wong; Geng An; J. M. K. MacAlpine

    2006-01-01

    Nickel and chromium coatings were produced using plasma spraying and laser remelting on the copper sheet. The corrosion test was carried out in an acidic atmosphere, and the corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. Experimental results show that nickel and chromium coatings display better corrosion resistance properties relative to the original pure copper sample. The corrosion rate of chromium coating is less than that of nickel coating, and corrosion resistances of laser remelted nickel and chromium samples are better thanthose of plasma sprayed samples. The corrosion deposit film of copper is loose compared with nickel and chromium.

  19. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  20. Breakdown Electric Field of Hot 30% CF3I/CO2 Mixtures at Temperature of 300-3500 K During Arc Extinction Process

    Science.gov (United States)

    Zhao, Xiaoling; Jiao, Juntao; Xiao, Dengming

    2016-11-01

    We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field strengths are decided by a balance of electron generation and loss based on chemical reactions estimated by the electron energy distribution function (EEDF), which employs the Boltzmann equation method with two-term expanding approximation in the steady-state Townsend (SST) condition. During the insulation recovery phase, the hot CF3I/CO2 gas mixtures have maximum dielectric strength at a temperature of about 1500 K. At room temperature 300 K, the electric strength after arc extinction (90.3 Td, 1 Td=10-21 V·m2) is only 38% of the original value before arc (234.9 Td). The adverse insulation recovery ability of CF3I/CO2 gas mixtures in arc extinction hinders its application in electric circuit breakers and other switchgears as an arc quenching and insulating medium. supported by National Natural Science Foundation of China (No. 10875093)

  1. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  2. Understanding plasma spraying process and characteristics of DC-arc plasma gun (PJ-100

    Directory of Open Access Journals (Sweden)

    Jovana Ružić

    2012-12-01

    Full Text Available The thermal spray processes are a group of coating processes used to apply metallic or non-metallic coatings. In these processes energy sources are used to heat the coating material (in the form of powder, wire, or rod form to a molten or semi-molten state and accelerated towards a prepared surface by either carrier gases or atomization jets. In plasma spraying process, the spraying material is generally in the form of powder and requires a carrier gas to feed the powder into the plasma jet, which is passing between the hot cathode and the cylindrical nozzle-shaped anode. The design of DC plasma gun (PJ - 100 is designed and manufactured in Serbia. Plasma spaying process, the powder injection with the heat, momentum and mass transfers between particles and plasma jet, and the latest developments related to the production of DC plasma gun are described in this article.

  3. Laser Shock Processing of Surface Copperize on Arc-Meshes Gear

    Institute of Scientific and Technical Information of China (English)

    马德毅; 刘继光; 宋丹路

    2004-01-01

    This paper presents surface modifications of aluminum-alloy induced by laser-shock processing (LSP). In the first part, the basic principles are discussed to provide an overview of the physical processes involved in laser shock processing, and to introduce pressure loadings generated by different laser generators. In the second part, emphases are given to the effects of laser intensity, target material, laser pulse duration and laser wavelength, and uniform and localized modeling of fatigue behavior after LSP. In the third part,experimental results are given to show the laser-induced pure mechanical effects on aluminum-alloy by using LSP.

  4. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  5. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    王萍; 李建平; 郭永春; 杨忠

    2010-01-01

    The regulation of ceramic coating formed by micro-arc oxidation on Mg-11Gd-1Y-0.5Zn (wt.%) magnesium alloys was investigated by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The relation of phase structure and corrosion resistance of MgO coating formed by micro-arc oxidation in different growth stages was analyzed. The results showed that the growth of coating accorded with linear regularity in the initial stage of micro-arc oxidation, which was the stage of anodic oxidation controlled ...

  6. Equidensitometric Methods In An Evaluation Process Of A Film Record Of A Switching Arc

    Science.gov (United States)

    Svejda, Bohuslav; Gross, Boleslav

    1983-03-01

    A high speed cinematography is also one of useful and fruitful methods of optical plasma diagnostics. Value levels of informations obtained from a film record can be very different; this fact depends very much on a used evaluation process. An equidensitometrical investigation is a suitable method for an increase of the information capacity and it presents a possibility how to obtain more valuable informations. Two ways directing to the acquirement of equidensitometric maps were used in our work: a wet photographic process using the Sabattier effect and an electronic device constructed for the special purpose. Some results obtained by these both evaluation methods are compared and discussed.

  7. Properties of superconducting Bi-Sr-Ca-Cu-O system remelted under higher gravity conditions

    Science.gov (United States)

    Volkov, M. P.; Melekh, B. T.; Parfeniev, R. V.; Kartenko, N. F.; Regel, L. L.; Turchaninov, A. M.

    1992-04-01

    The structure and magnetic properties of high Tc superconductor Bi-Sr-Ca-Cu-O samples remelted under 1 g0, 8 g0 and 12 g0 gravity levels have been investigated. Superconducting properties make a change along the ingots. The dependence of structural and superconducting properties on the gravity level and their time degradation have been observed.

  8. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): Implications for melt generation and volatile recycling processes in subduction zones

    Science.gov (United States)

    Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.

    2017-02-01

    We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths

  9. A two-stage metal valorisation process from electric arc furnace dust (EAFD

    Directory of Open Access Journals (Sweden)

    H. Issa

    2016-04-01

    Full Text Available This paper demonstrates possibility of separate zinc and lead recovery from coal composite pellets, composed of EAFD with other synergetic iron-bearing wastes and by-products (mill scale, pyrite-cinder, magnetite concentrate, through a two-stage process. The results show that in the first, low temp erature stage performed in electro-resistant furnace, removal of lead is enabled due to presence of chlorides in the system. In the second stage, performed at higher temperatures in Direct Current (DC plasma furnace, valorisation of zinc is conducted. Using this process, several final products were obtained, including a higher purity zinc oxide, which, by its properties, corresponds washed Waelz oxide.

  10. An Easy Setup for Parallel Medical Image Processing: Using Taverna and ARC.

    Science.gov (United States)

    Zhou, Xin; Krabbenhöft, Hajo; Niinimäki, Marko; Depeuringe, Adrien; Möller, Steffen; Müller, Henning

    2009-01-01

    Medical image processing is known as a computationally expensive and data intensive domain. It is thus well-suited for Grid computing. However, Grid computing usually requires the applications to be designed for parallel processing, which is a challenge for medical imaging researchers in hospitals that are most often not used to this. Making parallel programming methods easier to apply can promote Grid technologies in clinical environments. Readily available, functional tools with an intuitive interface are required to really promote healthgrids. Moreover, the tools need to be well integrated with the Grid infrastructure. To facilitate the adoption of Grids in the Geneva University Hospitals we have set up a develop environment based on the Taverna workflow engine. Its usage with a medical imaging application on the hospitals' internal Grid cluster is presented in this paper.

  11. Recycling of electric arc furnace (EAF dust for use in steel making process

    Directory of Open Access Journals (Sweden)

    José Alencastro de Araújo

    2014-07-01

    Full Text Available The EAF dust is listed as hazardous waste from specific source, K061, according to ABNT 10004:2004 and constitutes one of the major problems of electrical steel plant. This work suggests recycling of the EAF dust by sintering of a composite, pre-cast agglomerate (PCA consisting of EAF dust agglomerate to coke particles, mill scale and ceramic fluorite into pellets. The work was divided into three stages, in the first stage the technical viability of using only solid waste industrial to produce a PCA was observed, in the second phase, the main effects between the components of the PCA to obtain the optimal formulation was tested. In the third phase the intensity of the variables, coke and fluorite ceramics, for removing zinc of PCA was checked. Every stage was chemically analyzed by X-ray fluorescence spectrometer and X-ray diffraction. The first two stages of the production PCA were carried out in a pilot plant sintering downstream and the third phase in a pilot plant upstream. As a result of the process two by-products were obtained, the pre-cast agglomerated, PCA, with total iron content exceeding 70%, object of the process of sintering and zinc dust, containing more than 50% zinc resulting from volatilization of this metal during the sintering process and collected by bag filter. In addition, approximately 90% of lead and cadmium contained in the initial EAF dust was extracted.

  12. 手工电弧焊过程危害及防护研究∗%Study on Harm and Protection of Manual Arc Welding Process

    Institute of Scientific and Technical Information of China (English)

    李学凌

    2016-01-01

    The arc welding is a common metal thermal processing technology, because its operation is simple and flexible, it is widely used in various machinery manufacturing fields, and it plays an important role. Its working principle is to make the metal junction surface melt into the plastic state with the use of heat or pressure, thus to achieve the purpose of permanent firmly adhered. While in the process of manual electric arc welding, there are many contact opportunities for occupational haz-ard factors, such as smoke, gas, noise, and arc radiation, they all would harm the health of operators. Therefore, the working principle of manual electric arc welding will be briefly introduced in this paper, and based on the damage in the process of manual arc welding, the corresponding protective measures will be proposed.%电弧焊是常见的金属热加工的工艺,因其操作简单灵活,因而被广泛应用于机械制造的各个领域,发挥了重要的作用。其工作原理是利用加热或者加压来使金属连接面融化成为塑性状态,从而达到永久牢固粘接的目的。而在手工电弧焊的过程中接触职业病危害因素的机会很多,烟尘、气体、噪声、弧光辐射都会对操作人员的健康带来危害。简要介绍手工电弧焊的工作原理,并基于手工电弧焊接过程中的危害提出相应的防护措施。

  13. ArcGIS 字段计算工具在空间数据属性处理中的应用%The Application of ArcGIS Field Calculate Tools in the Processing of Vector Data Attributes

    Institute of Scientific and Technical Information of China (English)

    余咏胜; 傅晓俊; 李琼; 魏祥

    2015-01-01

    针对地理空间数据生产中常见的属性数据处理问题,通过ArcGIS系统中的字段计算工具,结合Python脚本语言对空间数据的几何属性和非几何属性进行操作与处理,满足各类不同的应用需求,避免使用第三方工具或软件,提高了地理空间数据属性处理的工作效率。%According to the attribute data processing problems in geospatial data production , geometric properties and non -geometric attributes of spatial data were operated and processed through field calculate tools in ArcGIS system and python script language .Differ-ent sorts of application requirements were met without using third party tools or software .The working efficiency of geographic spatial data and attribute processing were greatly improved .

  14. Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Khan, Mohd Alim [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Satyanarayana, B.S. [40, Sreeniketan, NDSE 24, New Delhi 110096 (India); Kumar, Sushil; Ishpal [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2010-04-15

    This paper reports the electrical, mechanical, structural and field emission properties of as grown and also boron and phosphorous incorporated tetrahedral amorphous carbon (ta-C) films, deposited using a filtered cathodic vacuum arc process. The effect of varying boron and phosphorous content (up to 2.0 at.% in to ta-C) on the conductivity ({sigma}{sub D}), activation energy ({Delta}E{sub 1}), hardness, microstructure, emission threshold (E{sub turn-ON}) and emission current density (J) at 12.5 V/{mu}m of ta-C: B and ta-C: P films deposited at a high negative substrate bias of -300 V are reported. It is observed that both boron and phosphorous incorporation leads to a nearly an order increase in {sigma}{sub D} and corresponding decrease in {Delta}E{sub 1} and a slight increase in hardness as compared to as grown ta-C films. In the case of field assisted electron emission, it is observed that E{sub turn-ON} increases and J decreases. The changes are attributed to the changes in the sp{sup 3}/sp{sup 2} ratio of the films due to boron and phosphorous incorporation. The effect of boron on ta-C is to give a p-type effect whereas the effect of phosphorous gives n-type doping effect.

  15. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    Science.gov (United States)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  16. Evaluation of erythemal UV effective irradiance from UV lamp exposure and the application in shield metal arc welding processing.

    Science.gov (United States)

    Chang, Cheng-Ping; Liu, Hung-Hsin; Peng, Chiung-Yu; Fang, Hsin-Yu; Tsao, Ta-Ho; Lan, Cheng-Hang

    2008-04-01

    Ultraviolet radiation (UVR) exposure is known to cause potential effects such as erythema in skin. For UV-induced erythema (sunburn), the action spectrum from the Commission Internationale de l'Eclairage, International Commission on Illumination (CIE) was adopted. Erythemal UV effects from UVR lamp exposure were investigated with commercial spectroradiometry devices in this research. Three kinds of portable UV germicidal lamps with broadband UVA (BB UVA, 350-400 nm), broadband UVB (BB UVB, 280-350 nm), and narrowband UVC (NB UVC, 254 nm) wavelengths served as the UVR emission sources. An action spectrum expresses the effectiveness of radiation for assessing the hazard of UVR in the erythemal action spectrum from 250-400 nm. The UV Index (UVI) is an irradiance scale computed by multiplying the CIE erythemal irradiance integral in milliwatts per square meter by 0.04 m mW. A comprehensive approach to detecting erythemal UVR magnitude was developed to monitor the effective exposure from UV lamps. The erythemal UVR measurement was established and the exposure assessment was applied to monitor erythemal UVR magnitude from shield metal arc welding (SMAW) processing. From this study, the erythemal UVR exposures were assessed and evaluated with environmental solar simulation of the UVI exposure.

  17. Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases

    Science.gov (United States)

    Kozakov, R.; Schöpp, H.; Gött, G.; Sperl, A.; Wilhelm, G.; Uhrlandt, D.

    2013-11-01

    The temperature determination of liquid metals is difficult and depends strongly on the emissivity. However, the surface temperature distribution of the weld pool is an important characteristic of an arc weld process. As an example, short-arc welding of steel with a cold metal transfer (CMT) process is considered. With optical emission spectroscopy in the spectral region between 660 and 840 nm and absolute calibrated high-speed camera images the relation between temperature and emissivity of the weld pool is determined. This method is used to obtain two-dimensional temperature profiles in the pictures. Results are presented for welding materials (wire G3Si1 on base material S235) using different welding CMT processes with CO2 (100%), Corgon 18 (18% CO2 + 82% Ar), VarigonH6 (93.5% Ar + 6.5% H2) and He (100%) as shielding gases. The different gases are used to study their influence on the weld pool temperature.

  18. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  19. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  20. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  1. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  2. Remelting of Aluminium by Continuous Submersion of Rolled Scrap

    Energy Technology Data Exchange (ETDEWEB)

    Farner, Snorre

    2000-12-01

    When remelting aluminium scrap, metal losses due to dross generation is a common problem. Reduction of these losses will give substantial economic and environmental benefits. Dross is generated when aluminium metal oxidizes and films of oxide envelope molten metal. When a cold metal object is immersed in a melt, the heat of the melt around this is transferred so rapidly into the object that a shell of melt often solidifies to the surface of the object. When scrap with low bulk density is charged to a melt, solidification of melt on the cold scrap prevents melt from entering the cavities in the bulk of the scrap, and the bulk density remains low. Thus the scrap tends to float on the melt surface. Submersion of this scrap is important to avoid oxidation and subsequent dross generation. One solution to this is to roll scrap to a strip and feed it into the melt. This system has been examined by studying feeding of a continuous, thin aluminium plate into molten aluminium. Also, the effect of lacquer was considered, as well as feeding the plate into a launder with melt flowing along the surface of the plate. An analytical, one-dimensional, steady-state model has been developed to describe the melting and the melting mechanisms. It is based on a shell solidifying on the plate surface and a gap introducing a thermal resistance 1/h{sub g} between the shell and the plate. The thermal resistance 1/h{sub l} of the boundary layer of the melt is included. Depending on these resistances, the initial temperature of the plate and the melt temperature, a shell will form, and the plate will penetrate a distance P into the melt before it melts away. An experimental apparatus was designed and constructed to feed aluminium plate from a coil into a melt bath at a specified velocity. The plate could be withdrawn rapidly to ''freeze'' the situation like it was below the melt surface. The penetration depth P of the plate could be measured and shell formation observed

  3. Simulation of the Process of Arc Energy-Effect in High Voltage Auto-Expansion SF6 Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    Rong Mingzhe; Yang Qian; Fan Chunduo

    2005-01-01

    A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The effect of PTFE (polytetrafluorethylene) vapor is considered in the mass, momentum and energy conservation equations of the constructed model. Then,the gas flow fields with and without conduction considered are simulated. By comparing the aforementioned two results, it is indicated that the arc's maximal temperature with conduction considered is 90 percent of that without considering conduction.

  4. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  5. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  6. Development and Testing of an Experimental Polysensory Instructional System for Teaching Electric Arc Welding Processes. Report No. 24. Final Report.

    Science.gov (United States)

    Sergeant, Harold A.

    The population of the study consisted of 15 high school industrial arts students, 10 freshman and sophomore college students, and 10 adults. A polysensory, self-pacing instructional system was developed which included (1) pretests and post tests, (2) a general instruction book, (3) equipment to practice arc welding, (4) programed instruction…

  7. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    Energy Technology Data Exchange (ETDEWEB)

    Murray, P.E.; Smartt, H.B.; Johnson, J.A. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  8. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO{sub 2} nano particle

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Aghakhani, Masood [Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-01-15

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO{sub 2} nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  9. Properties of superconducting Bi-Sr-Ca-Cu-O system remelted under higher gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M.P.; Melekh, B.T.; Parfeniev, R.V.; Kartenko, N.F. (A.F. Ioffe Physical Technical Inst., Academy of Sciences, Moscow (Russia)); Regel, L.L.; Turchaninov, A.M. (Space Research Inst., Academy of Sciences, Moscow (Russia))

    1992-04-01

    The structure and magnetic properties of high Tc superconductor Bi-Sr-Ca-Cu-O samples remelted under 1g{sub 0}, 8g{sub 0} and 12g{sub 0} gravity levels have been investigated. Superconducting properties make a change along the ingots. The dependence of structural and superconducting properties on the gravity level and their time degradation have been observed. (orig.).

  10. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems

    Science.gov (United States)

    Caricchi, Luca; Biggs, Juliet; Annen, Catherine; Ebmeier, Susanna

    2014-02-01

    Deformation of volcanic edifices is typically attributed to the movement of magma within the volcanic plumbing system, but a wide range of magmatic processes are capable of producing significant volume variations and may also produce deformation. In order to understand the evolution of magmatic systems prior to eruption and correctly interpret monitoring signals, it is necessary to quantify the patterns and timescales of surface deformation that processes such as crystallisation, degassing and expansion of the hydrothermal system can produce. We show how the combination of petrology and thermal modelling can be applied to geodetic observations to identify the processes occurring in a magmatic reservoir during volcanic unrest. Thermal modelling and petrology were used to determine the timescales and volumetric variations associated with cooling, crystallisation and gas exsolution. These calculations can be performed rapidly and highlight the most likely processes responsible for the variation of a set of monitoring parameters. We then consider the magnitude and timescales of deformation produced by other processes occurring within the vicinity of an active magma system. We apply these models to a time series of geodetic data spanning the period between the 1997 and 2008 eruptions of Okmok volcano, Aleutians, examining scenarios involving crystallisation, degassing and remelting of the crystallising shallow magmatic body and including a viscoelastic shell or hydrothermal system. The geodetic observations are consistent with the injection of a water-saturated basalt, followed by minor crystallisation and degassing. Other scenarios are not compatible either with the magnitude or rate of the deformation signals.

  11. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic"

    Science.gov (United States)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne

    2015-04-01

    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  12. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  13. Laser surface processing and model studies

    CERN Document Server

    Yilbas, Bekir Sami

    2013-01-01

    This book introduces model studies associated with laser surface processing such as conduction limited heating, surface re-melting, Marangoni flow and its effects on the temperature field, re-melting of multi-layered surfaces, laser shock processing, and practical applications. The book provides insight into the physical processes involved with laser surface heating and phase change in laser irradiated region. It is written for engineers and researchers working on laser surface engineering.

  14. Laser Remelting of Plasma Sprayed NiCrA1Y and NiCrAlY-A12O3 Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two types of plasma sprayed coatings (NiCrAIY and NiCrAIY-AI2O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200~700 W and 5~30 mm/s respectively, the melted track grew in width and depth. In the optimum range of laser parameters, a homogeneous remelted layer without voids, cavities, unmelted particles and microcracks was formed. On the surface of remelted layers, AI2O3 and YAIO3 were detected.As a result of isothermal oxidation tests, weight gains of laser remelted coatings were obviously lower than that only plasma sprayed, especially laser remelted NiCrAIY-AI2O3 coatings. The effects of laser remelting and incorporation of Al2O3 second phase in NiCrAIY matrix on high temperature oxidation resistance were discussed.

  15. Preparation and characterization of porous bioceramic layers on pure titanium surfaces obtained by micro-arc oxidation process

    Science.gov (United States)

    Chien, Chi-Sheng; Hung, Yu-Chien; Hong, Ting-Fu; Wu, Chung-Chun; Kuo, Tsung-Yuan; Lee, Tzer-Min; Liao, Tze-Yuan; Lin, Huan-Chang; Chuang, Cheng-Hsin

    2017-03-01

    Fluorapatite (FA) has better chemical and thermal stability than hydroxyapatite (HA), and has thus attracted significant interest for biomaterial applications in recent years. In this study, porous bioceramic layers were prepared on pure titanium surfaces using a micro-arc oxidation (MAO) technique with an applied voltage of 450 V and an oxidation time of 5 min. The MAO process was performed using three different electrolyte solutions containing calcium fluoride (CaF2), calcium acetate monohydrate (Ca(CH3COO)2·H2O), and sodium phosphate monobasic dihydrate (NaH2PO4·2H2O) mixed in ratios of 0:2:1, 1:1:1, and 2:0:1, respectively. The surface morphology, composition, micro-hardness, porosity, and biological properties of the various MAO coatings were examined and compared. The results showed that as the CaF2/Ca(CH3COO)2·H2O ratio increased, the elemental composition of the MAO coating transformed from HA, A-TiO2 (Anatase) and R-TiO2 (Rutile); to A-TiO2, R-TiO2, and a small amount of HA; and finally A-TiO2, R-TiO2, CaF2, TiP2O5, and FA. The change in elemental composition was accompanied by a higher micro-hardness and a lower porosity. The coatings exhibited a similar in vitro bioactivity performance during immersion in simulated body fluid for 7-28 days. Furthermore, for in initial in vitro biocompatibility tests performed for 24 h using Dulbecco's Modified Eagle Medium (DMEM) supplement containing 10%Fetal bovine serum, the attachment and spreading of osteoblast-like osteosarcoma MG63 cells were found to increase slightly with an increasing CaF2/Ca(CH3COO)2·H2O ratio. In general, the results presented in this study show that all three MAO coatings possess a certain degree of in vitro bioactivity and biocompatibility.

  16. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  17. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  18. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  19. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc

    Science.gov (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.

    2016-12-01

    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  20. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the Al{sub x}CoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's.

  1. OPTIMIZATION OF PROCESS PARAMETERS TO MINIMIZE ANGULAR DISTORTION IN GAS TUNGSTEN ARC WELDED STAINLESS STEEL 202 GRADE PLATES USING PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    R. SUDHAKARAN

    2012-04-01

    Full Text Available This paper presents a study on optimization of process parameters using particle swarm optimization to minimize angular distortion in 202 grade stainless steel gas tungsten arc welded plates. Angular distortion is a major problem and most pronounced among different types of distortion in butt welded plates. The process control parameters chosen for the study are welding gun angle, welding speed, plate length, welding current and gas flow rate. The experiments were conducted using design of experiments technique with five factor five level central composite rotatable design with full replication technique. A mathematical model was developed correlating the process parameters with angular distortion. A source code was developed in MATLAB 7.6 to do the optimization. The optimal process parameters gave a value of 0.0305° for angular distortion which demonstrates the accuracy of the model developed. The results indicate that the optimized values for the process parameters are capable of producing weld with minimum distortion.

  2. Some Studies of Optimal Process Parameters For Solid Wire Gas Metal Arc Welding Using Neural Network Technique And Simulation Using Ansys

    Directory of Open Access Journals (Sweden)

    Saritprava Sahoo

    2013-08-01

    Full Text Available GMAW (Gas Metal Arc Welding is an arc welding process which is widely used in industry to join the metals. In this present work we have investigated the effect of varying welding parameters on the weld bead quality of Mild Steel flat having 12mm thickness. The chosen input parameters for the study are Welding Voltage, Welding Current and the travel speed of welding torch. The output parameters chosen are Weld Bead Width, Weld Bead Height, Depth of Penetration and Depth of Heat Affected Zone (HAZ. The four levels of experimental set-ups for each of the input parameters are considered and other process parameters are kept constant for the study. Hence the total numbers of experimental set-ups are 64 and the corresponding values of output parameters are found. As this is a Multi-Response Problem, it is being optimized to Single-Response Problem using Weighted Principal Components (WPC Method. Artificial Neural Networks (sANN, Error Back Propagation Procedure is being used for the prediction of optimal process parameters for GMAW process in this present work. The finite element analysis of residual stresses in butt welding of two similar plates is performed with the ANSYS software.

  3. EBSD and DTA Characterization of A356 Alloy Deformed by ECAP During Reheating and Partial Re-melting

    Science.gov (United States)

    Moradi, Marzyeh; Nili-Ahmadabadi, Mahmoud; Poorganji, Behrang; Heidarian, Bashir; Furuhara, Tadashi

    2013-11-01

    Recrystallization and partial re-melting processes have been developed for producing semi-solid feedstock in a solid state in which a globular microstructure is obtained by plastic deformation followed by reheating. In this research, to induce strain, a cast- and solution-treated Aluminum A356 (7 wt pct Si) alloy was subjected to a repetitive equal channel angular pressing process using a 90 deg die, up to a total accumulated strain of approximately 8 in route A (increasing strain through a sequence of passes with no rotation of the sample after each pass) at ambient temperature. The microstructural evolutions of deformed and reheated materials were studied by optical microscopy, scanning electron microscopy, and electron back-scattered diffraction analysis. In addition, the influences of pre-deformation on the recrystallization mechanism and liquid formation of A356 alloy were presented and discussed. The results are also supported by differential thermal analysis experiments. Evaluation of the observations indicated that the average cell boundary misorientation increased with increasing strain, so this increased misorientation accelerated the mobility of boundaries and recrystallization kinetics. Therefore, the recrystallization mechanism and kinetics affected by deformation, reheating condition, and intrinsic material properties determined the particle size in the semi-solid state.

  4. Coherence of Auger and inter-Coulombic decay processes in the photoionization of Ar@C60 versus Kr@C60

    CERN Document Server

    Magrakvelidze, Maia; Javani, Mohammad H; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2015-01-01

    For the asymmetric spherical dimer of an endohedrally confined atom and a host fullerene, an innershell vacancy of either system can decay through the continuum of an outer electron hybridized between the systems. Such decays, viewed as coherent superpositions of the single-center Auger and two-center inter-Coulombic (ICD) amplitudes, are found to govern leading decay mechanisms in noble-gas endofullerenes, and are likely omnipresent in this class of nanomolecules. A comparison between resulting autoionizing resonances calculated in the photoionization of Ar@C60 and Kr@C60 exhibits details of the underlying processes.

  5. 感应重熔超音速火焰喷涂铁基涂层的耐蚀性%Corrosion resistance of induction remelted Fe-based coatings prepared by HVOF spraying

    Institute of Scientific and Technical Information of China (English)

    叶富明; 周洪宇; 胡舸

    2016-01-01

    Induction remelting high velocity oxy-fuel (HVOF) sprayed Fe-based coatings were conducted by using ultrasonic frequency induction device.X-ray diffraction (XRD),scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analysis,microhardness test,polarization curve and electrochemical impedance spectroscopy technique were used to examine the microstructure,microhardness and corrosion resistance of the coatings.The results show that the porosity is reduced from 5.74% to 0.43% after the induction remelting.The phases of γ-Fe,(Cr,Fe)2 B and γ-Fe/(Cr,Fe)2B eutectics are identified in the induction remelted HVOF sprayed Fe-based coatings.Electrochemical test results in simulated sea water show that the polarization curve exhibits an activepassivation charicteristic.The corrosion current density of the induction-remelted coating is lower than that of the HVOF sprayed Fe-based coating due to the reduction of porosity and oxide inclusion content in the remelted coatings,by which the penetration of chloride ions through the pores to form inner galvanic couple is impeded.Electrochemical impedance spectroscopy results show capacitive reactance arc of the induction remelted HVOF sprayed Fe-based coating is larger than that of the HVOF sprayed Fe-based coating,the corrosion resistance increases by 2.74 times.%采用超音频感应熔覆技术获得高质量具有冶金结合的感应重熔超音速火焰喷涂(HVOF)铁基涂层.借助XRD、SEN/EDS、显微硬度计、极化曲线和交流阻抗手段综合分析涂层微观形貌、物相组成、显微硬度分布以及耐蚀性能.研究结果表明,感应重熔处理后涂层孔隙率从5.74%大幅降低至0.43%,感应重熔HVOF铁基涂层由γ-Fe、硼化物(Cr,Fe)2B以及少量的共晶体γ-Fe/(Cr,Fe)2B组成.在模拟海水溶液电化学测试结果显示,感应重熔HVOF铁基涂层极化曲线呈现典型活化-钝化特征,感应重熔涂层自腐蚀电流密度比HVOF铁基涂层明显

  6. Mafic magmas from Mount Baker in the northern Cascade arc, Washington: probes into mantle and crustal processes

    Science.gov (United States)

    Moore, Nicole E.; Debari, Susan M.

    2012-03-01

    Five mafic lava flows located on the southern flank of Mount Baker are among the most primitive in the volcanic field. A comprehensive dataset of whole rock and mineral chemistry reveals the diversity of these mafic lavas that come from distinct sources and have been variably affected by ascent through the crust. Disequilibrium textures present in all of the lavas indicate that crustal processes have affected the magmas. Despite this evidence, mantle source characteristics have been retained and three primitive endmember lava types are represented. These include (1) modified low-K tholeiitic basalt (LKOT-like), (2) typical calc-alkaline (CA) lavas, and (3) high-Mg basaltic andesite and andesite (HMBA and HMA). The Type 1 endmember, the basalt of Park Butte (49.3-50.3 wt% SiO2, Mg# 64-65), has major element chemistry similar to LKOT found elsewhere in the Cascades. Park Butte also has the lowest overall abundances of trace elements (with the exception of the HREE), indicating it is either derived from the most depleted mantle source or has undergone the largest degree of partial melting. The Type 2 endmember is represented by the basalts of Lake Shannon (50.7-52.6 wt% SiO2, Mg# 58-62) and Sulphur Creek (51.2-54.6 wt% SiO2, Mg# 56-57). These two lavas are comparable to calc-alkaline rocks found in arcs worldwide and have similar trace element patterns; however, they differ from each other in abundances of REE, indicating variation in degree of partial melting or fractionation. The Type 3 endmember is represented by the HMBA of Tarn Plateau (51.8-54.0 wt% SiO2, Mg# 68-70) and the HMA of Glacier Creek (58.3-58.7 wt% SiO2, Mg# 63-64). The strongly depleted HREE nature of these Type 3 units and their decreasing Mg# with increasing SiO2 suggests fractionation from a high-Mg basaltic parent derived from a source with residual garnet. Another basaltic andesite unit, Cathedral Crag (52.2-52.6 wt% SiO2, Mg# 55-58), is an Mg-poor differentiate of the Type 3 endmember. The calc

  7. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  8. The formation mechanism of CO{sub 2} and its conversion in the process of coal gasification under arc plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    He, X.J.; Zheng, M.D.; Qiu, J.S.; Zhao, Z.B.; Ma, T.C. [Dalian University of Technology, Dalian (China). Carbon Research Laboratory

    2006-05-15

    The carbon dioxide (CO{sub 2}) formation mechanism and co-conversion of CO{sub 2} with coal was investigated in the process of coal gasification in a steam medium at atmospheric pressure under arc plasma conditions in a tube-type setup. The arc plasma was diagnosed in situ by optical emission spectroscopy and the gas products were analysed by gas chromatography. CO{sub 2} yields are correlated with the quantitative emission peak intensity of the active species in plasma when the operating parameter is changed. The results show that the greater the emission peak intensity of the CH radicals, C2 radicals, OH radicals or O atoms, the smaller the CO{sub 2} yield is, which means that the CO{sub 2} formation process is inhibited by increasing the concentration of the mentioned active species under arc plasma conditions. On the basis of the diagnosis results, co-conversion of CO{sub 2} and coal in a steam medium under plasma conditions was carried out in the same setup and the results show that CO{sub 2} conversion reaches 88.6% while the concentration of CO + H{sub 2} reaches 87.4%; at the same time, coal conversion is in the range 54.7 - 68.7%, which proves that co-conversion of CO{sub 2} and coal in a steam medium under plasma conditions might be a prospective way to utilize CO{sub 2} and the production of synthesis gas.

  9. The formation mechanism of CO{sub 2} and its conversion in the process of coal gasification under arc plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    He Xiaojun [School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Maanshan 243002 (China); Zheng Mingdong [School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Maanshan 243002 (China); Qiu Jieshan [Carbon Research Laboratory, School of Chemical Engineering, State Key Lab of Fine Chemical, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Zhao Zongbin [Carbon Research Laboratory, School of Chemical Engineering, State Key Lab of Fine Chemical, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Ma Tengcai [State Key Lab for Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116023 (China)

    2006-05-15

    The carbon dioxide (CO{sub 2}) formation mechanism and co-conversion of CO{sub 2} with coal was investigated in the process of coal gasification in a steam medium at atmospheric pressure under arc plasma conditions in a tube-type setup. The arc plasma was diagnosed in situ by optical emission spectroscopy and the gas products were analysed by gas chromatography. CO{sub 2} yields are correlated with the quantitative emission peak intensity of the active species in plasma when the operating parameter is changed. The results show that the greater the emission peak intensity of the CH radicals, C{sub 2} radicals, OH radicals or O atoms, the smaller the CO{sub 2} yield is, which means that the CO{sub 2} formation process is inhibited by increasing the concentration of the mentioned active species under arc plasma conditions. On the basis of the diagnosis results, co-conversion of CO{sub 2} and coal in a steam medium under plasma conditions was carried out in the same setup and the results show that CO{sub 2} conversion reaches 88.6% while the concentration of CO + H{sub 2} reaches 87.4%; at the same time, coal conversion is in the range 54.7-68.7%, which proves that co-conversion of CO{sub 2} and coal in a steam medium under plasma conditions might be a prospective way to utilize CO{sub 2} and the production of synthesis gas.

  10. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  11. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  12. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    Science.gov (United States)

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  13. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    Science.gov (United States)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  14. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  15. A Contribution to Arc Length Discussion

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract An investigation was raising the question: "What does 'arc length' mean?" Actually, it is considered expressing a kind of natural relationship between arc voltage and arc column shape. Statements such as "The higher the voltage the longer the arc" or "The arc voltage proves approximately proportional to the arc length", are frequently noticed in this conjunction. However, the author suggests that there is no general possibility of describing 'arc length' over the whole welding process range. Instances are represented in this paper, showing both theoretical attempts of definition and practical observations. This paper intends to contribute to a serious discussion of something trivial, indeed very well-known or used among welding experts, but actually yet hardly understood, at least as when it comes to closer examination

  16. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  17. The refinement of the surface layer of HS 7425 high speed tool steel by laser and electric arc plasma

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2008-10-01

    Full Text Available The paper present two different techniques: laser remelting surface and plasma remelting surface of the high speed steel HS 7425. Thestructure of the remelted layers were examined by means of SEM – microscopy. Measurement of microhardness in remelting zone usingVickers method. The remelting zone consist of dendritic cells and columnar crystals. Increase of hardness was observed in remelted zonein comparison to the substrate of the steel. The hardness in the remelted zone increases with the increasing cooling rate.

  18. TRANSIENT FINITE ELEMENT SIMULATION AND MICROSTRUCTURE EVOLUTION OF AA2219 WELD JOINT USING GAS TUNGSTEN ARC WELDING PROCESS

    Directory of Open Access Journals (Sweden)

    Sivaraman Arunkumar

    2016-09-01

    Full Text Available In this study we focus on finite element simulation of gas tungsten arc welding (GTAW of AA2219 aluminum alloy and the behavioral of the microstructure before and after weld. The simulations were performed using commercial COMSOL Multiphysics software. The thermal history of the weld region was studied by initially developed mathematical model. A sweep type meshing was used and transient analysis was performed for one welding cycle. The highest temperature noted was 3568 °C during welding. The welding operation was performed on 200×100×25 mm plates. Through metallurgical characterization, it was observed that a fair copper rich cellular (CRC network existed in the weld region. A small amount of intermetallic compounds like Al2Cu is observed through the XRD pattern.

  19. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  20. Technology Optimized Test on the Cutter of Agricultural Machine by Flame Spraying and Remelting NiWC Alloy

    Institute of Scientific and Technical Information of China (English)

    HAO Jian-jun; LI Hui-ping; MA Yue-jin; SHEN Yu-zeng

    2004-01-01

    In order to solve the problemof the machine for chopping and returning stubble into soil high-priced and short-lifetime, wear-resistance coating was made on the substrate of 45# steel by flame spraying and remelting NiWC alloy. By means of orthogonal test and multiple factors variance analysis, how the test factors influence the wear-resistance was studied.The technology parameters of flame spraying and remelting NiWC alloy were optimized as follows: coating matching,65% Ni60+ 35% WC; preheat temperature ,450 ℃; acetylene flow, 1000 L/h; spraying distance ,40 mm.

  1. Peridotite xenoliths from the Shiribeshi Seamount, Japan Sea: insights into mantle processes in a back-arc basin

    Science.gov (United States)

    Ichiyama, Yuji; Morishita, Tomoaki; Tamura, Akihiro; Arai, Shoji

    2016-10-01

    Orthopyroxene-rich and orthopyroxene-poor peridotite xenoliths were sampled from quaternary basaltic to andesitic lava flows of the Shiribeshi seamount, Japan Sea. These xenoliths were affected by reactions with the host magma during transportation to the surface, which caused partial orthopyroxene dissolution and intergrowth with vermicular spinel. Chromian spinel and clinopyroxene major element compositions in the Shiribeshi peridotite are similar to those in abyssal peridotites. REE modeling indicates that the Opx-rich peridotite experienced decompression partial melting from the garnet to the spinel peridotite stability field. Rare earth element (REE) patterns of clinopyroxene in the Opx-rich peridotite show various degrees of enrichment in light REE, which resulted from melt percolation through the reaction with host magma. Comparison with peridotite xenoliths from two other localities (Seifu and Oshima-Ōshima) in the Japan Sea suggests that the Oshima-Ōshima peridotite record higher degree of partial melting than the Shiribeshi and Seifu peridotites. Oxygen fugacities calculated from chromian spinel in the Japan Sea peridotites are comparable to those of arc peridotites. The high degree of partial melting of the Oshima-Ōshima peridotite was possibly caused by the infiltration of a H2O-bearing flux released from the subducted slab. The Shiribeshi peridotite is interpreted as the residue formed after the extraction of depleted back-arc basalts during a later stage of the Japan Sea opening in the Middle Miocene, whereas the Oshima-Ōshima peridotite is residual after the extraction of enriched basalts during an earlier stage of the opening of the Japan Sea.

  2. Volcano-sedimentary processes operating on a marginal continental arc: the Archean Raquette Lake Formation, Slave Province, Canada

    Science.gov (United States)

    Mueller, W. U.; Corcoran, P. L.

    2001-06-01

    The 200-m thick, volcano-sedimentary Raquette Lake Formation, located in the south-central Archean Slave Province, represents a remnant arc segment floored by continental crust. The formation overlies the gneissic Sleepy Dragon Complex unconformably, is laterally interstratified with subaqueous mafic basalts of the Cameron River volcanic belt, and is considered the proximal equivalent of the turbidite-dominated Burwash Formation. A continuum of events associated with volcanism and sedimentation, and controlled by extensional tectonics, is advocated. A complex stratigraphy with three volcanic and three sedimentary lithofacies constitute the volcano-sedimentary succession. The volcanic lithofacies include: (1) a mafic volcanic lithofacies composed of subaqueous pillow-pillow breccia, and subaerial massive to blocky flows, (2) a felsic volcanic lithofacies representing felsic flows that were deposited in a subaerial environment, and (3) a felsic volcanic sandstone lithofacies interpreted as shallow-water, wave- and storm-reworked pyroclastic debris derived from explosive eruptions. The sedimentary lithofacies are represented by: (1) a conglomerate-sandstone lithofacies consistent with unconfined debris flow, hyperconcentrated flood flow and talus scree deposits, as well as minor high-energy stream flow conglomerates that formed coalescing, steep-sloped, coarse-clastic fan deltas, (2) a sandstone lithofacies, interpreted as hyperconcentrated flood flow deposits that accumulated at the subaerial-subaqueous interface, and (3) a mudstone lithofacies consistent with suspension sedimentation in a small restricted lagoon-type setting. The Raquette Lake Formation is interpreted as a fringing continental arc that displays both high-energy clastic sedimentation and contemporaneous effusive and explosive mafic and felsic volcanism. Modern analogues that develop along active plate margins in which continental crust plays a significant role include Japan and the Baja California

  3. Influence of forced convection on solidification and remelting in the developing mushy zone

    Science.gov (United States)

    Wu, M.; Vakhrushev, A.; Ludwig, A.; Kharicha, A.

    2016-03-01

    The mushy zone and solid shell formed during solidification of a continuous casting are mostly uneven, and this unevenness of shell growth might lead to surface defects or breakout. One known example is the unevenness of shell growth at the impingement point between the jet flow (coming from submerged entry nozzle) and the solidification front. This phenomenon is primarily understood as the local remelting caused by the superheat of the melt, which is continuously brought by the jet flow towards the solidification front. A recent study of the authors [Metall. Mater. Trans. B, 2014, in press] hinted that, in addition to the aforementioned superheat-induced local remelting (1), two other factors also affect the shell growth. They are (2) the advection of latent heat in the semi-solid mushy zone and (3) the enhanced dissipation rate of energy by turbulence in the bulk-mush transition region. This paper is going to perform a detailed numerical analysis to gain an insight into the flow-solidification interaction phenomena. Contributions of each of the above factors to the shell formation are compared.

  4. Effect of laser remelting on the tribological performance of thermal barrier coatings.

    Science.gov (United States)

    Rico, A; Sevillano, F; Múnez, C J; López, M D; Utrilla, V; Rodríguez, J; Poza, P

    2012-06-01

    Gas turbine's efficiency improves as operating temperature is increased. For this reason, metallic components used in turbine engines, for propulsion and power generation, are protected by thermal barrier coatings (TBC). Laser glazing has been used to enhance the oxidation and corrosion resistance of thermally sprayed TBC, but there is no information about the effect of this treatment on the tribological performance. ZrO2(CaO) top coat and NiAIMo bond coating were flame sprayed onto an AlSI 1045 carbon steel. The top coat was laser remelted and a densified ceramic layer was induced in the top surface of the ceramic coating. Both, the as sprayed and the laser remelted top coatings, were formed by cubic ZrO2 with some tetragonal precipitates. The grain size was reduced by the laser treatment. The mechanical properties and the local wear rate were evaluated by depth sensing indentation and scratch tests respectively. The nanoscale wear behaviour was always improved by the laser treatment.

  5. New method for capturing arc of moving on switching apparatus

    Institute of Scientific and Technical Information of China (English)

    LIU Jiao-min; WANG Jing-hong

    2007-01-01

    The switching arc that occurs in contact gap when contact of low voltage apparatus closes or breaks in electric circuit is harmful to the contacts, insulation, and reliability of electrical gear because of its very high temperature. As arcing time is very short in switching gear, it is very difficult to observe arc phenomena directly for researchers. Therefore, visualization of switching arc is important for understanding arc phenomena, to analyze the arc features, and to improve the design and reliability of switching gear. Based on analyzing the visualization methods proposed by researchers, a new switching arc capturing approach is introduced in this paper. Arc image acquisition, and image processing techniques were studied. A switching arc image acquisition and visual simulation software based on high speed CCD camera hard ware system was designed and implemented to yield enhanced arc image with good visual effect.

  6. Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.; Turner, Paul C.

    2005-09-01

    In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

  7. A Multiscale Transient Modeling Approach for Predicting the Solidification Structure in VAR-Processed Alloy 718 Ingots

    Science.gov (United States)

    Nastac, Laurentiu

    2012-09-01

    This paper describes the development and validation of a comprehensive multiscale modeling approach capable of predicting at the mesoscopic scale level the ingot solidification structure and solidification-related defects commonly occurring during the vacuum arc remelting (VAR) process. The approach consists of a coupling between a fully transient macroscopic code and a mesoscopic solidification structure code. The predictions from the multiscale model, including grain morphology and size and columnar-to-equiaxed transition, were validated against experimental measurements for a 20-inch (508 mm) diameter VAR alloy 718 ingots. The validated model was then used to investigate the effects of melting rate and ingot diameter on the solidification structure of VAR processed 718 ingots.

  8. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  9. 挪威Hardanger大桥钢箱梁外侧电弧喷锌工艺设计%Design of zinc arc-spraying process for outer steel box girder of Hardanger Bridge in Norway

    Institute of Scientific and Technical Information of China (English)

    仪德强; 钱胜杰; 金树军; 李敏风; 丁祥

    2012-01-01

    在承接挪威Hardanger大桥钢结构制作中,根据业主的要求,以电弧喷锌作为配套涂层底漆.为了适应钢结构涂装流水线以及佐敦公司的重防腐配套涂料,从钢结构缺陷处理等级、磨料拼配方案、喷砂技术条件、电弧喷锌设备及锌丝线材要求、电弧喷锌工艺参数以及喷锌层质量要求等方面对钢箱梁外侧电弧喷锌工艺进行了设计.%Based on the requirement of proprietor, arc zinc spray coating was used as a primer during the manufacturing of the Norwegian Hardanger bridge's steel structure. In order to adapt the steel structure coating flow line and Jotun's heavy corrosion protection accessory coating, the arc zinc spraying process of outer steel box girder was designed from aspects of pretreatment grade of defects in steel structure, composition for abrasives, sandblasting process conditions, arc zinc spraying equipment, zinc wire requirement, arc zinc spraying process parameters, quality requirement of arc sprayed zinc coating, etc.

  10. T joints fatigue strength improving by hybrid heat treatment process after tungsten inert-gas arc remelting%基于TIG电弧重熔的焊后复合处理工艺改善T形接头疲劳强度的研究

    Institute of Scientific and Technical Information of China (English)

    郭豪; 史春元; 丁成钢; 朱平

    2008-01-01

    以制造转向架焊接构架常用的Q345钢T型MAG焊接头为对象,研究采用焊后复合处理新工艺,即在构架现行制造工艺流程中增加一道焊趾TIG电弧重熔工序对T形接头疲劳强度的改善作用.试验结果表明,与焊态下相比,现行制造工艺使接头的疲劳强度提高了29%,新工艺则提高了56%.文中从三个方面分析了新工艺明显改善T形接头疲劳强度的原因,即焊趾处应力集中系数下降、焊趾部位微观组织细化和焊趾表面状态改变.研究表明新工艺应用于铁路提速转向架生产中是可行的.

  11. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    Science.gov (United States)

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  12. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    Science.gov (United States)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  13. BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    Li Junyue; Li Zhiyong; Li Huan; Xue Haitao

    2004-01-01

    Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.

  14. Optimization of Process Parameters to Minimize Angular Distortion in Gas Tungsten Arc Welded Stainless Steel 202 Grade Plates Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Sudhakaran .R,

    2010-05-01

    Full Text Available This paper presents a study on optimization of process parameters using genetic algorithm to minimize angular distortion in 202 grade stainless steel gas tungsten arc welded plates. Angular distortion is a major problem and most pronounced among different types of distortion in butt welded plates. The extent of distortion depends onthe welding process control parameters. The important process control parameters chosen for study are gun angle (θ, welding speed (V, plate length (L, welding current (I and gas flow rate (Q. The experiments are conducted based on five factor five level central composite rotatable designs with full replication technique. A mathematical model was developed correlating the process parameters and the angular distortion. The developed model is checked for the adequacy based on ANOVA analysis and accuracy of prediction by confirmatory test. The optimization of process parameters was done using genetic algorithms (GA. A source code was developed using C language to do the optimization. The optimal process parameters gave a value of 0.000379° for angular distortion which demonstrates the accuracy and effectiveness of the model presented and program developed. The obtained results indicate that the optimized parameters are capable of producing weld with minimum distortion.

  15. Surface modification of low-carbon nano-crystallite bainite via laser remelting and following isothermal transformation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, X.L. [State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004 (China); Zhou, Y.F. [State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004 (China); College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Yang, Y.L.; Gao, S.Y. [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Ren, X.J. [School of Engineering, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Yang, Q.X., E-mail: qxyang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-10-30

    Highlights: • A low-carbon carbide-free bainite has been surface modified by laser remelting and following isothermal transformation. • The martensite star temperature of the surface modification layer decreased by laser remelting and following isothermal transformation. • The distribution interval of hardness of the specimens has an obvious improvement after the laser remelting and following isothermal transformation treatment. - Abstract: The low-carbon carbide-free bainite was surface modified by laser remelting and following isothermal transformation (LRFIT). The microstructure and nanomechanical properties of the bainite were investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD), transmission electron microscopy (TEM) and nanomechanical tester. The microstructure of the surface modified bainite can be refined and the hardness distribution interval of the surface of bainite can be obviously improved. Meanwhile, the nanohardness of the modified bainite is evidently increased from 5.605 GPa to 5.868 GPa. The martensite start temperature of the steel can be declined by LRFIT at a relative lower temperature due to the decrease of the retained austenite (RA) fraction and the bainite can be obtained at the temperature which is lower than the martensite start temperature of the original specimen.

  16. Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2

    CERN Document Server

    Ariskin, D A; Alexandrov, A L; Bogaerts, A; Peeters, F M

    2008-01-01

    We study the properties of a capacitive 13.56 MHz discharge properties with a mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ions transport and plasmochemical processes. A significant change of plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.

  17. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  18. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  19. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  20. Arcing Model of a Disconnector and its Effect on VFTO

    Science.gov (United States)

    Lin, Xin; Wang, Na; Xu, Jianyuan

    2013-07-01

    In the computational process of very fast transient over-voltage (VFTO), it is essential to find an accurate model for a gas insulated substation. The arcing model of the disconnector is particularly important. The general arcing model is not able to give a good description of the arc development process. In this paper, based on the physical process of arcing and existing arc models (the exponential time-varying resistance model and the segmental arcing models), a dynamic arcing model is proposed, which is divided into two stages before and after the zero crossing. The dynamic arcing model combines hyperbola time-varying resistance and the Mayr model to describe the dynamic process of arcing. The present paper creates an arc model blockset upon the Matlab/Simulink software platform. Moreover for a specific 1100 kV station, VFTO is simulated in detail based on different arcing models. It is demonstrated that the dynamic arcing model can describe the physical arc process precisely and is useful for improving the accuracy of VFTO simulations.

  1. Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting

    Science.gov (United States)

    Jiang, Zhou-Hua; Hou, Dong; Dong, Yan-Wu; Cao, Yu-Long; Cao, Hai-Bo; Gong, Wei

    2016-04-01

    Many factors influence the chemical composition in electroslag remelting (ESR) steel, including atmosphere in crucible, melting rate, slag composition, deoxidation, and so on. Fluoride-based slag, which is exposed to liquid metal directly, influences the chemical composition of ESR ingots to a large extent. The present paper focuses on the effect of slag on the titanium, silicon, and aluminum contents in ingots based on the interaction of the slag and metal. In present work, superalloy of GH8825 and several slags containing different CaO contents have been employed for investigating the effect of slag on titanium, silicon, and aluminum contents in an electrical resistance furnace under argon atmosphere. Results indicate that the higher CaO content in slag has better capacity for avoiding loss of titanium caused by the reaction of titanium with silica in slag, especially in case of remelting superalloy with high titanium and low silicon content. The CaO has a great effect on the activities of TiO2, SiO2, and Al2O3. Thermodynamic analysis is applied to investigate the CaO behavior. Based on the ion and molecule coexistence theory of slag, activity model is established to calculate the activities of components containing titanium, silicon, and aluminum elements in a six-component slag consisting of CaO-CaF2-Al2O3-SiO2-TiO2-MgO. The components containing titanium, silicon, and aluminum in slag are mainly CaO·TiO2, 2CaO·SiO2, CaO·SiO2, CaO·Al2O3, and MgO·Al2O3. With the increase of CaO mass fraction in slag, the activity coefficient of SiO2 decreases significantly, whereas slightly change happens for Al2O3. As a result, the lg ({{γ_{{{{SiO}}2 }} } {/ {{{γ_{{{{SiO}}2 }} } {γ_{{{{TiO}}2 }} }}} {γ_{{{{TiO}}2 }} }}) decreases with increasing CaO content, which is better for preventing loss of titanium caused by the reaction of titanium with silica in slag. The slag with high CaO and appropriate TiO2 content is suitable for electroslag remelting of GH8825.

  2. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Science.gov (United States)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  3. Characterization of the behaviour of the electric arc during VAR of a Ti alloy

    Science.gov (United States)

    Chapelle, P.; Noël, C.; Risacher, A.; Jourdan, J.; Jourdan, J.; Jardy, A.

    2016-07-01

    In this paper, we report experimental results based on the direct observation of the electric arc behaviour during vacuum arc remelting of a Ti alloy. These results were obtained in a specifically instrumented industrial furnace using high speed framing camera and optical emission spectroscopy, for a current density level of the order of 10 A/cm2 and a gap length of a few centimetres. It was observed that the arc exhibits a similar operating regime to that described in the literature for the case of Inconel 718 and Zr alloy electrodes. The arc structure corresponds essentially to that of a diffuse metal vapor arc with separate and rapidly moving cathode spots. Several critical parameters of the cathode spots, including their current, size and velocity, and of the interelectrode plasma were evaluated. Also, the interactions between the arc operation and the transfer of metal drops in the interelectrode gap were investigated. Three modes of transfer of the liquid metal drops in the interelectrode gap have been identified depending on the gap length: drop falling, drip short and drop erosion induced by the cathode spots.

  4. ArcGIS 10.1地理信息系统软件在国情地表覆盖数据处理中的应用和拓扑检查%Application of ArcGIS10.1 Geographic Information System Software in the National Land Cover and Topology Check in Data Processing

    Institute of Scientific and Technical Information of China (English)

    黄亮

    2014-01-01

    介绍了ArcGIS 10.1地理信息系统软件的基本运用、扩展功能及在辽宁省第一次国情普查中地表覆盖数据处理中的运用,以地表覆盖数据和最新遥感影像为基础,利用计算机、GIS、数据库和网络等技术,建立国情覆盖利用数据库。本文着重阐述了ArcGIS 10.1在国情覆盖数据中的转换应用和拓扑检查的流程方法,对软件不完善的功能做出了说明。%Ab stract:This article describes the basic use and expansion capabilities of ArcGIS 10.1 geographic information system software and the application of the system in the land cover data processing of the first national condition survey in Liaoning province .Based on land cover data and latest remote sensing image , the article uses computer , GIS, database and network to establish the database for land cover.The paper focuses on the application of ArcGIS10 .1 in the conversion of national condition cover data and topology processing methods , which specifies the functions of the software .

  5. Characteristics of Single-Track and Multi-track Depositions of Stellite by Micro-plasma Transferred Arc Powder Deposition Process

    Science.gov (United States)

    Sawant, Mayur S.; Jain, N. K.

    2017-08-01

    This paper describes the characteristics study of single-track and multi-track deposition of Stellite 6 on AISI 4130 steel substrate by indigenously developed micro-plasma transferred arc powder deposition (μ-PTAPD) process. Deposition height and width, dilution and microstructure have been used to characterize the single-track depositions by studying effects of micro-plasma power, travel speed of worktable and powder mass flow rate on energy consumption per unit traverse length and power consumption per unit powder mass flow rate. Micro-plasma power was found to be the most influential parameter that affects energy and deposition material consumption. Consequently, its influence on micro-hardness and abrasion resistance of multi-track deposition was studied. Results showed that increase in micro-plasma power decreases micro-hardness and scratch hardness number and increases mean value of friction coefficient. Comparison of microstructure and chemical composition of single-track and multi-track depositions revealed that single-track has finer dendritic microstructure than the multi-track deposition. The black colored matrix and white colored dendrites present in the multi-track deposition have higher wt.% of cobalt and less wt.% of chromium than the single-track deposition. Comparison of µ-PTAPD process capabilities with the existing processes for Stellite deposition establishes that it is an energy-efficient, cost-effective and good quality deposition yielding process.

  6. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  7. Optical diagnostics of a gliding arc

    DEFF Research Database (Denmark)

    Sun, Z.W.; Zhu, J.J.; Li, Z.S.;

    2013-01-01

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera...

  8. Characterization of Micro-arc Oxidized Titanium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The observation of the sparkling discharges during the micro-arc oxidation process in KOH aqueous electrolyte was achieved. The change of surface morphology was progressively observed and a plausible pore formation mechanism is proposed. Cell proliferation and ALP activity of micro-arc oxidized titanium was evaluated by human body derived osteoblasts and slightly better than those of blasted surface.

  9. Stripping Process of the Magnesium Alloy Micro-arc Oxidation Coating%镁合金微弧氧化膜层退除工艺

    Institute of Scientific and Technical Information of China (English)

    李锦妍; 郝建民; 陈永楠; 陈宏

    2015-01-01

    目的:提出一种镁合金微弧氧化膜层的退除工艺,提高镁合金的二次利用率。方法以硝酸、氟化钾、柠檬酸、十二烷基苯磺酸钠( SDBS)及缓蚀剂为组分配制退膜液,设计正交试验,以退除速率、表面粗糙度作为评判标准,优化退膜液配方。分析退膜液中各组分的作用,研究退膜过程中退膜量与时间的关系,讨论膜层厚度与腐蚀率、表面粗糙度的关系。采用优化的退膜液对镁合金微弧氧化膜层进行退除,观察表面宏观及微观形貌。结果退膜液各组分针对退膜速率和退膜后镁合金基体表面粗糙度的极差由大到小均依次为:R硝酸>R氟化钾>R柠檬酸>RSDBS>R缓蚀剂。对退膜速率和表面粗糙度影响最大的是硝酸浓度,其次是氟化钾浓度,柠檬酸、SDBS及缓蚀剂浓度的影响最小。在整个退膜过程中,膜层退除量与退膜时间并不呈线性关系。退膜开始阶段及完成阶段,膜层退除量大,退膜速率高;退膜中期,膜层退除量与退膜时间基本呈线性关系,且退膜速率小于初始退膜速率。 XRD分析显示,退膜后的镁合金表面无残余腐蚀产物。二次微弧氧化膜层的SEM图像显示,微孔结构致密,分布均匀,与一次微弧氧化的膜层无明显差别。结论镁合金微弧氧化膜层退除液的最佳配方为:硝酸90 mL/L,柠檬酸8 g/L,氟化钾35 g/L,十二烷基苯磺酸钠5 g/L,缓蚀剂6.5 g/L。该退膜液退膜效果良好,对镁合金基体损伤小,退膜速率快,成本低廉,可用于不合格镁合金零部件微弧氧化膜层的多次退除返修。%Objective To propose a stripping process of the magnesium alloy micro-arc oxidation coating, so as to improve the reutilization of the magnesium alloy. Methods The chemical solutions which contained nitrate acid, potassium fluoride, citric acid, SDBS and corrosion inhibitor was used to strip of the coating, and the orthogonal experiment was designed to optimize

  10. Erosion-corrosion of as-plasma-sprayed and laser-remelted NiCrAlY bond coats in working conditions of a coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S. [College of Engineering & Technology, Bathinda (India). Dept. of Mechanical Engineering

    2008-01-15

    Ni-22Cr-10Al-1Y plasma spray coating has been formulated on boiler tube steels. namely, low-carbon steel ASTM SA210-Grade A1. 1Cr-0.5Mo steel ASTM SA213-T-11, and 2.25Cr-1Mo steel ASTM SA213-T-22. The coated steels also have been laser-remelted using a Nd:YAG laser. The degradation behavior of as-sprayed and laser-remelted coatings have been evaluated in actual conditions in a coal-fired boiler for 1,000 h at 755{sup o}C. The laser remelting has been found to be effective to increase the degradation resistance of plasma-sprayed boiler steels. ASTM SA213-T-22-coated and laser-remelted steel has proved to be most effective in resistance to degrading species.

  11. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

    Science.gov (United States)

    Lu, Xin; Miki, Takahiro; Nagasaka, Tetsuya

    2017-01-01

    To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.

  12. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  13. Parametric Optimization Of Gas Metal Arc Welding Process By Using Grey Based Taguchi Method On Aisi 409 Ferritic Stainless Steel

    Science.gov (United States)

    Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam

    2016-10-01

    Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.

  14. Modélisation du procédé de soudage hybride Arc / Laser par une approche level set application aux toles d'aciers de fortes épaisseurs A level-set approach for the modelling of hybrid arc/laser welding process application for high thickness steel sheets joining

    Directory of Open Access Journals (Sweden)

    Desmaison Olivier

    2013-11-01

    Full Text Available Le procédé de soudage hybride Arc/Laser est une solution aux assemblages difficiles de tôles de fortes épaisseurs. Ce procédé innovant associe deux sources de chaleur : un arc électrique produit par une torche MIG et une source laser placée en amont. Ce couplage améliore le rendement du procédé, la qualité du cordon et les déformations finales. La modélisation de ce procédé par une approche Level Set permet une prédiction du développement du cordon et du champ de température associé. La simulation du soudage multi-passes d'une nuance d'acier 18MnNiMo5 est présentée ici et les résultats sont comparés aux observations expérimentales. The hybrid arc/laser welding process has been developed in order to overcome the difficulties encountered for joining high thickness steel sheets. This innovative process gathers two heat sources: an arc source developed by a MIG torch and a pre-located laser source. This coupling improves the efficiency of the process, the weld bead quality and the final deformations. The Level-Set approach for the modelling of this process enables the prediction of the weld bead development and the temperature field evolution. The simulation of the multi-passes welding of a 18MnNiMo5 steel grade is detailed and the results are compared to the experimental observations.

  15. Research for Multiple-electrode Submerged Arc Welding Process with Low Heat Input%低热输入多丝埋弧焊工艺研究

    Institute of Scientific and Technical Information of China (English)

    孙宏; 田鹏; 宗秋丽; 刘振伟; 纪鹏蕊

    2016-01-01

    研究开发出了一种新型高强度、 大壁厚UOE钢管埋弧焊工艺.该工艺采用小直径焊丝作为多丝焊的前丝(第1丝),将焊接热输入降低25%,细化了热影响区原始奥氏体的晶粒尺寸,从而提高了API X65钢级大壁厚管线钢管焊缝热影响区的韧性.试验结果表明,该工艺可以实现焊接接头完全焊透,同时具有充足的熔敷金属,达到了与传统方法相同的熔深.通过超声波和射线检测,焊缝均未发现未焊透、 夹渣等焊接缺陷,焊缝形貌良好.%It developed a new submerged arc welding (SAW) process for high-strength and heavy wall thickness UOE pipes. A new SAW process which can reduce heat input of 25% due to its high deposition rate and deep penetration is performed with multiple electrode SAW using small diameter welding wire on lead electrode. The results show that improvement of heat affected zone(HAZ) toughness in seam welding on API X65 heavy wall linepipe and refinement of prior austenite grain size in HAZ was achieved in order to reduce its heat input by the new process. This process can achieve full penetration of welded joint, has plenty of deposited metal, which can obtain the same penetration as the traditional method. By ultrasonic and X-ray testing, not found defects in weld such as lack of penetration, slag and so on, the weld appearance is good.

  16. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  17. Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin

    Science.gov (United States)

    2009-02-01

    alteration process in hypogene environments by magmatic gas contamination of meteoric fluids. Economic Geology 78, 73–90. Chiba H., Uchiyama N., and Teagle...sulfur from active crater lakes. Journal of Volcanology and Geothermal Research 97(1–4), 287. Lackschewitz K. S., Devey C. W., Stoffers P., Botz R...reaction of sulfur dioxide in hydrothermal fluids: Implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater

  18. Detecting anomalies in a deliberately biased tomotherapy plan: Comparison of two patient-specific quality assurance processes involving ArcCHECK(®) and Gafchromic(®) EBT3 films.

    Science.gov (United States)

    Werlé, F; Dehaynin, N; Niederst, C; Jarnet, D; Gantier, M; Karamanoukian, D; Meyer, P

    2017-08-02

    This work proposes a comparative evaluation of two of our patient-specific quality assurance processes involving ArcCHECK(®) (Sun Nuclear) and Gafchromic(®) EBT3 films (Ashland) in order to determine which detector is able to most effectively detect an anomaly in a deliberately biased tomotherapy plan. A complex clinical head and neck tomotherapy plan was deliberately biased by introducing six errors: multileaf collimator leaf positional errors by leaving one and two central leafs closed during the whole treatment, initial radiation angle errors (+0.5° and +1.0°) and multileaf collimator leafs opening time errors (+0.5% and +1.0%). For each error-induced plan, comparison of ArcCHECK(®) with Gafchromic(®) EBT3 films (20.3×25.4cm(2)) was performed through two methods: a dose matrices subtraction study and a gamma index analysis. The dose matrices subtraction study shows that our ArcCHECK(®) processing is able to detect all the six induced errors contrary to the one using films, which are only able to detect the two biases involving multileaf collimator leaf positional errors. The gamma index analysis confirms the previous method, since it shows all six errors induced in the reference plan seem to be widely detected with ArcCHECK(®) with the more restrictive 1%/1mm gamma criterion, whereas films may only be able to detect biases in relation to multileaf collimator leaf positional errors. It also shows the common 3%/3mm gamma criterion does not allow deciding between both detectors in the detection of the six induced biases. Both comparative methods showed ArcCHECK(®) processing is more suitable to detect the six errors introduced in the reference treatment plan. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    Science.gov (United States)

    Cong, Haoxi; Li, Qingmin; Xing, Jinyuan; Li, Jinsong; Chen, Qiang

    2015-06-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. supported by National Natural Science Foundation of China (Nos. 51277061 and 51420105011)

  20. Analysis on Characteristic of Ultra High Frequency Pulsed Gas Tungsten Arc Welding Process%超高频脉冲GTAW工艺特性分析

    Institute of Scientific and Technical Information of China (English)

    齐铂金; 杨舟; 杨明轩; 从保强

    2016-01-01

    基于5 mm厚的Ti-6Al-4V钛合金平板,分别采用常规钨极氩弧焊(Conventional gas tungsten arc welding, C-GTAW)和超高频脉冲钨极氩弧焊(Ultra high frequency pulsed GTAW, UHFP-GTAW)工艺,选用相同平均电流(60 A)进行焊接,同时利用FLUKE Ti400红外热像仪对熔池中心温度进行实时监测,分别对电弧定点燃烧时、以50 mm/min焊速移动时采集的熔池中心温度进行分析。由测量结果可知,与相同条件下C-GTAW相比,UHFP-GTAW作用下的熔池中心温度最大值增加了10~40 K,表明该工艺具有更高的能量密度。分析1.5 mm钛合金对接工艺试验的组织性能测试结果发现,焊缝区细小均匀的针状α'马氏体形成的网篮组织含量增加,热影响区组织α'相呈现短且小的针状且排列更为致密,可改善接头的拉伸力学性能、疲劳性能。UHFP-GTAW焊缝的伸长率最小增幅为30%,断面收缩率最小增幅为50%,疲劳寿命至少增加2倍。%Bead-on-plate welding test are carried on 5 mm thickness Ti-6Al-4V titanium alloy plates by the processes both of conventional gas tungsten arc welding (C-GTAW) and the ultra high frequency pulsed GTAW (UHFP-GTAW) in the same average welding current (60 A). The temperature of molten pool center is monitored in real time with thermal infrared imager Fluke Ti400. These measurements before the arc moving and moving at a speed of 50 mm/min are analyzed respectively. The results show that compared with the C-GTAW in same condition, the maximum of the temperature of weld pool center are 10-40 K enhanced by UHFP-GTAW for higher density power with different pulse frequencies. The microstructure and mechanical properties tests are conducted on 1.5 mm thickness Ti-6Al-4V butt joints, verified that the UHFP-GTAW had influences in improving tensile and fatigue properties because of a larger density of basketweave formed by the short and uniform acicularα' martensite in fusion zone and a more

  1. Optimization of melting process of 50 t ultra-high electric arc furnace%50t超高功率电弧炉冶炼工艺优化

    Institute of Scientific and Technical Information of China (English)

    杨振国; 刘青; 王彬; 石荣山

    2012-01-01

    对山东钢铁股份有限公司莱芜分公司50t超高功率电弧炉冶炼工艺和生产数据进行解析,通过对不同人炉铁水比例的物料平衡、热平衡计算和生产实践,得出了电炉工序冶炼电耗、氧气消耗参数,提出了4种工况下的冶炼操作模型,对同类型电炉生产具有相当的参考价值。%The steelmaking process and the production data ot 50 t ultra-high power elec- tric arc furnace are analyzed in this paper, and the values of electric power consumption and oxygen consumption are gained by the EAF mass and heat balance calculation of dif- ferent hot metal charged ratio, including production practice in Laiwu Steel Pants. Then four steelmaking operation models for different working conditions helpful for the same kind of EAF plants are put forward.

  2. Waste heat recovery with heat pipes in the modern electric arc furnace process%电炉流程中热管式余热回收

    Institute of Scientific and Technical Information of China (English)

    杨振国; 刘青; 谢银幕

    2011-01-01

    结合国内外电炉烟气热量处理的现状,分析了热管式余热回收的原理及特点,研究了其系统的结构特点、工艺流程、关键参数以及如何使系统产生的蒸汽质量满足VD(RH)炉生产的要求,并对其在莱钢50t电炉余热回收中的工程应用情况进行了阐述,指出该技术具有良好的应用前景.%The principle and characteristic of waste heat recovery with heat pipes were analyzed in combination with the present condition of utilizing electric arc furnace(EAF) flue gas at home and abroad.The structure character,technical processes,and key parameters of this system were studied comprehensively.How to make high quality steam to meet the demand of VD(RH) furnaces was also discussed.A practical application of waste heat recovery in 50t EAF in Laiwu Steel shows a good prospect of the technology.

  3. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti-Si-N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process

    Institute of Scientific and Technical Information of China (English)

    YIN Long-Cheng; LUAN Sen; LV Guo-Hua; WANG Xing-Quan; HUANG Jun; JIN Hui; FENG Ke-Cheng; YANG Si-Ze

    2008-01-01

    Ti-Si-N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from2.0 at. % to 12.2 at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase.The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14 sccm.

  4. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    Science.gov (United States)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  5. The Influence of Pyrolythic Reactions on the Aluminum Dross Formation during the Twin Chamber Remelting Process

    Science.gov (United States)

    Jaroni, B.; Flerus, B.; Friedrich, B.; Rombach, G.

    After a coated aluminum product has reached the end of life cycle it needs to be recycled in an economical way. State of the art is the thermal removal of the organic fractions by pyrolysis. In modern multi chamber furnaces this step is realized in a separate pre-heating and melting compartment of the furnace. The incidence of aluminum losses can be traced back to the contained organic components, which lead to an aluminum burn off and thus increase dross production. The influence of typical scrap package structures on the de-coating step and the impact of released organic components on the dross quantity are investigated in this work. Lab-scale experiments have shown that the average residence time is too short to complete the pyrolysis. It has to be considered that the pyrolysis continuous while the scrap bale is submerged in the aluminum melt.

  6. Grain refinement of AZ91D alloy by intensive melt shearing and its persistence after remelting and isothermal holding

    Directory of Open Access Journals (Sweden)

    Zuo Yubo

    2013-01-01

    Full Text Available Intensive melt shearing has a significant grain refining effect on some light alloys. However, the persistence of the grain refining effect during isothermal holding and remelting is still unclear, although it is very important for the practical application. In this study, intensive melt shearing was achieved in a twin-screw mechanism to investigate its grain refining effect on AZ91D magnesium alloy. The refinement mechanism was discussed and the persistence of grain refinement after remelting and isothermal holding was also studied. A Zeiss imaging system with polarized light was used for quantitative measurement of grain size. The results show that the intensive melt shearing has a significant grain refining effect on AZ91D magnesium alloy. With the application of intensive melt shearing, the grain size of AZ91D magnesium alloy can be reduced from 530 μm (for a typical as-cast microstructure to 170 μm, which is about 70% size reduction. The grain refinement achieved by the intensive melt shearing can be partially kept after isothermal holding and remelting. It is believed that the refinement effect was mainly due to the finer and well dispersed oxide particles formed by high intensive shearing. The smaller size of oxide particles and their slow motion velocity in the sheared melt could make important contributions to the remained grain refinement.

  7. Erosion-corrosion of plasma as sprayed and laser remelted Stellite-6 coatings in a coal fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S. [College of Engineering & Technology, Bathinda (India). Dept. of Mechanical Engineering

    2006-05-31

    Unacceptable levels of surface degradation of metal containment walls and heat exchanger tubing by a combined erosion-corrosion (E-C) mechanism have been experienced in some boilers. The recent use of coatings to protect the heat exchanger tubes of fluidized bed combustor from E-C problems has been suggested by many authors. The laser remelting of the surface coating is suggested as a promising technique to improve its physical properties. Aim of the present investigation is to evaluate the erosion-corrosion (E-C) behaviour of plasma as sprayed and laser remelted Stellite-6 (St-6) coatings on boiler tube steels in the actual coal fired boiler environment. The cyclic experimental studies were performed in the platen superheater zone of a coal fired boiler where the temperature was around 755{sup o}C and the study was carried out up to 10 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. Coated steels were found to possess higher resistance to E-C than the uncoated steels. The highest degradation resistance has been indicated by the T11 steel coated and subsequently laser remelted.

  8. SU-E-T-556: Integration of Lung Blocks in the Inverse Planning Process of Modulated Arc Total Body Irradiation Using Cone Beam CT.

    Science.gov (United States)

    Morin, O; Held, M; Kirby, N; Perez-Andujar, A; Chuang, C; Pouliot, J

    2012-06-01

    The sizing and placement of lung blocks for total-body irradiation (TBI) is critical to prevent lung toxicities and maintain effective treatments. During modulated-arc TBI (MATBI) treatment, the patient is stationary near the floor while open-field beams with varying exposures are delivered. The inverse planning process currently aims for a uniform dose to the body, without accounting for the presence of lung blocks. This study investigates the possibility of including the effect of these blocks in the MATBI optimization process. Dosimetric comparisons were performed using a water tank and a simple stack of solid water slabs. Lungs blocks made of cerrobend were fabricated and imaged using on-board megavoltage CBCT (MVCBCT). The reconstructed MVCBCT images were precisely registered with the reference CT for inverse planning. The cerrobend blocks were contoured in the planning system and the density was overridden to 9.3 g/cm(3) . Simulated doses in Pinnacle were compared to ion chamber, diode array and gaf-chromic film measurements obtained at 1.0, 5.0, 10.0 and 20.0 cm depths. Specific optimization objectives on the lungs were tested on 5 patients including a lung re-treatment. The maximum difference between ion chamber measurements and the treatment planning predictions was 2.4%. The measurements profiles with the diode array correlated reasonably well (10%) on the surface. Lung blocks reconstructed with MVCBCT were structuraly accurate without significant metal artifacts. A comparison of MATBI plans on patients shows that inclusion of lung blocks during optimization can reduce hot and cold areas in the lungs and the sternum. Reasonable predictions of the lung block transmission can be obtained following the developed technique using megavoltage CBCT. Thus, lung blocks can be included in the MATBI inverse planning process, which can help prevent complications and local failure. © 2012 American Association of Physicists in Medicine.

  9. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  10. The trace-element characteristics of Aegean and Aeolian volcanic arc marine tephra

    Science.gov (United States)

    Clift, Peter; Blusztajn, Jerzy

    1999-10-01

    High-silica volcanic ashes are found within deep-sea sediments throughout the Eastern Mediterranean. Although coring by Ocean Drilling Program has penetrated Lower Pliocene (˜4 Ma) sediments, few ashes older than 400 k.y. have been recovered, suggesting a young initiation to subaerial Aegean Arc volcanism. Ashes derived from the Aegean volcanic front were cored south and east of the arc, and are typified by medium-K, calc-alkaline major-element compositions, contrasting with high-K ashes from the Aeolian Arc found in the Ionian Sea and as far east as Crete. Ion microprobe analysis of individual glass shards shows that all the ashes have a light rare earth element (LREE)-enriched pattern after normalizing against a chondrite standard. Aeolian Arc-derived ashes show greater enrichment than those from the Aegean area. Within the latter set, two groups are discernible, a mildly enriched set similar to the volcanoes of the arc volcanic front, and a more enriched group corresponding to lavas from the backarc region or possible from western Anatolia. Multi-element `spider diagrams' also show a bimodal division of enriched and depleted Aegean ashes, possibly caused by source depletion due to melt extraction in the Aegean backarc followed by remelting under the volcanic front. Relative Nb depletion, a characteristic of arc volcanism, is seen to be modest in Aegean and non-existent in Aeolian ashes. Using B/Be as a proxy for the flux of material from the subducting slab, this influence is seen to be low in the Aeolian Arc but higher than at Vesuvius. B/Be is higher again in the Aegean Arc. These differences may reflect the rate of subduction in each system. Data suggest caution is required when correlating ashes solely on the basis of major elements, as alkaline ashes from the central part of the study may be derived from Italy or from the Aegean backarc.

  11. Wear behaviors of HVOF sprayed WC-12Co coatings by laser remelting under lubricated condition

    Science.gov (United States)

    Dejun, Kong; Tianyuan, Sheng

    2017-03-01

    A HVOF (high velocity oxygen fuel) sprayed WC-12Co coating was remelted with a CO2 laser. The surface-interface morphologies and phases were analyzed by means of SEM (scanning electron microscopy), and XRD (X-ray diffraction), respectively. The friction and wear behaviors of WC-12Co coating under the dry and lubricated conditions were investigated with a wear test. The morphologies and distributions of chemical elements on worn scar were analyzed with a SEM, and its configured EDS (energy diffusive spectrometer), respectively, and the effects of lubricated condition on COFs (coefficient of friction) and wear performance were also discussed. The results show that the adhesion between the coating and the substrate is stronger after laser remetling (LR), in which mechanical bonding, accompanying with metallurgical bonding, was found. At the load of 80 N, the average COF under the dry and lubricated friction conditions is 0.069, and 0.052, respectively, the latter lowers by 23.3% than the former, and the wear rate under the lubricated condition decreases by 302.3% than that under the dry condition. The wear mechanism under the dry and lubrication conditions is primarily composed of abrasive wear, cracking, and fatigue failure.

  12. Effects of shot peening and laser remelting on oxygen-permeation treatment of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    MA Hong-yan; WANG Mao-cai; WEI Zheng; XIN Gong-chun

    2004-01-01

    The influence of surface pre-treatments, shot-peening (SP) and laser remelting (LR), on oxygen permeation behaviors of titanium alloy TC11 was investigated. Optical microscope, SEM with EDAX, XRD, and microhardness tester were employed to characterize the microstructure, composition and hardness of this alloy. The results show that the surface roughness is increased by shot-peening, and the microstructure with fine-grain can be obtained by LR pre-treatment. The pre-treated samples were oxygen-permeated at (810± 10) ℃ for 10 h in atmospheric air. The outer layer consists essentially of TiO2, trace Ti2 N, Ti3Al and Ti3AlN for the SP pre-treatment and thin oxygen solution layer is found in the subsurface layer. As for LR pre-treatment, the outer layer consists mainly of TiO2 and small amounts of TiO, and the inner layer consists of alpha crystals, rich in interstitial atoms. Samples by LR pre-treatment has thicker hardened layer with higher hardness values in comparison with SP pre-treated ones.The boost diffusion of oxygen and hardening mechanisms were discussed based on the experimental results.

  13. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  14. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode; Modele couple cathode-plasma-piece en vue de la simulation du procede de soudage a l'arc TIG

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, M.

    2009-06-15

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  15. An Arc in Saturn's G Ring

    Science.gov (United States)

    Burns, Joseph A.; Hedman, M.; Tiscareno, M.; Porco, C.; Jones, G.; Roussos, E.; Krupp, N.

    2006-09-01

    The G ring is a narrow, faint ring located between the orbits of Janus and Mimas. Approximately 4000 km wide, it has a strongly asymmetric brightness profile with a sharp inner edge between 167,000 km and 168,000 km from Saturn's center and a more diffuse outer part. In Cassini images, a portion of the ring contains a bright arc that abuts the G-ring's inner edge and extends over 30 degrees in longitude. By tracking this arc over the first two years of the Cassini Mission, we find its orbital period is 0.80813 day, corresponding to a semi-major axis of 167,496 km. Since this location places the arc within 6 km of the Mimas 7:6 Co-rotation Eccentricity Resonance and within 12 km of the Mimas 7:6 Inner Lindblad Resonance, the arc is likely confined in longitude by Mimas just as Neptune's ring arcs are held in place by Galatea. The arc's longitude relative to Mimas is consistent with this model. Cassini now has the opportunity to study the dynamics of this sort of system in detail over a period of years. The arc, which may be the debris of a fragmented moon, may also supply the particles found in the rest of the G ring; micron-sized grains drift outwards by non-gravitational processes in this region. The G-ring is responsible for a broad, relatively modest decrease in the fluxes of magnetospheric charged particles. When Cassini passed over the G ring in the vicinity of the arc, on September 5, 2005, the MIMI instrument detected a particularly sharp and deep charged particle absorption signature. Such a pronounced charged particle absorption was not seen in the other G-ring passages that occurred longitudinally far from the arc. The nature of this absorption provides constraints on the population of large particles in this arc.

  16. BASIC THEORY AND APPLICATIONS OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    LI Junyue; XUE Haitao; LI Huan; SONG Yonglun

    2007-01-01

    Welding arc spectral information is a rising welding Information source. In some occasion, it can reflect many physical phenomena of welding process and solve many problems that cannot be done with arc electric information, acoustic information and other arc information. It is of important significance in developing automatic control technique of welding process and other similar process. Many years study work on welding arc spectral information of the anthor are discussed from three aspects of theory, method and application. Basic theory, view and testing methods of welding arc spectral information has been put forward. In application aspects, many applied examples, for example, monitoring of harmful gases in arc (such as hydrogen and nitrogen) with the method of welding arc spectral information; welding arc spectral imaging of thc welding pool which is used in automatic seam tracking; controlling of welding droplet transfer with welding arc spectral information and so on, are introduced. Especially, the successful application in real time controlling of welding droplet transfer in pulsed GMAW is introduced too. These application examples show that the welding arc spectral information has great applied significance and development potentialities. These content will play an important role in applying and spreading welding arc spectral information technology.

  17. Unstable Behavior of Anodic Arc Discharge for Synthesis of Nanomaterials

    Science.gov (United States)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    Fast imaging and electrical current measurements reveal unstable behavior of the carbon arc discharge for synthesis of nanomaterials. The arc column and the arc attachment region to the anode move in a somewhat sporadic way with a characteristic time in a 10-3 sec range. The arc exhibits a negative differential resistance before the arc motion occurs. A physical mechanism is proposed based on the thermal processes in the arc plasma region interacting with the ablating anode which leads to the shift of the arc to a new anode region. According to the transient heat transfer analysis, the time needed to heat a new anode region is also in a 10-3 sec range. For a 0.6 cm diameter anode used in our experiments, this time yields a frequency of about 200-300 Hz, comparable to the measured frequency of the arc motion. The voltage and current measurements show oscillations with a similar characteristic frequency. The thermal model is indirectly supported by the measured negative differential resistance of the arc discharge during arc oscillations. The observed unstable behavior of the arc may be responsible for the mixing of the flow of nanoparticles during the synthesis of nanoparticles leading to poor selectivity typical for the arc synthesis. The work was supported by US DOE under Contract No. DE-AC02-09CH11466.

  18. Formation of the G-ring arc

    Science.gov (United States)

    Araujo, N. C. S.; Vieira Neto, E.; Foryta, D. W.

    2016-09-01

    Since 2004, the images obtained by the Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves increasing the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario in which the excitation of Mimas's eccentricity could capture particles in a corotation resonance. This is a possible explanation for the origin of the arcs.

  19. Formation of the G-ring arc

    CERN Document Server

    Araujo, N C S; Foryta, D W

    2016-01-01

    Since 2004, the images obtained by Cassini spacecraft's on-board cameras have revealed the existence of several small satellites in the Saturn system. Some of these small satellites are embedded in arcs of particles. While these satellites and their arcs are known to be in corotation resonances with Mimas, their origin remains unknown. This work investigates one possible process for capturing bodies into a corotation resonance, which involves raising the eccentricity of a perturbing body. Therefore, through numerical simulations and analytical studies, we show a scenario that the excitation of Mimas' eccentricity could capture particles in a corotation resonance and given a possible explanation for the origin for the arcs.

  20. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  1. Alloying of titanium by oxygen during chamber electroslag remelting/Legiranje titanijuma kiseonikom u peći za elektropretapanje pod troskom

    Directory of Open Access Journals (Sweden)

    Anatoliy D. Ryabtsev

    2014-10-01

    Full Text Available The paper presents the results of alloying titanium by oxygen in the process of chamber electroslag remelting. As an oxygen-containing ligature, we used the electrodes-satellite from the reaction mass residues mixture from the retort lid for magnesium thermal reduction of a titanium sponge, a specially prepared gaseous argon oxygen mixture containing 30% oxygen applied directly to the melting space, microsize (10-15 mm powder particles of titanium oxide and titanium oxide nanopowder with a particle size of 21 ± 5 nm. The structure and the properties of titanium alloyed by oxygen from the oxygen-containing ligature, gas phase and titanium oxide powder during chamber electroslag remelting of the titanium sponge are investigated. It was found that at the oxygen content of 0.053%mas. to 0.22%mas. in the metal formed a homogeneous single-phase structure typical for commercial titanium formed by polyhedral grains of the α-phase. The increase of the oxygen concentration in titanium for more than 0.22%mas. leads to the formation of the microstructure with a typical needle structure, which allows it to be classified as the α ׳-phase. / U radu su prikazani rezultati legiranja titanijuma kiseonikom u procesu elektropretapanja pod troskom u peći. Za vezivo, koje sadrzi kiseonik, korišćene su satelit elektrode iz reakcije masenih ostataka mešavine iz poklopca retorte za termalnu redukciju magnezijumtitanijumskog sunđera, specijalno pripremljena mešavina gasa argona i kiseonika sa 30% kiseonika primenjena direktno na mesto topljenja, čestice praha titanijum-oksida mikroveličine 10-15mm i nanoprah titanijum-oksida veličine čestica od 21± 5 nm. Ispitane su struktura i karakteristike titanijuma legiranog kiseonikom iz veziva , gasne faze i praha titanijum-oksida tokom elektropretapanja titanijumovog sunđera pod troskom u peći. Utvrđeno je da se pri sadržaju kiseonika od 0.053%mas.do 0.22%mas. u metalu formira homogena jednofazna struktura tipi

  2. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  3. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  4. Comparison of 10-year clinical wear of annealed and remelted highly cross-linked polyethylene: A propensity-matched cohort study.

    Science.gov (United States)

    Hamai, Satoshi; Nakashima, Yasuharu; Mashima, Naohiko; Yamamoto, Takuaki; Kamada, Tomomi; Motomura, Goro; Imai, Hiroshi; Fukushi, Jun-Ichi; Miura, Hiromasa; Iwamoto, Yukihide

    2016-06-01

    No previous studies comparing the clinical wear rates of the two different kinds of cross-linked ultra-high-molecular-weight polyethylene (XLPE), annealed and remelted, are available. We compared the creep and steady wear rates of 36 matched pairs (72 hips in total) adjusting for baseline characteristics with propensity score matching techniques. Zirconia femoral heads with 26-mm diameter were used in all cases. The femoral-head cup penetration was measured digitally on radiographs. Significantly greater creep (p=0.006) was detected in the remelted (0.234mm) than annealed (0.159mm) XLPE. However, no significant difference (p=0.19) was found between the steady wear rates (0.003 and 0.008mm/year, respectively) of the annealed and remelted XLPE. Multiple regression analyses showed that remelted XLPE is significant independent variable (p0.05) on the steady wear rates. No patients exhibited above the osteolysis threshold of 0.1mm/year, progressive radiolucencies, osteolysis, or polyethylene fracture. This propensity-matched cohort study document no significant difference in wear resistant performances of annealed and remelted XLPE over an average period of 10 years.

  5. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  6. Estudo da emissão de raios infravermelho próximo em processos de soldagem a arco Study of near-infrared emission on processes of arc welding

    Directory of Open Access Journals (Sweden)

    Carolina Pimenta Mota

    2011-03-01

    Full Text Available O estudo de boa parte dos fenômenos envolvidos no processo de soldagem necessita de auxílio visual e a luminosidade emitida pelo arco pode representar uma grande barreira. Uma das formas utilizadas atualmente para se obter a visualização do processo, sem a interferência do arco, consiste em iluminar o processo com o infravermelho próximo e utilizar filtros durante a aquisição das imagens. Assim, é importante investigar o comportamento do arco de soldagem em relação à sua emissão luminosa no espectro infravermelho. Desta forma, a proposta deste trabalho foi a realização de um estudo comparativo entre a emissão do arco de soldagem de radiação infravermelha próxima em dois processos largamente utilizados, TIG e MIG/MAG, focando também sua influência por parâmetros como a corrente de soldagem e a proteção gasosa utilizada. Com o uso de um sensor de luminosidade e a utilização de um sistema de lentes ópticas, foram realizados experimentos, adquirindo o espectro luminoso emitido pelo arco voltaico. Através dos resultados obtidos, ou seja, do valor numérico de energia luminosa do arco de soldagem (integração do espectro é possível se obter, com a utilização desta mesma metodologia, a energia luminosa no infravermelho próximo e, consequentemente, a intensidade luminosa, necessária para a sobreposição do arco durante a aquisição de imagens.Most of the phenomenon studied in the welding processes needs a vision system and the arc light emission can create a great barrier. Nowadays, one of the techniques used for visualizing the process, without arc interference, is the illumination of the process with near-infrared laser and the use of optic filters during the image acquisition. Thus, it is important to investigate the welding arc behavior in respect to its light emission within the near-infrared spectrum. Therefore, this work aims to perform a comparative study of the arc near infrared emission in one of the two

  7. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Institute of Scientific and Technical Information of China (English)

    LI Tianming; Sooseok CHOI; Takayuki WATANABE

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rodtype cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  8. Effect of Laser Remelting Parameters on Properties of Nickel-based Nano TiN Composite Deposition Coatings%激光重熔参数对镍基纳米TiN复合电沉积镀层性能的影响

    Institute of Scientific and Technical Information of China (English)

    贾卫平; 姚井龙; 吴蒙华; 吴敬明; 王邦国

    2016-01-01

    目的:在NiCr20 TiAl基体材料上进行镍基纳米TiN电沉积复合镀后再开展激光重熔工艺,研究激光重熔参数对镀层表面质量、结合力及硬度的影响。方法采用正交实验,研究不同激光重熔参数(扫描速率、搭接量、离焦量等)对重熔镀层的影响,采用显微硬度计、扫描电镜和划痕仪进行硬度、表面形貌和结合力检测,以得到较优工艺参数。结果通过控制重熔参数对镀层表面能量和表面形貌的影响,以降低表面性能差异,以得到了激光重熔较佳工艺参数为:电流115 A,脉宽为8 ms,频率为10 Hz,离焦量15 mm,扫描速度230 mm/min,使获得的镀层表面形貌比较平整,结合力提高到大于60 N,硬度值平均为632HV,并且硬度分布均匀。结论激光重熔工艺可消除纳米复合电沉积过程中产生的间隙,纳米复合镀层致密均匀,镀层与基体之间产生良好的冶金结合,镀层表面硬度分布均匀,力学性能趋近一致。%ABSTRACT:Objective Nickel-based nano TiN composite deposition coatings were remelted by laser process. The effects of laser remelting parameters on the surface quality, binding force and hardness of the coatings were researched. Methods Orthogonal ex-periments were used to study the effects of different laser remelting parameters ( scan rate, amout of overlap, defocus amount,etc) on the remelted coating, and the hardness, surface morphology and binding force were tested by using microhardness meter, SEM and scratch tester, in order to obtain optimal process parameters. Results By controlling the effects of remelting parameters on the coating surface energy and surface morphology in order to reduce the differences in surface properties, preferable laser remelting process parameters were obtained:electric current 115 A, pulse width 8 ms, frequency 10 Hz, defocus amount 15 mm, and scan-ning speed 230 mm/min. Under this condition, smooth surface morphology was obtained, with the

  9. 振动电极电渣重熔过程建模与仿真%Data-driven Modeling and Simulation of Electroslag Remelting with Vibrating Electrode

    Institute of Scientific and Technical Information of China (English)

    宗学军; 刘畅; 杨忠君; 陈瑞; 宋照伟

    2015-01-01

    Aiming at the high energy consumption of traditional production process of ESR system,vibra-ting electrode remelting method was proposed to improve the melting rate.Based on the experimental data of vibrating electrode method,a model was built up on the basis of a theoretical research of partial least-squares regression spline transformation .Compared with no vibration,the simulation result re-veals that the method can improve effectively the melting rate,and prove the validity of the model.%针对电渣重熔生产过程的高能耗问题,在传统电渣重熔系统的基础上,提出了振动电极电渣重熔方法以提高熔化效率。并以振动电极电渣重熔方法的试验数据为基础,建立了基于数据驱动的样条变换非线性偏最小二乘回归数学模型。通过 Matlab仿真和试验结果分析,与无振动情况相比,该方法能有效地提高熔化效率,同时验证了该模型的有效性。

  10. Deep structure of the central Lesser Antilles Island Arc : relevance for the formation of continental crust

    OpenAIRE

    H. Kopp; Weinzierl, W.; Becel, A.; Charvis, Philippe; Evain, M.; Flueh, E. R.; Gailler, A.; Galve, A.; Hirn, A.; Kandilarov, A.; D. Klaeschen; M. Laigle; Papenberg, C.; L. Planert; Roux, E.

    2011-01-01

    Oceanic island arcs are sites of high magma production and contribute to the formation of continental crust. Geophysical studies may provide information on the configuration and composition of island arc crust, however, to date only few seismic profiles exist across active island arcs, limiting our knowledge on the deep structure and processes related to the production of arc crust. We acquired active-source wide-angle seismic data crossing the central Lesser Antilles island arc north of Domi...

  11. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  12. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  13. 铸铁表面钨极氩弧硬化%Surface hardening of cast iron by tungsten inert gas arc

    Institute of Scientific and Technical Information of China (English)

    杨莉

    2001-01-01

    The wear resistibility of gray cast iron HT200 is improved by employing inert gas tungsten arc remelting and fast solidified, the effect of current and arc moving rate on the chilling layer properties are studied.And it is compared with laser hardening. The results show that Tungsten Inert Gas Arc remelting can improve the resistance to abrasion of cast iron and it is much better and cheaper technique than others.%以HT200为试验材料,用钨极氩孤对其表面进行了局部重熔硬化,得出了相关工艺参数对重熔处理后表层性能的影响,同时与铸铁表面激光硬化进行了对比。结果表明:铸铁表面氩弧硬化是有效提高其耐磨性,发挥自身潜力,降低成本的一项新工艺。

  14. Circular-Arc Cartograms

    CERN Document Server

    Kämper, Jan-Hinrich; Nöllenburg, Martin

    2011-01-01

    We present a new circular-arc cartogram model in which countries are drawn with circular arcs instead of straight-line segments. Given a geographic map and values associated with each country in the map, the cartogram is a new map in which the areas of the countries represent the corresponding values. In the circular-arc cartogram model straight-line segments can be replaced with circular arcs in order to achieve the desired areas, while the corners of the polygons defining each country remain fixed. The countries in circular-arc cartograms have the aesthetically pleasing appearance of clouds or snowflakes, depending on whether their edges are bent outwards or inwards. This makes is easy to determine whether a country has grown or shrunk, just by its overall shape. We show that determining whether a given map and area-values can be realized with a circular-arc cartogram is an NP-hard problem. Next we describe a heuristic method for constructing circular-arc cartograms, which uses a max-flow computation on the...

  15. Evolution of mechanical properties of a residue from the secondary aluminium remelting industry stabilized with gypsum; Evolucion de las propiedades mecanicas de un residuo de la metalurgia secundaria del aluminio estabilizado con yeso

    Energy Technology Data Exchange (ETDEWEB)

    Tayibi, H.; Perez, C.; Lopez, F. A.; Lopez-Delgado, A.

    2005-07-01

    Aluminium dust from aluminium remelting industry is a hazardous residue because of its high reactivity in the presence of water (production of ammonia, methane, hydrogen sulphide...) potential aluminothermy and its content in leaching heavy metals. In order to apply the new European Directive about landfill of waste, a Stabilization/Solidification (S/S) process was developed in the CENIM with the aim of decreasing its reactivity and to assure an easy transport and storage of the residue. Gypsum was used as a binder material. This work summarizes the study of the mechanical properties of the stabilized residue en comparison with the gypsum ones. The reactivity of the dust, before and after the S/S process was investigated by analysing the ammonia and metallic aluminium. (Author) 16 refs.

  16. History of Neptune's Ring Arcs

    Science.gov (United States)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.

    1997-07-01

    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  17. Arc tracks on nanostructured surfaces after microbreakdowns

    Science.gov (United States)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  18. Analysis of arc pressure and its weld quality in hybrid ultra-high frequency pulse VP-GTAW process%HPVP-GTAW电弧力及焊接质量分析

    Institute of Scientific and Technical Information of China (English)

    从保强; 齐铂金; 杨明轩; 李伟; 王乐笑; 杨舟; 李玉龙

    2013-01-01

    分别以3种不同材质铝合金平板材料为试验对象,研究分析了复合超高频脉冲方波变极性钨极氩弧焊接(HPVP-GTAW)过程中电弧力的变化及其对焊缝成形特征和接头力学性能的影响.结果表明,与常规变极性氩弧焊工艺相比,脉冲方波电流的加入使得HPVP-GTAW电弧力显著增加,同时焊缝熔透率大幅提高,接头力学性能得到明显改善和提高;保持脉冲电流幅值和占空比基本不变,在10~80 kHz范围内,脉冲电流频率对焊接过程产生了重要影响,频率为40 kHz时,HPVP-GTAW电弧力和焊缝熔透率均达到最大,分别约为常规变极性焊接电弧的1.9倍和1.7倍.%The variations of arc pressure and weld characteristics in the welding of 2219, 2A14 and 5A06 aluminum alloys were investigated based on the hybrid ultrahigh frequency pulse current variable polarity gas tungsten arc welding ( HPVP-GTAW) process. The experimental results show that compared with the conventional VP-GTAW ( variable polarity gas tungsten arc welding) process, arc pressure and weld penetration expressed by the ratio of weld depth to width are enhanced predominantly with the effect of high frequency pulse current. Mechanical properties of welded joints are improved obviously. At the given pulse current amplitude and pulse duty cycle, the welding process is influenced significantly by the pulse current frequency in the range of 10 kHz to 80 kHz. At the given pulse frequency of 40 kHz, arc pressure and weld penetration of welded joints increased by about 90% and 70% , respectively, compared with that of welded joints with no effect of pulse current.

  19. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    Science.gov (United States)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  20. 压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究%STUDY ON HEREDITARY OF PORES IN LASER REMELTING OF DIE CASTING AZ91D MAGNESIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    王向杰; 游国强; 张均成; 龙思远

    2012-01-01

    Porosity has been a main problem for die casting magnesium alloy welding and casting defect repair. In order to study the formation mechanism of pores in fusion welding of die casting magnesium alloy, in this research, experiment of die casting AZ91D magnesium alloy CO2 laser re-melting was carried out. OM and SEM were employed to observe the characteristics of pores existing at both the base metal and re-melted zone, and a software for particle size analysis called nano measure 1.2 was adopted to measure the pores' size. During analysis, the work mainly focused on the relationship of pores in re-melted zone associated with that preexisting in the base metal. The results showed that: porosity in die cast magnesium alloy base metal showed apparently hereditary characteristic in the process of re-melting. Porosity preexisting in the die casting AZ91D magnesium alloy was mainly produced at the junction region of multi-grains, with high pressure of inner gas, small size and irregularity in shape. However, pores in the re-melting zone showed diversity. Specifically, the micro-pore was small in size, nearly round in cross section and smooth in the inner wall, which was induced by hydrogen stored in the base metal. The macro-pores were vermiculate, with gas channel and metal erosion traces at the inner wall. It's considered that the micro-pore was mainly inherited from the atomic hydrogen solution in the base metal and molecular hydrogen stored in the die casting defects.In the re-melting process, gas bubble of hydrogen was formed through nucleation and development two steps, and there was no sufficient time to grow up. As a result, the hydrogen induced pore was great in number and small in size. While the macro-pores were inherited from porosity preexisting in the base metal, the corresponded gas bubble did not require nucleation, was directly formed from the involved gas in preexisting porosity during die-casting process. Development of gas bubble for macro-pore mainly

  1. Effect of pulsed current micro plasma arc welding process parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 sheets

    Institute of Scientific and Technical Information of China (English)

    Kondapalli Siva Prasad; Chalamalasetti Srinivasa Rao; Damera Nageswara Rao

    2012-01-01

    The paper focuses on developing mathematical models to predict grain size and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy.Four factors,five levels,central composite rotatable design matrix is used to optimize the number of experiments.The mathematical models have been developed by response surface method.The adequacy of the models is checked by analysis of variance technique.By using the developed mathematical models,grain size and ultimate tensile strength of the joints can be predicted with 99%0 confidence level.Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld ioints.

  2. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  3. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  4. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: Implications for andesite genesis

    Science.gov (United States)

    Blatter, Dawnika L.; Sisson, Thomas W.; Hankins, W. Ben

    2013-01-01

    (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.

  5. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    Science.gov (United States)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  6. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny

    Science.gov (United States)

    Richards, Jeremy P.

    2015-09-01

    Global data for measured Fe2O3/FeO ratios and Cu contents in unaltered volcanic and intrusive arc rocks indicate that, on average, they are slightly more oxidized than other magmas derived from depleted upper mantle (such as MORB), but contain similar Cu contents across their compositional ranges. Although Cu scatters to elevated values in some intermediate composition samples, the bulk of the data show a steady but gentle trend to lower concentrations with differentiation, reaching modal values of 50-100 ppm in andesitic rocks. These data suggest that Cu is mildly compatible during partial melting and fractionation processes, likely reflecting minor degrees of sulfide saturation throughout the magmatic cycle. However, the volume of sulfides must be small such that significant proportions of the metal content remain in the magma during fractionation to intermediate compositions. Previous studies have shown that andesitic magmas containing 50 ppm Cu can readily form large porphyry-type Cu deposits upon emplacement in the upper crust. A review of the literature suggests that the elevated oxidation state in the asthenospheric mantle wedge source of arc magmas (ΔFMQ ≈ + 1 ± 1) derives from the subduction of seawater-altered and oxidized oceanic crust, and is transmitted into the mantle wedge via prograde metamorphic dehydration fluids carrying sulfate and other oxidizing components. Progressive hydration and oxidation of the mantle wedge may take up to 10 m.y. to reach a steady state from the onset of subduction, explaining the rarity of porphyry deposits in primitive island arcs, and the late formation of porphyries in continental arc magmatic cycles. Magmas generated from this metasomatized and moderately oxidized mantle source will be hydrous basalts containing high concentrations of sulfur, mainly dissolved as sulfate or sulfite. Some condensed sulfides (melt or minerals) may be present due to the high overall fS2, despite the moderately high oxidation state

  7. Volcanic pulses determined by local re-melting throughout plumbing systems

    Science.gov (United States)

    Di Renzo, V.; Moretti, R.; neuville, D. R.; Le Losq, C.; Allard, P.; Arienzo, I.; Civetta, L.; D'Antonio, M.; Flank, A.; Lagarde, P.; Metrich, N.; Orsi, G.; Papale, P.

    2012-12-01

    We present results from a thorough surveys of magma features from active southern Italy Volcanoes (Vesuvius, Campi Flegrei, Ischia, Stromboli) which are clearly related to a common subduction setting. In fact, the geochemical signatures of volcanic products from these sites show that their source regions are invested by melt/fluids released from the de-volatilizing slab. Volcanism at these volcanic sites is commonly seen as due to magmas ascending and differentiating from the parental melts originated in the mantle source. However, these volcanoes and their products, melt inclusions (MIs) particularly, show common features, such as: 1) a relatively modest magma production in recent times; 2) high total volatile contents and abundant gas emission at surface; 3) abundant CO2 in the gas phase coexisting with the melts at large depths, prior to any interaction with the carbonatic basement, if present; 4) CO2 fluxing of magmas; 5) vapor buffered trends bounding MIs on H2O-CO2 saturation diagrams; 6) evidences of isotopic disequilibria between minerals and melts; 7) high oxidation states also in deep mafic parental magmas, essentially governed by Fe2+/Fe3+ around 1; 8) relatively low-MgO contents of mafic parental magmas. All these features can be ascribed to multiple paths of magma mixing/mingling + degassing + fractional crystallization. Here we present a complementary hypothesis and suggest that the ascending slab-derived supercritical fluids may (re)melt pre-existing crystal mushes (e.g., Gaetani and Grove, 2003) at great crustal depths and then mobilize small batches of fluid-rich magmas, contributing to the above features. In this view, mafic magmas emitted at studied volcanoes during the last 10 ka could represent molten patches, formed under hydrous and oxidized conditions, of mush compositionally akin to mafic trachybasaltic rocks. Iron is in fact the most abundant multiple valence element within the mushy system, and during the fluid-driven melting at depth it

  8. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2016-11-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  9. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  10. Influence of Orientations of Bionic Unit Fabricated by Laser Remelting on Fatigue Wear Resistance of Gray Cast Iron

    Science.gov (United States)

    Chen, Zhi-Kai; Zhou, Ti; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong

    2015-06-01

    Fatigue wear resistance improvements were researched by studying experimental samples with gray cast iron fabricated with bionic units in different orientations. Experimental samples were modified by laser surface remelting, including parallel, vertical, and gradient units to the wear direction. The remelting pool was then studied to determine the micro-hardness, microstructure, alteration of phase, and etc. Lab-control fatigue wear test method was applied with the treated and untreated samples tested under the laboratorial conditions. Wear resistance result was considered as the rolling contact fatigue (RCF) resistance and mechanisms of the modified samples were experimentally investigated and discussed. Results suggested that all treated samples demonstrated the beneficial effect on the RCF improvement due to lack of graphite and reinforcement of treated region. Results also indicated the sample with fastigiated units was more effective than that with vertical units or parallel units to the wear direction. Influence of the sample unit's angle which intensely depended on the conditions of actual application, however, was not identified.

  11. Using arc voltage to locate the anode attachment in plasma arc cutting

    Science.gov (United States)

    Osterhouse, D. J.; Lindsay, J. W.; Heberlein, J. V. R.

    2013-06-01

    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5-3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4-4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques.

  12. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc

    Science.gov (United States)

    Hagen-Peter, Graham; Cottle, John M.

    2016-10-01

    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal diversity in magmatism can be explained by a tectono-magmatic model

  13. Fluctuation Phenomenon Analysis of an Arc Plasma Spraying Jet

    Institute of Scientific and Technical Information of China (English)

    赵文华; 田阔; 刘笛; 张冠忠

    2001-01-01

    The effects of three factors, including the power supply, the arc behaviour in the arc channel and the fluid dynamic process of the jet, on a plasma spraying jet have been experimentally detected by means of spectroscopic diagnostic techniques. The fast Fourier transform method has been applied to the analysis of the arc voltage and spectral line intensity of the jet. The three factors have been studied and distinguished from each other.

  14. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  15. Usage de la refusion par bombardement électronique pour la purification et le recyclage des alliages Application of the electron beam remelting for the purification and the recycling of alloys

    Directory of Open Access Journals (Sweden)

    Bellot Jean-Pierre

    2013-11-01

    Full Text Available Parmi les techniques de purification ultime de métaux à hauts points de fusion, le procédé de refusion par bombardement électronique associe une puissance thermique garantissant la fusion du métal, et une refusion sous vide permettant l'élimination d'impuretés par distillation. Ce papier présente la technique et le potentiel d'élimination par distillation. Among the ultimate purification techniques applied to the high melting point metallic materials, the electron beam remelting process, combining a high thermal power and vacuum, is particularly conducive to volatilization. This paper describes the technique and its efficiency to remove impurities by distillation.

  16. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  17. Magnesium isotope geochemistry in arc volcanism.

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine

    2016-06-28

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.

  18. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    Science.gov (United States)

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region.

  19. Physics characteristic of coupling arc of twin-tungsten TIG welding

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; LENG Xue-song; WU Lin

    2006-01-01

    Twin-tungsten TIG welding was developed, in which two electrodes were placed in a single welding torch. In order to master this process, the arc physics characteristic was studied. The twin-tungsten coupling arc shape was observed by using CCD camera, and the arc pressure was measured. The results show that the coupling arc includes two arcs that pull each other according to Lorentz force and one big coupling arc is formed; the coupling arc pressure is much lower than that of conventional TIG arc. In the end, a simple welding experiment was carried out. This proves that stable welding process can be achieved by twin-tungsten TIG at higher current than that of conventional TIG because of its low arc pressure and the high efficiency welding is realized.

  20. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  1. 脉冲磁场作用下GMAW电弧动态过程分析%Analysis of the Arc Dynamic Process in GMAW Under the Influence of Pulsed Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    白韶军; 陈树君; 刘长辉; 王丽鹏; 黄鹏飞

    2013-01-01

    In the gas metal arc welding process with short circuiting transfer mode has un-regularity,poor arc stability,larger spatter,and poor weld form,the horizontal pulsed auxiliary magnetic field in the short circuiting transfer welding process was established.According to short circuiting transfer period Tc and its coefficient of variation CV,optimize the applied auxiliary magnetic field and the MIG/MAG welding process parameters.The controlled auxiliary magnetic field can reduce both of the arc short circuiting transfer period Tc,and the coefficient of variation CV.When the statistical average of the pulsed magnetic field duration ton take value for the specific welding parameters short circuiting time T1,making short circuiting transfer period tends to be uniform.The experiments show that make the applied magnetic field strength appropriate arc short circuiting transfer period Tc and the coefficient of variation CV lower,it can accelerate the disconnection of the short circuiting transfer liquid bridge,reduce the short circuiting peak welding current,thereby reducing the energy accumulation at the end of the short circuiting transfer,so as to reduce the electrical explosion spatter loss rate of the process and keep the metal transfer stable.%针对熔化极气体保护焊短路过渡焊接过程不均匀、电弧稳定性差、飞溅较大且焊缝成形欠佳的缺点,建立了横向脉冲辅助磁场,使其作用于短路过渡焊接过程的熔滴短路时刻,根据短路过渡周期Tc及变异系数CV,优化了辅助磁场MIG/MAG焊接工艺参数.实验表明:当脉冲磁场持续时间ton取值为特定焊接参数下短路时间T1的统计平均值时,短路过渡周期趋于均匀,电弧短路过渡周期Tc及变异系数CV降低,短路过渡液桥加速断开,短路峰值焊接电流降低,从而使短路过渡末期能量积累以及电爆炸飞溅几率降低,并且使熔滴过渡过程稳定.

  2. Modeling of Arc Force in Plasma Arc Welding

    Institute of Scientific and Technical Information of China (English)

    GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui

    2008-01-01

    A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.

  3. Plasma arc cutting technology: simulation and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cantoro, G; Colombo, V; Concetti, A; Ghedini, E; Sanibondi, P; Zinzani, F; Rotundo, F [Department of Mechanical Engineering (D.I.E.M.) and Research Center for Applied Mathematics (C.I.R.A.M.), Alma Mater Studiorum-Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S; Vancini, M, E-mail: emanuele.ghedini@unibo.it [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)

    2011-01-01

    Transferred arc plasma torches are widely used in industrial processes for cutting of metallic materials because of their ability to cut a wide range of metals with very high productivity. The process is characterized by a transferred electric arc established between an electrode inside the torch (the cathode) and another electrode, the metallic workpiece to be cut (the anode). In order to obtain a high quality cut and a high productivity, the plasma jet must be as collimated as possible and must have the higher achievable power density. Plasma modelling and numerical simulation can be very useful tools for the designing and optimizing these devices, but research is still in the making for finding a link between simulation of the plasma arc and a consistent prevision of cut quality. Numerical modelling of the behaviour of different types of transferred arc dual gas plasma torches can give an insight on the physical reasons for the industrial success of various design and process solutions that have appeared over the last years. Diagnostics based on high speed imaging and Schlieren photography can play an important role for investigating piercing, dross generation, pilot arcing and anode attachment location. Also, the behaviour of hafnium cathodes at high current levels at the beginning of their service life can been experimentally investigated, with the final aim of understanding the phenomena that take place during those initial piercing and cutting phases and optimizing the initial shape of the surface of the emissive insert exposed to plasma atmosphere.

  4. Instability of a Short Anodic Arc Used for Synthesis of Nanomaterials

    Science.gov (United States)

    Gershman, Sophia; Raitses, Yevgeny

    2016-10-01

    The short anodic arc discharge is used for the synthesis of nanomaterials and had been presumed stable. We report the results of electrical and fast imaging measurements that reveal a combined motion of the arc column and the arc attachment region to the anode when the arc is operated with a high ablation rate. The arc exhibits a negative differential resistance before the arc motion occurs. The observed arc motion correlates with the arc voltage and current oscillations. The characteristic time of these instabilities is in a 10-3 sec range. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. The measured negative differential resistance of the arc during the oscillations indirectly supports the thermal model. Our model suggests that the injection of the ablating material into the plasma locally reduces the energy flux to the surface and leads to the arc shifting to the adjacent position. The observed arc motion can potentially cause the mixing of the various nanoparticles synthesized in the arc in the high ablation regime leading to the poor selectivity characteristic of the arc synthesis of nanomaterials. US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  5. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  6. Improving Weld Quality by Arc-Excited Ultrasonic Treatment

    Institute of Scientific and Technical Information of China (English)

    张春雷; 吴敏生; 杜敬磊

    2001-01-01

    Ultrasonic treatment of the solidifying metal is a promising method for improving the quality of fusion welding. A method to combine the ultrasonic waves to the welding process using arc-excited ultrasonic emission, called arc-ultrasonic, was high frequency modulation of the arc-plasma. The effects of arc-ultrasonic on the weld including the fusion zone, the partially melted zone and the heat-affected zone are described. The arc-ultrasonic energy changes the weld microstructure. In the fusion zone, the primary dendrite arm spacing decreases significantly and more acicular ferrite appears. In the partially melted zone, a large amount of fine grains appear. In the heat-affected zone, the width of the tempered zone increases with increasing modulation frequency and the microstructure is refined. The results show that arc-ultrasonic is a new and effective way for improving weld quality.

  7. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  8. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    Science.gov (United States)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2017-02-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  9. Simultaneous Modification of Alumina and MgO·Al2O3 Inclusions by Calcium Treatment During Electroslag Remelting of Stainless Tool Steel

    Science.gov (United States)

    Shi, Cheng-Bin; Yu, Wen-Tao; Wang, Hao; Li, Jing; Jiang, Min

    2016-08-01

    Calcium modification of both alumina and MgO·Al2O3 inclusions during protective gas electroslag remelting (P-ESR) of 8Cr17MoV stainless steel and its effect on nitrides and primary carbides were studied by analyzing the transient evolution of oxide and sulfide inclusions in the P-ESR process. The oxide inclusions that were not removed during P-ESR without calcium treatment were found to retain their original state until in as-cast ingot. Calcium treatment modified all MgO·Al2O3 and alumina inclusions that had not been removed in the P-ESR process to liquid/partially liquid CaO-Al2O3-(MgO) with uniformly distributed elements, in addition to a small proportion of partially modified inclusions of a CaO-MgO-Al2O3 core surrounded by a liquid CaO-Al2O3. The modification of low-MgO-containing MgO·Al2O3 inclusions involves the preferential reduction of MgO from the MgO·Al2O3 inclusion by calcium and the reaction of calcium with Al2O3 in the inclusion. It is the incomplete/complete reduction of MgO from the spinel by calcium that contributes to the modification of spinels. Alumina inclusions were liquefied by direct reaction with calcium. Calcium treatment during P-ESR refining also provided an effective approach to prevent the formation of nitrides and primary carbides in stainless steel through modifying their preferred nucleation sites (alumina and MgO·Al2O3 inclusions) to calcium aluminates, which made no contribution to improving the steel cleanliness.

  10. Analysis of the process of evaluation of plans of arcoterapia volumetric (Rapid Arc) with an array of detectors; Analisis del proceso de evaluacion de planes de arcoterapia volumetrica (RapidArc) con una matrix de detectores MatriXXEvolution

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Pacho, J. A.; Martin Rincon, C.; Saez Beltran, M.; Verde Velasco, J. M.; Garcia Repiso, S.; Delgado Aparicio, J. M.; Perez Alvarez, M. E.; Cons Perez, N.; Gomez Gonzalez, N.; Sena Espinel, E.

    2013-07-01

    The objective of this work is to analyze this procedure, comparing the results obtained with the dose level exported of planner, processed taking into account the size of the detectors and the separation between them. In addition, dose level calculated with its original resolution is compared with the measure made with radiochromic film. (Author)

  11. 厚板铝合金变极性等离子弧焊工艺%Research on VPPA helium arc welding process of thick Al-Mg alloy plate

    Institute of Scientific and Technical Information of China (English)

    薛根奇; 马丽

    2012-01-01

    分析铝镁合金的焊接特性和变极性等离子弧焊的焊接特点及氩-氦电弧的特性,依据8~12 mm板厚5083的焊接经验,选用变极性等离子孤焊,分别采用氩气、氩气+氦气作为保护气体,对16 mm厚的5083铝合金进行焊接试验,通过优化焊接工艺参数,获得良好的焊缝成形;按JB/T 4730《承压设备无损检测》的要求对获得的焊接接头进行射线检测和渗透检测,通过机械性能试验验证焊接接头的机械性能,各项检测及试验结果均符合NB/T 47014《承压设备焊接工艺评定》的要求,获得的焊接工艺规范参数在高压封闭电器外壳筒体的焊接中稳定应用.%Based on the welding properties of aluminum-magnesium alloy,the welding characteristics of variable polarity plasma arc welding (VPPAW)and Argon-helium mixed arc,relay on the practical experience of 8-12mm 5083 alloy in variable polarity plasma arc welding,The variable polarity plasma helium arc welding was used to weld 16mm thick plate 5083 alloy with Argon and Argon-helium gas;Optimized welding parameters by study on die welding process,Gain the welded joints with Excellent weld shape,perfect internal quality and excellent mechanical properties. Use the non-destructive testing of pressure equipment of RT and FT to verify the weld surface and internal quality, verified the mechanical properties of welded joints by mechanical properties tests;The test results in line with the NB/T 47014"welding procedure qualification for pressure equipment",The welding process specification parameters are stable application in the welding of high pressure closed electrical enclosure tube.

  12. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    Science.gov (United States)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  13. Influence of process parameters on the cavitation resistance of arc thermally sprayed cobalt stainless steel; Influencia dos parametros de processo na resistencia a cavitacao de uma liga inoxidavel com cobalto aspergido a arco

    Energy Technology Data Exchange (ETDEWEB)

    Pukasiewicz, A. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Capra, A.R.; Chandelier, J. da L. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], e-mail: anderson.geraldo@lactec.org.br; Paredes, R.S.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    In this work the influence of the arc thermal spraying process on the microstructure, oxide volumetric fraction, porosity and cavitation resistance was studied. The characterization was performed by optical and electrical microscopy, microhardness and ultrasonic cavitation test, ASTM G32-96 in AS895HY cobalt stainless steel. The increase in air pressure, 280 to 410 kPa, modified the oxide fraction from 17,2 +- 3,6% to 10,9 +-1,8%, in the samples without pre-heating treatment. With 120 deg C pre-heating treatment the oxide fraction increase from 24,1 +- 2,8% to 12,8 +- 1,9% when the air pressure was modified from 280 to 550 kPa. The mass loss in vibration-induced cavitation were 1,55 and 1,42 mg/h for 410 kPa AS895HY samples, with and without pre heating treatment, and 2,12 mg/h for 280 kPa samples without pre heating treatment. The results showed that the process parameters modified the microstructure and the cavitation resistance of the arc thermal spraying coatings. (author)

  14. Mechanical properties of API X80 steel pipe joints welded by Flux Core Arc Weld Process; Propriedades mecanicas de juntas de tubos de aco API X80 soldadas com arame tubulares

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Robert E. Cooper; Silva, Jose Hilton F.; Trevisan, Roseana E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Fabricacao

    2003-07-01

    Flux Core Arc Welding processes (FCAW) are beginning to be applied in pipeline welds, however, very limited experimental data regarding mechanical properties of pipeline weld joints with these processes are available in the literature. In this paper, the effects of preheat temperature and type of FCAW on mechanical properties (microhardness and tensile strength) of API X80 weld joint steel are presented. FCAW processes with gas protection and self-shielded were used. Multipasses welding were applied in 30'' diameter and 0,625'' thickness tubes. Influence factors were: FCAW type and preheat temperature. Acceptance criteria of welded joints were evaluated by API 1104 standard for tensile strength test and ASTM E384-99 for microhardness test. The results obtained showed that FCAW type and preheat temperature have no influence on mechanical properties of API X80 joint steel. (author)

  15. Investigation of optimal control system for arc spraying

    Institute of Scientific and Technical Information of China (English)

    Li Heqi; Li Chunxu

    2005-01-01

    Arc-voltage feedback PID ( Proportional plus Integral plus Differential) controller and arc-current feedback PID controller are designed with an algorithm of discrete PID. In order to realize parameters optimization and adaptation of the arc-spraying process and to reduce blindness in selecting process parameters, a serial communication interface between PC and MCU (Micro Control Unit) is designed so that on-line modification of the PID control parameters is implemented. A genetic algorithm is adopted to optimize PID control parameters. Meanwhile, the error between the actual value and the setting value of spraying current is selected as the judgment criterion to determine the adaptability for the algorithm. The best optimal population of PID control parameters can be obtained, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc-spraying is obtained.

  16. Structure property characterization of rheocast and VADER processed IN-100 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.J.A.

    1985-01-01

    Two recent solidification processes were applied in production of IN-100 nickel-base superalloy: rheocasting and Vacuum ARc Double Electrode Remelting (VADER). A high vacuum furnace for rheocasting superalloys was built and was used to rheocast ingots under different processing conditions. Processing variables evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp. As-cast ingots were subjected to various thermal treatments including hot isostatic pressing and heat treatment. As-cast and thermally treated materials were characterized using optical and scanning electron microscopy and microprobe analysis. Both rheocasting and VADER-processed materials yield fine and equiaxed spherical structures, where the extent of macrosegregation is lesser in comparison to conventionally produced ingot material. In rheocasting, the formation of nondendritic structures is discussed further on the basis of the model of dendrite arm fragmentation. At a constant cooling rate, the grain size and macrosegregation of the as-cast ingot is reduced by increasing the stirring speed, isothermal stirring time or the volume fraction solid during solidification, however, stirring speed has a more pronounced effect on grain refinement and macro-scale chemical homogeneity than the other two variables. The degree of the microsegregation decreases with increasing volume fraction solid and/or isothermal stirring time.

  17. Using the ARCS Model To Design Multimedia College Engineering Courses.

    Science.gov (United States)

    Shellnut, Bonnie; Savage, Timothy; Knowlton, Allie

    This paper describes how a Wayne State University (Michigan) multimedia design team is applying Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) Model of Motivational Design to the entire process of design, development, and evaluation of multimedia courseware. The ARCS Model has been applied to the prototype module and is being…

  18. Applying the ARCS Motivation Model in Technological and Vocational Education

    Science.gov (United States)

    Liao, Hung-Chang; Wang, Ya-huei

    2008-01-01

    This paper describes the incorporation of Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) motivation model into traditional classroom instruction-learning process. Viewing that technological and vocational students have low confidence and motivation in learning, the authors applied the ARCS motivation model not only in the…

  19. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  20. The arc arises: The links between volcanic output, arc evolution and melt composition

    Science.gov (United States)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of

  1. Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshitake, Tsuyoshi; Nishiyama, Takashi; Nagayama, Kunihito

    2010-08-01

    The deposition of ultrananocrystalline diamond (UNCD)/amorphous carbon composite films using a coaxial arc plasma gun in vacuum and, for comparison, in a 53.3 Pa hydrogen atmosphere was spectroscopically observed using a high-speed camera equipped with narrow-band-pass filters. UNCD crystallites with diameters of approximately 1.6 nm were formed even in vacuum. These extremely small crystallites imply that the formation is predominantly due to nucleation without the subsequent growth. Even in vacuum, emissions from C+ ions, C atoms, and C2 dimers lasted for approximately 100 µs, although the emission lifetimes of these species are generally 10 ns. We consider that the nucleation is due to the supersaturated environment containing excited carbon species with large number densities.

  2. Motion of polar cap arcs

    Science.gov (United States)

    Hosokawa, K.; Moen, J. I.; Shiokawa, K.; Otsuka, Y.

    2011-01-01

    A statistics of motion of polar cap arcs is conducted by using 5 years of optical data from an all-sky imager at Resolute Bay, Canada (74.73°N, 265.07°E). We identified 743 arcs by using an automated arc detection algorithm and statistically examined their moving velocities as estimated by the method of Hosokawa et al. (2006). The number of the arcs studied is about 5 times larger than that in the previous statistics of polar cap arcs by Valladares et al. (1994); thus, we could expect to obtain more statistically significant results. Polar cap arcs are found to fall into two distinct categories: the By-dependent and By-independent arcs. The motion of the former arcs follows the rule reported by Valladares et al. (1994), who showed that stable polar cap arcs move in the direction of the interplanetary magnetic field (IMF) By. About two thirds of the arcs during northward IMF conditions belong to this category. The latter arcs always move poleward irrespective of the sign of the IMF By, which possibly correspond to the poleward moving arcs in the morning side reported by Shiokawa et al. (1997). At least one third of the arcs belong to this category. The By-dependent arcs tend to move faster when the magnitude of the IMF By is larger, suggesting that the transport of open flux by lobe reconnection from one polar cap compartment to the other controls their motion. In contrast, the speed of the By-independent arcs does not correlate with the magnitude of the By. The motions of both the By-dependent and By-independent arcs are most probably caused by the magnetospheric convection. Convection in the region of By-dependent arcs is affected by the IMF By, which indicates that their sources may be on open field lines or in the closed magnetosphere adjacent to the open-closed boundary, whereas By-independent arcs seem to be well on closed field lines. Hence, the magnetospheric source of the two types of arc may be different. This implies that the mechanisms causing the

  3. Structure-property characterization of rheocast and VADER processed IN-100 superalloy. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Cheng, J. J. A.; Apelian, D.

    1985-01-01

    Two recent solidification processes have been applied in the production of IN-100 nickel-base superalloy: rheocasting and vacuum arc double electrode remelting (VADER). A detailed microstructural examination has been made of the products of these two processes; associated tensile strength and fatigue crack propagation (FCP) rate at an elevated temperature were evaluated. In rheocasting, processing variables that have been evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp., New Hartford, NY. As-cast ingots were subjected to hot isostatic pressing (HIP) and heat treatment. Both rheocasting and VADER processed materials yield fine and equiaxed spherical structures, with reduced macrosegregation in comparison to ingot materials. The rheocast structures are discussed on the basis of the Vogel-Doherty-Cantor model of dendrite arm fragmentation. The rheocast ingots evaluated were superior in yield strength to both VADER and commercially cast IN-100 alloy. Rheocast and VADER ingots may have higher crack propagation resistance than P/M processed material.

  4. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  5. Gas tungsten arc welder with electrode grinder

    Science.gov (United States)

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  6. Calculation of the Dynamic Characteristics of an Electric Arc Subjected to Forced Extinction

    Science.gov (United States)

    Nekrasov, S. A.

    2016-11-01

    Models and methods of calculating the currents in a free-burning arc and in an arc in an arc chute with magnetic blow and the voltages across them in the process of their extinction are considered. A comparison of calculation and experimental data has been performed.

  7. Gas Arcs in Comet Hyakutake: Revisited

    Science.gov (United States)

    Combi, M. R.; Harris, W. M.; Kabin, K.

    2000-10-01

    The recent break-up of the nucleus of Comet LINEAR S4 demonstrates that fragmentation is an important cometary process and that it is not a rare phenomenon. Comet Hyakutake (1996 B2) underwent an outburst of gas production on March 21, 1996. Subsequent to the outburst, fragments, or condensations as they have been called, were observed moving tailward from the position of the nucleus. Arc-shaped structures were seen in images of gas species (OH, CN and C2) providing clear evidence of production of gas from cometary nucleus debris also tailward of the nucleus. We have already (Harris et al. 1997, Science 277, 676) described observations taken with the WIYN telescope consisting of a 6-hour time sequence of images on March 26, 1996 of CN and dust continuum and a single OH image showing that the arc, and by inference it's source, was generally moving tailward with the visible condensations. The entire OH arc was reproduced using a kinetic Direct Simulation Monte Carlo (DSMC) calculation for water and all its photodissociation products. DSMC is suited to this physical environment that is in transition from fluid conditions in the inner coma to free-expansion in the outer coma. Our model asuming a string of fragments within the apex of the arc (i.e., the intersection of the arc and the tailward sun-comet line) reproduced the arc. Here we present a more extensive parameter study of the arc using DSMC and a solution of the standard perfect-fluid Euler equations. We find that a secondary source just behind the apex of the arc can reproduce the OH arc, but the location of the source must be much closer to the apex than indicated by solutions of the Navier-Stokes equations (NSE) (Rodionov et al. 1998, Icarus 136, 232). We find that we must use unrealistically large collision cross sections to reproduce the NSE results, and that the NSE results are not substantially different from a simpler Euler equation approach. This work has been supported by NASA Planetary Atmospheres

  8. Magmatic evolution of the Sarapiqui Miocene Arc, Costa Rica, Central America

    Science.gov (United States)

    Gazel, E.; Alvarado, G. E.; Carr, M. J.; Obando, J.; Alfaro, A.

    2005-12-01

    The Sarapiqui Miocene Arc (22.2-11.4 Ma) is located in the modern back-arc region of northern Costa Rica, Central America. The arc basement is represented by serpentinized peridotites, Albian silicic pelagites, and Paleocene to Middle Eocene turbidites. Magmatic units vary from basalts to rhyolites and include lavas, pyroclastic deposits, and a few subvolcanic bodies. The magmatic evolution of the Sarapiqui Miocene Arc consists of three distinct stages: 1) Jardin Basalts (22.2 Ma) showing a primary tendency with high MgO, Ni, Cr, and Nb, high initial La/Yb ratios, and low Ba/La which increase with the slab fluids addition; 2) Arrepentidos Basaltic-andesites, Chaparron Pyroclasts, Hito Sar Basalts, Boca Tapada Gabro, and Chamorro Andesites, that represent the island arc evolution from 17.2 to 11.4 Ma; and 3) Crucitas Rhyolites (14.3 Ma) characterizated by low TiO2 and very high Ba/La ratios represent non-cogenetic, but contemporaneous felsic magmas produced by remelting of pre-existing intrusives. The REE patterns indicate a plagioclase rich, amphibole bearing source for this last unit. The Zr/Nb ratios (7-36) are evidence of the coalescing of a minor OIB source with a dominant MORB source, both modified by subduction. 87Sr/86Sr correlate positively with Ba/La; however, they are still within the OIB field. An inverse model using the REEs of the mafic units is consistent with a source mantle composition of garnet peridotite. All but one of the units show LILE enrichments and HFSE depletions typical of the island arc environment. The exception is a suite of near primary magmas, included in the Jardin Basalts, which probably originated by decompression melting. The Ba/La and La/Yb ratios of the Sarapiqui Miocene Arc are very similar to those of the modern Northern Costa Rican Arc, suggesting that the subduction fluid composition and the degree of partial melting have not changed significantly in the last 20 Ma.

  9. Optimization of the Arc Spraying Process Parameters of the Fe–Base Mn-Si-Cr-Mo-Ni Coatings for the Best Wear Performance

    Directory of Open Access Journals (Sweden)

    Justinas GARGASAS

    2016-05-01

    Full Text Available In this paper, the use of Fe–base Mn-Si-Cr-Mo-Ni and Fe–base Mn-Si-Cr wires for thermal arc spraying is presented. For this purpose the mechanical and physical properties of coatings were evaluated. The quality of the coating’s was dependent on the selected equipment, spray materials, technological parameters of the spray and spray technology. The aim was to qualify and optimize the parameters for spray coating to get the best coatings properties with good tribological properties. All coatings were deposited on mild steel S235JR substrates. Two experimental cored wires of unique chemical composition – STEIN-MESYFIL 932 V and STEIN-MESYFIL 954 V – were used for thermal arc spraying. The wires of 1.6 mm diameter were used for the surfacing material. Hardness, porosity and oxide measurements were used to verify the spray parameters and analyze the coatings. Rubber wheel test, which is based on the standard ASTM G65, was used. Dry-sand, rubber-wheel procedure according ASTM G65 was used to investigate low stress abrasion, whereas for high stress abrasion investigations a rubber wheel was used. This experiment was carried out by changing the speed of disc friction, travel distance and measuring the mass loss of surface friction. Miller Test according to ASTM G75-95 Standard was carried out in experiment with friction. The samples were immersed in water with corundum and polished with 22 N load, for 8 hours. Furthermore a correlation was performed between the spraying current and voltage parameter. The coatings’ cross sections were examined using scanning electron microscope (SEM and optical microscopy. The influence of the composite components of the coatings’ microstructure, such as porosity, microhardness, oxide inclusions, on the tribological properties of thermal sprayed coatings is discussed in this paper. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7339

  10. Optimization of the Arc Spraying Process Parameters of the Fe–Base Mn-Si-Cr-Mo-Ni Coatings for the Best Wear Performance

    Directory of Open Access Journals (Sweden)

    Justinas GARGASAS

    2016-05-01

    Full Text Available In this paper, the use of Fe–base Mn-Si-Cr-Mo-Ni and Fe–base Mn-Si-Cr wires for thermal arc spraying is presented. For this purpose the mechanical and physical properties of coatings were evaluated. The quality of the coating’s was dependent on the selected equipment, spray materials, technological parameters of the spray and spray technology. The aim was to qualify and optimize the parameters for spray coating to get the best coatings properties with good tribological properties. All coatings were deposited on mild steel S235JR substrates. Two experimental cored wires of unique chemical composition – STEIN-MESYFIL 932 V and STEIN-MESYFIL 954 V – were used for thermal arc spraying. The wires of 1.6 mm diameter were used for the surfacing material. Hardness, porosity and oxide measurements were used to verify the spray parameters and analyze the coatings. Rubber wheel test, which is based on the standard ASTM G65, was used. Dry-sand, rubber-wheel procedure according ASTM G65 was used to investigate low stress abrasion, whereas for high stress abrasion investigations a rubber wheel was used. This experiment was carried out by changing the speed of disc friction, travel distance and measuring the mass loss of surface friction. Miller Test according to ASTM G75-95 Standard was carried out in experiment with friction. The samples were immersed in water with corundum and polished with 22 N load, for 8 hours. Furthermore a correlation was performed between the spraying current and voltage parameter. The coatings’ cross sections were examined using scanning electron microscope (SEM and optical microscopy. The influence of the composite components of the coatings’ microstructure, such as porosity, microhardness, oxide inclusions, on the tribological properties of thermal sprayed coatings is discussed in this paper. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7339

  11. ArcAid Interactive Archery Assistant

    Directory of Open Access Journals (Sweden)

    Jeroen Vervaeke

    2015-12-01

    Full Text Available This paper describes the design process of a bow aiming system, called ArcAid, which is an interactive archery assistant. The main goal of ArcAid is to introduce a way for beginner Robin Hoods to learn the art of archery to its fullest. In order to achieve this goal, our smartphone-based design focuses on a fun and interactive learning process that gives constant feedback to the user on how to hit a certain goal. A SPIKE high- end laser sensor is used for the distance measurement and the smartphone’s accelerometer is used to define the angle of inclination. To measure the force on the arrow and the displacement of the string, a flex sensor is attached upon one of the arcs of the bow. All sensor data is processed in an Arduino Nano microprocessor and feedback to the user is given by a dedicated smartphone app. In this paper, we mainly focus on the construction, mechanics and electronics of the ArcAid bow and on the design of the mobile app, which is the game controller. Furthermore, we briefly discuss some future development ideas.

  12. Correction factor based double model fuzzy logic control strategy of arc voltage in pulsed MIG welding

    Institute of Scientific and Technical Information of China (English)

    Wu Kaiyuan; Huang Shisheng; Meng Yongmin

    2005-01-01

    According to the feature of arc voltage control in welding steel using pulsed MIG welding, a correction factor based double model fuzzy logic controller (FLC) was developed to realize the arc voltage control by means of arc voltage feedback.When the error of peak arc voltage was great, a coarse adjusting fuzzy logic control rules with correction factor was designed,in the controller, the peak arc voltage was controlled by the wire feeding speed by means of arc voltage feedback. When the error of peak arc voltage was small, a fine adjusting fuzzy logic control rules with correction factor was designed, in this controller, the peak arc voltage was controlled by the background time by means of arc voltage feedback. The FLC was realized in a Look-Up Table ( LUT) method. Experiments had been carried out aiming at implementing the control strategy to control the arc length change in welding process. Experimental results show that the controller proposed enables the consistency of arc length and the stabolity of arc voltage and welding process to be achieved in pulsed MIG welding process.

  13. Effects of Y2O3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process

    Institute of Scientific and Technical Information of China (English)

    HOU Qingyu; HUANG Zhenyi; GAO Jiasheng

    2007-01-01

    Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobalt-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.

  14. The ARCS radial collimator

    OpenAIRE

    Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...

  15. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-12-01

    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  16. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  17. Microstructural revolution of CIGS thin film using CuInGa ternary target during sputtering process

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kuang-Hsiang [Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan (China); Su, Cherng-Yuh, E-mail: cysu@ntut.edu.tw [Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan (China); Ding, Yu-Ting [Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan (China); Pan, Cheng-Tang [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CuInGa (CIG) ternary targets were prepared by vacuum arc remelting. Black-Right-Pointing-Pointer The sputtering energy has a great influence on microstructure of CIG films. Black-Right-Pointing-Pointer Increase in sputtering energy resulted in phase transformation and indium loss. Black-Right-Pointing-Pointer The surface roughness of CIGS films is determined by the morphology of precursors. Black-Right-Pointing-Pointer Rough surface enriched in In lead to poor crystalline CIGS containing InSe phases. - Abstract: CuInGa (CIG) ternary targets were prepared by vacuum arc remelting and used to deposit CIG thin films through direct current (DC) sputtering. We adjusted the sputtering energy (1-2 kWh) by tuning both the sputtering power and the accumulative sputtering time. The impact of the varying sputtering energy on the microstructure of CIG targets and thin films was subsequently investigated. The experimental results indicated that the compositional uniformity of CIG targets is strongly influenced by this parameter. CIG thin films with a flat topography, low porosity, and dense grain boundaries were obtained when targets were accumulatively sputtered at 1 kWh. These films showed good compositional uniformity while the CIG targets were found to maintain their microstructural characteristics as compared to their as-melted counterparts. On the other hand, Cu(In,Ga)Se{sub 2} (CIGS) thin films, obtained by a selenization process, exhibited large faceted grains composed of a single chalcopyrite phase with a preferred orientation along the (1 1 2) plane. Accumulative sputtering of CIG targets at higher energies (e.g., 2 kWh) resulted in phase transformation and loss of In material as a result of an excess of residual heat budget on the surface generated by Ar ions bombardment. The CIG thin films thus showed an In-rich composition ratio, thereby potentially leading to In-rich CIGS thin films containing traces of an InSe compound.

  18. Magnesium isotope geochemistry in arc volcanism

    Science.gov (United States)

    Teng, Fang-Zhen; Hu, Yan

    2016-01-01

    Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ26Mg of the Martinique Island lavas varies from −0.25 to −0.10, in contrast to the narrow range that characterizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid−mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration. PMID:27303032

  19. Application of Python in ArcGIS%Python在ArcGIS中的应用

    Institute of Scientific and Technical Information of China (English)

    朱道强; 关海涛

    2013-01-01

    通过简要介绍利用Python语言编写脚本在ArcGIS中进行数据批处理的基础方法,提出了一种减轻现今数据生产中作业人员进行数据处理强度的方法.%Through a brief introduction on the use of Python language data batch processing based method for script in ArcGIS,thus put forward the method to reduce the data in the production operation personnel data processing strength.

  20. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  1. Arc-preserving subsequences of arc-annotated sequences

    CERN Document Server

    Popov, Vladimir Yu

    2011-01-01

    Arc-annotated sequences are useful in representing the structural information of RNA and protein sequences. The longest arc-preserving common subsequence problem has been introduced as a framework for studying the similarity of arc-annotated sequences. In this paper, we consider arc-annotated sequences with various arc structures. We consider the longest arc preserving common subsequence problem. In particular, we show that the decision version of the 1-{\\sc fragment LAPCS(crossing,chain)} and the decision version of the 0-{\\sc diagonal LAPCS(crossing,chain)} are {\\bf NP}-complete for some fixed alphabet $\\Sigma$ such that $|\\Sigma| = 2$. Also we show that if $|\\Sigma| = 1$, then the decision version of the 1-{\\sc fragment LAPCS(unlimited, plain)} and the decision version of the 0-{\\sc diagonal LAPCS(unlimited, plain)} are {\\bf NP}-complete.

  2. Laser post-processing of Inconel 625 made by selective laser melting

    Science.gov (United States)

    Witkin, David; Helvajian, Henry; Steffeney, Lee; Hansen, William

    2016-04-01

    The effect of laser remelting of surfaces of as-built Selective Laser Melted (SLM) Inconel 625 was evaluated for its potential to improve the surface roughness of SLM parts. Many alloys made by SLM have properties similar to their wrought counterparts, but surface roughness of SLM-made parts is much higher than found in standard machine shop operations. This has implications for mechanical properties of SLM materials, such as a large debit in fatigue properties, and in applications of SLM, where surface roughness can alter fluid flow characteristics. Because complexity and netshape fabrication are fundamental advantages of Additive Manufacturing (AM), post-processing by mechanical means to reduce surface roughness detracts from the potential utility of AM. Use of a laser to improve surface roughness by targeted remelting or annealing offers the possibility of in-situ surface polishing of AM surfaces- the same laser used to melt the powder could be amplitude modulated to smooth the part during the build. The effects of remelting the surfaces of SLM Inconel 625 were demonstrated using a CW fiber laser (IPG: 1064 nm, 2-50 W) that is amplitude modulated with a pulse profile to induce remelting without spallation or ablation. The process achieved uniform depth of melting and improved surface roughness. The results show that with an appropriate pulse profile that meters the heat-load, surface features such as partially sintered powder particles and surface connected porosity can be mitigated via a secondary remelting/annealing event.

  3. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  4. Application of ArcGIS in the Interior Work of Geographical Conditions Census%ArcGIS在地理国情普查内业中的应用

    Institute of Scientific and Technical Information of China (English)

    吴盛; 高子让

    2015-01-01

    本文将ArcGIS技术与地理国情普查的内业工作结合起来,在地理国情普查内业处理中,通过对ArcGIS的Topology工具及ArcToolbox的运用,综合分析ArcGIS软件在内业数据整理的优缺点。%This article combined ArcGIS technology with the interior work of the geography conditions census. In dealing with the interior work of geography conditions census, we generally analized the advantages and disadvantages of ArcGIS software in the interior data processing by the use of the Topology tools and ArcToolbox tools of Arcgis.

  5. 焊剂带约束电弧超窄间隙焊接工艺实验%Processing Experiment of Ultra-narrow Gap Welding with Constrained Arc by Flux Strips

    Institute of Scientific and Technical Information of China (English)

    朱亮; 冯志鹏; 李宗志

    2011-01-01

    The behaviors of arc constrained by flux strips were basically understood, which has obvious advantages for ultra-narrow gap welding. With 4 mm wide square groove, 30 mm thick steel plate, a series of multi-layer and single-pass ultra-narrow gap welding experiments were conducted. The welded joint was completed by root welding, filling welding and cover welding, their welding parameters were obtained from the experimental analysis. The results show that the energy input of this processing is low (about 0.6 kJ/mm). The width of heat-affected zone of welded joint was narrow (about 1.3 mm). Using H08Mn2Si wire of carbon-dioxide arc welding, the hardness in weld bead can increase about 60% by adopting ultra-narrow gap welding compared with that of adopting carbon-dioxide arc welding.%焊剂带约束电弧的行为已有基本的认识,用于超窄间隙焊接有明显的优势.在间隙宽度为4mm、钢板厚度为30mm的I形坡口中,进行多层单道焊剂带约束电弧超窄间隙焊接试验.整个焊接接头要通过根焊、填充焊和盖面焊来完成,通过试验分析得到各焊道所对应的焊接工艺参数.这种超窄间隙焊接方法线能量低,约为0.6kJ/mm;所得到焊接接头的热影响区宽度窄,约为1.3 mm;采用常规的CO2气保焊焊丝H08Mn2Si,超窄间隙焊缝硬度比CO2气保焊焊缝硬度提高60%.

  6. Computer simulation to arc spraying

    Institute of Scientific and Technical Information of China (English)

    梁志芳; 李午申; 王迎娜

    2004-01-01

    The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.

  7. Aplicabilidad del monitoreo de emisiones del arco eléctrico para el control de calidad en el proceso MAG-S Applicability of monitoring of electric arc emissions for quality control in MAG-S process

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2011-12-01

    TIG welding processes. During welding, the arc produces acoustic and electromagnetic emissions that occur as sound and light. The aim of this paper is to show that the emissions of the welding arc can be used to monitoring the quality of welding in MAG-S process. Multiple welding experiments were performed in flat position; in each experiment were induced perturbations by grease on plate and shielding gas absence. Current and voltage signals and arc emission signals were acquired simultaneously. The short circuit frequency was measured from acoustic and electromagnetic emission in the ultraviolet band. The welding stability was measured from infrared emission. The results show that the emissions of welding arc can be used for monitoring and detecting of disturbances in welding and with the understanding of the variations of each disturbance could be possible to identify certain types of disturbances.

  8. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  9. Felsic Magmatism through Intracrustal Melting of Previously Formed Volcanic-Arc Crust: Implications for Differentiation and Secular Evolution of the Continental Crust

    Science.gov (United States)

    G R, R. K.; C, S.

    2015-12-01

    The fundamental challenge in understanding the origin and evolution of the continental crust is to recognize how primary mantle source, and oceanic crust, which are essentially mafic to ultramafic in composition, could differentiate into a more or less felsic compositions. It is possible to understand growth and differentiation of the continental crust by constraining the interplay of magmatism, deformation, and high-grade metamorphism in the lower crust. Here, we apply this knowledge on the lower crustal granitoids of southern India and speculate on the variations in geochemistry as a consequence of differentiation and secular evolution of the continental crust.The major groups of granitoids of southern India are classified as metatonalites, comparable to typical Archaean TTGs with pronounced calc-alkaline affinity, and metagranites which are magmatic fractionation produced by reworking of early crust. Metatonalites are sodic-trondhjemites with slightly magnesian, moderate LREE (average LaN = 103) and low HREE (average YbN = 2) characerestics, where as metagranites are calc-alkaline ferroan types with enriched LREE (average LaN = 427) and HREE (average YbN = 23). Petrogenetic characteristics of granitoids illustrate continuous evolution of a primary crust into diverse magmatic units by multiple stages of intracrustal differentiation processes attributed to following tectonic scenarios: (1) formation of tonalitic magma by low- to moderate-degree partial melting of hydrated basaltic crust at pressures high enough to stabilize garnet-amphibole residue and (2) genesis of granite in a continental arc-accretion setting by an episode of crustal remelting of the tonalitic crust, within plagioclase stability field. The first-stage formed in a flat-subduction setting of an volcanic-arc, leading to the formation of tonalites. The heat budget required is ascribed to the upwelling of the mantle and/or basaltic underplating. Progressive decline in mantle potential temperature

  10. Joan of Arc.

    Science.gov (United States)

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  11. The ARCS radial collimator

    Directory of Open Access Journals (Sweden)

    Stone M.B.

    2015-01-01

    Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  12. The ARCS radial collimator

    Science.gov (United States)

    Stone, M. B.; Niedziela, J. L.; Overbay, M. A.; Abernathy, D. L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  13. Plasma ARC keyhole welding of aluminum

    Science.gov (United States)

    Fostervoll, H.

    1993-02-01

    An increasing and more advanced use of aluminum as a construction material make higher demands to the effectiveness and quality in aluminum joining. Furthermore, if the advantages of aluminum shall be exploited in the best possible way, it is necessary to use the best processes available for the certain application. Today, the most widely used processes of aluminum welding are gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW). Plasma arc welding (PAW) is another interesting process, which is rather newly adopted for aluminum welding. However, up to now the use is limited and most of the users are within the space industry in USA (NASA); also the new space industry in Europe has adopted the process. The reason for the great interest for PAW in the space industry is, according to NASA, higher weld quality and less repair costs, less heat distortion, and less groove preparations costs. Of these reasons, PAW should also be of interest for the aluminum industry in Scandinavia. The aim of the project is to focus on the possibilities and to some extent testing the PAW process.

  14. Study on weld formation in a novel rotating arc horizontal GMAW

    Institute of Scientific and Technical Information of China (English)

    Guo Ning; Lin Sanbao; Fan Chenglei; Zhang Yaqi; Yang Chunli

    2009-01-01

    A novel rotating arc horizontal welding process was developed for solving the sagging of the molten pool which bottlenecks the application and the development of the horizontal welding. The principle of the effect of the rotating arc on the molten pool is that the rotating arc process not only can reduce the welding heat input by prolonging the welding path in the same welding distance caused by the arc rotation, but also disperse the arc force to affect the sidewall periodically to support the molten metal near the upper sidewall. The effects of the rotating speed and arc voltage on the weld formation were studied.The results indicate that there is an appropriate range of the rotating speed and the arc voltage to obtain the defect free horizontal welding.

  15. THE INVESTIGATION ON PLASMA ARC TREATMENT OF CHROMIUM PLATED ALLOY STRUCTURE STEEL

    Institute of Scientific and Technical Information of China (English)

    X.M. Fan; J.W. Huang; K.H. Wang; Q. Liu

    2005-01-01

    The technology of plasma arc was used to modify the interface adhesion between chromium coating and steel substrate. The interface microstructure was studied as a function of plasma arc processing parameters. Microstructure analysis was performed by optical microscopy,scanning electron microscopy and electron probe. The microhardness distribution along the depth of a cross-section of the chromium coating and the substrate was measured. The results show the energy density of transferred plasma arc is obviously higher than plasma non-transferred arc. The molten interface was obtained by plasma transferred arc. Interfaces between chromium coating and steel substrate can be divided by plasma non-transferred arc into three classes: non-molten, a little molten and molten. Good interface bonding was obtained by proper process parameters. The microhardness of chromium coating decreases with increasing energy density of plasma arc.

  16. Simulation and Experimental Study of Arc Column Expansion After Ignition in Low-Voltage Circuit Breakers

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang

    2008-01-01

    The dynamicprocess of arc pressure and corresponding arc column expansion, which is the main feature after arc ignition and has a significant effect on the breaking behaviour of low -voltage circuit breakers, is studied. By constructing a three dimensional mathematical model of air arc plasma and adopting the Control Volume Method, the parameters of arc plasma including temperature and pressure axe obtained. The variations of pressure field and temperature field with time are simulated. The result indicates that there are six stages for the process of arc column expansion according to the variation of pressure in arc chamber. In the first stage, the maximal pressure locates in the region close to cathode, and in the second stage the maximal pressure shifts to the region close to the anode. In the third stage, the pressure difference between the middle of arc column and the ambient gas is very large, so the arc column begins to expand apparently. In the fourth stage, the pressure wave propagates towards both ends and the maximal pressure appears at the two ends when the pressure wave reaches both sidewalls. In the fifth stage, the pressure wave is reflected and collides in the middle of the arc chamber. In the last stage, the propagation and reflection of pressure wave will repeat several times until a steady burning state is reached. In addition, the experimental results of arc column expansion, corresponding to the arc pressure variation, are presented to verify the simulation results.

  17. Innovation approaches to controlling the electric regimes of electric arc furnaces

    Science.gov (United States)

    Bikeev, R. A.; Serikov, V. A.; Ognev, A. M.; Rechkalov, A. V.; Cherednichenko, V. S.

    2015-12-01

    The processes of current passage in an ac electric arc furnace (EAF) are subjected to industrial experiments and mathematical simulation. It is shown that, when a charge is melted, arcs between charge fragments exist in series with main arc discharges, and these arcs influence the stability of the main arc discharges. The measurement of instantaneous currents and voltages allowed us to perform a real-time calculation of the electrical characteristics of a three-phase circuit and to determine the θ parameter, which characterizes the nonlinearity of the circuit segment between electrodes. Based on these studies, we created an advanced system for controlling the electric regime of EAF.

  18. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  19. Advanced titanium processing

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Alan D.; Gerdemann, Stephen J.; Schrems, Karol K.; Holcomb, Gordon R.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2001-01-01

    The Albany Research Center of the U.S. Department of Energy has been investigating a means to form useful wrought products by direct and continuous casting of titanium bars using cold-wall induction melting rather than current batch practices such as vacuum arc remelting. Continuous ingots produced by cold-wall induction melting, utilizing a bottomless water-cooled copper crucible, without slag (CaF2) additions had minor defects in the surface such as ''hot tears''. Slag additions as low as 0.5 weight percent were used to improve the surface finish. Therefore, a slag melted experimental Ti-6Al-4V alloy ingot was compared to a commercial Ti-6Al-4V alloy ingot in the areas of physical, chemical, mechanical, and corrosion attributes to address the question, ''Are any detrimental effects caused by slag addition''?

  20. Stud arc welding in a magnetic field - Investigation of the influences on the arc motion

    Science.gov (United States)

    Hartz-Behrend, K.; Marqués, J. L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J.

    2014-11-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process.

  1. Numerical and experimental study of transferred arcs in argon

    Energy Technology Data Exchange (ETDEWEB)

    Bini, R [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Monno, M [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Boulos, M I [Centre de Recherche en Energie, Plasma et Electrochimie (CREPE), Department de Genie Chimique Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, J1K1R2 (Canada)

    2006-08-07

    The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall

  2. Composition Gradient Hard Coatings by Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; LIN Guo-qiang; WANG Fu-gang

    2004-01-01

    Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti, M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.Key Words: Arc Ion plating, hard coating, composition gradient coatings

  3. Energy Balance in DC Arc Plasma Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; MENG Yuedong; YU Xinyao; CHEN Longwei; JIANG Yiman; NI Guohua; CHEN Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example,the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  4. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Science.gov (United States)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  5. Arc reattachment driven by a turbulent boundary layer: implications for the sweeping of lightning arcs along aircraft

    Science.gov (United States)

    Guerra-Garcia, C.; Nguyen, N. C.; Peraire, J.; Martinez-Sanchez, M.

    2016-09-01

    A lightning channel attached to an aircraft in flight will be swept along the aircraft’s surface in response to the relative velocity between the arc’s root (attached to a moving electrode) and the bulk of the arc, which is stationary with respect to the air. During this process, the reattachment of the arc to new locations often occurs. The detailed description of this swept stroke is still at an early stage of research, and it entails the interaction between an electrical arc and the flow boundary layer. In this paper we examine the implications of the structure of the boundary layer for the arc sweeping and reattachment process by considering different velocity profiles, both for laminar and turbulent flow, as well as a high fidelity description, using large eddy simulation, of transitional flow over an airfoil. It is found that the local velocity fluctuations in a turbulent flow may be important contributors to the reattachment of the arc, through a combination of an increased potential drop along the arc and local approaches of the arc to the surface. Specific flow features, such as the presence of a laminar recirculation bubble, can also contribute to the possibility of reattachment.

  6. Improved Gas Metal Arc Welding Multi-Physics Process Model and Its Application to MIL A46100 Armor-Grade Steel Butt-welds

    Science.gov (United States)

    2014-01-01

    within the weld. Design/methodology/approach The improved GMAW process model is next applied to the case of butt-welding of MIL A46100 (a...improved GMAW process model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 butt-weld are

  7. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  8. STUDY ON MECHANISM OF ARC-EXCITED ULTRASONIC

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A mechanism of excited arc to be an controlled "ultrasonic emission source" is described. An developed electrical source with an certain frequency bandwidth for the purpose of the arc-excited is connected with an conventional welding power supply through coupling the cables for the experiment. Some resonant frequency bands for the arc-excited ultrasonic are discovered in the welding process, and its frequency, amplitude and phase'shift are recorded. This principle demonstrates that arc can be used not only for a thermal source, but also for an ultrasonic emission source, which may be extent to the industrial application in some new ways, such as for automatic welding process control and quality inspection.

  9. Numerical Simulation of the TIG Welding Arc Behavior

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasmaproperties and its physical processes. Through simultaneous solutions of the set of conservation equations for mass,momentum, energy and current, a mathematical model has been developed to predict the velocity, temperature,and current density distributions in argon welding arcs. The predicted temperature fields in arc regions, and thedistribution of current density and heat flux at the anode agree well with measurements reported in literatures. Thiswork could lay the foundation for developing a comprehensive model of the TIG welding process where a dynamic,two-way coupling between the welding arc and the weld pool surface is properly represented.

  10. Characteristics of Arcs Between Porous Carbon Electrodes

    OpenAIRE

    Carvou, Erwann; Le Garrec, Jean-Luc; Mitchell, Brian

    2013-01-01

    International audience; Arcs between carbon electrodes present some specific differences compared with metallic arcs. The arc voltage is higher, but does not attain a stable value displaying large fluctuations. Indeed, the arcs are produced by the direct sublimation of the electrodes, without passing through a molten phase. The arc production is also facilitated by both circuit breaking and electric field breakdown. In this paper, arcing has been examined under various conditions (voltage, cu...

  11. Next generation high productivity submerged arc welding

    OpenAIRE

    LANGENOJA, MARKUS; Öhrvall Karlsson, Vincent

    2012-01-01

    The task of designing concepts for the next generation of submerged arc welding heads was given by ESAB. ESAB is a global company manufacturing welding equipment for a wide span of industries and uses. In October 2011, ESAB introduced a new technology called Integrated Cold Electrode™, abbreviated and trademarked as ICE™. ICE™ is a technique which utilizes three electrodes in a highly productive and stable process. The current state of the ICE™ technique focuses on welding thick plates with c...

  12. Microstructural revolution of CIGS thin film using CuInGa ternary target during sputtering process

    Science.gov (United States)

    Liao, Kuang-Hsiang; Su, Cherng-Yuh; Ding, Yu-Ting; Pan, Cheng-Tang

    2012-12-01

    CuInGa (CIG) ternary targets were prepared by vacuum arc remelting and used to deposit CIG thin films through direct current (DC) sputtering. We adjusted the sputtering energy (1-2 kWh) by tuning both the sputtering power and the accumulative sputtering time. The impact of the varying sputtering energy on the microstructure of CIG targets and thin films was subsequently investigated. The experimental results indicated that the compositional uniformity of CIG targets is strongly influenced by this parameter. CIG thin films with a flat topography, low porosity, and dense grain boundaries were obtained when targets were accumulatively sputtered at 1 kWh. These films showed good compositional uniformity while the CIG targets were found to maintain their microstructural characteristics as compared to their as-melted counterparts. On the other hand, Cu(In,Ga)Se2 (CIGS) thin films, obtained by a selenization process, exhibited large faceted grains composed of a single chalcopyrite phase with a preferred orientation along the (1 1 2) plane. Accumulative sputtering of CIG targets at higher energies (e.g., 2 kWh) resulted in phase transformation and loss of In material as a result of an excess of residual heat budget on the surface generated by Ar ions bombardment. The CIG thin films thus showed an In-rich composition ratio, thereby potentially leading to In-rich CIGS thin films containing traces of an InSe compound.

  13. Peculiar features of metallurgical processes at plasma-arc spraying of coatings, made of steel wire with powder fillers B4C and B4C+ZrO2

    Directory of Open Access Journals (Sweden)

    Георгій Михайлович Григоренко

    2016-11-01

    Full Text Available The interaction of metallurgical processes occurring in plasma-arc spraying between the steel shell and the carbide fillers of B4C and B4C cored wires with the addition of nanocrystalline ZrO2 powder has been analyzed. Iron-boron compounds alloyed with carbon are formed in ingots as a result of ferritiс coating of wire interacrion with fillers while the ferritic matrix contains boride and carboboride eutectics. Average microhardness of the carboboride compounds and the matrix is high – 17,78; 16,40 and 8,69; 9,95 GPa for the ingots with с B4C and B4C+ZrO2 respectively. The best quality coatings with low porosity (~1%, lamellar structure consisting of ferrite matrix reinforced with dispersed Fe borides, were obtained at a higher heat input (plasmatron current 240-250 A. The average amount of oxides in the coatings makes 15%. 0,5% addition of nanopowder ZrO2 accelerates dispersed iron-boron compounds forming, promotes their uniform distribution in the structure and improves coating microhardness up to 7,0 GPa. Application of the differential thermal analysis method to simulate the interaction processes between the steel shell and the filler during the heating of wire in the shielding gas makes it possible to promote formation of new phases (borides and carboborides of iron and to predict the phase composition of the coatings

  14. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO3 on binary Mg-1.0Ca alloy

    Science.gov (United States)

    Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.

    2015-01-01

    Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.

  15. Anatomy of Intra-Oceanic Arc Systems

    Science.gov (United States)

    Stern, R. J.

    2007-12-01

    Intra-oceanic arc systems (IOAS) are ultimately embedded in orogenic belts and added to the continental crust. Reconstructing fossil IOASs in collision zones requires understanding the salient features of a typical IOAS. IOASs have the relative dimensions of tagliatelle (flat) pasta: much wider (~250 km) than thick (10-30 km), much longer (1000's of km) than wide. IOASs begin to form when subduction begins, either spontaneously (SNSZ) or by forced convergence (INSZ). For SNSZ, IOASs start as broad zones of seafloor spreading associated with subsidence of the adjacent lithosphere, whereas INSZ IOASs are built on trapped crust. IOAS magmatism manifests the evolution of its subduction zone and indirectly the breadth of the subducted ocean. Two stages in SNSZ IOAS magmato-tectonic evolution exist: infancy and maturity. Infancy lasts 5-10 Ma and results in broad zones of seafloor spreading of tholeiite/boninite; this becomes forearc for the mature IOAS and is emplaced as ophiolite during collision (subduction zone failure). Arc maturity begins with true subduction, as the subducted slab reaches depths ~130 km, focusing magmatism to begin building the magmatic arc ~200km away from the trench and allowing the forearc to cool and hydrate. Mature magmatic arcs mostly yield low-K tholeiitic and medium-K calc-alkaline magmas. Magmatic focusing begins crustal thickening beneath the magmatic arc, at ~500m/Ma for the Izu-Bonin-Mariana IOAS. No systematic compositional evolution to more LIL-enriched primitive magmas occurs once IOAS maturity is reached, except when upper plate stress regime (BAB formation, strike- slip faulting) or the nature of subducted material (more/different sediments, young oceanic crust) changes. Thickening is accompanied by processing of crust beneath the magmatic arc, with progressive differentiation into upper volcanic, middle tonalitic, and lower mafic layers, producing an increasingly effective density filter for magma ascent. Crustal layer formation

  16. Mathematical Model and the Simulation of Electrical Arc Welding as Moving Source in Protector Gas Welding

    Directory of Open Access Journals (Sweden)

    Lenuta Suciu

    2006-10-01

    Full Text Available The works presents the mathematical model of electrical arc welding, simulation of the electrical arc as a moving source with help programs software Ansys, passing through three stage of simulation: pre- processing, processing (solution and post-processing.

  17. Investigation of Optimal Control System for Arc Spraying

    Institute of Scientific and Technical Information of China (English)

    LIHe-qi; LIChun-xu; CHENKe-xuan; LUGuang

    2004-01-01

    An arc voltage feedback PID controller and arc current feedback PID controller are designed with a controlal gorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation, so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.

  18. Investigation of Optimal Control System for Arc Spraying

    Institute of Scientific and Technical Information of China (English)

    LI He-qi; LI Chun-xu; CHEN Ke-xuan; LU Guang

    2004-01-01

    An arc voltage feedback PID controller and arc current feedback PID controller are designed with a control algorithm of discrete PID separately to realize optimal control in computer controlling arc-spraying system. In order to realize optimization and adaptation of the arc-spraying process parameters as well as to reduce blindness in selecting process parameters, a serial communication interface between a PC for spraying data acquisition and a MCU of the control system is designed so that on-line modification of the PID control parameters is implemented. At the same time, a genetic algorithm is adopted to optimize the control parameters of PID controller, where the difference between the actually sampled value and the setting value of spraying current is made as the judgment criterion to determine the adaptability. The given range of control parameters varies from 0 to 15 and is to be encoded by a coding of four-bit binary string. The optimal population of control parameters of the PID controller can be obtained through reproduction, crossing and mutation,so that the optimal controlling in arc-spraying process is realized and an excellent coating of arc spraying is obtained.

  19. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the first electrode, the arc jet control characteristics excels in the stronger arc current range than 5kA, while for the second electrode, they are effective in the weaker arc current range than 5kA. 6 refs., 19 figs., 1 tab.

  20. Convergent evolution of the arginine deiminase pathway: the ArcD and ArcE arginine/ornithine exchangers.

    Science.gov (United States)

    Noens, Elke E E; Lolkema, Juke S

    2017-02-01

    The arginine deiminase (ADI) pathway converts L-arginine into L-ornithine and yields 1 mol of ATP per mol of L-arginine consumed. The L-arginine/L-ornithine exchanger in the pathway takes up L-arginine and excretes L-ornithine from the cytoplasm. Analysis of the genomes of 1281 bacterial species revealed the presence of 124 arc gene clusters encoding the pathway. About half of the clusters contained the gene encoding the well-studied L-arginine/L-ornithine exchanger ArcD, while the other half contained a gene, termed here arcE, encoding a membrane protein that is not a homolog of ArcD. The arcE gene product of Streptococcus pneumoniae was shown to take up L-arginine and L-ornithine with affinities of 0.6 and 1 μmol/L, respectively, and to catalyze metabolic energy-independent, electroneutral exchange. ArcE of S. pneumoniae could replace ArcD in the ADI pathway of Lactococcus lactis and provided the cells with a growth advantage. In contrast to ArcD, ArcE catalyzed translocation of the pathway intermediate L-citrulline with high efficiency. A short version of the ADI pathway is proposed for L-citrulline catabolism and the presence of the evolutionary unrelated arcD and arcE genes in different organisms is discussed in the context of the evolution of the ADI pathway.

  1. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression.

    Science.gov (United States)

    Li, Yan; Pehrson, Alan L; Waller, Jessica A; Dale, Elena; Sanchez, Connie; Gulinello, Maria

    2015-01-01

    Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.

  2. Arc spot grouping: An entanglement of arc spot cells

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Shin, E-mail: kajita.shin@nagoya-u.jp [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603 (Japan); Hwangbo, Dogyun; Ohno, Noriyasu [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Tsventoukh, Mikhail M. [Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Barengolts, Sergey A. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991 (Russian Federation)

    2014-12-21

    In recent experiments, clear transitions in velocity and trail width of an arc spot initiated on nanostructured tungsten were observed on the boundary of the thick and thin nanostructured layer regions. The velocity of arc spot was significantly decreased on the thick nanostructured region. It was suggested that the grouping decreased the velocity of arc spot. In this study, we try to explain the phenomena using a simple random walk model that has properties of directionality and self-avoidance. And grouping feature was added by installing an attractive force between spot cells with dealing with multi-spots. It was revealed that an entanglement of arc spot cells decreased the spot velocity, and spot cells tend to stamp at the same location many times.

  3. Arc melter demonstration baseline test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  4. Fluoride evaporation and crystallization behavior of CaF2-CaO-Al2O3-(TiO2) slag for electroslag remelting of Ti-containing steels

    Science.gov (United States)

    Shi, Cheng-bin; Cho, Jung-wook; Zheng, Ding-li; Li, Jing

    2016-06-01

    To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2-CaO-Al2O3-(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

  5. Corrosion Resistance of Ni60 Coatings Prepared on Aluminum Bronze Surface by Flame Remelting%铝青铜表面粉末火焰喷涂Ni60合金涂层的耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    韩付会; 昌霞; 张小彬; 黄伟九

    2013-01-01

    Abstract:Ni60 coating was prepared on QAL9-4 aluminum bronze surface by using oxygen-acetylene flame spraying-remelting technology.The corrosion behavior of aluminum bronze matrix and Ni60 coating was studied in 3.5% NaCl solution by using static immersion test,electrochemical experiments,surface analysis technology etc.The results showed that the corrosion resistance of aluminum bronze matrix could be obviously improved after coated with Ni60 ; the corrosion mechanism of matrix was dealuminzation,and the corrosion process of coating was the preferential dissolution of Cr element.%采用氧-乙炔火焰喷涂-重熔技术在QAL9-4铝青铜表面制备Ni60合金涂层,通过静态浸泡试验、电化学实验及表面分析技术等方法对铝青铜基体和Ni60合金涂层在3.5%NaCl溶液中的腐蚀行为进行了研究.结果表明,Ni60合金涂层可以明显提高铝青铜基体的耐蚀性能;基体主要发生脱铝腐蚀,而涂层的腐蚀过程则是铬元素的优先溶解.

  6. Fluoride evaporation and crystallization behavior of CaF2-CaO-Al2O3-(TiO2) slag for electroslag remelting of Ti-containing steels

    Institute of Scientific and Technical Information of China (English)

    Cheng-bin Shi; Jung-wook Cho; Ding-li Zheng; Jing Li

    2016-01-01

    To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2–CaO–Al2O3–(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

  7. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  8. Study on the measure to improve the arc stabilization in smaller current welding for the variable polarity GTAW power source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The variable polarity power source which incorporates a constant current power and a secondary inverter does not need special apparatus for stabilizing arc. The pulse for stabilizing arc is created by the circuit structure itself. The paper analyzes the principle of acquiring the pulse, provides the better method to improve the arc stabilization under smaller welding current. Test shows the arc is highly stable , and the process has no high-frequency electromagnetic interference, which is suitable for automatic welding case.

  9. Surface hardening with remelting of functional surfaces of cast iron camshafts

    Science.gov (United States)

    Chernyshev, A. N.; Kaplina, I. N.; Serapin, M. I.

    1996-10-01

    The most important requirements on engines of passenger cars include a low specific consumption of fuel, which depends on the process of the gas distribution controlled mechanically with the help of the camshaft. In operation, camshafts are subjected to rolling friction with elements of slip. Wear is mainly developed at the top of the cams, causing a change in the design contour. This worsens the operating regime of the gas-distributing mechanism and, correspondingly, the characteristics of the engine. At present, the processes of gas distribution in the engine are optimized using cams with a sharpened profile and a long stroke, with accelerates their wear. This stimulates a search for new methods of increasing the wear resistance of the cam-pusher pair.

  10. Formation process of micro arc oxidation coatings obtained in a sodium phytate containing solution with and without CaCO{sub 3} on binary Mg-1.0Ca alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, Y.Q. [Zhejiang DunAn Light Alloy Technology CO,.LTD, Zhuji 311835 (China); Hunan University of Science and Technology, Xiangtan 411201 (China); Zhang, S.F.; Qu, B. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Guo, S.B. [Hunan University of Science and Technology, Xiangtan 411201 (China); Xiang, J.H., E-mail: xiangjunhuai@163.com [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2015-01-15

    Highlights: • Compared to the Mg phase, the area of Mg{sub 2}Ca phase is much smaller. • The coatings are preferentially developed on the area adjacent to Mg{sub 2}Ca phase. • During MAO process, some sodium phytate molecules are hydrolyzed. • Anodic coatings are developed from uneven to uniform. - Abstract: Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO{sub 3} electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO{sub 3}. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg{sub 2}Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg{sub 2}Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg{sub 2}Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO{sub 3} has minor influence on the calcium content of the obtained MAO coatings.

  11. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  12. 低成本电弧喷涂替代堆焊案例分析研究%A Case Study of the Potential of Wire Arc Spraying As a Cost Effective Alternative to Established Weld Overlay Processes

    Institute of Scientific and Technical Information of China (English)

    Peter Tommy Nielsen; Carsten Jensen; FORCE Technology Denmark

    2014-01-01

    堆焊是一种常规的涂层制备方法,并且制备的涂层可以满足各种性能要求的需要。堆焊在工业中普遍应用,然而,他们有一个共同点,由于涂层制备速度的限制,导致成本相对较高。本文主要关注采用电弧喷涂替代MAG堆焊用于农业装备制造生产线的可行性,例如,耕作设备。与堆焊相比,采用电弧喷涂可以优化五种以上的生产工艺,减少多项生产工艺流程。本文主要目标是应用电弧喷涂工艺获得一个类似或更好的涂层质量。本文中制备的涂层材料重点是降低成本,提高生产效率,其目标是实现耕作设备在复杂耕作条件下具备更高的耐磨性。将涂覆有耐磨涂层的犁头在田间的测试是主要的评定方法。此外,该涂层将采用金相光学显微镜(LOM)和扫描电子显微镜(SEM)观察来解释和支持的现场试验研究结果。%In general, the well established and numerous weld overlay processes are effective and produce coatings,which meet the requirements of their intended usage. Problems and requests within the industries using weld overlay processes are wide spread, however, they have one thing in common. The limiting factors of process speed as well as the relatively high process cost. This paper focuses on the possibilities of using wire arc spraying as an alternative to MAG overlay welding in an established production line of devices used for agricultural purposes, i.e. ploughing. This will optimise the production of components with a factor 5 or more and reduce the number of process steps when using weld overlay. The primary objective is to obtain a similar or better coating quality, when applying wire arc spraying. A minor material study, where the focal point is cost efficiency, is implemented targeting high wear resistance, as well a high tolerance of intense and random impact by various sized hard and abrasive objects during ploughing. The coated

  13. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  14. Graphite electrode arc melter demonstration Phase 2 test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  15. Arc of opportunity.

    Science.gov (United States)

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  16. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1 ’s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression.

    Directory of Open Access Journals (Sweden)

    Yan eLi

    2015-08-01

    Full Text Available Major depressive disorder (MDD is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1, its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc is found to play an important role in modulating dendritic spine density and remodeling. Arc is also found to have a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc’s ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Animal studies of chronic stress models of MDD show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and

  17. ArcGIS Framework for Scientific Data Analysis and Serving

    Science.gov (United States)

    Xu, H.; Ju, W.; Zhang, J.

    2015-12-01

    ArcGIS is a platform for managing, visualizing, analyzing, and serving geospatial data. Scientific data as part of the geospatial data features multiple dimensions (X, Y, time, and depth) and large volume. Multidimensional mosaic dataset (MDMD), a newly enhanced data model in ArcGIS, models the multidimensional gridded data (e.g. raster or image) as a hypercube and enables ArcGIS's capabilities to handle the large volume and near-real time scientific data. Built on top of geodatabase, the MDMD stores the dimension values and the variables (2D arrays) in a geodatabase table which allows accessing a slice or slices of the hypercube through a simple query and supports animating changes along time or vertical dimension using ArcGIS desktop or web clients. Through raster types, MDMD can manage not only netCDF, GRIB, and HDF formats but also many other formats or satellite data. It is scalable and can handle large data volume. The parallel geo-processing engine makes the data ingestion fast and easily. Raster function, definition of a raster processing algorithm, is a very important component in ArcGIS platform for on-demand raster processing and analysis. The scientific data analytics is achieved through the MDMD and raster function templates which perform on-demand scientific computation with variables ingested in the MDMD. For example, aggregating monthly average from daily data; computing total rainfall of a year; calculating heat index for forecasting data, and identifying fishing habitat zones etc. Addtionally, MDMD with the associated raster function templates can be served through ArcGIS server as image services which provide a framework for on-demand server side computation and analysis, and the published services can be accessed by multiple clients such as ArcMap, ArcGIS Online, JavaScript, REST, WCS, and WMS. This presentation will focus on the MDMD model and raster processing templates. In addtion, MODIS land cover, NDFD weather service, and HYCOM ocean model

  18. Effect of laser parameters on arc behavior of laser-TIG double-side welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Miao Yugang; Li Liqun; Zhang Xinge; Chen Yanbin; Wu Lin

    2010-01-01

    The influence of laser parameters on arc behavior of laser-TIG double-side welding was investigated by utilizing CCD sensor and image processing methods. It was found that arc images had an obvious transformation from laser preheating to laser plasma ejected from the keyhole bottom, resulting in the phenomena of arc column convergence and arc root constriction. The attraction phenomenon of the laser and the arc is also found in laser-TIG double-side welding. More noteworthy is that the behavior of arc attraction or constriction became much obvious at a lower current or laser plasma ejected from the keyhole bottom. The decrease in arc voltage had a certain relation with the improvement of arc stability.

  19. Longitudinal development of a substorm brightening arc

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2009-05-01

    Full Text Available We present simultaneous THEMIS-ground observations of longitudinal (eastward extension of a substorm initial-brightening arc at Gillam (magnetic latitude: 65.6° at 08:13 UT on 10 January 2008. The speed of the eastward arc extension was ~2.7 km/s. The extension took place very close to the footprints of the longitudinally separated THEMIS E and D satellites at ~12 RE. The THEMIS satellites observed field dipolarization, weak earthward flow, and pressure increase, which propagated eastward from E to D at a speed of ~50 km/s. The THEMIS A satellite, located at 1.6 RE earthward of THEMIS E, observed fluctuating magnetic field during and after the dipolarization. The THEMIS E/D observations suggest that the longitudinal extension of the brightening arc at substorm onset is caused by earthward flow braking processes which produce field dipolarization and pressure increase propagating in longitude in the near-earth plasma sheet.

  20. Optical diagnostics of a gliding arc.

    Science.gov (United States)

    Sun, Z W; Zhu, J J; Li, Z S; Aldén, M; Leipold, F; Salewski, M; Kusano, Y

    2013-03-11

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

  1. Arc Behavior and Droplet Transfer of CWW CO2 Welding

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong YANG; Chen-fu FANG; Yong CHEN; Guo-xiang XU; Qing-xian HU; Xiao-yan GU

    2016-01-01

    Cable-type welding wire (CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2 mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6 mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were ob-served by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5 times to 0.3 times of the CWW diameter.

  2. Heat transfer modeling of double-side arc welding

    CERN Document Server

    Sun Jun Sheng; Zhang Yan Ming

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  3. Simulation of the Arc Behavior in Puffer-type High Voltage Circuit Breaker Considering the Influence of Nozzle Ablation

    Institute of Scientific and Technical Information of China (English)

    JIANG Xu; ZHONG Jianying; ZHANG Youpeng; ZHANG Gaochao; LI Xingwen; JIA Shenli

    2013-01-01

    In order to investigate the influence of nozzle ablation to arc,a 2 D axisymmetric magneto-hydro-dynamics arc model is developed to simulate the arc behavior during the whole interruption process in a puffer type high voltage circuit breaker,considering the nozzle ablating and the mixing process of Polytetrafluoroethylene(PTFE) vapor with SF6.The results show that the arc radius firstly increases and then decreases as arc current varies according to its sinusoida waveform.At 3.5 ms after arc initiation the nozzle ablation starts,and 2.5 ms later the current nearly reaches its peak value and nozzle ablation develops intensely.Meanwhile the nozzle is blocked by arc at this time and consequently the vapor concentration in nozzle reaches the highest.Then while the current decreasing and open distance increaseing the vapor concentration gradually decreases.Before current zero the extinction peak of arc voltage occurs.It indicates that the PTFE vapor enhances pressure rise in arc quenching chamber and strengthens the arc blocking effect on nozzle; the arc radius is wider and arc temperature is lower when nozzle ablation is considered.

  4. ArcGeomorphometry: A toolbox for geomorphometric characterisation of DEMs in the ArcGIS environment

    Science.gov (United States)

    Rigol-Sanchez, Juan P.; Stuart, Neil; Pulido-Bosch, Antonio

    2015-12-01

    A software tool is described for the extraction of geomorphometric land surface variables and features from Digital Elevation Models (DEMs). The ArcGeomorphometry Toolbox consists of a series of Python/Numpy processing functions, presented through an easy-to-use graphical menu for the widely used ArcGIS package. Although many GIS provide some operations for analysing DEMs, the methods are often only partially implemented and can be difficult to find and used effectively. Since the results of automated characterisation of landscapes from DEMs are influenced by the extent being considered, the resolution of the source DEM and the size of the kernel (analysis window) used for processing, we have developed a tool to allow GIS users to flexibly apply several multi-scale analysis methods to parameterise and classify a DEM into discrete land surface units. Users can control the threshold values for land surface classifications. The size of the processing kernel can be used to identify land surface features across a range of landscape scales. The pattern of land surface units from each attempt at classification is displayed immediately and can then be processed in the GIS alongside additional data that can assist with a visual assessment and comparison of a series of results. The functionality of the ArcGeomorphometry toolbox is described using an example DEM.

  5. Early Devonian back-arc extension in the eastern Central Asian Orogenic Belt: Evidence from a bimodal volcanic sequence from Xilinhot, central Inner Mongolia (North China)

    Science.gov (United States)

    Liao, Wen; Xu, Bei; Wang, Yanyang; Zhao, Pan; Li, Qunsheng

    2017-08-01

    The Early Devonian bimodal volcanic sequence is firstly recognized in the Xilinhot area, central Inner Mongolia (North China). Zircon U-Pb dating of rhyolitic sample gives crystallization age of 407 ± 2 Ma, which is interpreted as the extrusive age of this bimodal volcanic sequence. Basaltic samples belong to tholeiite series whereas rhyolitic samples are peraluminous. Basaltic rocks show typical N-MORB-like REE and trace elemental patterns, with depletion of LREEs and negligible anomalies of Eu (δEu = 0.83-1.00). They have initial 87Sr/86Sr ratios ranging from 0.7077 to 0.7086, and positive εNd(t) values from +7.5to +9.0. By contrast, rhyolitic rocks show enrichment in LREEs and LILEs but depletion in HFSEs, with negative Eu anomalies (δEu = 0.58-0.68). They have negative εNd(t) values from -6.7 to -7.7 and TDM2 (Nd) values from 1695 to 1771 Ma. These elemental and isotopic data indicate that basaltic rocks were derived from a depleted mantle source with input of slab-derived fluids, whereas rhyolitic rocks might have been derived from remelting of Paleoproterozoic crustal materials. From our data and previous geological studies in this region, a back-arc setting was proposed for the Early Devonian bimodal volcanic rocks in the Xilinhot region. Subduction of the Paleo-Asian oceanic lithosphere caused opening of this back-arc basin and upwelling of mantle caused the formation of basalts and provided heat for remelting of crustal materials and formation of rhyolite.the

  6. The composition of the modern juvenile arc crust and the nature of crustal delaminates in arcs (Invited)

    Science.gov (United States)

    Jagoutz, O. E.; Schmidt, M. W.

    2010-12-01

    The intraoceanic Kohistan arc, northern Pakistan, exposes a complete crustal section encompassing infracrustal cumulates formed at ≥ 55 km depth, a broadly basaltic/gabbroic lower crust, a 26 km thick calc-alkaline batholith, and 4 km of a volcanoclastic/sedimentary sequence. The bulk composition of the Kohistan arc crust has been approximated by estimating the relative volumes of exposed rocks through detailed field observations in combination with geobarometric constrains of the units' thicknesses and satellite images for lateral extension. We separated the arc in 3 major lower, mid-, and mid- to upper crustal units containing 14 subunits which compositions were derived from averaging 562 whole rock analyses. The details of the resulting bulk composition depend slightly on the method of integration, but all models yield andesitic bulk supra MOHO compositions. The Kohistan bulk arc composition results very similar to global continental crust estimates indicating that modern arc activity is the dominant process that formed the (preserved) continental crust. Fitting the bulk Kohistan arc crust and the ultramafic cumulates exposed at base of the arc (dunites, wehrlites, websterites, cpx-bearing garnetites and hornblendites, and garnet gabbros) to primitive arc melts with calc-alkaline/tholeiitic, alkaline, and boninitic affinity from various island arcs demonstrates that delamination of wehrlites + garnet hornblendites ± garnet gabbros perfectly explains the evolution from a tholeiitic/calc-alkaline primitive high-Mg basalt to the continental crust. Mass balance demonstrates that volumes of delaminate similar to the continental crust are required. Compared to depleted mantle, the delaminate is enriched in K, Cs, Ba and Pb and depleted in Zr and Th. It has further a subchondritic Nb/Ta and the high Pb and low U concentrations lead to a very unradiogenic Pb isotopy that may compensate for the depleted mantle Our results document that infra arc processes even in a

  7. A New Waste Disposal Technology-plasma arc Pyrolysis System

    Institute of Scientific and Technical Information of China (English)

    黄建军; 施嘉标; 梁荣庆; 刘正之

    2003-01-01

    This paper introduces a new waste disposal technology with plasma arc. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled pyrolysis-thermal destruction and recovery process. It has four advantages, they are completely safe, clean, high-energy synthesis gas, non-toxic vitrified slag and metal.

  8. APPLICATION OF REVERSE OSMOSIS TECHNOLOGY TO THE DESALINATION PROCESS IN SUPPLEMENT WATER FOR SUBMERGED ARC FURNACE%反渗透技术在矿热炉补充水除盐工艺的应用

    Institute of Scientific and Technical Information of China (English)

    吴秋勤; 曾世林; 王正

    2015-01-01

    This paper introduced the application of reverse osmosis technology to the desalination process in supplement water for submerged arc furnace. It tested the effects of original water suspended matter concentration,hardness and static pressure difference both sides of RO membrane on system operation, water yield and desalination rate. The result shows that original water suspended matter has great effects on system water production and original water hardness has less ef-fect on RO water production. It is beneficial to enhance desalination to decrease the static pressure difference both sides of RO membrane. It plays a key role in normal operation of system to increase combined deep pretreatment, decrease the original water concentration and strengthen germicide and algicide in pretreatment stage.%介绍了反渗透技术在矿热炉补充水除盐工艺中的应用,并进行了原水悬浮物浓度、硬度和RO膜两侧静压差对系统运行状况、产水量和除盐率影响的测试.结果表明,原水悬浮物对系统产水量有严重影响;原水硬度对RO产水量影响相对较小;RO膜两侧静差降低,有利于提高除盐率.增加组合深度预处理工序,降低原水的悬浮物浓度,强化预处理阶段杀菌灭藻,对除盐系统设备正常运行起关键作用.

  9. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  10. Realizing precision pulse TIG welding with arc length control and visual image sensing based weld detection

    Institute of Scientific and Technical Information of China (English)

    孙振国; 陈念; 陈强

    2003-01-01

    Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all-hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm, processing time of each image is less than 120 ms. Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.

  11. Simulation of the Influences of the Pressure Ratio and Cu Vapour on SF6 Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; JIA Shenli; LI Xingwen; SHI Zongqian; WANG Lijun

    2009-01-01

    The inlet and outlet pressure of the SF6 high voltage circuit-breaker nozzle are of importance in determining the thermal interruption capability of a breaker.Besides,electrode evaporation is inevitable during the arcing process,which may affect the SF6 arc behaviour significantly.In this study a numerical investigation on the arc characteristics of a supersonic nozzle is carried out,by considering the influence of the pressure ratio between the inlet and outlet,and the Cu vapour.It is demonstrated that a lower inlet pressure may result in a higher arc temperature,a lower arc voltage and a smaller mach number,and Cu vapour from electrode evaporation may cool the arc significantly.

  12. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  13. Ecton mechanism for the generation of ion flows in a vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    Physical substantiation of the parameters of the ion flow, generated by the vacuum arc cathode spots is given for the first time in this work. The main characteristics of the vacuum arc cathode plasma generation process (the ion erosion, the ions average charge) are considered within the frames, of the ecton model of the vacuum arc cathode spot. According to this model the vacuum arc cathode spot consists of separate cells, emitting ectons. The ions parameter evaluations, obtained within the frames of the ecton model, qualitatively and quantitatively agree with the experimental data

  14. Numerical modeling of volcanic arc development

    Science.gov (United States)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    relaxing slab. In contrast, in case of stable self-sustaining subduction, magmatic rocks produced by partial melting of hydrated mantle wedge clearly dominate the crust. In several numerical experiments an intra-arc extension is observed during subduction. This process results in splitting of previously formed magmatic arc crust by a newly formed spreading center. In all conducted numerical experiments the loci of magmatic activity and intensity of crustal growth is strongly dependent on the dynamics of hydrous partially molten upwellings (cold plumes) rising from the slab. The material forming these plumes can be homogenous (composed of hydrated mantle) or heterogeneous (composed of both hydrated mantle and subducted crustal rocks). In case of heterogeneous plume growth material mix chaotically resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  15. Exposure assessment of aluminum arc welding radiation.

    Science.gov (United States)

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  16. A Carbon Arc Apparatus For Production Of Nanotubes In Microgravity

    Science.gov (United States)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2003-01-01

    Although many methods are available for production of single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow will have large effects on the growth and morphology of SWNTs produced by the arc process. Indeed, using normal gravity experiments, Marin et al. have demonstrated that changes in the buoyant convection plume produced by altering the arc electrode orientation can be used to change the diameter distribution of the SWNTs produced; an effect they attribute to changes in the temperature of the local nanotube growth environment. While these experiments present convincing evidence that buoyant convection has a strong effect on nanotube growth, normal gravity experiments are severely limited in scope. The ideal way to study the effect of buoyancy on SWNT production is to remove it completely. Toward this goal, a microgravity carbon arc reactor has been designed for use in the NASA Glenn 2.2 and 5 second drop towers. Although simple in principle, conventional carbon arc machines, which generally employ large reaction chambers and require heavy duty welding power supplies capable of supplying kilowatts of power, are not suitable for microgravity experiments. Here we describe a miniature carbon arc machine for SWNT production that fits into a conventional drop rig for use on the NASA Glenn 2.2 and 5 second drop towers, but that has a performance (production rate) that is better than most large ground-based machines.

  17. Unique variable polarity plasma arc welding for space shuttle

    Science.gov (United States)

    Schwinghamer, R. J.

    1985-01-01

    Since the introduction of the Plasma Arc Torch in 1955 and subsequent to the work at Boeing in the 1960's, significant improvements crucial to success have been made in the Variable Polarity Plasma Arc (VPPA) Process at the Marshall Space Flight Center. Several very important advantages to this process are given, and the genesis of PA welding, the genesis of VPPA welding, special equiment requirements, weld property development, results with other aluminum alloys, and the eventual successful VPPA transition to production operations are discussed.

  18. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    Science.gov (United States)

    ten Brink, U.S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  19. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  20. Investigation on the arc light spectrum in GTA welding

    Directory of Open Access Journals (Sweden)

    M.S. Węglowski

    2007-01-01

    Full Text Available Purpose: In the paper there are presented results of the influence of welding parameters on spectral intensity ofthe welding arc in the range of 340÷860 nm. The main goal was checking whether the visible radiation of thearc provides information which might prove to be useful in monitoring of the welding process, similarly as thesignals recorded in the electric circuit of the welding arc.Design/methodology/approach: The experimental station was designed and build. A spectrophotometer, in thevisible spectral range of 340 nm to 860 nm, was used. The investigations were conducted on the automated GTAwelding station. For each welding parameter the arc light spectrum was measuredFindings: Research results presented in this paper indicate that the welding arc radiation contains a number ofinformation concerning the course of the welding process. That signal is much more sensitive to the changes ofwelding conditions and should be used as a tool for monitoring of the TIG welding processResearch limitations/implications: The fiber spectrophotometer in the visible spectral range of 340 nm to860 nm is an expensive instrument and that fore it can be used only as a complementary tool in monitoring ofwelding processes.Practical implications: The gained experience allows directing farther research on the welding arc radiationphenomenon and the possibilities of using this signal for on-line monitoring of the welding process onautomated and robotized stands.This sensing system will be particularly attractive for welded structures manufacturing industry because it couldsignificantly reduce the cost for post weld analysis and repairsOriginality/value: Three fitting functions: Lorentz, Gauss and Voight were investigated as a means to simulatethe spectrum distribution. The mathematical-physical model of the arc light emission and neural networkswere compared