WorldWideScience

Sample records for arc melting method

  1. Nanostructured Bi2Te3 Prepared by a Straightforward Arc-Melting Method

    Science.gov (United States)

    Gharsallah, M.; Serrano-Sánchez, F.; Bermúdez, J.; Nemes, N. M.; Martínez, J. L.; Elhalouani, F.; Alonso, J. A.

    2016-03-01

    Thermoelectric materials constitute an alternative source of sustainable energy, harvested from waste heat. Bi2Te3 is the most utilized thermoelectric alloy. We show that it can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. A microscopic analysis from NPD data demonstrates a near-perfect stoichiometry of Bi2Te3 and a fair amount of anharmonicity of the chemical bonds. The as-grown material presents a metallic behavior, showing a record-low resistivity at 320 K of 2 μΩ m, which is advantageous for its performance as a thermoelectric material. SEM analysis shows a stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces perpendicular to the c crystallographic axis. This nanostructuration notably affects the thermoelectric properties, involving many surface boundaries that are responsible for large phonon scattering factors, yielding a thermal conductivity as low as 1.2 W m-1 K-1 around room temperature.

  2. Nanostructured Bi2Te3 Prepared by a Straightforward Arc-Melting Method.

    Science.gov (United States)

    Gharsallah, M; Serrano-Sánchez, F; Bermúdez, J; Nemes, N M; Martínez, J L; Elhalouani, F; Alonso, J A

    2016-12-01

    Thermoelectric materials constitute an alternative source of sustainable energy, harvested from waste heat. Bi2Te3 is the most utilized thermoelectric alloy. We show that it can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. A microscopic analysis from NPD data demonstrates a near-perfect stoichiometry of Bi2Te3 and a fair amount of anharmonicity of the chemical bonds. The as-grown material presents a metallic behavior, showing a record-low resistivity at 320 K of 2 μΩ m, which is advantageous for its performance as a thermoelectric material. SEM analysis shows a stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces perpendicular to the c crystallographic axis. This nanostructuration notably affects the thermoelectric properties, involving many surface boundaries that are responsible for large phonon scattering factors, yielding a thermal conductivity as low as 1.2 W m(-1) K(-1) around room temperature.

  3. The Global Array of Primitve Arc Melts

    Science.gov (United States)

    Schmidt, M. W.; Jagoutz, O. E.

    2015-12-01

    A longstanding question concerns the nature of the melts forming in the subarc mantle and giving rise to arc magmatism. The global array of primitive arc melts (1180 volcanic rocks in 25 arcs extracted from the georoc database, calculated to be in equilibrium with mantle olivine) yields five principal melt types: calc-alkaline basalts and high-Mg andesites, tholeiitic basalts and high-Mg andesites, and shoshonitic or alkaline arc melts; many arcs have more than one type. Primitive calc-alkaline basalts occur in 11 arcs but most strikingly, 8 continental arcs (incl. Aleutians, Cascades, Japan, Mexico, Kamtschatka) have a continuous range of calc-alkaline basalts to high-Mg andesites with mostly 48-58 wt% SiO2. In each arc, these are spatially congruent, trace element patterns overlap, and major elements form a continuum. Their Ca-Mg-Si systematics suggests saturation in olivine+opx+cpx. We hence interpret the large majority of high-Mg andesites as derived from primitive calc-alkaline basalts through fractionation and reaction in the shallower mantle. Removal of anhydrous mantle phases at lower pressures increases SiO2 and H2O-contents while Mg# and Ni remain buffered to mantle values. Primitive tholeiitic basalts (Cascades, Kermadec, Marianas, Izu-Bonin, Japan, Palau, Sunda) have a much lesser subduction signal (e.g. in LILE) than the calc-alkaline suite. These tholeiites have been interpreted to form through decompression melting, but also characterize young intraoceanic arcs. In the two continental arcs with both tholeiitic and calc-alkaline primitive basalts (clearly distinct in trace patterns), there is no clear spatial segregation (Casacades, Japan). Three intraoceanic arcs (Marianas, Izu-Bonin, Tonga) have primitive tholeiitic, highly depleted high-Mg andesites (boninites) with HFSE and HREE slightly above primitive mantle values. These deviate in majors from the array formed by the basalts and calc-alkaline andesites suggesting that only these formed from a

  4. Vacuum arc melting of tungsten-hafnium-carbon alloy

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.

    1974-01-01

    The vacuum arc casting of tungsten alloys, which contain carbon as an alloy addition, require special melting procedures in order to produce melts of consistent controlled levels of alloy content. A melting procedure will be described in which elemental components of a tungsten 0.35% HfC alloy are assembled to form an electrode for ac vacuum arc melting to produce 3-in.-diam ingots. Melting procedures and analytical chemistry are discussed and compared with data for ingots produced by other techniques.

  5. Microstructures and properties of the nitrided layers fabricated on titanium substrate by direct current nitrogen arc melting technique

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Ren Zhenan; Sun Daqian; Wang Li; Zhao Yunqiang

    2008-01-01

    The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.

  6. Slab melting and magma generation beneath the southern Cascade Arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.

    2014-12-01

    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  7. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.; Rasmussen, D. J.; Weis, D.

    2016-07-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO > 7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  8. Energy Balance in DC Arc Plasma Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng; MENG Yuedong; YU Xinyao; CHEN Longwei; JIANG Yiman; NI Guohua; CHEN Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example,the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  9. Hydrogen permeation in stationary arc-melted nickel 200

    Science.gov (United States)

    Li, H.; North, T. H.; Sommerville, I. D.; McLean, A.

    1990-06-01

    A combination of hydrogen permeation experiments and computer simulation was used to evaluate the distributions of temperature and of the hydrogen transfer flux in a stationary arcmelted Nickel 200 disc over the entire hydrogen permeation zone. The results indicate that the markedly nonuniform temperature distribution in the hydrogen permeation zone involves widely varying hydrogen fluxes and even transfer of hydrogen in different directions. At steady state, the hydrogen distribution is determined by a thermally produced dynamic equilibrium. Hydrogen supersaturation occurs in solid nickel at the solid/liquid interface in the arc-melted pool. An increase in hydrogen partial pressure in the shielding gas increases the heat input to the melt and decreases the stability of the arc melting process.

  10. Silicic Arc Magmas And Silicic Slab Melts: The Melt-Rock Reaction Link

    Science.gov (United States)

    Straub, S. M.; Gomez-Tuena, A.; Bolge, L. L.; Espinasa-Perena, R.; Bindeman, I. N.; Stuart, F. M.; Zellmer, G. F.

    2013-12-01

    While a genetic link between silicic arc magmas and silicic melts from the subducted slab has long been proposed, this hypothesis is commonly refuted because most arc magmas lack a 'garnet-signature' which such slab melts must have. A comprehensive geochemical study of high-Mg# arc magmas from the Quaternary central Mexican Volcanic Belt (MVB), however, shows that this conflict can be reconciled if melt-rock reaction processes in the mantle wedge were essential to arc magma formation. In the central MVB, monogenetic and composite volcanoes erupt high-Mg# basalts to andesites with highly variable trace element patterns. These magmas contain high-Ni olivines (olivine Ni higher than permissible for olivines in partial peridotite melts) with high 3He/4He = 7-8 Ra that provide strong evidence for silicic slab components that infiltrate the subarc mantle to produce olivine-free segregations of 'reaction pyroxenite' in the sources of individual volcanoes. Melting of silica-excess and silica-deficient reaction pyroxenites can then produce high-Mg# basaltic and dacitic primary melts that mix during ascent through mantle and crust to form high-Mg# andesites. Mass balance requires that reaction pyroxenites contain at least >15-18 wt%, and likely more, of slab component. However, because the HREE of the slab component are efficiently retained in the eclogitic slab, elements Ho to Lu in partial melts from reaction pyroxenites remain controlled by the mantle and maintain MORB-normalized Ho/Lun ˜1.15 close to unity. In contrast, the MREE to LREE and fluid mobile LILE of the arc magmas are either controlled, or strongly influenced, by slab-contributions. The origin from hybrid sources also shows in the major elements that are blends of mantle-derived elements (Mg, Ca, Mn, Fe, Ti) and elements augmented by slab contributions (Si, Na, K, P, and possibly Al). Moreover, strong correlations between bulk rock SiO2, 87Sr/86Sr and δ18O (olivines) can be interpreted as mixtures of subarc

  11. The arc arises: The links between volcanic output, arc evolution and melt composition

    Science.gov (United States)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of

  12. DC Arc Plasma Furnace Melting of Waste Incinerator Fly Ash

    Institute of Scientific and Technical Information of China (English)

    CHEN Mingzhou; MENG Yuedong; SHI Jiabiao; KUANG Jingan; NI Guohua; LIU Wei; JIANG Yiman

    2009-01-01

    Municipal solid waste incinerator (MSWI) fly ash was melted using a set of direct current (DC) arc plasma furnace system for the first time in China.At a feed-rate of flying ash of 80 kg/h,the temperature at the gas outlet was above 1300℃.Dioxins in the off-gas were recorded as 0.029 ng I-TEQ/Nm3 (international toxic equivalent,I-TEQ),well below 0.5 ng TEQ/Nm3 (toxic equivalent,TEQ),while those in the melted product(slag)were 0.00035 ng/g I-TEQ.Molten slag from the furnace showed excellent resistance against the leaching of heavy metals.These results prove that the plasma furnace is effective for the detoxification and stabilization of MSWI fly ash.

  13. Mathematical Modeling of the Melting Rate of Metallic Particles in the Electric Arc Furnace

    National Research Council Canada - National Science Library

    González, O. J. P; Ramírez-Argáez, Marco A; Conejo, A. N

    2010-01-01

    A computational fluid dynamics model coupled to a lagrangian model of melting/solidifying particles has been developed to describe the melting kinetics of metallic particles in an industrial Electric Arc Furnace (EAF...

  14. Numerical modeling of transferred arc melting bath heating; Modelisation numerique du chauffage de bains par arc transfere

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, A. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Trenty, L.; Guillot, J.B. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Delalondre, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    This paper presents the modeling of a transferred electric arc inside a bath of melted metal. After a recall of the context of the study, the problem of the modeling, which involves magnetohydrodynamic coupling inside the arc and the bath, is described. The equations that govern the phenomena inside the arc and the bath are recalled and the approach used for the modeling of the anode region of the arc is explained using a 1-D sub-model. The conditions of connection between arc and bath calculations are explained and calculation results obtained with a 200 kW laboratory furnace geometry are presented. (J.S.) 8 refs.

  15. OVERALL PERFORMANCE OF THE ELECTRIC ARC MELTING FURNACE DEPENDING ON QUALITY OF FURNACE CHARGE

    Directory of Open Access Journals (Sweden)

    A. B. Steblov

    2016-01-01

    Full Text Available The quality of furnace charge in an electric arc melting furnace to a large extend determines the efficiency of melting. With a tendency of increase of light scrap with a high content of non-iron impurities scrap fine crushing can increase the metallurgical value of scrap and improve technical and economic parameters of electric arc furnace operation.

  16. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  17. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  18. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite

    Science.gov (United States)

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.

    2015-01-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  19. The kinetics of nitrogen dissolution in levitation and arc-melted Fe-C-Mn filler metals

    OpenAIRE

    A. Gruszczyk

    2008-01-01

    Purpose: The influence of melting method on the kinetics of nitrogen absorption by Fe-C-Mn filler metals has been analysed. The industrial heats of the Fe-C-Mn (SpG1) type welding filler metals were selected for own researches.Design/methodology/approach: The research of the nitrogen absorption kinetics was carried out in the levitation and TIG arc-melting conditions in the Ar+N2 atmosphere. The conditions of experiments were made possibly close to those existing in a molten metal drop in the...

  20. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  1. Observations of melt rate as a function of arc power, CO pressure, and electrode gap during vacuum consumable arc remelting of Inconel 718

    Science.gov (United States)

    Zanner, F. J.; Bertram, L. A.; Adasczik, C.; O'Brien, T.

    1984-01-01

    Statistically designed experiments were conducted at two different production melt shops to evaluate the influence of arc power, CO pressure, and electrode gap on melt rate. Approximately 11,000 kg of Inconel 718 alloy 0.4 m diameter electrodes were vacuum consumable arc remelted into 0.5 m diameter ingots. Analysis of the experimental results revealed that melting efficiency (melting rate/kW) was maximized when CO pressure and electrode gap were held at low levels. Under these conditions, the heat distribution (created by the vacuum arc) on the electrode tip and the molten pool exhibited macro uniformity. Increased CO pressure and/or electrode gap depressed the melt rate, and at 13.3 Pa (100 microns) and a 0.050 m electrode gap, this depression exceeds 46 pct. Increasing these parameters also changed the arc behavior to that of a constricted arc with a highly localized heat input. It is hypothesized that the change from the usual diffuse arc to this constricted arc results in intense Lorentz pumping in a localized region of the molten pool atop the ingot causing fluid flow transients. These transients could, in turn, create solidification defects.

  2. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites.

    Science.gov (United States)

    Reubi, Olivier; Blundy, Jon

    2009-10-29

    Andesites represent a large proportion of the magmas erupted at continental arc volcanoes and are regarded as a major component in the formation of continental crust. Andesite petrogenesis is therefore fundamental in terms of both volcanic hazard and differentiation of the Earth. Andesites typically contain a significant proportion of crystals showing disequilibrium petrographic characteristics indicative of mixing or mingling between silicic and mafic magmas, which fuels a long-standing debate regarding the significance of these processes in andesite petrogenesis and ultimately questions the abundance of true liquids with andesitic composition. Central to this debate is the distinction between liquids (or melts) and magmas, mixtures of liquids with crystals, which may or may not be co-genetic. With this distinction comes the realization that bulk-rock chemical analyses of petrologically complex andesites can lead to a blurred picture of the fundamental processes behind arc magmatism. Here we present an alternative view of andesite petrogenesis, based on a review of quenched glassy melt inclusions trapped in phenocrysts, whole-rock chemistry, and high-pressure and high-temperature experiments. We argue that true liquids of intermediate composition (59 to 66 wt% SiO(2)) are far less common in the sub-volcanic reservoirs of arc volcanoes than is suggested by the abundance of erupted magma within this compositional range. Effective mingling within upper crustal magmatic reservoirs obscures a compositional bimodality of melts ascending from the lower crust, and masks the fundamental role of silicic melts (>/=66 wt% SiO(2)) beneath intermediate arc volcanoes. This alternative view resolves several puzzling aspects of arc volcanism and provides important clues to the integration of plutonic and volcanic records.

  3. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles

    Indian Academy of Sciences (India)

    Ritwik Sarkar; Nar Singh; Swapan Kumar Das

    2010-06-01

    Steel melting through electric arc furnace route is gaining popularity due to its many advantages, but generates a new waste, electric arc furnace slag, which is getting accumulated and land/mine filling and road construction are the only utilization. This slag has been tried to be value added and utilized to develop vitreous ceramic tiles. Slag, to the extent of 30–40 wt% with other conventional raw materials, were used for the development in the temperature range 1100–1150°C. The fired products showed relatively higher density with shorter firing range and good strength properties. Microstructural and EDAX studies were also done to evaluate the developed products.

  4. Origin of primitive andesites by melt-rock reaction in the sub-arc mantle (Invited)

    Science.gov (United States)

    Rapp, R. P.

    2009-12-01

    The genetic relationship between primitive granitoids, including high-Mg andesites (HMAs) and bajaites, and primary granitoids, or "pristine" adakites, has been vigorously debated since Defant and Drummond (1991; henceforth D&D) first applied the term "adakite" to refer to Cenozoic arc magmas (andesites and dacites) "associated with young subducting lithosphere", with low Y and Yb, low high-field strength elements (HFSEs), high Sr, and high Sr/Y and (La/Yb)N ratios "relative to island arc andesite-dacite-rhyolite". These characteristics were attributed to an origin for adakites by partial melting of basaltic crust within the subducting slab (hence "slab melts"). That such a process can produce melts with the characteristics described by D&D has since been largely confirmed by dehydration melting experiments on hydrous metabasalt at ~1-4 GPa. Attention was also drawn to the geochemical similarities between "adakites" and large-ion lithophile element (LILE)-enriched, high-field strength element (HFSE) depleted magnesian andesites (HMAs) from Adak Island in the western Aleutians, first described by Kay (1978), implying a genetic relationship between primary granitoid (adakites) formed by partial melting of basaltic ocean crust in the subducting slab, transformed to garnet-amphibolite or eclogite, and primitive magnesian andesites (HMAs) with high Mg-numbers (Mg# = molar Mg/(Mg+Fe)x100) and high concentrations of Ni and Cr. What then is the true origin of these enigmatic arc magmas, with both crustal and mantle, derivative and primitive, geochemical signatures? Kay (1978) suggested a "hybrid" model, in which "hydrous melting of eclogite (slab melting) results in a small volume of dacitic melt ("pristine adakite"), which rises into the hotter overlying peridotite wedge and equilibrates with olivine and orthopyroxene, reacting with olivine until it becomes andesitic". In this paper, I will discuss the results of melt-rock reaction experiments modelling this peridotite

  5. Determination of work functions near melting points of refractory metals by using a direct-current arc

    Science.gov (United States)

    Gordon, W. A.; Chapman, G. B., II

    1972-01-01

    Effective work functions of refractory metals at temperatures near their melting points were determined by using a direct-current arc. A metal wire connected as the cathode was melted by striking an arc discharge in an argon atmosphere. A melted sphere was formed with a definite emitting area which was calculated from the sphere diameter measured after terminating the arc. Effective work functions were calculated from the Richardson-Dushman equation by using this emission area. The procedure is experimentally advantageous because surface cleanliness of the specimen is not critical, high vacuum is not required, and the anode-cathode spacing is not critical.

  6. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  7. Vacuum Arc Melting Processes for Biomedical Ni-Ti Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Tsai De-Chang

    2015-01-01

    Full Text Available This study primarily involved using a vacuum arc remelting (VAR process to prepare a nitinol shape-memory alloy with distinct ratios of alloy components (nitinol: 54.5 wt% to 57 wt%. An advantage of using the VAR process is the adoption of a water-cooled copper crucible, which effectively prevents crucible pollution and impurity infiltration. Optimising the melting production process enables control of the alloy component and facilitates a uniformly mixed compound during subsequent processing. This study involved purifying nickel and titanium and examining the characteristics of nitinol alloy after alloy melt, including its microstructure, mechanical properties, phase transition temperature, and chemical components.

  8. Volt-ampere characteristics of a nitrogen DC plasma arc with anode melting

    Institute of Scientific and Technical Information of China (English)

    Zhao Peng; Ni Guo-Hua; Meng Yue-Dong; Nagatsu Masaaki

    2013-01-01

    The characteristics of a nitrogen arc using a graphite cathode and a melting anode in a pilot-scale plasma furnace are investigated.The voltage is examined as a function of current and apparent plasma length.The voltage increases non-linearly with the increase of apparent plasma length,with the current fixed.The experimental data so obtained are compared with the predictions of the Bowman model for the electric arc,and with numerical simulations as well.The level of agreement between the experimental data at the melting anode and the numerical predictions confirms the suitability of the proposed the Bowman model.These characteristics are relevant to the engineering design and evaluation of a DC plasma furnace and reactor for the treatment of hazardous fly ash waste.

  9. Study of Raw Materials Treatment by Melting and Gasification Process in Plasma Arc Reactor

    Directory of Open Access Journals (Sweden)

    Peter KURILLA

    2010-12-01

    Full Text Available The world consumption of metals and energy has increased in last few decades and it is still increasing. Total volume production results to higher waste production. Raw material basis of majority metals and fossil fuels for energy production is more complex and current waste treatment has long term tendency. Spent power cells of different types have been unneeded and usually they are classified as dangerous waste. This important issue is the main topic of the thesis, in which author describes pyrometallurgical method for storage batteries – power cells and catalysts treatment. During the process there were tested a trial of spent NiMH, Li – ion power cells and spent copper catalysts with metal content treatment by melting and gasification process in plasma arc reactor. The synthetic gas produced from gasification process has been treated by cogenerations micro turbines units for energy recovery. The metal and slag from treatment process are produced into two separately phases and they were analyzing continually.

  10. Contrasting sediment melt and fluid signatures for magma components in the Aeolian Arc: Implications for numerical modeling of subduction systems

    Science.gov (United States)

    Zamboni, Denis; Gazel, Esteban; Ryan, Jeffrey G.; Cannatelli, Claudia; Lucchi, Federico; Atlas, Zachary D.; Trela, Jarek; Mazza, Sarah E.; De Vivo, Benedetto

    2016-06-01

    The complex geodynamic evolution of Aeolian Arc in the southern Tyrrhenian Sea resulted in melts with some of the most pronounced along the arc geochemical variation in incompatible trace elements and radiogenic isotopes worldwide, likely reflecting variations in arc magma source components. Here we elucidate the effects of subducted components on magma sources along different sections of the Aeolian Arc by evaluating systematics of elements depleted in the upper mantle but enriched in the subducting slab, focusing on a new set of B, Be, As, and Li measurements. Based on our new results, we suggest that both hydrous fluids and silicate melts were involved in element transport from the subducting slab to the mantle wedge. Hydrous fluids strongly influence the chemical composition of lavas in the central arc (Salina) while a melt component from subducted sediments probably plays a key role in metasomatic reactions in the mantle wedge below the peripheral islands (Stromboli). We also noted similarities in subducting components between the Aeolian Archipelago, the Phlegrean Fields, and other volcanic arcs/arc segments around the world (e.g., Sunda, Cascades, Mexican Volcanic Belt). We suggest that the presence of melt components in all these locations resulted from an increase in the mantle wedge temperature by inflow of hot asthenospheric material from tears/windows in the slab or from around the edges of the sinking slab.

  11. New method for capturing arc of moving on switching apparatus

    Institute of Scientific and Technical Information of China (English)

    LIU Jiao-min; WANG Jing-hong

    2007-01-01

    The switching arc that occurs in contact gap when contact of low voltage apparatus closes or breaks in electric circuit is harmful to the contacts, insulation, and reliability of electrical gear because of its very high temperature. As arcing time is very short in switching gear, it is very difficult to observe arc phenomena directly for researchers. Therefore, visualization of switching arc is important for understanding arc phenomena, to analyze the arc features, and to improve the design and reliability of switching gear. Based on analyzing the visualization methods proposed by researchers, a new switching arc capturing approach is introduced in this paper. Arc image acquisition, and image processing techniques were studied. A switching arc image acquisition and visual simulation software based on high speed CCD camera hard ware system was designed and implemented to yield enhanced arc image with good visual effect.

  12. BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    Li Junyue; Li Zhiyong; Li Huan; Xue Haitao

    2004-01-01

    Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.

  13. Filtered cathodic arc deposition apparatus and method

    Science.gov (United States)

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  14. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.

    Science.gov (United States)

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen

    2017-02-25

    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology.

  15. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    ; and OIB-source-like domains. Lavas with arc and intraplate (OIB) geochemical signatures were erupted close to HAOT, and many lavas are blends of two or more magma types. Pre-eruptive H2O contents of HAOT, coupled with phase-equilibrium studies, suggest that these magmas were relatively dry and last equilibrated in the mantle wedge at temperatures of ???1300??C and depths of ???40 km, virtually at the base of the crust. Arc basalt and basaltic andesite represent greater extents of melting than HAOT, presumably in the same general thermal regime but at somewhat lower mantle separation temperatures, of domains of sub-arc mantle that have been enriched by a hydrous subduction component derived from the young, relatively hot Juan de Fuca plate. The primitive magmas originated by partial melting in response to adiabatic upwelling within the mantle wedge. Tectonic extension in this part of the Cascade arc, one characterized by slow oblique convergence, contributes to mantle upwelling and facilitates eruption of primitive magmas.

  16. Sensitivity of collapsed arc QA method for delivery errors in Volumetric Modulated Arc Therapy (VMAT)

    Science.gov (United States)

    Young, Tony; Xing, Aitang; Vial, Philp; Thwaites, David; Holloway, Lois; Arumugam, Sankar

    2015-01-01

    In this paper the sensitivity of an Electronic Portal Imaging Device (EPID) to detecting introduced Volumetric Arc Therapy (VMAT) treatment errors was studied using the Collapsed Arc method. Two clinical Head and Neck (H&N) and Prostate treatment plans had gantry dependent dose and MLC errors introduced to the plans. These plans were then delivered to an Elekta Synergy Linear Accelerator EPID and compared to the original treatment planning system Collapsed Arc dose matrix. With the Collapsed Arc technique the EPID was able to detect MLC errors down to 2mm and dose errors of down to 3% depending on the treatment plan complexity and gamma tolerance used.

  17. Fluid-melt partitioning of sulfur in differentiated arc magmas and the sulfur yield of explosive volcanic eruptions

    Science.gov (United States)

    Masotta, M.; Keppler, H.; Chaudhari, A.

    2016-03-01

    The fluid-melt partitioning of sulfur (DSfluid/melt) in differentiated arc magmas has been experimentally investigated under oxidizing conditions (Re-ReO2 buffer) from 800 to 950 °C at 200 MPa. The starting glasses ranged in composition from trachyte to rhyolite and were synthesized targeting the composition of the residual melt formed after 10-60% crystallization of originally trachy-andesitic, dacitic and rhyodacitic magmas (Masotta and Keppler, 2015). Fluid compositions were determined both by mass balance and by Raman spectroscopy of fluid inclusions. DSfluid/melt increases exponentially with increasing melt differentiation, ranging from 2 to 15 in the trachytic melt, from 20 to 100 in the dacitic and rhyodacitic melts and from 100 to 120 in the rhyolitic melt. The variation of the DSfluid/melt is entirely controlled by the compositional variation of the silicate melt, with temperature having at most a minor effect within the range investigated. Experiments from this study were used together with data from the literature to calibrate the following model that allows predicting DSfluid/melt for oxidized arc magmas: where nbo/t is the non-bridging oxygen atoms per tetrahedron, ASI is the alumina saturation index, Al# and Ca# are two empirical compositional parameters calculated in molar units (Al # = XAl2O3/XSiO2 +XTiO2 +XAl2O3 and Ca # = XCaO/XNa2O +XK2O). The interplay between fluid-melt partitioning and anhydrite solubility determines the sulfur distribution among anhydrite, melt and fluid. At increasing melt polymerization, the exponential increase of the partition coefficient and the decrease of anhydrite solubility favor the accumulation of sulfur either in the fluid phase or as anhydrite. On the other hand, the higher anhydrite solubility and lower partition coefficient for less polymerized melts favor the retention of sulfur in the melt. At equilibrium conditions, these effects yield a maximum of the sulfur fraction in the fluid phase for slightly

  18. Integral coolant channels supply made by melt-out method

    Science.gov (United States)

    Escher, W. J. D.

    1964-01-01

    Melt-out method of constructing strong, pressure-tight fluid coolant channels for chambers is accomplished by cementing pins to the surface and by depositing a melt-out material on the surface followed by two layers of epoxy-resin impregnated glass fibers. The structure is heated to melt out the low-melting alloy.

  19. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  20. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust

    Science.gov (United States)

    Cooper, George F.; Davidson, Jon P.; Blundy, Jon D.

    2016-10-01

    The Lesser Antilles Volcanic Arc is remarkable for the abundance and variety of erupted plutonic xenoliths. These samples provide a window into the deeper crust and record a more protracted crystallisation history than is observed from lavas alone. We present a detailed petrological and in situ geochemical study of xenoliths from Martinique in order to establish their petrogenesis, pre-eruptive storage conditions and their contribution to construction of the sub-volcanic arc crust. The lavas from Martinique are controlled by crystal-liquid differentiation. Amphibole is rarely present in the erupted lavas, but it is a very common component in plutonic xenoliths, allowing us to directly test the involvement of amphibole in the petrogenesis of arc magmas. The plutonic xenoliths provide both textural and geochemical evidence of open system processes and crystal `cargos'. All xenoliths are plagioclase-bearing, with variable proportions of olivine, spinel, clinopyroxene, orthopyroxene and amphibole, commonly with interstitial melt. In Martinique, the sequence of crystallisation varies in sample type and differs from other islands of the Lesser Antilles arc. The compositional offset between plagioclase (~An90) and olivine (~Fo75), suggests crystallisation under high water contents and low pressures from an already fractionated liquid. Texturally, amphibole is either equant (crystallising early in the sequence) or interstitial (crystallising late). Interstitial amphibole is enriched in Ba and LREE compared with early crystallised amphibole and does not follow typical fractionation trends. Modelling of melt compositions indicates that a water-rich, plagioclase-undersaturated reactive melt or fluid percolated through a crystal mush, accompanied by the breakdown of clinopyroxene, and the crystallisation of amphibole. Geothermobarometry estimates and comparisons with experimental studies imply the majority of xenoliths formed in the mid-crust. Martinique cumulate xenoliths are

  1. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    Science.gov (United States)

    Liu, Zhong-Li; Sun, Jun-Sheng; Li, Rui; Zhang, Xiu-Lu; Cai, Ling-Cang

    2016-05-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. Supported by the National Natural Science Foundation of China under Grant No. 41574076 and the NSAF of China under Grant No. U1230201/A06, and the Young Core Teacher Scheme of Henan Province under Grant No. 2014GGJS-108

  2. Modeling of an electric arc transferred on a melted glass bath; Modelisation d`un arc electrique transfere sur un bain de verre

    Energy Technology Data Exchange (ETDEWEB)

    Mehlman, G.; Langlois, A. [SGN, 78 - Saint Quentin en Yvelines (France)

    1997-12-31

    The aim of this study is to propose a methodology allowing the simulation of melting processes involving electromagnetic phenomena. This methodology is based on the use of scientific calculation tools currently used elsewhere. The case considered in this study has been defined in collaboration with Electricite de France (EdF) and concerns more particularly an electric arc vitrification process for wastes. Basic data have been determined in order to obtain results representative of the tests performed by EdF with pilot installations. (J.S.)

  3. A method to determine arc position in ICRF systems

    Energy Technology Data Exchange (ETDEWEB)

    D’Inca, R., E-mail: rodolphe.dinca@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Polozhiy, K.; Eckert, B.; Siegel, G. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); EESA Department, Gent University (Belgium)

    2013-10-15

    Highlights: ► We show that the voltage noise characteristic of an arc in an ICRF system is due to the propagation and reflections of an electromagnetic pulse emitted by this arc. ► A simplified RF model of an arc in a testbed representative of an ICRF system is developed to see the effect of its location on the voltage noise it emits. ► The model is compared with the results on the testbed for arcs occurring at two locations: one can be determined precisely, the other with a decreased accuracy. -- Abstract: The study of arcs on ICRF systems has mainly focused on the development of fast detectors to detect a breakdown, independently from its position, before they can damage the components [1]. However, the ability to localize an arc is also an important factor: arcs can be the sign of a defect and if they occur at the same location, they give a good indication of the position of this defect without having to use intrusive diagnostics like optical fibers. We present here a method to find the position of arcs based on the analysis of their high-frequency noise. Arcs are indeed fast transient which excite frequencies in the MHz range. The SHAD system reacts on the integral value of this noise signal to detect the development of arcs. But a further investigation of this signal shows detailed features like splittings and chirpings of the frequency peaks which give more information on the source of the breakdown: at its birth, the arc emits a short electromagnetic pulse of several nanoseconds that propagates inside the ICRF system; this pulse is reflected by components like the antenna, the stub tuners or the generators back to the arc thereby changing its boundary conditions. This resonance between the arc and the ICRF system can be measured and the time of propagation of the pulse gives useful data on the position of the breakdown. We have carried out tests on the Manipulator eXPeriment (a testbed to artificially create arcs in a representative ICRF system) and

  4. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): Implications for melt generation and volatile recycling processes in subduction zones

    Science.gov (United States)

    Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.

    2017-02-01

    We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths

  5. Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    CHEN Mingzhou; MENG Yuedong; SHI Jiabiao; NI Guohua; JIANG Yiman; YU Xinyao; ZHAO Peng

    2009-01-01

    Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash,OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results.Dioxins in flue gas from stack and bag-filter ash (BFA) were detected.The distribution of heavy metals of Pb,Cd,As,and Cr along the flue gas process system was analyzed.Through a comparison of the results for dioxins and heavy metals in this study and previous work,carrying-over of fly ash particles with the flue gas stream can be deduced.Based on the magnetic induction equation and Navier-Stokes equations,a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect.The results indicate that,a.when melted,the feed forms of MSWI fly ash affect the results significantly;b.it is not preferable to melt MSWI fly ash directly,and efforts should be made to limit the mass transfer of OFA from the plasma furnace.

  6. Fluid-present disequilibrium melting in Neoarchean arc-related migmatites of Daeijak Island, western Gyeonggi Massif, Korea

    Science.gov (United States)

    Lee, Yuyoung; Cho, Moonsup

    2013-10-01

    The melting process of meta-igneous rocks was investigated via field, petrographic and geochemical analyses of the Neoarchean (~ 2.51 Ga) migmatite complex in Daeijak Island, western Gyeonggi Massif. This complex consists primarily of garnet-free amphibolites and tonalitic migmatites, both of which contain hornblende, plagioclase and quartz as major constituents. Neosomes and leucosomes in the migmatite have dioritic-tonalitic and tonalitic-trondhjemitic compositions, respectively. Compositions of hornblende (XFe = 0.39-0.42) and plagioclase (An24-27) vary little between the neosomes and leucosomes. The amphibolites show distinct depletions in Nb, Ta, Zr, and Ti relative to large ion lithophile elements, suggesting an arc-related origin for their basaltic protolith. Leucosomes have lower contents of K2O, MgO, FeO*, TiO2, Zr, Rb, and rare earth elements (REE) than amphibolites and neosomes, but are higher in SiO2, Na2O, and Sr contents. Leucosomes and neosomes have positive [(Eu/Eu*)N = 1.32-7.26] and negative (0.71-0.97) Eu anomalies, respectively, which are attributed to the variable degree of plagioclase fractionation during the partial melting. The P-T condition for the migmatite formation was estimated to be ~ 700-730 °C and 4.7-5.5 kbar, primarily based on the hornblende-plagioclase thermobarometry and phase equilibria. Various lines of textural evidence, such as the channel flow of melt along migmatitic layers and the segregation of melt into shear bands or boudin necks suggest a syn-deformation crystallization of melt. Chemical disequilibrium in migmatites is documented not only by petrographic and geochemical data but also by the REE modeling between melt product and source rock. Disequilibrium process is most likely attributed to the rapidity of melt extraction or migration, compared to chemical diffusion rate. In summary, the fluid-present disequilibrium melting of dioritic-tonalitic protoliths has produced tonalitic-trondhjemitic leucosomes in a dynamic

  7. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    Science.gov (United States)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  8. Adakites related to subduc- tion in the northern margin of Junggar arc for the Late Paleozoic: Products of slab melting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Volcanic rocks with adakitic compositional signature have been recognized in the northern margin of ancient Junggar island arc for the Late Paleozoic. These adakites for the early Devonian from the Tuoranggekudouke Group (D1t) are characteristic of high Sr, Sr/Y and (La/Yb)N but low Y, Yb and HREE. Their compositional characteristics are much similar to those of the typical adakites in the world but distinct from those of the normal arc volcanic rocks from the same Group. We conclude that these adakitic volcanic rocks were produced by slab melting during the early period of Paleoasia-ocean lithosphere subduction. This infers that the Paleoasia Ocean in the north Junggar area began a new subduction process in the early Devonian.

  9. Usage of Thermodynamic Activity for Optimization of Power Expenses in Respect of Casting Process in Arc Steel-Melting Furnace

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The equilibrium between carbon and oxygen has been investigated during oxidizing refining in an arc steel-melting furnace. It is shown that there is a possibility to apply an equilibrium thermodynamic. It has been established that during oxidizing refining FeO concentration in slag practically does not depend on C concentration in metal. It is demonstrated that in a number of cases metal carbon oxidation is characterized by the presence of a transit period that may be attributed to incomplete slag-formation process.

  10. Mg Alloy Foam Fabrication via Melt Foaming Method

    Institute of Scientific and Technical Information of China (English)

    Donghui YANC; Changhwan SEO; Bo-Young HUR

    2008-01-01

    For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.

  11. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    Science.gov (United States)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  12. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    Science.gov (United States)

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  13. Ascent Rates from Melt Embayments: Insights into the Eruption Dynamics of Arc Volcanoes

    Science.gov (United States)

    Ruprecht, P.; Lloyd, A. S.; Hauri, E.; Rose, W. I.; Gonnermann, H. M.; Plank, T. A.

    2014-12-01

    A significant fraction of the magma that is added from the mantle to the subvolcanic plumbing system ultimately erupts at the surface. The initial volatile content of the magmas as well as the interplay between volatile loss and magma ascent plays a significant role in determining the eruption style (effusive versus explosive) as well as the magnitude of the eruption. The October 17, 1974 sub-Plinian eruption of Volcán de Fuego represents a particularly well-characterized system in terms of volatile content and magma chemistry to investigate the relation between initial water content of the magmas and the ascent rate. By modeling volatile element distribution in melt embayments through diffusion and degassing during ascent we can estimate magma ascent from the storage region in the crust to the surface. The novel aspect is the measurement of concentration gradients multiple volatile elements (in particular CO2, H2O, S) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. H2O, CO2, and S all decrease toward the embayment outlet bubble documenting the loss of H2O and CO2 compared to an extensive melt inclusion suite from the same day of the eruption. The data is best described by a two-stage model. At high pressure (>145 MPa) decompression is slow (0.05- 0.3 MPa/s) and CO2 is bled off predominantly. At shallow levels decompression accelerates to 0.3-0.5 MPa/s at the point of H2O exsolution, which strongly affects the buoyancy of the ascending magma. The magma ascent rates presented are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor. [1] Lloyd et al. (2014) JVGR, http://dx.doi.org/10.1016/j.jvolgeores.2014.06.002

  14. The degree of non-equilibrium microstructure of hardened steel samples taken during its melting in an electric arc furnace

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович Скребцов

    2015-10-01

    Full Text Available Austenite to ferrite and pearlite transformation has not been studied enough for low-carbon peritectic steels. Experiments were carried out in the electric arc furnace. Samples of the liquid metal were taken during smelting; three sample at melting, oxidation and reduction as well as one sample from the bucket were taken. The optical binocular microscope Axio Imagez A2m (production of the German company Zeis AG was used to analyze the samples for the chemical composition of the elements and for the microstructure(ferrite and pearlite amount. It makes it possible to determine ferrite-to-pearlite relation in steel by means of the special program Thixomet Pro. Experimental percentage of ferrite was compared with the equilibrium percentage of ferrite calculated from the carbon content in the sample from the Fe-C phase diagram. It has been found that during charge melting experimental ferrite content is 0,52-1,7 equilibrium ferrite content. During the recovery period the microstructural heterogeneity stabilizes and is equal to 0,91-0,93 equilibrium heterogeneity. This ratio is in good agreement with the data available in literature. The amount of rejected finished metal as function of the temperature of the melt at the outlet of the furnace has been determined as well. The amount of rejected steel is minimum if steel is 1,052-1,07 times overheated above the liquidus point which is equal to the temperature of equilibrium microheterogeneity of the molten metal

  15. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...

  16. Striking Local Distinctions in Basaltic Melts within Nicaraguan Cross-arc Lineaments

    Science.gov (United States)

    Her, X.; Walker, J. A.; Roggensack, K.

    2015-12-01

    The Nejapa-Miraflores (NM) and Granada (G) lineaments which cut across the Central American volcanic front (CAVF) host numerous monogenetic vents which have erupted diverse basaltic magmas (e.g., Walker, 1984). As previously shown by Walker (1984), the basaltic magmas loosely fall into two groups: a high Ti, low K group which are reminiscent of MORB or BABB; and a low Ti, high K group which are more typical of subduction zones worldwide. Major element data obtained from over 200 olivine-hosted melt inclusions found within NM and G tephras from six separate monogenetic vents confirm this unusual compositional dichotomy. Melt inclusions from four of the six monogenetic vents are exclusively high- or low-Ti, while two of the volcanoes have both high- and low-Ti melt inclusions. New volatile and trace element data on over 40 of the NM and G melt inclusions has yielded additional compositional distinctions between the high- and low-Ti groups. Least degassed high-Ti melts tend to have lower water contents than their low-Ti counterparts. The high-Ti Inclusions also have lower concentrations of U, Th, Pb, Ba and Cs and lower La/Yb ratios. In addition, there are subtle HFSE variations between the two types of basalts. The overall geochemical differences between the high- and low-Ti groups suggest that the mantle wedge source of the latter contains a greater slab-derived (hemipelagic) sediment melt component than the former linked to a larger flux of hydrous fluids from deeper in the subducting Cocos plate. What is particularly significant is that the contrasting mafic emanations from these monogenetic volcano lineaments demonstrate that transport of fluids, volatiles and basaltic melts in subduction zones can be quite variable and complex on a very localized scale.

  17. Modified enthalpy method for the simulation of melting and solidification

    Indian Academy of Sciences (India)

    Niranjan N Gudibande; Kannan N Iyer

    2013-12-01

    Enthalpy method is commonly used in the simulation of melting and solidification owing to its ease of implementation. It however has a few shortcomings. When it is used to simulate melting/solidification on a coarse grid, the temperature time history of a point close to the interface shows waviness. While simulatingmelting with natural convection, in order to impose no-slip and impermeability boundary conditions, momentum sink terms are used with some arbitrary constants called mushy zone constants. The values of these are very large and have no physical basis. Further, the chosen values affect the predictions and hence have to be tuned for satisfactory comparison with experimental data. To overcome these deficiencies, a new cell splitting method under the framework of the enthalpy method has been proposed. This method does not produce waviness nor requires mushy zone constants for simulating melting with natural convection. The method is then demonstrated for a simple onedimensional melting problem and the results are compared with analytical solutions. The method is then demonstrated to work in two-dimensions and comparisons are shown with analytical solutions for problems with planar and curvilinear interfaces. To further benchmark the present method, simulations are performed for melting in a rectangular cavity with natural convection in the liquid melt. The solid–liquid interface obtained is compared satisfactorily with the experimental results available in literature.

  18. Arc Root Attachment on the Anode Surface of Arc Plasma Torch Observed with a Novel Method

    Institute of Scientific and Technical Information of China (English)

    PAN Wen-Xia; LI Teng; MENG Xian; CHEN Xi; WU Cheng-Kang

    2005-01-01

    @@ The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfullyobserved using a novel approach. A specially designed copper mirror with a boron nitride film coated on itssurface central-region is employed to avoid the effect of intensive light emitted from the arc column upon theobservation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surfaceof the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argonas the plasma-forming gas.

  19. Anomalous Halo Formation in an Arc-Melted ScNi-Sc2Ni Off-Eutectic Binary Alloy

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-07-01

    Full Text Available Diverse non-equilibrium eutectic structures have attracted numerous experimental and theoretical studies. One special type is the formation of a halo of one phase around a primary dendrite of another phase. In our experiments, it was occasionally observed that ScNi halos grow as dendritic morphology around the primary Sc 2 Ni dendrites in an arc-melted ScNi-Sc 2 Ni off-eutectic binary alloy. The formation of this anomalous halo structure was then well reproduced by employing quantitative phase-field simulations. Based on the phase-field simulation, It was found that (i the large undercooling and growth velocity of the ScNi phase during solidification causes the formation of halos; and (ii the released latent heat induces the recalescence phenomenon, and changes the solidification sequence largely, resulting in the anomalous halo structure in the Sc-34 at % Ni alloy.

  20. IMPROVEMENTS ON THE ARC-LENGTH-TYPE METHOD

    Institute of Scientific and Technical Information of China (English)

    LI Yuanqi; SHEN Zuyan

    2004-01-01

    Arc-length-type and energy-type methods are two main strategies used in structural nonlinear tracing analysis, but the former is widely used due to the explicitness and clarity in conception,as well as the convenience and reliability in calculation. It is very important to trace the complete loaddeflection path in order to know comprehensively the characteristics of structures subjected to loads.Unfortunately, the nonlinear analysis techniques are only workable for tracing the limit-point-type equilibrium path. For the bifurcation-point-type path, most of them cannot secure a satisfactory result.In this paper, main arc-length-type methods are reviewed and compared, and the possible reasons of failures in tracing analysis are briefly discussed. Some improvements are proposed, a displacement perturbation method and a force perturbation method are presented for tracing the bifurcation-pointtype paths. Finally, two examples are analyzed to verify the ideas, and some conclusions are drawn with respect to the arc-length-type methods.

  1. Sulphide-sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time

    Science.gov (United States)

    Canil, Dante; Fellows, Steven A.

    2017-07-01

    The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (<130 km). The released sulphate on melting potentially increases the fO2 of the arc mantle. We performed melting experiments on three subducted sediment compositions varying in bulk Ca/(Ca + Mg + Fe) from 0.3 to 0.6 at 2.5 GPa and 900-1100 °C to confirm how anhydrite stability can change by orders of magnitude the S, Cu, As, Zn, Mo, Pb, and Sb contents of sediment melts, and their subsequent liberation to the arc mantle. Using Cu/Sc as a proxy for the behaviour of S, the effect of variable subducted sediment composition on sulphide-sulphate stability and release of chalcophiles to the arc mantle is recognizable in volcanic suites from several subduction zones in space and time. The fO2 of the SSO buffers in subducted sediment relative to the arc mantle may have changed with time by shifts in the nature of pelagic sedimentation in the oceans over earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the

  2. Melting Phase Relation of Nominally Anhydrous, Carbonated Pelite at Sub-arc Depths and Cycling of Sedimentary Carbon in Subduction Zones

    Science.gov (United States)

    Tsuno, K.; Dasgupta, R.

    2009-12-01

    An important mass transfer process for subduction zone magmatism is the cycling of C-O-H volatiles from subducting slab to arc volcanoes. However, CO2 is known to remain stable in subducting lithologies in the form crystalline carbonates. Mass balance of chemical tracers between slab input and arc output1 and stable isotopic compositions of arc fluids2, on the other hand, suggest that subducting sediments contribute to arc volcanism and arc-flux of CO2 derives primarily from subducting sediments. Therefore, it is important to explore the possible link between sediment contributions to arc volcanism and CO2 release from subducting sediments to mantle wedge. We have investigated, using an end-loaded piston cylinder device, melting relation of a carbonate-bearing, nominally anhydrous pelagic sediment composition at a single pressure of 3 GPa and at temperatures of 900-1350 °C. The starting material (HPLC1) has ~5 wt.% CO2 and corresponds (in H2O-free basis) to a mixture of 10 wt.% pelagic carbonate unit and 90 wt.% overlying hemipelagic mud unit that enter the Central American trench3. The subsolidus assemblage at 900 °C consists of garnet+cpx+K-feldspar+coesite+rutile+ankeritess, whereas just above the solidus (900-1000 °C), carbonatitic melt appears and ankeritess disappears (1000-1100 °C). The appearance of CO2-bearing silicate melt at 1100 °C coincides with the disappearance of K-feldspar and rutile, and the melt coexists with garnet+cpx+coesite/quartz from 1100 to 1300 °C. The liquidus is located >1350 °C, and the sole liquidus phase is quartz. Silicate melt composition evolves systematically from 1100 to 1350 °C with a decrease in SiO2 (65.7 to 59.1 wt.%), Al2O3 (13.5 to 12.4 wt.%), K2O (~5.5 to 2.1 wt.%), and CO2 (~8.5 to 5.2 wt.%), whereas MgO, FeO*, and CaO contents of the melt increase from 0.4 to 2.6 wt.%, 1.5 to 6.7 wt.%, and 2.4 to 8.7 wt.%, respectively. The Na2O content increases from 2.3 to 3.6 wt.% between 1100 and 1200 °C and decreases to 2

  3. Mass transfer in the lower crust: Evidence for incipient melt assisted flow along grain boundaries in the deep arc granulites of Fiordland, New Zealand

    Science.gov (United States)

    Stuart, Catherine A.; Piazolo, Sandra; Daczko, Nathan R.

    2016-09-01

    Knowledge of mass transfer is critical in improving our understanding of crustal evolution, however mass transfer mechanisms are debated, especially in arc environments. The Pembroke Granulite is a gabbroic gneiss, passively exhumed from depths of >45 km from the arc root of Fiordland, New Zealand. Here, enstatite and diopside grains are replaced by coronas of pargasite and quartz, which may be asymmetric, recording hydration of the gabbroic gneiss. The coronas contain microstructures indicative of the former presence of melt, supported by pseudosection modeling consistent with the reaction having occurred near the solidus of the rock (630-710°C, 8.8-12.4 kbar). Homogeneous mineral chemistry in reaction products indicates an open system, despite limited metasomatism at the hand sample scale. We propose the partial replacement microstructures are a result of a reaction involving an externally derived hydrous, silicate melt and the relatively anhydrous, high-grade assemblage. Trace element mapping reveals a correlation between reaction microstructure development and bands of high-Sr plagioclase, recording pathways of the reactant melt along grain boundaries. Replacement microstructures record pathways of diffuse porous melt flow at a kilometer scale within the lower crust, which was assisted by small proportions of incipient melt providing a permeable network. This work recognizes melt flux through the lower crust in the absence of significant metasomatism, which may be more common than is currently recognized. As similar microstructures are found elsewhere within the exposed Fiordland lower crustal arc rocks, mass transfer of melt by diffuse porous flow may have fluxed an area >10,000 km2.

  4. Lattice Boltzmann Method Simulation of 3-D Melting Using Double MRT Model with Interfacial Tracking Method

    CERN Document Server

    Li, Zheng; Zhang, Yuwen

    2016-01-01

    Three-dimensional melting problems are investigated numerically with Lattice Boltzmann method (LBM). Regarding algorithm's accuracy and stability, Multiple-Relaxation-Time (MRT) models are employed to simplify the collision term in LBM. Temperature and velocity fields are solved with double distribution functions, respectively. 3-D melting problems are solved with double MRT models for the first time in this article. The key point for the numerical simulation of a melting problem is the methods to obtain the location of the melting front and this article uses interfacial tracking method. The interfacial tracking method combines advantages of both deforming and fixed grid approaches. The location of the melting front was obtained by calculating the energy balance at the solid-liquid interface. Various 3-D conduction controlled melting problems are solved firstly to verify the numerical method. Liquid fraction tendency and temperature distribution obtained from numerical methods agree with the analytical result...

  5. Optimization of magnetocaloric properties of arc-melted and spark plasma-sintered LaFe{sub 11.6}Si{sub 1.4}

    Energy Technology Data Exchange (ETDEWEB)

    Shamba, P.; Morley, N.A.; Reaney, I.M.; Rainforth, W.M. [University of Sheffield, Department of Materials Science and Engineering, Sheffield (United Kingdom); Cespedes, O. [University of Leeds, School of Physics and Astronomy, Leeds (United Kingdom)

    2016-08-15

    LaFe{sub 11.6}Si{sub 1.4} alloy has been synthesized in polycrystalline form using both arc melting and spark plasma sintering (SPS). The phase formation, hysteresis loss and magnetocaloric properties of the LaFe{sub 11.6}Si{sub 1.4} alloys synthesized using the two different techniques are compared. The annealing time required to obtain the 1:13 phase is significantly reduced from 14 days (using the arc melting technique) to 30 min (using the SPS technique). The magnetic entropy change (ΔS{sub M}) for the arc-melted LaFe{sub 11.6}Si{sub 1.4} compound, obtained for a field change of 5 - 0T (decreasing field), was estimated to be 19.6 J kg{sup -1} K{sup -1}. The effective RCP at 5T of the arc-melted LaFe{sub 11.6}Si{sub 1.4} compound was determined to be 360 J kg{sup -1} which corresponds to about 88 % of that observed in Gd. A significant reduction in the hysteretic losses in the SPS LaFe{sub 11.6}Si{sub 1.4} compound was observed. The ΔS{sub M}, obtained for a field change of 5 - 0T (decreasing field), for the SPS LaFe{sub 11.6}Si{sub 1.4} compound decreases to 7.4 J kg{sup -1} K{sup -1}. The T{sub C} also shifts from 186 (arc-melted) to 230 K (SPS) and shifts the order of phase transition from first to second order, respectively. The MCE of the SPS LaFe{sub 11.6}Si{sub 1.4} compound spreads over a larger temperature range with the RCP value at 5T reaching 288 J kg{sup -1} corresponding to about 70 % of that observed in Gd. At low fields, the effective RCP values of the arc-melted and spark plasma-sintered LaFe{sub 11.6}Si{sub 1.4} compounds are comparable, thereby clearly demonstrating the potential of SPS LaFe{sub 11.6}Si{sub 1.4} compounds in low-field magnetic refrigeration applications. (orig.)

  6. Optimization of magnetocaloric properties of arc-melted and spark plasma-sintered LaFe11.6Si1.4

    Science.gov (United States)

    Shamba, P.; Morley, N. A.; Cespedes, O.; Reaney, I. M.; Rainforth, W. M.

    2016-08-01

    LaFe11.6Si1.4 alloy has been synthesized in polycrystalline form using both arc melting and spark plasma sintering (SPS). The phase formation, hysteresis loss and magnetocaloric properties of the LaFe11.6Si1.4 alloys synthesized using the two different techniques are compared. The annealing time required to obtain the 1:13 phase is significantly reduced from 14 days (using the arc melting technique) to 30 min (using the SPS technique). The magnetic entropy change (Δ S M) for the arc-melted LaFe11.6Si1.4 compound, obtained for a field change of 5 - 0 T (decreasing field), was estimated to be 19.6 J kg-1 K-1. The effective RCP at 5 T of the arc-melted LaFe11.6Si1.4 compound was determined to be 360 J kg-1 which corresponds to about 88 % of that observed in Gd. A significant reduction in the hysteretic losses in the SPS LaFe11.6Si1.4 compound was observed. The Δ S M, obtained for a field change of 5 - 0 T (decreasing field), for the SPS LaFe11.6Si1.4 compound decreases to 7.4 J kg-1 K-1. The T C also shifts from 186 (arc-melted) to 230 K (SPS) and shifts the order of phase transition from first to second order, respectively. The MCE of the SPS LaFe11.6Si1.4 compound spreads over a larger temperature range with the RCP value at 5 T reaching 288 J kg-1 corresponding to about 70 % of that observed in Gd. At low fields, the effective RCP values of the arc-melted and spark plasma-sintered LaFe11.6Si1.4 compounds are comparable, thereby clearly demonstrating the potential of SPS LaFe11.6Si1.4 compounds in low-field magnetic refrigeration applications.

  7. Water content, δD and δ11B tracking in the Vanuatu arc magmas (Aoba Island): Insights from olivine-hosted melt inclusions

    Science.gov (United States)

    Métrich, Nicole; Deloule, Etienne

    2014-10-01

    Ion microprobe measurements of H and B isotopic ratios and H2O, B and trace element contents are reported here for a series of melt inclusions typical of alkaline basalts of Aoba Island in the central part of Vanuatu arc (Southwestern Pacific). The melt inclusions, hosted in olivine Fo86-90, display large ranges in trace element concentrations and hydrogen (δD from - 48.2 to + 61.7‰) and boron (δ11B from - 11.9 to + 6.4‰) isotopic compositions. The high deuterium enrichment (δD ≥ 0‰) observed in a small subset of melt inclusions requires a proton diffusion loss through the olivine network, in addition to late-stage magma interactions with aqueous saline fluids. These melt inclusions are therefore not considered as representative of the magma from which the olivine grew. In most melt inclusions, positive correlations between H2O, K2O, Ba and Sr lead us to determine the K2O/H2O (1.5 ± 0.2), H2O/Ba (46 ± 3 × 10- 4) and H2O/Sr (29 ± 2 × 10- 4) ratios of Aoba basalts. Overall correlations between δ11B, B/Nb, and B/Nd testify to the mixing between slab-derived fluids, preferentially enriched in δ11B and fluid mobile elements and a relatively depleted MORB-type mantle wedge beneath Aoba Island. Heavy δ11B (on average 5.4 ± 0.7‰) indicate slab-derived fluids, possibly involving serpentine, which would have a mean δD value of - 28.4 ± 7‰. The chemical and isotopic variability recorded by Aoba magmas (melt inclusions) is consistent with the geodynamic context of ridge-arc collision in the central segment of Vanuatu arc.

  8. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  9. Arc-plasma spraying and suctioncasting methods in magnetic materials manufacturing

    Directory of Open Access Journals (Sweden)

    J.J. Wysłocki

    2010-11-01

    Full Text Available Purpose: The paper discusses two new technologies for producing magnetic materials which have been successfully developed in recent years at the Institute of Physics of the Czestochowa University of Technology and discusses properties of the materials obtained with the use of these methods.Design/methodology/approach: In this research the arc-plasma deposition of Nd2Fe14B powders onto a substrate either cooled with water or heated up to a temperature in the range from 773 to1023 K was applied. In the second method the suction of an arc-melted alloy to a water-cooled copper mould (the suction-casting method was introduced. Moreover, microstructure, magnetic properties and domain structure of the produced samples were determined.Findings: It has been found that thin Nd2Fe14B strips obtained by the plasma method possess magnetic properties. It has also been demonstrated that the suction-casting method makes it possible to obtain both amorphous magnetically soft materials (e.g. Fe-Co-W-Zr-B, as well as magnetically hard nanocomposites (e.g. (Fe-Co-(Pr-Dy-B-Zr.Research limitations/implications: The main problem in the suction-casting method is to reduce the critical cooling rate required for the production of amorphous alloys and to increase the geometrical dimensions of amorphous specimens.Practical implications: Thin-layered Nd-Fe-B magnets produced by means of arc-plasma deposition can be applied directly onto the surface of electromagnetic equipment parts. Magnets with isotropic magnetic properties were obtained by applying layers onto the water-cooled copper substrate. Whereas, anisotropic magnets were obtained as a result of the arc-plasma deposition of powders onto the copper substrate heated up to 873 K. The most advantageous properties were achieved for the microcrystalline structure of a grain size close to the single-domain particle size (approx. 0.3 μm. Moreover, it has been demonstrated that the suction-casting method makes it possible

  10. Characteristics of the Ti1.27Fe + 11 wt.% Ni Composite Obtained by Arc Melting and Ball Milling

    Directory of Open Access Journals (Sweden)

    J. Bonifacio-Martínez

    2013-01-01

    Full Text Available The Ti1.27Fe + 11 wt.% Ni composite synthesized by arc melting and ball milling and its possible use in hydrogen storage were studied. First the intermetallic Ti1.27Fe was obtained from elemental powders of Ti and Fe by using the arc melting in argon atmosphere and was cracked in a reactor, after that nickel powder was added to the Ti1.27Fe alloy before the milling. The mixture was subjected to high-energy ball milling to produce the Ti1.27Fe/Ni composite. Nanocrystalline phases Ti1.27Fe + Ni were observed after 5 h of milling. Hydrogenation results indicated that in the first cycle of hydriding the maximum amount of hydrogen release was 2.10 wt.% for the composite at 100∘C, under hydrogen pressure of 0.8 MPa and without prior activation.

  11. Fluid Source-based Modeling of Melt Initiation within the Subduction Zone Mantle Wedge: Implications for Geochemical Trends in Arc Lavas

    Science.gov (United States)

    Hebert, L. B.; Asimow, P. D.; Antoshechkina, P. M.

    2008-12-01

    The GyPSM-S (Geodynamic and Petrological Synthesis Model for Subduction) scheme couples a petrological model (pHMELTS) with a 2D thermal and variable viscosity flow model (ConMan), to describe and compare fundamental processes occurring within subduction zones. Here we supplement basic GyPSM-S models with a more sophisticated treatment of trace element partitioning in the fluid phase and of melt transport regimes to investigate the influences of slab fluid source lithology and fluid transport mechanisms on melt geochemistry, the implications of mantle source depletion related to fluid fluxing, and potential melt migration processes. Changing model parameters indicate that slab age and slab dip are the primary controls on slab-adjacent low-viscosity channel (LVC) shape and thickness, due to changes in the fluid release patterns. Slab age and convergence velocity, which contribute to the slab thermal structure, are significant for the locations of dehydration reactions within the different lithological layers of the slab. The fluid source lithology determines the fluid flux and the fluid-mobile trace element input to the wedge. This study focuses on two cases that represent extremes within our model set, an old slab with a low rate of convergence and and a relatively young slab with a higher rate of convergence. Results are compared to actual geochemical datasets for the Izu-Bonin intra-oceanic subduction system and the Central Costa Rican part of the Central American arc. We find that there is a progression of geochemical characteristics described in studies of cross-arc and along-arc lavas that can be duplicated assuming (i) limited fluid-rock interaction within the mantle wedge and (ii) that melt migration preserves the spatial distinction among melts initiated in different areas of the wedge. Specifically, volcanic front lavas have significant contributions from shallower slab fluid sources, and rear-arc lavas have significant contributions from deeper slab fluid

  12. 2D arc-PIC code description: methods and documentation

    CERN Document Server

    Timko, Helga

    2011-01-01

    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider. To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D Arc-PIC code introduced here. We present an exhaustive description of the 2D Arc-PIC code in two parts. In the first part, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second part, we provide a documentation and derivation of the key equations occurring in the code. The code is original work of the author, written in 2010, and is therefore under the copyright of the author. The development of the code h...

  13. Method to decrease loss of aluminum and magnesium melts

    Science.gov (United States)

    Hryn, John N.; Pellin, Michael J.; Calaway, Jr., Wallis F.; Moore, Jerry F.; Krumdick, Gregory K.

    2002-01-01

    A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

  14. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the Al{sub x}CoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's.

  15. Fabrication of TiC-Reinforced Composites by Vacuum Arc Melting: TiC Mode of Reprecipitation in Different Molten Metals and Alloys

    Science.gov (United States)

    Karantzalis, A. E.; Arni, Z.; Tsirka, K.; Evangelou, A.; Lekatou, A.; Dracopoulos, V.

    2016-08-01

    TiC crystals were developed and grown through a melt dissolution and reprecipitation mechanism, in different alloy matrices (pure Fe, 316L, Fe-22 at.%Al, Ni-25at.%Al, and pure Co) through the use of Vacuum Arc Melting (VAM) process. The TiC surfaces exhibit a characteristic faceted mode of growth which is explained in terms of classic nucleation and crystal growth theories and is related with the well-known Jackson factor of crystal growth. Different morphologies of the finally solidified TiC grains are observed (dendritic, radially grown, isolated blocky crystals, particle clusters), the establishment of which may be most likely related with solidification progress, cooling rate, and melt compositional considerations. An initial, rough and qualitative phase identification shows a variety of compounds, and the attempts to define specific phase crystallographic-orientational relationships led to rather random results.

  16. Abrupt change in magma generation processes across the Central American arc in southeastern Guatemala: flux-dominated melting near the base of the wedge to decompression melting near the top of the wedge

    Science.gov (United States)

    Walker, J. A.; Carr, M. J.; Patino, L. C.; Johnson, C. M.; Feigenson, M. D.; Ward, R. L.

    1995-07-01

    Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.

  17. ARC welding method for bonding steel with aluminum

    Institute of Scientific and Technical Information of China (English)

    Zhenyang LU; Pengfei HUANG; Wenning GAO; Yan LI; Hanpeng ZHANG; Shuyan YIN

    2009-01-01

    When welding steel with aluminum, the appearance of intermetallic compounds of Fe and A1 will decrease tenacity and increase rigidity, which leads to bad joint performance. A new type of low energy input (LEI) welding technology is introduced which can be used to weld steel with aluminum. Using the technology, brazing was located on the steel side and arc fusion welding on the aluminum side. The less heat input reduces the thickness of intermetallic compounds to 3-4 μm. Tensile strength tests prove that the joint breaks at the heat-affected zone and the strength is higher than 70% of the aluminum's. Thus, the method can lead to a good performance joint.

  18. Compositional variability in mafic arc magmas over short spatial and temporal scales: Evidence for the signature of mantle reactive melt channels

    Science.gov (United States)

    Rawson, Harriet; Keller, Tobias; Fontijn, Karen; Pyle, David M.; Mather, Tamsin A.; Smith, Victoria C.; Naranjo, José A.

    2016-12-01

    Understanding arc magma genesis is critical to deciphering the construction of continental crust, understanding the relationship between plutonic and volcanic rocks, and for assessing volcanic hazards. Arc magma genesis is complex. Interpreting the underlying causes of major and trace element diversity in erupted magmas is challenging and often non-unique. To navigate this complexity mafic magma diversity is investigated using sample suites that span short temporal and spatial scales. These constraints allow us to evaluate models of arc magma genesis and their geochemical implications based on physical arguments and recent model results. Young volcanic deposits (≲18 kyr) are analysed from the Southern Volcanic Zone (SVZ), Chile, in particular suites of scoria cones on the flanks of arc stratovolcanoes that have erupted relatively primitive magmas of diverse compositions. Our study is centred on the high-resolution post-glacial tephrochronological record for Mocho-Choshuenco volcano where tight age constraints and a high density of scoria cones provide a spatially well-resolved mafic magma dataset. Two compositional trends emerge from the data. Firstly, magmas from cones on the flanks of the main edifice become more mafic with distance from the central vent. This is attributed to fractional crystallisation processes within the crust, with distal cones sampling less differentiated magmas. Secondly, there is a set of cones with distinct major and trace element compositions that are more primitive but enriched in incompatible elements relative to the central system and other 'normal SVZ' magmas. This distinct signature - termed the 'Kangechi' signature - is observed at three further clusters of cones within the SVZ. This is attributed to greater preservation of the enriched melt signature arising from reactive melt transport within the mantle wedge. Our model has important implications for arc magma genesis in general, and in particular for the spatial and temporal

  19. Evidence for Slab Melt Contributions to the Mexican Volcanic Belt and Other Young Hot Slab Arcs from Lu-Hf Isotopes

    Science.gov (United States)

    Goldstein, S. L.; Cai, Y. M.; Langmuir, C. H.; Lagatta, A.; Straub, S. M.; Gomez-Tuena, A.; Martin Del Pozzo, A.

    2007-12-01

    Despite major advances in delineating the processes that govern magma generation at convergent margins, the problem persists of distinguishing slab, mantle wedge, and crustal contributions. A corrollary question is whether there is significant melting of subducted ocean crust. Especially in thick crust regions, the importance of crustal versus mantle contributions to lavas represents a long-standing fundamental issue in arc magma geochemistry. We show that frontal arc magmas from the Central Mexican Volcanic Belt (CMVB), including the large andesitic stratovolcanoes Popocatepetl and Nevado de Toluca, display negligible crustal contamination, and contain substantial contributions from melting of subducted Pacific ocean crust. Despite ca. 50 km thick continental crust, the CMVB erupts near primitive lavas including "high-Nb" alkaline basalts that show negligible "subduction signatures" in their trace element patterns. These "high-Nb" basalts define the regional mantle wedge composition in isotope-trace element space. The "normal" calcalkaline lavas form a negative correlation between Hf isotopes and Lu/Hf. One endmember is like the high Nb basalts representing the regional mantle wedge. The other endmember has higher Hf isotopes (approaching values of Pacific MORB) and very low Lu/Hf of less than 0.04 (e.g. compared to typical values of ca. 0.2 in Pacific MORB). The low Lu/Hf values require low degree partial melting of a source rich in garnet. The high Hf isotopes require a depleted mantle source with isotopes like Pacific MORB. Together the Lu-Hf data indicate a substantial component derived from melting of eclogitic Pacific ocean crust. A key feature of the data is that the stratovolcano lavas showing the largest slab melt signature also show the highest Hf isotope ratios and thus are more "depleted mantle-like" than the regional mantle wedge. Thus, the integrated data allow us to clearly distinguish between mantle and crustal sources in the CMVB and point to

  20. A neural network gravitational arc finder based on the Mediatrix filamentation method

    Science.gov (United States)

    Bom, C. R.; Makler, M.; Albuquerque, M. P.; Brandt, C. H.

    2017-01-01

    Context. Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. Aims: In this work we introduce a new arc finder based on pattern recognition, which uses a set of morphological measurements that are derived from the Mediatrix filamentation method as entries to an artificial neural network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on four Hubble Space Telescope (HST) images of strong lensing systems. Methods: The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also consider a sample of objects from HST images with no arcs in the training of the ANN classification. We use the training and validation process to determine a suitable set of ANN configurations, including the combination of inputs from the Mediatrix method, so as to maximize the completeness while keeping the false positives low. Results: In the simulations the method was able to achieve a completeness of about 90% with respect to the arcs that are input into the ANN after a preselection. However, this completeness drops to 70% on the HST images. The false detections are on the order of 3% of the objects detected in these images. Conclusions: The combination of Mediatrix measurements with an ANN is a promising tool for the pattern-recognition phase of arc finding. More realistic simulations and a larger set of real systems are needed for a better training and assessment of the efficiency of the method.

  1. H2O-driven generation of picritic melts in the Middle to Late Triassic Stuhini arc of the Stikine terrane, British Columbia, Canada

    Science.gov (United States)

    Milidragovic, Dejan; Chapman, John B.; Bichlmaier, Sebastian; Canil, Dante; Zagorevski, Alex

    2016-11-01

    Basaltic to andesitic compositions predominate island arc magmatism; ultramafic magmas are rare. Ultramafic (MgO = 21-33 wt.%) tuff breccia, lapilli tuff, and ash tuff of the Middle to Upper Triassic Stuhini Group were erupted in the Stikine arc of the North American Cordillera shortly preceding an episode of prolific porphyry Cu-Mo(-Au) mineralization. The ultramafic tuff shows accumulation (20-65%) of olivine (Fo91) and minor chromite into a subalkaline picritic parental magma with MgO ∼16 wt.%. Despite the inferred high MgO content of the parental liquid, chromite phenocrysts record relatively low liquidus temperatures (oxygen fugacities one to three log units above the fayalite-magnetite-quartz (FMQ) buffer. The primary picritic magmas likely contained 5-7 wt.% H2O, inferred on the basis of olivine-liquid thermometry and thermal models for subduction zones, thus alleviating the need for catastrophic thermal perturbations in the mantle wedge. Instead, efficient release of water through slab dehydration at 2.5-3.0 GPa allows generation of picritic melts at ordinary mantle wedge temperatures through moderate degrees (F = 0.10- 0.15) of hydrous flux melting. The volatile-rich nature of the melt and the predominant extensional regime in the overlying lithosphere of Stikinia facilitated the near-adiabatic ascent of the Stuhini Group picrites. The high H2O content of the rapidly ascending picrite melt may have played a key role in transport of metals into the crust of the Stikinia and subsequent porphyry mineralization.

  2. Preliminary Study of the Feasibility of Inverse Problem Algorithms Used for Arc Magnetic Measurement Method

    Science.gov (United States)

    Wang, Qian; Li, Xingwen; Song, Haoyong; Rong, Mingzhe

    2010-04-01

    Non-contact magnetic measurement method is an effective way to study the air arc behavior experimentally One of the crucial techniques is to solve an inverse problem for the electromagnetic field. This study is devoted to investigating different algorithms for this kind of inverse problem preliminarily, including the preconditioned conjugate gradient method, penalty function method and genetic algorithm. The feasibility of each algorithm is analyzed. It is shown that the preconditioned conjugate gradient method is valid only for few arc segments, the estimation accuracy of the penalty function method is dependent on the initial conditions, and the convergence of genetic algorithm should be studied further for more segments in an arc current.

  3. Metals purification by improved vacuum arc remelting

    Science.gov (United States)

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  4. Silicon carbide multilayer protective coating on carbon obtained by thermionic vacuum arc method

    Science.gov (United States)

    Ciupină, Victor; Lungu, Cristian Petrica; Vladoiu, Rodica; Prodan, Gabriel; Porosnicu, Corneliu; Belc, Marius; Stanescu, Iuliana M.; Vasile, Eugeniu; Rughinis, Razvan

    2014-01-01

    Thermionic vacuum arc (TVA) method is currently developing, in particular, to work easily with heavy fusible material for the advantage presented by control of directing energy for the elements forming a plasma. The category of heavy fusible material can recall C and W (high-melting point materials), and are difficult to obtain or to control by other means. Carbon is now used in many areas of special mechanical, thermal, and electrical properties. We refer in particular to high-temperature applications where unwanted effects may occur due to oxidation. Changed properties may lead to improper functioning of the item or device. For example, increasing the coefficient of friction may induce additional heat on moving items. One solution is to protect the item in question by coating with proper materials. Silicon carbide (SiC) was chosen mainly due to compatibility with coated carbon substrate. Recently, SiC has been used as conductive transparent window for optical devices, particularly in thin film solar cells. Using the TVA method, SiC coatings were obtained as thin films (multilayer structures), finishing with a thermal treatment up to 1000°C. Structural properties and oxidation behavior of the multilayer films were investigated, and the measurements showed that the third layer acts as a stopping layer for oxygen. Also, the friction coefficient of the protected films is lower relative to unprotected carbon films.

  5. A Neural Network Gravitational Arc Finder Based on the Mediatrix Filamentation Method

    CERN Document Server

    Bom, C R; Albuquerque, M P; Brandt, C H

    2016-01-01

    Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. In this work we introduce a new arc finder based on pattern-recognition, which uses a set of morphological measurements derived from the Mediatrix Filamentation Method (Bom et al. 2016) as entries to an Artificial Neural Network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on 4 Hubble Space Telescope (HST) images of strong lensing systems.The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also con...

  6. An Integrated Method for Accurate Determination of Melting in High-Pressure Laser Heating Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L R; Antonangeli, D; Farber, D L; Mezouar, M

    2007-11-19

    We present an integrated approach for melting determination by monitoring several criteria simultaneously. In particular we combine x-ray diffraction observations with the detection of discontinuities in the optical properties by spectroradiometric measurements. This approach significantly increases the confidence of melt identification, especially with low-Z samples. We demonstrate the method with observations of melt in oxygen at 47 and 55 gigapascals.

  7. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    KAUST Repository

    Hassnain Jaffari, G.

    2015-12-16

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/Fe atom and a bulk like negligible value of coercivity over the temperature range of 5–300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  8. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    Science.gov (United States)

    Naragino, Hiroshi; Tominaga, Aki; Hanada, Kenji; Yoshitake, Tsuyoshi

    2015-07-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably.

  9. Melt Adsorption as a Manufacturing Method for Fine Particles of Wax Matrices without Any Agglomerates.

    Science.gov (United States)

    Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.

  10. A novel wavelet method for electric signals analysis in underwater arc welding

    Institute of Scientific and Technical Information of China (English)

    Zhang Weimin; Wang Guorong; Shi Yonghua; Zhong Biliang

    2009-01-01

    Electric signals are acquired and analyzed in order to monitor the underwater arc welding process. Voltage break point and magnitude are extracted by detecting arc voltage singularity through the modulus maximum wavelet (MMW) method. A novel threshold algorithm, which compromises the hard-threshold wavelet (HTW) and soft-threshold wavelet (STW) methods, is investigated to eliminate welding current noise. Finally, advantages over traditional wavelet methods are verified by both simulation and experimental results.

  11. Implementation method of Oil and Gas Geologic Information System with ArcGIS Engine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ComGIS is the mainstream of developing GIS currently. Developing Geographic Information System with the technology of components can reduce the difficulties of developing, improving the developing efficiency and enhancing the flexibility and opening of system. AxcObjects(AO) is based on the technology of COM, and ArcGIS Engine(AE) is a set of embedded AO which can extend to various platforms. Compared with AO, ArcGIS Engine can shorten the period of developing and improve the efficiency greatly. Having introduced the techniques of ArcObjects and ArcGIS Engine, we offer the method of developing GIS with Visual Basic and ArcGIS Engine with Oil and Gas Geologic Information System.

  12. A Lightweight Structure Redesign Method Based on Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Li Tang

    2016-11-01

    Full Text Available The purpose of this paper is to present a new design method of lightweight parts fabricated by selective laser melting (SLM based on the “Skin-Frame” and to explore the influence of fabrication defects on SLM parts with different sizes. Some standard lattice parts were designed according to the Chinese GB/T 1452-2005 standard and manufactured by SLM. Then these samples were tested in an MTS Insight 30 compression testing machine to study the trends of the yield process with different structure sizes. A set of standard cylinder samples were also designed according to the Chinese GB/T 228-2010 standard. These samples, which were made of iron-nickel alloy (IN718, were also processed by SLM, and then tested in the universal material testing machine INSTRON 1346 to obtain their tensile strength. Furthermore, a lightweight redesigned method was researched. Then some common parts such as a stopper and connecting plate were redesigned using this method. These redesigned parts were fabricated and some application tests have already been performed. The compression testing results show that when the minimum structure size is larger than 1.5 mm, the mechanical characteristics will hardly be affected by process defects. The cylinder parts were fractured by the universal material testing machine at about 1069.6 MPa. These redesigned parts worked well in application tests, with both the weight and fabrication time of these parts reduced more than 20%.

  13. An experimental method for directly determining the interconnectivity of melt in a partially molten system

    Science.gov (United States)

    Daines, Martha J.; Richter, Frank M.

    1988-01-01

    An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.

  14. Hydrous basalt-limestone interaction at crustal conditions: Implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs

    Science.gov (United States)

    Carter, Laura B.; Dasgupta, Rajdeep

    2015-10-01

    High degassing rates for some volcanoes, typically in continental arcs, (e.g., Colli Albani Volcanic District, Etna, Vesuvius, Italy; Merapi, Indonesia; Popocatepetl, Mexico) are thought to be influenced by magma-carbonate interaction in the crust. In order to constrain the nature of reaction and extent of carbonate breakdown, we simulated basalt-limestone wall-rock interactions at 0.5-1.0 GPa, 1100-1200 °C using a piston cylinder and equal mass fractions of calcite (CaCO3) and a hydrous (∼4 wt.% H2O) basalt in a layered geometry contained in AuPd capsules. All experiments produce melt + fluid + calcite ± clinopyroxene ± plagioclase ± calcic-scapolite ± spinel. With increasing T, plagioclase is progressively replaced by scapolite, clinopyroxene becomes CaTs-rich, and fluid proportion, as inferred from vesicle population, increases. At 1.0 GPa, 1200 °C our hydrous basalt is superliquidus, whereas in the presence of calcite, the experiment produces calcite + clinopyroxene + scapolite + melt. With the consumption of calcite with increasing T and decreasing P, melt, on a volatile-free basis, becomes silica-poor (58.1 wt.% at 1.0 GPa, 1100 °C to 34.9 wt.% at 0.5 GPa, 1200 °C) and CaO-rich (6.7 wt.% at 1.0 GPa, 1100 °C to 43.7 wt.% at 0.5 GPa, 1200 °C), whereas Al2O3 drops (e.g., 19.7 at 1100 °C to 12.8 wt.% at 1200 °C at 1.0 GPa) as clinopyroxene becomes more CaTs-rich. High T or low P melt compositions are 'ultracalcic,' potentially presenting a new hypothesis for the origin of ultracalcic melt inclusions in arc lava olivines. Wall-rock calcite consumption is observed to increase with increasing T and decreasing P. At 0.5 GPa, our experiments yield carbonate assimilation from 21.6 to 47.6% between 1100 and 1200 °C. Using measured CO2 outflux rates for Mts. Vesuvius, Merapi, Etna and Popocatepetl over a T variation of 1100 to 1200 °C at 0.5 GPa, we calculate 6-92% of magmatic input estimates undergo this extent of assimilation, suggesting that up to ∼3

  15. Macroparticles Reduction Using Filter Free Cathodic Vacuum Arc Deposition Method in ZnO Thin Films.

    Science.gov (United States)

    Yuvakkumar, R; Peranantham, P; Nathanael, A Joseph; Nataraj, D; Mangalaraj, D; Hong, Sun Ig

    2015-03-01

    We report a new method to reduce macroparticles in ZnO thin films using filter free cathodic vacuum arc deposition without using any cooling arrangements operated at low arc current. The detailed mechanism has been proposed to reduce macroparticles during thin film deposition. The successful reduction of macroparticles was confirmed employing FESEM-EDX studies. FESEM images of ZnO thin films deposited with cathode spot to substrate distance from 10 to 20 cm revealed that the population of the macroparticles were reduced with the increase of cathode spot to substrate distances at low arc current. The prepared ZnO films were characterised and showed good structural and optical properties.

  16. Optimization method for electron beam melting and refining of metals

    Science.gov (United States)

    Donchev, Veliko; Vutova, Katia

    2014-03-01

    Pure metals and special alloys obtained by electron beam melting and refining (EBMR) in vacuum, using electron beams as a heating source, have a lot of applications in nuclear and airspace industries, electronics, medicine, etc. An analytical optimization problem for the EBMR process based on mathematical heat model is proposed. The used criterion is integral functional minimization of a partial derivative of the temperature in the metal sample. The investigated technological parameters are the electron beam power, beam radius, the metal casting velocity, etc. The optimization problem is discretized using a non-stationary heat model and corresponding adapted Pismen-Rekford numerical scheme, developed by us and multidimensional trapezional rule. Thus a discrete optimization problem is built where the criterion is a function of technological process parameters. The discrete optimization problem is heuristically solved by cluster optimization method. Corresponding software for the optimization task is developed. The proposed optimization scheme can be applied for quality improvement of the pure metals (Ta, Ti, Cu, etc.) produced by the modern and ecological-friendly EBMR process.

  17. Control system of constant power consumption melting speed for vacuum arc furnace%真空自耗电弧炉恒熔速控制系统改造

    Institute of Scientific and Technical Information of China (English)

    王勃; 陈鼎; 孙足来

    2015-01-01

    为真空自耗电弧炉设备由恒电压控制升级改造至恒熔速控制系统。通过对2000kg真空自耗电弧炉熔炼钛合金的生产工艺、过程参数、产品要求进行了详细分析,选取恰当的数据采样算法,为更好的掌握真空弧电压、真空弧电流、钛合金熔炼速度等工艺参数间的耦合关系提供了良好的依据。同时对真空自耗电弧炉的控制系统现状及熔炼技术发展做了综述。在 PLC中建立弧电压、弧电流,熔炼速率等的计算公式来实现设定各级控制回路的设定值。%In this paper, the control system of electricity arc furnace equipment is upgraded from constant voltage to constant melting speed. The power consumption of vacuum arc furnace selfmelting production technology of titanium alloy, process parame-ters and product requirements are analyzed in detail. The data sampling algorithm was selected appropriately in order to better grasp the vacuum arc current, arc voltage, the coupling relationship between process parameters such as titanium alloy melting speed so as to provide good basis. At the same time, the development of the current control system and self-melting technology for power consumption vacuum arc furnace were reviewed. The calculation formula of arc voltage, arc current and melting rate were built up in PLC to implement the control circuit at various levels.

  18. [Perilla nankinensis Decne by using melt granulation method].

    Science.gov (United States)

    Shashiashvili, N B; Berashvili, D T; Bakuridze, L A; Bakuridze, A D

    2013-12-01

    The aim of the research was to work out the technology and tablet composition from the overground parts of the Perilla nankinensis Decne on the base of complex research. The dry extract was prepared from dried overground parts of perilla introduced in Georgia. The structural-mechanical and technological character of tablets and their masses were identified by the known methodic. Friability was studied by defining the fluctuation and bending corner. Volume density was established by using vibration cylinder. Volume density of powders was studied by pyknometers. Porosity was calculated by the bearing of volume density of the masses. The size of pressing was established by defining the firmness of tablets. The granule composition was defined by analysis. Disintegration and dissolution were studied by using "rotating basket" and "basket-rack assembly". From the result we got it was clear that the dry extract for research don't have good fluctuation and pressing. It should be mentioned that it contained moisture and is hygroscopic. As the character of substances is not satisfied it was necessary to select new assisting substances and studying and using additional technological method. We have selected some more additional substances for optimal firmness and for the purpose of shortening the time of tablet dissolution. There were also selected parameters of optimal pressing force. Assisting substances are practically selected and theoretically accepted on the base of studying technological and physical-chemical character features of the substances of the dry extract from the over ground parts of Perilla nankinensis Decne. As a result optimal composition of tablets is delivered. It is also scientifically proved and practically offered optimal technological parameters of tablets forming melt granulation method.

  19. RESEARCH OF THE FEEDING SPEED ADOPTING CORED-WIRE METHOD TO SPHEROIDIZE DUCTILE IRON MELT

    Institute of Scientific and Technical Information of China (English)

    G.W.Chang; H.X.Wang; X.D.Yue; H.L.Zhang

    2008-01-01

    For settling the question of feeding speed in applying the cored-wire method to spheroidize ductile iron melt, ANSYS software was applied to simulate the heat transfer and mass transfer, and the melt time of the steel strip in the iron melt was determined by linking the heat transfer and mass transfer, and then the feeding speed was calculated. Conclusions have been drawn that the iron layer was formed on the surface of the cored-wire during the wire-feeding process. The thickness is 0.073 mm when the temperature of the iron melt is 1500℃, the time from formation to remelting of the iron layer is 0.063 s. When the temperature of the iron melt is below 1500℃, the time taken for the steel strip to melt is rapidly shortened. When the temperature of the iron melt is above 1500℃, the variation amplitude of the steel strip melt change with time is gradually diminished. The melt time of the steel strip is rapidly increased with the increase of the steel strip thickness. When the temperature of the iron melt is 1500℃ and the carbon content is 4%, the melt time of a steel strip, which has a thickness of 0.5 mm, is thrice that of a steel strip whose thickness is 0.3 mm. The calculation results of the feeding speed are basically in agreement with the applied feeding speed in the factory.

  20. Improving Weld Quality by Arc-Excited Ultrasonic Treatment

    Institute of Scientific and Technical Information of China (English)

    张春雷; 吴敏生; 杜敬磊

    2001-01-01

    Ultrasonic treatment of the solidifying metal is a promising method for improving the quality of fusion welding. A method to combine the ultrasonic waves to the welding process using arc-excited ultrasonic emission, called arc-ultrasonic, was high frequency modulation of the arc-plasma. The effects of arc-ultrasonic on the weld including the fusion zone, the partially melted zone and the heat-affected zone are described. The arc-ultrasonic energy changes the weld microstructure. In the fusion zone, the primary dendrite arm spacing decreases significantly and more acicular ferrite appears. In the partially melted zone, a large amount of fine grains appear. In the heat-affected zone, the width of the tempered zone increases with increasing modulation frequency and the microstructure is refined. The results show that arc-ultrasonic is a new and effective way for improving weld quality.

  1. Surface energy evaluation of unhydrogenated DLC thin film deposited by thermionic vacuum arc (TVA) method

    Science.gov (United States)

    Vladoiu, R.; Dinca, V.; Musa, G.

    2009-08-01

    The aim of this paper is concerned with the surface energy evaluation by contact angle measurements of DLC films deposited by thermionic vacuum arc (TVA) on different substrates: glass plate, zinc foil, stainless steel and alumina foil. TVA is an original method based on a combination of the evaporation by electron bombardment and anodic arc. The evaluation of the surface free energy has been carried out by surface energy evaluation system (SEE System). The influence of the experimental conditions is also investigated.

  2. Investigation of the Solution Electrical Conductivity Effect upon the Synthesis of Carbon Nanotubes by Arc Discharge Method

    OpenAIRE

    Asieh Dehghani Kiadehi; Mohsen Jahanshahi; Mohammadreza Mozdianfard; Gholamreza Vakili-Nezhaad

    2013-01-01

    Some techniques have been developed to produce carbon nanotubes (CNTs) in sizeable quantities, including arc discharge, laser ablation and chemical vapor deposition (CVD). Arc discharge in liquid environment is a new, simple and cheap method of synthesizing CNTs. CNTs in this study were fabricated by arc discharge in liquid. The present work was undertaken to study the effect of electrical conductivity of liquid on CNTs production and was fabricated using arc discharge between two graphite el...

  3. Reduction in airborne contamination levels at the 9201-5 Arc Melt sawing operation. A Y-12 Plant 1982 ALARA goal

    Energy Technology Data Exchange (ETDEWEB)

    Beck, D.E.; West, C.M.

    1983-02-01

    Lowering the uranium airborne contamination level at the two saws in the 9201-5 Arc Melt Area was chosen as a Y-12 Plant As-Low-As-Reasonably-Achievable (ALARA) goal for 1982. This priority was convincingly communicated to those involving by giving specific instructions to suspend saw operations any time there was evidence of a problem until that problem could be corrected. Using control charts on air flow rates into the saw enclosures and pressure drops across filters in the saw ventilation (Delta Phase I) exhaust system, it was possible to decide when filter changes or other adjustments were necessary to maintain the exhaust flow rates needed for improved airborne contamination control. The keeping of these charts, along with the actions taken on the basis of the data gathered, made it possible to meet the goal of reducing airborne contamination levels in 1982, as compared with 1981, although production in the Arc Melt Area increased significantly. These data also showed that use of one brand of filter in the prefilter system resulted in the need to change filters more frequently than when another brand was used. This fact triggered an investigation which revealed the cause for the shorter useful life of that filter and a request that only specifically approved filters be purchased for use in this system. Use of these control data also made it possible to establish that the exhaust system operated more effectively without the Roto-clone hydrostatic pecipitators because exhaust air flow was increased without reduction in filter life.

  4. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  5. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2017-02-01

    Full Text Available One of the most common methods of carbon nanotubes (CNTs synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs. It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  6. A numerical simulation method of arc welding; Une methode de simulation numerique du soudage a l arc

    Energy Technology Data Exchange (ETDEWEB)

    Chau, T.T. [AREVA TA (Technicatome), Centre Jean-Louis Andrieu, BP34000, 13791 Aix-en-Provence Commission Simulation Numerique du Soudage (AFM / SNS), Paris La Defense (France)

    2006-07-01

    Nowadays, in metal industries, are more and more used weak thicknesses steel sheets to reduce the mass and optimize the resistance of the structures to make with the electric arc welding which remains always the most used and most economical technique. Deformations and residual stresses of most or less important levels are introduced too in the assembling thus welded. The methodology presented here can help the designer-manufacturer engineer to estimate the levels of these effects and to optimize the design and manufacture parameters for reaching the wanted performances in his plans with few computer time on 3D numerical models of great sizes. (O.M.)

  7. A method of initial welding position guiding for arc welding robot based on visual servo control

    Institute of Scientific and Technical Information of China (English)

    郭振民; 陈善本; 邱涛; 吴林

    2003-01-01

    In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice-prone image-based visual servo control strategy without calibration, and we perform validating experiments on a nine-DOF arc welding robot system. Experimental results illustrate presented method has the function to fulfill the task of welding robot initial positioning with certain anti-jamming ability. This method provides a basis for guiding welding gun to initial welding pose with real typical seam's image properties to replace flag block properties, and is a significant exploit to realize visual guiding of initial welding position and seam tracing in robot welding system.

  8. A study of arc stability of basic electrode in view of uniform design method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to develop a basic electrode with low fume and good usability, a new slag system has been designed after analyzing several basic electrode slag systems. Then in view of uniform design method, arranging the experiment points by it, the influenced laws of the new system coating components on the arc stability had been searched. In the formula, nine coating components were taken as independent variables and they were divided into six levels in all twenty-four experiments. The arc stability was taken as function and taken down the data when welding and then put them into the computer to be processed statistically. The analysis results give the mathematical model and trend diagrams between independent variables and the function. They indicate that the effects of many coating components on the arc stability are in the mutual form. The mutual effects between CaCO3 and BaF2, BaF2 and BaCO3, increases the arc stability separately. While the mutual effects between CaF2 and iron powder, the square item of iron powder itself decreases the arc stability separately.

  9. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved.

  10. Method for removal of phosgene from boron trichloride. [DOE patent application; mercury arc lamp

    Science.gov (United States)

    Freund, S.M.

    1981-09-03

    Selective ultraviolet photolysis using an unfiltered mercury arc lamp has been used to substantially reduce the phosgene impurity in a mixture of boron trichloride and phosgene. Infrared spectrophotometric analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this method.

  11. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    Science.gov (United States)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  12. Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting

    Science.gov (United States)

    Gharsallah, Mouna; Serrano-Sanchez, Federico; Nemes, Norbert M.; Martinez, Jose Luis; Alonso, Jose Antonio

    2017-01-01

    In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm-1K-1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 μV K-1 at 400 K, which is also beneficial for improved thermoelectric efficiency.

  13. Magnetic and structural properties of the Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B system prepared by arc melting

    Energy Technology Data Exchange (ETDEWEB)

    Oyola Lozano, D., E-mail: doyola@ut.edu.co [University of Tolima, Department of Physics (Colombia); Zamora, L. E.; Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Rojas, Y. A.; Bustos, H. [University of Tolima, Department of Physics (Colombia); Greneche, J. M. [Universite du Maine, Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087 (France)

    2006-04-15

    In this work the magnetic and structural properties are investigated by Moessbauer spectrometry, Vibrating Sample Magnetometry and X-ray diffraction of Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B powdered alloys with x = 0, 2 and 4 prepared by arc melting. The Moessbauer spectra of the samples were fitted with several contributions from: Nd{sub 2}Fe{sub 14}B, {alpha}-Fe and a paramagnetic phase associated with Nd{sub 1.1}Fe{sub 4}B{sub 4} for x = 0 and additionally from NbFeB and Nd{sub 2}Fe{sub 17} for x = 2 and x = 4. The relative fractions of {alpha}-Fe and Nd{sub 2}Fe{sub 14}B are smaller for x = 4 than for x = 0, indicating that the amount of these two phases is reduced with increasing Nb content, while the relative fraction of Nd{sub 2}Fe{sub 17} increases. The {alpha}-Fe grain size slightly decreases while that of the Nd{sub 2}Fe{sub 14}B phase is increasing, when the Nb content increases. The hysteresis loops indicate that these samples behave as hard ferromagnets, with a coercive field which decreases when the Nb content increases, but with rather low remanent magnetization.

  14. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    Science.gov (United States)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  15. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A thermal lattice Boltzmann model is developed for the melting process of phase change material (PCM) embedded in open-cell metal foams. Natural convection in the melt PCM is considered. Under the condition of local thermal non-equilibrium between the metal matrix and PCM, two evolution equations of temperature distribution function are pre-sented through selecting an equilibrium distribution function and a nonlinear source term properly. The enthalpy-based method is employed to copy with phase change problem. Melting process in a cavity of the metal foams is simulated using the present model. The melting front locations and the temperature distributions in the metal foams filled with PCM are obtained by the lattice Boltzmann method. The effects of the porosity and pore size on the melting are also investigated and discussed. The re-sults indicate that the effects of foam porosity play important roles in the overall heat transfer. For the lower porosity foams, the melting rate is comparatively greater than the higher porosity foams, due to greater heat conduction from metal foam with high heat conductivity. The foam pore size has a limited effect on the melting rate due to two counteracting effects between conduction and convection heat transfer.

  16. Coefficient of consolidation by end of arc method

    Institute of Scientific and Technical Information of China (English)

    Mohsen Abbaspout; Reza Porhoseini; Kazem Barkhordari; Ahmad Ghorbani

    2015-01-01

    One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of attention of many researchers. In this work, a one-dimensional consolidation apparatus was equipped in a way that pore water pressure and settlement could be continuously read and recorded during consolidation process under static loading. The end of primary consolidation was obtained using water pressure changes helping to present a new method for determining the end of primary consolidation and consolidation coefficient. This method was then compared with two classical theory methods of lg t and t . Using Terzaghi’s theory, the way of pore pressure dissipation for lg t, t and the new method was found and compared with experimental results. It is concluded that the new method has better results.

  17. The arc characteristic of ultrasonic assisted TIG welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By directly imposed ultrasonic vibration on welding arc, the vibration interacts with arc plasma and passes to the weld pool. Measurement results show that arc pressure is significantly increased with the ultrasonic vibration and the arc pressure distribution models are changed. Bead-on-plate welding tests on SUS304 confirm that this technology can influence the style of metal melting and increase weld penetration depth.

  18. COAR: Combining Arc flag with Reach based method for shortest path computation

    OpenAIRE

    Thangalatha legaz.C

    2012-01-01

    In general shortest path computation from onenode to another in a directed graph is a verycommon task. This problem is fundamentally solvedby the Dijkstra algorithm. There are manytechniques available to speed up the originalDijkstra’s algorithm heuristically. Even then theoptimality of the solution can still be guaranteed.In this project, the various combinations of speeduptechniques are studied and analyzed. By analyzingthe advantages of the arc flag method and reachbased method, the combin...

  19. Felsic Magmatism through Intracrustal Melting of Previously Formed Volcanic-Arc Crust: Implications for Differentiation and Secular Evolution of the Continental Crust

    Science.gov (United States)

    G R, R. K.; C, S.

    2015-12-01

    The fundamental challenge in understanding the origin and evolution of the continental crust is to recognize how primary mantle source, and oceanic crust, which are essentially mafic to ultramafic in composition, could differentiate into a more or less felsic compositions. It is possible to understand growth and differentiation of the continental crust by constraining the interplay of magmatism, deformation, and high-grade metamorphism in the lower crust. Here, we apply this knowledge on the lower crustal granitoids of southern India and speculate on the variations in geochemistry as a consequence of differentiation and secular evolution of the continental crust.The major groups of granitoids of southern India are classified as metatonalites, comparable to typical Archaean TTGs with pronounced calc-alkaline affinity, and metagranites which are magmatic fractionation produced by reworking of early crust. Metatonalites are sodic-trondhjemites with slightly magnesian, moderate LREE (average LaN = 103) and low HREE (average YbN = 2) characerestics, where as metagranites are calc-alkaline ferroan types with enriched LREE (average LaN = 427) and HREE (average YbN = 23). Petrogenetic characteristics of granitoids illustrate continuous evolution of a primary crust into diverse magmatic units by multiple stages of intracrustal differentiation processes attributed to following tectonic scenarios: (1) formation of tonalitic magma by low- to moderate-degree partial melting of hydrated basaltic crust at pressures high enough to stabilize garnet-amphibole residue and (2) genesis of granite in a continental arc-accretion setting by an episode of crustal remelting of the tonalitic crust, within plagioclase stability field. The first-stage formed in a flat-subduction setting of an volcanic-arc, leading to the formation of tonalites. The heat budget required is ascribed to the upwelling of the mantle and/or basaltic underplating. Progressive decline in mantle potential temperature

  20. Characterization of Material Response During Arc-Jet Testing with Optical Methods Status and Perspectives

    Science.gov (United States)

    Winter, Michael

    2012-01-01

    The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative

  1. Low Hilly Land Extraction Method Based on ArcGIS%基于 ArcGIS 的低丘缓坡用地提取方法

    Institute of Scientific and Technical Information of China (English)

    高国勇

    2014-01-01

    The paper combines the low hilly land assessment work in Liaoning province , makes a summary of the investigation process, and introduces low hilly land extraction method and key technology based on ArcGIS .%结合辽宁省开展的低丘缓坡普查工作,通过对调查工序流程的总结,介绍利用ArcGIS软件提取低丘缓坡用地的关键技术方法。

  2. A comparison of methods for melting point calculation using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Maginn, EJ

    2012-04-14

    Accurate and efficient prediction of melting points for complex molecules is still a challenging task for molecular simulation, although many methods have been developed. Four melting point computational methods, including one free energy-based method (the pseudo-supercritical path (PSCP) method) and three direct methods (two interface-based methods and the voids method) were applied to argon and a widely studied ionic liquid 1-n-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The performance of each method was compared systematically. All the methods under study reproduce the argon experimental melting point with reasonable accuracy. For [BMIM][Cl], the melting point was computed to be 320 K using a revised PSCP procedure, which agrees with the experimental value 337-339 K very well. However, large errors were observed in the computed results using the direct methods, suggesting that these methods are inappropriate for large molecules with sluggish dynamics. The strengths and weaknesses of each method are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702587

  3. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  4. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  5. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, I.; Damborenea, J.; Legarda, F. [University of the Basque Country, Nuclear Engineering and Fluids Mechanics (Spain); Zuloaga, P.; Ordonez, M. [Empresa Nacional de Residuos Radiactivos, SA (ENRESA), Madrid (Spain); Serrano, I. [Consejo de Seguridad Nuclear, Madrid (Spain)

    2006-07-01

    The appearance of orphan sources in steelmaking facilities has become a fact nowadays. Radiation sources, hidden within the scrap, may come into the scrap yard and become part of the melting. As a result, dispersion of the radioactive material that makes up the source takes place throughout the facility. The University of the Basque Country (U.P.V.-E.H.U.), in collaboration with the Empresa Nacional de Residuos Radiactivos, S.A. (E.N.R.E.S.A.) and the Consejo de Seguridad Nuclear (C.S.N.), has carried out a Research Project to analyze this accidental melting of radioactive sources in electric arc furnaces (E.A.F.). The whole steelmaking process can be analyzed in several discrete phases. Radioactive sources that may be incorporated to this process will be exposed to the different critical conditions prevailing during each phase. In this sense, Computational Fluid Dynamics (C.F.D.) has been used in order to recreate such conditions and so, determine the characteristics of the dispersion of radioactivity. Two different situations have been studied in detail using C.F.D. techniques: thermal conditions around a scrap-basket that contains the source just before entering the furnace and the deposition of steelmaking dust containing {sup 137}Cs on the inner surface of flue pipes. Before entering the furnace, scrap is usually placed inside a basket that remains above the furnace during some time. Once the furnace is open the scrap is dropped into the furnace to complete the loading process. C.F.D. techniques have been used to analyze the thermal conditions around the basket in order to assess the possibility of a break of the radioactive source hidden within the scrap, concluding that commercial sources will maintain their integrity during the whole loading process. On the other hand, after entering the furnace dispersion of the radioactive material will take place. Physical and chemical properties of the active elements (chemical form, composition, melting point, etc

  6. Influência do material de base sobre o rendimento de fusão em soldagem a arco Influence of base material on the melting efficiency in arc welding

    Directory of Open Access Journals (Sweden)

    Ruham Pablo Reis

    2011-12-01

    Full Text Available O objetivo deste trabalho foi determinar o comportamento do rendimento bruto de fusão em soldagem a arco frente a diferentes tipos de material de base (aço ao carbono, aço inoxidável e alumínio. Como extensão, objetivou-se também estimar de forma indireta o rendimento térmico do processo em questão usando-se estimação de isotermas por método analítico. Para isto, foram feitas soldagens sobre placas de teste utilizando-se o processo TIG nos três materiais em dois níveis de corrente de soldagem. Foi verificado que o rendimento bruto de fusão é muito baixo (menor que 10%, mas tende a aumentar com a elevação do nível de corrente de soldagem (efeito da dimensão da peça. O alumínio apresentou o menor rendimento de fusão, tendo o aço inoxidável apresentado o melhor aproveitamento do calor imposto. Em relação ao rendimento térmico, a metodologia proposta não se mostrou adequada.The aim of this work was to determine the behavior of the gross melting efficiency in arc welding towards different types of materials (carbon steel, stainless steel and aluminum alloy. An extra objective was to indirectly estimate the thermal efficiency of the process using the estimation of isotherms by analytic methods. For that, welds were carried out over three materials at two welding current levels using the GTAW process. It was verified that the melting efficiency is very low (lower than 10%, yet it rises by increasing the current level (effect of material size. The aluminum alloy presented the lowest melting efficiency in contrast to the highest heat yield of the stainless steel. With respect to the thermal efficiency, the proposed methodology was not adequate.

  7. Porosity testing methods for the quality assessment of selective laser melted parts

    NARCIS (Netherlands)

    Wits, W.W.; Carmignato, S.; Zanini, F.; Vaneker, T.H.J.

    2016-01-01

    This study focuses on the comparison of porosity testing methods for the quality assessment of selective laser melted parts. Porosity is regarded as important quality indicator in metal additive manufacturing. Various destructive and non-destructive testing methods are compared, ranging from global

  8. A Data Treatment Method of Carbon Saturated Solubility in Fe-C-Cr Melt

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the current situation of studying the thermodynamic property of Fe-C-Cr melt using the carbon saturated solubility, an experimental data treatment method of the carbon saturated solubility was put forward. With this method a linear relationship expression of the carbon saturated solubility in Fe-C-Cr melt was obtained, which intercept is dependent on temperature and independent of third component [Cr], but which slope is dependent on third component [Cr] and independent of temperature. Through this expression activity interaction coefficients at different temperatures were calculated and the relationship between activity interaction coefficients and temperature is also obtained.

  9. Effect of MELT method on thoracolumbar connective tissue: The full study.

    Science.gov (United States)

    Sanjana, Faria; Chaudhry, Hans; Findley, Thomas

    2017-01-01

    Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded.

  10. Plasma arc cutting optimization parameters for aluminum alloy with two thickness by using Taguchi method

    Science.gov (United States)

    Abdulnasser, B.; Bhuvenesh, R.

    2016-07-01

    Manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. The surface roughness of the cutting area for the material and the material removal rate being removed during the manual plasma arc cutting process were importantly considered. Plasma arc cutter machine model PS-100 was used to cut the specimens made from aluminium alloy 1100 manually based on the selected parameters setting. Two different thicknesses of specimens, 3mm and 6mm were used. The material removal rate (MRR) was measured by determining the difference between the weight of specimens before and after the cutting process. The surface roughness (Ra) was measured by using MITUTOYO CS-3100 machine and analysis was conducted to determine the average roughness (Ra) value, Taguchi method was utilized as an experimental layout to obtain MRR and Ra values. The results indicate that the current and cutting speed is the most significant parameters, followed by the arc gap for both rate of material removal and surface roughness.

  11. A combined enthalpy / front tracking method for modelling melting and solidification in laser welding

    Science.gov (United States)

    Duggan, G.; Mirihanage, W. U.; Tong, M.; Browne, D. J.

    2012-07-01

    The authors present an integrated meso-scale 2D numerical model for the simulation of laser spot welding of a Fe-Cr-Ni steel. The melting of the parent materials due to the applied heating power is an important phenomenon, leading to the formation of the weld pool and the subsequent conditions from which solidification proceeds. This model deals with the dynamic formation of the weld pool whereby melting may be occurring at a given location while solidification has already commenced elsewhere throughout the weld pool. Considering both melting and possible simultaneous solidification in this manner ensures a more accurate simulation of temperature distribution. A source based enthalpy method is employed throughout the calculation domain in order to integrate the melting model with the UCD front tracking model for alloy solidification. Melting is tracked via interpolation of the liquidus isotherm, while solidification is treated via both the tracking of the advancing columnar dendritic front, and the nucleation and growth of equiaxed dendrites using a volume-averaging formulation. Heterogeneous nucleation is assumed to take place on TiN grain refiner particles at a grain refiner density of 1000 particles per mm2. A mechanical blocking criterion is used to define dendrite coherency, and the columnar-to-equiaxed transition within the weld pool is predicted.

  12. Fabrication and characterization of TiN nanocomposite powders fabricated by DC arc-plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, K., E-mail: kaneko@zaiko.kyushu-u.ac.j [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); JST-CREST (Japan); Kitawaki, K. [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Sadayama, S. [FEI Company Japan Ltd., NSS-II Bldg 1F, 13-34 Kohnan 2-chome, Minato-ku, Tokyo 108-0075 (Japan); Razavi, H. [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hernandez-Garrido, J.C.; Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Okuyama, H.; Uda, M. [Nano Ceramics Center, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakka, Y. [Nano Ceramics Center, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); WPI Center for MANA, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-03-04

    TiN nanocomposite powders with various morphologies were synthesized by DC arc-plasma method from Ti-Si ingot under N{sub 2}-H{sub 2}-Ar atmosphere. Microstructures of powders were characterized by powder X-ray diffraction method and transmission electron microscopy with compositional analysis, then morphologies by three-dimensional electron tomography. It was found that the powders were consisted of TiN nanoparticles covered by Ti{sub 5}Si{sub 3} nanoparticles, which possibly suppressed the growth of facets and controlled the final morphologies of TiN-Ti{sub 5}Si{sub 3} nanocomposite.

  13. Approximate Method to Calculate Melting Time of Sludge-Like Cryogenic Product in Cylindrical Horizontal Tank

    Directory of Open Access Journals (Sweden)

    G. N. Tovarnykh

    2015-01-01

    Full Text Available The paper proposes an approximate method to calculate the melting time of the sludge-like cryogenic product in horizontal cylindrical tank with spherical bottoms during drainage storage. The problem to find where there is the liquid - clean slush interface taking into account the heat flows from the walls and the area of clean liquid. It is assumed that the area of sludge is isothermal and has a melting point of solids, sludge - clean liquid interface is flat, free surface of the liquid is stationary and has a saturation temperature at a given pressure. The temperature in the clean liquid is distributed linearly. These approximate relationships allow us to estimate the melting time of the sludge-like cryogenic product in tank without detailed calculation of temperature fields in clean liquid.

  14. A Fast Melting Release Method in Free-Fall Equivalence Principle Test

    Institute of Scientific and Technical Information of China (English)

    WU Zi-Gang; WANG Dian-Hong; LUO Jun; ZHOU Ze-Bing; NIE Yu-Xin; ZHANG Yuan-Zhong

    2001-01-01

    A fast melting release method for the free-fallequivalence principle test using laser interferometry is discussed. The primary experiment result shows that the uncertainty of the differential release time could be controlled at the level of 1 ms by this release system, which satisfies the requirement of the expected experimental precision.

  15. Methods and devices for hyperpolarising and melting NMR samples in a cryostat

    DEFF Research Database (Denmark)

    Ardenkjaer-Larsen, Jan Henrik; Axelsson, Oskar H. E.; Golman, Klaes Koppel;

    2006-01-01

    The present invention relates to devices and method for melting solid polarised sample while retaining a high level of polarisation. In an embodiment of the present invention a sample is polarised in a sample-retaining cup 9 in a strong magnetic field in a polarising means 3a, 3b, 3c in a cryostat...

  16. Modern methods for the quality management of high-rate melt solidification

    Science.gov (United States)

    Vasiliev, V. A.; Odinokov, S. A.; Serov, M. M.

    2016-12-01

    The quality management of high-rate melt solidification needs combined solution obtained by methods and approaches adapted to a certain situation. Technological audit is recommended to estimate the possibilities of the process. Statistical methods are proposed with the choice of key parameters. Numerical methods, which can be used to perform simulation under multifactor technological conditions, and an increase in the quality of decisions are of particular importance.

  17. Deciphering viscous flow of frictional melts with the mini-AMS method

    Science.gov (United States)

    Ferré, Eric C.; Chou, Yu-Min; Kuo, Ruo Lin; Yeh, En-Chao; Leibovitz, Natalie R.; Meado, Andrea L.; Campbell, Lucy; Geissman, John W.

    2016-09-01

    The anisotropy of magnetic susceptibility (AMS) is widely used to analyze magmatic flow in intrusive igneous bodies including plutons, sills and dikes. This method, owing its success to the rapid nature of measurements, provides a proxy for the orientation of markers with shape anisotropy that flow and align in a viscous medium. AMS specimens typically are 25 mm diameter right cylinders or 20 mm on-a-side cubes, representing a volume deemed statistically representative. Here, we present new AMS results, based on significantly smaller cubic specimens, which are 3.5 mm on a side, hence∼250 times volumetrically smaller than conventional specimens. We show that, in the case of frictional melts, which inherently have an extremely small grain size, this small volume is in most cases sufficient to characterize the pseudotachylyte fabric, particularly when magnetite is present. Further, we demonstrate that the mini-AMS method provides new opportunities to investigate the details of frictional melt flow in these coseismic miniature melt bodies. This new method offers significant potential to investigate frictional melt flow in pseudotachylyte veins including contributions to the lubrication of faults at shallow to moderate depths.

  18. PARAMETRIC STUDY FOR THE PREPARATION OF ALIGNED SINGLE-WALLED CARBON NANOTUBES BY ANODE-ARC DISCHARGE METHOD

    Institute of Scientific and Technical Information of China (English)

    J.F. Dai; Q. Wang; W.X. Li; Z.Q. Wei; G.J. Xu

    2005-01-01

    Well aligned quasi-straight single-walled carbon nanotubes (SWCNTs) and straight SWCNTs bundle have been prepared in large scale by anode-arc vaporization of graphite with metallic catalysts. Various parameters such as the catalyst preparation, the kinds and pressure of the buffer gases, the quantity of anode-arc current intensity, and the method of purification have been examined. The influence of these parameters on the deposited carbon yield is reported, together with observations of the produced material. Improvement in synthetic techniques has resulted in the optimal conditions for the production of large quantities of high quality SWCNTs in our semi-continuous synthesis method. The formation of carbon nanotubes (CNTs) was studied briefly in this paper. Owing to the magnetic pinching effect of arc current, the CNTs arrange in parallel lines along the arc current direction.

  19. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha, E-mail: n4neha31@gmail.com [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Sharma, N. N. [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India (India)

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  20. Application of the extended discrete element method (XDEM) in the melting of a single particle

    Science.gov (United States)

    Baniasadi, Mehdi; Baniasadi, Maryam; Peters, Bernhard

    2017-07-01

    In this contribution, a new method referred to as Extended Discrete Element Method (XDEM) is usedto model melting of a single particle in the fluid media. The XDEM as a Lagrangian-Eulerian framework is the extension of Discrete Element Method (DEM) by considering thermodynamic state such as temperature distribution and is able to link with Computational Fluid Dynamics (CFD) for fluid phase. In order to provide more accurate results, multiscale method was used. The model is validated by comparing predicted results with existing experimental data for melting of a single ice particle in a water bath. In addition, the model has the capability to be extended to the packed bed of particles with different size and properties to produce different liquid phases.

  1. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    Institute of Scientific and Technical Information of China (English)

    S. YUGESWARAN; V. SELVARAJAN; L. LUSVARGHI; A. I. Y. TOK; D. SIVA RAMA KRISHNA

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3 : 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the com-posites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.

  2. ArcGIS平台矢量数据高精度坐标转换实现方法%The Method of High Precision Coordinate Transformation of ArcGIS Platform Vector Data

    Institute of Scientific and Technical Information of China (English)

    王小华

    2012-01-01

    ArcGIS平台常用矢量数据格式进行了分析,对ArcGIS平台矢量数据高精度坐标转换技术及软件实现方法进行了详细论述,并给出了部分参考代码。%This paper analyzes the data format of commonly used ArcGIS platform vector data, elaborates on the technique of high pre- cision coordinate transformation and its software realization method of ArcGIS platform vector data, and writes part of the reference code.

  3. Diluted melt proton exchange slab waveguides in LiNbO3: A new fabrication and characterization method

    DEFF Research Database (Denmark)

    Veng, Torben; Skettrup, Torben

    1997-01-01

    A method of dilute-melt proton exchange employing a mixture of glycerol and KHSO4 with lithium benzoate added is used to fabricate planar waveguides in c-cut LiNbO3. With this exchange melt system the waveguide refractive index profiles can be fabricated with a high degree of reproducibility. In ...... refractive index change and composition of this glycerol, KHSO4 and lithium benzoate exchange melt system....

  4. Investigation in the use of plasma arc welding and alternative feedstock delivery method in additive manufacture

    Science.gov (United States)

    Alhuzaim, Abdullah F.

    The work conducted for this thesis was to investigate the use of plasma arc welding (PAW) and steel shot as a means of additive manufacturing. A robotic PAW system and automatic shot feeder were used to manufacture linear walls approximately 100 mm long by 7 mm wide and 20 mm tall. The walls were built, layer-by-layer, on plain carbon steel substrate by adding individual 2.5 mm diameter plain carbon steel shot. Each layer was built, shot-by-shot, using a pulse of arc current to form a molten pool on the deposit into which each shot was deposited and melted. The deposition rate, a measure of productivity, was approximately 50 g/hour. Three walls were built using the same conditions except for the deposit preheat temperature prior to adding each new layer. The deposit preheat temperature was controlled by allowing the deposit to cool after each layer for an amount of time called the inter-layer wait time. The walls were sectioned and grain size and hardness distribution were measured as a function of wall height. The results indicated that, for all specimens, deposit grain size increased and hardness decreased as wall height increased. Furthermore, average grain size decreased and hardness increased as interlayer wait time increased. An analytical heat flow model was developed to study the influence of interlayer wait time on deposit temperature and therefore grain size and hardness. The results of the model indicated that as wall height increased, the rate of deposit heat removal by conduction to the substrate decreased leading to a higher preheat temperature after a fixed interlayer wait time causing grain size to increase as wall height increased. However, the model results also show that as wall height increased, the deposit surface area from which heat energy is lost via convection and radiation increased. The model also demonstrated that the use of a means of forced convection to rapidly remove heat from the deposit could be an effective way to boost

  5. Investigation of the Solution Electrical Conductivity Effect upon the Synthesis of Carbon Nanotubes by Arc Discharge Method

    Directory of Open Access Journals (Sweden)

    Asieh Dehghani Kiadehi

    2013-01-01

    Full Text Available Some techniques have been developed to produce carbon nanotubes (CNTs in sizeable quantities, including arc discharge, laser ablation and chemical vapor deposition (CVD. Arc discharge in liquid environment is a new, simple and cheap method of synthesizing CNTs. CNTs in this study were fabricated by arc discharge in liquid. The present work was undertaken to study the effect of electrical conductivity of liquid on CNTs production and was fabricated using arc discharge between two graphite electrodes submerged in different aqueous solutions of NaCl, KCl and LiCl. For comparative study, CNTs were synthesized under different electrical conductivity conditions and the results were analyzed, compared and discussed. The scanning electron microscopy (SEM, transmission electron microscopy (TEM and Raman spectroscopy were employed to study the morphology of these carbon nanostructures. Based on LiCl 0.25 N, high-crystalline and a longed multi MWCNTs, SWCNTs were synthesized by using this technique.

  6. A New Method for Recognition of Arcing Faults in Transmission Lines using Wavelet Transform and Correlation Coefficient

    Directory of Open Access Journals (Sweden)

    Navid Ghaffarzadeh

    2013-03-01

    Full Text Available In this paper a novel method based on discrete wavelet transform and correlation coefficient is presented for distinguishing between arcing and permanent faults. The algorithm includes offline and online processing. In the offline, discrete wavelet transform is used to decompose typical faulted phase voltage waveforms during arcing faults. An index is then defined and computed. The index is based on the normalised energy of detail coefficients at resolution levels 1 to 14. The online processing consists of capturing the faulted phase voltage waveform using a 20 kHz sampling rate, and decomposing it by db4. Finally, arcing faults are distinguished from permanent faults based on correlation coefficient of the computed index of the pre-stored typical arcing faults and a recorded indistinct signal. The effectiveness of the approach has been tested for numerous arcing and permanent fault conditions on a transmission line using the Electromagnetic transient Program (EMTP software tool. The simulation results show the capability of the proposed method in distinguishing between arcing faults from permanent faults.

  7. 2D ArcPIC Code Description: Description of Methods and User / Developer Manual (second edition)

    CERN Document Server

    Sjobak, Kyrre Ness

    2014-01-01

    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider (CLIC). To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D ArcPIC code introduced here. We present an exhaustive description of the 2D ArcPIC code in several parts. In the first chapter, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second chapter, we describe the code and provide a documentation and derivation of the key equations occurring in it. In the third chapter, we describe utilities for running the code and analyzing the results. The last chapter...

  8. Monte-carlo method for simulations of ring polymers in the melt.

    Science.gov (United States)

    Vettorel, Thomas; Reigh, Shang Yik; Yoon, Do Y; Kremer, Kurt

    2009-02-18

    A detailed analysis of the efficiency of a Monte-Carlo (MC) method employing non-local moves for simple lattice ring polymers is presented. While the introduction of kink-translocation moves for linear chains results in the expected speedup by a factor of the order of the number of sites, this is significantly reduced for a melt of rings. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    OpenAIRE

    Zhenzhong Pan; Bo Cui; Zhanghua Zeng; Lei Feng; Guoqiang Liu; Haixin Cui; Hongyu Pan

    2015-01-01

    The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt) and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate) screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with ...

  10. Total Body Irradiation using VMAT (RapidArc: A Planning Study of a novel treatment delivery method

    Directory of Open Access Journals (Sweden)

    Santam Chakraborty

    2015-01-01

    Full Text Available Purpose: To evaluate the feasibility of using volumetric modulated arc therapy (VMAT using RapidArc to deliver total body irradiation (TBI treatment. Methods: VMAT planning was performed a whole body computed tomography (CT data set using Rapid Arc. The planning target volumes included entire body trimmed to 3 mm below the skin. The organs at risk included the lungs and kidneys. A dose of 12 Gy in 10 fractions was prescribed to the target volume. The VMAT-TBI technique consisted of three isocentres and three overlapping arcs: the head and neck, the chest, and the pelvis. The plans were prescribed to ensure, at a minimum, 95% planning target volume dose coverage with the prescription dose (percentage of volume receiving dose of 12 Gy was 95% and maximum dose of 109.8%. Mean dose to lung was restricted at 8.6Gy. Results: The total body volume in the study was 15469cm3 and the PTV volume was 11322cm3. The mean dose to PTV was 104%. The homogeneity index was 0.09. Sparing of normal tissues with adequate coverage of skeletal bones was shown to be feasible with Rapid Arc. The study demonstrates that VMAT is feasible for TBI treatment. Unlike conventional TBI chest wall boost with electrons was not required. Conclusion: The technique for total body irradiation using RapidArc VMAT was found feasible and is undergoing further studies prior to clinical use.

  11. Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism

    Science.gov (United States)

    Hu, Rui; Alexandru Ciolan, Mihai; Wang, Xiangke; Nagatsu, Masaaki

    2016-08-01

    Hollow carbon nanospheres with controlled morphologies were synthesized via the copper-carbon direct current arc discharge method by alternating the concentrations of methane in the reactant gas mixture. A self-healing process to keep the structural integrity of encapsulated graphitic shells was evolved gradually by adding methane gas from 0% to 20%. The outer part of the coated layers expanded and hollow nanospheres grew to be large fluffy ones with high methane concentrations from 30% to 50%. A self-repairing function by the reattachment of broken graphitic layers initiated from near-electrode space to distance was also distinctly exhibited. By comparing several comparable metals (e.g. copper, silver, gold, zinc, iron and nickel)-carbon arc discharge products, a catalytic carbon-encapsulation mechanism combined with a core-escaping process has been proposed. Specifically, on the basis of the experimental results, copper could be applied as a unique model for both the catalysis of graphitic encapsulation and as an adequate template for the formation of hollow nanostructures.

  12. In Situ Density Measurement of Basaltic Melts at High Pressure by X-ray Absorption Method

    Science.gov (United States)

    Ando, R.; Ohtani, E.; Suzuki, A.; Urakawa, S.; Katayama, Y.

    2004-12-01

    Density of silicate melt at high pressure is one of the most important properties to understand magma migration in the planetary interior. However, because of experimental difficulties, the density of magma at high pressure is poorly known. Katayama et al. (1996) recently developed a new in situ density measurement method for metallic melts, based on the density dependency of X-ray absorption in the sample. In this study, we tried to measure the density of basaltic melt by this absorption method. When X-ray is transmitted to the sample, the intensity of the transmitted X-ray beam (I) is expressed as follows; I=I0exp(-μ ρ t), where I0 is the intensity of incident X-ray beam, μ is the mass absorption coefficient, ρ is the density of the sample, and t is the thickness of the sample. If t and μ are known, we can determine the density of the sample by measuring I and I0. This is the principle of the absorption method for density measurement. In this study, in order to determine t, we used a single crystalline diamond cylinder as a sample capsule, diamond is less compressive and less deformable so that even at high pressure t (thickness of the sample at the point x) is expressed as follows; t = 2*(R02-x2)1/2, R0 is the inner radius of cylinder at the ambient condition, and x is distance from a center of the capsule. And diamond also shows less absorption so that this make it possible to measure the density of silicate melt with smaller absorption coefficient than metallic melts. In order to know the μ of the sample, we measured both densities (ρ ) and absorptions (I/I0) for some glasses and crystals with same composition of the sample at the ambient condition, and calculated as fallows; μ =ln(I/I0)/ρ . Experiments were made at the beamline (BL22XU) of SPring-8. For generation of high pressure and high temperature, we used DIA-type cubic anvil apparatus (SMAP180) there. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromatic X

  13. Fast Fourier-Galerkin methods for first-kind logarithmic-kernel integral equations on open arcs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc,which is a reformulation of the Dirichlet problem of the Laplace equation in the plane.The optimal convergence order and quasi-linear complexity order of the proposed method are established.A precondition is introduced.Combining this method with an efficient numerical integration algorithm for computing the single-layer potential defined on an open arc,we obtain the solution of the Dirichlet problem on a smooth open arc in the plane.Numerical examples are presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed method.

  14. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting

    Science.gov (United States)

    Niu, Yaoling; Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di = ƒ(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO = 10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt % in order to interpret natural MORB liquids. This model allows us to calculate Po, Pƒ, To, Tƒ, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR)8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lament seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (-100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lament seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a

  15. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: for axis and off-axis (seamounts) melting application

    Science.gov (United States)

    Batiza, Rodey

    1991-12-01

    We present a new method for calculating the major element compositions of primary melts parental to mid-ocean ridge basalt (MORB). This model is based on the experimental data of Jaques and Green (1980), Falloon et al. (1988), and Falloon and Green (1987, 1988) which are ideal for this purpose. Our method is empirical and employs solid-liquid partition coefficients (Di) from the experiments. We empirically determine Di=f(P,F) and use this to calculate melt compositions produced by decompression-induced melting along an adiabat (column melting). Results indicate that most MORBs can be generated by 10-20% partial melting at initial pressures (P0) of 12-21 kbar. Our primary MORB melts have MgO=10-12 wt %. We fractionate these at low pressure to an MgO content of 8.0 wt% in order to interpret natural MORB liquids. This model allows us to calculate Po, Pf, To, Tf, and F for natural MORB melts. We apply the model to interpret MORB compositions and mantle upwelling patterns beneath a fast ridge (East Pacific Rise (EPR) 8°N to 14°N), a slow ridge (mid-Atlantic Ridge (MAR) at 26°S), and seamounts near the EPR (Lamont seamount chain). We find mantle temperature differences of up to 50°-60°C over distances of 30-50 km both across axis and along axis at the EPR. We propose that these are due to upward mantle flow in a weakly conductive (versus adiabatic) temperature gradient. We suggest that the EPR is fed by a wide (~100 km) zone of upwelling due to plate separation but has a central core of faster buoyant flow. An along-axis thermal dome between the Siqueiros transform and the 11°45' Overlapping Spreading Center (OSC) may represent such an upwelling; however, in general there is a poor correlation between mantle temperature, topography, and the segmentation pattern at the EPR. For the Lamont seamounts we find regular across-axis changes in Po and F suggesting that the melt zone pinches out off axis. This observation supports the idea that the EPR is fed by a broad

  16. Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents

    Science.gov (United States)

    Yamaji, Akifumi; Li, Xin

    2016-08-01

    Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.

  17. Nanoscratch technique for aligning multiwalled carbon nanotubes synthesized by the arc discharge method in open air

    Indian Academy of Sciences (India)

    A Joseph Berkmans; M Jagannatham; Prathap Haridoss

    2015-08-01

    Horizontally aligned and densely packed multiwalled carbon nanotubes (MWCNTs) were synthesized in an open air, without the need for a controlled atmosphere, using a rotating cathode arc discharge method with the help of a metal scraper. The physical force exerted by the scraper results in in-situ alignment of MWCNTs along the direction of scrape marks. This strategy, which enables the alignment of nanotubes in a controlled fashion to any length and direction of interest, was examined to determine the force required to align a nanotube. A model is developed to understand the alignment process. Using the nanoscratch technique to mimic this strategy, and incorporating the data obtained from the nanoscratch technique into the model developed, the minimum force required to align a MWCNT, as well as the energy required to align a gram of nanotubes, has been estimated. The method demonstrated represents an economical approach for large-scale synthesis of aligned MWCNTs at low costs.

  18. Investigation of the SiC thin films synthetized by Thermionic Vacuum Arc method (TVA)

    Science.gov (United States)

    Ciupina, V.; Vladoiu, R.; Lungu, C. P.; Dinca, V.; Contulov, M.; Mandes, A.; Popov, P.; Prodan, G.

    2012-04-01

    Thermionic Vacuum Arc method (TVA) was used for the first time to prepare SiC thin films. This method is very suitable for deposition of high purity thin films with compact structure and extremely smooth in vacuum conditions. The nanocomposites were investigated using Transmission Electron Microscopy (TEM) analyses provided with HR-TEM and SAED facilities. The structure of the films can be indexed as following three forms: cubic structure of SiC (F4-3m) a = 0.4348 nm, cubic Si (Fd3m) a = 0.54307 nm and graphite (P63/mmc) a = 0.2456 nm; c = 0.6696 nm. The morphology, topography, wettability and wear properties were also performed by SEE system and by Raman Spectroscopy, increasing the interest for emerging applications.

  19. Melting curves and structural properties of tantalum from the modified-Z method

    Science.gov (United States)

    Liu, C. M.; Xu, C.; Cheng, Y.; Chen, X. R.; Cai, L. C.

    2015-12-01

    The melting curves and structural properties of tantalum (Ta) are investigated by molecular dynamics simulations combining with potential model developed by Ravelo et al. [Phys. Rev. B 88, 134101 (2013)]. Before calculations, five potentials are systematically compared with their abilities of producing reasonable compressional and equilibrium mechanical properties of Ta. We have improved the modified-Z method introduced by Wang et al. [J. Appl. Phys. 114, 163514 (2013)] by increasing the sizes in Lx and Ly of the rectangular parallelepiped box (Lx = Ly ≪ Lz). The influences of size and aspect ratio of the simulation box to melting curves are also fully tested. The structural differences between solid and liquid are detected by number density and local-order parameters Q6. Moreover, the atoms' diffusion with simulation time, defects, and vacancies formations in the sample are all studied by comparing situations in solid, solid-liquid coexistence, and liquid state.

  20. Effects of Nanoparticles on Melting Process with Phase-Change Using the Lattice Boltzmann Method

    KAUST Repository

    Ibrahem, Ahmed M.

    2017-05-04

    In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatangar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103to105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.

  1. NUMERICAL SIMULATION OF HYDRODYNAMIC CHARACTERISTICS ON AN ARC CROWN WALL USING VOLUME OF FLUID METHOD BASED ON BFC

    Institute of Scientific and Technical Information of China (English)

    LI Xue-yan; REN Bing; WANG Guo Yu; WANG Yong-xue

    2011-01-01

    In the present study,a new algorithm based on the Volume Of Fluid (vOF) method is developed to simulate the hydrodynamic characteristics on an arc crown wall.Structured grids are generated by the coordinate transform method in an arbitrary complex region.The Navier-Stokes equations for two-dimensional incompressible viscous flows are discretized in the Body Fitted Coordinate (BFC) system.The transformed SIMPLE algorithm is proposed to modify the pressure-velocity field and a transformed VOF method is used to trace the free surface.Hydrodynamic characteristics on an arc crown wall are obtained by the improved numerical model based on the BFC system (BFC model).The velocity field,the pressure field and the time profiles of the water surface near the arc crown wall obtained by using the BFC model and the Cartesian model are compared.The BFC model is verified by experimental results.

  2. Deposition of titanium nitride layers by electric arc - Reactive plasma spraying method

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Viorel-Aurel [University ' Politehnica' of Timisoara, Faculty of Mechanical Engineering, No. 1 Mihai Viteazu Boulevard, 300222 Timisoara (Romania); Rosu, Radu Alexandru, E-mail: raduniz@gmail.com [University ' Politehnica' of Timisoara, Faculty of Mechanical Engineering, No. 1 Mihai Viteazu Boulevard, 300222 Timisoara (Romania); Bucur, Alexandra Ioana [National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara, Analysis and Characterization Department, No. 1 P Andronescu Street, Timisoara 300224 (Romania); Pascu, Doru Romulus [Romania National Research and Development Institute for Welding and Material Testing Timisoara, No. 30 Mihai Viteazu Boulevard, 300222 Timisoara (Romania)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Titanium nitride layers deposited by electric arc - reactive plasma spraying method. Black-Right-Pointing-Pointer Deposition of titanium nitride layers on C45 steel at different spraying distances. Black-Right-Pointing-Pointer Characterization of the coatings hardness as function of the spraying distances. Black-Right-Pointing-Pointer Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti{sub 2}N) and small amounts of Ti{sub 3}O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  3. Using arc voltage to locate the anode attachment in plasma arc cutting

    Science.gov (United States)

    Osterhouse, D. J.; Lindsay, J. W.; Heberlein, J. V. R.

    2013-06-01

    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5-3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4-4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques.

  4. Preparation and Characterization of NiO Nanoparticles by Anodic Arc Plasma Method

    Directory of Open Access Journals (Sweden)

    Hongxia Qiao

    2009-01-01

    Full Text Available NiO nanoparticles with average particle size of 25 nm were successfully prepared by anodic arc plasma method. The composition, morphology, crystal microstructure, specific surface area, infrared spectra, and particle size distribution of product were analyzed by using X-ray diffraction (XRD, transmission electron microscopy (TEM and the corresponding selected area electron diffraction (SAED, Fourier transform infrared (FTIR spectrum, and Brunauer-Emmett-Teller (BET N2 adsorption. The experiment results show that the NiO nanoparticles are bcc structure with spherical shape and well dispersed, the particle size distribution ranging from 15 to 45 nm with the average particle size is about 25 nm, and the specific surface area is 33 m2/g. The infrared absorption band of NiO nanoparticles shows blue shifts compared with that of bulk NiO.

  5. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  6. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass,which can be measured easily,as an independent variable,and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given.When the segregated solute disperses into the whole or just a part of melt homogenously,the concentration CS in solid interface will change by different formulas.If the crystal growth interface is conical and segregated solute disperses into melt in total or part,the solute concentration at r=2/3R,where r is the distance from the growth cross section center and R the crystal radius,is independent on the shape of the crystal growth interface,and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface.With CS variation formula in solid and absorption cross section σ for optical dopant,the absorption coefficients along the crystal growth direction can be calculated,and the corresponding experimental value can be obtained through the crystal optical absorption spectra.By minimizing the half sum,whose independent variables are k,ΔW or σ,of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection,k and σ,or k and ΔW,can be determined at the same time through the Levenberg-Marquardt iteration method.Finally,the effective segregation coefficient k,ΔW and absorption cross sections of Nd:GGG were determined,the results fitted by two formula gave more closed effective segregation coefficient,and the value ΔW also indicates that the segregated dopant had nearly dispersed into the whole melt.Experimental results show that the method to determine effective segregation coefficient k,ΔW and absorption cross sections σ is convenient and reliable,and the two segregation formulas can describe the segregation during the crystal growth from melt relatively commendably.

  7. Novel method of polymer/low-melting-point metal alloy/light metal fiber composite fabrication

    Directory of Open Access Journals (Sweden)

    J. Park

    2016-07-01

    Full Text Available A novel method of polymer/low-melting-point metal alloy (LMA/light metal fiber composite fabrication is proposed to solve problems of polymer/metal composites. The first step is mixing light metal particles with LMA at a temperature above the melting point of the LMA. The second step is cold extrusion of the LMA/light metal particles to fabricate LMA/light metal fibers. Thus, the LMA/light metal fibers with a density of ~4.5 g/cm3 were obtained. The last step is compounding a polymer with the LMA/light metal fibers at the processing temperature of the polymer above the melting points of the LMA. The effects of the length and the cross-sectional shape of light metal fiber on the morphology of the LMA/light metal fibers in the polymer matrix were studied, as were electrical conductivities and mechanical properties of the composites. As the length and/or the cross-sectional aspect ratio of the fibers was increased, the domains of LMA/light metal fibers formed more networks so that the electrical conductivity increased, and specific surface area of the domains increased so that notched Izod impact strength was improved. Thus, the polymer/LMA/light metal fiber composites were fabricated without degrading processability even at 60 vol% loading and the electrical conductivities over 103 S/cm were achieved.

  8. Mineral growth in melt conduits as a mechanism for igneous layering in shallow arc plutons: mineral chemistry of Fisher Lake orbicules and comb layers (Sierra Nevada, USA)

    Science.gov (United States)

    McCarthy, Anders; Müntener, Othmar

    2017-07-01

    Different processes have been proposed to explain the variety of igneous layering in plutonic rocks. To constrain the mechanisms of emplacement and crystallization of ascending magma batches in shallow plutons, we have studied comb layers and orbicules from the Fisher Lake Pluton, Northern Sierra Nevada. Through a detailed study of the mineralogy and bulk chemistry of 70 individual layers, we show that comb layers and orbicule rims show no evidence of forming through a self-organizing, oscillatory crystallization process, but represent crystallization fronts resulting from in situ crystallization and extraction of evolved melt fractions during decompression-driven crystallization, forming a plagioclase-dominated cres-cumulate at the mm- to m-scale. We propose that the crystal content of the melt and the dynamics of the magmatic system control the mechanisms responsible for vertical igneous layering in shallow reservoirs. As comb layers crystallize on wall rocks, the higher thermal gradients will increase the diversity of comb layering, expressed by inefficient melt extraction, thereby forming amphibole comb layers and trapped apatite + quartz saturated evolved melt fractions. High-An plagioclase (An90-An97.5) is a widespread phase in Fisher lake comb layers and orbicule rims. We show that a combination of cooling rate, latent heat of crystallization and pressure variations may account for high-An plagioclase in shallow melt extraction zones.

  9. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  10. 基于ArcGIS Engine的地理信息系统二次开发原理和方法%The Principle and Method of Secondary Development of GIS Based on ArcGIS Engine

    Institute of Scientific and Technical Information of China (English)

    金靖

    2012-01-01

    ArcGIS Engine is one of the two new prominent products in ArcGIS 9. As an object - oriented embedded type of GIS, Arc- GIS Engine can be used in an organization to establish application and provide for the user the specially targeted GIS function. It contains a custom - made development package which makes the GIS application development completely independent from the ArcGIS desktop platform ; facilitate the development of geographic information, and also save the cost of development greatly. This paper discusses the principle and method of secondary development of geographic information using ArcGIS Engine taking campus geographic information system of a certain university as an example.%ArcGIS Engine是ArcGIS9中新增的两个突出产品之一,作为面向对象的嵌入式GIS,ArcGIS Engine能用来在一个组织内建立应用,为用户提供有针对性的GIS功能。它包含一个构建定制应用的开发包,使得进行GIS应用开发时彻底脱离了ArcGIS桌面平台,方便了地理信息的开发,也大大节约了开发成本。本文结合某大学校园地理信息系统来阐述利用ArcGIS Engine进行地理信息系统二次开发的原理和方法。

  11. Thermal barrier ZrO2 - Y2O3 obtained by plasma spraying method and laser melting

    OpenAIRE

    2006-01-01

    Purpose: The aim of the paper is to determine the influence of laser melting upon the selected physical properties of ZrO2 - Y2O3 ceramic coatings deposited by APS (Air Plasma Spraying) method on super-alloys which function as TBC (Thermal Barriers Coatings).Design/methodology/approach: Laser melting which helps eliminate pores and other structural defects of coatings deposited by plasma spraying method should contribute to the improvement of their density and durability as thermal barriers. ...

  12. [Calculation and analysis of arc temperature field of pulsed TIG welding based on Fowler-Milne method].

    Science.gov (United States)

    Xiao, Xiao; Hua, Xue-Ming; Wu, Yi-Xiong; Li, Fang

    2012-09-01

    Pulsed TIG welding is widely used in industry due to its superior properties, and the measurement of arc temperature is important to analysis of welding process. The relationship between particle densities of Ar and temperature was calculated based on the theory of spectrum, the relationship between emission coefficient of spectra line at 794.8 nm and temperature was calculated, arc image of spectra line at 794.8 nm was captured by high speed camera, and both the Abel inversion and Fowler-Milne method were used to calculate the temperature distribution of pulsed TIG welding.

  13. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

    Science.gov (United States)

    Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun

    2017-09-01

    A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

  14. Design of a robust fuzzy controller for the arc stability of CO(2) welding process using the Taguchi method.

    Science.gov (United States)

    Kim, Dongcheol; Rhee, Sehun

    2002-01-01

    CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.

  15. Optimization of the Adhesion Strength of Arc Ion Plating TiAlN Films by the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Tong-Yul Cho

    2009-06-01

    Full Text Available A three-level six-factor (arc power, substrate temperature, pre-treatment bias voltage, working pressure, deposition bias voltage and pretreatment time orthogonal experimental array (L18 to optimize the adhesion strength of arc ion plating (AIP TiAlN films was designed using the Taguchi method. An optimized film process, namely substrate temperature 220 °C, arc power 60 A, negative bias voltage -800 V, nitrogen pressure 10-2 Torr, pretreated voltage -450 V and pretreated time 15 minutes was obtained by the Taguchi program for the purpose of obtaining a larger critical load. The critical load of the optimized TiAlN film (53 N was increased by 43% compared to the film with the highest critical load before optimization. The improvement in the adhesion strength of the films was attributed to the enhancement of hardness and the competitive growth of the (111, (200 and (220 orientations in the film.

  16. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  17. Methods to prevent the source term of methyl lodide during a core melt accident

    Energy Technology Data Exchange (ETDEWEB)

    Karhu, A. [VTT Energy (Finland)

    1999-11-01

    The purpose of this literature review is to gather available information of the methods to prevent a source term of methyl iodide during a core melt accident. The most widely studied methods for nuclear power plants include the impregnated carbon filters and alkaline additives and sprays. It is indicated that some deficiencies of these methods may emerge. More reactive impregnants and additives could make a great improvement. As a new method in the field of nuclear applications, the potential of transition metals to decompose methyl iodide, is introduced in this review. This area would require an additional research, which could elucidate the remaining questions of the reactions. The ionization of the gaseous methyl iodide by corona-discharge reactors is also shortly described. (au)

  18. CO2 laser-micro plasma arc hybrid welding for galvanized steel sheets

    Institute of Scientific and Technical Information of China (English)

    C. H. KIM; Y. N. AHN; J. H. KIM

    2011-01-01

    A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal. which is steel. In the autogenous laser welding,the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-heat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap.The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces.Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.

  19. Mechanism of Arc Discharge in Vacuum Interrupter Based on PIC-MCC Method

    Institute of Scientific and Technical Information of China (English)

    CAO Yun-dong; LI Jing; LIU Xiao-ming; HOU Chun-guang; WANG Er-zhi

    2011-01-01

    With the raise of voltage level in electric power grid, the phenomena of high voltage gas insulation has re- ceived extensive attention from all over the world. The research on the breakdown mechanism of vacuum which is the main insulation gas in high voltage level is one of the most important issues. It is also important to the study of vacu- um arc in vacuum switch. But for the limitations of available method used in analyzing the breakdown mechanism of vacuum, the main research on vacuum breakdown is macroscopic experiment. The experiments are greatly influenced by environmental factors and high vacuum degree is difficult to be ensured. So the data from the experiments are dis- persive and the complex physical change in vacuum breakdown can not be revealed. The purpose of this work is to an- alyze the mechanism of vacuum breakdown quantitatively by microscopic numerical simulation. The particle in cell and Monte Carlo methods are used here to solve microscopic dynamic equation of gas. Based on the field emission theory in vacuum, electrons produced by the cathode and ions produced by the collision between electron and metal vapor molecule are the objects of this study. The motions of microscopic particles which are at the functions of the applied and self-consistent electric filed are traced in time and two space dimensions. Mont Carlo method is used here to cope with the collisions between electrons and metal vapor molecules. The cross sections of the collision which is related with the energy are all from the experiments. The secondary electron emission, exciting, elastic and ionizing collisions between electrons and metal vapor molecules have been considered in this paper. By the simulation, the number densi- ties of electron and ion are acquired and the microscopic dynamic electric field produced by space charge is also calcu- lated. The effect of vacuum degree on discharge voltage is also discussed here. According to the simulation data, we draw the

  20. Lambda-Cyhalothrin Nanosuspension Prepared by the Melt Emulsification-High Pressure Homogenization Method

    Directory of Open Access Journals (Sweden)

    Zhenzhong Pan

    2015-01-01

    Full Text Available The nanosuspension of 5% lambda-cyhalothrin with 0.2% surfactants was prepared by the melt emulsification-high pressure homogenization method. The surfactants composition, content, and homogenization process were optimized. The anionic surfactant (1-dodecanesulfonic acid sodium salt and polymeric surfactant (maleic rosin-polyoxypropylene-polyoxyethylene ether sulfonate screened from 12 types of commercially common-used surfactants were used to prepare lambda-cyhalothrin nanosuspension with high dispersity and stability. The mean particle size and polydispersity index of the nanosuspension were 16.01 ± 0.11 nm and 0.266 ± 0.002, respectively. The high zeta potential value of −41.7 ± 1.3 mV and stable crystalline state of the nanoparticles indicated the excellent physical and chemical stability. The method could be widely used for preparing nanosuspension of various pesticides with melting points below boiling point of water. This formulation may avoid the use of organic solvents and reduce surfactants and is perspective for improving bioavailability and reducing residual pollution of pesticide in agricultural products and environment.

  1. Validation of a blood group genotyping method based on high-resolution melting curve analysis.

    Science.gov (United States)

    Gong, Tianxiang; Hong, Ying; Wang, Naihong; Fu, Xuemei; Zhou, Changhua

    2014-01-01

    The detection of polymorphism is the basis of blood group genotyping and phenotype prediction. Genotyping may be useful to determine blood groups when serologic results are unclear. The development and application of different methods for blood group genotyping may be needed as a substitute for blood group typing. The purpose of this study is to establish an approach for blood group genotyping based on a melting curve analysis of real-time polymerase chain reaction (PCR). Using DNA extracted from whole blood, we developed and validated a DNA typing method for detecting DO*01/DO*02, DO*01/DI*02, LU*01/LU*02, and GYPB*03/GYBP*04 alleles using a melting curve analysis. All assays were confirmed with a commercial reagent containing sequence-specific primers (PCR-SSP), and a cohort of the samples was confirmed with sequencing. Results for all blood groups were within the range of specificity and assay variability. Genotypes of 300 blood donors were fully consistent with PCR-SSP data. The obtained genotype distribution is in complete concordance with existing data for the Chinese population. There are several advantages for this approach of blood group genotyping: lower contamination rates with PCR products in this laboratory, ease of performance, automation potential, and rapid cycling time.

  2. Deposition of titanium nitride layers by electric arc - Reactive plasma spraying method

    Science.gov (United States)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti2N) and small amounts of Ti3O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  3. Preparation of Metallic Aluminum Compound Particles by Submerged Arc Discharge Method in Aqueous Media

    Science.gov (United States)

    Liao, Chih-Yu; Tseng, Kuo-Hsiung; Lin, Hong-Shiou

    2013-02-01

    Fine metal particles are produced by chemical methods, which add surfactants to control particle size and concentration. This study used the submerged arc discharge method (SADM) to prepare metal fluid containing nanoparticles and submicron particles in pure dielectric fluid (deionized water or alcohol). The process is fast and simple, and it does not require the addition of chemical agents. The SADM uses electrical discharge machining (EDM) equipment, and the key parameters of the production process include discharge voltage, current, and pulse discharge on-off duration. This study added a capacitive component between the electrodes and the electrode Z-axis regulation in the control parameters to render the aluminum fluid process smooth, which is the main difference of this article from the literature. The experimental results showed that SADM can produce aluminum particles from nanometer to submicron grade, and it can obtain different compounds from different dielectric fluids. The dielectric fluids used in this study were deionized water and ethanol, and aluminum hydroxide Al(OH)3 particles with suspending power and precipitated aluminum particles were obtained, respectively. The preparations of metal colloid and particles by the SADM process have the characteristics of low cost, high efficiency, high speed, and mass production. Thus, the process has high research value and developmental opportunities.

  4. Automated Method to Develop a Clark Synthetic Unit Hydrograph within ArcGIS

    Science.gov (United States)

    2015-08-01

    land cover data. A Python script is utilized within ArcGIS ( Environmental Systems Research Institute 2011) to quickly and efficiently determine how...within ArcGIS ( Environmental Systems Research Institute 2011) to quickly and efficiently determine how the spatial features of the watershed affect the...has been determined in Task 6, the path that water takes typically depends on topography and can be approximated as the path it would follow along

  5. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    OpenAIRE

    Yacine DJEGHADER; Hocine LABAR

    2013-01-01

    In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length), electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of ar...

  6. 40 CFR 63.7732 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Science.gov (United States)

    2010-07-01

    ... metal melting furnaces, sample only during times when the cupola is on blast. (4) For electric arc and... during times when the cupola is on blast. (4) For electric arc and electric induction metal melting...(a)(11) for a TEA cold box mold or core making line, follow the test methods in 40 CFR part...

  7. A new method to reconstruct intra-fractional prostate motion in volumetric modulated arc therapy

    Science.gov (United States)

    Chi, Y.; Rezaeian, N. H.; Shen, C.; Zhou, Y.; Lu, W.; Yang, M.; Hannan, R.; Jia, X.

    2017-07-01

    Intra-fractional motion is a concern during prostate radiation therapy, as it may cause deviations between planned and delivered radiation doses. Because accurate motion information during treatment delivery is critical to address dose deviation, we developed the projection marker matching method (PM3), a novel method for prostate motion reconstruction in volumetric modulated arc therapy. The purpose of this method is to reconstruct in-treatment prostate motion trajectory using projected positions of implanted fiducial markers measured in kV x-ray projection images acquired during treatment delivery. We formulated this task as a quadratic optimization problem. The objective function penalized the distance from the reconstructed 3D position of each fiducial marker to the corresponding straight line, defined by the x-ray projection of the marker. Rigid translational motion of the prostate and motion smoothness along the temporal dimension were assumed and incorporated into the optimization model. We tested the motion reconstruction method in both simulation and phantom experimental studies. We quantified the accuracy using 3D normalized root-mean-square (RMS) error defined as the norm of a vector containing ratios between the absolute RMS errors and corresponding motion ranges in three dimensions. In the simulation study with realistic prostate motion trajectories, the 3D normalized RMS error was on average ~0.164 (range from 0.097 to 0.333 ). In an experimental study, a prostate phantom was driven to move along a realistic prostate motion trajectory. The 3D normalized RMS error was ~0.172 . We also examined the impact of the model parameters on reconstruction accuracy, and found that a single set of parameters can be used for all the tested cases to accurately reconstruct the motion trajectories. The motion trajectory derived by PM3 may be incorporated into novel strategies, including 4D dose reconstruction and adaptive treatment replanning to address motion

  8. Self-heating probe instrument and method for measuring high temperature melting volume change rate of material

    Science.gov (United States)

    Wang, Junwei; Wang, Zhiping; Lu, Yang; Cheng, Bo

    2013-03-01

    The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg·m-3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.

  9. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    Science.gov (United States)

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-04-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

  10. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    Science.gov (United States)

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy

    2016-06-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively.

  11. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria

    Science.gov (United States)

    Tasel, Serdar F.; Mumcuoglu, Erkan U.; Hassanpour, Reza Z.; Perkins, Guy

    2017-01-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14 nm respectively. PMID:26956730

  12. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  13. Effects of electrode properties on transition limit to big-arcs in combustion gas plasma boundary layer. Nensho gas plasma kyokaisonai deno daidenryu kyodai arc hassei genkai ni oyobosu denkyoku bussei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, K.; Okumura, Y. (Tokyo Institute of Technology, Tokyo (Japan)); Kokumai, M.; Yoshikawa, N. (Toyohashi University of Technology, Aichi (Japan))

    1994-05-25

    The effect of physical properties of electrode on the transition from micro-arc to big-arc in the boundary layer of combustion gas plasma such as MHD power generation, the method for preventing the occurrence of big-arc at the electrode surface side, and the possibility of small dispersion of micro-arc are experimentally investigated. The critical current for transition from micro-arc to big-arc is mainly determined by the main part temperature. It is also affected by the electrode properties. This is due to the change in arc shape caused by the heat transfer to the electrode surface and the melting and evaporation of the electrode. In the case of electrode which is likely to give rise to the abrupt gushing of metal vapor, the transition from micro-arc to big-arc is likely to occur because the boundary layer is easily broken as the momentum of the gushing vapor directed rectangularly to the electrode surface which is generating the micro-arc is large. For the prevention of transition from micro-arc to big-arc even at a large current density, it is important to select the electrode material which is characterized by high thermal conductivity, high boiling point, and high latent heat of evaporation. 17 refs., 15 figs., 1 tab.

  14. Development Methods of GIS Software Based on ArcGIS Engine%基于ArcGIS Engine的GIS软件开发方法

    Institute of Scientific and Technical Information of China (English)

    吴建华

    2010-01-01

    介绍ArcGIS Engine体系结构、类与接口的应用方法,以及ArcGIS Engine界面开发框架与功能定制方法,最后阐述利用ArcGIS Engine组件开发GIS软件的基本过程与方法,并给出地图浏览与查询系统开发实例.希望对相关GIS系统的开发者具有较好的指导和借鉴作用.

  15. Comparative process analysis of fullerene production by the arc and the radio-frequency discharge methods.

    Science.gov (United States)

    Marković, Z; Todorović-Marković, B; Mohai, I; Farkas, Z; Kovats, E; Szepvolgyi, J; Otasević, D; Scheier, P; Feil, S; Romcević, N

    2007-01-01

    In this work, comparative analysis of processes in carbon arc and radio frequency (RF) plasma during fullerene synthesis has been presented. The kinetic model of fullerene formation developed earlier has been verified in both types of plasma reactors. The fullerene yield depended on carbon concentration, velocity of plasma flame and rotational temperature of C2 radicals predominantly. When mean rotational temperature of C2 radicals was 3000 K, the fullerene yield was the highest regardless of the type of used reactor. The zone of fullerene formation is larger significantly in RF plasma reactor compared to arc reactor.

  16. SiC multi-layer protective coating on carbon obtained by thermionic vacuum arc method

    Science.gov (United States)

    Ciupina, V.; Lungu, C. P.; Vladoiu, R.; Epure, T.-D.; Prodan, G.; Roşca, C.; Porosnicu, C.; Jepu, I.; Belc, M.; Prodan, M.; Stanescu, I. M.; Stefanov, C.; Contulov, M.; Mandes, A.; Dinca, V.; Vasile, E.; Zarovschi, V.; Nicolescu, V.

    2013-09-01

    SiC single-layer or multi-layer on C used to improve the oxidation resistance and tribological properties of C have been obtained by Thermionic Vacuum Arc (TVA) method. The 200nm thickness carbon thin films was deposed on glass or Si substrate and then 100÷500 nm thickness SiC successively layers on carbon thin film was deposed. The microstructure and mechanical characteristics of as-prepared SiC coating were investigated by Transmission Electron Microscopy (TEM, STEM), Energy Dispersive X-Ray Spectroscopy (EDS), Electron Scattering Chemical Analysis (ESCA) and tribological techniques. Samples containing SiC single-layer or multi-layer coating on carbon were investigated up to 1000°C. The results of thermal treatments reveals the increase of oxidation resistance with increase of the number of SiC layers. The mechanism of oxidation protection is based on the reaction between SiC and elemental oxygen resulting SiO2 and CO. The tribological behavior of SiC coatings was evaluated with a tribometer with ball-on-disk configuration from CSM device with 6mm diameter sapphire ball, sliding speed in dry conditions being 0.2m/s, with normal contact loads of 0.5N, 1N, 1.5N and 2N, under unlubricated conditions. The friction coefficient on SiC was compared with the friction coefficient on uncoated carbon layer. Electrical surface resistance of SiC coating on carbon at different temperatures was measured comparing the potential drop on the sample with the potential drop on a series standard resistance in constant mode.

  17. Medicinal Plant Recognition of Leaf Shape using Localized Arc Pattern Method

    Directory of Open Access Journals (Sweden)

    Ni Kadek Ayu Wirdiani

    2016-08-01

    Full Text Available Medicinal plants are plants that have benefit in order to supply the needs of families traditionally medicine. Medicinal plants have diverse types that causing modern society have difficulty in recognizing these crops. Medicinal plants generally can be identified by the leaves, stems and fruit. One of the leaves characteristics can be distinguished based on vein structure and shape of its. Based on these problem, plant recognition based on vein and shape are made by using Localized Arc Pattern Method. There are two important processes in Plant Recognition Applications. First process is Enrollment and the second is Recognition process. In the Enrolment process, the leaves image filed as many as 6 images for each leaves type. This image then calculated based on the 42 special model pattern obtained and the feature is stored as a reference image. Leaves images that used as test image are 200 images. On the Recognition process, the test image will be process which as same as at Enrollment process, however feature from the test image will be comparing with reference image in database, then it calculate the difference value. This process uses a threshold value to determine whether the test images leaves are recognized or not. When dissimilarity value is smaller than the threshold is known as the same leaves, when instead then it known as a different leaves or not known at all. Experiment result shows in this application can recognize 77% of total leaves and False Accepted Ratio (FAR equal to 4.5% and False Rejection Ratio (FRR equal to 18.5%. This result was influenced by the shiny surface of leaf and shape of the leaves are small.

  18. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  19. Common Border Extraction Method for Adjacent Polygons with Arc/Info%Arc/Info中相邻多边形公共边长的提取方法

    Institute of Scientific and Technical Information of China (English)

    周云轩; 王磊

    2003-01-01

    在GIS众多应用中,多边形公共边的提取具有很大的现实意义,但Arc/Info没有提供直接提取的命令.文章给出了一个在Arc/Info实现公共边提取的有效方法,可以实现一些商业辅助软件的功能.

  20. Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel

    Science.gov (United States)

    Hames, Amber L.; Tkac, Peter; Paulenova, Alena; Willit, James L.; Williamson, Mark A.

    2017-04-01

    An investigation of molybdate melts containing sodium molybdate (Na2MoO4) and molybdenum trioxide (MoO3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate the feasibility of UO2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO3- 50 wt% Na2MoO4-30 wt% UO2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO2 product from the melt, and washed once with Na2MoO4 displays optimum conditions for separation of the UO2 from the fission products.

  1. The Modification of Carbon with Iron Oxide Synthesized in Electrolysis Using the Arc Discharge Method

    Science.gov (United States)

    Endah Saraswati, Teguh; Dewi Indah Prasiwi, Oktaviana; Masykur, Abu; Handayani, Nestri; Anwar, Miftahul

    2017-02-01

    The modification of carbon-based nanomaterials with metals is widely studied due to its unique properties. Here, the modification of carbon nanomaterial with iron oxide has been successfully carried out. This modification was achieved using arc discharge in 50% ethanol liquid media. The anode used in the arc discharge was prepared from a mixture of carbon and iron oxide that was synthesized in electrolysis and was then calcined at 250°C with silicon binder with a mass ratio of 3:1:1, and the cathode used was graphite rod. Both electrodes were set in the nearest gap that could provide an arc during arc-discharging, leading to carbon-based nanoparticle formation. The diffractogram pattern of the X-ray diffraction of the fabricated nanoparticles confirmed the typical peak of carbon, iron oxide and iron. The magnetization value of the result analysis of the vibrating sample magnetometer was 9.9 emu/g. The bandgap energy measurement using diffuse reflectance ultra violet was estimated to be 2.18 eV. Using the transmission electron microscopy, the structure of the nanomaterial produced was observed as carbon-encapsulated iron compound nanoparticles.

  2. Optimization of melting process of 50 t ultra-high electric arc furnace%50t超高功率电弧炉冶炼工艺优化

    Institute of Scientific and Technical Information of China (English)

    杨振国; 刘青; 王彬; 石荣山

    2012-01-01

    对山东钢铁股份有限公司莱芜分公司50t超高功率电弧炉冶炼工艺和生产数据进行解析,通过对不同人炉铁水比例的物料平衡、热平衡计算和生产实践,得出了电炉工序冶炼电耗、氧气消耗参数,提出了4种工况下的冶炼操作模型,对同类型电炉生产具有相当的参考价值。%The steelmaking process and the production data ot 50 t ultra-high power elec- tric arc furnace are analyzed in this paper, and the values of electric power consumption and oxygen consumption are gained by the EAF mass and heat balance calculation of dif- ferent hot metal charged ratio, including production practice in Laiwu Steel Pants. Then four steelmaking operation models for different working conditions helpful for the same kind of EAF plants are put forward.

  3. Application of micro-arc oxidation methods in making the structure elements of spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available When designing any spacecraft, the opening elements of the structure are applied in which deployment and locking units are used.There is a transporting step i.e. an insertion of the deployment unit in the folded state into orbit. During this step the deployment unit is under considerable vibratory loads, which are accepted by thrusts. Since the thrusts at this step work under increased wear conditions it is offered, considering a protuberant surface hardness of the micro-arc oxide (MAO coating, to replace a constructional material of the thrusts with a larger density for the MAO-coated aluminium alloy.The step of deploying, at which required angle of deployment is provided by the rolling unit, is realized after the spacecraft has been placed into calculated orbit. This unit contains the target sleeve with the bearing, which provides reliable locking by means of the penetration in the inner cone of beam sector. To increase the product reliability and avoid a possibility for occurring the wear slot and burrs it is necessary to increase the hardness of the sector surface on which the target sleeve bearing rolls. The most rational solution is to form the local micro-arc oxide coating on the beam sector surface.Application of the micro-arc oxidation of aluminium alloys and research of the micro-arc oxidation specificities enable us:1 to decrease the typical deployment unit mass (by 0.221 kg or 0.85 %;2 to increase the rolling unit operation reliability;3 to design the schemes and select the conditions to form the micro-arc oxide coating on the parts of the typical deployment unit.The micro-arc oxide coating formed on the aluminium alloy is of significance for the aerospace industry that uses a diversity of aluminium alloys and prefers the structure mass decrease as much as possible. It should be appreciated that the process to form the micro-arc oxide coating is production friendly because it does not need the complex expensive equipment and is

  4. Rapid multiplex high resolution melting method to analyze inflammatory related SNPs in preterm birth

    Directory of Open Access Journals (Sweden)

    Pereyra Silvana

    2012-01-01

    Full Text Available Abstract Background Complex traits like cancer, diabetes, obesity or schizophrenia arise from an intricate interaction between genetic and environmental factors. Complex disorders often cluster in families without a clear-cut pattern of inheritance. Genomic wide association studies focus on the detection of tens or hundreds individual markers contributing to complex diseases. In order to test if a subset of single nucleotide polymorphisms (SNPs from candidate genes are associated to a condition of interest in a particular individual or group of people, new techniques are needed. High-resolution melting (HRM analysis is a new method in which polymerase chain reaction (PCR and mutations scanning are carried out simultaneously in a closed tube, making the procedure fast, inexpensive and easy. Preterm birth (PTB is considered a complex disease, where genetic and environmental factors interact to carry out the delivery of a newborn before 37 weeks of gestation. It is accepted that inflammation plays an important role in pregnancy and PTB. Methods Here, we used real time-PCR followed by HRM analysis to simultaneously identify several gene variations involved in inflammatory pathways on preterm labor. SNPs from TLR4, IL6, IL1 beta and IL12RB genes were analyzed in a case-control study. The results were confirmed either by sequencing or by PCR followed by restriction fragment length polymorphism. Results We were able to simultaneously recognize the variations of four genes with similar accuracy than other methods. In order to obtain non-overlapping melting temperatures, the key step in this strategy was primer design. Genotypic frequencies found for each SNP are in concordance with those previously described in similar populations. None of the studied SNPs were associated with PTB. Conclusions Several gene variations related to the same inflammatory pathway were screened through a new flexible, fast and non expensive method with the purpose of analyzing

  5. High Resolution Melting Analysis: A Rapid and Accurate Method to Detect CALR Mutations

    Science.gov (United States)

    Moreno, Melania; Torres, Laura; Santana-Lopez, Gonzalo; Rodriguez-Medina, Carlos; Perera, María; Bellosillo, Beatriz; de la Iglesia, Silvia; Molero, Teresa; Gomez-Casares, Maria Teresa

    2014-01-01

    Background The recent discovery of CALR mutations in essential thrombocythemia (ET) and primary myelofibrosis (PMF) patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN). We tested the feasibility of high-resolution melting (HRM) as a screening method for rapid detection of CALR mutations. Methods CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET. Results Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34), 14% of persistent thrombocytosis suggestive of MPN (3/21) and none of the secondary thrombocytosis (0/98). Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%. Conclusions This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations. PMID:25068507

  6. Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment.

    Science.gov (United States)

    Fang, Zaijin; Zheng, Shupei; Peng, Wencai; Zhang, Hang; Ma, Zhijun; Dong, Guoping; Zhou, Shifeng; Chen, Danping; Qiu, Jianrong

    2015-11-02

    Glass ceramic fibers containing Ni(2+) doped LiGa(5)O(8) nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa(5)O(8) nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni(2+)-doped glass ceramic fiber is promising for broadband optical amplification.

  7. Thermal barrier ZrO2 - Y2O3 obtained by plasma spraying method and laser melting

    Directory of Open Access Journals (Sweden)

    K. Kobylańska–Szkaradek

    2006-04-01

    Full Text Available Purpose: Purpose: The aim of the paper is to determine the influence of laser melting upon the selected physical properties of ZrO2 - Y2O3 ceramic coatings deposited by APS (Air Plasma Spraying method on super-alloys which function as TBC (Thermal Barriers Coatings.Design/methodology/approach: Laser melting which helps eliminate pores and other structural defects of coatings should contribute to the improvement of their density and durability as thermal barriers. In order to prove the assumptions made in the paper, coatings featuring varied porosity and deposited upon the nickel base super-alloys surface with the initially sprayed NiCrAlY bond coat have been subjected to laser melting and then their structure, thermal conductivity and thermal life prediction in the conditions of cyclic temperature changes from 20 to 1200ºC have been examined.Findings: It has been revealed that the coatings featuring low porosity laser melted on part of their thickness and heated up to about 700ºC demonstrate the highest thermal life prediction under the conditions mentioned and at slightly lower thermal conductivity.Research limitations/implications: Low wettability of metal by ceramic which results from various surface tensions of these materials is the cause of their lower adhesion to the substrate during laser melting all through their thickness. It is so because delaminations occur between phases the boundary and cracks.Practical implications: The worked out conditions of laser melting might be used in the process of creation of TBC which feature high working durability upon super-alloy elements.Originality/value: It has been found that homogenization of chemical composition of coatings occurs during laser melting leading to the reduction of ZrO2 - Y2O3 phase with monoclinic lattice participation as well as to the reduction of structural stresses which accompany this phase transformation during heating and cooling process.

  8. High resolution melting analysis: a rapid and accurate method to detect CALR mutations.

    Directory of Open Access Journals (Sweden)

    Cristina Bilbao-Sieyro

    Full Text Available The recent discovery of CALR mutations in essential thrombocythemia (ET and primary myelofibrosis (PMF patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN. We tested the feasibility of high-resolution melting (HRM as a screening method for rapid detection of CALR mutations.CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET.Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34, 14% of persistent thrombocytosis suggestive of MPN (3/21 and none of the secondary thrombocytosis (0/98. Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%.This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations.

  9. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  10. 基于ArcGIS、MATLAB及Surfer的DGPS冰碛垄测量模拟对比%DGPS moraine simulation comparison based on methods of ArcGIS, MATLAB and Surfer

    Institute of Scientific and Technical Information of China (English)

    金耀; 易朝路; 梁越华; 马颖钊

    2013-01-01

    In this paper, using Topo to Raster tool in ArcGIS software, artificial neural network method of MATLAB software and natural neighbors method of Surfer software, the moraine ridge data of Qinghai-Tibet Plateau based on DGPS data from field measurements was simulated to get digital terrain modeling. Then, the three methods in simulation precision, accuracy, topography shaded effect, ease of operation, post-quantitative analysis were analyzed and compared. And the results indicated that Topo to Raster tool in ArcGIS software has better simulation accuracy than the other two methods. Taking various factors into account, ArcGIS software has more advantages in the quantitative study of glacial moraine.%应用ArcGIS软件中的Topo to Raster工具、MATLAB软件中的人工神经网络及Surfer软件中自然邻点法,本文对使用差分GPS测量的青藏高原不同地区的冰碛垄数据进行了数字地貌模拟,从模拟精度、准确度、地貌晕渲、易操作性及后期定量分析等方面进行了分析对比.结果表明ArcGIS中的Topo to Raster工具较其他两种方法有较好的模拟精度;综合考虑各方面因素,ArcGIS软件在冰碛垄地貌的定量研究中具有优势.

  11. Discussion on the principles of DC ice - melting device and ice - melting methods%直流融冰装置的工作原理及融冰方式探讨

    Institute of Scientific and Technical Information of China (English)

    申国华

    2011-01-01

    Combined with the performance and ice - melting status of the fixed DC ice - melting device in 500kV Tongren substation, the principles of DC ice - melting device are introduced. The ice - melting methods are discussed based on the practical ice - melting%结合500kV铜仁变电站固定式直流融冰装置的运行及融冰情况,简要介绍了直流融冰装置的工作及融冰原理,通过在实际融冰工作中对直流融冰装置的融冰方式进行探讨。

  12. Calculating the melting curves by the thermodynamic data matching method: Platinum-group refractory metals (Ru, Os, and Ir)

    Science.gov (United States)

    Kulyamina, E. Yu.; Zitserman, V. Yu.; Fokin, L. R.

    2017-01-01

    A technique for reconstructing thermal properties, including the melting curve, of refractory metals based on the use of experimental data on caloric properties available up to the melting point and some regularities of the Debye-Grüneisen theory has been proposed. The calculation result is the consistent system of high-temperature thermal data, including the thermal expansion coefficient, solid-phase density, and volume jump upon melting. This technique was tried-out on refractory platinum-group metals based on experimental data on the enthalpy of the metals and confirmed by consistency with a thermodynamic calculation using shock-wave experiments and results obtained by the quantum molecular dynamics method.

  13. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  14. Application of a dual target PCR-high resolution melting (HRM) method for rapid nontuberculous mycobacteria identification.

    Science.gov (United States)

    Chen, Jonathan Hk; Cheng, Vincent Cc; She, Kevin Kk; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-01-01

    Species differentiation of nontuberculous mycobacteria (NTM) has long been a difficult task in clinical laboratories. This study demonstrated and evaluated a simple and cost-effective method using the real-time PCR with high-resolution melting (PCR-HRM) analysis technique, which could differentiate at least 14 different medically related NTM.

  15. Measurements of the Thermal Conductivity and Thermal Diffusivity of Polymer Melts with the Short-Hot-Wire Method

    OpenAIRE

    Wicaksono, Hendro; Zhang, Xing; Fujii, Motoo

    2001-01-01

    In this paper, the thermal conductivity and thermal diffusivity of four kinds of polymer melts were measured by using the transient short-hot-wire method. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a wire with the same length-to-diameter ratio and boundary conditions as those in the actual experiments. The present method is particularly suitable for measurements of molten polymers where natural con...

  16. Synthesis of Al-5Ti-1B Refiner by Melt Reaction Method

    Directory of Open Access Journals (Sweden)

    LI He

    2017-02-01

    Full Text Available Al-5Ti-1B refiner was successfully prepared by melt reaction method. Through the thermodynamics calculation, the initial reaction temperature was determined. The influence of reaction temperature on microstructure and absorption rate of the alloy was investigated. The phase and microstructure of the alloy were observed by X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The Al-5Ti-1B refiner was extruded at high temperature to wire with the diameter of 9.5mm, and then the refinement experiment was carried out on pure aluminium. The results indicate that the refiner consists of TiB2, TiAl3 and α-Al, and the microstructure prepared at 850℃ is the optimum and the absorption rate of Ti and B matches the best. The TiAl3 and TiB2 phases distribute homogeneously in the matrix after extrusion. When adding 0.2%(mass fraction of Al-5Ti-1B refiner, the grain size of pure aluminium reduces from 3.99mm to 0.45mm.

  17. Arc -furnace Flicker Compensation in Ethiopia.

    African Journals Online (AJOL)

    supply system of the Ethiopian Electric Light and ... independent of the magnitude of the arc furnace load. They were intolerable ..... Weather sealing (Important in Ethi- opia). 3. .... nace currents during the worst periods of initial melt- ing down.

  18. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  19. Corrosion Behavior of Bi2Te3-Based Thermoelectric Materials Fabricated by Melting Method

    Science.gov (United States)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2016-11-01

    Bi2Te3-based compounds are used practically as thermoelectric cooling materials. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudobinary system compounds are usually applied as p- or n-type material, respectively. Atmospheric water may condense on the surface of thermoelectric materials constituting Peltier modules, depending on their operating environment. Very few studies on the corrosion resistance of Bi2Te3-based compounds have been reported in literature. Moreover, the detailed corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the corrosion behavior of cleavage planes of Bi2Te3-based compounds fabricated by a melting method has been investigated. Bi2Te3, Sb2Te3, and Bi2Se3 were prepared by the vertical Bridgman method, respectively. Their electrochemical properties evaluated at room temperature by cyclic voltammetry in a standard three-electrode cell with naturally aerated 0.6 mass% or 3.0 mass% NaCl solution as working electrolyte. The c-planes of Bi2Te3 and Sb2Te3 exhibited similar corrosion potential. The corrosion potential of c-plane of Bi2Se3 was more cathodic compared with that of the telluride. The passive current density of the Bi2Te3-based compounds was single or double digit lower than that of stainless steel. X-ray photoelectron spectroscopy results for the electrolyte after testing indicated the possibility that a corrosion product diffuses to the environment including NaCl for Sb2Te3 and Bi2Se3.

  20. Faster methods for estimating arc centre position during VAR and results from Ti-6Al-4V and INCONEL 718 alloys

    Science.gov (United States)

    Nair, B. G.; Winter, N.; Daniel, B.; Ward, R. M.

    2016-07-01

    Direct measurement of the flow of electric current during VAR is extremely difficult due to the aggressive environment as the arc process itself controls the distribution of current. In previous studies the technique of “magnetic source tomography” was presented; this was shown to be effective but it used a computationally intensive iterative method to analyse the distribution of arc centre position. In this paper we present faster computational methods requiring less numerical optimisation to determine the centre position of a single distributed arc both numerically and experimentally. Numerical validation of the algorithms were done on models and experimental validation on measurements based on titanium and nickel alloys (Ti6Al4V and INCONEL 718). The results are used to comment on the effects of process parameters on arc behaviour during VAR.

  1. Kinematic Orbit Determination Method Optimization and Test Analysis for BDS Satellites with Short-arc Tracking Data

    Directory of Open Access Journals (Sweden)

    GUO Rui

    2017-04-01

    Full Text Available Rapid orbit recovery is a puzzle for the BDS satellites after orbit maneuvers. Two kinematic orbit determination methods are studied, with two orbit determination models being established. The receiver system error and serious multipath error exist in the BDS system. The co-location method is proposed to estimate and calibrate the receiver system errors. A CNMC (code noise and multipath correction method is introduced to weaken the multipath error. Therefore the data quality is controlled efficiently for the receivers in the short tracking arc. The GEO/IGSO/MEO real data is emploied to carry out tests and validation. Using 10 min short tracking arc, the kinematic precise orbit determination accuracy is about 3.27 m for the GEOs, and 8.19 m for the IGSOs, and 5.9 m for the MEOs. Rapid orbit determination is achieved, which satisfying the orbit requirements from the BDS RDSS services. The kinematic precise orbit determination method also supports the RDSS service walking up to the global world.

  2. Traffic Network Equilibrium Problems with Capacity Constraints of Arcs and Linear Scalarization Methods

    Directory of Open Access Journals (Sweden)

    X. Q. Tian

    2012-01-01

    Full Text Available Traffic network equilibrium problems with capacity constraints of arcs are studied. A (weak vector equilibrium principle with vector-valued cost functions, which are different from the ones in the work of Lin (2010, and three kinds of parametric equilibrium flows are introduced. Some necessary and sufficient conditions for a (weak vector equilibrium flow to be a parametric equilibrium flow are derived. Relationships between a parametric equilibrium flow and a solution of a scalar variational inequality problem are also discussed. Some examples are given to illustrate our results.

  3. 垃圾焚烧飞灰电弧炉熔渣微品玻璃的晶化行为%Crystallization Behavior of Glass-ceramics from Arc-melting Slag of Waste Incineration Fly Ash

    Institute of Scientific and Technical Information of China (English)

    刘汉桥; 魏国侠; 梁茵; 杨俊兰

    2012-01-01

    To deal with the issue of municipal solid waste incineration fly ash, are melting treatment technology was developed in combination with electric arc furnace metallurgical processes. Glass-ceramics was made of arc-meUing slag from waste incineration fly ash and additional glass cullet through crushing, pressing and sintering at temperature between 750 "C and 1050 'C. The crystallization behaviours of the glass-ceramics were examined by differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). It is shown that main crystalline phase of the glass-ceramics are wollastonite (CaSiO3) and diopside (Ca (Mg, Al) (Si, A1)2O5 ) . and the diffraction peaks become more intensive at higher temperature. It is found that the glass-ceramics sintered at 850 *C has the optimal physical, mechanical and chemical characteristics, and it has density of 2. 62 g/cm3 , bending strength of 54. 96 Mpa, chemical resistance of 2. 7% and 0. 9% in acid and alkali solution respectively. Furthermore, the leaching concentration of heavy metals is very low.%将垃圾焚烧飞灰与适量废玻璃粉混合后用电弧炉熔融处理,产生的水冷熔渣进一步粉碎、压型并在750~1 050℃间热处理制取微晶玻璃,运用同步热分析仪、X射线衍射仪、扫描电镜等测试设备对微晶玻璃的晶化行为及性能进行分析测试.研究表明:微晶玻璃主晶相为硅灰石CaSiO3和少量透辉石Ca(Mg,Al)(Si,Al)2O6,其衍射峰随处理温度升高呈增加趋势,850℃热处理时所得微晶玻璃具有较佳的微观结构和物理、机械及化学性能,其密度为2.62 g/cm3、抗弯强度达90.44 MPa,耐酸碱性分别为2.7%、0.9%,重金属浸出浓度非常低.

  4. Structure and Property of Micro-arc Oxidation Coating Modified by Laser Melting and Solidifying on Aluminum Alloy%激光重熔改性铝合金微弧氧化膜层的组织与性能

    Institute of Scientific and Technical Information of China (English)

    喻杰; 韦东波; 王岩; 吕鹏翔; 狄士春

    2013-01-01

    为了改善微弧氧化(MAO)膜层多孔疏松的组织和性能,对其进行了激光重熔处理,并制备了两种实验膜层:(1)选择双向电流脉冲和Na2SiO3-KOH体系的工作液,在6082铝合金基体上制备平均厚度为18 μm的MAO膜层;(2)采用Nd∶YAG激光器对上述MAO膜层进行激光重熔(LSM)处理,获得MAO+LSM膜层.利用扫描电子显微镜(SEM)、X射线衍射仪、超显微硬度计和电化学分析仪分别检测上述两种膜层的微观形貌、相组成、表面硬度和耐蚀性能.结果表明:激光重熔后的膜层由内往外分为致密层、中间层和重熔层,组织致密、气孔率低的重熔层取代了MAO疏松层,MAO+LSM膜层中α-Al2O3相的比例得到提高,硬度和耐蚀性能也进一步得到改善,且保持了MAO膜层与基体的结合方式.%In order to improve performance and microstructure of micro-arc oxidation (MAO) coating,especially loose and porous characteristic,a laser melting and solidifying process (LSM) was introduced.Two kinds of samples were prepared:(1) MAO coatings,18 μm average thickness,were produced on 6082 aluminum alloy by bipolar current pulse in Na2SiO3-KOH solution.(2) a melting process using a Nd∶YAG laser was employed to modify above-mentioned MAO coatings to obtain MAO+LSM coating.Microstructure of two kinds of coatings (MAO coating and MAO+LSM coating) were examined by scanning electron microscopy.X-ray diffraction was used to determine the phase composition of the coatings.Coating hardness was tested by ultra-micro hardness tester,and corrosion performance was investigated by polarization test instrument.The results show that the MAO+LSM coating is composed of dense layer,intermediate layer and melting layer from inside to surface.The loose layer of MAO film is replaced by a dense and low porosity melting layer after LSM treatment.The occupancy of α-Al2O3 phase in MAO+LSM is improved compared with MAO coating.Hardness and anticorrosion performance of MAO

  5. Investigating methods to estimate melting event parameters over Arctic sea- ice using SSM/I, OKEAN, and RADARSAT Data

    Science.gov (United States)

    Belchansky, G.; Eremeev, V.; Mordvintsev, I.; Platonov, N.; Douglas, D.

    The melting events (early melt, melt onset, melt ponding, freeze-up onset) over Arctic sea-ice area are critical for climate and global change studies. They are combined with accuracy of surface energy balances estimates (due to contrasts in the short wave albedo of snow and ice, open water or melt ponds) and drives a number of important processes (onset of snow melt, thawing of boreal forest, etc). M icrowave measurements identify seasonal transition zones due to large differences in emissivity during melt onset, melt ponding and freeze-up periods. This report presents near coincident observation of backscatter cross section (0 ) and brightness temperature (Tb) from Russian OKEAN 01 satellite series, backscatter cross section (0) from RADARSAT-1, brightness temperatures (Tbs) from SSM/I sensors, and near-surface temperature derived from the International Arctic Buoy Program data (IABP) (Belchansky and Douglas, 2000, 2002). To determine the melt duration (time of freeze-up onset minus time of melt onset) passive and active microwave methods were developed. These methods used differences between SSM /I 19.3GHz,H and SSM/I 37.0 GHz, H channels (SSM/I Tb), OKEAN 0 (9.52GHz, VV) and Tb (37.47 GHz, H) channels, RADARSAT-1 0 (5.3GHz, HH), and a threshold technique. An evolution of the SSM/I Tb, OKEAN-01 0 and Tb, RADARSAT ScanSAR 0, MEAN ( 0), SD(0) and SD(0 ) / MEAN(0 ) as function of time was investigated along FY and MY dominant type ice areas during January 1996 through December 1998. The SSM/I, OKEAN and RADARSAT melt onset and freeze up onset algorithms were constructed. The SSM/I algorithm was based- on analysis of the SSM/I Tb. The OKEAN and RADARSAT ScanSAR algorithms were based, respectively, on analysis of OKEAN 0 and Tb of MY and FY sea ice at each MY and FY ice region (200 km by 200 km) determined in OKEAN imagery prior to melting period and changes in RADARSAT SD(0 ) / MEAN(0) of sea-ice during different stages of melting processes at each ice site (75 km

  6. Locations and focal mechanisms of deep long period events beneath Aleutian Arc volcanoes using back projection methods

    Science.gov (United States)

    Lough, A. C.; Roman, D. C.; Haney, M. M.

    2015-12-01

    Deep long period (DLP) earthquakes are commonly observed in volcanic settings such as the Aleutian Arc in Alaska. DLPs are poorly understood but are thought to be associated with movements of fluids, such as magma or hydrothermal fluids, deep in the volcanic plumbing system. These events have been recognized for several decades but few studies have gone beyond their identification and location. All long period events are more difficult to identify and locate than volcano-tectonic (VT) earthquakes because traditional detection schemes focus on high frequency (short period) energy. In addition, DLPs present analytical challenges because they tend to be emergent and so it is difficult to accurately pick the onset of arriving body waves. We now expect to find DLPs at most volcanic centers, the challenge lies in identification and location. We aim to reduce the element of human error in location by applying back projection to better constrain the depth and horizontal position of these events. Power et al. (2004) provided the first compilation of DLP activity in the Aleutian Arc. This study focuses on the reanalysis of 162 cataloged DLPs beneath 11 volcanoes in the Aleutian arc (we expect to ultimately identify and reanalyze more DLPs). We are currently adapting the approach of Haney (2014) for volcanic tremor to use back projection over a 4D grid to determine position and origin time of DLPs. This method holds great potential in that it will allow automated, high-accuracy picking of arrival times and could reduce the number of arrival time picks necessary for traditional location schemes to well constrain event origins. Back projection can also calculate a relative focal mechanism (difficult with traditional methods due to the emergent nature of DLPs) allowing the first in depth analysis of source properties. Our event catalog (spanning over 25 years and volcanoes) is one of the longest and largest and enables us to investigate spatial and temporal variation in DLPs.

  7. Several properties offilament fibers made from recycled bottles of mineral water using melt spinning method

    Science.gov (United States)

    Muslim, Ikhwanul; Mardiyati; Basuki, Arif

    2016-01-01

    Waste mineral water bottles made of PET called post-consumer POSTC-PET packaging with recycling code no. 1 can be made into another material other than the bottle by using a mechanical recycling process. In this experiment carried waste recycling process bottled mineral water bottles of PET into filament fibres with the aid of a melt spinning. From the resulting experimental filament fibres diameter of 14-15 microns, obtained the draw ratio is 1/46, 573,5 - 699,8 MPa tensile strength, modulus of elasticity of 2,01 - 2,45GPa, moisture regain of 2,84. Keywords. PET; Bottle; Fiber; Melt; Spinning; Drawing.

  8. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    Science.gov (United States)

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  9. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    Directory of Open Access Journals (Sweden)

    Chenguang Yan

    Full Text Available Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  10. New investigation of distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion method.

    Science.gov (United States)

    Park, Jun-Bom; Kang, Chin-Yang; Kang, Wie-Soo; Choi, Han-Gon; Han, Hyo-Kyung; Lee, Beom-Jin

    2013-12-31

    The content uniformity of low dose drugs in dosage forms is very important for quality assurance. The aim of this study was to prepare uniformly and homogeneously distributed dosage forms of very low-dose drugs using twin screw hot-melt extrusion (HME) and to investigate the distribution of drugs using instrumental analyses. For the feasibility of HME method, a very low amount of coumarin-6, a fluorescent dye, was used to visualize distribution images using confocal laser scanning microscope (CLSM). Limaprost, tamsulosin and glimepiride were then used as low-dose model drugs to study the applicability of HME for content uniformity and distribution behaviors. Hydrophilic thermosensitive polymers with low melting point, such as Poloxamer188 and polyethylene glycol (PEG) 6000, were chosen as carriers. The melt extrusion was carried out around 50°C, at which both carriers were easily dissolved but model drugs remained in solid form. The physicochemical properties of the hot-melt extrudates, including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR), were measured. Content uniformity of the drugs was also checked by HPLC. CLSM imaging showed that model drugs were well distributed throughout the hot-melt extrudate, giving better content uniformity with low batch-to-batch variations compared with simple physical mixtures. DSC, PXRD and FT-IR data showed that there was no interaction or interference between model drugs and thermosensitive polymers. The current HME methods could be used to prepare uniformly distributed and reproducible solid dosage forms containing very low dose drugs for further pharmaceutical applications.

  11. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  12. Electromagnetic Characteristic of Twin-wire Indirect Arc Welding

    Institute of Scientific and Technical Information of China (English)

    SHI Chuanwei; ZOU Yong; ZOU Zengda; WU Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires:one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5mN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  13. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  14. A fast method of zone melting as an aid in analytical chemistry

    NARCIS (Netherlands)

    Bollen, N.J.G.; Essen, M.J. van; Smit, W.M.

    1967-01-01

    A new zone-melting apparatus is described which allows relatively high zone speeds up to 100 cm/h. The time required for effective separations is only a few hours so that the apparatus can be used for analytical purposes. The difference between the theoretical and actual distribution coefficients

  15. Communication: Proton NMR dipolar-correlation effect as a method for investigating segmental diffusion in polymer melts

    Science.gov (United States)

    Lozovoi, A.; Mattea, C.; Herrmann, A.; Rössler, E. A.; Stapf, S.; Fatkullin, N.

    2016-06-01

    A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times t and t/2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time.

  16. A morphometry map and a new method for honey bee morphometric analysis by using the ArcGIS

    Directory of Open Access Journals (Sweden)

    Hossam F. Abou-Shaara

    2013-12-01

    Full Text Available The morphometric analysis of honey bees has a substantial importance for honey bee subspecies characterization and discrimination while the ArcGIS is a geographical program for data analysis. In the present research, the combination between the morphometric data and the spatial analysis options of the ArcGIS was done and subsequently tested in creating a morphometry map for honey bees from some regions in Egypt as well as for the discrimination between two honey bee subspecies. Therefore, I present a model for creating the morphometry maps and a new method for the morphometric analysis by the transformation of the morphometric data to raster data layers. The obtained results showed that the created morphometry map classified the regions successfully according to the morphological character means. The morphometric analysis was successfully performed by using trend analysis and raster difference range. The analysis of the morphometric data as raster layers showed high sensitivity for the differences between subspecies and regions. The presented model and the method are effective and can be applied for the discrimination between subspecies, regions and colonies as well as can be used with other insects.

  17. Estimation of the transient interfacial heat flux between substrate/melt at the initiation of magnesium solidification on aluminum substrates using the lumped capacitance method

    Energy Technology Data Exchange (ETDEWEB)

    Hajjari, E. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Divandari, M., E-mail: Divandari@iust.ac.ir [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Razavi, S.H.; Emami, S.M. [Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114 (Iran, Islamic Republic of); Kamado, S. [Department of Mechanical Engineering, Nagaoka University of Technology (NUT), Nagaoka 940-2188 (Japan)

    2011-03-15

    Interfacial heat flux (IHF) between solid pure aluminum/magnesium melt and solid 413 aluminum alloy/magnesium melt couples was evaluated using lumped capacitance method, and the interface microstructures were assessed by scanning electronic microscope. The variation of maximum IHF with surface roughness for these two couples also was evaluated. The results showed that, for both solid aluminum/magnesium melt couples, with increasing the surface roughness, the maximum IHF increases at first and then starts to decrease after reaching a maximum value. In addition the measured maximum IHF for solid 413 aluminum alloy/magnesium melt couples was found to be higher than those measured for solid pure aluminum/magnesium melt couples. That seems to be because of the better wettability of 413 aluminum alloy than pure aluminum, by magnesium melt.

  18. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites

    Science.gov (United States)

    Liu, Boda; Liang, Yan

    2017-04-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.

  19. ZnO Nanorods Produced by the Method of Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    WU Xu-Feng; XU Chun-Xiang; ZHU Guang-Ping; LING Yi-Ming

    2006-01-01

    @@ ZnO nanorods are fabricated by arc discharge with ZnO powder as source materials. The sample is characterized by x-ray diffraction, Raman scattering spectra, scanning electron microscopy and high-resolution transmission electron microscopy. The ZnO nanorods exhibit single crystals with the hexagonal wurtzite structure. Many of them are tetrapod-like. The diameters range from several nanometres to about 100nm, and the main diameters of the nanorods is around 20nm. The length-to-diameter ratio is more than 5, and the grown directions are along the [001] axis. Photoluminescence spectra show a narrow ultraviolet emission at around 389nm and a broad green emission at around 520 nm. The growth process can be interpreted by the vapour-solid mechanism.

  20. Effect of Fe 3+ concentration on MWCNTs formation in liquid arcing method

    Science.gov (United States)

    Shervin, Sh.; Gheytani, S.; Simchi, A.

    2010-10-01

    The formation of multi-walled carbon nanotubes (MWCNTs) during arc discharge in aqueous solutions of Fe 2(SO 4) 3 and FeCl 3 was studied. The concentration of iron ions changed from zero (deionized water) to 0.25 M and the cathodic products were examined by transmission electron microscopy, Raman spectrometry, and thermal gravimetric analysis. The experimental results showed that the crystallinity of MWCNTs is improved by increasing the concentration of iron ions. Nevertheless, the process yield and overall quality of the produced CNTs were significantly affected by iron concentration in the aqueous solution. This observation suggested that there should be an optimum iron concentration at which the formation of MWCNTs is favored. As compared with the sulfate solution, a higher process yield is obtained in the presence of chloride ions in agreement with previous reports.

  1. Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods.

    Science.gov (United States)

    Koger, B; Kirkby, C

    2016-12-02

    As a recent area of development in radiation therapy, gold nanoparticle (GNP) enhanced radiation therapy has shown potential to increase tumour dose while maintaining acceptable levels of healthy tissue toxicity. In this study, the effect of varying photon beam energy in GNP enhanced arc radiation therapy (GEART) is quantified through the introduction of a dose scoring metric, and GEART is compared to a conventional radiotherapy treatment. The PENELOPE Monte Carlo code was used to model several simple phantoms consisting of a spherical tumour containing GNPs (concentration: 15 mg Au g(-1) tumour, 0.8 mg Au g(-1) normal tissue) in a cylinder of tissue. Several monoenergetic photon beams, with energies ranging from 20 keV to 6 MeV, as well as 100, 200, and 300 kVp spectral beams, were used to irradiate the tumour in a 360° arc treatment. A dose metric was then used to compare tumour and tissue doses from GEART treatments to a similar treatment from a 6 MV spectrum. This was also performed on a simulated brain tumour using patient computed tomography data. GEART treatments showed potential over the 6 MV treatment for many of the simulated geometries, delivering up to 88% higher mean dose to the tumour for a constant tissue dose, with the effect greatest near a source energy of 50 keV. This effect is also seen with the inclusion of bone in a brain treatment, with a 14% increase in mean tumour dose over 6 MV, while still maintaining acceptable levels of dose to the bone and brain.

  2. Recycling MgO-C refractory in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Conejo, A.N. [Metallurgy Department, Morelia Technological Institute, Morelia (Mexico); Lule, R.G.; Lopez, F. [Process Engineering Department-Steelmaking Shop, Lazaro Cardenas City (Mexico); Rodriguez, R. [Refractories Department, Lazaro Cardenas City (Mexico)

    2006-11-15

    MgO-C refractory recycling from electric arc furnaces and ladle furnaces has been carried out during the melting of direct reduced iron (DRI). Metallurgical trials to define the effects of refractory recycling on energy consumption, melting time, flux consumption and refractory consumption are reported in this work. The method of preparation as well as the method of injection is also included in this study. Based on current results, the practice of recycling spent refractory is highly recommended. Visual inspection indicates the potential benefits in slag foaming which starts to form at the beginning of the heat thus allowing the use of full power transformer and in turn results in faster melting rates. (author)

  3. Negative transferred arc cleaning: a method for roughening and removing surface contamination from beryllium and other metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Hollis, K.J.; Maggiore, C.J.; Ayala, A.; Bartram, B.D. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Doerner, R.P. [California Univ., San Diego (United States). Fusion Energy Res.

    2000-04-01

    TA cleaning has been investigated for preparing the surface of beryllium plasma facing components (PFC's) inside of the international thermonuclear experimental reactor (ITER) prior to depositing beryllium by plasma spraying. Plasma spraying of beryllium was evaluated during the ITER engineering design activity (EDA) for in-situ repair and initial fabrication of the beryllium first wall armor. Results have shown that surface roughening of beryllium, during the TA cleaning process, can result in bond strengths greater than 100 MPa between beryllium surfaces and plasma sprayed beryllium. In addition, the TA cleaning process was shown to be an effective method for removing contaminate layers of carbon and tungsten from the surface of beryllium. Investigations have been performed to characterize the different arc-types that occur during the TA cleaning process (type I, I and III arcs) and the effectiveness of the TA cleaning process for potentially removing co-deposited layers of carbon and deuterium from the surface of beryllium, stainless steel and tungsten. (orig.)

  4. A Method of Stray Grain Suppression for Single-Crystal Superalloy During Seed Melt-Back

    Science.gov (United States)

    Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Zhong, Yunbo; Ren, Xingfu; Li, Xi; Cao, Guanghui; Ren, Zhongming

    2016-12-01

    The suppression of stray grains during seed melt-back of single-crystal superalloy through thermal resistance technique has been investigated based on both experimental observations and numerical simulation. The results indicate that the introduction of thermal resistance layer significantly suppresses the stray grain formation of single-crystal superalloy. Based on both theoretical analysis and numerical simulation, above results should be attributed to the decrease of radial heat transfer of sample in the thermal resistance layer.

  5. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method

    Directory of Open Access Journals (Sweden)

    Yu Jun Tan

    2016-11-01

    Full Text Available Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone (PLC fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.

  6. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method

    Science.gov (United States)

    Sun, Jianfeng; Yang, Yongqiang; Wang, Di

    2013-07-01

    In this study, a selective laser melting experiment was carried out with Ti6Al4V alloy powders. To produce samples with maximum density, selective laser melting parameters of laser power, scanning speed, powder thickness, hatching space and scanning strategy were carefully selected. As a statistical design of experimental technique, the Taguchi method was used to optimize the selected parameters. The results were analyzed using analyses of variance (ANOVA) and the signal-to-noise (S/N) ratios by design-expert software for the optimal parameters, and a regression model was established. The regression equation revealed a linear relationship among the density, laser power, scanning speed, powder thickness and scanning strategy. From the experiments, sample with density higher than 95% was obtained. The microstructure of obtained sample was mainly composed of acicular martensite, α phase and β phase. The micro-hardness was 492 HV0.2.

  7. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  8. An innovative energy-saving in-flight melting technology and its application to glass production

    Directory of Open Access Journals (Sweden)

    Yaochun Yao et al

    2008-01-01

    Full Text Available The conventional method used for glass melting is air-fuel firing, which is inefficient, energy-intensive and time-consuming. In this study, an innovative in-flight melting technology was developed and applied to glass production for the purposes of energy conservation and environmental protection. Three types of heating sources, radio-frequency (RF plasma, a 12-phase alternating current (ac arc and an oxygen burner, were used to investigate the in-flight melting behavior of granulated powders. Results show that the melted particles are spherical with a smooth surface and compact structure. The diameter of the melted particles is about 50% of that of the original powders. The decomposition and vitrification degrees of the prepared powders decrease in the order of powders prepared by RF plasma, the 12-phase ac arc and the oxygen burner. The largest heat transfer is from RF plasma to particles, which results in the highest particle temperature (1810 °C and the greatest vitrification degree of the raw material. The high decomposition and vitrification degrees, which are achieved in milliseconds, shorten the melting and fining times of the glass considerably. Our results indicate that the proposed in-flight melting technology is a promising method for use in the glass industry.

  9. Motion of polar cap arcs

    Science.gov (United States)

    Hosokawa, K.; Moen, J. I.; Shiokawa, K.; Otsuka, Y.

    2011-01-01

    A statistics of motion of polar cap arcs is conducted by using 5 years of optical data from an all-sky imager at Resolute Bay, Canada (74.73°N, 265.07°E). We identified 743 arcs by using an automated arc detection algorithm and statistically examined their moving velocities as estimated by the method of Hosokawa et al. (2006). The number of the arcs studied is about 5 times larger than that in the previous statistics of polar cap arcs by Valladares et al. (1994); thus, we could expect to obtain more statistically significant results. Polar cap arcs are found to fall into two distinct categories: the By-dependent and By-independent arcs. The motion of the former arcs follows the rule reported by Valladares et al. (1994), who showed that stable polar cap arcs move in the direction of the interplanetary magnetic field (IMF) By. About two thirds of the arcs during northward IMF conditions belong to this category. The latter arcs always move poleward irrespective of the sign of the IMF By, which possibly correspond to the poleward moving arcs in the morning side reported by Shiokawa et al. (1997). At least one third of the arcs belong to this category. The By-dependent arcs tend to move faster when the magnitude of the IMF By is larger, suggesting that the transport of open flux by lobe reconnection from one polar cap compartment to the other controls their motion. In contrast, the speed of the By-independent arcs does not correlate with the magnitude of the By. The motions of both the By-dependent and By-independent arcs are most probably caused by the magnetospheric convection. Convection in the region of By-dependent arcs is affected by the IMF By, which indicates that their sources may be on open field lines or in the closed magnetosphere adjacent to the open-closed boundary, whereas By-independent arcs seem to be well on closed field lines. Hence, the magnetospheric source of the two types of arc may be different. This implies that the mechanisms causing the

  10. Circular-Arc Cartograms

    CERN Document Server

    Kämper, Jan-Hinrich; Nöllenburg, Martin

    2011-01-01

    We present a new circular-arc cartogram model in which countries are drawn with circular arcs instead of straight-line segments. Given a geographic map and values associated with each country in the map, the cartogram is a new map in which the areas of the countries represent the corresponding values. In the circular-arc cartogram model straight-line segments can be replaced with circular arcs in order to achieve the desired areas, while the corners of the polygons defining each country remain fixed. The countries in circular-arc cartograms have the aesthetically pleasing appearance of clouds or snowflakes, depending on whether their edges are bent outwards or inwards. This makes is easy to determine whether a country has grown or shrunk, just by its overall shape. We show that determining whether a given map and area-values can be realized with a circular-arc cartogram is an NP-hard problem. Next we describe a heuristic method for constructing circular-arc cartograms, which uses a max-flow computation on the...

  11. Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Cha KH

    2012-10-01

    Full Text Available Kwang-Ho Cha,1,3 Kyung-Jin Cho,3 Min-Soo Kim,4 Jeong-Soo Kim,3 Hee Jun Park,1,3 Junsung Park,1,3 Wonkyung Cho,1,3 Jeong-Sook Park,3 Sung-Joo Hwang1,21Yonsei Institute of Pharmaceutical Sciences, 2College of Pharmacy, Yonsei University, Incheon, Republic of Korea; 3College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 4Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of KoreaBackground: The aim of this study was to enhance the bioavailability of fenofibrate, a poorly water-soluble drug, using a melt-adsorption method with supercritical CO2.Methods: Fenofibrate was loaded onto Neusilin® UFL2 at different weight ratios of fenofibrate to Neusilin UFL2 by melt-adsorption using supercritical CO2. For comparison, fenofibrate-loaded Neusilin UFL2 was prepared by solvent evaporation and hot melt-adsorption methods. The fenofibrate formulations prepared were characterized by differential scanning calorimetry, powder x-ray diffractometry, specific surface area, pore size distribution, scanning electron microscopy, and energy-dispersive x-ray spectrometry. In vitro dissolution and in vivo bioavailability were also investigated.Results: Fenofibrate was distributed into the pores of Neusilin UFL2 and showed reduced crystal formation following adsorption. Supercritical CO2 facilitated the introduction of fenofibrate into the pores of Neusilin UFL2. Compared with raw fenofibrate, fenofibrate from the prepared powders showed a significantly increased dissolution rate and better bioavailability. In particular, the area under the drug concentration-time curve and maximal serum concentration of the powders prepared using supercritical CO2 were 4.62-fold and 4.52-fold greater than the corresponding values for raw fenofibrate.Conclusion: The results of this study highlight the usefulness of the melt-adsorption method using supercritical CO2 for improving the bioavailability of fenofibrate.Keywords: fenofibrate

  12. A comparison of tool-repair methods using CO 2 laser surfacing and arc surfacing

    Science.gov (United States)

    Grum, J.; Slabe, J. M.

    2003-03-01

    The life of loaded machine elements and the vital parts of tools can be successfully extended by systematic maintenance and the timely repair of damaged surfaces. It has been proved that with the regular maintenance of tool parts the cost of the tool in the price of a finished product can be considerably reduced. It is a very economical practise to manufacture certain parts from low-cost, tough structural steel on which a layer of wear-resistant alloy has been surfaced. In such a case the volume fraction of the surfaced layer is usually much lower than 10% of the total volume of the tool or the machine element. In this paper, we report some of our latest results involving comparative studies of repair surfacing on maraging steel and the cladding of common structural steel with a Ni-Co-Mo alloy similar to the maraging steel using a laser process and submerged-arc surfacing. The results are based on micro-structural and micro-chemical analyses of the surfaced layer and are supported by analyses of the micro-hardness and the residual stresses, carried out on suitably adapted flat specimens.

  13. Topographic Maps Splicing Method based on ArcGIS%浅谈在ArcGIS中地形图的拼接方法

    Institute of Scientific and Technical Information of China (English)

    段晓飞; 邓显娥

    2013-01-01

    地形图在扫描过程中不可避免地会产生误差,这些误差使图像发生变形,为了使图像能满足实际应用,就必须对图像进行校正,拼接。通过Photoshop CS5的部分命令,初步校正扫描地形图,后期利用ArcGIS 10软件对初步校正的地形图进行配准校正,提高了图形拼接效果和位置精度。%Errors could be inevitable in the topographic map scanning process , and these errors may de-form the image , in order to meet the practical application of the image , the image must be corrected and splicing .Through commands of Photoshop CS 5 , topographic maps scanning could be adjusted;the latter using the ArcGIS 10 software , registration and correction of the preliminary topographic maps could be done, and graphics splicing effects and positional accuracy also could be improved .

  14. Class `E` protective headwear: electric arc exposure

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.

    1997-04-01

    A series of tests were conducted using electric arcs under laboratory conditions to determine what, if any, damages can be inflicted upon class `E` hard hats. Ten hard hats were subjected to different levels of arc exposure to see if the hat would ignite, melt, drip, stick to the head, etc. It was noted that there is no standard on hard hat exposure to an electric arc. It was recommended that the CSA committee revise the protective headwear standard to include a requirement for flame/arc resistance, including specification of pass/fail criteria. 1 tab., 3 figs.

  15. Comparative study of mechanical properties of 316L stainless steel between traditional production methods and selective laser melting

    Science.gov (United States)

    Lackey, Alton Dale

    Additive manufacturing, also known as 3D printing, is a technology which has recently seen expanding use, as well as expansion of the materials and methods able to be used. This thesis looks at the comparison of mechanical properties of 316L stainless steel manufactured by both traditional methods and selective laser melting found by tensile testing. The traditional method used here involved cold rolled 316L steel being machined to the desired part geometry. Selective laser melting used additive manufacturing to produce the parts from powdered 316L stainless steel, doing so in two different build orientations, flat and on edge with regards to the build plate. Solid test specimens, as well as specimens containing a circular stress concentration in the center of the parts, were manufactured and tensile tested. The tensile tests of the specimens were used to find the mechanical properties of the material; including yield strength, ultimate tensile strength (UTS), and Young's modulus of elasticity; where statistical analyses were performed to determine if the different manufacturing processes caused significant differences in the mechanical properties of the material. These analysis consisting of f-tests, to test for variance, and t-test, testing for significant difference of means. Through this study it was found that there were statistically significant differences existing between the mechanical properties of selective laser melting, and its orientations, and cold roll forming of production of parts. Even with a statistical difference, it was found that the results were reasonably close between flat oriented SLM parts and purchased parts. So it can be concluded that, with regards to strength, SLM methods produce parts similar to traditional production methods.

  16. Particles control in selective laser melting in-situ oxide dispersion strengthened method

    Science.gov (United States)

    Zhou, Xin; An, Zhibin; Shen, Zhijian; Liu, Wei; Yao, Chenguang

    2017-01-01

    Stainless steel selective laser melting (SLM) can be considered as a new possible approach for in-situ formation of oxide dispersion strengthened (ODS) steels because of the dispersion of amorphous oxide nano-particles due to the trace amounts of laser chamber oxygen and in-situ internal oxidation of reactive elements. In this paper it is demonstrated that the particle sizes and distributions can be adjusted by choosing different chamber oxygen level through controlling the quantity of initial reactive cores and the available reactive solutes of each core.

  17. Method for Solving the Gap Problem in Forestry Cartography with ArcGIS Software%基于ArcGIS软件的林业制图中面层缝隙处理方法

    Institute of Scientific and Technical Information of China (English)

    李建波

    2009-01-01

    The reasons for gap occurrence in forestry cartography using ArcGIS 9 were analyzed, the methods for checking and removing the gap in cartography were described. It was suggested that the software user should cultivate good habit, in the course of feature selection, using the tool of "selected by features" instead of "edit" could significantly decrease the occurrence of gap.%分析了基于ArcGIS 9软件的林业制图中出现面层缝隙的原因,对面层缝隙的检查和去除方法进行了论述,建议软件使用者养成良好的制图习惯,在选择要素时尽量不使用"编辑"工具,而是用"选自要素"工具则可极大地减少面层缝隙的产生.

  18. Rapid magmatic processes accompany arc-continent collision: the Western Bismarck arc, Papua New Guinea

    Science.gov (United States)

    Cunningham, Heather; Gill, Jim; Turner, Simon; Caulfield, John; Edwards, Louise; Day, Simon

    2012-11-01

    New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.

  19. Warm storage for arc magmas.

    Science.gov (United States)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  20. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    Science.gov (United States)

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-09-04

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017. Published by Elsevier Inc.

  1. 基于ArcGIS两种空间插值方法的比较%Comparison between Two Space Interpolation Methods Based on ArcGIS

    Institute of Scientific and Technical Information of China (English)

    邓晓斌

    2008-01-01

    阐述了IDW和SPLINE两种空间插值方法的数学含义,并指出了各自的特点,然后以某地区的GDP数值为实验数据,ArcGIS为平台,对给定GDP原始数据进行这两种空间插值分析,最后得出了这两种插值方法的适用特点、影响因素及它们之间的差异,为使用这两种插值方法的用户提供了一定的指导意义.

  2. Yunxian Walnut Cultivation Planning Method Based on ArcGIS%基于ArcGIS的云县核桃种植规划方法探讨

    Institute of Scientific and Technical Information of China (English)

    陈和彦

    2012-01-01

    It is necessary to consider the influence of soil, temperature , precipitation, elevation, slope, aspect and other site conditions on the growth, blossom, and resultant of trees for planting area planning. According to Yunnan walnut specific requirements of site conditions, combined with current situation of land utilization, followed the related law, based on ArcGIS software, this study fond out the suitable plan specific to the region by making classification evaluation, and plan map. Through area calculation, got suitable planting area of 4 556. 6hm , suitable cultivation area of 75 079. 65hm , planting area of 12 123. 46hm .%对某个树种适宜种植区域的规划要考虑到土壤、气温、降水量、海拔、坡度、坡向等立地条件对树木生长、开花、结果的影响.根据云南核桃对立地条件的特定要求,结合土地利用现状,遵循其中的关联规律,利用ArcGIS软件的叠加分析功能,查找出适宜规划的特定区域,做出分级评价,并制作出规划图.通过面积计算得到较适宜种植面积为4556.6hm2,适宜种植面积为75079.65hm2,可种植面积为12123.46hm2

  3. Zirconium Micro-Arc Oxidation as a Method for Producing Heat Insulation Elements in Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Application of coatings on the surface of materials as well as their composition and structure control in the near-surface layer enables us to use properties of base material and modified layers in the most rational and profitable way and save expensive and rare metals and alloys.The space telescope of T-170M will be the main tool of the international space observatory "Spektr-UF".It is being understood that the main mirror shade, which is in the outer space and has a considerable height will act as a radiator cooling a unit (cage of the main mirror. Therefore it is necessary to create heat insulation between the shade of the main mirror and the frame of the main mirror unit. From the thermal calculations a detail to provide heat insulation must possess thermal conductivity, at most, 2,5 and a conditional limit of fluidity for compression, at least, 125 MPas to ensure that the shade diaphragms position of the main mirror is stable with respect to the optical system of telescope.Considering that oxide of zirconium possesses one of the lowest thermal conductivities among oxides of metals, it is offered to use zirconium, as a material of base, and to put the MAO-covering (micro-arc oxide on its surface.As a result of studying the features of MAO-coverings on zirconium it is:1 found that the composite material consisting of zirconium and MAO-covering on it, has low thermal conductivity (less than 2 , and thus, because of small oxide layer thickness against the thickness of base material, possesses the mechanical properties which are slightly different from the pure zirconium ones;2 found that the composite material possesses the low gas release, allowing its use in the outer space conditions; the material processed in two electrolytes i.e. phosphate and acid ones has the lowest gas release;3 found that with growing thickness of MAO-covering its porosity decreases, thus the average pore diameter grows thereby leading to increasing thermal

  4. A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method

    Energy Technology Data Exchange (ETDEWEB)

    Peck, Jong Hyeon [Korea Institute of Industrial Technology (KITECH), Energy System Team, 35-3 Ipjang-myeon, Chonan 330-820 (Korea, Republic of); Kim, Jae-Jun [College of Architecture, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chaedong [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hong, Hiki [School of Mechanical and Industrial System Engineering, KyungHee University, Yongin 449-701 (Korea, Republic of)

    2006-11-15

    When the latent heat of a phase change material (PCM) with a lower melting point than ambient temperature was assessed according to the standard T-history method using a vertically oriented test tube, a temperature gradient occurred in the longitudinal direction of the tube due to natural convection. This led to a decrease in the accuracy of the latent heat of fusion measurement. In this study, the accuracy of the measurement with the original T-history method was improved without decreasing the test's simplicity and convenience by setting the test tube horizontally. The heat transfer to the vapor-layer of the tube under volume change during melting was assumed to be negligible and the results were calculated using the two inflection points of temperature as the start and end of latent heat period. Under these assumptions, the results agree closely with other reference data. And, the new method proposed in this study showed a remarkable reduction in data scattering. (author)

  5. Comparison of Three Control Methods in Penetration Control of Pulsed Gas Tungsten Arc Welding

    Institute of Scientific and Technical Information of China (English)

    陈文杰; 陈善本; 林涛

    2003-01-01

    An artificial neural network model for backside bead width was established and three control meth-ods PID, fuzzy and neuron were designed, simulated and tested. The test results of bead-on-plate weld ofGTAW indicate that the artificial neural network (ANN) modeling and learning control method have more advan-tages than the conventional method. They show that the ANN modeling and learning control method is an effectiveapproach to real time control of welding dynamics and ideal quality.

  6. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the first electrode, the arc jet control characteristics excels in the stronger arc current range than 5kA, while for the second electrode, they are effective in the weaker arc current range than 5kA. 6 refs., 19 figs., 1 tab.

  7. Study on Control Methods of Welding Porosity in Laser-arc Hybrid Welding for High Nitrogen Steels%高氮钢激光-电弧复合焊接气孔控制方法研究

    Institute of Scientific and Technical Information of China (English)

    王力锋; 刘凤德; 刘薇娜; 田淼磊

    2016-01-01

    In order to master the control methods of welding porosity on laser-arc hybrid welding for high nitrogen steel, the effect of weld porosity on arc energy and laser energy and the vibration frequency are studied. Causes of welding porosity are analyzed in terms of porosity rate, and its effect is investigated on stability of welding processes through waveforms of current and voltage and droplet transfer. There is certain relevance between fluid flow in the melt pool and formation of welding porosity, and the influence on welding porosity is analyzed in terms of fluid flow in the melt pool. The keyhole is generated when laser power reaches up to a certain extent and condition of keyhole will affect porosity rate. Influence of porosity rate on condition of keyhole is analyzed according to keyhole's stress situation. The results shows that porosity rate of welding seam increased first and then decreased with the increasing of arc energy or laser energy, and porosity rate of welding seam is reduced to the lowest for just 0.49% while arc energy is 4 800 J (I=200 A,U=24 V) and the porosity rate of welding seam is only 0.14% when laser power is 2.8 kW, but porosity rate of welding seam is reduced greatly after work pieces are vibrated during hybrid welding. Porosity rate of welding seam decreased first and then increased with the increasing of vibration frequency. The number of welding porosity is inhibited efficiently by suitable arc energy or laser power, and inhibitory effect of welding porosity is best while vibration frequency amount to 35 Hz.%为了掌握高氮钢复合焊接气孔控制的有效方法,研究电弧能量、激光能量和振动频率对焊缝气孔的影响。从气孔率方面分析焊缝气孔的产生原因,并从电流和电压波形及熔滴过渡方面分析其对焊接过程稳定性的影响。熔池流动与焊缝气孔具有一定的关联性,并从熔池流动状态方面分析其对气孔的影响。激光匙孔的形成需要一

  8. The Method of Converting the Arc Into Broken Lines and its Implementation in AutoCAD%AutoCAD中圆弧折线化方法与实现

    Institute of Scientific and Technical Information of China (English)

    刘虎

    2016-01-01

    As an important topographic map mapping software,AutoCAD contains a lot of arc graphic elements in the graph. Due to the arc only include endpoint or the coordinates of the center of circle,and the arc itself do not has accu-rate coordinate information which leading to some error when checking data. But AutoCAD software itself does not provide the function of change arc into broken lines. In this paper,we try to propose a new method for dividing the arc into broken lines. In the proposed method,equiangular segmentation algorithm is used and VBA language is adopted for algorithm de-veloping;it can maintains the original feature and the accuracy of the figure,and convert the arc of the circle and the arc of the multi-lines into the multi section lines of the pure line,respectively,thereby the arc part is removed. The proposed method can meet the special needs of basic geographic information database construction.%AutoCAD作为一种重要的地形图制图软件,图中存在大量的圆弧图元。由于圆弧只有端点或圆心坐标,弧线本身缺乏精确的坐标信息,因此导致一些数据检查时出错。 AutoCAD软件本身不提供圆弧转折线的功能。本文尝试采用等角切分方法,利用VBA二次开发技术,在保持图形原有特征及精度要求的前提下,将圆弧、圆及多段线中的圆弧分别转换为纯折线的多段线,从而去除圆弧部分。满足基础地理信息数据库建库等特殊的数据需求。

  9. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dandeneau, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performance and properties.

  10. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  11. 钛及钛合金熔炼技术发展现状∗%Development of Melting Technology for Titanium and Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    雷文光; 赵永庆; 韩栋; 毛小南

    2016-01-01

    At present,the major methods to produce titanium and titanium alloy ingot are the vacuum arc remelting and the cold hearth melting.The principle,characteristic and current development of vacuum arc remelting, electron beam cold hearth melting and plasma arc cold hearth melting technologies are reviewed in detail.%目前生产钛及钛合金铸锭最主要的方法是真空自耗电弧熔炼以及冷床炉熔炼方法。详细介绍了真空自耗电弧熔炼、电子束冷床炉熔炼以及等离子束冷床炉熔炼技术的原理、特点和发展现状。

  12. Accurate determination of the Gibbs energy of Cu-Zr melts using the thermodynamic integration method in Monte Carlo simulations

    Science.gov (United States)

    Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.

    2011-08-01

    The design of multicomponent alloys used in different applications based on specific thermo-physical properties determined experimentally or predicted from theoretical calculations is of major importance in many engineering applications. A procedure based on Monte Carlo simulations (MCS) and the thermodynamic integration (TI) method to improve the quality of the predicted thermodynamic properties calculated from classical thermodynamic calculations is presented in this study. The Gibbs energy function of the liquid phase of the Cu-Zr system at 1800 K has been determined based on this approach. The internal structure of Cu-Zr melts and amorphous alloys at different temperatures, as well as other physical properties were also obtained from MCS in which the phase trajectory was modeled by the modified embedded atom model formalism. A rigorous comparison between available experimental data and simulated thermo-physical properties obtained from our MCS is presented in this work. The modified quasichemical model in the pair approximation was parameterized using the internal structure data obtained from our MCS and the precise Gibbs energy function calculated at 1800 K from the TI method. The predicted activity of copper in Cu-Zr melts at 1499 K obtained from our thermodynamic optimization was corroborated by experimental data found in the literature. The validity of the amplitude of the entropy of mixing obtained from the in silico procedure presented in this work was analyzed based on the thermodynamic description of hard sphere mixtures.

  13. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  14. Equidensitometric Methods In An Evaluation Process Of A Film Record Of A Switching Arc

    Science.gov (United States)

    Svejda, Bohuslav; Gross, Boleslav

    1983-03-01

    A high speed cinematography is also one of useful and fruitful methods of optical plasma diagnostics. Value levels of informations obtained from a film record can be very different; this fact depends very much on a used evaluation process. An equidensitometrical investigation is a suitable method for an increase of the information capacity and it presents a possibility how to obtain more valuable informations. Two ways directing to the acquirement of equidensitometric maps were used in our work: a wet photographic process using the Sabattier effect and an electronic device constructed for the special purpose. Some results obtained by these both evaluation methods are compared and discussed.

  15. Phase space modulation method for EPID-based Monte Carlo dosimetry of IMRT and RapidArc plans

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Avery; Townson, Reid; Bush, Karl; Zavgorodni, Sergei, E-mail: szavgorodni@bccancer.bc.c

    2010-11-01

    Quality assurance for IMRT and VMAT require 3D evaluation of the dose distributions from the treatment planning system as compared to the distributions reconstructed from signals acquired during the plan delivery. This study presents the results of the dose reconstruction based on a novel method of Monte Carlo (MC) phase space modulation. Typically, in MC dose calculations the linear accelerator (linac) is modelled for each field in the plan and a phase space file (PSF) containing all relevant particle information is written for each field. Particles from the PSFs are then used in the dose calculation. This study investigates a method of omitting the modelling of the linac in cases where the treatment has been measured by an electronic portal imaging device. In this method each portal image is deconvolved using an empirically fit scatter kernel to obtain the primary photon fluence. The Phase Space Modulation (PSM) method consists of simulating the linac just once to create a large PSF for an open field and then modulating it using the delivered primary particle fluence. Reconstructed dose distributions in phantoms were produced using MC and the modulated PSFs. The kernel derived for this method accurately reproduced the dose distributions for 3x3, 10x10, and 15x15 cm{sup 2} field sizes (mean relative dose-difference along the beam central axis is under 1%). The method has been applied to IMRT pre-treatment verification of 10 patients (including one RapidArc{sup TM} case), mean dose in the structures of interest agreed with that calculated by MC directly within 1%, and 95% of the voxels passed 2%/2mm criteria.

  16. Dissolution Rate of Steel Sheathing Through Plunging and Melt-Through Methods

    Science.gov (United States)

    Rivera-Martínez, Elis A.; Beers, Mark; Scheller, Eric; Yu, Edward

    2017-10-01

    In an effort to determine the dissolution rate of the steel sheathing used in the production of cored wire, several experiments were conducted in the ASK Chemicals Metals Application Lab (MAL), in Dublin, Ohio. It is essential to understand that, when exposed to molten metal at a certain temperature/time, the low-carbon steel will dissolve, thereby exposing the contained alloy to the molten metal. This article presents two separate experiments that will provide a better understanding of the dissolution rates of the steel sheathing used in the 9-mm cored wire. The first experiment was an immersion test, where the finished product (cored wire containing a ferroalloy) was submerged in molten metal for a predetermined amount of time. The length of the cored wire was measured before and after the immersion to gauge the effect of time and temperature on the dissolution characteristics. The second experiment was conducted to examine the time and temperature needed to melt through a flat piece of metal sheathing. For this experiment, a flat piece of metal sheathing was placed over the down sprue of a sand-based pouring box. The basin was filled with molten metal at a predetermined temperature, and a high-speed camera and high-temperature thermocouples were used to record the temperature and the time needed to dissolve the metal sheathing.

  17. Dissolution Rate of Steel Sheathing Through Plunging and Melt-Through Methods

    Science.gov (United States)

    Rivera-Martínez, Elis A.; Beers, Mark; Scheller, Eric; Yu, Edward

    2017-08-01

    In an effort to determine the dissolution rate of the steel sheathing used in the production of cored wire, several experiments were conducted in the ASK Chemicals Metals Application Lab (MAL), in Dublin, Ohio. It is essential to understand that, when exposed to molten metal at a certain temperature/time, the low-carbon steel will dissolve, thereby exposing the contained alloy to the molten metal. This article presents two separate experiments that will provide a better understanding of the dissolution rates of the steel sheathing used in the 9-mm cored wire. The first experiment was an immersion test, where the finished product (cored wire containing a ferroalloy) was submerged in molten metal for a predetermined amount of time. The length of the cored wire was measured before and after the immersion to gauge the effect of time and temperature on the dissolution characteristics. The second experiment was conducted to examine the time and temperature needed to melt through a flat piece of metal sheathing. For this experiment, a flat piece of metal sheathing was placed over the down sprue of a sand-based pouring box. The basin was filled with molten metal at a predetermined temperature, and a high-speed camera and high-temperature thermocouples were used to record the temperature and the time needed to dissolve the metal sheathing.

  18. Hydrogen storage alloys rapidly solidified by the melt-spinning method and their characteristics as metal hydride electrodes. [LaNiAl; LaNiCoAl

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, R. (Mitsubishi Kasei Corp., Research Center, Yokohama (Japan)); Miyamura, H. (Government Industrial Research Inst., Osaka (Japan)); Sakai, T. (Government Industrial Research Inst., Osaka (Japan)); Kuriyama, N. (Government Industrial Research Inst., Osaka (Japan)); Ishikawa, H. (Government Industrial Research Inst., Osaka (Japan)); Uehara, I. (Government Industrial Research Inst., Osaka (Japan))

    1993-02-23

    Rapidly solidified LaNi[sub 5]-based hydrogen storage alloys were prepared by a melt-spinning method. The prepared melt-spun alloy ribbon had very fine crystal grain of below 10 [mu]m. The hydrogen absorption behavior and electrode properties of the alloys were greatly improved. Heat treatment at 400 C which did not cause enlargement of the grain further improved these properties. (orig.)

  19. USE OF BATTERY CARBON AS ELECTRODES IN ARC DISCHARGE METHOD FOR FABRICATION OF CARBON-MODIFIED TIO2

    Directory of Open Access Journals (Sweden)

    Isya Fitria Andhika

    2016-09-01

    Full Text Available Fabrication with carbon-modified TiO2 by arc discharge method in liquid medium has been studied. This research was performed in two steps including fabrication and characterization. This fabrication was done by arcdischarge method with graphite electrodes from dry cell batteries and liquid medium suspension of TiO2 in ethanol 30, 50 and 70 %. A strong current was applied to electrode as 10 -50 A (20-40 V. Nanocomposites formed on the liquid medium surface were collected and characterized using X-ray diffraction (XRD,scanning electron microscope (SEM dan energy dispersive spectroscopy (EDS to determine crystallinity, surface morphology and the constituent elements, respectively. XRD data shows that the most effective fabrication TiO2/Karbon by liquid medium in ethanol 50 % indicated from the formation of a new peak with high intensity of TiC on 2Ɵ= 36.02 °. SEM data shows that the morphology of each aggregated TiO2/Karbon compared to the morphology of TiO2. In addition, EDS data shows the presence of the element carbon, titanium and oxygen in the same area indicating that the successful formation of composite material between TiO2 dan carbon.

  20. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics

    Directory of Open Access Journals (Sweden)

    Ritu Sharma

    2015-12-01

    Full Text Available In this paper, multi-walled carbon nanotubes are synthesized by arc-discharge and chemical vapor decomposition methods. Multi-walled carbon nanotubes are synthesized on thin film of nickel sputtered on silicon substrate by thermal chemical vapor deposition of acetylene at a temperature of 750°C. The flow of current in arc-discharge method varies in the range 50–200 A. Further arc-synthesized carbon nanotubes are characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and the results are compared with nanotubes grown by chemical vapor deposition method. XRD result shows a characteristic peak (0 0 2 at 26.54° corresponding to the presence of carbon nanotubes. SEM and TEM results give morphology of as-synthesized multi-walled nanotubes. TEM results indicate synthesis of well-graphitized carbon nanotubes by arc-discharge method. Dispersion of arc-synthesized nanotubes in SDS solution under the effect of different sonication times is studied. Dispersion of nanotubes in SDS solution is analyzed using UV–vis–NIR spectroscopy and it shows an absorption peak at 260 nm. It was found that with the increase in sonication time, the absorption peak in UV–vis–NIR spectra will increase and optimum sonication time was 2 hours. Functionalization of synthesized carbon nanotubes by H2SO4 and HNO3 acids has been studied and analysis of functionalized groups has been done using FT-IR spectroscopy and compared and the results are reported in this paper. FT-IR spectroscopy verifies the presence of carboxylic groups attached to carbon nanotubes. These functional groups may change properties of carbon nanotubes and may be used in vast applications of carbon nanotubes.

  1. Preparation of AZ91D magnesium alloy semi-solid billet by new strain induced melt activated method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ju-fu; LUO Shou-jing; ZOU Jing-xiang

    2006-01-01

    New strain induced melt activated (new SIMA) method for preparing AZ91D magnesium alloy semi-solid billet is introduced by applying equal channel angular extrusion into strain induced step in SIMA method, by which semi-solid billet with fine spheroidal grains and average grain size of 18 μm can be prepared. Furthermore, average grain size of semi-solid billet is reduced with increasing extrusion pass of AZ91D magnesium alloy obtained in ECAE process. By using semi-solid billet prepared by new SIMA, thixoforged magazine plates component with high mechanical properties such as yield strength of 201.4 MPa, ultimate tensile strength of 321.8 MPa and elongation of 15.3%, can be obtained.

  2. Fabrication of Fe-6.5wt%Si Ribbons by Melt Spinning Method on Large Scale

    Directory of Open Access Journals (Sweden)

    Y. F. Liang

    2015-01-01

    Full Text Available Melt spinning method has been widely applied for fabrication of Fe-based amorphous/nanocrystalline ribbons in industry. Compared with Fe-based amorphous/nanocrystalline alloys, Fe-6.5wt%Si high silicon steel is of low cost and has comparable excellent soft magnetic properties. Due to higher melting point and absence of supercooled liquid region, fabrication of Fe-6.5wt%Si ribbons is very hard and is only on lab scale. In this paper, we report that large scale fabrication of Fe-6.5wt%Si ribbons was successful and microstructures, ordered structures, and mechanical and soft magnetic properties of the ribbons were investigated. Due to rapid solidification rate, the ribbons were of ultrafine grains, and low degree of order and exhibited some extent of bending and tensile ductility. After heat treatment, excellent soft magnetic properties were obtained. Due to near-zero magnetostriction, the ribbons are promising to be used in electric devices with high frequencies where low noises are required.

  3. Influence of gravitational and vibrational convection on the heat- and mass transfer in the melt during crystal growing by Bridgman and floating zone methods

    Science.gov (United States)

    Fedorov, Oleg

    2016-07-01

    Space materials science is one of the priorities of different national and international space programs. The physical processes of heat and mass transfer in microgravity (including effect of g-jitter) is far from complete clarity, especially for important practical technology for producing crystals from the melt. The idea of the impact on crystallizing melt by low frequency vibration includes not only the possibility to suppress unwanted microaccelerations, but also to actively influence the structure of the crystallization front. This approach is one of the most effective ways to influence the quality of materials produced in flight conditions. The subject of this work is the effect of vibrations on the thermal and hydrodynamic processes during crystal growth using Bridgman and floating zone techniques, which have the greatest prospect of practical application in space. In the present approach we consider the gravitational convection, Marangoni convection, as well as the effect of vibration on the melt for some special cases. The results of simulation were compared with some experimental data obtained by the authors using a transparent model substance - succinonitrile (Bridgman method), and silicon (floating zone method). Substances used, process parameters and characteristics of the experimental units correspond the equipment developed for onboard research and serve as a basis for selecting optimum conditions vibration exposure as a factor affecting the solidification pattern. The direction of imposing vibrations coincides with the axis of the crystal, the frequency is presented by the harmonic law, and the force of gravity was varied by changing its absolute value. Mathematical model considered axisymmetric approximation of joint convective-conductive energy transfer in the system crystal - melt. Upon application of low-frequency oscillations of small amplitude along the axis of growing it was found the suppression of the secondary vortex flows near the

  4. Influence of the ARC patterning method and annealing on the contact adhesion of Ni/Cu-plated solar cells

    Science.gov (United States)

    Baik, Jong Wook; Lee, Sang Hee; Lee, Doo Won; Lee, Soo Hong

    2016-05-01

    Ni/Cu two-step plating is a promising metallization technique because low contact resistance and improved contact adhesion can be achieved after the Ni annealing process. Also, narrow fingers, which are required for high-efficiency solar cells, can be formed by plating. However, the reliability of contact adhesion is still considered one obstacle to industrializing solar cells with plated metal contacts. In this experiment, the influence of ARC opening methods on plated contact adhesion was investigated because the roughnesses of the Si surfaces produced by using pico-second laser ablation and photolithography may be different. Also, the annealing process was conducted before and after plating Cu/Ag metal stacks. The sequence of the annealing can be significant for efficient production because plating is a wet process while annealing is a dry process. The contact adhesion was measured by using a peel-off test. The test was conducted on a 1.5-mm-wide by a 60 ~ 70- mm-long bus bar area. A 3.2-N/mm adhesion force was recorded as a highest average value along the bus bar.

  5. Experimental Study on the Electrochemical Anti-Corrosion Properties of Steel Structures Applying the Arc Thermal Metal Spraying Method

    Directory of Open Access Journals (Sweden)

    Hong-Bok Choe

    2014-12-01

    Full Text Available The arc thermal metal spraying method (ATMSM provides proven long-term protective coating systems using zinc, aluminum and their alloys for steel work in a marine environment. This paper focuses on studying experimentally the anti-corrosion criteria of ATMSM on steel specimens. The effects of the types of spraying metal and the presence or absence of sealing treatment from the thermal spraying of film on the anti-corrosion performance of TMSM were quantitatively evaluated by electrochemical techniques. The results showed that ATMSM represented a sufficient corrosion resistance with the driving force based on the potential difference of more than approximately 0.60 V between the thermal spraying layer and the base substrate steel. Furthermore, it was found that the sealing treatment of specimens had suppressed the dissolution of metals, increased the corrosion potential, decreased the corrosion current density and increased the polarization resistance. Metal alloy Al–Mg (95%:5% by mass with epoxy sealing coating led to the most successful anti-corrosion performance in these electrochemical experiments.

  6. The composition of the modern juvenile arc crust and the nature of crustal delaminates in arcs (Invited)

    Science.gov (United States)

    Jagoutz, O. E.; Schmidt, M. W.

    2010-12-01

    The intraoceanic Kohistan arc, northern Pakistan, exposes a complete crustal section encompassing infracrustal cumulates formed at ≥ 55 km depth, a broadly basaltic/gabbroic lower crust, a 26 km thick calc-alkaline batholith, and 4 km of a volcanoclastic/sedimentary sequence. The bulk composition of the Kohistan arc crust has been approximated by estimating the relative volumes of exposed rocks through detailed field observations in combination with geobarometric constrains of the units' thicknesses and satellite images for lateral extension. We separated the arc in 3 major lower, mid-, and mid- to upper crustal units containing 14 subunits which compositions were derived from averaging 562 whole rock analyses. The details of the resulting bulk composition depend slightly on the method of integration, but all models yield andesitic bulk supra MOHO compositions. The Kohistan bulk arc composition results very similar to global continental crust estimates indicating that modern arc activity is the dominant process that formed the (preserved) continental crust. Fitting the bulk Kohistan arc crust and the ultramafic cumulates exposed at base of the arc (dunites, wehrlites, websterites, cpx-bearing garnetites and hornblendites, and garnet gabbros) to primitive arc melts with calc-alkaline/tholeiitic, alkaline, and boninitic affinity from various island arcs demonstrates that delamination of wehrlites + garnet hornblendites ± garnet gabbros perfectly explains the evolution from a tholeiitic/calc-alkaline primitive high-Mg basalt to the continental crust. Mass balance demonstrates that volumes of delaminate similar to the continental crust are required. Compared to depleted mantle, the delaminate is enriched in K, Cs, Ba and Pb and depleted in Zr and Th. It has further a subchondritic Nb/Ta and the high Pb and low U concentrations lead to a very unradiogenic Pb isotopy that may compensate for the depleted mantle Our results document that infra arc processes even in a

  7. Comparison of various remote sensing classification methods for landslide detection using ArcGIS

    Science.gov (United States)

    Escape, Carmille Marie; Kristia Alemania, Maneka; Luzon, Paul Kenneth; Felix, Raquel; Salvosa, Sheena; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    A comprehensive landslide inventory is vital in landslide hazard analysis. It provides statistical and spatial distributions at a given time which can be used as parameter for susceptibility and classification modelling. It is usually derived from historical data, field surveys, and manual interpretation of aerial and satellite images. However, historical data is not always available and complete, intensive field surveys are impractical for large-scale studies, and manual analysis of aerial and spectral images can be tedious and time-consuming. With the advancement of spectral remote sensing systems, different automated procedures for image classification have been developed. To test the effectiveness of various automated image classification methods, we compared several procedures utilizing spectral images taken after the Mw 7.2 Bohol (Philippines) earthquake on October 15, 2013 instead of a comprehensive landslide inventory. These procedures included: 1.) an unsupervised ISODATA clustering classification, 2.) a supervised maximum likelihood classification using raw spectral bands, 3.) another supervised classification using the Normalized Difference Vegetation Index (NDVI), and 4.) a manual reclassification of NDVI values using specific ranges. We used the fourth method to highlight the difference between using its unbiased mathematical data with supervised classification training sites that has an added human factor. We then compared each image classification with the manual inventory done to determine its accuracy. The unsupervised classification had the lowest accuracy and reliability in distinguishing the landslides. The supervised classification using raw spectral bands, though it showed clear regions of landslides, only distinguished 75% of the landslides manually inventoried. Both methods that involved NDVI were more useful for landslide identification but had different advantages. The supervised classification with NDVI was more useful in pinpointing

  8. SURFACE CHARACTER OF IRON OXIDE/CARBON NANOPARTICLES SYNTHESIZED BY SUBMERGED ARC DISCHARGE METHOD IN ETHANOL/UREA MEDIUM

    Directory of Open Access Journals (Sweden)

    Teguh Endah Saraswati

    2017-08-01

    Full Text Available Synthesis of iron oxide nanoparticles modified with carbon has been successfully performed by submerged arc-discharge method in ethanol/urea medium. Iron oxide used in the fabrication process was prepared by iron electrolysis in an electrolyte solution of NaCl. Fabrication of nanoparticles in this method uses two graphite electrodes. One of them was made in a pointed shape and the other graphite electrodes hollowed out and filled with a mixture of iron oxide, graphite and glue silica (as binder with a ratio of 1:3:1 (w/w/w. The liquid medium used in this method is a mixture solution of ethanol 50% and urea (0%, 10%, 25% and 50% with a volume ratio of 1:1 (v/v. The crystalline of iron oxide was characterized using X-Ray Diffraction (XRD, compared to JCPDS No. 89-0597, No. 89-0691 and No. 39-1346. Variations in the urea concentration in the liquid medium provided the changes of the surface character of the synthesized nanoparticles. The changes of surface character were analyzed by the Fourier Transform Infra Red (FTIR spectra and nanoparticle dispersion in water and ethanol. FTIR spectra showed the absorption of Fe-O, CH, CN, C = O, OH and NH at 460-555 cm-1, 650-1000 cm-1, 1000-1350 cm-1, 1640-1680 cm-1, 2400-3400 cm-1, 3200-3400 cm-1, 3100-3500 cm-1, respectively. The best hydrophilic surface character achieved when the nanoparticle was synthesized in medium of ethanol 50% with the addition of urea50%. The existence of a functional group attached on the surface of nanoparticles synthesized in ethanol/urea makes these nanoparticles had better dispersion than nanoparticles synthesized in ethanol medium without urea addition.

  9. The criteria weight determination of factors impacting the melt flow index of degradable plastics using Lambda-Max method

    Science.gov (United States)

    Dom, Rosma Mohd; Saadon, Nurul Adzlyana; Mohamad, Daud

    2013-09-01

    Three common methods of determining criteria weights using the Analytic Hierarchy Process (AHP) are extent analysis, logarithmic least square method (LLSM) and Lambda-Max. Lambda-Max criteria weights determination method uses pair wise comparison of criteria considered. Studies have shown that Lambda-Max is a preferred criteria weight determination method since it involves lesser computation with consistent results of precise criteria weights generated. In this paper the criteria weights of four factors impacting the Melt Flow Index of degradable plastics are calculated using Lambda-Max method. The input factors (criteria) are the percentages by mass of polyethylene, oil palm biomass, palm olein and starch used in the formulation of degradable plastics. The criteria weights are calculated using Lambda-Max based on input given by four experts. The finding indicates the feasibility of using Lambda-Max method in criteria weight determination for determining the impact of four factors in the formulation of degradable plastics as reflected by the consistency control index value calculated.

  10. Uncertainty Analysis of Melting and Resolidification of Gold Film Irradiated by Nano- to Femtosecond Lasers Using Stochastic Method

    CERN Document Server

    Afrin, Nazia; Chen, J K

    2015-01-01

    A sample-based stochastic model is presented to investigate the effects of uncertainties of various input parameters, including laser fluence, laser pulse duration, thermal conductivity constants for electron, and electron-lattice coupling factor, on solid-liquid phase change of gold film under nano- to femtosecond laser irradiation. Rapid melting and resolidification of a free standing gold film subject to nano- to femtosecond laser are simulated using a two-temperature model incorporated with the interfacial tracking method. The interfacial velocity and temperature are obtained by solving the energy equation in terms of volumetric enthalpy for control volume. The convergence of variance (COV) is used to characterize the variability of the input parameters, and the interquartile range (IQR) is used to calculate the uncertainty of the output parameters. The IQR analysis shows that the laser fluence and the electron-lattice coupling factor have the strongest influences on the interfacial location, velocity, an...

  11. Growth and characterization of Cu2ZnSn(SxSe1-x)4 alloys grown by the melting method

    Science.gov (United States)

    Nagaoka, Akira; Yoshino, Kenji; Taniguchi, Hiroki; Taniyama, Tomoyasu; Kakimoto, Koichi; Miyake, Hideto

    2014-01-01

    I2-II-IV-VI4 quaternary Cu2ZnSn(SxSe1-x)4 (CZTSSe) alloys were successfully grown by the melting growth method. The powder X-ray diffraction (XRD) pattern of the CZTSSe alloys showed preferred orientations of (112), (220) and (312) planes, confirming the Kesterite structure. In Raman spectra, the A1 mode peaks expected for CZTS and CZTSe were observed in all samples, and no secondary phases were observed. The CZTSSe alloys in this study were slightly Cu-poor, Zn-rich and VI-rich, similar to compositions of polycrystalline thin-film materials that have achieved high photovoltaic conversion efficiencies. Single phase and homogeneous CZTSSe alloys were obtained.

  12. An unstructured finite-volume method to analyze the impact of shape on natural convection and melting inside cavities

    CERN Document Server

    Omari, Kamal El; Guer, Yves Le

    2010-01-01

    The present paper numerically analyzes a passive cooling system using cavities with different geometries filled with thermal conductivity-enhanced phase change material (PCM). A numerical code is developed using an unstructured finite-volume method and an enthalpy-porosity technique to solve for natural convection coupled to a solid-liquid phase change. Five geometries containing the same volume of PCM are compared while cooling the same surface. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Other indicators of cooling efficiency are monitored, including the maximum temperature reached at the cooled surface. The computational results show the high impact of varying geometry: a maximum temperature difference as high as 40 degrees Celsius is observed between two of the cavities. The best efficiency is obtained for a cavity shifted vertically relative to the cooled surface. Other findings and recommendations are made for the design of PCM-filled cavities.

  13. Intelligent Cycled Current Ice Melting Method and Its Critical Ice-Melting Current Study%智能循环电流融冰方法及其临界融冰电流研究

    Institute of Scientific and Technical Information of China (English)

    舒立春; 罗保松; 蒋兴良; 胡琴; 李特; 兰强

    2012-01-01

    In this paper,intelligent cycled current ice melting method which groups the bundle conductor sub-conductors and allows the total transmission line load current to flow through each sub-conductor group to achieve the ice melting of the transmission line is proposed.Then based on the analysis of heat balance of the ice and conductor surface under critical ice melting condition in the glaze icing process,a method to calculate the critical current of intelligent cycled current ice melting method is established.The model is tested by experiment in artificial climate chamber.Finite element simulation model is also created.The results of them are basically consistent with each other.Then the factors affecting the critical ice-melting current are analyzed,and the critical ice-melting current under weather conditions of serious icing disaster in recent years is calculated and compared with the current corresponding to economic current density.The results show that: under the same conditions,the critical icing melting current for intelligent cycled current ice melting method is lower than the critical ice-melting current for DC Short-circuit method.Critical icing melting current is related to ambient temperature,wind speed and ice thickness.Under the same environmental parameters,the effect of ice thickness on critical icing melting current is not obvious,under the same ice thickness,critical icing melting current shows gradually saturated increasing trends with lowering ambient temperature or increasing wind speed.The current corresponding to economic current density is higher than the critical ice-melting current under weather conditions of serious icing disaster and retains sufficient margin.Therefore,intelligent cycled current in the view of choosing ice-melting current is feasible.%提出了对分裂导线子导线进行分组并将输电线路总负荷电流循环通流至各子导线组以实现输电线路融冰的智能循环电流融冰方法。通过对雨凇覆

  14. Timing of maturation of a Neoproterozoic oceanic arc during Pan-African Orogeny: the Asmlil complex (Anti-Atlas, South Morocco)

    Science.gov (United States)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Watlet, Arnaud; Vandycke, Sara

    2016-04-01

    Many intra-oceanic paleo-arcs are exposed in the Pan-African belt surrounding the West African Craton. In the Moroccan Anti-Atlas, remnants of Intra-Oceanic Subduction Zone (IOSZ) are preserved in few erosional windows moulded along the Anti-Atlas Major fault. These complexes highlight a Neoproterozoic paleo-suture made of 760 My back-arc ophiolites thrusted to the south onto a dismembered band of oceanic arc relics. The Asmlil arc complex, located in the southern part of the Bou Azzer inlier, is made of (i) 755 to 745 My- intermediate banded gneiss interpreted as metavolcanic products of a juvenile oceanic arc. This latter has been intruded by (ii) medium-grained hornblende-gabbro and dioritic magmas, in turn intruded by (iii) medium- to coarse grained hornblenditic-granodioritic decametric intrusions under sub-magmatic HT conditions. Hornblende-gabbros are made of garnet + amphibole/cpx relics + epidote + rutile paragenesis. Calculated pseudosections yielded P ~ 11-12 kbar for T ranging between 600 and 720°C for garnet growth. Measured Zr-in-rutile thermometer gave slightly higher temperature ranging between 710-790°C. On the field, garnet-rich leucocratic veinlets suggest that moderate partial melting of the mafic rock or localized dehydration reactions took place under garnet-granulite conditions (>800°C for hydrated chemical system). New geochronological data on garnet-bearing leucogabbros constrain their emplacement at 700 ±7 My (U-Pb zircon with low Th/U age (age of 654 ±7 My (U-Pb method on rutile). Geochemical data of each mafic and ultramafic facies (hornblende gabbro, garnet-bearing facies and hornblendite) show typical arc signature (marked by e.g. Nb-Ta anomaly, (La/Sm)N: 0.8-1.6 ; (Nb/La) < 0.46 ; high Nb/Ba ratio ; 0.4 < K2O < 2.1 wt%). Intrusive granodioritic magmas show depleted HREE trend similar to granitoids in the Kohistan paleo-arc. Melting modeling suggests they are produced by partial melting of a REE-depleted gabbronorite with cpx

  15. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  16. In-Core-Instrumentation Methods for 3-Dimensional Distribution Information of Reactor Core Temperatures and Melt-down

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yeong Cheol [KHNP, Daejeon (Korea, Republic of); Eun, Myoung; Kim, Sung Jun [Woojin Inc., Hwaseong (Korea, Republic of)

    2014-08-15

    temperature profile of the core rather than guesses and assumptions. Furthermore, this goal needs to be achieved economically and with minimal changes to current design of reactor and its instrumentation that has been proven and well established through many years of operation. In this paper, methods for a new ICI system to provide three-dimensional view of the reactor core temperatures and melt-down are introduced.

  17. Kyropoulos method for growth of nonlinear optical organic crystal ABP (4-aminobenzophenone) from the melt

    Science.gov (United States)

    Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.

    1993-03-01

    The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.

  18. Rotating Drive for Electrical-Arc Machining

    Science.gov (United States)

    Fransen, C. D.

    1986-01-01

    Rotating drive improves quality of holes made by electrical-arc machining. Mechanism (Uni-tek, rotary head, or equivalent) attached to electrical-arc system. Drive rotates electrode as though it were mechanical drill, while an arc disintegrates metal in workpiece, thereby creating hole. Rotating electrode method often used in electric-discharge machining. NASA innovation is application of technique to electrical-arc machining.

  19. FORMATION OF THE INITIAL DISTRIBUTION OF PLASMA COMPONENTS ON THE PHASE PLANE OF LARGE PARTICLES METHOD IN ELECTRIC ARC SYNTHESIS CNS

    Directory of Open Access Journals (Sweden)

    G. V. Abramov

    2014-01-01

    Full Text Available The article deals with the modeling of charged particles in a multicomponent plasma of electric arc discharge with binary collisions in the synthesis of carbon nanostructures (CNS. One of the common methods of obtaining the quality of fullerenes and nanotubes is arc synthesis under inert gas (helium. The determination of the necessary conditions and the mechanism of formation of carbon clusters in the plasma forming set CNS will more effectively and efficiently manage this process. Feature of the problem is that in a plasma arc discharge is a large number of particle interactions and on the cathode surface. Due to the high temperatures and high energy concentration in plasma detailed experimental investigation difficult to carry out. With the aim of avoiding difficult and costly physical experiments developed numerical methods for the analysis of plasma processes. In this article to solve a system of equations of Maxwell - Boltzmann basis for the authors had taken the method of large particles, which reduces the amount of computation and reduce the demands on computing resources. The authors cites the general design scheme of the large particles, and the algorithm of particle distribution of a multicomponent plasma in the phase plane at the initial time. In conclusion, the author argues that the results in the future will define the zone satisfies the energy conditions, the probability of formation of a plasma cluster groups of carbon involved in the synthesis of the CNS.

  20. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  1. Magnification Bias in Gravitational Arc Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Caminha, G. B. [Rio de Janeiro, CBPF; Estrada, J. [Fermilab; Makler, M. [Rio de Janeiro, CBPF

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  2. A novel high-resolution melting analysis-based method for Yersinia enterocolitica genotyping.

    Science.gov (United States)

    Souza, Roberto A; Falcão, Juliana P

    2014-11-01

    Pathogenic Yersinia enterocolitica strains are associated with biotypes 1B, 2-5, while environmental strains with biotype 1A. In this work a method for Y. enterocolitica genotyping based on HRMA to determine SNPs was developed and the genetic diversity of 50 strains was determined. The strains were clustered into three groups consistent with the pathogenic profile of each biotype. The results provided a better understanding of the Y. enterocolitica genetic variability.

  3. 基于 ArcGIS 的场地地震稳定性分析方法%Analysis Method of Site Seismic Stability Based on ArcGIS

    Institute of Scientific and Technical Information of China (English)

    李程程; 袁晓铭

    2014-01-01

    场地地震稳定性一直是岩土工程和工程抗震领域非常关注的问题之一,对防灾减灾意义重大。本文提出一套基于 ArcGIS 评价场地地震稳定性的技术方法,即将 ArcGIS 与层次分析法相结合,分析处理主要影响场地地震稳定性的因素,最终得出场地地震稳定性区划图。该方法中 Arc-GIS 可将众因素分散的基础数据处理成系统的数字化与可视化的属性数据库和空间数据库,并可在此基础上进行数据运算和等级自动划分;而层次分析法是数据运算的基础,该方法分别对各个因素内部不同区域的特性和各要素之间对场地地震稳定性影响的权重进行定量分析,以便在 ArcGIS中进行叠加运算。以唐山地区为例,对上述方法进行了专题论证,得出该地区的场地地震稳定性的等级区划图,划分的区域与地震灾害专家对唐山大地震发生三天后拍摄的航拍片的解译进行对比,结果基本吻合。这验证了本文所用技术方法在分析场地地震稳定性方面的适用性,为我国的防灾减灾计划和国土资源的规划利用提供依据。%China is a country with active earthquakes.Due to its dense population,the work of pro-tecting against and mitigating earthquake disasters should be performed,which will directly affect the economic development and social stability of the country.Thus,various effective measures must be applied to minimize the damages of earthquake disasters.Developments in soil dynamics and earthquake engineering are examples of advanced science and technology methods used in earthquake resistance and defense. Site seismic stability is a topic of great concern in geotechnical engineering and engineering seismic areas and has important significance for disaster prevention and mitigation.In modern so-ciety,information technology has developed rapidly.The development of 3 s technology,Geo-graphic Information System (GIS

  4. Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M=V, Ni, La and Ce) nano-composites prepared by arc plasma method

    Science.gov (United States)

    Mao, Jianfeng; Zou, Jianxin; Lu, Chong; Zeng, Xiaoqin; Ding, Wenjiang

    2017-10-01

    In this work, core-shell structured Mg-MFx (M = V, Ni, La and Ce) nano-composites are prepared by using arc plasma method. The particle size distribution, phase components, microstructures, hydrogen sorption properties of these composites and hydrolysis properties of their corresponding hydrogenated powders are carefully investigated. It is shown that the addition of MFx through arc plasma method can improve both the hydrogen absorption kinetics of Mg and the hydrolysis properties of corresponding hydrogenated powders. Among them, the Mg-NiF2 composite shows the best hydrogen absorption properties at relatively low temperatures, which can absorb 3.26 wt% of H2 at 373 K in 2 h. Such rapid hydrogen absorption rate is mainly due to the formation of Mg2Ni and MgF2 on Mg particles during arc evaporation and condensation. In contrast, measurements also show that the hydrogenated Mg-VF3 composite has the lowest peak desorption temperature and the fastest hydrolysis rate among all the hydrogenated Mg-MFx composites. The less agglomeration tendency of Mg particles and VO2 covered on MgH2 particles account for the reduced hydrogen desorption temperature and enhanced hydrolysis rate.

  5. Large bulk Y-Ba-Cu-O superconductors fabricated by multiseeding melt growth methods

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have fabricated the large single domain YBaCuO bulk superconductors by using multiseeding technique combined with composition gradient in the precursor. Obviously, the growth time can be shortened by multiseeding method and the weak links between grain boundaries originated from different seeds can be also overcome with introducing the chemical component gradient and arranging the seeds exactly. For these YBCO disks, only single peak occurs in the distributions of trapped field, and the magnetic levitation force is equal to that of the same size sample fabricated with single seed. Although the arrangement of seeds is similar, the distribution of trapped field still shows four peaks for the sample without composition gradient.

  6. Registration of melting and crystallization process of MCMgLi8Ca5 alloy with use of ATND method

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-04-01

    Full Text Available Among lightweight metal alloys, magnesium is the lightest structural material with density of 1.74 g/cm3, having many attractive physical and mechanical properties combined with processing advantages. Therefore, it represents very attractive material for large amountof applications starting from automotive industry as the main user, up to other industry fields like sports, robotic electronics, armaments, and textile ones, or production of audio-video equipment. Furthermore, addition of lithium, that has density of 0,53 g/cm3, reduces density of the resulting Mg-Li alloys to the same level as polymeric materials. On metallic matrix of magnesium alloys with lithium are also manufactured composites reinforced with e.g. ceramic fiber, which are used as a lightweight and resistant structure materials. Therefore, Mg-Li alloys become an alternative material assuring low density, improved ductility and corrosion resistance.The paper presents an attempt of implementation of the ATND method to monitoring of crystallization process of MCMgLi8Ca5 alloys.Investigated magnesium alloys were produced in the Foundry Research Institute. Registration of melting and crystallization processes wasmade with use of the ATND method. Results of the preliminary tests are shown in a graphical form.

  7. Preliminary validation of a novel high-resolution melt-based typing method based on the multilocus sequence typing scheme of Streptococcus pyogenes.

    Science.gov (United States)

    Richardson, L J; Tong, S Y C; Towers, R J; Huygens, F; McGregor, K; Fagan, P K; Currie, B J; Carapetis, J R; Giffard, P M

    2011-09-01

    The major limitation of current typing methods for Streptococcus pyogenes, such as emm sequence typing and T typing, is that these are based on regions subject to considerable selective pressure. Multilocus sequence typing (MLST) is a better indicator of the genetic backbone of a strain but is not widely used due to high costs. The objective of this study was to develop a robust and cost-effective alternative to S. pyogenes MLST. A 10-member single nucleotide polymorphism (SNP) set that provides a Simpson's Index of Diversity (D) of 0.99 with respect to the S. pyogenes MLST database was derived. A typing format involving high-resolution melting (HRM) analysis of small fragments nucleated by each of the resolution-optimized SNPs was developed. The fragments were 59-119 bp in size and, based on differences in G+C content, were predicted to generate three to six resolvable HRM curves. The combination of curves across each of the 10 fragments can be used to generate a melt type (MelT) for each sequence type (ST). The 525 STs currently in the S. pyogenes MLST database are predicted to resolve into 298 distinct MelTs and the method is calculated to provide a D of 0.996 against the MLST database. The MelTs are concordant with the S. pyogenes population structure. To validate the method we examined clinical isolates of S. pyogenes of 70 STs. Curves were generated as predicted by G+C content discriminating the 70 STs into 65 distinct MelTs.

  8. Investigation of Voltage Unbalance Problems In Electric Arc Furnace Operation Model

    Directory of Open Access Journals (Sweden)

    Yacine DJEGHADER

    2013-06-01

    Full Text Available In modern steel industry, Electric Arc Furnaces are widely used for iron and scarp melting. The operation of electric arc furnace causes many power quality problems such as harmonics, unbalanced voltage and flicker. The factors that affect Electric arc furnace operation are the melting or refining materials, melting stage, electrodes position (arc length, electrode arm control and short circuit power of the feeder, so, arc voltages, current and power are defined as a nonlinear function of arc length. This study focuses on investigation of unbalanced voltage due to Electrics Arc Furnace operation mode. The simulation results show the major problem of unbalanced voltage affecting secondary of furnace transformer is caused by the different continues movement of electrodes.

  9. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dandeneau, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-13

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL[13], simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performance and properties. Table 1 lists the samples studied.

  10. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  11. STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Osvath, Z.; Koos, A.A.; Horvath, Z.E.; Gyulai, J.; Benito, A.M.; Martinez, M.T.; Maser, W.; Biro, L.P

    2003-06-10

    The scanning tunneling microscopy (STM) observation of arc-grown Y-branched carbon nanotubes and sharp nanotube bends (nano-knees) is reported. A drilled out graphite rod filled with a nickel/yttrium particle mixture was used as the anode in an arc chamber under He atmosphere of 660-mbar pressure. Straight multi-wall nanotubes, Y-branches and nano-knees were found in a sample taken from the cathodic deposit. The asymmetrical Y-branches and complex nano-knees found in this experiment may be related to the additional use of metals or/and to induced changes of the temperature distribution on the cathode side. It is suggested that complex nano-knees could be new examples for carbon quantum dots.

  12. Morphological study of graphite-encapsulated iron composite nanoparticles fabricated by a one-step arc discharge method

    Science.gov (United States)

    Hu, Rui; Furukawa, Taiki; Wang, Xiangke; Nagatsu, Masaaki

    2017-09-01

    Arc discharge is one of the most efficient approaches to fabricate graphite-encapsulated magnetic nanoparticles. However, given the ultra-fast synthetic procedure, the understanding of tailoring shell morphology and quality over magnetic core has been a long standing challenge. To better comprehend the mechanism of the encapsulating shell growth in plasma, a series of synthetic parameters were investigated systematically in this study. Specifically, (1) the surface morphology of the outmost shell evolved with high integrity by adding CH4 concentration from 0% to 50% to He background gas; (2) a smooth surface with higher graphitization degree was achieved by changing collecting zone closer to the arc center; (3) carbon nano loops on the outmost shell expanded volumetrically to be continuous amorphous cover as the working gas pressure decreases from 100 to 25 Torr. The surface properties (i.e., zeta potential and acid-base character) were also evaluated and explained through XPS technique.

  13. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  14. MgB{sub 2} superconducting thin films sequentially fabricated using DC magnetron sputtering and thermionic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Okur, S. [Physics Department, Izmir Institute of Technology (Turkey)], E-mail: salihokur@iyte.edu.tr; Kalkanci, M. [Material Science Program, Izmir Institute of Technology (Turkey); Pat, S.; Ekem, N.; Akan, T. [Physics Department, Osmangazi University (Turkey); Balbag, Z. [Department of Science and Mathematics Education, Osmangazi University (Turkey); Musa, G. [Plasma and Radiation, National Institute for Physics of Laser (Romania); Tanoglu, M. [Mechanical Engineering Department, Izmir Institute of Technology (Turkey)

    2007-11-01

    In this work, we discuss fabrication and characterization of MgB{sub 2} thin films obtained by sequential deposition and annealing of sandwich like Mg/B/Mg thin films on glass substrates. Mg and B films were prepared using DC magnetron sputtering and thermionic vacuum arc techniques, respectively. The MgB{sub 2} thin films showed superconducting critical transition at 33 K after annealing at 650 deg. C.

  15. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Zampieri

    2016-02-01

    Full Text Available Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol.Exploring the High Resolution Melting (HRM dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR targeting heat-shock protein 70 coding gene (hsp70 revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania infantum chagasi, L. (L. amazonensis, L. (L. mexicana, L. (Viannia lainsoni, L. (V. braziliensis, L. (V. guyanensis, L. (V. naiffi and L. (V. shawi, and three species found in Eurasia and Africa, including L. (L. tropica, L. (L. donovani and L. (L. major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol.HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  16. High resolution melting curve analysis, a rapid and affordable method for mutation analysis in childhood acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Yin eLiu

    2014-09-01

    Full Text Available Background: Molecular genetic alterations with prognostic significance have been described in childhood acute myeloid leukemia (AML. The aim of this study was to establish cost-effective techniques to detect mutations of FMS-like tyrosine kinase 3 (FLT3, Nucleophosmin 1 (NPM1, and a partial tandem duplication within the mixed lineage leukemia (MLL-PTD genes in childhood AML. Procedure: Ninety-nine children with newly diagnosed AML were included in this study. We developed a fluoresent dye SYTO-82 based high resolution melting curve (HRM anaylsis to detect FLT3 internal tandem duplication (FLT3-ITD, FLT3 tyrosine kinase domain (FLT3-TKD and NPM1 mutations. MLL-PTD was screened by real-time quantitative PCR. Results: The HRM methodology correlated well with gold standard Sanger sequencing with less cost. Among the 99 patients studied, the FLT3-ITD mutation was associated with significantly worse event free survival (EFS. Patients with the NPM1 mutation had significantly better EFS and overall survival. However, HRM was not sensitive enough for minimal residual disease monitoring. Conclusions: HRM was a rapid and efficient method for screening of FLT3 and NPM1 gene mutations. It was both affordable and accurate, especially in resource underprivileged regions. Our results indicated that HRM could be a useful clinical tool for rapid and cost effective screening of the FLT3 and NPM1 mutations in AML patients.

  17. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method.

    Science.gov (United States)

    Li, S J; Xu, Q S; Wang, Z; Hou, W T; Hao, Y L; Yang, R; Murr, L E

    2014-10-01

    Ti-6Al-4V reticulated meshes with different elements (cubic, G7 and rhombic dodecahedron) in Materialise software were fabricated by additive manufacturing using the electron beam melting (EBM) method, and the effects of cell shape on the mechanical properties of these samples were studied. The results showed that these cellular structures with porosities of 88-58% had compressive strength and elastic modulus in the range 10-300MPa and 0.5-15GPa, respectively. The compressive strength and deformation behavior of these meshes were determined by the coupling of the buckling and bending deformation of struts. Meshes that were dominated by buckling deformation showed relatively high collapse strength and were prone to exhibit brittle characteristics in their stress-strain curves. For meshes dominated by bending deformation, the elastic deformation corresponded well to the Gibson-Ashby model. By enhancing the effect of bending deformation, the stress-strain curve characteristics can change from brittle to ductile (the smooth plateau area). Therefore, Ti-6Al-4V cellular solids with high strength, low modulus and desirable deformation behavior could be fabricated through the cell shape design using the EBM technique. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  18. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  19. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    Science.gov (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  20. Combinatorial synthesis of phosphors using arc-imaging furnace

    Science.gov (United States)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  1. Combinatorial synthesis of phosphors using arc-imaging furnace

    Directory of Open Access Journals (Sweden)

    Tadashi Ishigaki, Kenji Toda, Masahiro Yoshimura, Kazuyoshi Uematsu and Mineo Sato

    2011-01-01

    Full Text Available We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  2. Petrological and two-phase flow modelling of deep arc crust: insights on continental crust formation

    Science.gov (United States)

    Riel, Nicolas; Bouilhol, Pierre; van Hunen, Jeroen; Cornet, Julien

    2017-04-01

    The genesis of felsic crust is generally attributed to two main processes: the differentiation of primary magmas by crystallization within the crust or uppermost mantle and the partial melting of older crustal rocks. The Mixing/Assimilation/Hybridization of these magmas in the deep crust (MASH zone) and their subsequent segregation constitutes the principal process by which continents have become differentiated into a more mafic, residual lower crust and a more felsic and hydrated upper crust. Although this model describes qualitatively how continental crust forms, little is known on the physical and chemical mechanisms occurring at the root of volcanic arcs. To assess the dynamics of partial melting, melt injection and hybridization in the deep crust, a new 2-D two-phase flow code using finite volume method has been developed. The formulation takes into account: (i) melt flow through porosity waves/channels, (ii) heat transfer, assuming local thermal equilibrium between solid and liquid, (iii) thermodynamic modelling of stable phases and (iv) injection of mantle-derived melt at the Moho. Our parametric study shows that pressure, heat influx and melt:rock ratio are the main parameters controlling the volume and composition of differentiated magma. Overall the composition of segregated products scatters in two groups: felsic (80-68% SiO2) and intermediate (60-52% SiO2), with an average andesitic composition. The bimodal distribution is controlled by amphibole which buffer the composition of segregated products to high SiO2-content when stable. As the amphibole-out melting reaction is crossed segregated products become intermediate. When compared to available geological evidence, the liquid line of descent of mantle-derived magma do not fit the Mg# versus silica trends of exposed volcanic arcs. Instead our modelling results show that reactive flow of those same magma through a mafic crust is able to reproduce such trends.

  3. Process characteristics of fibre-laser-assisted plasma arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Mahrle, A; Schnick, M; Rose, S; Demuth, C; Beyer, E; Fuessel, U, E-mail: achim.mahrle@iws.fraunhofer.de [Dresden University of Technology, Institute of Surface and Manufacturing Technology, PO Box, D-01062 Dresden (Germany)

    2011-08-31

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  4. Rapidly solidified titanium alloys by melt overflow

    Science.gov (United States)

    Gaspar, Thomas A.; Bruce, Thomas J., Jr.; Hackman, Lloyd E.; Brasmer, Susan E.; Dantzig, Jonathan A.; Baeslack, William A., III

    1989-01-01

    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling.

  5. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    Science.gov (United States)

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  6. Arc tracks on nanostructured surfaces after microbreakdowns

    Science.gov (United States)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  7. Application of the Billet Casting Method to Determine the Onset of Incipient Melting of 319 Al Alloy Engine Blocks

    Science.gov (United States)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2015-06-01

    The increased use of Al for automotive applications has resulted from the need to improve vehicle fuel efficiency. Aluminum alloy engine blocks fulfil the need of lightweighting. However, there are many challenges associated with thermo-mechanical mismatch between Al and the gray cast iron cylinder liners, which result in large tensile residual stress along the cylinder bores. This requires improced mechanical properties in this region to prevent premature engine failure. In this study, replicating billet castings were used to simulate the engine block solution heat treatment process and determine the onset of incipient melting. Microstructural changes during heat treatment were assessed with SEM and EDX, while thermal analysis was carried out using differential scanning calorimetry. The results suggest that solution heat treatment at 500 °C was effective in dissolving secondary phase particles, while solutionizing at 515 or 530 °C caused incipient melting of Al2Cu and Al5Mg8Cu2Si6. Incipient melting caused the formation ultra-fine eutectic clusters consisting of Al, Al2Cu, and Al5Mg8Cu2Si6 on quenching. In addition, DSC analysis found that incipient melting initiated at 507 °C for all billets, although the quantity of local melting reduced with microstructural refinement as evidenced by smaller endothermic peaks and energy absorption. The results from this study will assist in improving engine block casting integrity and process efficiency.

  8. The Fina Nagu volcanic complex: Unusual submarine arc volcanism in the rapidly deforming southern Mariana margin

    Science.gov (United States)

    Brounce, Maryjo; Kelley, Katherine A.; Stern, Robert; Martinez, Fernando; Cottrell, Elizabeth

    2016-10-01

    In the Mariana convergent margin, large arc volcanoes disappear south of Guam even though the Pacific plate continues to subduct and instead, small cones scatter on the seafloor. These small cones could form either due to decompression melting accompanying back-arc extension or flux melting, as expected for arc volcanoes, or as a result of both processes. Here, we report the major, trace, and volatile element compositions, as well as the oxidation state of Fe, in recently dredged, fresh pillow lavas from the Fina Nagu volcanic chain, an unusual alignment of small, closely spaced submarine calderas and cones southwest of Guam. We show that Fina Nagu magmas are the consequence of mantle melting due to infiltrating aqueous fluids and sediment melts sourced from the subducting Pacific plate into a depleted mantle wedge, similar in extent of melting to accepted models for arc melts. Fina Nagu magmas are not as oxidized as magmas elsewhere along the Mariana arc, suggesting that the subduction component responsible for producing arc magmas is either different or not present in the zone of melt generation for Fina Nagu, and that amphibole or serpentine mineral destabilization reactions are key in producing oxidized arc magmas. Individual Fina Nagu volcanic structures are smaller in volume than Mariana arc volcanoes, although the estimated cumulative volume of the volcanic chain is similar to nearby submarine arc volcanoes. We conclude that melt generation under the Fina Nagu chain occurs by similar mechanisms as under Mariana arc volcanoes, but that complex lithospheric deformation in the region distributes the melts among several small edifices that get younger to the northeast.

  9. Magnesium melt protection by covering gas

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2008-03-01

    Full Text Available Thc protcclion of liquid light metals Cmm oxidation is a major issue in recycling and mclting proccsscs in rhc light mctal industry. Thcprorcction of liquid magncsirrm surfacc was carried out by using salts. alloying clemcnts, incrt gascs or rcactivc gas mixture. Snlt bnscdprorcction is still ~hcm ost widely uscd technology in the recycling of magnesium, but gases arc more frcqucntly uscd in magnesiumc;lszing industry. Protcczing thc mottcn mctal undcr a blanket of an inert gas such as argon or helium is dangerous. bccausc no protcctivctaycr is hrrnorl on thc mctr surface and mctal is frcc to cvaporatc, resulting in safcty hazards when furnace ambicncc is cxposcd to air ducto a violcnt rcaction. Thc disadvantagcs of t hcse methods have been partially ovcrcomc by using reactive gas systcrn, in which n chcmicnlrcaction hctwccn a gas and thc moltcn mctal produces a fhin protective film on the surface of the melt. Rcaclive gascs likc SFI, or SOz donot mccr cnvironmcnral standards due to their cxtrcrnely high global warming ptentiat or toxicity. Thcreforc thc altcrnativc covcringgascs ror magncsium mclrbng arc ol big intcrcst. Gas mixturcs containing HE%-1 34a, Novec 6 12. BF3 (Magshictd systcrn and solid C02have hccn succcssfi~lyl ~cstcdin I he world.

  10. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method

    Science.gov (United States)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der

    2017-03-01

    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  11. Discussion on the Method of Creating Geographic Data for ARC/INFO Based On Digital Topographic Map%利用数字地形图建立Arc/Info地理数据的方法探讨

    Institute of Scientific and Technical Information of China (English)

    郑春燕

    2004-01-01

    ARC/INFO建立地理数据库的前期工作是获得数据,利用现有的数字地形图,是一种获得基本空间数据和属性数据的方便、快捷、经济的有效途径.通过DXf格式的地形图数据转入ARC/INFO的实验,介绍了数字地形图向ARC/INFO数据转换的方法,在比较了DXf和ARC/INFO的数据格式之后,讨论了属性数据和图形数据如何建立正确关联的方法.

  12. Influence of the crucible geometry on the shape of the melt crystal interface during growth of sapphire crystal using a heat exchanger method

    Science.gov (United States)

    Chen, Jyh-Chen; Lu, Chung-Wei

    2004-05-01

    Computer simulations using the commercial code FIDAP, which is based on finite element techniques, were performed to investigate the effect of the shape of the crucible on the temperature distribution, velocity distribution and shape of the melt-crystal interface, during the application of the heat exchanger method (HEM) of growing sapphire crystals. Heat transfer from the furnace to the crucible and heat extraction from the heat exchanger can be modeled by the convection boundary conditions. Cylindrical crucibles with differently curved corners at their base are considered. The curved base of the crucible decreases the convexity of the melt-crystal interface and suppresses the appearance of "hot spots". A hemispherically shaped crucible base yields the lowest maximum convexity. The variation in convexity of the melt-crystal interface is less abrupt for a cylindrical crucible with curved corners at the base than one without curved corners. The effects of the thickness and the conductivity of the crucible are also addressed. The convexity of the melt-crystal interface decreases as the thickness of the crucible wall increases. The convexity also declines as the conductivity of the crucible increases.

  13. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  14. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-03-10

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pHmax 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. (1)H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  15. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  16. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  17. Research on the Method for Village Lanning Based on ArcGIS%基于 ArcGIS 的村庄规划编制技术研究

    Institute of Scientific and Technical Information of China (English)

    宁秀红; 龙腾; 赵敏

    2015-01-01

    地理信息系统是一种信息处理工具,它以计算机为处理平台进行地理空间分析。村庄规划是我国城市规划中最基层的规划,本文将GIS技术引入到村庄规划编制工作中,探讨了ArcGIS软件在村庄规划中的应用,改进了以往的规划工作思想和技术路线,具体分析了村庄规划编制的方法和技巧,提高了村庄规划的科学性、实用性、规范性和准确性。%GIS ( Geographic Information System, GIS) is an information tool for geospatial analysis.GIS technology will be introduced to the village planning work which is the most basic planning of urban planning system.The application of GIS in country planning and the superiority of using GIS in rural planning were discussed.It improved the past way of thinking and skills route, analyses the land use planning methods and skills, the scientific, practical, normative and accuracy performance of village planning were improved.

  18. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  19. Cross-arc Variations in Lava Chemistry in the Tonga Arc-Lau Back Arc System, 19- 23°S

    Science.gov (United States)

    Michael, P. J.; Bezos, A.; Langmuir, C. H.; Escrig, S.; Matzen, A. K.; Asimow, P.; Arculus, R.

    2007-12-01

    The Tonga arc system from 19°-23°S consists of the active Tofua arc, the Eastern Lau Spreading Center (ELSC; a back arc spreading center), and numerous seamounts between them. We use the excellent sampling of ELSC and 34 nearby seamounts, along with sparser published analyses of Tofua arc, to examine the spatial relations of chemistry and melting in this subduction system. The spatial constraints can be used to better understand the nature and mechanism of enrichment that is caused by subduction. Geochemistry along the axis of ELSC is related to its distance to the Tofua arc, which decreases continuously from 100 km in the north to 40 km in the south. The subduction influence (e.g., fluid mobile elements) along ELSC increases in several sharp gradients towards the south as ELSC gets closer to the arc. The six different tectonic segments of ELSC display mixing relationships in trace element ratio-ratio diagrams (e.g., Ba/La vs Th/La) in which one end member is a subduction component that is distinctive for each segment (Escrig et al., this meeting). We explore whether the distinctive subduction components of each ELSC segment are reflected by the Tofua arc that is adjacent to that segment, and by the intervening seamounts. Relationships between the arc, back arc and seamounts are different in the north and the south. In the south where the arc-back arc distance is smaller, the Tofua arc volcanic rocks share the distinctive trace element characteristics of their corresponding ELSC segment, and extend the mixing trajectories to higher, more arc-like values. Seamounts that are located between Tofua arc and ELSC also share the distinctive trace element characteristics of the local arc + back-arc, and are intermediate in their trace element ratios. These observations are consistent with the model of Langmuir et al., (2006) in which magmas of back arc spreading centers form from two components: a dry side similar to mid-ocean ridges and a wet (trenchward) side that

  20. Nanostructured (Ti-Zr-NbN Coatings Obtained by Vacuum-arc Deposition Method: Structure and Properties

    Directory of Open Access Journals (Sweden)

    О.V. Maksakova

    2015-12-01

    Full Text Available In the article discusses the results of the deposition of nanostructured coatings obtained by vacuum arc deposition of cathode (Ti-Zr-Nb, and analyzes their structure, morphology, elemental composition, and tribological properties (friction, wear and adhesion. The structural analysis showed the formation of an FCC phase and BCC phase in a small amount (at a chamber pressure Р = 4×10 – 3 Тоrr. The results of tribological tests showed that the friction coefficient varies from 0.61 to 0.491, and Vickers hardness from 37 to 44.57 GPa when changing (increasing the pressure in the chamber. The analysis of the elements in the tracks of friction was studied.

  1. A new method in highway route design: joining circular arcs by a single C-Bézier curve with shape parameter

    Institute of Scientific and Technical Information of China (English)

    Hua-hui CAI; Guo-jin WANG

    2009-01-01

    We constructed a single C-Bezier curve with a shape parameter for G2 joining two circular arcs. It was shown that an S-shaped transition curve, which is able to manage a broader scope about two circle radii than the Bezier curves, has no curvature extrema, while a C-shaped transition curve has a single curvature extremum. Regarding the two kinds of curves, specific algorithms were presented in detail, strict mathematical proofs were given, and the effectiveness of the method was shown by examples.This method has the following three advantages: (1) the pattern is unified; (2) the parameter able to adjust the shape of the transition curve is available; (3) the transition curve is only a single segment, and the algorithm can be formulated as a low order equation to be solved for its positive root. These advantages make the method simple and easy to implement.

  2. NEW LONGITUDINAL STRENGTHENING METHOD FOR PLASMA ARC POWDER SURFACING COATING%高硬度等离子弧粉末堆焊层的纤维纵向强化

    Institute of Scientific and Technical Information of China (English)

    王惜宝; 张文钺

    2000-01-01

    研究一种用于高硬度等离子弧堆焊层纵向强化的纤维强化法.通过对纤维增强等离子弧堆焊层的制备工艺及纤维加入量对堆焊层纵向断裂韧性的影响研究,发现选择具有高熔点和高强度的W-Mo合金纤维作为堆焊层的增强纤维不仅具有较好的工艺可操作性,而且具有明显的增强作用.在成分(质量分数)为Fe-20% B4C复合粉末等离子弧堆焊层中加入体积分数为4.8%的W-Mo合金纤维,即可使堆焊层的纵向断裂韧性提高33.5%.%A new longitudinal strengthening method for powder surfacing brittle coating using high strength metal fibres has been successfully developed.The preparing process of the fibre-reinforced hardfacing alloys and the effects of fibre's volume fraction on the composite coating's fracture toughness were investigated and analyzed.The results reveal that the high strength and high melting point Mo-W alloy fibres present not only much better processing feasibility than C- and other ceramic-fibres,but also excellent strengthening effect on the brittle coatings.The addition of 4.8% Mo-W fibres (volume fraction)to a Fe-20% B4C (weight fraction)composite plasma transferred-arc powder surfaced coating may improve the coating's longitudinal fracture toughness by 33.5%.

  3. Structure Defects Interrelation of Heat-resistant Nickel Alloy Obtained by Selective Laser Melting Method and Strategy and Scanning Parameters

    Directory of Open Access Journals (Sweden)

    O. A. Bytsenko

    2016-01-01

    Full Text Available The objective was to conduct a study of the surface morphology and a chemical composition analysis of the powder of different fractional composition of a heat-resistant Ni-Co-Cr-AlTi-W-Mo-Nb alloy, and to define the patterns of change in the quantitative parameters of the structure of samples obtained by selective laser melting (SLM method with different parameters of power, laser speed, and a type of hatching (staggered, island diagonal, and solid diagonal.To study the surface morphology of the microstructure was used optical, laser-confocal and scanning electron microscopy. The elemental and local phase composition was performed by X-ray and miсro-X-ray spectrum analysis.The initial powder morphology study has found that the powder granules have a generally spherical shape, and the number of structural defects increases with increasing granule size. The microstructure of all granules has a dendritic structure. The superficial defects have a form of satellites, shapeless shield, round gas pores, and pores located in the inter-dendritic regions because of the shrinkage process.The study of the microstructure of the samples has been defined that dimensions of the structural components, pores, and micro-cracks depend on the parameters of the SLM process. With raising laser power within 160 - 190 W there is an increase in a fraction of pores and their average diameter. With further increase in laser power the volume fraction of pores is slightly reduced while their average size is, essentially, unchanged.It has been found that at the constant laser power and variable scanning speed the volume fraction of pores depends on the type of hatching. For staggered and solid diagonal hatching, at the constant laser power of 180 W with increasing scanning speed the volume fraction, at first, falls and then again grows, and for island diagonal hatching remains unchanged.When changing the laser power values within a range from 160 to 170 W for samples with

  4. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  5. Arc erosion behavior of a nanocomposite W-Cu electrical contact material

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The erosion behavior of a nanocomposite W-Cu material under arc breakdown was investigated. The arc erosion rates of the material were determined, and the eroded surfaces and arc erosion mechanisms were studied by scanning electron microscopy. It is concluded that the nanocomposite W-Cu electrical contact material shows a characteristic of spreading arcs. The arc breakdown of a commercially used W-Cu alloy was limited in a few areas, and its average arc erosion rate is twice as large as that of the former. Furthermore, it is also proved that the arc extinction ability and arc stability of the nanocomposite W-Cu material are excellent, and melting is the major failure modality in the make-and-break operation of arcs.

  6. Up-conversion emissions of Er3+-Yb3+ codoped Al2O3 nanoparticles by the arc discharge synthesis method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Er3+-Yb3+ codoped Al2O3 nanoparticles with an average particle size of about 50 nm have been synthesized by an arc discharge synthesis method. The green and red up-conversion emissions centered at about 526, 547 and 677 nm, corresponding respectively to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4 F9/2→4I15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The Annealing has evident effect on the up-conversion emissions of the samples: The red up-conversion emission is noticeable before annealing; however, the green up-conversion emission becomes predominant after annealing. The mixture of (Er,Yb)3Al5O12 and α-(Al,Er,Yb)2O3 phases is more favorable for green up-conversion emissions due to an enhancement of the ESA (I) of 4I11/2+a photon→4F7/2 and ET (III) of 2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+) processes. The two-photon absorption up-conversion process is involved in the green and red up-conversion emissions. The results have proved that arc discharge synthesis is a new promising preparation technology for optical materials.

  7. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used.

  8. The calculation of the highest leak level of water pipe lines region at PDAM Tirta Kahuripan using fuzzy C-means and ArcGIS method analysis

    Science.gov (United States)

    Parwatiningtyas, D.; Ambarsari, E. W.; Mariko, S.

    2017-07-01

    Water is a basic necessity for human's life. Water, which is distributed to the public, should in decent condition, healthy, and protected from metal pollutants. In Indonesia, it is handled by a government institution, commonly is PDAM (Indonesian regional water utility company). A PDAM Tirta Kahuripan handles water distribution in Bogor area and part of Depok cities. Based on data, PDAM Tirta Kahuripan had approximately more than 46 % water loss, due to geological factor, human activity, etc. Therefore in this paper, we try to make a decision system of water loss at PDAM pipelines, using cluster Fuzzy C - Means method analysis. Then, mapped into ArcGIS software. Based on this method, we can be determine the region which shows the most water loss and also identify the highest leaks level from water pipelines at PDAM Tirta Kahuripan.

  9. Suppress Method for Armature Melting Based on Muzzle Shunt%基于炮口分流的电枢熔化抑制方法

    Institute of Scientific and Technical Information of China (English)

    王志恒; 万敏; 李小将; 黄勇

    2016-01-01

    For effectively solving the problem of the armature melting, this paper proposed suppress method of armature melting based on muzzle shunt for reducing contact resistance Joule heat. The mechanism of armature melting is analyzed, design three reducing contact resistance Joule heat schemes:resistor muzzle shunt, inductance muzzle shunt, and capacitor muzzle shunt. The heat power and output of 3 schemes are simulated and calculated, and analyzed suppress effect of 3 schemes on armature melting. The results show that the resistor muzzle shunt scheme and inductance muzzle shunt scheme can significantly reduce the contact resistance of Joule heat, thereby suppressing the armature melting, while, these two schemes have to increase the input current to compensate the effect of muzzle shunt on armature electromagnetic force. The effect of capacity muzzle shunt scheme is very limited. Thus, the capacity muzzle shunt scheme cannot suppress armature melting.%为有效解决轨道炮电枢熔化问题,提出一种基于炮口分流降低接触电阻焦耳热功率的电枢熔化抑制方法。分析了电枢熔化形成机理,设计了电阻器、电感器和电容器炮口分流3种降低接触电阻焦耳热方案,仿真计算了3种炮口分流方案接触电阻焦耳热功率和产生量,分析了3种方案对电枢熔化的抑制效果。结果表明:电阻器和电感器炮口分流方案可使接触电阻焦耳热产生量显著降低,能够抑制电枢熔化,但是需要增加输入电流补偿炮口分流对电枢电磁力的影响;电容器炮口分流效果十分有限,起不到抑制电枢熔化的作用。

  10. The optimization of molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells by the cathodic arc ion plating method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki, E-mail: choyk@kitech.re.kr [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gang Sam; Song, Young Sik; Lim, Tae Hong [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Donggeun [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-12-02

    Molybdenum back contact films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress

  11. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Berkmans, A.; Jagannatham, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India); Priyanka, S. [Department of Electrical and Electronics Engineering, MS Ramaiah Institute of Technology, Bangalore 560054, Karnataka (India); Haridoss, Prathap, E-mail: prathap@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2014-11-15

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.

  12. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  13. Numerical modeling of volcanic arc development

    Science.gov (United States)

    Gerya, T.; Gorczyk, W.; Nikolaeva, K.

    2007-05-01

    We have created a new coupled geochemical-petrological-thermomechanical numerical model of subduction associated with volcanic arc development. The model includes spontaneous slab bending, subducted crust dehydration, aqueous fluid transport, mantle wedge melting and melt extraction resulting in crustal growth. Two major volcanic arc settings are modeled so far: active continental margins, and intraoceanic subduction. In case of Pacific-type continental margin two fundamentally different regimes of melt productivity are observed in numerical experiments which are in line with natural observations: (1) During continuous convergence with coupled plates highest amounts of melts are formed immediately after the initiation of subduction and then decrease rapidly with time due to the steepening of the slab inclination angle precluding formation of partially molten mantle wedge plumes; (2) During subduction associated with slab delamination and trench retreat resulting in the formation of a pronounced back arc basin with a spreading center in the middle melt production increases with time due to shallowing/stabilization of slab inclination associated with upward asthenospheric mantle flow toward the extension region facilitating propagation of hydrous partially molten plumes from the slab. In case of spontaneous nucleation of retreating oceanic subduction two scenarios of tecono-magmatic evolution are distinguished: (1) decay and, ultimately, the cessation of subduction and related magmatic activity, (2) increase in subduction rate (to up to ~12 cm/yr) and stabilization of subduction and magmatic arc growth. In the first case the duration of subduction correlates positively with the intensity of melt extraction: the period of continued subduction increases from 15,4 Myrs to 47,6 Myrs with the increase of melt extraction threshold from 1% to 9%. In scenario (1) the magmatic arc crust includes large amounts of rocks formed by melting of subducted crust atop the thermally

  14. Sulfato Complex Formation of V(V) and V(IV) in Pyrosulfate Melts Investigated by Potentiometry and Spectroscopic Methods

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    1999-01-01

    with the oxo sulfato vanadate equilibria VO(SO4)2,2- + SO4,2- = VO(SO4)3,4- for V(IV) and (VO)2O(SO4)4,4- + 2SO4,2- = 2VO2(SO4)2,3- + S2O7,2- for V(V), and 2VO2(SO4)2,3- + SO2 + SO4,2- 2VO(SO4)3,4- for the V(V)-V(IV) redox reaction in melts saturated with sulfate. Constants for these equilibria have also been...

  15. Novel method of measuring polymer melt viscosity using a short length of single screw extruder at the closed discharge state

    Science.gov (United States)

    Kim, Myung-Ho; Kim, Bo-Kyung; Kang, Seok-Jin; Kim, Moon Sung; Choi, Sunwoong

    2016-03-01

    Theory of single screw extruders has been used for analyzing the processing characteristics of various polymeric fabricated such material as plastics, rubber, and food products. Recently this theory extended to measuring the polymer melt viscosity using the closed discharging state of the short single screw extruder. The batch wise operation of the closed discharged state change the complex extrusion characteristic equation into simple calculation form of shear rate and viscosity equation, which related between the geometrical factors and the screw speed and the axial pressure generation, respectively.

  16. 电弧熔炼合成Ti3SiC2/TiC复合物的微观组织和高温弯曲强度%Microstructure and High Temperature Bending Strength of Ti3SiC2/TiC Composite by Arc Melting Process

    Institute of Scientific and Technical Information of China (English)

    闫文青; 戴乐; 桂赤斌

    2013-01-01

    用电弧熔炼工艺通过高温液态反应原位合成了Ti3SiC2/TiC复合物.微观组织分析表明,TiC与Ti3SiC2形成复相晶粒结构.随着Si含量的增加,在1100℃,Ti3SiC2/TiC复合物的弯曲强度从177MPa降到92MPa;复相晶粒结构和TiC的颗粒增强机制的协同作用是高温弯曲强度提高的主要原因.%Ti3SiC2/TiC composite was in-situ fabricated by liquid-state reaction synthesis under arc melting process.The microstructure analysis shows that TiC and Ti3SiC2 form intragranular structure.As the content of Si increasing,the bending strength of the composite decreases from 177 MPa to 92 MPa at 1100 ℃,and the content of Ti5Si3 impurity dramatically increases.The synergistic action of intragranular structure and fine TiC reinforcement mechanism can contribute to the optimal bending properties.

  17. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  18. Can slabs melt beneath forearcs in hot subduction zones?

    Science.gov (United States)

    Ribeiro, J.; Maury, R.; Gregoire, M.

    2015-12-01

    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  19. Making and breaking an Island arc: a new perspective from the Oligocene Kyushu-Palau arc

    Science.gov (United States)

    Ishizuka, O.; Taylor, R. N.; Yuasa, M.; Ohara, Y.

    2010-12-01

    . Therefore the distinct isotopic composition and enriched trace element characteristics found at the intersection could be related to the involvement of sub-Daito Ridge lithospheric mantle. This mantle would have been metasomatised by the previous subduction event, and further melting of the enriched source induced by renewed subduction in the Eocene. These observations demonstrate that despite being regarded as a typical intra-oceanic island arc, the history and nature of arc basement can significantly affect its geochemical characteristics. Trace element relationships suggest that the KPR mantle wedge was more enriched, and the subduction fluid contribution smaller, than the Quaternary volcanic front. However, there are strong similarities with the composition of the IBM rear arc after 15 Ma. This strongly implies that the current KPR preserves the rear arc side. As the trace element characteristics are similarly rear-arc in nature along the entire length of the KPR, it seems likely that the virtually simultaneous opening of the Shikoku and Parece Vela Basins rifted the Kyushu-Palau arc at a similar distance from the trench at c. 25 Ma.

  20. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection

    Science.gov (United States)

    Rojas, Roberto; Takaki, Tomohiro; Ohno, Munekazu

    2015-10-01

    In this study, a combination of the lattice Boltzmann method (LBM) and the phase-field method (PFM) is used for modeling simultaneous growth and motion of a dendrite during solidification. PFM is used as a numerical tool to simulate the morphological changes of the solid phase, and the fluid flow of the liquid phase is described by using LBM. The no-slip boundary condition at the liquid-solid interface is satisfied by adding a diffusive-forcing term in the LBM formulation. The equations of motion are solved for tracking the translational and rotational motion of the solid phase. The proposed method is easily implemented on a single Cartesian grid and is suitable for parallel computation. Two-dimensional benchmark computations show that the no-slip boundary condition and the shape preservation condition are satisfied in this method. Then, the present method is applied to the calculation of dendritic growth of a binary alloy under melt convection. Initially, the solid is stationary, and then, the solid moves freely due to the influence of fluid flow. Simultaneous growth and motion are effectively simulated. As a result, it is found that motion and melt convection enhance dendritic growth along the flow direction.

  1. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  2. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  3. Fabrication using a levitation melting method of V-4Cr-4Ti-Si-Al-Y alloys and their mechanical properties

    Science.gov (United States)

    Chuto, Toshinori; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo

    2002-12-01

    Reduction of interstitial impurities such as O and N is a potential method to improve various properties of vanadium alloys. It was shown that addition of Si, Al and Y was useful to reduce the oxygen concentration and to improve post-irradiation ductility at relatively low temperatures for V-Cr-Ti alloys. Several 2.5 kg alloys of V-4Cr-4Ti-Si-Al-Y type were fabricated by using a levitation melting method. Charpy impact test by an instrumented testing machine has been conducted using miniaturized specimens. Tensile tests have been carried out before and after neutron irradiation. The miniaturized specimens were irradiated up to 8×10 22 n/m 2 ( E>1 MeV) at 290 °C in Japan Materials Testing Reactor. By adopting a levitation melting method, high-purity kg-scale ingots of V-4Cr-4Ti-Si-Al-Y alloys with ˜80 ppm C, <170 ppm O and ˜110 ppm N were obtained. The V-4Cr-4Ti-0.1Si-0.1Al-0.1Y alloy fabricated in this study showed good impact properties compared with a previous laboratory-scale alloy. This alloy showed good tensile properties even after neutron irradiation at 290 °C. Levitation melting can be adopted to produce large ingots of V-Cr-Ti-Si-Al-Y type alloys by controlling the amount of yttrium addition. In this study, the technology for fabrication of high-purity kg-scale ingots of V-4Cr-4Ti-Si-Al-Y alloy has been demonstrated, and has made it possible to investigate systematically various properties of the alloy.

  4. Near-Primary Oxidized Basalts from the Submarine Vanuatu Arc

    Science.gov (United States)

    Gentes, Z.; Kelley, K. A.; Cottrell, E.; Arculus, R. J.

    2014-12-01

    Near-primary melt compositions (i.e., in equilibrium with >Fo89 olivine) are rare in arc systems. Yet, such melts provide essential views of mantle-derived melts, without further modification by fractional crystallization or other crustal processes, and reveal the diversity of melt compositions that exist in the arc mantle wedge. Here, we present new measurements of naturally glassy, near-primary olivine-hosted melt inclusions from one dredge of Evita seamount (SS07/2008 NLD-02) in the southern Vanuatu arc system. Two distinct basalt types were identified in hand sample upon collection, based on contrasting phenocryst assemblage (Type 1: 1% phenocrysts; Type 2: 15% phenocrysts). We selected melt inclusions from each type and determined major elements, S, and Cl by EMP, H2O and CO2 by FTIR, trace elements by LA-ICP-MS, and Fe3+/∑Fe ratios by XANES. Melt inclusions from both lava types show equilibrium with ≥Fo90 olivine, consistent with host olivine compositions, and thus are near-primary melt compositions that have escaped major modification since departing the mantle wedge. Both have similar maximum dissolved H2O (~2.3 wt.%), high Mg# (48-75), and are basalt to basaltic andesite (SiO2 49-55 wt.%). However, the two lava types have very different major and trace element compositions. Inclusions from Type 1 show relatively flat REE patterns and classic negative anomalies in Nb and Ta, and positive anomalies in Pb and Sr typical of normal arc basalts, and have Fe3+/∑Fe ratios similar to global arc basalts (~0.24). In contrast, melt inclusions from Type 2 exhibit steeply sloped REE patterns with strong depletions in the HREE that suggest garnet in the source lithology for these magmas, either in the subducting slab or the mantle wedge. Moreover, the Type 2 inclusions have high La/Yb (29.5-43) and Sr/Y (50-58), which are classically attributed to partial melting of the basaltic slab, although these inclusions are basaltic, not andesitic. Type 2 inclusions also

  5. Experiments in chondrule formation: simulations of gas-grain collisions using plasma arcs

    OpenAIRE

    Morlock, Andreas; Sutton, Yvonne; Braithwaite, Nicholas St.J.; Grady, M.M.

    2010-01-01

    To investigate the formation of chondrules in gas-grain collisions, we conducted experiments where mineral mixtures were melted in plasma arcs. First results already show silicate-rich spheres quite similar to chondrules.

  6. Innovation approaches to controlling the electric regimes of electric arc furnaces

    Science.gov (United States)

    Bikeev, R. A.; Serikov, V. A.; Ognev, A. M.; Rechkalov, A. V.; Cherednichenko, V. S.

    2015-12-01

    The processes of current passage in an ac electric arc furnace (EAF) are subjected to industrial experiments and mathematical simulation. It is shown that, when a charge is melted, arcs between charge fragments exist in series with main arc discharges, and these arcs influence the stability of the main arc discharges. The measurement of instantaneous currents and voltages allowed us to perform a real-time calculation of the electrical characteristics of a three-phase circuit and to determine the θ parameter, which characterizes the nonlinearity of the circuit segment between electrodes. Based on these studies, we created an advanced system for controlling the electric regime of EAF.

  7. Arc tracking energy balance for copper and aluminum aeronautic cables

    Science.gov (United States)

    André, T.; Valensi, F.; Teulet, P.; Cressault, Y.; Zink, T.; Caussé, R.

    2017-04-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted.

  8. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    Science.gov (United States)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  9. Modelling the crystal growth in highly undercooled alloy melts by non-isothermal phase-field method

    Institute of Scientific and Technical Information of China (English)

    Li Mei-E; Yang Gen-Cang; Zhou Yao-He

    2005-01-01

    A non-isothermal phase-field model is used to simulate the rapid solidification of highly undercooled alloy melts.The influence of undercooling on the solidification process is studied. It is indicated that with the increase of undercooling, the dendrite morphology changes from poorly developed dendrite, via the well-developed dendrite containing secondary and ternary arms, to the compact diamond-shaped grain. With increasing undercooling, the tip radius changes in the following rule: decrease → increase → decrease while the growth velocity increases constantly, which is consistent with the results predicted by the Boettinger-Coriell-Trivedi model. The thermal, solutal and kinetic undercooling contributions under different initial undercooling are also determined. It is shown that when the undercooling is increased beyond a certain value, the thermal undercooling contribution exceeds the solutal contribution and the dendrite growth transits from solutal diffusion controlled to thermal diffusion controlled one.

  10. Research on the Method of MDB Data Automatic Integration Based on ArcGIS%基于 ArcGIS 的 MDB 数据自动整合方法研究

    Institute of Scientific and Technical Information of China (English)

    刘晓娟; 陈少锋; 周津津

    2015-01-01

    The main objects of this article are the roads data for Hainan 1∶50 000 DLG and geographical situation elements .Using ArcGIS secondary development platform and Python language to write script and to achieve conversion between the two quickly , and u-sing this script to different elements , it can improve efficiency of the data integration .%以海南1∶50000 DLG道路数据与地理国情要素道路数据为主要研究对象,利用 ArcGIS二次开发平台、Python 语言编写脚本,快速实现了二者之间的自动转换,并将此脚本运用到不同要素层,提高了数据整合的工作效率。

  11. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  12. INFLUENCE OF LINING THERMAL PERFORMANCE IN ELECTRIC-ARC FURNACES ON POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    S.. V. Korneev

    2014-01-01

    Full Text Available The paper presents an analysis of specific features of lining thermal performance in electric-arc furnaces at various technological periods. It has been  shown that on the basis of mathematical modeling methods for thermal processes it is possible to predict power consumption of furnaces at the operational split schedule with due account of such furnace characteristics as capacity, lining materials, furnace idle times under closed and open conditions etc. The paper shows distinctions in thermal performance of acid and the basic linings in the electric-arc furnaces. The proposed approach allows to analyze thermal losses by heat conductivity and on accumulation by a refractory lining and rather accurately to determine the required balance sheet items while calculating power consumption during various periods of scrap melting for furnaces of various capacity.

  13. CARACTERIZATION OF Cu-Al-Mn ALLOYS FABRICATED USING ARC FURNACE

    Directory of Open Access Journals (Sweden)

    Diego E. Velázquez

    2016-06-01

    Full Text Available Two alloys of Cu-Al-Mn fabricated using an arc furnace built at the Instituto de Física de Materiales Tandil (IFIMAT were studied. The manufacture of alloys containing Mn is difficult, due to their high melting point and its low vapor pressure. Moreover, Mn at high temperature easily reacts with the materials used to build crucibles or capsules. In the casting arc difficulties arise to prevent volatilization, so it is very important the choice of electrode, the source setting, cooling, and the arrangement of the pure materials into the crucible. Critical temperatures of martensitic transformation and order were determined by Differential Scanning Calorimetry (DSC. Using Optical Microscopy (OM the presence of martensite phase was determined. From the results obtained it is concluded that this method is suitable for producing Cu-Al-Mn alloys.

  14. Vacuum Gas Tungsten Arc Welding

    Science.gov (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  15. Are the Arcs of Neptune Really Stable?

    Science.gov (United States)

    Hanninen, J.; Porco, C.

    1994-12-01

    The Voyager mission discovered a system of rings and ring arcs around Neptune. It was later found that the arcs appear to be azimuthally and radially confined by resonant interactions with the nearby satellite, Galatea, yielding a maximum spread in ring particle semimajor axes of 0.6 km and a spread in forced eccentricities large enough to explain the arc's 15 km radial widths (Porco, 1991, Science 253, 995). We have modified an N-body simulation method (e.g. Hanninen and Salo, 1992, Icarus 97, 228) to include Neptune's second and fourth gravitational harmonics in order to be able to study the effects of collisions and self-gravity on the stability of the ring arcs. We have tested the simulation method and verified the shepherding mechanism in the collisionless and non-self-gravitational case. Preliminary simulation results with collisions over (1)/(2) a libration period indicate that collisions among putative 10-m sized source bodies within the arcs are indeed capable of arc disruption. However, whether or not collisions occur over this time scale depends, among other factors, on the number density of such bodies. We will explore the effects on arc stability of varying simulation parameters, such as the sizes and number density of the source bodies and the coefficient of restitution. Also, we will examine the effect of Galatea's previously neglected nearby vertical resonance on arc particle orbits.

  16. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    Science.gov (United States)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  17. Surface treatment of 0Cr19Ni9 stainless steel SMAW jointby plasma melting

    Institute of Scientific and Technical Information of China (English)

    罗伟; 栾景飞; 严密

    2002-01-01

    Micro-plasma arc surface melting of 0Cr19Ni9 shielded metal arc welding joint with a micro-plasma arc welder produced a thin surface melted layer with a refined microstructure. The surface treatment changed the anodic polarization behavior in 0.5 mol/L H2SO4 solution. The polarization tests showed that for the as-welded joint both the heat-affected zone and the weld metal decreased in resistance to corrosion compared with the as-Received parent material while for the micro-plasma arc surface melted joint the corrosion resistance increased significantly. This increase in corrosion resistance is attributed to the rapid solidification of the melted layer. Rapid solidification of the melted layer refines its microstructure, decreases its microsegregation, and inhibits the precipitation of chromium carbides at the grain boundaries.received parent material while for the micro-plasma arc surface melted joint the corrosion resistance increased significantly. This increase in corrosion resistance is attributed to the rapid solidification of the melted layer. Rapid solidification of the melted layer refines its microstructure, decreases its microsegregation, and inhibits the precipitation of chromium carbides at the grain boundaries.

  18. THE LIFETIME EXTENSION OF CAR AXLES TYPES OF RU1 AND RUSH WHEELSET FREIGHT CARS, RESTORED BY THE METHOD OF PLASMA-ARC METALLIZATION OF THE NECK AND UNDER PARTS MANUAL

    Directory of Open Access Journals (Sweden)

    V. I. Zelenin

    2009-03-01

    Full Text Available The restoration method for the journals and wheel seats of the freight wagon wheelsets by means of plasma-arc metallization is presented and the results of the bench fatigue tests with the advisable operation life of the axles restored are given.

  19. New insights into the Aeolian Islands and other arc source compositions from high-precision olivine chemistry

    Science.gov (United States)

    Zamboni, Denis; Trela, Jarek; Gazel, Esteban; Sobolev, Alexander V.; Cannatelli, Claudia; Lucchi, Federico; Batanova, Valentina G.; De Vivo, Benedetto

    2017-02-01

    The Aeolian arc (Italy) is characterized by some of the strongest along-the-arc geochemical variations in the planet, making it an ideal location to study the effect of subducting components in modifying the mantle source of island arc melts. Here, we use high-precision element concentrations in primitive phenocrystic olivine from basalts along the arc to elucidate the effects of mantle source modification by the subduction process. Olivines from this arc have Ni concentrations and Fe/Mn ratios that show similarity to peridotite sources that melted to produce mid-ocean ridge basalts. Nevertheless, they also have systematically lower Ca concentrations and Fe/Mn ratios that broadly overlap with olivines from the available global arc array. These phenocrysts also do not show significant variations in Ca as a function of olivine forsterite content. The global data suggest that all olivines crystallizing from island-arc melts have suppressed Ca concentrations and Fe/Mn ratios, relative to olivines derived from melts at intraplate and mid-ocean ridge settings suggesting elevated H2O concentrations and higher oxidation state of the equilibrium melts. Based on olivine chemistry, we interpret a predominantly peridotite source (fluxed by subduction fluids) beneath the Aeolian Arc and also for other examples of arc-related lavas.

  20. Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes

    Directory of Open Access Journals (Sweden)

    C. Manikyamba

    2012-05-01

    Archean lithospheric mantle, distinctive in being thick, refractory, and buoyant, formed complementary to the accreted plume and convergent margin terranes, as migrating arcs captured thick plume-plateaus, and the refractory, low density, residue of plume melting coupled with accreted imbricated plume-arc crust.

  1. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Science.gov (United States)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  2. 真空感应熔炼法制备坡莫合金%Preparation of permalloy by vacuum induction melting method

    Institute of Scientific and Technical Information of China (English)

    刘仁生; 张清; 王江涛; 汪先江; 赵振杰

    2014-01-01

    在复合结构坩埚(外层石墨坩埚,内层氧化镁坩埚)中,利用真空感应熔炼法制备了坡莫合金,研究了配方和制备工艺对坡莫合金软磁性能的影响.结果表明,同一熔炼工艺, Fe19.8Ni80.2软磁性能最佳;熔化起始阶段合金的边缘位置比内部中央位置软磁性能好,精炼阶段则相反;随着熔炼时间的增加,同一位置的坡莫合金结构越来越均匀,软磁性能越来越好,最后趋于不变.%Permalloy is prepared by vacuum induction melting method (VIM ) using composited structure crucible(The outer layer is a graphite crucible ,and the inner layer is a magnesium oxide crucible) . The soft magnetic properties of the prepared permalloy is studied . The results show that the soft magnetic properties of Fe19.8 Ni80.2 are the best . The softness of permalloy of the edge position is better than internal central location during the initial stage of melting . T he conclusion is opposite during refining stage . With the increase of melting time , the structure of the same position permalloy is more and more uniform , therefore , softness is better and better . Finally , it achieves a constant value .

  3. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife

    Science.gov (United States)

    Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.

    2017-07-01

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  4. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  5. Arc burst pattern analysis fault detection system

    Science.gov (United States)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  6. Arcing flow phenomena; Visualisation des ecoulements en presence d'un arc de coupure

    Energy Technology Data Exchange (ETDEWEB)

    Rachard, H.; Mottet, C. [Schneider Electric, Centre de Recherches A2, 75 - Paris (France)

    2002-06-01

    Optical diagnostic techniques have been used for studying electric arcing phenomena at Schneider Electric for many years now, and are integrated in new-product development practice. Studies have so far focused on electric arc behaviour, but today we are especially interested in studying the interaction of an electric arc with its immediate environment, i.e. gaseous medium and neighbouring materials. This article starts by discussing the specificities of electric arcs in low-voltage circuit-breakers, then goes on to examine diagnostic methods for viewing the physical phenomena of interest. After setting out and analysing the results obtained, we conclude with details on planned upgrades targeting enhanced diagnostic performance. (author)

  7. Auxiliary particle filter-model predictive control of the vacuum arc remelting process

    Science.gov (United States)

    Lopez, F.; Beaman, J.; Williamson, R.

    2016-07-01

    Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.

  8. 超音速电弧喷射雾化制备AgNi15复合颗粒%AgNi15 composite particles prepared by ultrasonic arc spray atomization method

    Institute of Scientific and Technical Information of China (English)

    谢建斌; 温春明; 秦国义; 许思勇; 郭锦新

    2014-01-01

    Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 µm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%−0.36% (mole fraction).%采用超音速电弧喷射雾化法(UASA)制备高熔点、难互溶的AgNi15复合颗粒,采用筛分法测量复合颗粒粒度分布,使用SEM、EDS和XRD分析颗粒形貌、凝固组织结构和亚稳固溶扩展。结果表明:采用UASA制备的AgNi15复合颗粒具有球形度高和分散性好的特点,直径小于74和55µm颗粒的质量分数分别为99.5%和98%。复合颗粒凝固组织结构为富镍相β(Ni)球形颗粒弥散分布在富银相α(Ag)基体中,而较大的β(Ni)颗粒中又弥散分布着α(Ag)颗粒。Ag和Ni相互实现了亚稳固溶扩展,在室温条件Ni在Ag中的固溶度在0.16%~0.3%之间(摩尔分数)。

  9. Trans-lithospheric scheme of arc magma transfer and evolution (Invited)

    Science.gov (United States)

    Bouilhol, P.; Schmidt, M. W.; Connolly, J. A.; Burg, J.

    2013-12-01

    Understanding the formation of magmatic arcs requires not only conceiving the formation of primitive arc melts, but also their evolution during migration from the mantle source to the arc. Indeed, the chemical characteristics of arc-melts are acquired during a complex process involving the slab input, the mantle wedge, and transfer of the melt at the base of and in the crust. Because the retrograde thermal regime in the upper portion of the mantle wedge is hostile to melt transport, the dominant mechanism by which melts ascend from their source through the mantle remains uncertain and mainly based on theoretical and exported models from MOR settings because of the scarcity of observations available. Within the lower crust, melts must be efficiently transferred toward higher structural levels to feed plutons and volcanoes but such melt highways are elusive and not always recognized as such. Petro-geochemical and structural analyses conducted on a mantle and lower crust section of the Kohistan Paleo-Island Arc (The Sapat Complex, Pakistan) unravel some aspects of the transfer and evolution of arc-magmas. The dominantly harzburgitic mantle shows a continuum of transport mechanisms ranging from pervasive to fully segregated melt flow, related to the formation of dunitic conduits associated with clinopyroxene-rich zones. Structural observations, linked to rock chemistry and numerical simulations show that primitive melts where transferred via porosity waves within the mantle. This efficient way of forming mantle conduit will drain the primitive mantle source region until melting cease. During this transfer, a competitive series of reaction-crystallization marks the staggering of melt evolution. The crustal section, fed with the same primitive melt, is predominantly composed of meta-plutonics that host kilometer-scale pyroxenite bodies. Within the bodies, sub-vertical magmatic and reactional structures indicate vertical magma percolation accompanied by massive cumulate

  10. Self-mode-locking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method

    Science.gov (United States)

    Tausenev, Anton V.; Obraztsova, Elena D.; Lobach, A. S.; Chernov, A. I.; Konov, Vitalii I.; Konyashchenko, Aleksandr V.; Kryukov, P. G.; Dianov, Evgenii M.

    2007-03-01

    We studied the ring and linear schemes of erbium-doped fibre lasers in which passive mode locking was achieved with the help of saturable absorbers made of high-optical quality films based on cellulose derivatives with dispersed single-wall carbon nanotubes. The films were prepared by the original method with the use of nanotubes synthesised by the arc discharge method. The films exhibit nonlinear absorption at a wavelength of 1.5 μm. Pulses in the form of optical solitons of duration 1.17 ps at a avelength of 1.56 μm were generated in the ring scheme of the erbium laser. The average output power was 1.1 mW at a pulse repetition rate of 20.5 MHz upon pumping by the 980-nm, 25-mW radiation from a laser diode. The pulse duration in the linear scheme was reduced to 466 fs for the output power up to 4 mW and a pulse repetition rate of 28.5 MHz. The specific feature of these lasers is a low pump threshold in the regime of generation of ultrashort pulses.

  11. LASERS: Ultrashort-pulse erbium-doped fibre laser using a saturable absorber based on single-wall carbon nanotubes synthesised by the arc-discharge method

    Science.gov (United States)

    Tausenev, A. V.; Obraztsova, E. D.; Lobach, A. S.; Konov, V. I.; Konyashchenko, A. V.; Kryukov, P. G.; Dianov, E. M.

    2007-09-01

    An erbium-doped fibre laser operating in self-mode-locked regime achieved with the help of a saturable absorber based on single-wall carbon nanotubes synthesised by the arc-discharge method is fabricated and studied. Due to the development of an original method for preparing samples, films of the optical quality containing individual single-wall carbon nanotubes were synthesised. The study of the dependence of resonance absorption at a wavelength of 1.5 μm on the laser radiation intensity transmitted through a film showed that these films have nonlinear transmission and can be used in fibre lasers as saturable absorbers to provide self-mode locking. Stable transform-limited pulses having the shape of optical solitons were generated at a wavelength of 1557.5 nm in the laser with a ring resonator. The pulse duration was 1.13 ps at a pulse repetition rate of 20.5 MHz. The continuous output power achieved 1.1 mW upon pumping by a 25-mW laser diode at 980 nm.

  12. PRIMARY EXPLORATION OF EVA HOT MELT ADHESIVE PREPARATION BY ROSIN CONTINUOUS METHOD%松香连续法制备EVA热熔胶初探

    Institute of Scientific and Technical Information of China (English)

    罗志刚; 林俊岳; 况生荣

    2013-01-01

      以探讨松香连续法制备 EVA 热熔胶的可行性为目的,通过对比实验比较了连续法和分步法的优缺点,考察了连续法制胶中松香酯化的合理时间及松香与EVA合适的质量配比,结果表明,松香连续法制备EVA热熔胶在实验阶段是可行的;连续法所得热熔胶与分步法所制热熔胶相比有色泽浅、粘合力强的特点;在以ZnO(松香的0.3%)作催化剂、季戊四醇用量为松香的15%、复配抗氧剂用量为松香的0.2%、石蜡用量为 EVA 质量的10%、酯化温度为270℃、制胶温度为200℃的条件下,连续法制胶中松香酯化的合理时间为6~7 h,松香与EVA合适质量配比为30/50~40/50;在此工艺条件下制得了色泽淡黄、粘合强度为675 g、流动性为2.5 mm/10g的EVA热熔胶.%The feasibility of EVA hot melt adhesive preparation by rosin continuous method was discussed in this paper. The advantages and disadvantages of continuous method and multistep method were compared by contrast experiments, reasonable time of rosin esterification and proper mass ratio of rosin with EVA were investigated in adhesive preparation by continuous method. The results show that it is feasible for EVA hot melt adhesive preparation by rosin continuous method in the experimental stage;compared with multistep method, the hot melt adhesive prepared by continuous method has the traits with light color and strong adhesion; 30/50~40/5 when ZnO (0.3%of rosin) is the catalyst, pentaerythritol amount is 15%of rosin, the dosage of compound antioxidant is 0.2% of rosin, paraffin quality is 10% of the EVA, the reaction temperature is 270 ℃ , the system rubber temperature is 200 ℃, the reasonable time of rosin esterification is 6 to 7 hours in adhesive preparation by continuous method, the suitable mass ratio of rosin with EVA is 30/50~40/50;EVA hot melt adhesive prepared in this process appeared the color of light yellow, bond strength of 675 g, fluidity of 2.5mm/10g.

  13. Study on Grafting of Polypropylene Wax with PEG by Melting Method%熔融法聚丙烯蜡接枝聚乙二醇的研究

    Institute of Scientific and Technical Information of China (English)

    彭思; 朱宏; 万霞; 蒋飞国; 林少全

    2012-01-01

    以马来酸酐作为反应单体,用熔融接枝的方法在聚丙烯蜡(PPW)上接枝马来酸酐,以其接枝产物为原料接枝聚乙二醇( PEG),合成PPW -g - PEG接枝共聚物.采用IR,DSC,TG对所得的聚合物进行表征,证明聚丙烯蜡与马来酸酐发生了接枝反应,该中间体也成功与PEG发生了缩聚反应,产物的热稳定性明显提高.相对分子量为1 000的PEG聚合物反应完全,且该相对分子量的改性接枝物的熔点降低多.%Polypropylene - grafted - polyethylene glyeol copolymers were prepared by coupling of polypropylene wax (PPW) containing maleic arrhydride group (MAH) with polyethylene glycol (PEG) by virtue of melting method and were characterized by means of chemical titration, TG, DSC and FT - IR. The experimental results indicated that grafted copolymers were successfully obtained and showed lower melting points in comparison with polypropylene wax. Furthermore, the grafted copolymer had better stability, and PPW - g - PEG (1000) by the reaction of PPW - MAH with PEG -1000 showed lower acid value and higher grafting efficiency.

  14. Applications of the method of high resolution melting analysis for diagnosis of Leber's disease and the three primary mutation spectrum of LHON in the Han Chinese population.

    Science.gov (United States)

    Cui, Guanglin; Ding, Hu; Xu, Yujun; Li, Bin; Wang, Dao Wen

    2013-01-01

    Current screening methods, such as single strand conformational polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC) and direct DNA sequencing that are used for detecting mutation in Leber's hereditary optic neuropathy (LHON) subjects are time consuming and costly. Here we tested high-resolution melt (HRM) analysis for mtDNA primary mutations in LHON patients. In this study, we applied the high resolution melting (HRM) technology to screen mtDNA primary mutations in 50 LHON patients from their peripheral blood. In order to evaluate the reliability of this technique, we compared the results obtained by HRM and direct mtDNA sequencing. We also investigated the spectrum of three most common mtDNA mutations implicated in LHON in the Han Chinese population. The results showed HRM analysis differentiated all of the mtDNA primary mutations and identified 4 additional mtDNA mutations from 50 patients in the blind study. The prevalence of three primary mutations were 11778G>A (87.9%), 14484T>C (6.5%) and 3460G>A (1.7%) in the Han Chinese population. In conclusion, HRM analysis is a rapid, reliable, and low-cost tool for detecting mtDNA primary mutations and has practical applications in molecular genetics.

  15. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  16. ArcFVDSL, a DSEL Combined to HARTS, a Runtime System Layer to Implement Efficient Numerical Methods to Solve Diffusive Problems on New Heterogeneous Hardware Architecture

    Directory of Open Access Journals (Sweden)

    Gratien Jean-Marc

    2017-03-01

    Full Text Available Nowadays, some frameworks like Arcane and Dune offer a number of advanced tools to deal with the complexity related to parallelism, meshes and linear solvers. However, they do not handle the high level complexity related to discretization methods and physical models. Generative programming and Domain Specific Languages (DSL are key technologies allowing to write code with a high level expressive language and take advantage of the efficiency of generated code with low level services. DSL may be embedded in host languages like Python or C++. Such languages, named in that case Domain Specific Embedded Languages (DSEL, are applied for instance in frameworks like Fenics or Feel++ which are dedicated to the domain of Finite Element (FE methods and Galerkin methods. ArcFVDSL is a DSEL developed on top of the Arcane framework, aiming to implement various lowest order methods (Finite-Volume (FV, Mimetic Finite Difference (MFD, Mixed Hybrid Finite Volume (MHFV, etc. for diffusive problems on general meshes. In this paper, we present various implementations of different complex academic problems. We focus on the capability of the language to allow the description and the resolution of these problems with several lowest-order methods. We illustrate the benefits of such technology combined to runtime system tools like Heterogeneous Abstract RunTime System (HARTS and its ability to handle seamlessly new heterogeneous architectures with multi-core processors enhanced by General Purpose computing on Graphics Processing Units (GP-GPU. We present the performance results of each implementation on different kinds of heterogeneous hardware architecture.

  17. A new tuning method of arc suppression coil based on the constant zero-sequence voltage amplitude%基于恒定零序电压幅值的消弧线圈调谐新方法

    Institute of Scientific and Technical Information of China (English)

    李涛; 苗晓鹏; 李晓波

    2014-01-01

    In order to improve the compensation effect of the arc suppression coil, a new tuning method of arc suppression coil based on the constant zero-sequence voltage amplitude is proposed. In this method, the arc suppression coil and resistor are added in the distribution network neutral point. After replacing the resistor, it adjusts the arc suppression coil inductance value, while observes and measures the size of the neutral point offset voltage rms, to coordinate the further adjustment of the arc suppression coil. When the neutral point offset voltage rms is identical before and after replacing the resistor, simultaneous equations, the sum of the capacitance to ground CΣand the sum of the resistance to ground gΣ in the distribution network can be accurately obtained, thus to determine the value of arc suppression coil fully compensated inductor L 0 . Matlab simulation and theoretical calculation verify that the method can obtain a more precise compensation effect. This method has the advantages of simple operation, high accuracy, good compensation effect, so it can be applied to the areas of arc suppression coil tuning.%为了改善消弧线圈补偿的补偿效果,提出了一种基于恒定零序电压幅值的消弧线圈调谐新法。该方法通过在配电网中性点增加消弧线圈及电阻,更换电阻之后,调节消弧线圈电感值,同时观察和测量中性点偏移电压有效值的大小,来配合消弧线圈的进一步调节。当改变电阻前后中性点偏移电压有效值相同时,联立方程,可以精确地求出配电网对地电容总和与对地电阻总和gΣ,从而确定消弧线圈全补偿时的电感值L0。通过Matlab仿真和理论计算,验证了该方法能够取得比较精确的补偿效果。该方法具有操作简单,测量精度高,补偿效果好等优点,可以应用于消弧线圈调谐领域。CΣ

  18. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination

    Science.gov (United States)

    Wang, Xuan-Ce; Wilde, Simon A.; Xu, Bei; Pang, Chong-Jin

    2016-09-01

    Continental basalts generally display enrichment of fluid-mobile elements and depletion of high-field-strength elements, similar to those that evolved in the subduction environment, but different from oceanic basalts. Based on the continental flood basalt database for six large igneous provinces, together with rift-related basalt data from the Basin and Range Province, this study aimed to test the validity of geochemical tectonic discrimination diagrams in distinguishing arc-like intra-continental basalts from arc basalts and to further investigate the role of deep-Earth water cycling in producing arc-like signatures in large-scale intra-continental basalts. Our evaluation shows that arc-like intra-continental basalts can be distinguished from arc basalts by integrating the following factors: (1) the FeO, MgO, and Al2O3 concentrations of the primary melt; (2) Tisbnd V, Zrsbnd Zr/Y, Zrsbnd Ti, and Ti/Vsbnd Zr/Smsbnd Sr/Nd discrimination diagrams; (3) the coexistence of arc-like and OIB-like subtype basalts within the same province; (4) primitive mantle-normalized trace element distribution patterns. The similarity of enrichment in fluid-mobile elements (Ba, Rb, Sr, U, and K) between arc-like and true arc basalts suggests the importance of water flux melting in producing arc-like signatures in continental basalts. Experimentally determined liquid lines of descent (LLD) imply high magma water concentrations for continental flood basalts (CFBs) and the Basin and Range basalts. Furthermore, estimates based on the Al2O3-LLD method indicates 4.0-5.0 wt% pre-eruptive magma H2O concentration for CFBs and the Basin and Range basalts. The tight relationships between H2O/Ce and Ba/La, Ba/Nb and Rb/Nb based on global arc basalt data were further used to estimate the primary H2O concentrations. With the exception of the Emeishan CFBs (mainly containing 4.0-5.6 wt% H2O), all other CFBs investigated have similar estimated primary H2O contents, with values ranging from 1.0 to 2

  19. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  20. Interface description using computational methods and tribological characteristic of Ti N/Ti C films prepared by reactive pulse arc evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Devia N, D. M. [Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, Manizales, Caldas (Colombia); Gonzalez C, J. M.; Ruden M, A., E-mail: dmdevian@utp.edu.co [Universidad del Valle, Edificio 349, espacio 1003, Ciudad Universitaria Melendez, Cali (Colombia)

    2013-10-01

    The Ti N/Ti C bilayers have been deposited by Plasma Assisted Physical Vapor Deposition Technique - Reactive Pulsed Arc. The coatings were analyzed by X-ray photoelectron spectroscopy (XP S) and X-ray diffraction (XRD). From the signal treatment of the narrow XP S spectra and the XRD diffraction patterns, the formation of Ti N (titanium nitride), Ti C (titanium carbide) and Ti CN (titanium carbonitride) was confirmed, with fm-3m spatial group, corresponding to the Fcc phase of the synthesized compounds. The multilayer was simulated using Density Functional Theory (DFT) by the Unrestricted Hartree Fock method. Charge distributions and electron total density were obtained; finding bond formation at the interphase, electrical neutrality and system stability. Anomalies in the corners of the structures due to edge effect, simulation ideality and the no internal tension inclusion, intrinsic to the growing, are observed. The ball on disc tribometer was used to measure the friction and wear coefficient to verify the interface formation. (Author)

  1. Magnetocaloric properties of TbN, DyN and HoN nanopowders prepared by the plasma arc discharge method.

    Science.gov (United States)

    Shinde, K P; Jang, S H; Kim, J W; Kim, D S; Ranot, M; Chung, K C

    2015-12-21

    We report for the first time the synthesis of nanopowders of TbN, DyN and HoN crystallized in a cubic structure by the plasma arc discharge (PAD) method and investigate their magnetocaloric properties for magnetic refrigeration applications. The nitridization of terbium, dysprosium and holmium was obtained using a mixture of nitrogen and argon gas inside a discharge chamber with 4 kPa pressure. The structural and microstructural properties of these rare earth nitrides were investigated by using X-ray diffraction and transmission electron microscopy. The studied nitrides undergo a second-order ferromagnetic to paramagnetic phase transition at Curie temperatures of 35.7, 19.9 and 14.2 K for TbN, DyN and HoN, respectively. The magnetocaloric effects were estimated by calculating the magnetic entropy changes from the magnetization data sets measured at the different applied magnetic fields and temperatures. The changes in entropy -ΔSM were found to be 12.0, 13.6 and 24.5 J kg(-1) K(-1) at an applied magnetic field of 5 T.

  2. Numerical modeling of two-dimensional heat-transfer and temperature-based calibration using simulated annealing optimization method: Application to gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Bjelić Mišo B.

    2016-01-01

    Full Text Available Simulation models of welding processes allow us to predict influence of welding parameters on the temperature field during welding and by means of temperature field and the influence to the weld geometry and microstructure. This article presents a numerical, finite-difference based model of heat transfer during welding of thin sheets. Unfortunately, accuracy of the model depends on many parameters, which cannot be accurately prescribed. In order to solve this problem, we have used simulated annealing optimization method in combination with presented numerical model. This way, we were able to determine uncertain values of heat source parameters, arc efficiency, emissivity and enhanced conductivity. The calibration procedure was made using thermocouple measurements of temperatures during welding for P355GH steel. The obtained results were used as input for simulation run. The results of simulation showed that represented calibration procedure could significantly improve reliability of heat transfer model. [National CEEPUS Office of Czech Republic (project CIII-HR-0108-07-1314 and to the Ministry of Education and Science of the Republic of Serbia (project TR37020

  3. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  4. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    Science.gov (United States)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  5. BASIC THEORY AND APPLICATIONS OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    LI Junyue; XUE Haitao; LI Huan; SONG Yonglun

    2007-01-01

    Welding arc spectral information is a rising welding Information source. In some occasion, it can reflect many physical phenomena of welding process and solve many problems that cannot be done with arc electric information, acoustic information and other arc information. It is of important significance in developing automatic control technique of welding process and other similar process. Many years study work on welding arc spectral information of the anthor are discussed from three aspects of theory, method and application. Basic theory, view and testing methods of welding arc spectral information has been put forward. In application aspects, many applied examples, for example, monitoring of harmful gases in arc (such as hydrogen and nitrogen) with the method of welding arc spectral information; welding arc spectral imaging of thc welding pool which is used in automatic seam tracking; controlling of welding droplet transfer with welding arc spectral information and so on, are introduced. Especially, the successful application in real time controlling of welding droplet transfer in pulsed GMAW is introduced too. These application examples show that the welding arc spectral information has great applied significance and development potentialities. These content will play an important role in applying and spreading welding arc spectral information technology.

  6. 触头灭弧系统短路分断调试方法的技术研究%Technical Study of Short-Circuit Breaking Debugging Method for Contact Arc Extinguishing System

    Institute of Scientific and Technical Information of China (English)

    贺雅洁; 黄世泽; 郭其一; 胡景泰; 朱奇敏

    2012-01-01

      介绍了控制与保护开关(CPS)触头灭弧系统的各种出厂调试方法以及调试现象。阐述了触头灭弧系统的工作原理,分析了触头灭弧系统的触头受力情况,针对分断试验过程中出现的三种情况,分析了其对KBO触头灭弧系统短路分断能力的影响,通过试验验证了理论分析的正确性,并对触头灭弧系统的调试提出了建议。%  Introduction was made to various kinds of ex-works debugging methods and debugging phenomena for contact arc extinguish-ing system of control and protective switching device (CPS). Description was made to the working principle of contact arc extinguishing sys-tem and analysis was made to contact stress situation of the system. Aiming at three situations in breaking test process, this paper analyzed its impacts on short-circuit breaking capability of KBO contact arc extinguishing system. The test verifies the correctness of theoretical analysis and suggestions are made for debugging of contact arc extinguishing system.

  7. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  8. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes

    Science.gov (United States)

    Draut, Amy; Clift, Peter D.

    2013-01-01

    and tectonic erosion vs. accretion are important controls on the ultimate survival of material from the trench, forearc, arc massif, intra-arc basins, and backarc basins, and thus on how well an ancient arc terrane preserves evidence for tectonic processes such as subduction of aseismic ridges and seamounts, oblique plate convergence, and arc rifting. Forward-facing collision involves substantial recycling, melting, and fractionation of continent-derived material during and after collision, and so produces melts rich in silica and incompatible trace elements. As a result, forward-facing collision can drive the composition of accreted arc crust toward that of average continental crust.

  9. STRUVE arc and EUPOS® stations

    Science.gov (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  10. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts

    NARCIS (Netherlands)

    Fraaije, JGEM; vanVlimmeren, BAC; Maurits, NM; Postma, M; Evers, OA; Hoffmann, C; Altevogt, P; GoldbeckWood, G

    1997-01-01

    In this paper we discuss a new generalized time-dependent Ginzburg-Landau theory for the numerical calculation of polymer phase separation kinetics in 3D. The thermodynamic forces are obtained by a mean-field density functional method, using a Gaussian chain as a molecular model. The method is

  11. Anhydrite solubility in differentiated arc magmas

    Science.gov (United States)

    Masotta, M.; Keppler, H.

    2015-06-01

    The solubility of anhydrite in differentiated arc magmas was experimentally studied at 200 MPa and 800-1000 °C over a range of oxygen fugacities, from 0.5 log units above the Ni-NiO buffer to the hematite-magnetite buffer. Anhydrite is stable only at oxidizing conditions (fO2 ⩾ Re-ReO2), whereas sulfides only form under reducing conditions. The solubility of anhydrite in the melt ultimately regulates the amount of sulfur available to partition between melt and fluid phase during the eruption. At oxidizing conditions, the solubility product of anhydrite increases with temperature, nbo/t and melt water content. We provide a new calibration of the anhydrite solubility product (KSP = XCaO * XSO3), which reproduces all available experimental data with greatly improved accuracy: In this equation, the molar fractions XCaO and XSO3 in the melt as well as the number of non-bridging oxygen atoms per tetrahedron (nbo/t) are calculated on an anhydrous basis (H2O refers to the melt water content, T is temperature in Kelvin). We apply our model to estimate the sulfur yield of some recent volcanic eruptions and we show that the sulfur yield of the 1991 Mt. Pinatubo dacite eruption was unusually large, because only a small fraction of the sulfur was locked up in anhydrite. In general, high sulfur yields are expected when anhydrite solubility in the melt is high, i.e. for somewhat depolymerized melts. For rhyolitic systems, most of the available sulfur will be locked up in anhydrite, so that even very large eruptions may only have a small effect on global surface temperatures. Our model therefore allows improved predictions of the environmental impact of explosive volcanic eruptions.

  12. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    Science.gov (United States)

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and an increase in the sediment contribution (higher Th/Nb, La/Sm, and Pb isotopic ratios) from Mt. Pagan to South Pagan could reflect systematic cross-arc or irregular along-arc melting variations. These observations indicate that the length scale of compositional heterogeneity in the mantle wedge beneath Mariana arc volcanoes is small (~10km).

  13. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  14. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones

    Science.gov (United States)

    Fullea, J.; Fernàndez, M.; Zeyen, H.; Vergés, J.

    2007-02-01

    We present a method based on the combination of elevation and geoid anomaly data together with thermal field to map crustal and lithospheric thickness. The main assumptions are local isostasy and a four-layered model composed of crust, lithospheric mantle, sea water and the asthenosphere. We consider a linear density gradient for the crust and a temperature dependent density for the lithospheric mantle. We perform sensitivity tests to evaluate the effect of the variation of the model parameters and the influence of RMS error of elevation and geoid anomaly databases. The application of this method to the Gibraltar Arc System, Atlas Mountains and adjacent zones reveals the presence of a lithospheric thinning zone, SW-NE oriented. This zone affects the High and Middle Atlas and extends from the Canary Islands to the eastern Alboran Basin and is probably linked with a similarly trending zone of thick lithosphere constituting the western Betics, eastern Rif, Rharb Basin, and Gulf of Cadiz. A number of different, even mutually opposite, geodynamic models have been proposed to explain the origin and evolution of the study area. Our results suggest that a plausible slab-retreating model should incorporate tear and asymmetric roll-back of the subducting slab to fit the present-day observed lithosphere geometry. In this context, the lithospheric thinning would be caused by lateral asthenospheric flow. An alternative mechanism responsible for lithospheric thinning is the presence of a hot magmatic reservoir derived from a deep ancient plume centred in the Canary Island, and extending as far as Central Europe.

  15. Stud arc welding in a magnetic field - Investigation of the influences on the arc motion

    Science.gov (United States)

    Hartz-Behrend, K.; Marqués, J. L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J.

    2014-11-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process.

  16. Experimentation of several mitigation methods in Tasiujaq Airport to minimize the effects caused by the melting of permafrost

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy

    2009-01-01

    Since the beginning of the 1990s an important increase in the mean annual air temperatures has been recorded in Nunavik, Québec, Canada. This has lead to the degradation of permafrost, which is threatening the stability of airport and road embankments in the region. In the summer of 2007 a test......-site was established at Tasiujaq Airport to study the effect of three different mitigations methods: heat drain, air convection embankment, and gentle slope (8:1). The methods were constructed in the shoulder of the runway embankment, each method over a distance of 50 m. In each section thermistors were installed...

  17. Experimentation of several mitigation methods in Tasiujaq Airport to minimize the effects caused by the melting of permafrost

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy

    2009-01-01

    Since the beginning of the 1990s an important increase in the mean annual air temperatures has been recorded in Nunavik, Québec, Canada. This has lead to the degradation of permafrost, which is threatening the stability of airport and road embankments in the region. In the summer of 2007 a test......-site was established at Tasiujaq Airport to study the effect of three different mitigations methods: heat drain, air convection embankment, and gentle slope (8:1). The methods were constructed in the shoulder of the runway embankment, each method over a distance of 50 m. In each section thermistors were installed...

  18. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  19. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    Science.gov (United States)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from transition from non-ideal mixing as OH- in the melt (ϒSiO2 2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of

  20. Establishment of a simple and rapid identification method for Listeria spp. by using high-resolution melting analysis, and its application in food industry.

    Science.gov (United States)

    Ohshima, Chihiro; Takahashi, Hajime; Phraephaisarn, Chirapiphat; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2014-01-01

    Listeria monocytogenes is the causative bacteria of listeriosis, which has a higher mortality rate than that of other causes of food poisoning. Listeria spp., of which L. monocytogenes is a member, have been isolated from food and manufacturing environments. Several methods have been published for identifying Listeria spp.; however, many of the methods cannot identify newly categorized Listeria spp. Additionally, they are often not suitable for the food industry, owing to their complexity, cost, or time consumption. Recently, high-resolution melting analysis (HRMA), which exploits DNA-sequence differences, has received attention as a simple and quick genomic typing method. In the present study, a new method for the simple, rapid, and low-cost identification of Listeria spp. has been presented using the genes rarA and ldh as targets for HRMA. DNA sequences of 9 Listeria species were first compared, and polymorphisms were identified for each species for primer design. Species specificity of each HRM curve pattern was estimated using type strains of all the species. Among the 9 species, 7 were identified by HRMA using rarA gene, including 3 new species. The remaining 2 species were identified by HRMA of ldh gene. The newly developed HRMA method was then used to assess Listeria isolates from the food industry, and the method efficiency was compared to that of identification by 16S rDNA sequence analysis. The 2 methods were in coherence for 92.6% of the samples, demonstrating the high accuracy of HRMA. The time required for identifying Listeria spp. was substantially low, and the process was considerably simplified, providing a useful and precise method for processing multiple samples per day. Our newly developed method for identifying Listeria spp. is highly valuable; its use is not limited to the food industry, and it can be used for the isolates from the natural environment.

  1. Lateral variation of H2O contents in Quaternary Magma of central Northeastern Japan arc

    Science.gov (United States)

    Miyagi, I.; Matsu'ura, T.; Itoh, J.; Morishita, Y.

    2011-12-01

    Water plays a key role in the genesis and eruptive mechanisms of subduction zone volcanoes. We estimated bulk rock water content of both frontal and back arc volcanoes from Northeastern Japan arc in order to understand the lateral variation of magmatic H2O contents in the island arc magma. Our analytical targets are the Adachi volcano located near the volcanic front and the Hijiori volcano located on back arc side. In this study, the bulk magmatic H2O content is estimated by a simple mass balance calculation of the chemistry of bulk rock and melt inclusions in phenocrysts; the melt H2O contents of melt inclusions analyzed by SIMS or EPMA are corrected according to the difference in K2O content between melt inclusions and bulk rock. The bulk magmatic H2O we obtained is 8 wt. % or even more for Adachi and is 2-3 wt. % for Hijiori. Thus, the frontal volcano has higher H2O than the back arc volcano. Although our data are opposed to the previous estimation on the lateral variation of H2O contents in Quaternary volcanoes of Northeastern Japan arc (e.g., Sakuyama, 1979), thermodynamic computations using MELTS (Ghiorso and Sack, 1995) suggest that the amount of bulk magmatic H2O we estimated is consistent with petrographical observations. Our data imply a regional characteristics in the type of eruption that the H2O rich frontal volcanoes will erupt explosively and those H2O poor back arc ones will be effusive, which implication is consistent with actual geological observations that volcanoes located on back arc side of the Northeastern Japan arc generally comprise lava flow (e.g., Iwaki, Kanpu, Chokai, Gassan), in contrast to the frontal ones that produced voluminous tephra (e.g., Osorezan, Towada, Narugo, Adachi). This research project has been conducted under the research contract with Nuclear and Industrial Safety Agency (NISA).

  2. Kinematic variables and water transport control the formation and location of arc volcanoes.

    Science.gov (United States)

    Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E

    2009-06-01

    The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.

  3. Applications of novel effects derived from Si ingot growth inside Si melt without contact with crucible wall using noncontact crucible method to high-efficiency solar cells

    Science.gov (United States)

    Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis

    2017-06-01

    The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.

  4. On the theory of the proton dipolar-correlation effect as a method for investigation of segmental displacement in polymer melts

    Science.gov (United States)

    Lozovoi, A.; Petrova, L.; Mattea, C.; Stapf, S.; Rössler, E. A.; Fatkullin, N.

    2017-08-01

    A thorough theoretical description of the recently suggested method [A. Lozovoi et al. J. Chem. Phys. 144, 241101 (2016)] based on the proton NMR dipolar-correlation effect allowing for the investigation of segmental diffusion in polymer melts is presented. It is shown that the initial rise of the proton dipolar-correlation build-up function, constructed from Hahn Echo signals measured at times t and t/2, contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean-squared displacement of polymer segments from different macromolecules, which provides an opportunity for an experimental study of segmental translational motions at the millisecond range that falls outside the typical range accessible by other methods, i.e., neutron scattering or NMR spin echo with the magnetic field gradients. A comparison with the other two proton NMR methods based on transverse spin relaxation phenomena, i.e., solid echo and double quantum resonance, shows that the initial rise of the build-up functions in all the discussed methods is essentially identical and differs only in numerical coefficients. In addition, it is argued that correlation functions constructed in the same manner as the dipolar-correlation build-up function can be applied for an experimental determination of a mean relaxation rate in the case of systems possessing multi-exponential magnetization decay.

  5. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  6. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  7. Numerical solutions of multi-dimensional solidification/melting problems by the dual reciprocity boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)

  8. H2O and CO2 in magmas from the Mariana arc and back arc systems

    Science.gov (United States)

    Newman, Sally; Stolper, Edward; Stern, Robert

    2000-05-01

    We examined the H2O and CO2 contents of glasses from lavas and xenoliths from the Mariana arc system, an intraoceanic convergent margin in the western Pacific, which contains an active volcanic arc, an actively spreading back arc basin, and active behind-the-arc cross-chain volcanoes. Samples include (1) glass rims from Mariana arc, Mariana trough, and cross-chain submarine lavas; (2) glass inclusions in arc and trough phenocrysts; and (3) glass inclusions from a gabbro + anorthosite xenolith from Agrigan (Mariana arc). Glass rims of submarine arc lavas contain 0.3-1.9 wt % H2O, and CO2 is below detection limits. Where they could be compared, glass inclusions in arc phenocrysts contain more H2O than their host glasses; most arc glasses and phenocryst inclusions contain no detectable CO2, with the exception of those from a North Hiyoshi shoshonite, which contains 400-600 ppm. The glass inclusions from the Agrigan xenolith contain 4-6% H2O, and CO2 is below the detection limit. Glasses from the cross-chain lavas are similar to those from the arc: H2O contents are 1.4-1.7 wt %, and CO2 is below detection limits. Volatile contents in Mariana trough lava glass rims are variable: 0.2-2.8 wt % H2O and 0-300 ppm CO2. Glass inclusions from trough phenocrysts have water contents similar to the host glass, but they can contain up to 875 ppm CO2. Volatile contents of melt inclusions from trough and arc lavas and from the xenolith imply minimum depths of crystallization of ~1-8 km. H2O and CO2 contents of Mariana trough glasses are negatively correlated, indicating saturation of the erupting magma with a CO2-H2O vapor at the pressure of eruption (~400 bars for these samples), with the vapor ranging from nearly pure CO2 at the CO2-rich end of the glass array to nearly pure H2O at the H2O-rich end. Degassing of these magmas on ascent and eruption leads to significant loss of CO2 (thereby masking preeruptive CO2 contents) but minimal disturbance of preeruptive H2O contents. For

  9. A novel closed-tube method based on high resolution melting (HRM) analysis for authenticity testing and quantitative detection in Greek PDO Feta cheese.

    Science.gov (United States)

    Ganopoulos, Ioannis; Sakaridis, Ioannis; Argiriou, Anagnostis; Madesis, Panagiotis; Tsaftaris, Athanasios

    2013-11-15

    Animal species identification of milk and dairy products has received increasing attention concerning food composition, traceability, allergic pathologies and accurate consumer information. Here we sought to develop an easy to use and robust method for species identification in cheese with emphasis on an authenticity control of PDO Feta cheese products. We used specific mitochondrial DNA regions coupled with high resolution melting (HRM) a closed-tube method allowing us to detect bovine, ovine and caprine species and authenticate Greek PDO Feta cheese. The primers successfully amplified DNA isolated from milk and cheese and showed a high degree of specificity. HRM was proven capable of accurately identifying the presence of bovine milk (not allowed in Feta) down to 0.1% and also of quantifying the ratio of sheep to goat milk mixture in different Feta cheese commercial products. In conclusion, HRM analysis can be a faster, with higher resolution and a more cost effective alternative method to authenticate milk and dairy products including PDO Feta cheese and to quantitatively detect its sheep milk adulterations.

  10. Interruption Phenomenon in Intermediate-Frequency Vacuum Arc

    Science.gov (United States)

    Jiang, Yuan; Wu, Jianwen

    2016-03-01

    In the condition of the 3 mm gap, experiments for 360 Hz intermediate-frequency vacuum arc are carried out in interrupters with the diameters being 41 mm and with the contact materials being CuCr50 and Cu-W-WC alloy respectively. The results indicate that the contacts material is closely related to the breaking capacity of the vacuum interrupters and characteristics of an intermediate-frequency vacuum arc. For contacts with the same diameter, the breaking capacity of CuCr50 is better than that of Cu-W-WC. When the current fails to be interrupted, the arcs overflow the gap and present irregular performances in the first half wave. Consequently a voltage spike appears. More macroscopic metal droplets can be seen in the arc column between CuCr50 contacts because of the lower melting point. It is observed that the droplet emission is much more severe during arc reignition than that in the first half wave. It is much more conspicuous that the high frequency arc voltage noises appear in Cu-W-WC contacts when the vacuum arcs reignite, for higher temperature and stronger electronic emission ability of Cu-W-WC contacts. supported by National Natural Science Foundation of China (No. 51377007), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20131102130006), and Fundamental Research Funds for the Central Universities of China

  11. The occurrence and damage of unipolar arcing on fuzzy tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Aussems, D.U.B., E-mail: d.aussems@differ.nl [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Nieuwegein, NL-3430 BE (Netherlands); Nishijima, D.; Brandt, C. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Meiden, H.J. van der [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Nieuwegein, NL-3430 BE (Netherlands); Vilémová, M.; Matějíček, J. [Institute of Plasma Physics, Association EURATOM-IPP, 182 00 Prague 8 (Czech Republic); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Nieuwegein, NL-3430 BE (Netherlands); Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Lopes Cardozo, N.J. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, Den Dolech 2, Eindhoven (Netherlands)

    2015-08-15

    This research investigated whether unipolar arcing in the divertor of fusion reactors is a potential cause for enhanced wear of the divertor. It was found that 1 μm of nano-fuzz growth is sufficient to initiate arcing, mainly depending on the sheath potential drop and electron density. The average mass loss rate induced by the arc was determined from mass loss measurements and found to be consistent with the value estimated from the arc current. The average arc track erosion depth was estimated by using the measured mass loss and damaged surface area and was found to be one tenth of the fuzzy layer thickness. Due to melting of the fuzzy structures the actual depth is larger and some arc tracks occasionally appeared to even reach the bulk beyond the fuzzy layer. The conclusion of this study is therefore that arcing in the divertor of future tokamaks (e.g. ITER) potentially is an important cause for surface damage and plasma pollution.

  12. 基于最小均方误差的圆弧分段曲线拟合方法%METHOD OF CIRCULAR ARC FRAGMENTED CURVE-FITTING BASED ON LEAST MEAN-SQUARE ERROR

    Institute of Scientific and Technical Information of China (English)

    涂嘉文; 徐守时; 谭勇

    2001-01-01

    We present a method of circular arc fragmented curve-fittingbased on least mean-square error rule in this paper. This method adopts self-adaptive gauss filter to process original curve smoothly to eliminate noise effects, and proposes a fragrmented algorithm that is adaptive to circular arc. Based on this algorithm, we use the circular arc as basic element to fit curve accroding to least mean-square error rule. The experiment results indicate that this method can eliminate noise effects as well as preserve the local characteristics of curve.%提出了一种基于最小均方误差准则的圆弧分段曲线拟合方法。该方法采用自适应高斯滤波器对原始曲线进行平滑处理以消除噪声影响,并提出了一种适合于圆弧曲线拟合的分段算法。在该算法的基础上根据最小均方误差准则,以圆弧作为基元对曲线进行拟合。实验结果表明,该方法能够较好地消除噪声影响并保留曲线的局部特征。

  13. Formation of hybrid arc andesites beneath thick continental crust

    Science.gov (United States)

    Straub, Susanne M.; Gomez-Tuena, Arturo; Stuart, Finlay M.; Zellmer, Georg F.; Espinasa-Perena, Ramon; Cai, Yue; Iizuka, Yoshiyuki

    2011-03-01

    Andesite magmatism at convergent margins is essential for the differentiation of silicate Earth, but no consensus exists as to andesite petrogenesis. Models proposing origin of primary andesite melts from mantle and/or slab materials remain in deadlock with the seemingly irrefutable petrographic and chemical evidence for andesite formation through mixing of basaltic mantle melts with silicic components from the overlying crust. Here we use 3He/4He ratios of high-Ni olivines to demonstrate the mantle origin of basaltic to andesitic arc magmas in the central Mexican Volcanic Belt (MVB) that is constructed on ~ 50 km thick continental crust. We propose that the central MVB arc magmas are hybrids of high-Mg# > 70 basaltic and dacitic initial mantle melts which were produced by melting of a peridotite subarc mantle interspersed with silica-deficient and silica-excess pyroxenite veins. These veins formed by infiltration of reactive silicic components from the subducting slab. Partial melts from pyroxenites, and minor component melts from peridotite, mix in variable proportions to produce high-Mg# basaltic, andesitic and dacitic magmas. Moderate fractional crystallization and recharge melt mixing in the overlying crust produces then the lower-Mg# magmas erupted. Our model accounts for the contrast between the arc-typical SiO2 variability at a given Mg# and the strong correlation between major element oxides SiO2, MgO and FeO which is not reproduced by mantle-crust mixing models. Our data further indicate that viscous high-silica mantle magmas may preferentially be emplaced as intrusive silicic plutonic rocks in the crust rather than erupt. Ultimately, our results imply a stronger turnover of slab and mantle materials in subduction zones with a negligible, or lesser dilution, by materials from the overlying crust.

  14. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  15. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  16. Experimentally Studied Thermal Piston-head State of the Internal-Combustion Engine with a Thermal Layer Formed by Micro-Arc Oxidation Method

    Directory of Open Access Journals (Sweden)

    N. Yu. Dudareva

    2015-01-01

    Full Text Available The paper presents results of experimental study to show the efficiency of reducing thermal tension of internal combustion engine (ICE pistons through forming a thermal barrier coating on the piston-head. During the engine operation the piston is under the most thermal stress. High temperatures in the combustion chamber may lead to the piston-head burnout and destruction and engine failure.Micro-arc oxidation (MAO method was selected as the technology to create a thermal barrier coating. MAO technology allows us to form the ceramic coating with a thickness of 400μm on the surface of aluminum alloy, which have high heat resistance, and have good adhesion to the substrate even under thermal cycling stresses.Deliverables of MAO method used to protect pistons described in the scientific literature are insufficient, as they are either calculated or experimentally obtained at the special plants (units, which do not reproduce piston operation in a real engine. This work aims to fill this gap. The aim of the work is an experimental study of the thermal protective ability of MAO-layer formed on the piston-head with simulation of thermal processes of the real engine.The tests were performed on a specially designed and manufactured stand free of motor, which reproduces operation conditions maximum close to those of the real engine. The piston is heated by a fire source - gas burner with isobutene balloon, cooling is carried out by the water circulation system through the water-cooling jacket.Tests have been conducted to compare the thermal state of the regular engine piston without thermal protection and the piston with a heat layer formed on the piston-head by MAO method. The study findings show that the thermal protective MAO-layer with thickness of 100μm allows us to reduce thermal tension of piston on average by 8,5 %. Thus at high temperatures there is the most pronounced effect that is important for the uprated engines.The obtained findings can

  17. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  18. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  19. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    Science.gov (United States)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5-20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  20. Quantifying melting and mobilistaion of interstitial melts in crystal mushes

    Science.gov (United States)

    Veksler, Ilya; Dobson, Katherine; Hess, Kai-Uwe; Ertel-Ingrisch, Werner; Humphreys, Madeleine

    2015-04-01

    The deformation of crystals mushes and separation of melts and crystals in is critical to understanding the development of physical and chemical heterogeneity in magma chambers and has been invoked as an eruption trigger mechanism. Here we investigate the behaviour of the melt in the well characterised, classic crystal mush system of the Skaergaard intrusion by combining experimental petrology and the non-destructive 3D imaging methods. Starting materials for partial melting experiments were four samples from the upper Middle Zone of the Layered Series. Cylinders, 15 mm in diameter and 20 mm in length, were drilled out of the rock samples, placed in alumina crucibles and held for 5 days in electric furnaces at atmospheric pressure and 1050-1100 °C. Redox conditions set by the CO-CO2 gas mixture were kept close to those of the FMQ buffer. We then use spatially registered 3D x-ray computed tomography images, collected before and after the experiment, to determine the volume and distribution of the crystal framework and interstitial phases, and the volume, distribution and connectivity the interstitial phases that undergo melting and extraction while at elevated temperature. Image analysis has allowed us to quantify these physical changes with high spatial resolution. Our work is a first step towards quantitative understanding of the melt mobilisation and migration processes operating in notionally locked crystal rich magmatic systems.

  1. A Simple Method to Determine the Timing of Snow Melt by Remote Sensing with Application to the CO2 Balances of Northern Mire and Heath Ecosystems

    Directory of Open Access Journals (Sweden)

    Terhikki Manninen

    2009-11-01

    Full Text Available The timing of the disappearance of the snow cover in spring, or snow melt day (SMD, is a key parameter controlling the carbon dioxide balance between the northern mire and heath ecosystems and the atmosphere. We present a simple method for the determination of the SMD using a satellite-based surface albedo product (SAL. The method is based on the local change of albedo from higher wintertime values towards the lower summertime values. The satellite SMD timing correlates well with the SMD determined from snow depth measurements at Finnish weather stations (r = 0.86, slope 1.05. In 50% of the cases the error was 3.4 days or less and bias less than half a day. This would lead to a moderate uncertainty in the annual CO2 balance of mire and heath ecosystems, if the published SMD—CO2 balance relations are valid. However, due to the limited data sets available a systematic validation is left for the future.

  2. On the rational formulation of alternative fuels: melting point and net heat of combustion predictions for fuel compounds using machine learning methods.

    Science.gov (United States)

    Saldana, D A; Starck, L; Mougin, P; Rousseau, B; Creton, B

    2013-01-01

    We report the development of predictive models for two fuel specifications: melting points (T(m)) and net heat of combustion (Δ(c)H). Compounds inside the scope of these models are those likely to be found in alternative fuels, i.e. hydrocarbons, alcohols and esters. Experimental T(m) and Δ(c)H values for these types of molecules have been gathered to generate a unique database. Various quantitative structure-property relationship (QSPR) approaches have been used to build models, ranging from methods leading to multi-linear models such as genetic function approximation (GFA), or partial least squares (PLS) to those leading to non-linear models such as feed-forward artificial neural networks (FFANN), general regression neural networks (GRNN), support vector machines (SVM), or graph machines. Except for the case of the graph machines method for which the only inputs are SMILES formulae, previously listed approaches working on molecular descriptors and functional group count descriptors were used to develop specific models for T(m) and Δ(c)H. For each property, the predictive models return slightly different responses for each molecular structure. Therefore, models labelled as 'consensus models' were built by averaging values computed with selected individual models. Predicted results were then compared with experimental data and with predictions of models in the literature.

  3. Generation of continental crust in intra-oceanic arcs

    Science.gov (United States)

    Gazel, E.; Hayes, J. L.; Kelemen, P. B.; Everson, E. D.; Holbrook, W. S.; Vance, E.

    2014-12-01

    The origin of continental crust is still an unsolved mystery in the evolution of our planet. Although the best candidates to produce juvenile continental crust are intra-oceanic arcs these systems are dominated by basaltic lavas, and when silicic magmas are produced, the incompatible-element compositions are generally too depleted to be a good match for continental crust estimates. Others, such as the W. Aleutians, are dominated by andesitic melts with trace element compositions similar to average continental crust. In order to evaluate which intra-oceanic arcs produced modern continental crust, we developed a geochemical continental index (CI) through a statistical analysis that compared all available data from modern intra-oceanic arcs with global estimates of continental crust. Our results suggest that magmas from Costa Rica (100 have the least continent-like geochemical signatures. In these arcs the subducting plate is old (>100 Ma), not overprinted by enriched intraplate volcanism and the geochemistry may be dominated by slab-derived, aqueous fluids. We also found a strong correlation between the CI and average crustal P-wave velocity, validating the geochemical index with the available seismic data for intra-oceanic arcs. In conclusion, the production of young continental crust with compositions similar to Archean continental crust is an unusual process, limited to locations where there are especially voluminous partial melts of oceanic crust.

  4. Simulation of ultrasound influence on melt convection for the growth of Ga(x)In(1-x)Sb and Si single crystals by the Czochralski method.

    Science.gov (United States)

    Kozhemyakin, G N; Nemets, L V; Bulankina, A A

    2014-12-01

    The flow simulation for GaxIn1-xSb and Si melts was conducted for quasi-steady conditions. The maximum velocity was under the solid-liquid interface near periphery of the crystals. An introduction of ultrasound into the liquid formed a standing wave channel under the solid-liquid interface, which acted on melt particles. The calculations of convective and ultrasonic forces acting on the particles in the melt showed that the ultrasonic force is much higher than the convective force. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Low Melt Height Solidification of Superalloys

    Science.gov (United States)

    Montakhab, Mehdi; Bacak, Mert; Balikci, Ercan

    2016-06-01

    Effect of a reduced melt height in the directional solidification of a superalloy has been investigated by two methods: vertical Bridgman (VB) and vertical Bridgman with a submerged baffle (VBSB). The latter is a relatively new technique and provides a reduced melt height ahead of the solidifying interface. A low melt height leads to a larger primary dendrite arm spacing but a lower mushy length, melt-back transition length, and porosity. The VBSB technique yields up to 38 pct reduction in the porosity. This may improve a component's mechanical strength especially in a creep-fatigue type dynamic loading.

  6. Melting of SmBa2Cu3O7-y-seeds during preparation of YBCO Bulk Superconductors by Infiltration Growth Method

    Science.gov (United States)

    Vojtkova, L.; Diko, P.; Volochová, D.

    2016-03-01

    The conditions for single-grain growth of YBCO bulk superconductors by top seeded infiltration growth were tested. It is shown that the interaction of melt formed from BaCuO2 + CuO + Y2O3 precursor with the Sm123 seed causes dissolution of the seed at maximum melting temperature 1045 °C. Experiments with low weight Y211 pellet confirmed that the low concentration of Y in the infiltration melt is responsible for this effect. The most effective way suppressing the seed dissolution was shown to be the insertion of Y123 + Y211 buffer layer between the seed and the Y211 pellet. This buffer layer possesses the melt which is saturated with yttrium what prevents dissolution of the seed.

  7. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion.

    Science.gov (United States)

    Saerens, L; Segher, N; Vervaet, C; Remon, J P; De Beer, T

    2014-01-02

    significant influence of any of the process settings on the predicted concentration values. Raman spectroscopy proved to be a fast, non-destructive and reliable method for the quantification of MPT during hot-melt extrusion. From the accuracy profile of the MCR model based on averaged spectra, it was concluded that for each MPT concentration in the validated concentration range, 95 out 100 future routine measurements will be included within the acceptance limits (10%).

  8. Electric arc furnace models for flicker study

    Directory of Open Access Journals (Sweden)

    Catalina González Castaño

    2016-06-01

    Full Text Available Objective: The aim of this paper is to evaluate voltage fluctuations or flicker of two electric arc furnace models through comparison with real data.Method: The first proposed model is founded on the energy conservation principle, which generates a non-linear differential equation modelling the electric arc voltage – current characteristics. Voltage fluctuations are generated using a chaotic circuit that modulates the amplitude of arc voltage. The second model is based on the empirical relationship between the arc diameter or length as well as voltage and electrical current on the arc. Voltage fluctuations are considered adding a random signal in the arc length. Both models are implemented in PSCADTM.Results: The results of both models are compared with real data taken at the most critical stage of the operation of the furnace, and they show that the model based on energy conservation has a lower average mean square error in the voltages and currents 5.6 V and 1.7 kA against 27,2 V y 3.38 kA obtained with the second model.Conclusions: Both models consider the nonlinearity and random behavior present in this type of load, validating their inclusion in computer models of electric power systems.

  9. A refined, rapid and reproducible high resolution melt (HRM-based method suitable for quantification of global LINE-1 repetitive element methylation

    Directory of Open Access Journals (Sweden)

    Tse M Yat

    2011-12-01

    Full Text Available Abstract Background The methylation of DNA is recognized as a key mechanism in the regulation of genomic stability and evidence for its role in the development of cancer is accumulating. LINE-1 methylation status represents a surrogate measure of genome-wide methylation. Findings Using high resolution melt (HRM curve analysis technology, we have established an in-tube assay that is linear (r > 0.9986 with a high amplification efficiency (90-105%, capable of discriminating between partcipant samples with small differences in methylation, and suitable for quantifying a wide range of LINE-1 methylation levels (0-100%--including the biologically relevant range of 50-90% expected in human DNA. We have optimized this procedure to perform using 2 μg of starting DNA and 2 ng of bisulfite-converted DNA for each PCR reaction. Intra- and inter-assay coefficients of variation were 1.44% and 0.49%, respectively, supporting the high reproducibility and precision of this approach. Conclusions In summary, this is a completely linear, quantitative HRM PCR method developed for the measurement of LINE-1 methylation. This cost-efficient, refined and reproducible assay can be performed using minimal amounts of starting DNA. These features make our assay suitable for high throughput analysis of multiple samples from large population-based studies.

  10. Modeling of Arc Force in Plasma Arc Welding

    Institute of Scientific and Technical Information of China (English)

    GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui

    2008-01-01

    A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.

  11. Fluctuation Phenomenon Analysis of an Arc Plasma Spraying Jet

    Institute of Scientific and Technical Information of China (English)

    赵文华; 田阔; 刘笛; 张冠忠

    2001-01-01

    The effects of three factors, including the power supply, the arc behaviour in the arc channel and the fluid dynamic process of the jet, on a plasma spraying jet have been experimentally detected by means of spectroscopic diagnostic techniques. The fast Fourier transform method has been applied to the analysis of the arc voltage and spectral line intensity of the jet. The three factors have been studied and distinguished from each other.

  12. Nitrogen distribution between aqueous fluids and silicate melts

    Science.gov (United States)

    Li, Yuan; Huang, Ruifang; Wiedenbeck, Michael; Keppler, Hans

    2015-02-01

    The partitioning of nitrogen between hydrous fluids and haplogranitic, basaltic, or albitic melts was studied at 1-15 kbar, 800-1200 °C, and oxygen fugacities (fO2) ranging from the Fe-FeO buffer to 3log units above the Ni-NiO buffer. The nitrogen contents in quenched glasses were analyzed either by electron microprobe or by secondary ion mass spectrometry (SIMS), whereas the nitrogen contents in fluids were determined by mass balance. The results show that the nitrogen content in silicate melt increases with increasing nitrogen content in the coexisting fluid at given temperature, pressure, and fO2. Raman spectra of the silicate glasses suggest that nitrogen species change from molecular N2 in oxidized silicate melt to molecular ammonia (NH3) or the ammonium ion (NH4+) in reduced silicate melt, and the normalized Raman band intensities of the nitrogen species linearly correlate with the measured nitrogen content in silicate melt. Elevated nitrogen contents in silicate melts are observed at reduced conditions and are attributed to the dissolution of NH3/NH4+. Measured fluid/melt partition coefficients for nitrogen (DNfluid/ melt) range from 60 for reduced haplogranitic melts to about 10 000 for oxidized basaltic melts, with fO2 and to a lesser extent melt composition being the most important parameters controlling the partitioning of nitrogen. Pressure appears to have only a minor effect on DNfluid/ melt in the range of conditions studied. Our data imply that degassing of nitrogen from both mid-ocean ridge basalts and arc magmas is very efficient, and predicted nitrogen abundances in volcanic gases match well with observations. Our data also confirm that nitrogen degassing at present magma production rates is insufficient to accumulate the atmosphere. Most of the nitrogen in the atmosphere must have degassed very early in Earth's history and degassing was probably enhanced by the oxidation of the mantle.

  13. Arc melter demonstration baseline test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process.

  14. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling; Jackson, Paul S.; Lundahl, Robert E.; Ryu, Stephen I.; Ray, Gordon R. [Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Neurosurgery Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Neurosurgery Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States); Radiation Oncology Department, Palo Alto Medical Foundation, Palo Alto, California 94301 (United States)

    2011-11-15

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measured (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the

  15. Arc Behavior and Droplet Transfer of CWW CO2 Welding

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong YANG; Chen-fu FANG; Yong CHEN; Guo-xiang XU; Qing-xian HU; Xiao-yan GU

    2016-01-01

    Cable-type welding wire (CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2 mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6 mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were ob-served by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5 times to 0.3 times of the CWW diameter.

  16. Heat transfer modeling of double-side arc welding

    CERN Document Server

    Sun Jun Sheng; Zhang Yan Ming

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  17. Electrical conductivity measurements on silicate melts using the loop technique

    Science.gov (United States)

    Waff, H. S.

    1976-01-01

    A new method is described for measurement of the electrical conductivity of silicate melts under controlled oxygen partial pressure at temperatures to 1550 C. The melt samples are suspended as droplets on platinum-rhodium loops, minimizing iron loss from the melt due to alloying with platinum, and providing maximum surface exposure of the melt to the oxygen-buffering gas atmosphere. The latter provides extremely rapid equilibration of the melt with the imposed oxygen partial pressure. The loop technique involves a minimum of setup time and cost, provides reproducible results to within + or - 5% and is well suited to electrical conductivity studies on silicate melts containing redox cations.

  18. Optimization of the pulsed current gas tungsten arc welding (PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) welds using the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Yousefieh, M., E-mail: m.yousefieh@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Saatchi, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-01-21

    Research highlights: > Among the four factors and three levels tested, it was concluded that the pulse current had the most significant effect on the pitting potential and the background current had the next most significant effect. The effects of pulse frequency and % on time are less important when compared to the other factors. > The percentage contributions of the pulse current, the background current, % on time, and pulse frequency to the corrosion resistance are 66.28%, 25.97%, 2.71% and 5.04%, respectively. > The optimum conditions within the selected parameter values were found as the second level of pulse current (120 A), second level of background current (60 A), third level of % on time (80%) and third level of pulse frequency (5 Hz). > The confirmation test was carried out at optimum working conditions. Pitting potential was increased to 1.06 V{sub SCE} by setting the control factors. Predicted (1.04 V{sub SCE}) and observed (1.06 V{sub SCE}) pitting potential values are close to each other, which are the highest values obtained in the present study. - Abstract: In the present work, a design of experiment (DOE) technique, the Taguchi method, has been used to optimize the pulsed current gas tungsten arc welding (PCGTAW) parameters for the corrosion resistance of super duplex stainless steel (UNS S32760) welds. A L{sub 9} (3{sup 4}) orthogonal array (OA) of Taguchi design which involves nine experiments for four parameters (pulse current, background current, % on time, pulse frequency) with three levels was used. Corrosion resistance in 3.5%NaCl solution was evaluated by anodic polarization tests at room temperature. Analysis of variance (ANOVA) is performed on the measured data and S/N (signal to noise) ratios. The higher the better response category was selected to obtain optimum conditions. The optimum conditions providing the highest pitting potential were estimated. The optimum conditions were found as the second level of pulse current (120 A

  19. Volatile Outputs From Subduction-Related Magmatism in the Oregon Cascades Estimated From Melt Inclusions, Spring Discharges, Heat Flow Data and Geochronology

    Science.gov (United States)

    Wallace, P.; Ruscitto, D.; Rowe, M.; Kent, A.

    2008-12-01

    Estimates of volatile fluxes provide a primary test for models of magmatism and volatile cycling during subduction in the endmember "hot and dry" Cascadia subduction zone, which is caused by slow convergence (4 cm/a) of the young (~10-12 Ma) Juan de Fuca plate with Western North America. Intra- arc rifting in the Central Oregon segment of the Cascade arc during the past 2 Ma has caused this region to have the highest mafic output along the arc. However, estimates of major volatile (H2O, CO2, S, Cl) fluxes and comparisons with other arcs (e.g. Central America) are not straightforward because there are no passively degassing volcanoes in the area. We estimate volatile outputs for the Central Oregon Cascades by combining data for olivine-hosted melt inclusions with regional heat flow (e.g. Ingebritsen, 1989; Blackwell,1990) and geochronological (Sherrod and Smith, 1990) studies. These flux estimates can be compared with those obtained from spring water studies (e.g. James, 1999; Hurwitz, 2005). This multidisciplinary approach allows us to more accurately constrain volatile fluxes, given that uncertainties in all methods are large and difficult to evaluate. Reported fluxes for Central Oregon springs are 3.4E5 CO2 and 1.5E4 Cl kg/yr/km of arc (James, 1999; Hurwitz, 2005). Melt inclusion data indicate primitive basaltic magmas in the Central Oregon Cascades have 1.0-3.5 wt% H2O, 800-1900 ppm S, and 300-1100 ppm Cl. Assuming global arc magma CO2 contents of ~1 wt% (Wallace, 2005), we estimate H2O/CO2 (1.0-3.5), S/CO2 (0.08-0.19), and Cl/CO2 (0.03-0.11) in magmas, which when combined with spring CO2 estimates, yield an H2O flux of 0.34-1.2E6, a S flux of 2.6-6.5E4, and a Cl flux of 1.0-3.7E4 kg/yr/km of arc. Alternatively, by combining melt inclusion data with magma flux estimates (14-38 km3/Myr/km of arc; Ingebritsen et al. 1989; Sherrod and Smith 1990) we estimate volatile fluxes for H2O: 0.39-5.4E6; S: 0.39-3.9E5; and Cl: 0.16- 2.3E5 kg/yr/km of arc. Given the

  20. Arc arrays: studies of high resolution techniques for multibeam bathymetric applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.

    arrayof 15 degrees arc. The superiorityof the high resolution methods is seen by examining the patterns of the 15 degrees arc array under multiple source/interference conditions, i.e. the situation for rough terrain or artefactcreating conditions...

  1. Anatomy of Intra-Oceanic Arc Systems

    Science.gov (United States)

    Stern, R. J.

    2007-12-01

    involves anatexis of amphibolite and mafic melt fractionation to form nests of felsic plutons, accompanied by drip-delamination of pyroxene-rich residues and cumulates back into the mantle. Active IOASs thus have mass transfer in both directions across the crust-mantle boundary beneath the magmatic arc, leading to small P-wave velocity differences between gabbroic lower crust and pyroxenitic upper mantle. Forearcs, in contrast, are underlain by serpentinized harzburgite. Intra-oceanic arc systems are rarely associated with accretionary prisms; because most are far-removed from continental sources of sediment, they subduct oceanic lithosphere with thin sediments and have naked forearcs subjected to tectonic erosion. These aspects of IOASs should be revealed in accreted ancient arcs: 1) Ancient IOAs should be large, both wide and thick; and 2) Ancient IOASs should be asymmetric. Scraps of IOASs could be smaller slivers of crust, brought into place by strike-slip faulting, but a true accreted arc should be as obvious to a geologist as a beached whale is to a beachcomber.

  2. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  3. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  4. EGFR gene mutant tested by high resolution melting method in lung cancer%HRM法检测肺癌EGFR基因突变

    Institute of Scientific and Technical Information of China (English)

    高菲; 师建国; 魏金花; 王弢; 秦勇; 时凯

    2011-01-01

    Objective :To research EGFR - TKI molecular target therapy by detecting lung cancer EGFR gene mutant with high resolution melting method in different areas of China, and analyze the ratio of mutations type. Methods : To detect gene mutation of EGFR with HRM method in 253 surgical resection paraffin specimens of lung cancer and verify with gene sequencing method. Results: Mutation rate of EGFR gene was 42% in 253 cases with lung cance specimen using HRM method, while the mutation rate was 40% using sequencing method. There was no significant difference between two methods. At the same time, 2 cases of T790M mutations, 11 cases of multi - point mutations and 2 cases E18 new sites mutations were found using HRM method, there was no significant difference between the rates of the eastern region and the non - eastern region of patients with lung cancer EGFR mutation. The sensitivity of HRM was higher than gene sequencing method, and the specificity of HRM method was 100%. Conclusion : HRM technology has the characteristics of high sensitivity, high accuracy and high specificity. It is simpler and more cost - effective than gene sequencing method. It' s necessary to specify the mutations types and to use for clinical EGFR - TKI which can provide important basis for molecular target therapy. EGFR gene mutations of the lung specimen which collect by the labs have no regional variations.%目的:HRM法检测中国不同区域肺癌患者的EGFR基因突变,统计突变类型间比率,为临床EGFR-TKI分子靶向治疗提供依据,并验证HRM法的临床适用性.方法:收集2010年手术切除的肺癌石蜡标本253例,HRM法检测EGFR基因突变情况,并用基因测序法进行验证.结果:在253例肺癌标本中,HRM法检测出EGFR基因突变率为42%,与基因测序法检测出的突变率40%无显著性差异,并检测出2例T790M突变,11例多点突变和2例E18新位点突变.将本实验中收集的东部地区和非东部地区肺癌患者的EGFR基

  5. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    NIU Chunping; DING Juwen; YANG Fei; DONG Delong; RONG Mingzhe; XU Dan

    2016-01-01

    In this paper,a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB).The distributions of pressure,temperature,gas flow and current density of the arc plasma in the arc region are calculated,and the factors influencing the commutation process are analyzed according to the calculated results.Based on the airflow in the arc chamber,the causes of arc commutation asynchrony and the back commutation are investigated.It indicates that a reasonable contact space design is crucial to a successful arc commutation process.To verify the simulation results,the influence of contact space on arc voltage and arc commutation is tested.This research can provide methods and references to the optimization of ACB design.

  6. Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias

    Science.gov (United States)

    Mercer, Cameron M.; Hodges, Kip V.

    2017-08-01

    Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.

  7. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  8. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  9. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  10. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  11. Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain

    Science.gov (United States)

    Tilhac, Romain; Grégoire, Michel; O'Reilly, Suzanne Y.; Griffin, William L.; Henry, Hadrien; Ceuleneer, Georges

    2017-09-01

    Pyroxenites exposed in ophiolites and orogenic peridotite massifs may record petrogenetic processes occurring in mantle domains generated and/or transferred in supra-subduction environments. However, the timing of their formation and the geochemical characteristics of their source region commonly are obscured by metamorphic and metasomatic overprints. This is especially critical in arc-related environments, where pyroxenites may be formed during the differentiation of primitive magmas. Our approach combines Sr- and Nd-isotope geochemistry and geochronology, and modelling of REE diffusion, to further constrain the origin of a well-characterized set of pyroxenites from the arc-related Cabo Ortegal Complex, Spain. In the light of petrological constraints, Sr- and Nd-isotope systematics consistently indicate that cpx and amphibole have acquired disequilibrium during two main episodes: (1) a magmatic/metasomatic episode that led to the formation of the pyroxenites, coeval with that of Cabo Ortegal granulites and corresponding to the incipient stage of a potential Cadomian arc (459-762 Ma; isochron and second-stage Nd model ages); (2) an episode of metamorphic amphibolitization upon the percolation of relatively unradiogenic and LREE-enriched hydrous fluids, subsequent to the delamination of the pyroxenites from their arc-root settings during Devonian subduction. Calculations of diffusional timescale for the re-equilibration of REE are consistent with this scenario but provide only poor additional constraints due to the sensitivity of this method to grain size and sub-solidus temperature. We thus emphasize the necessity to combine isochron ages and Nd model ages corrected for radiogenic ingrowth to put time constraints on the formation of subduction- and/or collision-related pyroxenites, along with petrological and geochemical constraints. Homogeneous age-corrected 143Nd/144Nd of 0.5121-0.5125 (εNd between 0 and +7.5) and 87Sr/86Sr of 0.7037-0.7048 provide information

  12. Magnetic Biocomposites for Remote Melting.

    Science.gov (United States)

    Zhou, Mengbo; Liebert, Tim; Müller, Robert; Dellith, Andrea; Gräfe, Christine; Clement, Joachim H; Heinze, Thomas

    2015-08-10

    A new approach toward the fabrication of biocompatible composites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNP) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30-140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high quality products as confirmed by FTIR- and NMR spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in nanocomposite as revealed by scanning electron microscope. Samples of different geometries were exposed to high frequency alternating magnetic field. It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote control systems, which are suitable for controlled release applications or self-healing materials.

  13. Influences of rare earth element Ce-doping and melt-spinning on microstructure and magnetostriction of Fe{sub 83}Ga{sub 17} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhanquan, E-mail: ndyzq@126.com [School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018 (China); Tian, Xiao, E-mail: nsdtx@126.com [Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022 (China); Jiang, Liping; Hao, Hongbo; Zhang, Guangrui; Wu, Shuangxia; Zhao, Zengqi [Baotou Research Institute of Rare Earths, Baotou 014030 (China); Gerile, Naren [Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022 (China)

    2015-07-15

    Highlights: • The CeGa{sub 2} phase existing in the Fe{sub 83}Ga{sub 17}Ce{sub 0.8} alloy is found for the first time. • The (100) orientation of alloy become stronger after Ce doping into the Fe-Ga alloy. • The melt-spinning leads to the formation of asymmetrical DO{sub 3} phase. • The enhanced magnetostriction is credited with new phase and preferred orientation. • The Ce-doping and melt-spinning are beneficial to the improvement of magnetostriction. - Abstract: In order to improve magnetostriction of the polycrystalline Fe-Ga alloy, the rare earth element Ce was firstly doped into Fe{sub 83}Ga{sub 17} and the melt-spinning method was subsequently applied. The as-cast Fe{sub 83}Ga{sub 17} and Ce-doped Fe{sub 83}Ga{sub 17} alloys were prepared by arc melting. Then the as-cast Ce-doped Fe{sub 83}Ga{sub 17} alloy was melt-spun by the melt-spinning technique. The microstructures and magnetostrictions of all these three alloys were investigated by X-ray diffractometer (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), differential scanning calorimeter (DSC) and magnetostriction measurements. The results indicated that the CeGa{sub 2} phase and asymmetrical DO{sub 3} phase are formed caused by Ce-doping and melt-spinning, respectively. The magnetostrictions of three alloys are ranked in sequence the melt-spun Fe{sub 83}Ga{sub 17}Ce{sub 0.8} alloy > as-cast Fe{sub 83}Ga{sub 17}Ce{sub 0.8} alloy > as-cast Fe{sub 83}Ga{sub 17} alloy. The enhanced magnetostriction is attributed to the fact that the formation of new phases and the preferred orientation along (100) direction.

  14. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length

    Science.gov (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2009-12-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freezeup, and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freezeup. Using this method we analyze trends in melt onset and freezeup for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (0.4 d decade-1), trends in melt onset are negative, i.e., toward earlier melt. The trends range from -1.0 d decade-1 for the Bering Sea to -7.3 d decade-1 for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend toward later autumn freeze onset. The Chukchi/Beaufort seas and Laptev/East Siberian seas observe the strongest trends with 7 d decade-1. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 10 d decade-1 are seen for Hudson Bay, the East Greenland Sea, the Laptev/East Siberian seas, and the Chukchi/Beaufort seas. Those trends are statistically significant at the 99% level.

  15. Study of the fluence dependent interplay between laser induced material removal mechanisms in metals: Vaporization, melt displacement and melt ejection

    Science.gov (United States)

    Fishburn, J. M.; Withford, M. J.; Coutts, D. W.; Piper, J. A.

    2006-05-01

    Three quantitative methods, namely profilometry, high speed imaging and recoil momentum measurements using a ballistic pendulum, are used to determine the interplay of vaporization, melt displacement and melt ejection on nanosecond laser induced material removal. At low to moderate fluences (7 J cm -2), material removal occurs predominantly via the explosive ejection of liquid droplets from the melt pool.

  16. Application of Expectation Maximization Method for Purchase Decision-Making Support in Welding Branch

    Directory of Open Access Journals (Sweden)

    Kujawińska Agnieszka

    2016-06-01

    Full Text Available The article presents a study of applying the proposed method of cluster analysis to support purchasing decisions in the welding industry. The authors analyze the usefulness of the non-hierarchical method, Expectation Maximization (EM, in the selection of material (212 combinations of flux and wire melt for the SAW (Submerged Arc Welding method process. The proposed approach to cluster analysis is proved as useful in supporting purchase decisions.

  17. Study of the fluence dependent interplay between laser induced material removal mechanisms in metals: Vaporization, melt displacement and melt ejection

    Energy Technology Data Exchange (ETDEWEB)

    Fishburn, J.M. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia); Withford, M.J. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia)]. E-mail: withford@ics.mq.edu.au; Coutts, D.W. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia); Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Piper, J.A. [Centre for Lasers and Applications, Department of Physics, Macquarie University, Sydney 2109 (Australia)

    2006-05-15

    Three quantitative methods, namely profilometry, high speed imaging and recoil momentum measurements using a ballistic pendulum, are used to determine the interplay of vaporization, melt displacement and melt ejection on nanosecond laser induced material removal. At low to moderate fluences (<7 J cm{sup -2}) material removal occurs via vaporization and melt displacement in aluminium. At high fluences (>7 J cm{sup -2}), material removal occurs predominantly via the explosive ejection of liquid droplets from the melt pool.

  18. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  19. Arc Crustal Structure around Mount Rainier Constrained by Receiver Functions and Seismic Noise

    Science.gov (United States)

    Obrebski, M. J.; Abers, G. A.; Foster, A. E.

    2013-12-01

    Volcanic arcs along subduction zones are thought to be loci for continental growth. Nevertheless, the amount of material transferred from the mantle to crust and the associated magmatic plumbing are poorly understood. While partial melting of mantle peridotite produces basaltic melt, the average composition of continental crust is andesitic. Several models of magma production, migration and differentiation have been proposed to explain the average crust composition in volcanic arcs. The formation of mafic cumulate and restite during fractional crystallization and partial melting has potential to alter the structure of the crust-mantle interface (Moho). The computed composition and distribution of crust and mantle rocks based on these different models convert into distinctive vertical velocity profiles, which seismic imaging methods can unravel . With a view to put more constraints on magmatic processes in volcanic arc, we analyze the shear wave velocity (Vs) distribution in the crust and uppermost mantle below Mount Rainier, WA, in the Cascadia arc. We resolve the depth of the main velocity contrasts based on converted phases, for which detection in the P coda is facilitated by source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity intrinsic to RF analysis, we jointly invert RF with frequency-dependent surface wave velocities. We analyze earthquake surface waves to constrain long period dispersion curves (20-100 s). For shorter period (5-20s), we use seismic noise cross-correlograms and Aki's spectral formulation, which allows longer periods for given path. We use a transdimensional Bayesian scheme to explore the model space (shear velocity in each layer, number of interfaces and their respective depths). This approach tends to minimize the number of layers required to fit the observations given their noise level. We apply this tool to a set of broad-band stations from permanent and EarthScope temporary

  20. 基于ArcGIS 10的公益林建设作业设计图制作方法及步骤%Design Methods and Steps of Non Commercial Forest Construction Work Based on the ArcGIS 10

    Institute of Scientific and Technical Information of China (English)

    陈建维

    2012-01-01

    基于ArcGIS 10应用软件,以制作公益林建设项目作业设计图为例,阐述林业工程项目作业设计图的一般制作方法和步骤,包括栅格地形图坐标定义和地理配准,建立点、线、面数据层,以及项目位置示意图和小班作业设计附图的制作方法及步骤.%Based on the AreGIS 10 application software, taking Non-commercial forest construction project design as an example, elaborated the forestry engineering project general design methods and steps, including raster topographic map coordinates definition and geographical registration, establishment of point, line, surface data layer, as well as the project location maps and small class work design drawings.

  1. Theoretical study of a melting curve for tin

    Institute of Scientific and Technical Information of China (English)

    Xi Feng; Cai Ling-Cang

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the meltingcurve of polymorphic material Sn.

  2. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  3. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  4. The ARCS radial collimator

    OpenAIRE

    Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...

  5. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K

    2002-01-01

    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  6. Calculation of the Dynamic Characteristics of an Electric Arc Subjected to Forced Extinction

    Science.gov (United States)

    Nekrasov, S. A.

    2016-11-01

    Models and methods of calculating the currents in a free-burning arc and in an arc in an arc chute with magnetic blow and the voltages across them in the process of their extinction are considered. A comparison of calculation and experimental data has been performed.

  7. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1)

    Science.gov (United States)

    Kimura, Jun-Ichi; Kawabata, Hiroshi

    2014-06-01

    numerical mass balance calculation model for the adiabatic melting of a dry to hydrous peridotite has been programmed in order to simulate the trace element compositions of basalts from mid-ocean ridges, back-arc basins, ocean islands, and large igneous provinces. The Excel spreadsheet-based calculator, Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1) uses (1) a thermodynamic model of fractional adiabatic melting of mantle peridotite, with (2) the parameterized experimental melting relationships of primitive to depleted mantle sources in terms of pressure, temperature, water content, and degree of partial melting. The trace element composition of the model basalt is calculated from the accumulated incremental melts within the adiabatic melting regime, with consideration for source depletion. The mineralogic mode in the primitive to depleted source mantle in adiabat is calculated using parameterized experimental results. Partition coefficients of the trace elements of mantle minerals are parameterized to melt temperature mostly from a lattice strain model and are tested using the latest compilations of experimental results. The parameters that control the composition of trace elements in the model are as follows: (1) mantle potential temperature, (2) water content in the source mantle, (3) depth of termination of adiabatic melting, and (4) source mantle depletion. HAMMS1 enables us to obtain the above controlling parameters using Monte Carlo fitting calculations and by comparing the calculated basalt compositions to primary basalt compositions. Additionally, HAMMS1 compares melting parameters with a major element model, which uses petrogenetic grids formulated from experimental results, thus providing better constraints on the source conditions.

  8. Understanding the performance of melt-extruded poly(ethylene oxide)-bicalutamide solid dispersions: characterisation of microstructural properties using thermal, spectroscopic and drug release methods.

    Science.gov (United States)

    Abu-Diak, Osama A; Jones, David S; Andrews, Gavin P

    2012-01-01

    In this article, we have prepared hot-melt-extruded solid dispersions of bicalutamide (BL) using poly(ethylene oxide) (PEO) as a matrix platform. Prior to preparation, miscibility of PEO and BL was assessed using differential scanning calorimetry (DSC). The onset of BL melting was significantly depressed in the presence of PEO, and using Flory-Huggins (FH) theory, we identified a negative value of -3.4, confirming miscibility. Additionally, using FH lattice theory, we estimated the Gibbs free energy of mixing which was shown to be negative, passing through a minimum at a polymer fraction of 0.55. Using these data, solid dispersions at drug-to-polymer ratios of 1:10, 2:10 and 3:10 were prepared via hot-melt extrusion. Using a combination of DSC, powder X-ray diffractometry and scanning electron microscopy, amorphous dispersions of BL were confirmed at the lower two drug loadings. At the 3:10 BL to PEO ratio, crystalline BL was detected. The percent crystallinity of PEO was reduced by approximately 10% in all formulations following extrusion. The increased amorphous content within PEO following extrusion accommodated amorphous BL at drug to polymer loadings up to 2:10; however, the increased amorphous domains with PEO following extrusion were not sufficient to fully accommodate BL at drug-to-polymer ratios of 3:10.

  9. Force induced DNA melting

    Energy Technology Data Exchange (ETDEWEB)

    Santosh, Mogurampelly; Maiti, Prabal K [Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-12 (India)], E-mail: santosh@physics.iisc.ernet.in, E-mail: maiti@physics.iisc.ernet.in

    2009-01-21

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f{sub m}, at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  10. Application of the Taguchi method for Optimization of Parameters on Aluminum Melting Furnace%田口方法在优化铝熔炼炉工艺参数中的应用

    Institute of Scientific and Technical Information of China (English)

    王计敏; 闫红杰; 周孑民; 李世轩; 贵广臣

    2011-01-01

    In order to achieve high furnace thermal efficiency, less pollutant emission and good product, an orthogonal array was selected as the CFD experimental plan by cause and effect diagram of melting performance for an aluminum