WorldWideScience

Sample records for arc furnaces

  1. The dual-electrode DC arc furnace-modelling brush arc conditions

    OpenAIRE

    Reynolds, Q.G.

    2012-01-01

    The dual-electrode DC arc furnace, an alternative design using an anode and cathode electrode instead of a hearth anode, was studied at small scale using computational modelling methods. Particular attention was paid to the effect of two key design variables, the arc length and the electrode separation, on the furnace behaviour. It was found that reducing the arc length to brush arc conditions was a valid means of overcoming several of the limitations of the dual-electrode design, namely high...

  2. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  3. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  4. Efficient use of power in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, E R; Medley, J E

    1978-02-01

    The maximum transfer of electric energy to the metal in an arc furnace depends on the length of arc and the impedance of the electrical supply system from the generators to the arc itself. The use of directly-reduced sponge iron by continuous feeding results in long periods of flat-bath operation, when it is particularly important to keep a short high-current arc to get the heat into the metal rather than to the refractories, which would suffer excessive wear. By reference to a 125 ton furnace, a method of assessing the optimum operating currents and power factors and the effects of differing power-supply systems is illustrated. The importance of a low-impedance power system is illustrated, and the possibility of being unable to use the maximum furnace power without excessive refractory wear is noted. The particular problems of connecting arc-furnace loads to electrical supply systems are reviewed, and consideration is given to the problem of voltage flicker. The use of compensators is discussed with reference to existing installations, in which strong supplies from the supply-authority system are not economically available. The furnace operating characteristics, which indicate the optimum points of working, have to be checked on commissioning, and the test procedures are outlined. The optimum points for each type of charge and steel can be assessed only during their actual production. The importance of proper recording of relevant data is stressed, and reference is made to the use of computers and automatic power-input controllers.

  5. Elements of the electric arc furnace's environmental management

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  6. Energy Balance in DC Arc Plasma Melting Furnace

    International Nuclear Information System (INIS)

    Zhao Peng; Meng Yuedong; Yu Xinyao; Chen Longwei; Jiang Yiman; Nie Guohua; Chen Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency. (plasma technology)

  7. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  8. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    Science.gov (United States)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  9. Graphite electrode DC arc furnace. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  10. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  11. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  12. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  13. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    International Nuclear Information System (INIS)

    Surma, J.E.; Lawrence, W.E.; Titus, C.H.; Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Rhea, D.; Thomas, P.; Woskov, P.P.

    1994-08-01

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way open-quotes National Laboratory-University-Industryclose quotes partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions

  14. 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO

    International Nuclear Information System (INIS)

    Wang Zhen; Wang Ninghui; Li Tie; Cao Yong

    2012-01-01

    A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space formed by the graphite electrode, the molten bath and unmelted raw materials. The model is first used to solve a similar problem in a steel making furnace, and the calculated results are found to be in good agreement with the published measurements. The behavior of arcs with different arc lengths is also studied in the furnace for MgO production. From the distribution of the arc pressure on the bath surface it is shown that the arc plasma impingement is large enough to cause a crater-like depression on the surface of the MgO bath. The circulation of the high temperature air under the electrode may enhance the arc efficiency, especially for a shorter arc.

  15. Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems

    Directory of Open Access Journals (Sweden)

    Mahdi TORABIAN ESFAHANI

    2009-12-01

    Full Text Available Electric Arc Furnaces (EAFs are unbalanced, nonlinear and time varying loads, which can cause many problems in the power system quality. As the use of arc furnace loads increases in industry, the importance of the power quality problems also increase. So in order to optimize the usages of electric power in EAFs, it is necessary to minimize the effects of arc furnace loads on power quality in power systems as much as possible. Therefore, in this paper, design and simulation of an electric plant supplying an arc furnace is considered. For this purpose, a three phase arc furnace model, which can simulate all the mentioned power quality indices, is developed based on Hyperbolic -Exponential model (V-I model. Then by considering the high changes of reactive power and voltage flicker of nonlinear furnace load, a thyristor controlled reactor compensation with fixed capacitor (TCR/FC are designed and simulated. In this procedure, the reactive power is measured so that maximum speed and accuracy are achieved. Finally, simulation results verify the accuracy of the load modelling and show the effectiveness of the proposed TCR/FC model for reactive compensating of the EAF.

  16. Simulation of a DC electric arc furnace for steelmaking: study in the arc and bath regions

    International Nuclear Information System (INIS)

    Ramirez Argaez, M. A.; Trapaga Martinez, L. G.

    2001-01-01

    A mathematical model was developed to describe fluid flow, heat transfer, and electromagnetic phenomena in the arc and bath regions of DC electric Arc Furnaces (DC-EAF). The model is used to examine the effect on flow patterns and temperature distribution in the bath, under the influence of both an arc and bottom argon injection in steel or steel/slag systems. Validation of the model employed experimental measurements from systems physically related to DC-EAF from literature. For the conditions analyzed, electromagnetic forces dominate the fluid motion in the bath. Buoyancy and shear forces from the arc have a negligible effect in driving the flow; however, they partially counteract the electromagnetic forces. Slag decreases fluid motion in the steel and enhances temperature stratification in the system. Stirring of the bath, using a 3-nozzle inert gas injection system, is found to promote temperature uniformity in the regions near the lateral wall of the furnace. (Author) 24 refs

  17. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    Science.gov (United States)

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  18. Methods of steel manufacturing - The electric arc furnace

    Science.gov (United States)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  19. Improved cooler design of electric arc furnace refractory in mining industry using thermal analysis modeling and simulation

    International Nuclear Information System (INIS)

    Istadi, I.; Bindar, Y.

    2014-01-01

    Production of steel and nickel using the electric arc furnace should be focused on the intensification of energy. Improvement of energy efficiency of the most consuming facilities was achieved by improving the use of alternative energy minimization such as reducing the heat lost of hot gases, minimizing the heat radiated through refractory linings of metallurgical furnaces, and cooling the highly thermally stressed components. The refractory of electric arc furnace should be modified to achieve the best cooling system of the furnace. In this physical modeling and simulation works, four modification scenarios of wall refractory designs were simulated, i.e. refractory with basic design, refractory with deep plate coolers, refractory with extra plate coolers, and refractory with wall falling film coolers. Finally, the use of deep plate cooler and the existing waffle cooler system was considered to be the best design of efficient electric arc furnace operationally. - Highlights: • Electric arc furnace design should be focused on the intensification of energy. • Refractory of electric arc furnace were modified to achieve the best cooling system. • Four modification scenarios of the wall refractory designs were simulated. • Use of deep plate cooler and existing waffle cooler system is the best cooling

  20. Plasma arc and cold crucible furnace vitrification for medium level waste: a review

    International Nuclear Information System (INIS)

    Poitou, S.; Fiquet, O.; Bourdeloie, C.; Gramondi, P.; Rebollo, F.; Girold, C.; Charvillat, J.P.; Boen, R.; Jouan, A.; Ladirat, C.; Nabot, J.P.; Ochem, D.; Baronnet, J.M.

    2001-01-01

    Initially developed for high-level waste reprocessing, several vitrification processes have been under study since the 80's at the French Atomic Energy Commission (CEA) for other waste categories. According to the French law concerning waste management research passed on December 30, 1991, vitrification may be applied to mixed medium-level waste. A review of processes developed at CEA is presented: cold crucible furnace heated by induced current, refractory furnace heated by nitrogen transferred arc plasma torch, and coupling of cold crucible furnace with oxygen transferred plasma arc twin torch. Furthermore, gas post-combustion has been studied with an oxygen non-transferred plasma torch. (authors)

  1. Power quality analysis of DC arc furnace operation using the Bowman model for electric arc

    Science.gov (United States)

    Gherman, P. L.

    2018-01-01

    This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.

  2. A novel estimation of electrical and cooling losses in electric arc furnaces

    International Nuclear Information System (INIS)

    Trejo, Eder; Martell, Fernando; Micheloud, Osvaldo; Teng, Lidong; Llamas, Armando; Montesinos-Castellanos, Alejandro

    2012-01-01

    A method to calculate electrical losses and a heat transfer model of a conventional Electric Arc Furnace (EAF) are presented. The application of a novel power theory for the EAF was used to compute electrical losses and it was compared with conventional power calculations. The electrical losses and electrical variables were used as input parameters to the proposed heat transfer model. Chemical energy sources were included as energy inputs to estimate the overall heat transferred including the heat losses in the cooling system. In the heat transfer model the furnace was divided in 11 inner surfaces and the radiation view factors between them were estimated by a commercial finite element software. Variations of the view factors for different arc coverage were evaluated. Different scenarios for cooling panels losses, with respect to arc coverage and thickness of slag layers adhered to cooling system panels, were analyzed. The approach presented in this work allows calculation of energy balances in electrical arc furnaces with low computational resources. Finally, the contribution of this research work is to define a framework for further research oriented to improve both the electrical and thermal energy efficiencies to increase productivity and reduce energy consumption in steel plants. -- Highlights: ► Radiation view factors for the electric arc furnace are estimated. ► Potential reduction in cooling losses is estimated to be 60 kWh/ton. ► Electrical losses are calculated based in the randomness power theory. ► The new approach yields an increase of 10% in the electrical losses. ► An analytic model is used to estimate the radiation mechanism.

  3. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    Science.gov (United States)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  4. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD)

    International Nuclear Information System (INIS)

    Oustadakis, P.; Tsakiridis, P.E.; Katsiapi, A.; Agatzini-Leonardou, S.

    2010-01-01

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  5. Design and analysis of high current DC power supply for vacuum arc melting furnace

    International Nuclear Information System (INIS)

    Adhikary, Santu; Sharma, Vishnu Kumar; Sharma, Archana

    2015-01-01

    Vacuum Arc furnace (VAR), is used for melting of ingot in many industrial units. Till now in many industries the existing power supply for VAR is based on magnetic amplifier, which is a lossy component. Thus an efficient topology is needed to develop as a suitable alternative for the existing power supply. Basically Arc in electrical furnace is an unstable phenomena, it has drooping characteristic in nature so to stabilize the arc we need a power supply across the load (arc), which is more drooping in nature than arc characteristics. So this paper highlights the stability and response analysis of several alternative topologies and Stabilization of arc using the feedback and firing angle control in MATLAB. The work also covers comparison among those topologies to choose the optimized topology as a suitable alternative of the existing magnetic amplifier based power supply and the detail design of the proposed topology with a tested trail circuit in PROTEUS. (author)

  6. Similarity of Ferrosilicon Submerged Arc Furnaces With Different Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2017-12-01

    Full Text Available In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c3 (Westly was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J1 (Jaccard was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

  7. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  8. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  9. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis

    Directory of Open Access Journals (Sweden)

    Huber John G

    2001-01-01

    Full Text Available A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible changes and the process for producing single-wall nanotubes (SWNTs are described.

  10. DC graphite arc furnace, a simple system to reduce mixed waste volume

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J. [and others

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  11. DC graphite arc furnace, a simple system to reduce mixed waste volume

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-01-01

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials

  12. Maximizing the transferred power to electric arc furnace for having maximum production

    International Nuclear Information System (INIS)

    Samet, Haidar; Ghanbari, Teymoor; Ghaisari, Jafar

    2014-01-01

    In order to increase production of an EAF (electric arc furnace) by reduction of melting time, one can increase transferred power to the EAF. In other words a certain value of energy can be transferred to the EAF in less time. The transferred power to the EAF reduces when series reactors are utilized in order to have stable arc with desired characteristics. To compensate the reduced transferred power, the secondary voltage of the EAF transformer should be increased by tap changing of the transformer. On the other hand, after any tap changing of the EAF transformer, improved arc stability is degraded. Therefore, the series reactor and EAF transformer tap changing should be simultaneously determined to achieve arc with desired characteristics. In this research, three approaches are proposed to calculate the EAF system parameters, by which the optimal set-points of the different series reactor and EAF transformer taps are determined. The electric characteristics relevant to the EAF for the all transformer and series reactor taps with and without SVC (static VAr compensator) are plotted and based on these graphs the optimal set-points are tabulated. Finally, an economic evaluation is also presented for the methods. - Highlights: • The main goal is to transfer the maximum power to electric arc furnace. • Optimal transformer and series reactor taps are determined. • Arc stability and transferred power to EAF determine the optimal performance. • An economic assessment is done and the number of increased meltings is calculated

  13. Calculation of gas release from DC and AC arc furnaces in a foundry

    Science.gov (United States)

    Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.

    2016-12-01

    A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.

  14. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  15. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  16. Finite element modelling of electric currents in AC submerged arc furnaces

    CSIR Research Space (South Africa)

    Mc Dougall, I

    2007-01-01

    Full Text Available and the power ratings is not a hindrance. 2. MATHEMATICAL FORMULATION As the frequency of the current is low, the quasi-static form of Maxwell’s equations is solved. (1) (2) (3) (4) where E denotes the electric field intensity, H the magnetic field... of Electric Currents in AC Submerged Arc Furnaces 637 REFERENCES [1] Bermudez, A., Muniz, M.C., Pena, F. , Bullon, J., “ Numerical Computation of the Electromagnetic Field in the Electrodes of a Three-Phase Arc Furnace”, Int. Jnl for Numerical Methods...

  17. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    International Nuclear Information System (INIS)

    Freeman, C.J.

    1997-05-01

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated

  18. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C.J.

    1997-05-01

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

  19. Linearized Model of Electrical Arc Furnace Suitable for Analysis of Flicker Mitigation

    Czech Academy of Sciences Publication Activity Database

    Valouch, Viktor

    2003-01-01

    Roč. 48, č. 2 (2003), s. 147-156 ISSN 0001-7043 R&D Projects: GA AV ČR IAA2057301 Institutional research plan: CEZ:AV0Z2057903 Keywords : flicker * electrical arc furnace * unified power quality conditioner Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  1. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    Science.gov (United States)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  2. Chemical energy in electro arc furnace - examples from experience

    International Nuclear Information System (INIS)

    Shushlevski, Ljupcho; Georgievski, Panche; Hadzhidaovski, Ilija

    2004-01-01

    Great competition on the market in steel-producing and chemical lack of electrical energy leads to realization of new project in section Steelworks AD 'Makstil' - Skopje named: 'Substitution of electrical energy i.e. entering of additional chemical energy in Electrical arc furnace for steel melting using fuels-naturual gas (CH 4 ), oxygen (O 2 ) and carbon (C)'. It is accumulate experience from two and one half year of intensive use of chemical energy with its accompanying problems, appropriate efficiency and economy in process for steel producing. In 2001 year we announced and described project for using of an additional alternative chemical energy in aggregate Electrical are furnace. In this work we will present realization, working experience and efficiency of the system for generating chemical energy. Practical realization needs serious approach in chemical energy usage The usage of chemical energy brings restrictions and needs many innovation for protection of equipment from shown aggressiveness during the combustion of fuel gasses. (Author)

  3. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  4. Voltage Flicker Mitigation in Electric Arc Furnace using D-STATCOM

    OpenAIRE

    Deepthisree Madathil; Ilango Karuppasamy; Kirthika Devi V S; Manjula G Nair

    2014-01-01

    The major power quality issue of voltage flicker has resulted as a serious concern for the customers and heavy power companies. Voltage flicker is an impression of unsteadiness of visual sensation induced by a light source whose luminance fluctuates with time. This phenomenon is experienced when an Electric Arc Furnace (EAF) as load is connected to the power system. Flexible AC transmission devices (FACTS) devices were gradually utilized for voltage flicker reduction. In this paper the FACTS ...

  5. Recycling of electric arc furnace dust

    International Nuclear Information System (INIS)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2010-01-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  6. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    Science.gov (United States)

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Diagnostic of the electrical characteristics to control the electric arc furnaces by a computer. Session 2. 2b N. 2. 2. 10

    Energy Technology Data Exchange (ETDEWEB)

    Hradilek, Z

    1984-01-01

    The article deals with a new method of diagnostic investigation into the instaneous electric power program of the electric arc furnace by use of thermoelectric converters. The electric magnitudes are recorded by a plotter and evaluated by a computer. The results obtained by this method are examined at the Vitkovice Steelworks/Czechoslovakia/ and can be applied to optimize the power program of an electric arc furnace by a control computer.

  8. Smelting of high-quality boiler steel in large-load arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kablukovskij, A F; Breus, V M; Tyurin, E I; Khristich, V D; Dumchev, Ya P [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-02-01

    High-grade steel can be obtained in large-capacity furnaces if the smelting technology used takes account of the size of the aggregates, the course of the metal fusion process, interaction with slag, furnace atmosphere, reducing agents, and other process characteristics. 12Kh1MF boiler steel smelted in a 100-ton electric arc furnace by an oxidizing process with oxygen bath blow and cast by the siphon method into 6.5-ton ingots using a slag-forming mixture (240 mm diameter billets and 219 to 245 mm diameter tubes) is satisfactory with regard to macro and microstructure, oxygen and nonmetallic oxide inclusion content, and mechanical properties. The stress rupture strength of 10/sup 5/ h at 570/sup 0/C is similar to that of open-hearth steel. Sulfides larger than a 3.5 spheroid have been detected in it. The nitrogen content of the electric steel is 0.0090 to 0.0120%, which is somewhat greater than usual in open-hearth metal. Of the oxygen inclusions in the steel, spinel-alumina predominates. Large inclusions were represented mainly by brittle silicates which appeared to be of exogenous origin.

  9. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Yokoyama, S; Izaki, M; Arisawa, R; Hisyamudin, M N N; Murakami, K; Maegawa, A

    2012-01-01

    Authors have been studying the absorption of CO 2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  10. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    OpenAIRE

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-01-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined com...

  11. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2012-01-01

    Full Text Available The paper gives a common outline about the known recycling techniques from electric arc furnace dusts and describes an investigation of a pyrometallurgical process for the recovery of zinc and iron from electric arc furnace dusts (EAFD. In the waelz process, the reduction of zinc and iron from the waste oxides using solid carbon (lignite coal was studied. In the reduction experiments; temperature, time and charge type (powder and pellet were investigated in detail. It was demonstrated that zinc and iron recovery (% increases with increasing temperature as well as time. Pelletizing was found to be a better method than using the powder as received for the zinc recovery and iron conversion (. In the calcination (roasting process, crude zinc oxide, which evaporated from non-ferric metals were collected as condensed product (crude waelz oxide, was heated in air atmosphere. Lead, cadmium as well as chlorine and other impurities were successfully removed from crude waelz oxide by this method. In the calcination experiments; temperature and time are investigated in detail. It was demonstrated that zinc purification (% increases with increasing temperature. The highest zinc refining (% was obtained at 1200°C for 120 minutes. A kinetic study was also undertaken to determine the activation energy of the process. Activation energies were 242.77 kJ/mol for the zinc recovery with powder forms, 261.99 kJ/mol for the zinc recovery with pellet forms respectively. It was found that, initially, the reaction was chemically controlled.

  12. Chemical, physical, structural and morphological characterization of the electric arc furnace dust

    International Nuclear Information System (INIS)

    Machado, Janaina G.M.S.; Brehm, Feliciane Andrade; Moraes, Carlos Alberto Mendes; Santos, Carlos Alberto dos; Vilela, Antonio Cezar Faria; Cunha, Joao Batista Marimon da

    2006-01-01

    Electric arc furnace dust (EAFD) is a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Important elements to the industry such as, Fe and Zn are the main ones in EAFD. Due to their presence, it becomes very important to know how these elements are combined before studying new technologies for its processing. The aim of this work was to carry out a chemical, physical, structural and morphological characterization of the EAFD. The investigation was carried out by using granulometry analysis, chemical analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), X-ray mapping analysis via SEM, X-ray diffraction (XRD) and Moessbauer spectroscopy. By XRD the following phases were detected: ZnFe 2 O 4 , Fe 3 O 4 , MgFe 2 O 4 , FeCr 2 O 4 , Ca 0.15 Fe 2.85 O 4 , MgO, Mn 3 O 4 , SiO 2 and ZnO. On the other hand, the phases detected by Moessbauer spectroscopy were: ZnFe 2 O 4 , Fe 3 O 4 , Ca 0.15 Fe 2.85 O 4 and FeCr 2 O 4 . Magnesium ferrite (MgFe 2 O 4 ), observed in the XRD pattern as overlapped peaks, was not identified in the Moessbauer spectroscopy analysis

  13. Production of small U Alx alloy buttons in a non consumable electrode arc furnace

    International Nuclear Information System (INIS)

    Koshimizu, S.; Lima, L.F.C.P. de; Leal Neto, R.M.

    1994-01-01

    Some results are presented, concerning with composition and phases, in small buttons of U Al x (10 to 50 g) produced in a non consumable electrode arc furnace. The uranium metal utilised is natural one produced in the IPEN. The convenience of the fabrication of small buttons of U AL x is discussed. (author). 3 refs, 2 figs, 1 tab

  14. Characterization of electric arc furnace dust aiming reuse

    International Nuclear Information System (INIS)

    Grillo, F.F.; Oliveira, E.B.G.; Oliveira, J.R. de; Telles, V.B.; Tenorio, J.A.S.

    2010-01-01

    This work aims to study the characterize of steelmaking dust, from the primary refining of steel in Electric Arc Furnace, in order to verify feasibility of reuse through the addition of hot metal in the form of briquette. The techniques used to characterize the dust was chemical analyses, size separation tests, X-ray diffraction analyses (XRD), Scanning Electron Microscopy (SEM). After characterization, was the calculation of reductant considering the complete reduction of iron oxides and then to briquetting. The waste sample is composed essentially of spherical particles and has a very small particle size (85% below 10 μm). The XRD has presented compounds such as ZnFe 2 O 4 , Fe 3 O 4 , ZnO e SiO 2 . This work showed that its possible recovery approximately 92% of metal iron from dust generated during steelmaking.This (author)

  15. Operation of arc heating furnace on manufacturing gigantic ingots and segregation of gigantic ingots

    International Nuclear Information System (INIS)

    Niimi, Takayasu; Okamura, Masayoshi

    1976-01-01

    The techniques and procedure for manufacturing gigantic ingots heavier than 200 t are described. Especially, practical results of an arc heating furnace which plays an important role in the procedure and segregation of gigantic ingots are discussed in detail. By appropriate operations of the arc heating furnance, hydrogen and phosphorus are kept unchanged, and oxygen and sulphur decrease to very low levels. Furthermore, the temperature can be accurately controlled. The application of multipour technique reduces segregation and its degree is dependent on kinds of steel. V-segregation and inverted V-segregation in steel deoxidized with carbon in vacuum seem to be very slight. (auth.)

  16. The movement of the burden in submerged-arc furnaces for the production of high-carbon ferromanganese

    International Nuclear Information System (INIS)

    Dyason, G.J.; See, J.B.

    1978-01-01

    The mechanism by which the burden moves in a submerged-arc furnace was investigated in two large industrial furnaces by the stimulus-response technique with a radiotracer of the radio-isotope 5 Fe as the stimulus. As this radio-isotope was suitable only for the measurement of residence-time distributions in the alloy phase, the analysis of the experiments was limited to that phase. The residence-time distributions obtained by the measurement of alloy samples obtained during tapping were analysed by various techniques. This analysis verified the existence of stagnant zones within the furnace, and showed that the movement of the burden through the furnace could not be described by either of the two idealized patterns of flow, i.e., plug flow or mixed flow. A composite model to describe the movement of the burden through the furnace was developed by consideration of the mechanism and position of heat generation within the furnace, the inner structure of the furnace, the general form of the measured residence-time distributions, and the mode of burden descent through the furnace. The composite model consisted of a dispersed plug-flow region in the upper regions of the furnace discharging into a constantly stirred tank reactor beneath the electrode tips. Non-linear regression analysis of the equations developed from the composite model permitted the selection of optimum values of model parameters to give computed curves that approximated to the residence-time distributions [af

  17. Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces

    Science.gov (United States)

    Kartavtcev, S.; Matveev, S.; Neshporenko, E.

    2018-03-01

    Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.

  18. Electrical conductivity of the screening residuals of coke production in context of ferrochromium production in a submerged arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Rousu, Arto; Mattila, Olli [Lab. of Process Metallurgy, Univ. of Oulu (Finland)

    2009-11-15

    Coke is used as a reducing agent in the production of ferrochromium in a submerged arc furnace (SAF). Its good electrical conductivity compared to other input materials makes it a dominant current conductivity substance in the burden. The resistance of the coke has to be high enough to ensure the proper functionality of the furnace. Used cokes for submerged arc furnace production are relatively small in size compared to e.g. blast furnace (BF) cokes. A common practice is to use screening residual coke, which is too small for the BF, in SAF. The goal of this study was to show differences in the electrical properties of screening residual cokes compared to coke formed in different parts of the coke battery, in dependence of particle size. The resistances of different cokes were measured and XRD measurements were performed to define the crystallographic structure of the selected cokes. The results indicate that small coke particles have higher overall resistance, which is due to their internal properties. This small weakly carbonized coke is formed in the middle of the coking battery and is subject to changes in varying coking practices. Continuous quality control of screening residual coke is needed to use it in the SAF. (orig.)

  19. Chemical, physical, structural and morphological characterization of the electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Janaina G.M.S. [Laboratorio de Siderurgia/LASID, Universidade Federal do Rio Grande do Sul, UFRGS/PPGEM Centro de Tecnologia, AV. Bento Goncalves 9500 CEP, 91501-970 Caixa postal 15021, Porto Alegre, RS (Brazil)]. E-mail: jana@ct.ufrgs.br; Brehm, Feliciane Andrade [Nucleo de Caracterizacao de Materiais/NucMat, Universidade do Vale do Rio dos Sinos, UNISINOS, Sao Leopoldo, RS (Brazil); Moraes, Carlos Alberto Mendes [Nucleo de Caracterizacao de Materiais/NucMat, Universidade do Vale do Rio dos Sinos, UNISINOS, Sao Leopoldo, RS (Brazil); Santos, Carlos Alberto dos [Nucleo de Educacao a Distancia, Universidade Estadual do Rio Grande do Sul, UERGS, Porto Alegre, RS (Brazil); Vilela, Antonio Cezar Faria [Laboratorio de Siderurgia/LASID, Universidade Federal do Rio Grande do Sul, UFRGS/PPGEM Centro de Tecnologia, AV. Bento Goncalves 9500 CEP, 91501-970 Caixa postal 15021, Porto Alegre, RS (Brazil); Cunha, Joao Batista Marimon da [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, UFRGS, Campus do Vale, Porto Alegre, RS (Brazil)

    2006-08-25

    Electric arc furnace dust (EAFD) is a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Important elements to the industry such as, Fe and Zn are the main ones in EAFD. Due to their presence, it becomes very important to know how these elements are combined before studying new technologies for its processing. The aim of this work was to carry out a chemical, physical, structural and morphological characterization of the EAFD. The investigation was carried out by using granulometry analysis, chemical analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), X-ray mapping analysis via SEM, X-ray diffraction (XRD) and Moessbauer spectroscopy. By XRD the following phases were detected: ZnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, MgFe{sub 2}O{sub 4}, FeCr{sub 2}O {sub 4}, Ca{sub 0.15}Fe{sub 2.85}O{sub 4}, MgO, Mn{sub 3}O{sub 4}, SiO{sub 2} and ZnO. On the other hand, the phases detected by Moessbauer spectroscopy were: ZnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Ca{sub 0.15}Fe{sub 2.85}O{sub 4} and FeCr{sub 2}O{sub 4}. Magnesium ferrite (MgFe{sub 2}O{sub 4}), observed in the XRD pattern as overlapped peaks, was not identified in the Moessbauer spectroscopy analysis.

  20. FINDING WAYS OF RECYCLING DUST OF ARC STEEL FURNACES AT THE BELARUSIAN METALLURGIC PLANT

    Directory of Open Access Journals (Sweden)

    A. V. Demin

    2015-01-01

    Full Text Available The first part examines the theoretical possibility of recycling dust of arc steel furnaces. The different modes of dust disposal depending on the task of recycling are discussed: recycling at minimal cost; recycling with a maximum extraction of iron; recycling with maximum extraction of zinc. The results of laboratory studies providing information on the technical feasibility of recycling dust formed at the Belarusian metallurgic plant are provided.

  1. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  2. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system

    International Nuclear Information System (INIS)

    Suetens, T.; Guo, M.; Van Acker, K.; Blanpain, B.

    2015-01-01

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe 2 O 3 particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe 2 O 3 , Zn vapor reacts to form ZnFe 2 O 4 and ZnO. - Abstract: To better understand the phenomena of ZnFe 2 O 4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe 2 O 4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe 2 O 4 formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe 2 O 4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber

  3. Adsorption Study of Electric Arc Furnace Slag for the Removal of Manganese from Solution

    OpenAIRE

    C. L. Beh; Luqman Chuah; Thomas S.Y. Choong; Mohd. Z.B. Kamarudzaman; Khalina Abdan

    2010-01-01

    Problem statement: Steel making slag from Electric Arc Furnace (EAF) is an abundant by-product in Malaysia steel making industry. It has potential to be used for heavy metal removal from contaminated water or waste water. Approach: The aim of this study was to investigate the characteristic and behavior of manganese removal by using EAF slag for efficient metal removal. The removal characteristics of manganese were investigated in term of sorption kinetics and isotherm. The batch adsorption k...

  4. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust

    International Nuclear Information System (INIS)

    Fernandez-Olmo, Ignacio; Lasa, Cristina; Irabien, Angel

    2007-01-01

    Equilibrium models which attempt for the influence of pH on the solubility of metals can improve the dynamic leaching models developed to describe the long-term behavior of waste-derived forms. In addition, such models can be used to predict the concentration of metals in equilibrium leaching tests at a given pH. The aim of this work is to model the equilibrium concentration of Zn from untreated and stabilized/solidified (S/S) electric arc furnace dust (EAFD) using experimental data obtained from a pH-dependence leaching test (acid neutralization capacity, ANC). EAFD is a hazardous waste generated in electric arc furnace steel factories; it contains significant amounts of heavy metals such as Zn, Pb, Cr or Cd. EAFD from a local factory was characterized by X-ray fluorescence (XRF), acid digestion and X-ray diffraction (XRD). Zn and Fe were the main components while the XRD analysis revealed that zincite, zinc ferrite and hematite were the main crystalline phases. Different cement/EAFD formulations ranging from 7 to 20% dry weight of cement were prepared and subjected to the ANC leaching test. An amphoteric behavior of Zn was found from the pH dependence test. To model this behavior, the geochemical model Visual MINTEQ (VMINTEQ) was used. In addition to the geochemical model, an empirical model based on the dissolution of Zn in the acidic zone and the re-dissolution of zinc compounds in the alkaline zone was considered showing a similar prediction than that obtained with VMINTEQ. This empirical model seems to be more appropriate when the metal speciation is unknown, or when if known, the theoretical solid phases included in the database of VMINTEQ do not allow to describe the experimental data

  5. Pragmatic analysis of the electric submerged arc furnace continuum

    Science.gov (United States)

    Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.

    2017-09-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.

  6. Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace

    International Nuclear Information System (INIS)

    Chen Mingzhou; Meng Yuedong; Shi Jiabiao; Ni Guohua; Jiang Yiman; Yu Xinyao; Zhao Peng

    2009-01-01

    Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace. (plasma technology)

  7. Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace

    Science.gov (United States)

    Chen, Mingzhou; Meng, Yuedong; Shi, Jiabiao; Ni, Guohua; Jiang, Yiman; Yu, Xinyao; ZHAO, Peng

    2009-10-01

    Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace.

  8. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  9. DEVELOPMENT OF SOFTWARE “PRODSP-1.0” FOR OPTIMIZATION OF THE DEPHOSPHORIZATION PROCESSES IN ARC STEEL-FURNACES FOR TECHNOLOGICAL LINE-UP OF RUP “BMZ”

    Directory of Open Access Journals (Sweden)

    A. A. Chichko

    2006-01-01

    Full Text Available The software “ProDSP-1,0” allowing to forecast the dynamics of the dephosphorizaiton process at casting course in arc steel-furnace, is worked out. The examples of working of different program operating regimes, showing the possibilities of phosphorus control in steel-furnace of RUP ‘'BMZ'' are given.

  10. Formation of the ZnFe{sub 2}O{sub 4} phase in an electric arc furnace off-gas treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Suetens, T., E-mail: thomas.suetens@mtm.kuleuven.be; Guo, M., E-mail: muxing.guo@mtm.kuleuven.be; Van Acker, K., E-mail: karel.vanacker@lrd.kuleuven.be; Blanpain, B., E-mail: bart.blanpain@mtm.kuleuven.be

    2015-04-28

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe{sub 2}O{sub 3} particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe{sub 2}O{sub 3}, Zn vapor reacts to form ZnFe{sub 2}O{sub 4} and ZnO. - Abstract: To better understand the phenomena of ZnFe{sub 2}O{sub 4} spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe{sub 2}O{sub 4} formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe{sub 2}O{sub 4} formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe{sub 2}O{sub 4} spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  11. Investigation of possibility for stabilization and valorization of electric ARC furnace dust and glass from electronic waste

    Directory of Open Access Journals (Sweden)

    Ranitović M.

    2014-01-01

    Full Text Available This paper presents investigation of possibility for electric arc furnace dust (EAFD and electronic waste (e-waste valorization trough stabilization process, in order to achieve concurrent management of these two serious ecological problems. EAFD is an ineviTab. waste material coming from the electric arc furnace steel production process, classified as a hazardous waste. Furthermore, it is well known that residual materials generated in the ewaste recycling process, like LCD (Liquid crystal displays waste glass, are not suiTab. for landfill or incineration. In this study, these two materials were used for investigation of possibility for their valorization in ceramic industry. Thus, an innovative synergy of waste streams from metallurgical and e-waste recycling industry is presented. Investigation included a complex characterization of raw materials and their mixtures, using chemical methods, optical microscopy, scanning electron microscopy, as well as methods for determining the physical and mechanical properties. Based on these results, it was found that material suiTab. for use in ceramics industry as a partial substituent of quartzite and fluxing components can be produced. Besides solving the environmental problem related to EAFD and LCD disposal, by replacement of raw materials certain economic effects can be achieved. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  12. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O' Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  13. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    Science.gov (United States)

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  14. Stabilization of electric-arc furnace dust in concrete

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Caldas de Souza

    2010-12-01

    Full Text Available Electric-arc furnace dust (EAFD is a by-product of steel production and recycling. This fine-grained material contains high amounts of zinc and iron as well as significant amounts of potentially toxic elements such as lead, cadmium and chromium. Therefore, the treatment and stabilization of this industrial residue is necessary. Concrete is a well-known suitable environment for stabilization/solidification of materials which have leachable elements in need of fixation. The effect of the EAFD content on the mechanical and chemical performance of Portland cement concrete is investigated in this paper. The effect of the EAFD content on the setting time of cement slurry was also analyzed. The axial compressive strength of the concrete samples increases with the EAFD addition in the range of 10 to 20 wt. (% EAFD; also the tensile strength increases with the EAFD addition. An increase in EAFD content significantly increases the setting time of the concrete. The acetic acid leaching and water solubilization tests indicate low mobility of the potentially toxic elements from the EAFD concrete composite. The results of the immersion tests show that the addition of EAFD to the concrete seems to reduce chloride penetration, which may help prevent pitting corrosion in reinforced concrete.

  15. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  16. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  17. Industrial study of iron oxide reduction by injection of carbon particles into the electric arc furnace

    International Nuclear Information System (INIS)

    Conejo, A. N.; Torres, R.; Cuellar, E.

    1999-01-01

    An industrial study was conducted in electric arc furnaces (EAF) employing 100% direct reduced iron to evaluate the oxidation level of the slag-metal system. Energy consumption is decreased by injecting gaseous oxygen, however, slag oxidation also increases. In order to reduce the extent of oxidation while keeping a high volume of the oxygen injected , it is required: a) to optimize the carbon injection practice, b) to increase the carbon concentration of sponge iron, c) to operate with soluble carbon in both the metal and the slag beyond a critical level and d) to employ a low temperature profile, on average 1,650 degree centigrade. A method to define the proper amount of carbon in sponge iron which considers their metallization as well as the amount of oxygen injected is proposed. The position of the lance is critical in order to optimize the practice of carbon injection and assure a better residence time of the carbon particles within the furnace. (Author) 23 refs

  18. Electric arc furnace dust utilization in iron ore sintering: influence of particle size; Utilizacao da poeira de aciaria eletrica na sinterizacao de minerio de ferro: influencia da granulometria

    Energy Technology Data Exchange (ETDEWEB)

    Telles, V.B.; Junca, E.; Rodrigues, G.F.; Espinosa, D.C.R.; Tenorio, J.A.S., E-mail: victor_bridit@hotmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The aim of this work was to study the utilization of electric arc furnace dust (EAFD) generated in steelmaking by electric arc furnace (EAF) as raw material in iron ore sintering. The waste was characterized by size, chemical composition and X-ray diffraction. The physical characterization showed that 90% of the particles have a size less then 1,78 {mu}m and the material have the tendency to agglomerate. The waste were submitted to a pre-agglomeration prior to its incorporation in the sinter. The influence on the addition of the waste with different granulometry in the iron or sinter production were analyzed by sinter characterization and sintering parameters. (author)

  19. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    Science.gov (United States)

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-04-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

  20. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  1. Feasibility study of utilizing solar furnace technology in steel making industry

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspoursani, K. [The Faculty of Mechanical Engineering, Takestan Islamic Azad University (Iran, Islamic Republic of)], Email: a.abbaspour@tiau.ac.ir; Tofigh, A.A.; Nahang Toudeshki, S.; Hadadian, A. [Department of Energy, Materials and Energy Research Center (Iran, Islamic Republic of)], Email: Ali.A.Tofigh@gmail.com, email: toudeshki@hotmail.com, email: Arash.Hadadian@gmail.com; Farahmandpour, B. [Iranian Fuel Conservation company (Iran, Islamic Republic of)], Email: farahmandpour@gmail.com

    2011-07-01

    In Iran, the casting industry consumes 33.6% of electricity production, and most of this electricity is used in the melting process. Currently, scrap preheating is done using electric arc furnaces and the aim of this study is to assess the feasibility of replacing electric arc furnaces with solar furnaces. The performance of solar furnaces in the Iran Alloy Steel Company under Yazd climate conditions was studied. It was found that the solar irradiation time and solar insulation are sufficient to operate a solar furnace with the capacity to preheat 250 thousand tons per year of scrap to 500 degrees celsius. Results showed that such a furnace would decrease energy consumption by 40 GWh per year and that it would take 5 years to return the investment. This study demonstrated that operating a solar furnace in the Iran Alloy Steel Company under Yazd climate conditions is feasible and would result in economic and environmental benefits.

  2. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  3. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    Science.gov (United States)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  4. Addition of electric arc furnace dust in hot metal changing the form of addition

    International Nuclear Information System (INIS)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Vieira, Estefano Aparecido; Telles, Victor Bridi; Grillo, Felipe Fardin; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2014-01-01

    This research aims to study the incorporation of the mass of electric arc furnace dust (EAFD), by addition in hot metal (1.78% Si) at a temperature of 1,400 degrees Celsius. The EAFD is from a steel plant producing long steel. The addition of the EAFD was as received, in the form of briquettes without agitation of the hot metal and in the form of briquettes with agitation of the hot metal. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) microanalysis. The achievement of fusion experiments in laboratory scale, took place in a vertical tubular furnace with temperature control. The fusion experiments to assess the incorporation of EAFD mass used graphite crucibles. After cooling, the hot metal and the slag, remaining in the crucible, were weighed to do a mass balance. A flow of inert gas (argon) was maintained inside the furnace during the experiments. Results show that the experiment with addition of EAFD as received presents the best result of incorporating the mass of the final hot metal (1.73%) combined with the lowest percentage of volatilized mass of EAFD (46.52%). The experiment addition of EAFD in the form of briquette with agitation of hot metal presents the lowest percentage of slag mass (4.58%). The zinc content of volatilized EAFD (64.30%) is higher than the zinc content of the imported ore concentrate (52%) and zinc content of the national ore concentrate (12% to 39%). The presence of lead and cadmium in the slag characterizing it as a hazardous solid waste. (author)

  5. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  6. Recycling of electric arc furnace dust; Reciclagem de poeira de aciaria eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de, E-mail: vicente@ifes.edu.b [Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica

    2010-07-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  7. Emissions of dioxin and dibenzofuran from electric arc furnaces

    Directory of Open Access Journals (Sweden)

    Figueira, S. L.

    2005-06-01

    Full Text Available This paper describes work done in order to clarify the formation mechanism of highly toxic micropoUutants, such as dioxins and dibenzofurans, from electric arc furnaces used in the production of carbon steel from scrap. The study is allowing to derive relationships between the levels of airborne micropoUutants and the operational parameters of the production process so that an abatement of pollution could be achieved. By using the European standard method CEN 1948 for dioxin like compounds sampling and measurement, it was possible to determine the characteristic fingerprint of micropoUutants emitted by this particular stationary source.

    Este artículo contiene resultados del trabajo ejecutado para el esclarecimiento de los mecanismos de formación de los micropolutantes muy tóxicos, como dioxinas y dibenzofuranos, que son emitidos por los hornos de arco eléctrico utilizados en la producción de acero. Estos estudios han permitido relacionar las concentraciones de polutantes emitidos a la atmósfera con las condiciones operación del homo eléctrico. Utilizando el método normalizado CEN 1948 para captación y análisis de muestras de compuestos análogos a las dioxinas ha sido posible determinar el perfil característico de los micropolutantes emitidos por esta fuente

  8. Research On Technology Of Making Rare Earth Alloy Having Rare Earth Content ≽30% From Ore (≽40% REO) Using Aluminum Thermal Technology In Arc Furnace

    International Nuclear Information System (INIS)

    Ngo Xuan Hung; Ngo Trong Hiep; Tran Duy Hai; Nguyen Huu Phuc

    2014-01-01

    Arc furnace was used to smelt materials consisting of rare earth ore having rare earth content of ≽40% REO, aluminum as the reducing agent and additives. Rare earth alloy was obtained with rare earth metal content of more than 30%. (author)

  9. Graphite electrode dc arc technology development for treatment of buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-02-01

    A ''National Laboratory-University-Industrial'' three-way partnership has been established between the Pacific Northwest Laboratory (PNL), Massachusetts Institute of Technology (MIT), and Electro-Pyrolysis, Inc. (EPI) to develop graphite electrode DC arc technology for the treatment of buried wastes. This paper outlines the PNL-MIT-EPI program describing a series of engineering-scale DC arc furnace tests conducted in an EPI furnace at the Plasma Fusion Center at MIT, and a description of the second phase of this program involving the design, fabrication, and testing of a pilot-scale DC arc furnace. Included in this work is the development and implementation of diagnostics to evaluate and optimize high temperature thermal processes such as the DC arc technology

  10. Usage of Thermodynamic Activity for Optimization of Power Expenses in Respect of Casting Process in Arc Steel-Melting Furnace

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The equilibrium between carbon and oxygen has been investigated during oxidizing refining in an arc steel-melting furnace. It is shown that there is a possibility to apply an equilibrium thermodynamic. It has been established that during oxidizing refining FeO concentration in slag practically does not depend on C concentration in metal. It is demonstrated that in a number of cases metal carbon oxidation is characterized by the presence of a transit period that may be attributed to incomplete slag-formation process.

  11. Preparation of concrete mixtures with electric arc furnace slag and recycled ground glass

    Science.gov (United States)

    Pérez Rojas, Y.; López, E. Vera; López Rodríguez, M.; Díaz Pita, J.

    2017-12-01

    The present work includes the first advances in the development of investigations that seek to include Ground Grinding Glass (GRR) and the Electric Arc Furnace Slag (EAFS) in the production of mixtures of hydraulic concrete mixing them simultaneously, so that it satisfies the specifications techniques to be used in the construction of rigid pavements. Firstly, we cite the tests carried out on the different materials to obtain their physical, chemical and mechanical characterization and determine their compliance, as well as the measurement of certain characteristics that may be somewhat empirical to standardize their control. Technique such as X-Ray Diffraction (XRD), X-ray Fluorescence Spectrometry (XFR) and Scanning Electron Microscopy (SEM) have been used. Once the results of the characterization tests and their correspondence with the Colombian technical standards have been obtained, it has become possible to select the use of the Transparent Recycled Ground Glass (TRGG) as the most suitable for the replacement of the sand in the dosage of new mixtures modified concrete.

  12. Computer-integrated electric-arc melting process control system

    OpenAIRE

    Дёмин, Дмитрий Александрович

    2014-01-01

    Developing common principles of completing melting process automation systems with hardware and creating on their basis rational choices of computer- integrated electricarc melting control systems is an actual task since it allows a comprehensive approach to the issue of modernizing melting sites of workshops. This approach allows to form the computer-integrated electric-arc furnace control system as part of a queuing system “electric-arc furnace - foundry conveyor” and consider, when taking ...

  13. Graphite electrode DC arc technology program for buried waste treatment

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Woskov, P.P.; Thomas, P.; Surma, J.E.; Titus, C.H.

    1994-01-01

    The goal of the program is to apply EPI's Arc Furnace to the processing of Subsurface Disposal Area (SDA) waste from Idaho National Engineering Laboratory. This is being facilitated through the Department of Energy's Buried Waste Integrated Demonstration (BWID) program. A second objective is to apply the diagnostics capability of MIT's Plasma Fusion Center to the understanding of the high temperature processes taking place in the furnace. This diagnostics technology has promise for being applicable in other thermal treatment processes. The program has two parts, a test series in an engineering-scale DC arc furnace which was conducted in an EPI furnace installed at the Plasma Fusion Center and a pilot-scale unit which is under construction at MIT. This pilot-scale furnace will be capable of operating in a continuous feed and continuous tap mode. Included in this work is the development and implementation of diagnostics to evaluate high temperature processes such as DC arc technology. This technology can be used as an effective stabilization process for Superfund wastes

  14. Disposal of low-level radioactive wastes. Plasma furnace for the treatment of low-level radwastes in Switzerland. Plasma furnace for the treatment of low-level radwastes in Switzerland

    International Nuclear Information System (INIS)

    Hoffelner, W.; Mueller, T.; Fuenfschilling, M.R.; Jacobi, A.; Eschenbach, R.; Lutz, H.R.; Vuilleumier, C.

    1994-01-01

    The treatment method to be applied consists of thermal decomposition and vitrification. The facility to be constructed at the Zwilag is a plasma-arc furnace, and planning activities are heading towards the final phase. There will be only this one facility for treating in only one process step solid, mixed wastes, liquid wastes, sludges, metals, and inorganic wastes, producing vitrified waste packages ready for ultimate storage as 200-l waste drums. The main features of the plasma-arc furnace are explained. (orig./HP) [de

  15. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  16. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C. [ed.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  17. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace

  18. Contribution to the study of an electric rotating furnace with gaseous electrodes

    International Nuclear Information System (INIS)

    Dallaire, Serge

    1976-01-01

    As the most primary and also most efficient way to transfer to a body the energetic content of an electric arc is to put it directly in contact with the arc, this research thesis reports the study of the development of a device allowing this operation: the electric rotating furnace with gaseous electrodes. In the first part, the author presents the furnace and its operation characteristics: thermal enclosure, heat source, hardware and installation description, operation characteristics. The second part reports the study of heat transfer phenomena: main determinations of the transfer coefficient, inverse problem, study of the thermal diffusivity with phase change, proposed solutions, and experimental study. The third part reports the search for boundary conditions and the study of furnace efficiency [fr

  19. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  20. Single crystal growth of pure and Nd-doped Y2O3 by flotating zone method with Xe arc lamp imaging furnace

    International Nuclear Information System (INIS)

    Tsuiki, H.; Kitazawa, K.; Fueki, K.; Masumoto, T.; Shiroki, K.

    1980-01-01

    Single crystals of undoped and Nd-doped yttrium oxide were grown by the floating zone method with a Xe arc lamp imaging furnace. The crystals were grown in the and directions. Transparent and subgrain-free single crystals were obtained at a growth rate of 30-60 mm/h for the undoped yttrium oxide. Facets of the cubic [100] and [211] were observed though the high temperature phase of the crystal is hexagonal. Dislocation densities of undoped yttrium oxide are given. (orig./WE)

  1. Removal of Heavy Metals from Steel Making Waste Water by Using Electric Arc Furnace Slag

    Directory of Open Access Journals (Sweden)

    C. L. Beh

    2012-01-01

    Full Text Available This work investigated the reduction of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS and the concentration of heavy metals of wastewater from a steel making plant. Adsorption experiments were carried out by electric arc furnace slag (EAFS in a fixed-bed column mode. The raw wastewater did not meet the standard B limitations, having high values of BOD, COD, TSS, Iron, Zinc, Manganese and Copper. After passing through the fixed bed column, BOD, COD and TSS values decreased to 1.6, 6.3 and <2 mgL-1, respectively while the concentration of Iron, Zinc, Manganese and Copper were 0.08, 0.01, 0.03 and 0.07 mgL-1, respectively. The results confirmed that EAFS can be used as an efficient adsorbent for producing treated water that comply with the Standard B limitations for an industrial effluent.

  2. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  3. Structural ceramics containing electric arc furnace dust

    International Nuclear Information System (INIS)

    Stathopoulos, V.N.; Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J.

    2013-01-01

    Highlights: • Zn is stabilized due to formation of ZnAl 2 O 4 spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an

  4. Intelligent Support System of Steel Technical Preparation in an Arc Furnace: Functional Scheme of Interactive Builder of the Multi Objective Optimization Problem

    Science.gov (United States)

    Logunova, O. S.; Sibileva, N. S.

    2017-12-01

    The purpose of the study is to increase the efficiency of the steelmaking process in large capacity arc furnace on the basis of implementation a new decision-making system about the composition of charge materials. The authors proposed an interactive builder for the formation of the optimization problem, taking into account the requirements of the customer, normative documents and stocks of charge materials in the warehouse. To implement the interactive builder, the sets of deterministic and stochastic model components are developed, as well as a list of preferences of criteria and constraints.

  5. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mohiuddin, Kazi, E-mail: kazi.mohiuddin@students.mq.edu.au [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Strezov, Vladimir; Nelson, Peter F. [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Evans, Tim [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia)

    2014-07-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  6. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    International Nuclear Information System (INIS)

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F.; Stelcer, Eduard; Evans, Tim

    2014-01-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  7. Modeling of thermal plasma arc technology FY 1994 report

    International Nuclear Information System (INIS)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces

  8. Numerical modeling of transferred arc melting bath heating; Modelisation numerique du chauffage de bains par arc transfere

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, A. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Trenty, L.; Guillot, J.B. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Delalondre, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    This paper presents the modeling of a transferred electric arc inside a bath of melted metal. After a recall of the context of the study, the problem of the modeling, which involves magnetohydrodynamic coupling inside the arc and the bath, is described. The equations that govern the phenomena inside the arc and the bath are recalled and the approach used for the modeling of the anode region of the arc is explained using a 1-D sub-model. The conditions of connection between arc and bath calculations are explained and calculation results obtained with a 200 kW laboratory furnace geometry are presented. (J.S.) 8 refs.

  9. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    International Nuclear Information System (INIS)

    Pickles, C.A.

    2009-01-01

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  10. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  11. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  12. Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters.

    Science.gov (United States)

    Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir

    2008-10-01

    The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.

  13. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    Science.gov (United States)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  14. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    Energy Technology Data Exchange (ETDEWEB)

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  15. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  16. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  17. Driven Motion and Instability of an Atmospheric Pressure Arc

    International Nuclear Information System (INIS)

    Max Karasik

    1999-01-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes

  18. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  19. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  20. Optimisation of the FeMn and ZnO production from spent pyrolised primary batteries. Feasibility of a DC-submerged arc furnace process

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alvarado, R.; Friedrich, B. [RWTH Aachen (Germany). IME Process Metallurgy and Metal Recycling

    2008-07-01

    In the present work the feasibility to produce a Fe-Mn-alloy and a ZnO-concentrate from spent pyrolised primary batteries has been investigated based on fundamental research, already reported in 'World of Metallurgy' - ERZ-METALL 1/2007. Through a carbothermic reduction in a Direct Current Submerged Arc Furnace process (DC-SAF) at IME Aachen, several laboratory-scale as well as semi-pilot scale tests were conducted with three different slag-compositions using solid- and hollow-electrode technique. The process was theoretically modelled with the thermochemical package FactSage 5.3.1. The effect of the process parameters temperature, slag composition and carbon addition were analysed. The results show that it is possible to recycle spent primary batteries through the submerged arc route to obtain a Fe-Mn alloy with a ratio Mn/Fe>1 and a ZnO concentrate as a separated product, reaching recycling quotes for Mn between 44 and 62%, for Fe between 56 and 96% and for zinc of more than 90%. (orig.)

  1. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A.

    1998-01-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.)

  2. Characterization of electric arc furnace dust aiming reuse; Caracterizacao da poeira de aciaria eletrica visando o seu reaproveitamento

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, F.F.; Oliveira, E.B.G.; Oliveira, J.R. de, E-mail: fgrillo@ifes.edu.b [Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Telles, V.B.; Tenorio, J.A.S. [Universidade de Sao Paulo (USP), SP (Brazil)

    2010-07-01

    This work aims to study the characterize of steelmaking dust, from the primary refining of steel in Electric Arc Furnace, in order to verify feasibility of reuse through the addition of hot metal in the form of briquette. The techniques used to characterize the dust was chemical analyses, size separation tests, X-ray diffraction analyses (XRD), Scanning Electron Microscopy (SEM). After characterization, was the calculation of reductant considering the complete reduction of iron oxides and then to briquetting. The waste sample is composed essentially of spherical particles and has a very small particle size (85% below 10 {mu}m). The XRD has presented compounds such as ZnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, ZnO e SiO{sub 2}. This work showed that its possible recovery approximately 92% of metal iron from dust generated during steelmaking.This (author)

  3. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    International Nuclear Information System (INIS)

    Penalva, I.; Damborenea, J.; Legarda, F.; Zuloaga, P.; Ordonez, M.; Serrano, I.

    2006-01-01

    The appearance of orphan sources in steelmaking facilities has become a fact nowadays. Radiation sources, hidden within the scrap, may come into the scrap yard and become part of the melting. As a result, dispersion of the radioactive material that makes up the source takes place throughout the facility. The University of the Basque Country (U.P.V.-E.H.U.), in collaboration with the Empresa Nacional de Residuos Radiactivos, S.A. (E.N.R.E.S.A.) and the Consejo de Seguridad Nuclear (C.S.N.), has carried out a Research Project to analyze this accidental melting of radioactive sources in electric arc furnaces (E.A.F.). The whole steelmaking process can be analyzed in several discrete phases. Radioactive sources that may be incorporated to this process will be exposed to the different critical conditions prevailing during each phase. In this sense, Computational Fluid Dynamics (C.F.D.) has been used in order to recreate such conditions and so, determine the characteristics of the dispersion of radioactivity. Two different situations have been studied in detail using C.F.D. techniques: thermal conditions around a scrap-basket that contains the source just before entering the furnace and the deposition of steelmaking dust containing 137 Cs on the inner surface of flue pipes. Before entering the furnace, scrap is usually placed inside a basket that remains above the furnace during some time. Once the furnace is open the scrap is dropped into the furnace to complete the loading process. C.F.D. techniques have been used to analyze the thermal conditions around the basket in order to assess the possibility of a break of the radioactive source hidden within the scrap, concluding that commercial sources will maintain their integrity during the whole loading process. On the other hand, after entering the furnace dispersion of the radioactive material will take place. Physical and chemical properties of the active elements (chemical form, composition, melting point, etc

  4. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, I.; Damborenea, J.; Legarda, F. [University of the Basque Country, Nuclear Engineering and Fluids Mechanics (Spain); Zuloaga, P.; Ordonez, M. [Empresa Nacional de Residuos Radiactivos, SA (ENRESA), Madrid (Spain); Serrano, I. [Consejo de Seguridad Nuclear, Madrid (Spain)

    2006-07-01

    The appearance of orphan sources in steelmaking facilities has become a fact nowadays. Radiation sources, hidden within the scrap, may come into the scrap yard and become part of the melting. As a result, dispersion of the radioactive material that makes up the source takes place throughout the facility. The University of the Basque Country (U.P.V.-E.H.U.), in collaboration with the Empresa Nacional de Residuos Radiactivos, S.A. (E.N.R.E.S.A.) and the Consejo de Seguridad Nuclear (C.S.N.), has carried out a Research Project to analyze this accidental melting of radioactive sources in electric arc furnaces (E.A.F.). The whole steelmaking process can be analyzed in several discrete phases. Radioactive sources that may be incorporated to this process will be exposed to the different critical conditions prevailing during each phase. In this sense, Computational Fluid Dynamics (C.F.D.) has been used in order to recreate such conditions and so, determine the characteristics of the dispersion of radioactivity. Two different situations have been studied in detail using C.F.D. techniques: thermal conditions around a scrap-basket that contains the source just before entering the furnace and the deposition of steelmaking dust containing {sup 137}Cs on the inner surface of flue pipes. Before entering the furnace, scrap is usually placed inside a basket that remains above the furnace during some time. Once the furnace is open the scrap is dropped into the furnace to complete the loading process. C.F.D. techniques have been used to analyze the thermal conditions around the basket in order to assess the possibility of a break of the radioactive source hidden within the scrap, concluding that commercial sources will maintain their integrity during the whole loading process. On the other hand, after entering the furnace dispersion of the radioactive material will take place. Physical and chemical properties of the active elements (chemical form, composition, melting point, etc

  5. Study of the processes for of remelting zirconium alloys in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz A.T.; Rossi, Jesualdo L.; Costa, Guilherme R.; Martinez, Luis G.; Sato, Ivone M., E-mail: luiz.atp@uol.com.br, E-mail: jelrossi@ipen.br, E-mail: guilhermeramoscosta@gmail.com, E-mail: lgallego@ipen.br, E-mail: imsato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Zirconium alloy tubes are used as cladding for fuel elements of PWR nuclear reactors, which contains the UO{sub 2} pellets. In the manufacture of these fuel element parts, machining chips from the nuclear grade zirconium alloys are generated. Hence, these machining chips cannot be discarded, as ordinary metallic waste. Thus, the recycling of this material is a strategic aspect for the nuclear technology, both for economic and environmental issues. The main reason is that nuclear grade alloys have very high cost, are not commercially produced in Brazil and has to be imported for the manufacture of the nuclear fuels. This work discusses a method to melt and recycle Zircaloy chips, using an electric-arc furnace to obtain small laboratory ingots. The chemical composition of the ingots was determined using X-ray fluorescence spectroscopy and was compared to the specifications of nuclear grade Zircaloy and to the chemical composition of the received machining chips. The ingots were annealed in high vacuum, as well as were hot rolled in a mill. The microstructures were characterized by optical microscopy. The hardness was evaluated using the Rockwell B scale hardness. The results showed that the compositions of the recycled Zircaloy comply with the chemical specifications and a suitable microstructure has been obtained for nuclear use. (author)

  6. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy

    International Nuclear Information System (INIS)

    Pereira, Luiz Alberto Tavares

    2014-01-01

    PWR reactors employ, as nuclear fuel, UO 2 pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  7. Arc melting and homogenization of ZrC and ZrC + B alloys

    Science.gov (United States)

    Darolia, R.; Archbold, T. F.

    1973-01-01

    A description is given of the methods used to arc-melt and to homogenize near-stoichiometric ZrC and ZrC-boron alloys, giving attention to the oxygen contamination problem. The starting material for the carbide preparation was ZrC powder with an average particle size of 4.6 micron. Pellets weighing approximately 3 g each were prepared at room temperature from the powder by the use of an isostatic press operated at 50,000 psi. These pellets were individually melted in an arc furnace containing a static atmosphere of purified argon. A graphite resistance furnace was used for the homogenization process.

  8. Utilization of Electric Arc Furnace Dust as raw material for the production of ceramic and concrete building products.

    Science.gov (United States)

    Sikalidis, Constantine; Mitrakas, Manassis

    2006-01-01

    The up to 20 wt% addition of the Electric Arc Furnace Dust (EAFD) hazardous waste on the properties of extruded clay-based ceramic building products fired at various temperatures (850 to 1050 degrees C), as well as of dolomite-concrete products was investigated. Chemical, mineralogical and particle size distribution analyses were performed in order to characterize the used EAFD. The results showed that the ceramic specimens prepared had water absorption, firing shrinkage, apparent density, mechanical strength, colour and leaching behaviour within accepted limits. Addition of 7.5 to 15 wt% EAFD presented improved properties, while 20 wt% seems to be the upper limit. Dolomite-concrete specimens were prepared by vibration and press-forming of mixtures containing cement, sand, dolomite, EAFD and water. Modulus of rupture values were significantly increased by the addition of EAFD. The leaching tests showed stabilization of all toxic metals within the sintered ceramic structure, while the leaching behaviour of lead in dolomite-concrete products needs further detailed study.

  9. Emissions of polyciclic aromatic hydrocarbons and polyciclic carbonyl biphenils from electric arc furnaces

    Directory of Open Access Journals (Sweden)

    P. Gomes, J. F.

    2008-06-01

    Full Text Available This paper describes work done in order to determine the emissions of highly toxic organic micropollutants from electric arc furnaces used in the production of carbon steel from scrap. The study will be allowing to derive relationships between the levels of airborne micropollutants and the operational parameters of the production process so that an abatement of pollution could be achieved. By using the European standard method CEN 1948 for dioxin like compounds sampling and measurement, it was possible to determine the characteristic fingerprint of micropollutants such as polyciclic aromatic hydrocarbons (PAHs and polycyclic carbonyl biphenils (PCBs emitted by this particular stationary source.

    Este artículo contiene resultados del trabajo ejecutado para estudiar la determinación de las emisiones de los micropolutantes orgánicos muy tóxicos que se emiten por los hornos eléctricos de arco utilizados en la producción de acero. Este estudio inicial va a permitir relacionar las concentraciones de polutantes emitidos a la atmósfera con las condiciones de operación del horno eléctrico de arco. Utilizando el método normalizado CEN 1948 para captación y análisis de muestras de compuestos análogos a las dioxinas ha sido posible determinar el perfil característico de los micropolutantes tales como PAHs y PCBs emitidos por esta fuente.

  10. A Heat and Mass Transfer Model of a Silicon Pilot Furnace

    Science.gov (United States)

    Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald

    2017-10-01

    The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.

  11. Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures

    Science.gov (United States)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Jarrah, Muhannad; Altarawneh, Mohammednoor; Kingman, Sam

    2018-02-01

    The pyrolysis of Tetrabromobisphenol A (TBBPA) mixed with electric arc furnace dust (EAFD) was studied using thermogravimetric analysis (TGA) and theoretically analyzed using thermodynamic equilibrium calculations. Mixtures of both materials with varying TBBPA loads (1:1 and 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at heating rates of 5 and 10 °C/min. The mixtures degraded through several steps, including decomposition of TBBPA yielding mainly HBr, bromination of metal oxides, followed by their evaporation in the sequence of CuBr3, ZnBr2, PbBr2, FeBr2, MnBr2, KBr, NaBr, CaBr2, and MgBr2, and finally reduction of the remaining metal oxides by the char formed from decomposition of TBBPA. Thermodynamic calculations suggest the possibility of selective bromination of zinc and lead followed by their evaporation, leaving iron in its oxide form, while the char formed may serve as a reduction agent for iron oxides into metallic iron. However, at higher TBBPA volumes, iron bromide forms, which can also be evaporated at a temperature higher than those of ZnBr2 and PbBr2. Results from this work provide practical insight into selective recovery of valuable metals from EAFD while at the same time recycling the hazardous bromine content in TBBPA.

  12. A two-stage metal valorisation process from electric arc furnace dust (EAFD

    Directory of Open Access Journals (Sweden)

    H. Issa

    2016-04-01

    Full Text Available This paper demonstrates possibility of separate zinc and lead recovery from coal composite pellets, composed of EAFD with other synergetic iron-bearing wastes and by-products (mill scale, pyrite-cinder, magnetite concentrate, through a two-stage process. The results show that in the first, low temp erature stage performed in electro-resistant furnace, removal of lead is enabled due to presence of chlorides in the system. In the second stage, performed at higher temperatures in Direct Current (DC plasma furnace, valorisation of zinc is conducted. Using this process, several final products were obtained, including a higher purity zinc oxide, which, by its properties, corresponds washed Waelz oxide.

  13. Improvement of refractories for bottom of DC-Arc furnace; Chokuryudenkiro no roshoyo taikabutsu no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Toshihiro; Suzuki, Koichi; Okamoto, Yutaka; Tokuchi, Kazumasa [Asahi Glass Corp., Tokyo (Japan)

    1999-06-01

    A conductive refractory furnace bottom type DC electric furnace has disadvantages of large material cost, large working cost and long working period in refractory replacement due to a large amount of refractory installation. The furnace bottom has three layers of permanent bricks, wear bricks and a hot repair material, and durability improvement of wear bricks is an important issue. From the study results for 4 years in a real furnace the following conclusions were obtained: (1) The use of MgO-C based unburned bricks of 15% carbon content as wear bricks reduced the erosion speed by about 20% compared with a conventional MgO-C based burned bricks of 20% carbon content, (2) The resistivity value of the MgO-C based unburned brick decreased to a value equivalent to that of MgO-C based burned brick, which gave no problem in electro conductivity, (3) The addition of the hot repair material over 260 degree C of furnace bottom temperature and stable forming of a protective coating layer of 200-400 mm thickness enabled high durability over 6,400 heats of wear bricks, and (4) The use of the permanent bricks for 15,477 heats promised possible further use. (NEDO)

  14. Where Diffusion of Clean Technologies and Barriers to Innovation Clash: Application to the Global Diffusion of the Electrical Arc Furnace

    Directory of Open Access Journals (Sweden)

    José Antonio Moya

    2017-01-01

    Full Text Available This paper analyses the role of barriers preventing the worldwide take-up of a clean technology: the electrical arc furnace. It also identifies which barriers affect a parameter that summarises the combined effect of all of them. The first step, determination of the combined effect of the barriers, is carried out using a novel approach to model the diffusion of innovations. This new approach is composed only by terms that account for the driver of innovations and the parameter that summarises the effect of barriers. The objective quantification of the effect of barriers in the diffusion of innovations opens up new opportunities for designing policies to overcome the barriers identified as the most relevant, for identifying the effect of existing policies, for relating innovation indicators with those barriers or for better incorporating the effect of barriers in bottom-up models that forecast the technological evolution of the economy.

  15. US bureau of mines small-scale arc melter tests

    International Nuclear Information System (INIS)

    O'Connor, W.K.; Oden, L.L.; Turner, P.C.; Davis, D.L.

    1993-01-01

    The US Bureau of Mines, in cooperation with the Idaho National Engineering Laboratory (INEL), conducted over 30 hours of melting tests to vitrify simulated low-level radioactive wastes from the INEL. Radioactive Waste Management Complex (RWMC). Five separate waste compositions were investigated, each consisting of noncontaminated soil from the RWMC and surrogate materials used to simulate the actual buried wastes. The RWMC soil and five waste compositions were melted in a 50-lb, single-phase electric arc furnace with a water-cooled shell. These tests were conducted to determine melting parameters in preparation for a large-scale melting campaign to be conducted in the Bureau's 1-metric ton (mt), water-cooled-wall, 3-phase electric arc furnace. Bulk chemical composition was determined for each of the feed materials and for the slag, metal, fume solids, and offgas furnace products, and distributions were calculated for the key elements. The material balance for the furnace operation indicates that from 63 to 84 pct of the feed reported to the slag. Cerium, used as the surrogate for the radionuclides in the wastes, demonstrated an extremely strong affinity for the slag product. Although slag temperatures as low as 1,250 C were recorded when melting the RWMC soil, temperatures in excess of 1,600 C were necessary to achieve the fluidity required for a successful slag tap

  16. HYDRAULIC AND LEACHING BEHAVIOUR OF BELITE CEMENTS PRODUCED WITH ELECTRIC ARC FURNACE STEEL SLAG AS RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Iacobescu R. I.

    2013-06-01

    Full Text Available Three belite-rich cements consisting of a clinker made with 0 (BC, 5 (BC5 and 10 wt. % (BC10 electric arc furnace steel slag (EAFS as raw material, were studied for their hydraulic and leaching behaviour. Hydration behaviour was studied by FTIR, TG/DTG and SEM analyses. The cements with EAFS resulted in a higher C2S/C3S and C4AF/C3A ratio compared to the reference body. As a result, the rate of hydration was low at early days whereas the structure was porous with scattered AFm and C–S–H crystals. At 28 days, a comparable dense microstructure consisting largely of C–S–H is observed in all mortars. Leaching was studied for V and Cr by means of tank test according to standard NEN 7345. The results showed V release below 2 μg/l. Chromium release calculated per 24 h was 1.4 μg/l in BC5 and 2.4 μg/l in BC10, which is much lower than the parametric value of 50 μg/l specified by the European Directive for drinking water (98/83/EC.

  17. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  18. Effect of addition of arc furnace dust in the microstructural properties of fly ash alkali-activated

    International Nuclear Information System (INIS)

    Vargas, Alexandre Silva de; Pavao, Bruno Barreto; Masuero, Angela Boreges; Dal Molin, Denise Carpena Coitinho; Vilela, Antonio Cezar Faria

    2010-01-01

    The search for alternative materials for construction, with less environmental impact, has been the subject of several studies. The alkali-activated cements have shown potential for the reuse of waste, and can be used in the technology of solidification/stabilization. Thus, this study aims to evaluate the main effect of adding arc furnace dust (AFD) in the microstructural properties of matrices based on fly ash alkali-activated. Three levels of AFD were studied: 0, 5, 15 and 25%. The curing was set at 70°C/24 h, and after, kept at room temperature until the age of analysis - 1, 28 and 180 days, with XRD and FTIR analysis. In the XRD spectres it was found that compounds of albite and natron decrease the intensity of their peaks in that there is an increase in the levels of AFD. Concerning to the FTIR, we observed that the band characteristic of the fly ash (FA) 1084 cm"-"1 was shifted to bands near 1000 cm"-"1, which shows that the residue does not interfere in the polymerization and aluminosilicate gel formation. Therefore, under the microstructural aspect, there were no major changes that would impair the use of this residue in alkali-activated matrices. (author)

  19. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Waste form development for a DC arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  1. Synthesis of aluminium nanoparticles by arc evaporation of an ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on.

  2. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  3. Proposition of a modification to the VAR process and its application in the consolidation of pressed zircaloy chips and the evaluation of the dynamical system of the electric arc

    International Nuclear Information System (INIS)

    Mucsi, Cristiano Stefano

    2005-01-01

    The objective of this work is the investigation of a new process as an alternative to the Vacuum Arc Remelting technology in the consolidation of Zircaloy chips. A procedure is proposed for the recycling of primary Zircaloy scraps by means of a modified VAR furnace. The performed studies were made in order to optimise the low cost new devices added to existing VAR furnace prototype, find ideal operational conditions, evaluate data acquisition system and the electric arc dynamical system in order to made viable the automated control of the modified VAR prototype. A funnel-crucible special device was developed and installed in a VAR prototype furnace allowing ingots to be obtained from pressed chips. This indicated the viability of creation of a new process for the consolidation of Zircaloy chips. The voltage of the electric arc during the melting runs was digitally recorded allowing the evaluation of the electric arc dynamics by using the topological invariant of the system: correlation dimension and the higher Liapunov exponent. (author)

  4. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    International Nuclear Information System (INIS)

    Oden, L.L.; O'Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-01-01

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests

  5. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    CERN Document Server

    Blais, A; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop DELTA phi all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I...

  6. Producción de aceros al carbono en hornos de arco eléctrico en condiciones de mineral de manganeso. // Steel production in electric arc furnaces in the condition of use of manganese.

    Directory of Open Access Journals (Sweden)

    E. E. Navas Medina

    2007-05-01

    Full Text Available El presente trabajo constituye una segunda etapa de investigación relacionada con la producción de acero en hornos de arcoeléctrico con revestimiento básico en condiciones de utilización de mineral de manganeso como sustituto del ferromanganeso.En la investigación se caracteriza el acero producido utilizando el mineral de manganeso en dos variantes tecnológicasdiferentes y se determinan parámetros importantes, tales como la estructura del acero obtenido, la influencia de lacomposición química y la temperatura en la reducción del Mn. Adicionalmente, se determina la composición química de laescoria, su basicidad e influencia en el aprovechamiento del Mn del mineral, así como, lo que significa la sustitución delFeMn en la problemática medioambiental.Palabras claves: Producción de aceros al carbono, hornos de arco eléctricos, mineral de manganeso.______________________________________________________________________________Abstract:This present work constitutes the second stage of investigation in relation with the steel production bymeans of electric arc furnaces in the condition of use of manganese ores as a substitute of theferromanganese. In the investigation, the steel manufactured is analyzed the manganese ore in twodifferent technological variants and some important parameters are determined such as: the chemicalcomposition's structure of the steel, the influence of temperature in the reduction of Mn. Moreover, ananalysis of the chemical composition of the slag and the influence in the environmental is realized.Key words: Carbon steel production, electric arc furnaces, manganese mineral.

  7. Estimating the Condition of the Heat Resistant Lining in an Electrical Reduction Furnace

    Directory of Open Access Journals (Sweden)

    Jan G. Waalmann

    1988-01-01

    Full Text Available This paper presents a system for estimating the condition of the heat resistant lining in an electrical reduction furnace for ferrosilicon. The system uses temperature measured with thermocouples placed on the outside of the furnace-pot. These measurements are used together with a mathematical model of the temperature distribution in the lining in a recursive least squares algorithm to estimate the position of 'the transformation front'. The system is part of a monitoring system which is being developed in the AIP-project: 'Condition monitoring of strongly exposed process equipment in thc ferroalloy industry'. The estimator runs on-line, and results arc presented in colour-graphics on a display unit. The goal is to locate the transformation front with an accuracy of +- 5cm.

  8. The effect of smelting time and composition of palm kernel shell charcoal reductant toward extractive Pomalaa nickel laterite ore in mini electric arc furnace

    Science.gov (United States)

    Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono

    2018-04-01

    Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.

  9. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    International Nuclear Information System (INIS)

    Blais, A; Proulx, P; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop Δφ all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I and conductor current I conductor and decreases with the flow rate Q and x 0 , the arc-conductor distance. These deflection behaviours are explained using physical arguments

  10. The induction furnace as a melting facility in steel production. Pt. 1. Features of induction furnaces used in steel production; Der Induktionsofen als Schmelzaggregat fuer die Stahlerzeugung. T. 1. Merkmale von Induktionsoefen in der Stahlerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Chaabet, Mohamed; Doetsch, Erwin [ABP Induction Systems GmbH, Dortmund (Germany)

    2011-12-15

    Global steel output has now been growing extremely rapidly for a prolonged time; in the past ten years alone, annual production has risen from 851 million t/a (in 2001) to 1417 million t/a (2010), as a result, primarily, of growth in China. Electric steel production using the electric arc furnace as the classical melting facility is around 45 % world-wide, with a rising trend (but excluding the special case of China, where oxygen-route steel holds a 90 % share of production). Following the development of induction technology and inverter outputs of over 40 MW for crucible furnaces with capacities of above 65 t, the induction furnace is now available as an alternative electrical melting installation for use in smaller mini steel mills. The benefits of this technology can be found in high feed-material efficiencies and low environmental and workplace burdens, in addition to the absence of electrode costs and the only modest demands made on the power-supply grid. These features of the induction furnace and their special significance for steel production are examined in Part 1 of this article. The second part of the article then focuses on examples of the use of induction furnaces in the steelmaking plant. (orig.)

  11. Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Risonarta, Victor; Pfeifer, Herbert

    2009-01-01

    Determining the complete energy balance of an electric arc furnace (EAF) provides an appropriate method to examine energy efficiency and identify energy saving potentials. However, the EAF energy balance is complex due to the combined input of electrical energy and chemical energy resulting from natural gas (NG) combustion and oxidation reactions in the steel melt. In addition, furnace off-gas measurements and slag analysis are necessary to reliably determine energy sinks. In this paper 70 energy balances and energy efficiencies from multiple EAFs are presented, including data calculated from plant measurements and compiled from the literature. Potential errors that can be incorporated in these calculations are also highlighted. The total energy requirement of these modern EAFs analysed ranged from 510 to 880 kWh/t, with energy efficiency values (η = ΔH Steel /E Total ) of between 40% and 75%. Furthermore, the focus was placed on the total energy related CO 2 emissions of EAF processes comprising NG combustion and electrical energy input. By assessing multiple EAF energy balances, a significant correlation between the total energy requirement and energy related specific CO 2 emissions was not evident. Whilst the specific consumption of NG in the EAF only had a minor impact on the EAF energy efficiency, it decreased the specific electrical energy requirement and increased EAF productivity where transformer power was restricted. The analysis also demonstrated that complementing and substituting electrical energy with NG was beneficial in reducing the total energy related CO 2 emissions when a certain level of substitution efficiency was achieved. Therefore, the appropriate use of NG burners in modern EAFs can result in an increased EAF energy intensity, whilst the total energy related CO 2 emissions remain constant or are even decreased.

  12. INFLUENCE OF THE MODERN SYSTEMS OF THE BLAST STEEL-FURNACE ELECTRICAL PARAMETERS CONTROL ON CAPACITY AND TECHNICAL AND ECONOMICAL INDICES OF MELTING

    Directory of Open Access Journals (Sweden)

    D. N. Andrianov

    2006-01-01

    Full Text Available The reduction of time under the current, electric energy rate, electrodes rate at working of arc steel-furnace with new transformer of capacity 95 MBA and with regulating system SIMELT-AC-NEC are noted.

  13. Addition of electric arc furnace dust in hot metal changing the form of addition; Adicao de poeira de aciaria eletrica em ferro-gusa liquido alterando a forma de adicao

    Energy Technology Data Exchange (ETDEWEB)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Vieira, Estefano Aparecido, E-mail: vicente@ifes.edu.br [Institulo Federal do Espirito Santo (IFES), ES (Brazil); Telles, Victor Bridi; Grillo, Felipe Fardin; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2014-07-01

    This research aims to study the incorporation of the mass of electric arc furnace dust (EAFD), by addition in hot metal (1.78% Si) at a temperature of 1,400 degrees Celsius. The EAFD is from a steel plant producing long steel. The addition of the EAFD was as received, in the form of briquettes without agitation of the hot metal and in the form of briquettes with agitation of the hot metal. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) microanalysis. The achievement of fusion experiments in laboratory scale, took place in a vertical tubular furnace with temperature control. The fusion experiments to assess the incorporation of EAFD mass used graphite crucibles. After cooling, the hot metal and the slag, remaining in the crucible, were weighed to do a mass balance. A flow of inert gas (argon) was maintained inside the furnace during the experiments. Results show that the experiment with addition of EAFD as received presents the best result of incorporating the mass of the final hot metal (1.73%) combined with the lowest percentage of volatilized mass of EAFD (46.52%). The experiment addition of EAFD in the form of briquette with agitation of hot metal presents the lowest percentage of slag mass (4.58%). The zinc content of volatilized EAFD (64.30%) is higher than the zinc content of the imported ore concentrate (52%) and zinc content of the national ore concentrate (12% to 39%). The presence of lead and cadmium in the slag characterizing it as a hazardous solid waste. (author)

  14. Effectiveness of recycling light in ultra-bright short-arc discharge lamps.

    Science.gov (United States)

    Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M

    2007-10-17

    Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

  15. Study of the instability of black slags from electric arc furnace steel industry

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2002-09-01

    Full Text Available In Spain, the steel manufacture produces important quantities of by-products, representing between 15 and 20 % of total steel production. Most by-products are deposited on open air spaces causing serious economical and environmental problems, internationally, different recycling wais are studied, being the main alternative for these by-products as recycled aggregate. The possibility of recycling these by-products in construction sector depends on its possible volume instability because of the presence of some undesirable compounds. In current paper, two different black slags from electric arc furnace steel industry were chemically characterized, paying attention to some well-known compounds by theirs expansion effects, such as: free CaO, free MgO, chlorides and sulphates. The analytical results carried out in the current research detected the presence of insignificant or null amounts of harmful compounds. Therefore, they should not have any negative incidence on phenomena of volume instability.

    En España la fabricación de acero produce grandes cantidades de residuos industriales, las cuales representan entre el 15-20 % de la producción total de acero, en su mayor parte se depositan en vertederos, causando serios problemas económicos y medioambientales a todos los sectores implicados. A nivel internacional, se están estudiando diferentes vías de reutilización, siendo su uso principal como árido de reciclado. La posibilidad de reutilizar estos subproductos industriales en el sector de la construcción se basa en su posible inestabilidad volumétrica, debido a la presencia de ciertos compuestos no deseados. En este trabajo se caracterizan químicamente 2 escorias negras de horno de arco eléctrico con diferente procedencia y se cuantifican algunos de los principales compuestos conocidos por sus efectos expansivos, como: cal libre, magnesia libre, cloruros y sulfatos. Los resultados analíticos de estas dos escorias negras muestran

  16. DC plasma arc melter technology for waste vitrification

    International Nuclear Information System (INIS)

    Hamilton, R.A.; Wittle, J.K.; Trescot, J.

    1995-01-01

    This paper describes the features and benefits of a breakthrough DC Arc Melter for the permanent treatment of all types of solid wastes including nonhazardous, hazardous and radioactive. This DC Arc Furnace system, now commercially available, is the low cost permanent solution for solid waste pollution prevention and remediation. Concern over the effective disposal of wastes generated by the industrial society, worldwide, has prompted development of technologies to address the problem. For the most part these technologies have resulted in niche solutions with limited application. The only solution that has the ability to process almost all wastes, and to recover/recycle metallic and inorganic matter, is the group of technologies known as melters. Melters have distinct advantages over traditional technologies such as incineration because melters operate at higher temperatures, are relatively unaffected by changes in the waste stream, produce a vitrified stable product, and have the capability to recover/recycle slag, metals and gas. The system, DC Plasma Arc Melter, has the lowest capital, maintenance and operating cost of any melter technology because of its patented DC Plasma Arc with graphite electrode. DC Plasma Arc Melter systems are commercially available in sizes from 50 kg/batch or 250--3,000 kg/hr on a continuous feed basis. This paper examines the design and operating benefits of a DC Plasma Arc Melter System

  17. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  18. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  19. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  20. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  1. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent

    Directory of Open Access Journals (Sweden)

    Ankica Rađenović

    2013-01-01

    Full Text Available A promising type of steel slag for applications is the ladle furnace (LF slag, which is also known as the basic slag, the reducing slag, the white slag, and the secondary refining slag. The LF slag is a byproduct from further refining molten steel after coming out of a basic oxygen furnace (BOF or an electric arc furnace (EAF. The use of the LF slag in further applications requires knowledge of its characteristics. The LF slag characterization in this paper has been performed using the following analytical methods: chemical analysis by energy dispersive spectrometry (EDS, mineralogical composition by X-ray diffraction (XRD, surface area properties by the Brunauer-Emmett-Teller (BET and the Barrett-Joyner-Halenda (BJH methods, surface chemistry by infrared absorption (FTIR spectroscopy, and morphological analysis by scanning electron microscopy (SEM. The results showed that the main compounds are calcium, silicon, magnesium, and aluminium oxides, and calcium silicates under their various allotropic forms are the major compounds in the LF slag. Surface area properties have shown that the LF slag is a mesoporous material with relatively great BET surface area. The ladle furnace slag is a nonhazardous industrial waste because the ecotoxicity evaluation by its eluate has shown that the LF slag does not contain constituents which might in any way affect the environment harmfully.

  2. Energy efficiency and emissions of arc furnaces in the steel industry; Energieeffizienz und Emissionen der Lichtbogenoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, M.

    2007-07-01

    The operation of the electric arc furnace obeys economic constraints that require cost optimal use of the resources scrap, scrap substitutes, alloys, direct reduced iron, pig iron, oxygen, fuel gas, and energy. On the other hand, legal restrictions for minimum emissions must be observed. Comprehensive process models and strategies to optimize the EAF steel production require detailed knowledge about both energy flow rates and emissions. However, this data is often not available in the meltshop due to technical problems or high effort for maintenance of on-line off-gas analysis systems at the EAF. The Institute for Industrial Furnaces and Heat Engineering of RWTH Aachen University performed off-gas measurements at various EAFs during steel production. In some plant trials off-gas measurements were conducted simultaneously at two points in the dedusting system in order to determine the otherwise unknown volume flow rate of air at the gap between the EAF elbow and the hot gas duct. In this work, state-of-the-art off-gas analysis systems are presented. First hints for process development of particular EAFs are derived from off-gas data. Off-gas data complement the meltshop data, that are required for complete mass and energy balances. From recent energy balances, the EAF process is evaluated with respect to off-gas energy and energy efficiency. Recent energy balances from our measurements and from the literature of the last decade show total energy demand between 600 kWh/t and 850 kWh/t and energy efficiency values up to 70%. EAFs with scrap pre-heating technologies achieve highest energy efficiency values up to 70%. Measurements of off-gas and air volume flow rates monitor the efficiency of the EAF dedusting plant in combination with the EAF. With direct exhaust control based on furnace pressure measurement, the specific off-gas mass and energy is decreased significantly. Improvement of the analysis equipment for off-gas measurements at the EAF with focus on very

  3. Arc melting in inert gas atmosphere of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.; Andrade, A.H.P. de

    1991-01-01

    The obtainment of metallic zirconium in laboratory scale with commercial and nuclear quality is the objective of the Metallurgy Department of IEN/CNEN - Brazil, so a melting procedure of zirconium sponge in laboratory scale using an arc furnace in inert atmosphere is developed. The effects of atmosphere operation, and the use of gas absorber and the sponge characteristics over the quality of button in as-cast reporting with hardness measures are described. (C.G.C.)

  4. Volatilization and redox testing in a DC arc melter: FY-93 and FY-94

    International Nuclear Information System (INIS)

    Grandy, J.D.; Sears, J.W.; Soelberg, N.R.; Reimann, G.A.; McIlwain, M.E.

    1996-07-01

    The purpose of these experiments was to study the dissolution, retention, volatilization, and trapping of transuranic radionuclide elements (TRUs), mixed fission and activation products, and high vapor pressure metals (HVPMS) during processing in a high temperature arc furnace. In all cases, surrogate elements (lanthanides) were used in place of radioactive ones. The experiments were conducted utilizing a small DC arc melter developed at the Idaho National Engineering Laboratory (INEL) Research Center (IRC). The small arc melter was originally developed in 1992 and has been used previously for waste form studies of iron enriched basalt (IEB) and IEB with zirconium and titanium additions (IEB4). Section 3 contains a description of the small arc melter and its operational capabilities are discussed in Chapter 4. The remainder of the document describes each testing program and then discusses results and findings

  5. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces

    International Nuclear Information System (INIS)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-01-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  6. A new multi-purpose furnace for the preparation of compounds, alloys and single crystals

    International Nuclear Information System (INIS)

    Spirlet, J.-C.; Wellum, R.

    2004-01-01

    A new modular multi-purpose furnace has been designed and the prototype constructed. This furnace was a development utilizing more than two decades of experience at the JRC establishment, Karlsruhe, to bring together the possibility of several techniques that normally require separate, expensive facilities. With this new modular device, different functions are provided by exchanging the head of the furnace while leaving the base as a permanent fixture. The processes can be carried out in high vacuum (10 -6 Pa) or in the presence of high-purity gases, e.g., argon. The modules developed allow the following processes to be carried out: Arc melting, levitation melting, resistance and radio-frequency heating in a crucible, single-crystal growth by various techniques, and electron-beam heating. The rationale behind the development was to produce a device capable of many functions but at an acceptable cost so as to make the various techniques available to a wide range of research and development institutes. A full description of the apparatus is given, outlining the range of the methods which can be applied to the production of high-purity advanced materials for research purposes

  7. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  8. Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process

    International Nuclear Information System (INIS)

    Förster, Henning; Wolfrum, Christian; Peukert, Wolfgang

    2012-01-01

    The generation of copper nanoparticles in an arc furnace by the evaporation/condensation method is systematically investigated. The evaporation/condensation process is advantageous because it allows direct synthesis using pure metals as starting materials avoiding reactions of expensive and potentially poisonous precursors. In the presented system, a transferred direct current arc provides the energy for evaporation of the metal target. In order to prevent an oxidation of the particles in the process, the synthesis is conducted in an atmosphere of inert gases (purity grade 5.0). The arc stability and its effect on particle synthesis are investigated. The experiments reveal excellent long-term arc stability for at least 8 h continuous operation delivering aerosols with high reproducibility (±10 % of average particle size). The influences of the arc current and length, the flow rates of the applied gases and the injection of hydrogen in the plasma zone on the particle size distributions and the agglomerate structure are studied. The produced copper nanoparticles are characterized by scanning mobility particle sizing and scanning electron microscopy. The average particle size could be well controlled in a size range 4–50 nm by selecting appropriate operating parameters.

  9. Characterization of the behaviour of the electric arc during VAR of a Ti alloy

    Science.gov (United States)

    Chapelle, P.; Noël, C.; Risacher, A.; Jourdan, J.; Jourdan, J.; Jardy, A.

    2016-07-01

    In this paper, we report experimental results based on the direct observation of the electric arc behaviour during vacuum arc remelting of a Ti alloy. These results were obtained in a specifically instrumented industrial furnace using high speed framing camera and optical emission spectroscopy, for a current density level of the order of 10 A/cm2 and a gap length of a few centimetres. It was observed that the arc exhibits a similar operating regime to that described in the literature for the case of Inconel 718 and Zr alloy electrodes. The arc structure corresponds essentially to that of a diffuse metal vapor arc with separate and rapidly moving cathode spots. Several critical parameters of the cathode spots, including their current, size and velocity, and of the interelectrode plasma were evaluated. Also, the interactions between the arc operation and the transfer of metal drops in the interelectrode gap were investigated. Three modes of transfer of the liquid metal drops in the interelectrode gap have been identified depending on the gap length: drop falling, drip short and drop erosion induced by the cathode spots.

  10. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace

    International Nuclear Information System (INIS)

    Soares, R.A.L.; Castro, J.R. de S.

    2012-01-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  11. Proposition of a modification to the VAR process and its application in the consolidation of pressed zircaloy chips and the evaluation of the dynamical system of the electric arc; Proposicao de um processo alternativo a fusao via forno VAR para a consolidacao de cavacos prensados de zircaloy e estudo do sistema dinamico do arco eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Mucsi, Cristiano Stefano

    2005-07-01

    The objective of this work is the investigation of a new process as an alternative to the Vacuum Arc Remelting technology in the consolidation of Zircaloy chips. A procedure is proposed for the recycling of primary Zircaloy scraps by means of a modified VAR furnace. The performed studies were made in order to optimise the low cost new devices added to existing VAR furnace prototype, find ideal operational conditions, evaluate data acquisition system and the electric arc dynamical system in order to made viable the automated control of the modified VAR prototype. A funnel-crucible special device was developed and installed in a VAR prototype furnace allowing ingots to be obtained from pressed chips. This indicated the viability of creation of a new process for the consolidation of Zircaloy chips. The voltage of the electric arc during the melting runs was digitally recorded allowing the evaluation of the electric arc dynamics by using the topological invariant of the system: correlation dimension and the higher Liapunov exponent. (author)

  12. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting; Utilisation d`un four tournant a arc plasma transfere pour fondre et couler des melanges d`oxydes autour de 2000 C. Presentation du film Vulcano

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Reacteurs

    1998-06-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.) 5 refs.

  13. Plasma arc pyrolysis of radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Pickles, C.A.; Toguri, J.M.

    1992-01-01

    This paper reports on two ion exchange resins (IRN 77 and IRN 78) which were pyrolysed in a plasma-arc furnace. Both continuous and batch tests were performed. Volume reduction ratios of 10 to 1 and 10 to 3.5 were achieved for IRN 78 and IRN 77 respectively. The product of the resin pyrolysis was a char which contained the radioactive elements such as cobalt. The off-gases consisted of mainly hydrogen and carbon monoxide. There was a relatively small amount of dust in the off-gases. At the present time radioactive ion exchange resign is being kept in storage. The volume of this waste is increasing and it is important that the volume be reduce. The volume reduction ratio should be of the order of ten-to-one. Also, it is required that the radioactive elements can be collected or fixed in a form which could easily be disposed of. Plasma arc treatment offers considerable potential for the processing of the waste

  14. Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Osintsev, V V; Khidiyatov, A M

    1981-01-01

    The purpose of the invention is to improve the operating efficiency of the furnace device containing prefurnaces connected to the main combustion chamber. For this purpose in the proposed furnace device is equipped with prefurnaces with burners, rectangular vertical chamber of combustion is equipped with central hearth projection. As indicated by studies, the hearth projection of the indicated projections promotes the development of transverse streams which guarantee effective mixing of the combustion products in the upper part of the combustion chamber 3. This reduces the nonuniformity of temperature at the outlet from the latter, decreases the probability of slagging and hot spots on the heating surface.

  15. Characterization of a manganese ore to define the use in the fluxes synthesis for submerged arc welding

    International Nuclear Information System (INIS)

    Cruz, A.; Quintana, R.; Perdomo, L.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Chemical analysis, thermal analysis (DTA and TG), phase determination by X-ray diffraction and granulometric analysis of the manganese ore from the location Margarita de Cambute in the eastern part of cuba were carried out. Based on these characterization results, a flux synthesis strategy was established, comprising the definition, as a basic condition, of the MnO/SiO 2 range of values. This strategy was confirmed experimentally by obtaining a flux prototype in an electric arc furnace connected to direct current source and the carrying out of the flux in submerged arc welding tests. (Author) 26 refs

  16. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  17. Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network

    Science.gov (United States)

    Ballantyne, A. Stewart

    The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.

  18. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  19. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  20. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  1. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  2. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  3. EFFICIENT USE OF ENERGY IN A ELECTRIC ARC FURNANCE BY HEAT INTEGRATION APPROACH

    OpenAIRE

    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni

    2016-01-01

    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  4. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Utilization of a transferred arc-plasma rotating furnace to melt and found oxide mixtures at around 2000 degrees C (presentation of the film VULCANO)].

    Science.gov (United States)

    Cognet, G; Laffont, G; Jegou, C; Pierre, J; Journeau, C; Sudreau, F; Roubaud, A

    1999-03-01

    Unless security measures are taken, a hypothetical accident resulting from the loss of the cooling circuit in a pressurized water nuclear reactor could cause the heart of the reactor to melt forming a bath, called the corium, mainly composed of uranium, zirconium and iron oxides as well as the structural steel. This type of situation would be similar to the Three Mile Island accident in 1979. In order to limit the consequences of such an accident, the Atomic Energy Commission has implemented a large study program [1] to improve our understanding of corium behavior and determine solutions to stabilize it and avoid its propagation outside the unit. The VULCANO installation was designed in order to perform the trials using real materials which are indispensable to study all the phenomena involved. A film on the VULCANO trials was presented at the Henri Moissan commemorative session organized by the French National Academy of Pharmacy. The rotating furnace used to melt and found the mixture simulating the corium is a direct descendant of the pioneer work by Henri Moissan. An electrical arc is directed at the center of the load to melt which is maintained against the walls by centrifugal force. After six high-temperature trials performed with compositions without uranium oxide, the first trial with real corium showed that the magma spread rather well, a result which is quite favorable for cooling.

  6. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-06-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  7. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  8. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  9. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  10. Behavior of coke in large blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N

    1978-01-01

    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  11. 40 CFR 63.1651 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... transfer by crane, truck, or other conveyance. Crushing and screening equipment means the crushers... resistive electrical power consumption of a submerged arc furnace, expressed as megawatts (MW). Malfunction... arc furnace means an electric submerged arc furnace that is equipped with a canopy hood above the...

  12. Utilización del polvo de acería de horno de arco eléctrico. // Use of powder produced by electric arc furnaces at steel plants.

    Directory of Open Access Journals (Sweden)

    D. Tápanes Robau

    2001-01-01

    Full Text Available El polvo de las Acerías de Horno de Arco Eléctrico se produce como consecuencia de la producción de Acero, durante ladepuración de los gases, y, en menor medida, en sus equipos de captación de aire. Estos polvos deben ser captados por lossistemas de depuración del taller. Con el presente trabajo pretendemos darle utilidad a un producto de desecho como es elpolvo, mejorar las condiciones ambientales en el taller, elevar la calidad del pavimento u hormigón asfáltico mediante lavariación de sus propiedades y disminuir el costo de la tonelada de acero mediante la comercialización de estos productosde desecho.Palabras claves: Polvos, aglutinantes, composición química, pruebas realizadas._______________________________________________________________________________SummaryThe powder generated by electric arc furnaces at steel plants is the result of processes such as the production of steel, thepurification of gases and, capturing air equipment .This article shows a method for recycling waste material – powder in this case- which also contributes to improve the steelplant environment, provides the possibility of improving asphalt paving and makes the production of steel cheaper throughthe commercialization of waste materials.Key words: Powder, binder, tests, chemical composition.

  13. Refractory of Furnaces to Reduce Environmental Impact

    International Nuclear Information System (INIS)

    Hanzawa, Shigeru

    2011-01-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO 2 produced from this high energy load. To improve this situation, R and D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO 2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  14. Refractory of Furnaces to Reduce Environmental Impact

    Science.gov (United States)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  15. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  16. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  17. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  18. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  19. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  20. 40 CFR 60.271a - Definitions.

    Science.gov (United States)

    2010-07-01

    ..., dampers, etc.) used to capture or transport particulate matter generated by an electric arc furnace or AOD... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Steel Plants: Electric Arc Furnaces and... materials into the top of an electric arc furnace or the addition of molten steel or other materials into...

  1. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  2. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  3. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  4. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  5. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  6. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  7. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  8. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  9. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    International Nuclear Information System (INIS)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO 2 /CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector

  10. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  11. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany, F.R.)

    1979-10-01

    Presented in two parts, this paper is intended to provide an outline of the theoretical fundamentals for the design of rotating-hearth furnaces for heating round stock and deals with the characteristic design features of such furnaces.

  12. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  13. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  14. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  15. Study of the transfer efficiency of alloyed elements in fluxes during submerged arc welding process

    International Nuclear Information System (INIS)

    Quintana, R.; Cruz, A.; Perdomo, L.; Castellanos, G.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    It is assessed the transfer of chromium, manganese and carbon of different agglomerate fluxes constituted by 18.75% of alloyed load and 81.25% of matrix during the SAW process (submerge Arc Welding). A vitreous basic matrix corresponding to the system SiO 2 -Al 2 O 3 -(CaO+MgO) was obtained from minerals by fusion in the electric arc furnace. The current proportions of the alloyed load components (FeCr, FeMn and graphite) were carried out using a McLean Anderson experiment design. The corresponding fluxes to each experimental point were obtained by granulation with liquid glass;afterwards, their transfer coefficient for a given regimen of welding was determined. The transfer coefficients were calculated by means of a formula based on the laws of mass conservation and of distribution. (Author) 17 refs

  16. Effects of body formulation and firing temperature to properties of ceramic tile incorporated with electric arc furnace (EAF) slag waste

    Science.gov (United States)

    Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu

    2017-07-01

    Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).

  17. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  18. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  19. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  20. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  1. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  2. Furnace for treating bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1922-04-28

    A furnace with saw-teeth-like profiled hearth, which by means of a kind of shaking slide executes a backward and forward motion, for carrying out the process according to Patent 422,391. It is characterized in that the stroke of the hearth moving in the furnace is smaller than the length of the profile tooth and the height of the feed is held less than the tooth height.

  3. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  4. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  5. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  6. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  7. Predictive control of thermal state of blast furnace

    Science.gov (United States)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  8. The fate of injectant coal in blast furnaces: The origin of extractable materials of high molecular mass in blast furnace carryover dusts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.N.; Wu, L.; Paterson, N.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [University of London Imperial College of Science & Technology, London (United Kingdom). Dept. of Chemical Engineering

    2005-07-01

    The aim of the work was to investigate the fate of injectant coal in blast furnaces and the origin of extractable materials in blast furnace carryover dusts. Two sets of samples including injectant coal and the corresponding carryover dusts from a full sized blast furnace and a pilot scale rig have been examined. The samples were extracted using 1-methyl-2-pyrrolidinone (NMP) solvent and the extracts studied by size exclusion chromatography (SEC). The blast furnace carryover dust extracts contained high molecular weight carbonaceous material, of apparent mass corresponding to 10{sup 7}-10{sup 8} u, by polystyrene calibration. In contrast, the feed coke and char prepared in a wire mesh reactor under high temperature conditions did not give any extractable material. Meanwhile, controlled combustion experiments in a high-pressure wire mesh reactor suggest that the extent of combustion of injectant coal in the blast furnace tuyeres and raceways is limited by time of exposure and very low oxygen concentration. It is thus likely that the extractable, soot-like material in the blast furnace dust originated in tars is released by the injectant coal. Our results suggest that the unburned tars were thermally altered during the upward path within the furnace, giving rise to the formation of heavy molecular weight (soot-like) materials.

  9. Use of refractory chromites for obtaining fluxes amassed employed in submerged arc welding (SAW); Empleo de cromitas refractarias par la obtencion de fundentes aglomerados utilizados en la soldadura automatica por arco sumegido (SAW)

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo-Gonzalez, L.; Quintana-Puchol, R.; Cruz-Crespo, A.; Castellanos-Estupinan, J.; Garcia-Sanchez, L. L.; Formoso-Prego, A.; Cores-Sanchez, A.

    2003-07-01

    In the present work high carbon ferrochrome (load ferrochrome) and slags are obtained, starting from the metallurgic reductive processing of refractory chromites. The obtaining of alloys and slags is studied using an experiment design based in the relationships among components. The chemical compositions of alloys and slags guarantee their application for the conformation of alloys loads and matrix fluxes amassed for the superficial filling by means of submerged arc welding (SAW). The melting-reduction process is carried out in an electric arc furnace. (Author) 16 refs.

  10. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  11. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  12. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D

    2012-01-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  13. Utilización de las escorias de los hornos de arco eléctrico y de cuchara como materiales de construcción. // Use of slags from ladle and electric arc furnaces as construction materials.

    Directory of Open Access Journals (Sweden)

    R. Zaragoza Valdés

    2001-01-01

    Full Text Available La necesidad que tiene la humanidad de que las producciones sean cada día mas limpias, así como la que tiene el país del aumento dela rentabilidad de las empresas, hace necesario el estudio del uso de las escorias que se obtienen en la producción de acero, principalresidual de este tipo de producción. En el trabajo se estudia la utilización de la escoria del Horno de Arco Eléctrico (HAE comomaterial de relleno en la confección de bloques de hormigón para la construcción de edificaciones, sustituyendo la grava de granito.Se estudia, además, el uso de la escoria de los hornos cuchara (HC como sustituto del clinquer en la fabricación de cementosportland. Se obtienen resultados positivos para la protección del medio ambiente y la economía de la empresa metalúrgica.Palabras claves: producción de acero, escorias, medio ambiente, cementos, materiales para la construcción.________________________________________________________________________________Abstract:The existing necessity of clean productions as welll as the profitability of enterprises that the Cuban economy is demanding makes itnecessary to carry out a study of slags that constitute t he main residue of the steel production. This paper presents the use of slags comingfrom electric arc furnaces (EAF as a substitute for gravel in the production of concrete bricks. The use of slags coming from ladle furnaces(LF to replace clinker in the production of Portland Cement is also shown. Positive results are obtained such as the protection of theenvironment and the economic growth of the enterperise.Key words:Steel making, slags, environment protection, cement, construction materials.

  14. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  15. A new compact fixed-point blackbody furnace

    International Nuclear Information System (INIS)

    Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T.; Yamada, Y.; Ishii, J.

    2013-01-01

    More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale

  16. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  17. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  18. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  19. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.

    Science.gov (United States)

    Quijorna, N; de Pedro, M; Romero, M; Andrés, A

    2014-01-01

    Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions

  20. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  1. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  2. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  3. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  4. Methods for monitoring heat flow intensity in the blast furnace wall

    Directory of Open Access Journals (Sweden)

    L'. Dorčák

    2010-04-01

    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  5. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  6. Fluxless furnace brazing and its theoretical fundamentals

    International Nuclear Information System (INIS)

    Lison, R.

    1979-01-01

    In this paper the theoretical fundamental of fluxless furnace brazing are described. The necessary conditions for a wetting in the vacuum, under a inert-gas and with a reducing gas are discussed. Also other methods to reduce the oxygen partial pressure are described. Some applications of fluxless furnace brazing are outlined. (orig.) [de

  7. Changes in Hydrogen Content During Steelmaking

    OpenAIRE

    Vrbek K.; Lamut J.; Marolt M.; Knap M.

    2015-01-01

    Štore Steel produces steel grades for spring, forging and engineering industry applications. Steelmaking technology consists of scrap melting in Electric Arc Furnace (EAF), secondary metallurgy in Ladle Furnace (LF) and continuous casting of billets (CC). Hydrogen content during steelmaking of various steel grades and steelmaking technologies was measured. Samples of steel melt from EAF, LF and CC were collected and investigated. Sampling from Electric Arc Furnace and Ladle Furnace was carrie...

  8. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace.

    Science.gov (United States)

    Zhao, Peng; Ni, Guohua; Jiang, Yiman; Chen, Longwei; Chen, Mingzhou; Meng, Yuedong

    2010-09-15

    Due to the toxicity of dioxins, furans and heavy metals, there is a growing environmental concern on municipal solid waste incinerator (MSWI) fly ash in China. The purpose of this study is directed towards the volume-reduction of fly ash without any additive by thermal plasma and recycling of vitrified slag. This process uses extremely high-temperature in an oxygen-starved environment to completely decompose complex waste into very simple molecules. For developing the proper plasma processes to treat MSWI fly ash, a new crucible-type plasma furnace was built. The melting process metamorphosed fly ash to granulated slag that was less than 1/3 of the volume of the fly ash, and about 64% of the weight of the fly ash. The safety of the vitrified slag was tested. The properties of the slag were affected by the differences in the cooling methods. Water-cooled and composite-cooled slag showed more excellent resistance against the leaching of heavy metals and can be utilized as building material without toxicity problems. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  10. 10 CFR 431.72 - Definitions concerning commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial warm air furnaces. 431... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces § 431.72 Definitions concerning commercial warm air furnaces. The following definitions apply for purposes of this subpart D, and of subparts...

  11. A direct, single-step plasma arc-vitreous ceramic process for stabilizing spent nuclear fuels, sludges, and associated wastes

    International Nuclear Information System (INIS)

    Feng, X.; Einziger, R.E.; Eschenbach, R.C.

    1997-01-01

    A single-step plasma arc-vitreous ceramic (PAVC) process is described for converting spent nuclear fuel (SNF), SNF sludges, and associated wastes into a vitreous ceramic waste form. This proposed technology is built on extensive experience of nuclear waste form development and nuclear waste treatment using the commercially available plasma arc centrifugal (PAC) system. SNF elements will be loaded directly into a PAC furnace with minimum additives and converted into vitreous ceramics with up to 90 wt% waste loading. The vitreous ceramic waste form should meet the functional requirements for borosilicate glasses for permanent disposal in a geologic repository and for interim storage. Criticality safety would be ensured through the use of batch modes, and controlling the amount of fuel processed in one batch. The minimum requirements on SNF characterization and pretreatment, the one-step process, and minimum secondary waste generation may reduce treatment duration, radiation exposure, and treatment cost

  12. TECHNOLOGICAL PECULIARITIES O F MELTING AND OUT-OF-FURNACE PROCESSING OF BALANCED STEELS IN CONDITIONS OF ELECTRIC FURNACE STEELMAKING AND CONTINUOUS CASTING

    Directory of Open Access Journals (Sweden)

    S. V. Terletski

    2007-01-01

    Full Text Available The technological peculiarities of melting and out-of-furnace processing of balanced steels in conditions of electric furnace steelmaking and continuous cast of RUP “BMZ” are considered.

  13. Multiphase flow modelling of furnace tapholes

    OpenAIRE

    Reynolds, Quinn G.; Erwee, Markus W.

    2017-01-01

    Pyrometallurgical furnaces of many varieties make use of tapholes in order to facilitate the removal of molten process material from inside the vessel. Correct understanding and operation of the taphole is essential for optimal performance of such furnaces. The present work makes use of computational fluid dynamics models generated using the OpenFOAM® framework in order to study flow behaviour in the taphole system. Single-phase large-eddy simulation models are used to quantify the discharge ...

  14. The Automation Control System Design of Walking Beam Heating Furnace

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distribution system picture of walking beam heating furnace were designed. Charge machine movement process was elaborated. Walking beam movement process was elaborated. Extractor movement process was elaborated. The hydraulic station of walking mechanism was elaborated. Relative control circuit diagram was designed. The control function of parallel shift motor, uplifted and degressive motor was elaborated. The control circuit diagram of parallel shift motor of charge machine and extractor of first heating furnace was designed. The control circuit diagram of uplifted and degressive motor of charge machine and extractor of first heating furnace was designed. The realization method of steel blank length test function was elaborated. The realization method of tracking and sequence control function of heating furnace field roller were elaborated. The design provides important reference base for enhancing walking beam heating furnace control level.

  15. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  16. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  17. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  18. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy; Desenvolvimento de processos de reciclagem de cavacos de zircaloy via refusao em forno eletrico a arco e metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Alberto Tavares

    2014-09-01

    PWR reactors employ, as nuclear fuel, UO{sub 2} pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  19. Combined electron beam and vacuum ARC melting for barrier tube shell material

    International Nuclear Information System (INIS)

    Worcester, S.A.; Woods, C.R.

    1989-01-01

    This patent describes a process of the type wherein zirconium tetrachloride is reduced to produce a metallic zirconium sponge. The sponge is distilled to generally remove residual magnesium and magnesium chloride, and the distilled sponge is melted to produce an ingot, the improvement for making a non-crystal bar material for use in lining the interior of zirconium alloy fuel element cladding which comprises: a. forming the distilled sponge into a consumable electrode; b. melting the consumable electrode in a multiple swept beam electron furnace with a feed rate between 1 and 20 inches per hour to form an intermediate ingot; and c. vacuum arc melting the intermediate ingot to produce a homogeneous final ingot, having 50-500 ppm iron

  20. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  1. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  2. Heat treatment of nuclear reactor pump part in integrated furnace facility

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators

  3. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  4. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  5. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  6. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  7. Simultaneous obtention of multicomponent ferroalloy and slag from black sands for the development of electrical arc welding consumables

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Gomez-Rodriguez, L.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Cerpa-Naranjo, A.; Cores-Sanchez, A.

    2004-01-01

    In this paper, chemical and mineralogical characterizations of the black sands of the Mejias placer of Sagua de Tanamo (the most important beach littoral placer of the northwest of oriental Cuba) are exposed. Starting from these characterizations a calculation strategy is developed for the making of the metallurgical load that allows to obtain simultaneously, when processed by carbothermic reduction in an electrical arc furnace, a multicomponent ferroalloy and a useful slag for the making of electric arch welding consumables. The powder of the obtained slag is agglomerated with liquid glass. The resulting pellets, due to their behavior on the submerged arc welding (SAW) present technological and metallurgical properties that correspond with the requirements of an agglomerated flux matrix. The chemical composition of the multicomponent ferroalloy is constituted by metallic elements of high metallurgical and alloyed values (V, Cr, Mo, Ti, Nb). It is appropriate for the formulation of consumables for manual welding (SMAW) and SAW, as well. (Author) 15 refs

  8. Effect of vacuum arc melting/casting parameters on shrinkage cavity/piping of austenitic stainless steel ingot

    International Nuclear Information System (INIS)

    Kamran, J.; Feroz, M.; Sarwar, M.

    2009-01-01

    Shrinkage cavity/piping at the end of the solidified ingot of steels is one of the most common casting problem in 316L austenitic stainless steel ingot, when consumable electrode is melted and cast in a water-cooled copper mould by vacuum arc re-melting furnace. In present study an effort has been made to reduce the size of shrinkage cavity/ piping by establishing the optimum value of hot topping process parameters at the end of the melting process. It is concluded that the shrinkage cavity/piping at the top of the solidified ingot can be reduced to minimum by adjusting the process parameters particularly the melting current density. (author)

  9. Multi-fuel furnace. Demonstration project. Final rapport; Multibraendselsovn - Demonstrationsprojekt. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dall Bentzen, J.

    2012-06-15

    It has been verified that the Dall Energy Furnace have unique features: - The furnace will accept biomass fuel with moisture content in range 20% to 60% and still keep the flue gas temperature within +-10 deg. Celsius (for pre-set temperature 900 to 975 deg. Celsius); - The ash quality from the furnace is very good with no excessive sintering and without carbon in the ash; - Flue gas dust content at the furnace exit is below 50 mg/Nm3, while the content of NO{sub x} and CO is below 175 mg/Nm3 and 20 mg/Nm3, respectively. The Dall Energy biomass furnace consists of two separate stages which are combined in a single aggregate: an updraft gasification process and a gas combustion process. As the furnace is refractory lined and as the furnace can operate at low excess air it is possible to burn biomass with water content above 60%. No mechanical parts are used at temperatures above 200 deg. Celsius. This provides a very rugged system. In the gasifier section a combustible gas is produced with a low velocity at the top of the gasifier bed. This gas is combusted to a flue gas with extremely low dust content. Also, the NO{sub x} and CO content is very low. The temperature of the flue gas at the exit is kept low by injecting water spray together with the secondary air. (Author)

  10. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  11. Production and Physical Metallurgy of Pure Metals - Part V

    Science.gov (United States)

    1960-07-25

    crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper

  12. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  13. Application of a radiant heat transfer model to complex industrial reactive flows: combustion chambers, electric arcs; Application d`un modele de transfert radiatif a des ecoulements reactifs industriels complexes: chambres de combustion, arcs electriques

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N; Dalsecco, S; Delalondre, C; Simonin, O [Electricite de France (EDF), 78 - Chatou (France). Lab. National d` Hydraulique

    1997-12-31

    The direction of studies and researches (DER) of Electricite de France (EdF) has been involved for several years in a research program on turbulent reactive flows. The objectives of this program concern: the reduction of pollutant emissions from existing fossil-fueled power plants, the study of new production means (fluidized beds), and the promotion of electric power applications in the industry. An important part of this program is devoted to the development and validation of 3-D softwares and to the modeling of physical phenomena. This paper presents some industrial applications (furnaces, boilers, electric arcs) for which radiant heat transfers play an important role and the radiation models used. (J.S.) 8 refs.

  14. Application of a radiant heat transfer model to complex industrial reactive flows: combustion chambers, electric arcs; Application d`un modele de transfert radiatif a des ecoulements reactifs industriels complexes: chambres de combustion, arcs electriques

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N.; Dalsecco, S.; Delalondre, C.; Simonin, O. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique

    1996-12-31

    The direction of studies and researches (DER) of Electricite de France (EdF) has been involved for several years in a research program on turbulent reactive flows. The objectives of this program concern: the reduction of pollutant emissions from existing fossil-fueled power plants, the study of new production means (fluidized beds), and the promotion of electric power applications in the industry. An important part of this program is devoted to the development and validation of 3-D softwares and to the modeling of physical phenomena. This paper presents some industrial applications (furnaces, boilers, electric arcs) for which radiant heat transfers play an important role and the radiation models used. (J.S.) 8 refs.

  15. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    Science.gov (United States)

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  16. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    Martocci, A.P.; Mihalow, F.A.

    1985-01-01

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  17. Lead scrap processing in rotary furnaces: a review

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, M

    1987-01-01

    Formerly, the lead scrap had been processed mainly in reverberatory and shaft furnaces or, even, in rotary furnaces (R.F.). The direct smelting of battery scrap entrains an expensive pollution control and high operating costs because of slag recirculation, coke consumption, losses in slag and matte. Nowadays, mechanized battery wrecking plants allow selective separation of casings and separators from metallic Pb (grids, poles, solders) as well as lead in non-metallic form (PbSO/sub 4/, PbO, PbO/sub 2/, contaminated with some Sb) frequently called paste. Because of their high performance and flexibility in metallurgical processing (melting, reducing, oxidizing and selective pouring) the R.F. supersedes the reverberatory furnace worldwide.

  18. Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Badr, Karim; Pfeifer, Herbert

    2011-01-01

    A model of the EAF energy efficiency was developed based on a closed mass and energy balance of the EAF melting process. This model was applied to industrial EAFs in steel industry charged with scrap or with mixes of scrap and DRI. Complex mass and energy conversion in the EAF was simplified with the introduction of mass and energy conversion efficiencies for the conversion of oxygen and the energy conversion of electrical energy in the electric arcs, chemical energy from the oxidation reactions in the melt and energy from the combustion of burner gas. It turned out that close agreement with observed process parameters from 16 EAFs is obtained by slight variations of the efficiency values. Especially the sensitivity of the steel temperature from the energy conversion efficiency of the electric arc energy indicates the importance of efficient foaming slag operation in EAF steel making. Characteristics and process parameters of DRI charged EAFs are discussed. Model results for a series of case studies illustrate the correlations between DRI chemical composition, DRI portion, oxygen consumption, etc. with electrical energy demand in order to indentify cost-effective EAF process conditions. -- Highlights: → Energy demand and carbon dioxide emission figures of EAF steelmaking processes based on steel scrap and DRI. → Complete energy balance of the EAF process using various input materials. → Application of the model to industrial EAF in steel industry in 4 case studies and discussion of model results. → Comparison with other models, critical discussion.

  19. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  20. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  1. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  2. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces; La metalurgia del mercurio en Almaden: desde los hornos de aludeles a los hornos Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-07-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  3. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-09-01

    Part I of this paper is intended to present a review of the theory of heating round stock of a length considerably exceeding the diameter. It is permissible to neglect heating from the ends of the cylinders. With short and thick ingots as used in pilgrim mills, for instance, such simplification is not possible. The method for calculating the waste gas temperature can also be used for the remaining furnace sections provided certain conditions are allowed for and computational procedures observed. Part II of the paper will deal with this and with the major design features of rotating-hearth furnaces.

  4. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.

    1981-01-01

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  5. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.

    1983-06-01

    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  6. Reports on research achievements in developing high-performance industrial furnaces in fiscal 1998 (Research and development of high-performance industrial furnaces). Volume 1; 1998 nendo koseino kogyoro nado ni kansuru kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    From the reports on research achievements in developing high-performance industrial furnaces in fiscal 1998, the report volume 1 was prepared as a research achievement report of each working group, detailing fundamental researches, heating furnaces, and heat treatment furnaces. The fundamental researches have researched combustion evaluating technology, characteristics of the area in the vicinity of a combustor, characteristics of combustion of high-temperature air, heating characteristics of a furnace to investigate effect of local heat absorption, and combustion evaluation. For the heating furnaces, the following subjects were studied: development of an in-furnace combustion model, summary of an experiment for evaluating high-temperature air combustion, furnace height relative to combustion heat transfer characteristics, heat loss minimizing technology, combustion heat transfer characteristics of liquid fuels, optimal operation of the high-temperature air combustion, basic control in heating control, and steel piece heating control. Studies were performed for the heat treatment furnaces on the case of a direct firing furnace in evaluating the heat transfer characteristics, the case of a radiant tube furnace, application of thermal fluid simulation technology, furnace averaging technology, soot reducing technology, control technology, and trial design on a high-performance heat treatment furnace. (NEDO)

  7. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  8. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc

    Science.gov (United States)

    Ancellin, Marie-Anne; Samaniego, Pablo; Vlastélic, Ivan; Nauret, François; Gannoun, Adbelmouhcine; Hidalgo, Silvana

    2017-03-01

    Previous studies of the Ecuadorian arc (1°N-2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1437 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ˜0.5°S result from the changing nature of metasomatism in the subarc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc.

  9. Zone modelling of the thermal performances of a large-scale bloom reheating furnace

    International Nuclear Information System (INIS)

    Tan, Chee-Keong; Jenkins, Joana; Ward, John; Broughton, Jonathan; Heeley, Andy

    2013-01-01

    This paper describes the development and comparison of a two- (2D) and three-dimensional (3D) mathematical models, based on the zone method of radiation analysis, to simulate the thermal performances of a large bloom reheating furnace. The modelling approach adopted in the current paper differs from previous work since it takes into account the net radiation interchanges between the top and bottom firing sections of the furnace and also allows for enthalpy exchange due to the flows of combustion products between these sections. The models were initially validated at two different furnace throughput rates using experimental and plant's model data supplied by Tata Steel. The results to-date demonstrated that the model predictions are in good agreement with measured heating profiles of the blooms encountered in the actual furnace. It was also found no significant differences between the predictions from the 2D and 3D models. Following the validation, the 2D model was then used to assess the impact of the furnace responses to changing throughput rate. It was found that the potential furnace response to changing throughput rate influences the settling time of the furnace to the next steady state operation. Overall the current work demonstrates the feasibility and practicality of zone modelling and its potential for incorporation into a model based furnace control system. - Highlights: ► 2D and 3D zone models of large-scale bloom reheating furnace. ► The models were validated with experimental and plant model data. ► Examine the transient furnace response to changing the furnace throughput rates. ► No significant differences found between the predictions from the 2D and 3D models.

  10. Blast furnace hearth lining: post mortem analysis

    International Nuclear Information System (INIS)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando

    2017-01-01

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10"6 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  11. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  12. Energy conservation in industrial furnaces with vertical radiation roofs of reinforced refractory concrete

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, E

    1981-01-01

    The paper discusses static systems for furnaces of reinforced refractory concrete, the temperature field over the finned-plate cross section, the calculation of the reinforced refractory concrete, experimental application in a flat open-hearth pusher furnace, a pack heating furnace, and a sinker furnace. There are cantilever beam plates, frames, and drop ceiling elements particularly suited for efficient use of high-performance burners.

  13. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  14. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  15. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  16. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    International Nuclear Information System (INIS)

    JOHNSTON, D.C.

    2000-01-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed Loss on Ignition (LOI) equipment, including a model 1608FL CMTM Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform LOI testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an expected airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet G1 filter will be flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A

  17. INFLUENCE OF STRUCTURAL PARAMETERS OF LOW-CARBON STEEL ON ELECTRIC ARC BURNING

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2017-10-01

    Full Text Available Purpose. The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process. Methodology. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. The thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel (after quenching from temperatures and tempering at 650°C for 1 hour was subjected to cold drawing to reduction 17 – 80%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV-100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. Findings. The experimentally detected value of the welding current, which depends on the degree of deformation during wire drawing, under conditions of stable arc burning of direct polarity is about an order of magnitude lower than the calculated value. Similar difference was found for the arc of reverse polarity: the experimental value of the welding current is 5...6 times less than the calculated value. Dependence analysis shows that, regardless of the polarity of the welding arc, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For deformation degrees of more than 60

  18. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  19. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  20. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  1. Handling of corn stover bales for combustion in small and large furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Morissette, R.; Savoie, P.; Villeneuve, J. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    This paper reported on a study in which dry corn stover was baled and burned in 2 furnaces in the province of Quebec. Small and large rectangular bale formats were considered for direct combustion. The first combustion unit was a small 500,000 BTU/h dual chamber log wood furnace located at a hay growing farm in Neuville, Quebec. The heat was initially transferred to a hot water pipe system and then transferred to a hot air exchanger to dry hay bales. The small stover bales were placed directly into the combustion furnace. The low density of the bales compared to log wood, required filling up to 8 times more frequently. Stover bales produced an average of 6.4 per cent ash on a DM basis and required an automated system for ash removal. Combustion gas contained levels of particulate matter greater than 1417 mg/m{sup 3}, which is more than the local acceptable maximum of 600 mg/m{sup 3} for combustion furnaces. The second combustion unit was a high capacity 12.5 million BTU/h single chamber furnace located in Saint-Philippe-de-neri, Quebec. It was used to generate steam for a feed pellet mill. Large corn stover bales were broken up and fed on a conveyor and through a screw auger to the furnace. The stover was light compared to the wood chips used in this furnace. For mechanical reasons, the stover could not be fed continuously to the furnace.

  2. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  3. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  4. RBF–ARX model of an industrial furnace for drying olive pomace

    International Nuclear Information System (INIS)

    Casanova-Peláez, P.J.; Cruz-Peragón, F.; Palomar-Carnicero, J.M.; Dorado, R.; López-García, R.

    2012-01-01

    Highlights: ► We model a real furnace, fuelled with orujo, used to dry olive pomace. ► We apply a radial basic functions–auto-regression with exogenous variables (ARXs–RBFs) method. ► Root-mean-square error and r 2 are used to validate the ARX–RBF model. - Abstract: Drying operations are common in food industries. One of the main components in a drying system is the furnace. The furnace operation involves heat–mass transfer and combustion, thus it demands a complex mathematic representation. Since autoregressive methods are simple, and help to simulate rapidly a system, we model a drying furnace of olive pomace via an auto-regression with exogenous variables (ARXs) method. A neural network of radial basic functions (RBFs) defines the ARX experimental relation between the amounts of dry pomace (moisture content of 15%) used like fuel and the temperature of outlet gases. A real industrial furnace is studied to validate the proposed model, which can help to control the drying process.

  5. Developing and testing a vertical sintering furnace for remote nuclear applications

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Ryer, C.M.

    1980-01-01

    Horizontal-type furnaces used to sinter fuel pellets on a production basis are large and thus impractical for remote applications. However, research has shown that vertical-type furnaces are adaptable for use and are cheaper to operate and maintain. In 1979, Pacific Northwest Laboratory, working under the auspices of the Department of Energy's Fuel Refabrication and Development (FRAD) Program, began developing an advanced concept for a remotely operated furnace designed specifically to sinter nuclear fuel pellets. The FRAD Program at PNL ended before the sintering of nuclear fuels could be completely verified. However during 1979, PNL performed a sufficient number and variety of tests to establish that nuclear fuel pellets can be sintered in a vertical furnace

  6. Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process

    Science.gov (United States)

    Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.

    2018-06-01

    A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.

  7. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  8. Process and furnace for working bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1921-06-28

    A process for working up bitumen-containing materials, such as coal, peat and shale is characterized in that the material in thin-height batches with constant shaking by means of forward and backward movement of an elongated horizontal hearth heated underneath on which the material freely lies and on which it is moved in the furnace, through a single narrow furnace space with zone-wise heating of the hearth. A drying zone, a spent-material removal zone, and a carbonization zone are provided. Under separate hoods the gases and vapors are removed from these zones.

  9. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  10. A review of NOx formation mechanisms in recovery furnaces

    International Nuclear Information System (INIS)

    Nichols, K.M.; Thompson, L.M.; Empie, H.J.

    1993-01-01

    Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0 2 ) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0 2 . An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion

  11. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace; Comparacao de queimas de uma massa ceramica de revestimento em forno de laboratorio e forno industrial

    Energy Technology Data Exchange (ETDEWEB)

    Soares, R.A.L., E-mail: robertoarruda@ifpi.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Terersina, PI (Brazil); Castro, J.R. de S. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2012-07-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  12. Numerical modelling of an industrial glass-melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S C [Brigham Young Univ., Advanced Combustion Engineering Research Center, Provo, UT (United States); Webb, B W; McQuay, M Q [Brigham Young Univ., Mechanical Engineering Dept., Provo, UT (United States); Newbold, J [Lockheed Aerospace, Denver, CO (United States)

    2000-03-01

    The predictive capability of two comprehensive combustion codes, PCGC-3 and FLUENT, to simulate local flame structure and combustion characteristics in a industrial gas-fired, flat-glass furnace is investigated. Model predictions are compared with experimental data from the furnace for profiles of velocity, species concentrations, temperatures, and wall-incident radiative heat flux. Predictions from both codes show agreement with the measured mean velocity profiles and incident radiant flux on the crown. However, significant differences between the code predictions and measurements are observed for the flame-ozone temperatures and species concentrations. The observed discrepancies may be explained by (i) uncertainties in the distributions of mean velocity and turbulence in the portneck, (ii) uncertainties in the port-by-port stoichiometry, (iii) different grid-based approximations to the furnace geometry made in the two codes, (iv) the assumption of infinitely fast chemistry made in the chemical reaction model of both codes, and (v) simplifying assumptions made in the simulations regarding the complex coupling between the combustion space, batch blanket, and melt tank. The study illustrates the critical need for accurate boundary conditions (inlet air and fuel flow distributions, boundary surface temperatures, etc.) and the importance of representative furnace geometry in simulating these complex industrial combustion systems. (Author)

  13. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  14. DEVELOPMENT AND TESTING OF COMPOUND FUEL CHAMBER WITHOUT A GRATE FOR HOUSEHOLD FURNACE

    Directory of Open Access Journals (Sweden)

    Shevyakov Vladimir Viktorovich

    2018-02-01

    Full Text Available In hearth furnaces, the firewood is burned more cleanly with less carbon monoxide at the outlet. The disadvantage of such fireboxes is a longer process of coal burnout than in grate-fired furnaces. In furnaces with a grate, the burnout time of coals is less, which makes it possible to finish the combustion process more quickly and close the outlet latch. This increases the efficiency of the furnace but to further reduce the time of burning out the coals they have to be raked and burned on the grate. This complicates the process of operating the furnace itself. The proposed design of the compound firebox allows us to improve characteristics of both the firebox itself and the entire furnace. Research objectives: creation and study of a compound firebox that increases the efficiency of the furnace and simplifies the furnace maintenance process with the values of carbon monoxide at the outlet comparable to hearth furnaces. Materials and methods: a detailed analysis of hearth fuel chambers ECO+ was carried out according to the amount of carbon monoxide at the outlet. The results of the analysis are used for comparison with compound fuel chamber. The structure of the compound firebox was chosen based on the results of preliminary tests of several fuel chambers proposed and tested by the author in the furnace PDKSh-2.0. A peculiarity of the structure of the compound firebox is the absence of a grate and the presence of a narrow slit in the lower part of the firebox through which the incoming air enters the firewood. Between the walls of the firebox and firewood, skids are installed, forming an air gap, through which the inlet air is uniformly supplied to the entire firewood supply. With gradual combustion of firewood and formation of coal, the firewood descends to the bottom of the firebox, where they intensively burn out in the maximum air flow. Compound firebox consists of several parts, it is made of steel with a thickness of 4.0 mm and installed

  15. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  16. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    As a prelude to necessary industrialization, foundries are springing up in various parts of Nigeria and most of these foundries rely on oil fired furnaces in their operation. This study is aimed at developing an oil fired crucible furnace from locally sourced materials for foundries in Nigeria. In our design, a new system of fuel ...

  17. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  18. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  19. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  20. Plan quality comparison between 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy for the treatment of multiple brain metastases.

    Science.gov (United States)

    Yoshio, Kotaro; Mitsuhashi, Toshiharu; Wakita, Akihisa; Kitayama, Takahiro; Hisazumi, Kento; Inoue, Daisaku; Shiode, Tsuyoki; Akaki, Shiro; Kanazawa, Susumu

    2018-01-04

    To compare the plans of 4-arc and 6-arc noncoplanar volumetric modulated arc stereotactic radiotherapy (VMA-SRT) for multiple brain metastases and to investigate the cutoff value for the tumor number and volume for 6-arc rather than 4-arc VMA-SRT. We identified 24 consecutive multiple-target cases (3 to 19 targets in each case) with 189 total targets. We constructed plans using both 4- and 6-arc noncoplanar VMA-SRT. The prescribed dose was 36 Gy/6 fr, and it was delivered to 95% of the planning target volume (PTV). The plans were evaluated for the dose conformity using the Radiation Therapy Oncology Group and Paddick conformity indices (RCI and PCI), fall-off (Paddick gradient index [PGI]), and the normal brain dose. The median (range) RCI, PCI, and PGI was 0.94 (0.92 to 0.99), 0.89 (0.77 to 0.94), and 3.75 (2.24 to 6.54) for the 4-arc plan and 0.94 (0.91 to 0.98), 0.89 (0.76 to 0.94), and 3.65 (2.24 to 6.5) for the 6-arc plan, respectively. The median (range) of the normal brain dose was 910.3 cGy (381.4 to 1268.9) for the 4-arc plan and 898.8 cGy (377 to 1252.9) for the 6-arc plan. The PGI of the 6-arc plan was significantly superior to that of the 4-arc plan (p = 0.0076), and the optimal cutoff values for the tumor number and volume indicative of 6-arc (and not 4-arc) VMA-SRT were cases with ≥ 5 metastases and a PTV of ≥ 12.9 mL, respectively. The PCI values, however, showed no significant difference between the 2 plans. We believe these results will help in considering the use of 6-arc VMA-SRT for multiple brain metastases. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  1. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  2. Design of safety monitor system for operation sintering furnace ME-06

    International Nuclear Information System (INIS)

    Sugeng Rianto; Triarjo; Djoko Kisworo; Agus Sartono

    2013-01-01

    Design of safety monitoring system for safety operation of sinter furnace ME-06 has been done. Parameters monitored during this operation include: temperature, gas pressure, flow rate of gas, voltage and current furnace. For sintering furnace temperature system that monitored were the temperature of the furnace temperature, the temperature of the cooling water system inlet and outlet, temperature of flow hydrogen gas inlet and outlet. For pressure system and flow rate gas sinter furnace which monitored the pressure and flow rate of hydrogen gas inlet and outlet. The system also monitors current and voltage applied to the sinter furnace heating system. Monitor system hardware consists of: the system temperature sensor, pressure, rate and data acquisition systems. While software systems using the labview driver interface that connects the hard and software systems. Function test results during sintering operation for setting the temperature 1700 °C sintering temperature increases the ramp function by 250 °C/hour average measurements obtained when the sintering time 1707.016 °C with a standard deviation of 0.38 °C. The maximum temperature of the hydrogen gas temperature 35.4 °C. The maximum temperature of the cooling water system 27.4 °C. The maximum pressure of 1,911 bar Gas Inlet and outlet of 0,051 bar. Maximum inlet gas flow 12.996 L / min and outlet 14.086 L / min. (author)

  3. Mathematical Determination of Thermal Load for Fluidised Bed Furnaces Using Sawdust

    Directory of Open Access Journals (Sweden)

    Antonescu Nicolae

    2014-06-01

    Full Text Available For technical applications, a physical model capable of predicting the particle evolution in the burning process along its trajectory through the furnace is very useful. There are two major demands: all the thermo-dynamic processes that describe the particle burning process must be accounted and the model must be written in such equation terms to allow the intervention for parameter settings and particle definition. The computations were performed for the following parameters: furnace average temperature between 700 and 1200 °C, size of the sawdust particle from 4 to 6 mm and fix carbon ignition between 500 and 900 °C. The values obtained for the characteristic parameters of the burning process ranged from 30 to 60 [kg/(h·m3] for the gravimetrical burning speed WGh and from 150 to 280 [kW/m3] for the volumetric thermal load of the furnace QV. The main conclusion was that the calculus results are in good agreement with the experimental data from the pilot installations and the real-case measurements in the sawdust working boiler furnaces or pre-burning chambers. Another very important conclusion is that the process speed variation, when the furnace temperature changes, confirms the thermo-kinetic predictions, namely that the burning process speed decreases when the furnace temperature increases.

  4. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    Science.gov (United States)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  5. CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    Science.gov (United States)

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  6. Liquid flow in the hearth of the blast furnace

    International Nuclear Information System (INIS)

    Gauje, P.; Nicolle, R.; Steiler, J.M.; Venturini, M.J.; Libralesso, J.M.

    1992-01-01

    The hearth of a blast furnace is poorly known. Our approach to characterize the hearth involves classical methods of chemical engineering, assessing the flow conditions by means of radioactive tracer techniques. The most important feature of this study is to combine measurements on industrial blast furnaces, experiments on a small scale model and flow model. calculations. 8 refs., 16 figs

  7. Effect of addition of arc furnace dust in the microstructural properties of fly ash alkali-activated; Estudo do efeito da adicao do po de aciaria nas propriedades microestruturais de matrizes a base de cinzas volantes alcali-ativadas

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alexandre Silva de [Centro de Estudos Superiores Feevale, Novo Hamburgo, RS (Brazil); Pavao, Bruno Barreto; Masuero, Angela Boreges; Dal Molin, Denise Carpena Coitinho; Vilela, Antonio Cezar Faria [Universidade Federal do Rio Grande do Sul (UFRS), RS (Brazil)

    2010-07-01

    The search for alternative materials for construction, with less environmental impact, has been the subject of several studies. The alkali-activated cements have shown potential for the reuse of waste, and can be used in the technology of solidification/stabilization. Thus, this study aims to evaluate the main effect of adding arc furnace dust (AFD) in the microstructural properties of matrices based on fly ash alkali-activated. Three levels of AFD were studied: 0, 5, 15 and 25%. The curing was set at 70°C/24 h, and after, kept at room temperature until the age of analysis - 1, 28 and 180 days, with XRD and FTIR analysis. In the XRD spectres it was found that compounds of albite and natron decrease the intensity of their peaks in that there is an increase in the levels of AFD. Concerning to the FTIR, we observed that the band characteristic of the fly ash (FA) 1084 cm{sup -1} was shifted to bands near 1000 cm{sup -1}, which shows that the residue does not interfere in the polymerization and aluminosilicate gel formation. Therefore, under the microstructural aspect, there were no major changes that would impair the use of this residue in alkali-activated matrices. (author)

  8. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  9. Modeling of glass fusion furnaces; Modelisation des fours de fusion de verre

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Plard, C. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The furnaces used for glass melting are industrial installations inside which complex and coupled physical and chemical phenomena occur. Thermal engineering plays a major role and numerical simulation is a precious tool for the analysis of the different coupling, of their interaction and of the influence of the different parameters. In order to optimize the functioning of glass furnaces and to improve the quality of the glass produced, Electricite de France (EdF) has developed a specialized version of the ESTET fluid mechanics code, called `Joule`. This paper describes the functioning principle of glass furnaces, the interactions between heat transfers and flows inside the melted glass, the interactions between heat transfers and the thermal regulation of the furnace, the interactions between heat transfers and glass quality and the heat transfer interactions between the melted glass, the furnace walls and the combustion area. (J.S.)

  10. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  11. arcControlTower: the System for Atlas Production and Analysis on ARC

    International Nuclear Information System (INIS)

    Filipcic, Andrej

    2011-01-01

    PanDA, the Atlas management and distribution system for production and analysis jobs on EGEE and OSG clusters, is based on pilot jobs to increase the throughput and stability of the job execution on grid. The ARC middleware uses a specific approach which tightly connects the job requirements with cluster capabilities like resource usage, software availability and caching of input files. The pilot concept renders the ARC features useless. The arcControlTower is the job submission system which merges the pilot benefits and ARC advantages. It takes the pilot payload from the panda server and submits the jobs to the Nordugrid ARC clusters as regular jobs, with all the job resources known in advance. All the pilot communication with the PanDA server is done by the arcControlTower, so it plays the role of a pilot factory and the pilot itself. There are several advantages to this approach: no grid middleware is needed on the worker nodes, the fair-share between the production and user jobs is tuned with the arcControlTower load parameters, the jobs can be controlled by ARC client tools. The system could be extended to other submission systems using central distribution.

  12. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  13. Metal diffusion from furnace tubes depends on location

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    Studies of metal samples from an ethylene furnace on the Texas Gulf Coast, using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX), reveal preferential diffusion of chromium, titanium, and aluminum in the coil wall to the surfaces of the tube where they form metal oxides. These elements are gradually depleted from the tube wall. Complicated surface reactions that include the formation of several metal oxides, metal sulfides, and metal-catalyzed coke also occur. Several mechanisms can be postulated as to how metal fines or compounds are formed and transferred in the coil and transfer lines exchanger (TLX) of ethylene units. These surface reactions directly or indirectly affect coke formation in the tube. Finally, creep in the coils is likely a factor in promoting corrosion. Such creep is promoted by variable temperature-time patterns to which a coil is exposed during pyrolysis, and then decoking. Periods of stress and compression occur in the coil walls. Knowledge of the diffusion and reactions that take place can result in better furnace operations and decoking procedures to extend the life of the furnace tubes. In this second installment of a four-part series, photomicrographs of four pyrolysis tube samples from the ethylene furnace indicate that significant differences existed between the outer surfaces, inner surfaces, and cross-sectional areas of the samples. The first installment of the series dealt with coke

  14. Analysis of combustion efficiency in a pelletizing furnace

    Directory of Open Access Journals (Sweden)

    Rafael Simões Vieira de Moura

    Full Text Available Abstract The objective of this research is to assess how much the improvement in the combustion reaction efficiency can reduce fuel consumption, maintaining the same thermal energy rate provided by the reaction in a pelletizing furnace. The furnace for pelletizing iron ore is a complex thermal machine, in terms of energy balance. It contains recirculation fan gases and constant variations in the process, and the variation of a single process variable can influence numerous changes in operating conditions. This study demonstrated how the main variables related to combustion in the burning zone influence fuel consumption (natural gas from the furnace of the Usina de Pelotização de Fábrica (owned by VALE S/A, without changing process conditions that affect production quality. Variables were analyzed regarding the velocity and pressure of the fuel in the burners, the temperature of the combustion air and reactant gases, the conversion rate and the stoichiometric air/fuel ratio of the reaction. For the analysis, actual data of the furnace in operation was used, and for the simulation of chemical reactions, the software Gaseq® was used. The study showed that the adjustment of combustion reaction stoichiometry provides a reduction of 9.25% in fuel consumption, representing a savings of US$ 2.6 million per year for the company.

  15. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  16. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the

  17. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.

    1992-01-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  18. Video monitoring system for enriched uranium casting furnaces

    International Nuclear Information System (INIS)

    Turner, P.C.

    1978-03-01

    A closed-circuit television (CCTV) system was developed to upgrade the remote-viewing capability on two oralloy (highly enriched uranium) casting furnaces in the Y-12 Plant. A silicon vidicon CCTV camera with a remotely controlled lens and infrared filtering was provided to yield a good-quality video presentation of the furnace crucible as the oralloy material is heated from 25 to 1300 0 C. Existing tube-type CCTV monochrome monitors were replaced with solid-state monitors to increase the system reliability

  19. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  20. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing

    2012-01-01

    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  1. Investigation and analysis of the usefulness of the Zellik method to design energy conserving electric furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.; Fay, G.

    1984-01-01

    The characteristics predetermined by the method Zellik in designing the electrical furnaces isolated traditionally are comparable with measured values of furnaces in operation. The newest furnaces have been built with isolation resulting in a lower energy consumption. To plot the static characteristics, the furnace was heated up three times to the steady state. In determining the static heat capacity the stored heat was measured by the conventional method. With a view to determining the kinetic heat capacity the furnace was heated up at different rates. On the base of the operating results of the furnace can be stated both the practicability of the method Zellik and the improvement of the characteristics of the furnace isolated with fibrous material.

  2. Method of burning highly reactive strongly slagging coal dust in a chamber furnace

    Energy Technology Data Exchange (ETDEWEB)

    Protsaylo, M.Ya.; Kotler, V.R.; Lobov, G.V.; Mechev, V.P.; Proshkin, A.V.; Zhuravlev, Yu.A.

    1982-01-01

    In the chamber furnace in order to reduce slagging, it is proprosed that, above the coal dust burners, nozzles be installed with inclination downwards through which air is fed in a mixture with flue gases. Under the influence of this flue gas-air mixture, the coal dust flame is deviated downwards. In this case there is an increase in the length of the flame and degree of filling of the volume of the furnace with the flame. This increases the effectiveness of dust burning. The input into the furnace of fuel jointly with the air and flue gases (optimally 10-15% of the total quantity of gases formed during fuel combustion) makes it possible to reduce the temperature in the furnace and the probability of slagging of the furnace walls.

  3. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  4. Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF

    Science.gov (United States)

    Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.

    2017-08-01

    The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.

  5. Modelling of carry-over in recovery furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, Reza [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Development of mathematical modelling of the combustion process in the furnace of recovery boilers is the subject of this work. This work as a continuation of many years of modelling efforts carried out at KTH/Vaerme- och Ugnsteknik focussed particularly on: char bed modelling; droplets-wall interaction modelling; and carry-over modelling. The char bed model has been studied. Droplets/parcels were considered as a single reactor working independently of the other droplets. The mass of the droplets was not distributed uniformly but induced in the landing place. The droplets hitting the char bed will stick to it and they are alive and part of the calculation. In this way the distribution of the mass on the char bed is only dependent on the parameters which effect flight history such as droplet/parcel diameter, boilers flow field, etc. The droplet- wall interaction model has been studied and found to be very important for obtaining the correct temperature distribution in the recovery furnace. The new approach is based on removal of droplets which hits the wall in the upper part of the recovery boiler from carryover calculation. This model has been proposed and implemented into the GRFM (General Recovery Furnace Model). The carryover modelling effort was based on mass balance in which the number and physical statistics of the droplets/parcel were estimated and the amount of unburned mass was calculated. All of the above listed models were tested together with all other models of heat and mass transfer processes in recovery furnaces using a GRFM. Three-dimensional numerical simulations of the industrial recovery boiler (63 kg/s, 82 bar, 480 deg C) were performed. The number of grid was 232,000 and the number of air ports in this simulation was 178. The air entering the furnace by these ports has different flow rates. Flow and temperature fields as well as species distributions were calculated. The results show good agreement with previously published data and modelling

  6. Determination of wall wear of glassmelting furnaces by a nuclear technique

    International Nuclear Information System (INIS)

    Harsanyi, Gyoergy; Kodolanyi, Andras; Leitner, Laszlo

    1984-01-01

    A new in-service inspection technique of glassmelting furnaces is reported. Isotope-labelled refractory tank blocks were prepared, tested experimentally, and built into the furnace. Sup(60)Co isotope tracer was used. The residual wall thickness of the labelled blocks were determined by periodical radiation dose measurements. No environmental or health damage is caused by the specific activity of 3.7 - 4 Bq/g of the labelled furnace blocks, the dose rate in a distance of 1 m from the wall was as low as 0.05 mR/h. (P.J.)

  7. Hopewell Furnace NHS : alternative transportation study

    Science.gov (United States)

    2009-12-31

    This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...

  8. Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

    OpenAIRE

    Man Young Kim

    2013-01-01

    In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribut...

  9. Through-furnace for burning solid organic substances

    International Nuclear Information System (INIS)

    Kemmler, G.; Schlich, E.

    1984-01-01

    The through-furnace for burning radio-active organic solid waste consists of a reaction pipe heated from the outside, an input device and an output device. A solid pump is used as the input device, which has a common longitudinal axis with the reaction pipe. The reaction pipe is widened in the transport direction of the combustion pipe, where the angle between the longitudinal axis and the pipe wall is 0.5 to 5 0 . The pipe wall is wholely or partially permeable to gas. The thermal treatment of the solid organic substances can occur by combustion or by pyrohydrolysis or pyrolysis in the through-furnace. (orig./HP) [de

  10. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  11. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  12. A contribution to the study of arc melting in inert gas atmospheres of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.

    1990-01-01

    Mettalic zirconium is a material of great interest in the nuclear industry due to its low thermal neutron cross section, high strength and corrosion resistance. The latter permits its use in the chemical industry. In this study, a critical bibliographic revision of the industrial processes used for the melting and consolidation of zirconium sponge has been carried out. A procedure for the melting of zirconium on a laboratory scale, has been established. An nonconsumable-electrode arc furnace have been used. The effect of process variables like atmosphere, melting current and getter, have been showed. The influence of sponge characteristics on the qualities of cast zirconium buttons have been studied. The present study is a contribution towards future investigations to obtain high purity cast zirconium and its alloys commercially known as zircaloy. (author)

  13. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  14. Materials analyses of ceramics for glass furnace recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.W.; Tennery, V.J.

    1979-11-01

    The use of waste heat recuperation systems offers significant promise for meaningful energy conservation in the process heat industries. This report details the analysis of candidate ceramic recuperator materials exposed to simulated industrial glass furnace hot flue gas environments. Several candidate structural ceramic materials including various types of silicon carbide, several grades of alumina, mullite, cordierite, and silicon nitride were exposed to high-temperature flue gas atmospheres from specially constructed day tank furnaces. Furnace charging, operation, and batch composition were selected to closely simulate industrial practice. Material samples were exposed in flues both with and without glass batch in the furnace for times up to 116 d at temperatures from 1150 to 1550/sup 0/C (2100 to 2800/sup 0/F). Exposed materials were examined by optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, and x-ray fluorescence to identify material degradation mechanisms. The materials observations were summarized as: Silicon carbide exhibited enhanced corrosion at lower temperatures (1150/sup 0/C) when alkalies were deposited on the carbide from the flue gas and less corrosion at higher temperatures (1550/sup 0/C) when alkalies were not deposited on the carbide; alumina corrosion depended strongly upon purity and density and alumina contents less than 99.8% were unsatisfactory above 1400/sup 0/C; and mullite and cordierite are generally unacceptable for application in soda-lime glass melting environments at temperatures above 1100/sup 0/C.

  15. Single-Arc IMRT?

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Webb, Steve

    2009-01-01

    The idea of delivering intensity-modulated radiation therapy (IMRT) with a multileaf collimator in a continuous dynamic mode during a single rotation of the gantry has recently gained momentum both in research and industry. In this note we investigate the potential of this Single-Arc IMRT technique at a conceptual level. We consider the original theoretical example case from Brahme et al that got the field of IMRT started. Using analytical methods, we derive deliverable intensity 'landscapes' for Single-Arc as well as standard IMRT and Tomotherapy. We find that Tomotherapy provides the greatest flexibility in shaping intensity landscapes and that it allows one to deliver IMRT in a way that comes close to the ideal case in the transverse plane. Single-Arc and standard IMRT make compromises in different areas. Only in relatively simple cases that do not require substantial intensity modulation will Single-Arc be dosimetrically comparable to Tomotherapy. Compared with standard IMRT, Single-Arc could be dosimetrically superior in certain cases if one is willing to accept the spreading of low dose values over large volumes of normal tissue. In terms of treatment planning, Single-Arc poses a more challenging optimization problem than Tomotherapy or standard IMRT. We conclude that Single-Arc holds potential as an efficient IMRT technique especially for relatively simple cases. In very complex cases, Single-Arc may unduly compromise the quality of the dose distribution, if one tries to keep the treatment time below 2 min or so. As with all IMRT techniques, it is important to explore the tradeoff between plan quality and the efficiency of its delivery carefully for each individual case. (note)

  16. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  17. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  18. Production of blast furnace coke from soft brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, G.; Wundes, H.; Schkommodau, F.; Zinke, H.-G. (VEB Gaskombinat Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    Reviews experimental production and utilization of high quality brown coal coke in the GDR during 1985 and 1986. The technology of briquetting and coking brown coal dust is described; the superior parameters of produced coke quality are listed in comparison to those of regular industrial coke made from brown and black coal. Dust emission from high quality brown coal coke was suppressed by coke surface treatment with dispersion foam. About 4,200 t of this coke were employed in black coal coke substitution tests in a blast furnace. Substitution rate was 11%, blast furnace operation was positive, a substitution factor of 0.7 t black coal coke per 1 t of brown coal coke was calculated. Technology development of high quality brown coal coke production is regarded as complete; blast furnace coke utilization, however, requires further study. 8 refs.

  19. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  20. Heating characteristics of billet in a walking hearth type reheating furnace

    International Nuclear Information System (INIS)

    Emadi, Ali; Saboonchi, Ahmad; Taheri, Mahdi; Hassanpour, Saeid

    2014-01-01

    The heating characteristics of billet in a walking hearth type reheating furnace were studied by developing a mathematical heat transfer model. Radiation calculations were conducted by means of zone method and considering all radiation exchange paths. The weighted-sum-of-gray-gas-model was used for better accuracy of gas radiation prediction. Convective heat flux was calculated by considering suitable value of convective heat transfer coefficient at any location of the furnace. The model was substantiated through its comparison to experimental data. A comparison was drawn to evaluate the effect of constant and variable convective coefficient on convective flux distribution and billet thermal behavior. The effect of furnace wall's emissivity of each zone and whole of the furnace on the billet thermal behavior was investigated. The obtained results revealed that by increasing furnace wall's emissivity for a determined residence time, billet's temperature in primary zones rises but it has no significant effect on its final temperature. However, by increasing wall's emissivity from 0.7 to 0.95, the residence time can be declined by about 5%. Moreover, emissivity increase in non-firing and preheating zones as compared to heating and soaking zones has greater impact on the billet thermal behavior. -- Highlights: • 3D radiation modeling by considering all possible paths of radiation exchange. • Using WSGG model for better prediction of gas radiation. • Using non-constant convection coefficient to consider variation of gas mass flow. • Investigation of effect of convection coefficient on billet temperature behavior. • Investigation of wall emissivity of furnace zones

  1. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  2. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  3. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Yee, S. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Baker, J. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the life of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.

  4. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    International Nuclear Information System (INIS)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling; Jackson, Paul S.; Lundahl, Robert E.; Ryu, Stephen I.; Ray, Gordon R.

    2011-01-01

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, ∼4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measured (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the ∼4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for ∼4 noncoplanar arc VMAT at 0.86 compared with ∼0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V 50% ) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V 50% for the other plans to the RA(4) V 50% were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V 50% improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient

  5. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  6. Combustion of Solid Fuel in a Vortex Furnace with Counter-swirling Flows

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-12-01

    Full Text Available The results of computer simulation of the processes of incineration of low-grade solid fuel-pulverized peat with a moisture content of 40%, an ash content of 6% are given. It has been determined the fields of distribution of temperature, velocity of gases and particles in the volume and at the outlet from the furnace. The three-dimensional temperature distribution in the combustion chamber indicates high-temperature combustion of peat particles at temperatures above 1700°C with liquid ash removal in the lower part of the furnace. It has been determined that when the furnace is cooled, it is not ensured combustion of the fuel completely. The value of the swirling flow rate at the outlet from the furnace (up to 370 m/s ensures the efficiency of separation of fuel particles, reducing heat losses from mechanical underburning. It is determined that the concentration of oxygen is close to zero over the entire height of the furnace, at an outlet from the furnace the oxygen concentration is 5...6%, since oxygen is supplied with excess (αв=1,2. The results of a numerical study showed that the diameter of peat particles affects the process of their combustion: coke particles with an initial diameter of 25 mkm to 250 mkm burn out by 96%. With an increase in particle diameter up to 1000 mkm, the degree of burn-out of coke decreases, but at the same time their removal decreases. It is shown that the furnace ensures the completeness of combustion of peat particles of peat 99.8%, volatiles is 100%.

  7. Thermal design of a pressure electroslag remelting furnace applied for 5

    International Nuclear Information System (INIS)

    Cruz M, J.P.

    1999-01-01

    Actual work defines the thermal design methodology for pressure electroslag remelting furnaces (P ESR) of variable capacity, applied for 5 Kg. It begins with classification and description of secondary refining furnaces, after PESR process and the concept of thermal design are described. Next, in base of the steel weight to remelt (5 Kg); ingot, crucible and electrode dimensions are obtained. These elements will be inside of pressure vessel whose thickness are determined according to ASME Code (Section 8, Division 1, U G-27). It was developed a computer program, where the furnace capacity can be modified, so like other conditions, and display principal dimensions of the furnace. Current and voltage are obtained from the heat necessary to remelt the ingot and the heat transfer in the crucible, is analysed because of it is the most critical element. It was selected too the equipment to registry temperatures and pressure in base of thermocouple characteristics. (Author)

  8. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  9. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1998-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  10. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1997-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  11. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  12. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  13. Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)

    International Nuclear Information System (INIS)

    WILLIS, H.T.

    2000-01-01

    Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental

  14. Using arc voltage to locate the anode attachment in plasma arc cutting

    International Nuclear Information System (INIS)

    Osterhouse, D J; Heberlein, J V R; Lindsay, J W

    2013-01-01

    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5–3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4–4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques. (paper)

  15. The influence of the space between the billets on the productivity of a continuous walking-beam furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering

    2005-04-01

    This paper presents a study of the influence of the space between billets on the productivity of a continuous walking-beam furnace. The study was performed using a simulation model of a billet-reheating process for three different billet dimensions. The simulation model considered the exact geometry of the furnace enclosure, including the geometry of the billets inside the furnace. A view-factor matrix of the furnace enclosure was determined using the Monte Carlo method. The heat exchange between the furnace gas, the furnace wall and the billet's surface was calculated using a three-temperature model. The temperature of the furnace floor was determined using a heat-balance equation, and the heat conduction in the billets was calculated using the 3D finite-difference method. The model was validated using measurements from trailing thermocouples positioned in the test billet during the reheating process in the furnace. (author)

  16. Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc

    Science.gov (United States)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.

    2011-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore-arc

  17. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    Chen, Tang; Wang, Cheng; Liao, Meng-Ran; Xia, Wei-Dong

    2016-01-01

    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  18. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  19. Modelling and control of a diffusion/LPCVD furnace

    Science.gov (United States)

    Dewaard, H.; Dekoning, W. L.

    1988-12-01

    Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.

  20. Modernization of two gas-fired shaft annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthof, G.; Porst, G.; Raczek, S.

    1986-04-01

    The objective was to modernize two existing shaft-type annealing furnaces used for the heat treatment of grey iron castings with the aim of reducing the consumption of gaseous fuel, minimize the formation of scale, decrease maintenance expense and apply more automatic control to the annealing process. This was to be achieved by an optimum combination of new types of construction materials and advanced firing and control equipment. The author describes the furnace in its condition prior to and after reconstruction. The operating results obtained after reconstruction were found to justify the costs incurred. The payback period is roughly one year.

  1. Use of coal-water mixtures in blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Malgarini, G; Giuli, M; Davide, A; Carlesi, C [Centro Sviluppo Materiali, Rome (Italy); Italsider, Genoa [Italy; Deltasider, Piombino [Italy

    1989-03-01

    At the present time, an ironworks blast furnace employing a pulverized coal injection (PCI) system is in operation at the Piombino Works (Italy). A wide development, within this industry, of PCI techniques is expected in the near future to limit, as much as possible, the rebuilding of coke ovens. Research activities and industrial trials aimed at maximizing the use of coal injection into blast furnaces are in course of development. This paper uses flowsheets to illustrate such a system and provides graphs to indicate the economic convenience of PCI systems as compared with systems using naphtha as an injected fuel.

  2. Joule-heated glass-furnace system for the incineration of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.; Doty, J.W.; Kramer, D.P.

    1982-01-01

    For the past 1-1/2 years, Mound has been preparing and evaluating a commercially available joule-heated glass furnace unit, coupled with a wet scrubbing system. The purpose of the glass furnace evaluation is to advance and document incinerator technology for such combustibles as solids, resins, and sludges, and to develop a stable waste form for subsequent disposal. Four (4) waste nonradioactive types were selected to determine the combustion efficiency of the furnace unit: (1) dry solid waste composed of paper, plastics, rubber, and cloth, (2) ion exchange resin of both the anionic and cationic type, (3) filter sludge composed of diatomaceous earth, organic cellulosic filter aid, and powdered ion exchange resin, and (4) cartridge filters having glass and plastic filter surfaces and nonmetallic cores. When completed, the combustion efficiency experiments for the proposed nonradioactive waste-types revealed the ability of the furnace to easily incinerate waste at feedrates of up to 150 lb/hr. During the course of the experiments, combustibles in the offgas remained consistently low, suggesting excellent combustion efficiency. Furthermore, ash produced by the combustion process was effectively incorporated into the melt by convective currents in the glass. Future work on the glass furnace incinerator will include spiking the waste to determine radioisotope behavior in the furnace

  3. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  4. Automation Activator of Hydrogen Gas Inlet Valve on Reduction Furnace ME-11

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Operational of hydrogen inlet valve of the reduction furnace ME-11 was actuated manually by furnace operator if all its requirements have been fulfilled. Automation of the valve has been constructed as an additional option of the furnace operating system, in which any interruption by the existing manual system by the operator is still valid even though the automatic option is being used. This paper describes the information concerning the automation construction and its logical status of control in the form of its finite state machine. This automation system has been tested successfully. (author)

  5. Evaluation of refractory lining wear of Companhia Siderurgica Nacional (CSN) blast furnaces

    International Nuclear Information System (INIS)

    Santos, N.J. dos; Mello, A.H.B. de; Pereira, C.L.; Paula Sarkis, D. de; Martins Filho, D.I.; Banados Perez, H.E.; Carvalho, G.; Daltro, T.F.L.

    1984-01-01

    The blast furnace refractory linings are submitted to unfavourable conditions such as alkalis attack, temperature, top pressure, abrasion and so forth... After studies on distribution and installation of radioactive sources with low activities in the refractory lining, it was possible to develop a new technique of thickness evaluation and attendance of wearing in the furnace lining. The viability analysis, simulated laboratory tests, localization, identification, installations and periodical measurements of the radioactive sources are described, as well the results obtained on the present campaign of CSN Blast Furnaces. (Author) [pt

  6. 76 FR 56339 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2011-09-13

    ...) which covered furnaces (but not boilers), and it establishes amended energy efficiency standards for... Database for Residential Furnaces and Boilers,\\7\\ and the Consortium for Energy Efficiency's Qualifying...\\ Consortium of Energy Efficiency, Qualifying Furnace and Boiler List (2010) (Available at: http://www.cee1.org...

  7. Arc-to-arc mini-sling 1999: a critical analysis of concept and technology

    Directory of Open Access Journals (Sweden)

    Paulo Palma

    2011-04-01

    Full Text Available PURPOSE: The aim of this study was to critically review the Arc-to-Arc mini-sling (Palma's technique a less invasive mid-urethral sling using bovine pericardium as the sling material. MATERIALS AND METHODS: The Arc-to-Arc mini-sling, using bovine pericardium, was the first published report of a mini-sling, in 1999. The technique was identical to the "tension-free tape" operation, midline incision and dissection of the urethra. The ATFP (white line was identified by blunt dissection, and the mini-sling was sutured to the tendinous arc on both sides with 2 polypropylene 00 sutures. RESULTS: The initial results were encouraging, with 9/10 patients cured at the 6 weeks post-operative visit. However, infection and extrusion of the mini-sling resulted in sling extrusion and removal, with 5 patients remaining cured at 12 months. CONCLUSION: The Arc-to-Arc mini-sling was a good concept, but failed because of the poor technology available at that time. Further research using new materials and better technology has led to new and safer alternatives for the management of stress urinary incontinence.

  8. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Science.gov (United States)

    2010-07-15

    ... Furnace Fans: Reopening of Public Comment Period AGENCY: Office of Energy Efficiency and Renewable Energy... work of residential heating and cooling systems (``furnace fans''). The comment period closed on July 6... information relevant to the furnace fan rulemaking will be accepted until July 27, 2010. ADDRESSES: Interested...

  9. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  10. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  11. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  12. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  13. Tokamak ARC damage

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  14. Analysis of a furnace for heat generation using polydisperse biomass

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    In many agro-industrial activities, the processing of raw material generates a substantial amount of fine materials. Examples include the production of soluble coffee, processing of rice, and wood processing, among others. In many regions, these by-products keep piling up on the courtyard of companies or become an environmental problem for land dumps. However, detailed tests of these byproducts indicate that they are excellent sources of energy. With this in mind, a furnace was developed to generate clean and hot air, using the alimentation system for pneumatic transport. Wood sawdust was used as fuel for analysis. The obtained results were considered satisfactory, proven by the small heat losses, primarily by the non-burned carbon monoxide (less than 0.2%) and the cooling of the furnace (less than 2.5%) whereas the losses by the exhaust gases were a little more than 23%. The thermal efficiency of the furnace was considered high when compared to others with an indirect heating system, obtaining an average value of 73%. The developed furnace, beyond being efficient, allows the use of the waste from the wood industry, which is important in the reduction of environmental impacts and minimizing production costs associated with the acquisition of conventional energy. (author)

  15. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  16. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  17. Fluorophotometric determination of uranium: an automated sintering furnace and factors affecting precision

    International Nuclear Information System (INIS)

    Strain, J.E.

    1978-07-01

    The fusion furnace consists of four individually controlled, slotted-tube furnaces that automatically dry, sinter and anneal the fluoride or carbonate pellet used in the fluorometric determination of uranium. The furnace operates in air and prepares approximately 90 pellets per hour for fluorometric measurement. The factors that were thought to affect the precision of the method were investigated. The two factors that seem to be the most influential are (1) the manner in which the sample is loaded onto the pellet; and (2) the surface characteristics of the platinum dish in which the pellet is sintered and measured fluorometrically

  18. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  19. Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace

    Directory of Open Access Journals (Sweden)

    Hari S. Ganesh

    2016-12-01

    Full Text Available Quench hardening is the process of strengthening and hardening ferrous metals and alloys by heating the material to a specific temperature to form austenite (austenitization, followed by rapid cooling (quenching in water, brine or oil to introduce a hardened phase called martensite. The material is then often tempered to increase toughness, as it may decrease from the quench hardening process. The austenitization process is highly energy-intensive and many of the industrial austenitization furnaces were built and equipped prior to the advent of advanced control strategies and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the furnace and the part temperature profile as a function of time and position within the furnace under temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace for a batch of forty parts under heuristic temperature set points suggested by the operators of the plant. A model predictive control (MPC system is then developed and deployed to control the the part temperature at the furnace exit thereby preventing the parts from overheating. An energy efficiency gain of 5.3 % was obtained under model predictive control compared to operation under heuristic temperature set points tracked by a regulatory control layer.

  20. ALICE-ARC integration

    International Nuclear Information System (INIS)

    Anderlik, C; Gregersen, A R; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  1. The Automation Control System Design of Walking Beam Heating Furnace

    OpenAIRE

    Hong-Yu LIU; Jun-Qing LIU; Jun-Jie XI

    2014-01-01

    Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distributio...

  2. Plan for the Initiation of HA-211 Furnace Operations at the Plutonium Finishing Plan (PFP)

    International Nuclear Information System (INIS)

    WILLIS, H.T.

    2000-01-01

    This plan provides a phased approach authorizing the use of three additional muffle furnaces for thermal stabilization. Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given

  3. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass

    International Nuclear Information System (INIS)

    Striūgas, N.; Vorotinskienė, L.; Paulauskas, R.; Navakas, R.; Džiugys, A.; Narbutas, L.

    2017-01-01

    Highlights: • Combustion of biomass with varying moisture content might lead to unstable operation of a furnace. • Method for automatic control of a furnace fired with wet biomass was developed. • Fuel moisture is estimated by cost-effective indirect method for predictive control. • Fuel moisture estimation methods and furnace control algorithm were validated in an industrial boiler. - Abstract: In small countries like Lithuania with a widespread district heating system, 5–10 MW moving grate biomass furnaces equipped with water boilers and condensing economisers are widely used. Such systems are designed for firing biomass fuels; however, varying fuel moisture, mostly in the range from 30% to 60%, complicates the automated operation. Without manual adjustment of the grate motion mode and other parameters, unstable operation or even extinction of the furnace is possible. To ensure stable furnace operation with moist fuel, the indirect method to estimate the fuel moisture content was developed based on the heat balance of the flue gas condensing economiser. The developed method was implemented into the automatic control unit of the furnace to estimate the moisture content in the feedstock and predictively adjust the furnace parameters for optimal fuel combustion. The indirect method based on the economiser heat balance was experimentally validated in a 6 MW grate-fired furnace fuelled by biomass with moisture contents of 37, 46, 50, 54 and 60%. The analysis shows that the estimated and manually measured values of the fuel moisture content do not differ by more than 3%. This deviation indicates that the indirect fuel moisture calculation method is sufficiently precise and the calculated moisture content varies proportionally to changes in the thermal capacity of the economiser. By smoothing the data using sliding weighted averaging, the oscillations of the fuel moisture content were identified.

  4. Operation Indicators of the Rotating-Hearth Furnace in Restrictive Manufacturing Conditions

    Directory of Open Access Journals (Sweden)

    Črnko, J.

    2007-01-01

    Full Text Available The heating operation of the rotating-hearth furnace involving semi-finished steel products was analysed, and specific heat consumption was determined as a function of furnace productivity. The aim was to find out how a change in productivity, which is not accompanied by a modification of the thermal regime, can affect the heating quality and surface oxidation of products.

  5. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    International Nuclear Information System (INIS)

    Andrew Seltzer

    2006-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H 2 O and CO 2 concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O 2 . Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar

  6. Experimental and numerical study of MILD combustion in a lab-scale furnace

    NARCIS (Netherlands)

    Huang, X.; Tummers, M.J.; Roekaerts, D.J.E.M.; Scherer, Viktor; Fricker, Neil; Reis, Albino

    2017-01-01

    Mild combustion in a lab-scale furnace has been experimentally and numerically studied. The furnace was operated with Dutch natural gas (DNG) at 10 kW and at an equivalence ratio of 0.8. OH∗chemiluminescence images were taken to characterize the reaction zone. The chemiluminescence intensity is

  7. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  8. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  9. Volcanism in slab tear faults is larger than in island-arcs and back-arcs.

    Science.gov (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido

    2017-11-13

    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  10. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  11. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  12. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    International Nuclear Information System (INIS)

    Luo Siyi; Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun

    2010-01-01

    Based on biomass micron fuel (BMF) with particle size less than 250 μm, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  13. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  14. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  15. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  16. Equilibrium motion of quict auroral arcs

    International Nuclear Information System (INIS)

    Lyatskij, V.B.; Leont'ev, S.V.

    1981-01-01

    Ionospheric plasma convection across auroral arc is investigated. It is shown that the existence of plasma area of increased concentration adjoining arc results not only from the arc but also is a factor supporting its existence. Under stable conditions the arc and plasma zone connected to it will move at a velocity different from a velocity of plasma convection. Arc velocity will be higher or lower as compared with convection velocity depending on arc orientation relative to an external electric field. At that the plasma zone is located either in front of or behind aurora polaris [ru

  17. Bifurcation theory of ac electric arcing

    International Nuclear Information System (INIS)

    Christen, Thomas; Peinke, Emanuel

    2012-01-01

    The performance of alternating current (ac) electric arcing devices is related to arc extinction or its re-ignition at zero crossings of the current (so-called ‘current zero’, CZ). Theoretical investigations thus usually focus on the transient behaviour of arcs near CZ, e.g. by solving the modelling differential equations in the vicinity of CZ. This paper proposes as an alternative approach to investigate global mathematical properties of the underlying periodically driven dynamic system describing the electric circuit containing the arcing device. For instance, the uniqueness of the trivial solution associated with the insulating state indicates the extinction of any arc. The existence of non-trivial attractors (typically a time-periodic state) points to a re-ignition of certain arcs. The performance regions of arcing devices, such as circuit breakers and arc torches, can thus be identified with the regions of absence and existence, respectively, of non-trivial attractors. Most important for applications, the boundary of a performance region in the model parameter space is then associated with the bifurcation of the non-trivial attractors. The concept is illustrated for simple black-box arc models, such as the Mayr and the Cassie model, by calculating for various cases the performance boundaries associated with the bifurcation of ac arcs. (paper)

  18. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  19. Computer simulation of processes in the dead–end furnace

    International Nuclear Information System (INIS)

    Zavorin, A S; Khaustov, S A; Zaharushkin, Russia N A

    2014-01-01

    We study turbulent combustion of natural gas in the reverse flame of fire–tube boiler simulated with the ANSYS Fluent 12.1.4 engineering simulation software. Aerodynamic structure and volumetric pressure fields of the flame were calculated. The results are presented in graphical form. The effect of the twist parameter for a drag coefficient of dead–end furnace was estimated. Finite element method was used for simulating the following processes: the combustion of methane in air oxygen, radiant and convective heat transfer, turbulence. Complete geometric model of the dead–end furnace based on boiler drawings was considered

  20. Digital Kilns and Furnaces——the Development Direction of Industrial Kilns and Furnaces in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoming; HUANG Zhichu; ZHANG Jiafan

    2006-01-01

    The digital manufacturing theory is applied to the special manufacturing equipments--industrial kilns and furnaces; the concept of digital kilns & furnaces is put forward. The present status of research and application for digital technologies in fuel industrial kilns & furnaces is also introduced. Then, take the case of gas fuel kilns & furnaces, their main key technical issues are discussed. Digital kilns & furnaces as an important constituent of the digital equipments are the crucial base of the digital manufacturing. The value of research on digital kilns & furnaces and the application prospect are undoubted. It will improve product quality, reduce the manpower cost, enhance product market competitive ability, promote comprehensively tradition industries such as ceramics, metallurgy industry,and so on.

  1. Arcing and surface damage in DITE

    International Nuclear Information System (INIS)

    Goodall, D.H.J.; McCracken, G.M.

    1977-11-01

    An investigation into the arcing damage on surfaces exposed to plasmas in the DITE tokamak is described. It has been found that arcing occurs on the fixed limiters, on probes inserted into the plasma and on parts of the torus structure. For surfaces parallel to the toroidal field most of the arcs run across the surface orthogonal to the field direction. Observations in the scanning electron microscope show that the arc tracks are formed by a series of melted craters characteristic of cathode arc spots. The amount of metal removed from the surface is consistent with the concentration of metal observed in the plasma. In plasmas with hydrogen gas puffing during the discharge or with injection of low Z impurities, the arc tracks are observed to be much shallower than in normal low density discharges. Several types of surface damage other than arc tracks have also been observed on probes. These phenomena occur less frequently than arcing and appear to be associated with abnormal discharge conditions. (author)

  2. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  3. Quality of the KhN73MBTYu alloy after electroslag remelting and vacuum arc remelting

    International Nuclear Information System (INIS)

    Shelgaeva, A.V.; Krichevets, M.I.; Shinkina, N.S.; Komissarov, A.I.

    1978-01-01

    The structure and properties of the heat-resisting KhN73MBTYu alloy are investigated after electroslag remelting (ESR) and vacuum arc (VAR) remelting in commercial furnaces. The complex investigations of the casted metal were carried out by modern methods along with the standard acceptance tests, and a number of service properties were determined. It is established that the ESR metal contains magnesium and has the reduced sulphur concentration; the alloy has more fine-grained structure at high isotropy of the properties at room and operating temperatures; higher endurance is achieved under reversal rotational bending; no laminated fractures are observed. According to the basic quality factors the ESR metal satisfies all requirements for the VAR metal. Due to exclusion of strippling of ESR electrodes and ingots the yield of steel forgings increases by 20-25% and the prime cost decreases in comparison with the industrial production of VAR metal

  4. Operator Bias in the Estimation of Arc Efficiency in Gas Tungsten Arc Welding

    Directory of Open Access Journals (Sweden)

    Fredrik Sikström

    2015-03-01

    Full Text Available In this paper the operator bias in the measurement process of arc efficiency in stationary direct current electrode negative gas tungsten arc welding is discussed. An experimental study involving 15 operators (enough to reach statistical significance has been carried out with the purpose to estimate the arc efficiency from a specific procedure for calorimetric experiments. The measurement procedure consists of three manual operations which introduces operator bias in the measurement process. An additional relevant experiment highlights the consequences of estimating the arc voltage by measuring the potential between the terminals of the welding power source instead of measuring the potential between the electrode contact tube and the workpiece. The result of the study is a statistical evaluation of the operator bias influence on the estimate, showing that operator bias is negligible in the estimate considered here. On the contrary the consequences of neglecting welding leads voltage drop results in a significant under estimation of the arc efficiency.

  5. Ground source heat pumps versus high efficiency natural gas furnaces in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.

    2003-02-02

    For the past twenty years or so, the heating and cooling of numerous buildings in northern Europe has been accomplished using ground source heat pumps (GSHPs), while in North America they have been in use for approximately ten years. In the Prairies, natural gas furnaces dominate, while GSHP are more popular in eastern Canada. The author noted that natural gas furnaces have an efficiency of 80 per cent or less, while high efficiency natural gas (HENG) furnaces, more expensive, have an efficiency in the 90 per cent range. A brief outline of the principles behind GSHPs was provided. The Coefficient of Performance (COP) of GSHP reaches up to 500 per cent depending whether the unit is cooling or heating. The amount of heat produced by a heating system expressed as a percentage of the energy input required to operate the system is the definition used for the efficiency. In those cases where it is possible to amortize the initial costs, pay now or obtain a subsidy, the installation of GSHP is advantageous. Several factors affect the total cost of heating a building, such as the airtightness of the building and its insulation, the coldness of the climate, and the inside controlled temperature setting. The author then examined the cost of operating a GSHP versus a natural gas furnace. In most examples studied, the cost of operating a GSHP was less than the cost of operating a natural gas furnace. The Total Equivalent Warming Impact (TEWI) of GSHPs and HENG furnaces was examined. The author concluded that the cost of heating by GSHP in Alberta will be lower than the cost of heating by HENG which requires a separate air conditioning unit for the summer months, with additional improvements in efficiency and insulation. 7 refs., 4 tabs.

  6. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  7. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  8. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  9. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    Science.gov (United States)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  10. International blast furnace hearth and raceway symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Papers presented discussed some of the physical and chemical processes occuring in the raceway and hearths of blast furnaces. The injection of coal or fuel slurries to replace some of the coke was also covered. Fourteen papers are abstracted separately.

  11. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Gas Technology Inst., Des Plaines, IL (United States); Yee, S. [Gas Technology Inst., Des Plaines, IL (United States); Baker, J. [Gas Technology Inst., Des Plaines, IL (United States)

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is provided by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.

  12. 76 FR 37407 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-06-27

    .... Background 1. Current Standards a. Furnaces b. Central Air Conditioners and Heat Pumps 2. History of... Compliance Requirements a. Central Air Conditioning and Heat Pumps b. Residential Furnaces 3. Duplication... residential central air conditioners and central air conditioning heat pumps (air conditioners and heat pumps...

  13. Modular Distributed Concentrator for Solar Furnace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to develop a lightweight approach to achieving the high concentrations of solar energy needed for a solar furnace achieving temperatures of...

  14. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    International Nuclear Information System (INIS)

    Mancinelli, B. R.; Minotti, F. O.; Kelly, H.; Prevosto, L.

    2014-01-01

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10 4  A/s.

  15. Atomization in a graphite furnace with ballast - a method of improvement of reliability of atomic absorption analysis

    International Nuclear Information System (INIS)

    Katskov, D.A.; Grinshtejn, I.L.

    1978-01-01

    For the purpose of improving the reliability with which elements are determined in atomic absorption analysis with atomization in a graphite furnace, a method is proposed based on the use of a furnace with an extra ballast body. A small cylinder of graphite or refractory metal (Ta) placed in the central part of the furnace, is used as ballast. When in poor heat contact with the wall the ballast is heated by ray emission at a somewhat slower rate than the furnace. It is shown that the kinetics of evaporation of the substance being analysed in the ballast furnace is determined by the rate of change of temperature of the ballast body. As a result of the lag in evaporation, vapour from the analysed substance reaches a zone of a much higher temperature than with evaporation in the usual type furnace, leading to an increase in the degree of atomization. Theoretical analysis establishes the temperature of the ballast, and conditions for the determination of elements (Cd) are optimized. The experiments conducted indicate a considerable decrease in the effect of the composition of the sample on the results of the analysis and a lower molecular interference in the ballast furnace. With high evaporation lag the vapours of the sample reach the zone of practically constant temperature, thus making it possible to use the integral method of absorption registration with absolute accuracy. With fractionated distillation of volatile components of the sample, fractionation is considerably more accurate in a ballast furnace than in the usual type furnace

  16. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  17. Teaching with ArcGIS Pro

    OpenAIRE

    Theller, Larry

    2016-01-01

    For Fall semester 2016 the ABE department moved the course ASM 540 Basic GIS from ArcGIS Desktop 10.2 to ArcGIS Pro 1.3. This software from ESRI has a completely new look and feel, (ribbon-based rather than cascading menus) and is a true 64 bit application, capable of multi-threading, and built on Python 3. After ArcGIS Desktop 10.5 is released, desktop ends and the future release will be ArcGIS Pro; so it makes sense to switch sooner rather than later. This talk will discuss some issues and...

  18. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  19. Intensity-modulated arc therapy simplified

    International Nuclear Information System (INIS)

    Wong, Eugene; Chen, Jeff Z.; Greenland, Jonathan

    2002-01-01

    Purpose: We present a treatment planning strategy for intensity-modulated radiation therapy using gantry arcs with dynamic multileaf collimator, previously termed intensity-modulated arc therapy (IMAT). Methods and Materials: The planning strategy is an extension of the photon bar arc and asymmetric arc techniques and is classified into three levels of complexity, with increasing number of gantry arcs. This principle allows us to generalize the analysis of the number of arcs required for intensity modulation for a given treatment site. Using a phantom, we illustrate how the current technique is more flexible than the photon bar arc technique. We then compare plans from our strategy with conventional three-dimensional conformal treatment plans for three sites: prostate (prostate plus seminal vesicles), posterior pharyngeal wall, and chest wall. Results: Our strategy generates superior IMAT treatment plans compared to conventional three-dimensional conformal plans. The IMAT plans spare critical organs well, and the trade-off for simplicity is that the dose uniformity in the target volume may not rival that of true inverse treatment plans. Conclusions: The analyses presented in this paper give a better understanding of IMAT plans. Our strategy is easier to understand and more efficient in generating plans than inverse planning systems; our plans are also simpler to modify, and quality assurance is more intuitive

  20. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  1. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  2. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.).

  3. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.)

  4. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT and Arc technique for esophageal carcinoma

    International Nuclear Information System (INIS)

    Martin, Spencer; Chen, Jeff Z.; Rashid Dar, A.; Yartsev, Slav

    2011-01-01

    Purpose: To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT and Arc technique (IMRT and Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Methods and materials: Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT and Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT and Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. Results: RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p = 0.001) and dose homogeneity (p = 0.002) to planning target volume (PTV), while IMRT and Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V 10 of the lungs was significantly reduced by the RA2 plans compared to IMRT and Arc (40.3%, p = 0.001) and HT (66.2%, p 15 of the lungs for the RA2 plans also showed significant improvement over the IMRT and Arc (25.2%, p = 0.042) and HT (34.8%, p = 0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT and Arc techniques. Mean lung dose (MLD) for the IMRT and Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p = 0.004), RA1 (23.3%, p = 0.028), and RA2 (23.2%, p = 0.017) techniques. Conclusion: The IMRT and Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2

  5. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  6. Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshpande, Vishal R.; Shendage, D.J.; Pillai, Indu R. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India)

    2010-12-15

    The jaggery making from sugarcane is one of the traditional process industries contributing to the local employment and entrepreneurship opportunities to the rural population. Jaggery is a condensed form of sugarcane juice produced by evaporation of moisture. Bagasse which is internally generated during juice extraction from sugarcane is used as the fuel for evaporation in a jaggery furnace. Any efficiency improvement in the thermal performance of a jaggery furnace leads to bagasse saving which provides additional revenue for the jaggery manufacturer. A procedure for thermal evaluation using mass and energy balance for a jaggery furnace is proposed to establish furnace performance and loss stream analysis. The proposed method is used to investigate a four pan traditional jaggery furnace in India. The loss stream analysis indicates that the theoretical energy required for jaggery processing is only 29% of total energy supplied by bagasse combustion. The major loss is associated with heat carried in flue gas and wall losses. The air available for combustion depends upon the draft created by chimney in natural draft furnaces. The oxygen content in the flue gas is a measure of degree of combustion. A controlled fuel feeding based on the oxygen percentage in the flue gases is proposed and demonstrated. The traditional practice of fuel feeding rate is changed to control feeding rate leading to reduction in specific fuel consumption from 2.39 kg bagasse/kg jaggery to 1.73 kg bagasse/kg jaggery. This procedure can be used for evaluation of jaggery furnaces for identification and quantification of losses, which will help in improving thermal energy utilization. (author)

  7. Fiscal 1998 research report on development of the advanced industrial furnace (R and D on the advanced industrial furnace). Volume 3; 1998 nendo koseino kogyoro no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the research results of the chapter 4 and 5 (experimental database) from the research report on development of the advanced industrial furnace. The chapter 4 summarizes functions of the temperature performance evaluation simulator of the advanced continuous heating furnace for the database system, and various research results obtained by the simulator. This chapter also summarizes the research result on the applicability of high-temperature air combustion to other industries, the patent research result on heat storage combustion technology, the basic technology research result, and the reaction analysis result by FLUENT. The chapter 5 summarizes the combustion experiment data collection by developing self-completion high-temperature high-radiation heating technology. As for R and D on technology optimizing the profile of heating furnaces, the following data are summarized: measurement data of heat transfer in furnaces and heat flux data at right overhead furnace temperature under cold air and preheated air combustion in conventional furnaces, and heat storage combustion. (NEDO)

  8. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  10. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  11. Correlation methods in cutting arcs

    International Nuclear Information System (INIS)

    Prevosto, L; Kelly, H

    2011-01-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  12. Pollutant emissions of commercial and industrial wood furnaces

    International Nuclear Information System (INIS)

    Baumbach, G.; Angerer, M.

    1993-03-01

    Based on literature surveys, personal contacts to designers, manufactures and users of woold furnaces, as well as informations of experts from Austria and Switzerland, the used wood fuels and combustion techniques and the potentially by commercial and industrial wood burning emitted air pollutants are described; including the mechanism of pollutant formation, concentrations, and their environmental relevance. The actual situation in Baden-Wuerttemberg concerning the used wood fuels, the state of installed and operated furnaces and the amount of emitted pollutants is presented basing on informations of the 'Statistical Country Bureau' and a country-wide inquiry round the chimney-sweepers. In order to realize the described existing possibilities to reduce pollutant emissions the introduction of a general brand test and certification mode is proposed. (orig.). 53 figs., 118 refs [de

  13. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1996-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  14. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H; Laaksonen, M; Waller, M [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1997-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  15. Co-firing used engine lubrication oil with LPG in furnaces

    International Nuclear Information System (INIS)

    Al-Omari, S.A.-B.; Shaheen, A.; Al Fakhr, A.; Al-Hosani, A.; Al Yahyai, M.

    2010-01-01

    Combustion and heat transfer characteristics obtained based co-firing LPG with used engine oils (UEO) in a furnace, are investigated experimentally. In an attempt to assess UEO as a fuel, the UEO-based results are compared with results obtained using two other fuels, namely diesel, and a used cooking oil (UCkO). To ease its admission to the furnace and its subsequent vaporization and combustion, UEO is preheated by allowing it to flow upwardly in a vertical pipe surrounded by hot gases generated from LPG combustion. UEO that reaches the tip of the pipe un-vaporized, spills and hence has the chance to further heatup and vaporize as it exchanges heat with the upwardly flowing LPG combustion gases, in a counter flow process. Runs are divided into three groups based on the mass ratio of the liquid-fuel/LPG and the mass flow rate of the LPG supplied to the furnace. Ranges of these quantities over which UEO qualify as a good fuel and/or good promoter to radiation have been identified.

  16. Co-firing used engine lubrication oil with LPG in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Al-Omari, S.A.-B.; Shaheen, A.; Al Fakhr, A.; Al-Hosani, A.; Al Yahyai, M. [Mechanical Engineering Department, UAE University, Al-Ain (United Arab Emirates)

    2010-06-15

    Combustion and heat transfer characteristics obtained based co-firing LPG with used engine oils (UEO) in a furnace, are investigated experimentally. In an attempt to assess UEO as a fuel, the UEO-based results are compared with results obtained using two other fuels, namely diesel, and a used cooking oil (UCkO). To ease its admission to the furnace and its subsequent vaporization and combustion, UEO is preheated by allowing it to flow upwardly in a vertical pipe surrounded by hot gases generated from LPG combustion. UEO that reaches the tip of the pipe un-vaporized, spills and hence has the chance to further heatup and vaporize as it exchanges heat with the upwardly flowing LPG combustion gases, in a counter flow process. Runs are divided into three groups based on the mass ratio of the liquid-fuel/LPG and the mass flow rate of the LPG supplied to the furnace. Ranges of these quantities over which UEO qualify as a good fuel and/or good promoter to radiation have been identified. (author)

  17. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  18. New heating schedule in hydrogen annealing furnace based on process simulation for less energy consumption

    International Nuclear Information System (INIS)

    Saboonchi, Ahmad; Hassanpour, Saeid; Abbasi, Shahram

    2008-01-01

    Cold rolled steel coils are annealed in batch furnaces to obtain desirable mechanical properties. Annealing operations involve heating and cooling cycles which take long due to high weight of the coils under annealing. To reduce annealing time, a simulation code was developed that is capable of evaluating more effective schedules for annealing coils during the heating process. This code is additionally capable of accurate determination of furnace turn-off time for different coil weights and charge dimensions. After studying many heating schedules and considering heat transfer mechanism in the annealing furnace, a new schedule with the most advantages was selected as the new operation conditions in the hydrogen annealing plant. The performance of all the furnaces were adjusted to the new heating schedule after experiments had been carried out to ensure the accuracy of the code and the fitness of the new operation condition. Comparison of similar yield of cold rolled coils over two months revealed that specific energy consumption of furnaces under the new heating schedule decreased by 11%, heating cycle time by 16%, and the hydrogen consumption by 14%

  19. New heating schedule in hydrogen annealing furnace based on process simulation for less energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Saboonchi, Ahmad [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran); Hassanpour, Saeid [Rayan Tahlil Sepahan Co., Isfahan Science and Technology Town, Isfahan 84155 (Iran); Abbasi, Shahram [R and D Department, Mobarakeh Steel Complex, Isfahan (Iran)

    2008-11-15

    Cold rolled steel coils are annealed in batch furnaces to obtain desirable mechanical properties. Annealing operations involve heating and cooling cycles which take long due to high weight of the coils under annealing. To reduce annealing time, a simulation code was developed that is capable of evaluating more effective schedules for annealing coils during the heating process. This code is additionally capable of accurate determination of furnace turn-off time for different coil weights and charge dimensions. After studying many heating schedules and considering heat transfer mechanism in the annealing furnace, a new schedule with the most advantages was selected as the new operation conditions in the hydrogen annealing plant. The performance of all the furnaces were adjusted to the new heating schedule after experiments had been carried out to ensure the accuracy of the code and the fitness of the new operation condition. Comparison of similar yield of cold rolled coils over two months revealed that specific energy consumption of furnaces under the new heating schedule decreased by 11%, heating cycle time by 16%, and the hydrogen consumption by 14%. (author)

  20. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  1. Furnace for distillation of shales, etc

    Energy Technology Data Exchange (ETDEWEB)

    Germain-Clergault, M

    1863-07-09

    Practical experience and continuous operation of 55 retorts for 5 years of the system of vertical retorts patented in 1857 (French Patent 18,422) has shown the advantages resulting from this furnace which gives over a mean yield of 5% of Auton shale, which is /sup 1///sub 2/% more than the old systems with a fuel economy varying from 15 to 20%.

  2. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  3. Nodal wear model: corrosion in carbon blast furnace hearths

    International Nuclear Information System (INIS)

    Verdeja, L. F.; Gonzalez, R.; Alfonso, A.; Barbes, M. F.

    2003-01-01

    Criteria developed for the Nodal Wear Model (NWM) were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node) of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid. (Author) 31 refs

  4. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Science.gov (United States)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  5. Physical and mathematical modelling of gas-fired glass melting furnaces with regard to NO-formation

    International Nuclear Information System (INIS)

    May, F.; Stuchlik, O.; Kremer, H.

    1999-01-01

    The increasing demand in quality, efficiency, energy conservation and the environmental issues drive the operators of high temperature processes to optimize their furnaces. Especially the glass manufacturing industry with their high working temperatures from about 1850 K to more than 1950 K and high air preheating temperatures of above 1480 K will produce high NOx-concentrations in the flue gas if no primary measures are taken. Considering the three different paths for NO-formation it is obvious that increased thermal NO is responsible for higher emissions. The German environmental regulations on air ''TA Luft'' requires a maximum value of 500 mg/mN3 in the flue gas for most of the combustion processes but for glass melting furnaces a temporary regulation of 1200 mg/mN3 and further on to 800 mg/mN3 is valid. Due to economical reasons the level of secondary measures is to be minimized thus the main objective of research is to reduce the NOx-emissions via primary measures. The design of the furnace is very important due to its strong influence on the distribution of velocity and species. That consequently affects the temperature field and the heat transfer to the load and further on the emissions. For the understanding of the processes within these furnaces numerical simulations, which are successfully validated with experiments, can give valuable indications to optimize furnace design for the reduction of NOx-emissions. The glass melting furnace modelled here is a regenerative horseshoe furnace fired with natural gas. Combustion air is preheated within the regenerator onto a level of temperature of 1650 K. (author)

  6. Fuzzy diagnosis of float-glass production furnace

    NARCIS (Netherlands)

    Spaanenburg, L; TerHaseborg, H; Nijhuis, JAG; Reusch, B

    1997-01-01

    The industrial production of high-quality float-glass is usually supervised by the single human expert. It is of interest to formalize his empirical knowledge to support the furnace operator at all times during the day. The paper describes the systematic development of a fuzzy expert with 6 blocks

  7. Gas carburizing end-discharge pusher furnaces for the automatic hardening of single gear components. Gasaufkohlungs-Durchstossanlagen mit automatischer Einzelhaertung von Getriebeteilen

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, D; Washausen, R

    1989-09-01

    Apart from rotary hearth furnaces, end-discharge pusher furnaces are increasingly used for carburizing and hardening single components. These furnaces offer the following advantages: There is no limitation to the depth of case. The furnace zones can be controlled separately permitting carburizing to be optimized. The furnace can be designed to permit hardening of single components or quenching in batches. Process data relating to the components can be stored and called automatically (reproducibility of product quality). Heat treatment can be integrated in production control by process computer even if the furnace is installed separately. Regardless of what type of furnace is used, specific requirements have to be met to ensure reliable automatic discharge of single components. (orig./BWI).

  8. Analogue modeling of arc and backarc deformation in the New Hebrides arc and North Fiji Basin

    NARCIS (Netherlands)

    Schellart, W. P.; Lister, G. S.; Jessell, M. W.

    In most backarc basins, extension is perpendicular to the arc. Thus individual spreading ridges extend approximately parallel to the arc. In the North Fiji Basin, however, several ancient and active spreading ridges strike 70°-90° to the New Hebrides arc. These high-angle spreading ridges relocated

  9. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    Science.gov (United States)

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  10. Physical characteristics of welding arc ignition process

    Science.gov (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  11. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  12. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  13. Effect of furnace type and ceramming heat treatment conditions on the biaxial flexural strength of a canasite glass-ceramic.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M

    2000-07-01

    To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.

  14. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  15. Improving the engineering-and-economical performance of ore-thermal electric furnaces in the smelting of silicomanganese

    Science.gov (United States)

    Kondrashov, V. P.; Pogrebisskiy, M. Ya; Lykov, A. G.; Rabinovich, V. L.; Bulgakov, A. S.

    2018-02-01

    Ways of increase of ore-heating electric furnaces, used for production of silicomanganese, engineering-and-economical performance are analyzed. Questions of data of the electric, thermal and technological modes of the furnace functioning collecting and processing for use in operation of an advanced control system of the furnace providing increase in technical and economic efficiency of technological process and an adaptability to quality of burden stock are considered.

  16. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    Science.gov (United States)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  17. Energy Efficiency Model for Induction Furnace

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  18. Busbar arcs at large fusion magnets: Conductor to feeder tube arcing model experiments with the LONGARC device

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Dmitry, E-mail: dmitry.klimenko@kit.edu; Pasler, Volker

    2014-10-15

    Highlights: •The LONGARC device was successfully implemented for busbar to feeder tubes arcing model experiments. •Arcing at an ITER busbar inside its feeder tube was simulated in scaled model experiments. •The narrower half tubes imply a slight increase of the arc propagation speed in compare to full tube experiments. •All simulated half tubes experiments show severe damage indicating that the ITER inner feeder tube will not withstand a busbar arc. -- Abstract: Electric arcs moving along the power cables (the so-called busbars) of the toroidal field (TF) coils of ITER may reach and penetrate the cryostat wall. Model experiments with the new LONGARC device continue the VACARC (VACuum ARC) experiments that were initiated to investigate the propagation and destruction mechanisms of busbar arcs in small scale [1]. The experiments are intended to support the development and validation of a numerical model. LONGARC overcomes the space limitations inside VACARC and allows also for advanced 1:3 (vs. ITER full scale) model setups. The LONGARC device and first results are presented below.

  19. Thermal cracking of recycled hydrocarbon gas-mixtures for re-pyrolysis: Operational analysis of some industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Gal, T. [MOL PETCHEM Division, Tisza Chemical Works Co. Ltd. (TVK), P.O. Box 20, H-3581 Tiszaujvaros (Hungary); Lakatos, B.G. [Department of Process Engineering, University of Pannonia, P.O. Box 158, H-8200 Veszprem (Hungary)

    2008-02-15

    Thermal decomposition process of recycled hydrocarbon gas-mixtures in industrial furnaces is analyzed by computer simulation. The detailed kinetic and mathematical model developed was validated by using the process control laboratory cracked gas analysis of an industrially operated furnace. The effects of feed compositions and operational conditions are examined to select the favorable operating parameters and to achieve the possibly highest online operation period of the furnace. The effect of deposited coke on the lifetime of radiant coils is examined by a heat-transfer model. The simulation study confirmed that temporal variations of the feedstock composition could be harmonized well with the operating parameters of furnaces with the purpose of achieving maximum effectiveness. (author)

  20. APPRAISAL OF ECONOMICAL EFFICIENCY OF APPLICATION OF FIBROUS LINING IN THERMAL GASPLASMA FURNACES AND FURNACES OF RESISTANCE OF MACHINE-BUILDING PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpolskij

    2011-01-01

    Full Text Available The carried out calculations showed that partial modernization of thermal furnaces of machine building production by means of replacement of chamotte by fibrous fettling is economically reasonable and has rather short period of payback.

  1. Thermal model of the whole element furnace

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1998-01-01

    A detailed thermal analysis was performed to calculate temperatures in the whole element test furnace that is used to conduct drying studies of N-Reactor fuel. The purpose of this analysis was to establish the thermal characteristics of the test system and to provide a basis for post-test analysis

  2. Momentum equation for arc-driven rail guns

    International Nuclear Information System (INIS)

    Batteh, J.H.

    1984-01-01

    In several models of arc-driven rail guns, the rails are assumed to be infinitely high to simplify the calculation of the electromagnetic fields which appear in the momentum equation for the arc. This assumption leads to overestimates of the arc pressures and accelerations by approximately a factor of 2 for typical rail-gun geometries. In this paper, we develop a simple method for modifying the momentum equation to account for the effect of finite-height rails on the performance of the rail gun and the properties of the arc. The modification is based on an integration of the Lorentz force across the arc cross section at each axial location in the arc. Application of this technique suggests that, for typical rail-gun geometries and moderately long arcs, the momentum equation appropriate for infinite-height rails can be retained provided that the magnetic pressure term in the equation is scaled by a factor which depends on the effective inductance of the gun. The analysis also indicates that the magnetic pressure gradient actually changes sign near the arc/projectile boundary because of the magnetic fields associated with the arc current

  3. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...

  4. Easily controlled dye doped phosphorescent OLEDs with evaporation rate in single furnace

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Malek; Janghouri, Mohammad; Mohajerani, Ezeddin, E-mail: e-mohajerani@sbu.ac.ir

    2015-04-15

    Electrical and optical characteristic, surface morphology and energy transfer of Ir(ppy){sub 3}:PtTPP were studied as a function of thermal evaporation rate. We have investigated the effect of various evaporation rates for mixture of dyes using single furnace method. When the deposition rate increased from 0.5 to 5 Ǻ/s, the luminescence efficiency, current density and energy transfer of OLED increased. AFM measurements showed that the surface roughness of the Ir(ppy){sub 3}:PtTPP films decreased with increasing deposition rates. These blends show excellent red emitting guest–host system with easier deposition rate control. - Highlights: • Thermal evaporation rate is used to control the doping by using single furnace. • The advantages of using single furnace are discussed. • It is shown that the evaporation rate also affects the surface roughness.

  5. The behavior of potassium in the blast furnace deduced from isotope tracers

    International Nuclear Information System (INIS)

    Barnes, I; Botha, D.W.S.; Farquharson, D.C.; Gordon, P.T.

    1978-01-01

    Two tracer tests were done with radioactive potassium (42 K) on blast furnace no. 1, Pretoria Works. Some 80% of the injected 42 K was recovered in 2 1/2 days. About 95% of both radioactive and natural potassium reported in the slag. Mean residence times of 18 and 25 hours confirmed the accumulation of potassium in the furnace. In these tests the slag basicity appeared to be an adequate indicator of furnace conditions governing the behaviour of potassium. A quantitative discontinious model with varying volume CSTR's and interflow controlled according to slag basicity - could be made to fit the results of both tests. The total amounts of K 2 O required by the model - 4 and 9 t respectively - were larger than estimates from input/output imbalance, or from mean residence time of the tracer

  6. Research achievement report for fiscal 1998 on the development of high-performance industrial furnaces. Research and development of high-performance industrial furnaces and the like (2); 1998 nendo koseino kogyoro no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu (2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Volume 2 named above contains part of research achievement reports and individual research achievement reports. The aluminum melting furnace working group research achievement report covers aluminum melting furnace operating patterns, concentrated impinging flame mode and dispersed impinging flame mode, and honeycomb and ball structures in heat storing bodies. The tubular heater working group report mentions the application of this facility to oil heating furnaces, studies and investigations for the embodiment of real systems using the tubular heater, and tests conducted in a furnace with plural heating tube lines. The individual research achievement reports elaborate on the development of technologies of heat transfer optimization under unsteady conditions in the steel material heating process, research and development of high-efficiency heat transfer technologies, development of heating furnace geometry optimization technologies, research and development of a high-performance controlled atmosphere heat treatment furnace, development of high-efficiency heat transfer technologies in high-temperature jet flame heating, development of heat uniformity improvement technologies for example for the steel material heating process, construction of optimum combustion control technologies for the regenerative burner furnace, research concerning laser-aided measurement in industrial furnaces, etc. (NEDO)

  7. Automated information system for analysis and prediction of production situations in blast furnace plant

    Science.gov (United States)

    Lavrov, V. V.; Spirin, N. A.

    2016-09-01

    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  8. Aerosol and particle transport in biomass furnaces

    NARCIS (Netherlands)

    Kemenade, van H.P.; Obernberger, G.

    2005-01-01

    The particulate emissions of solid fuel fired furnaces typically exhibit a bimodal distribution: a small peak in the range of 0.1 mm and a larger one above 10 mm. The particles with sizes above 10 mm are formed by a mechanical process like disintegration of the fuel after combustion, or erosion,

  9. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China)

    Science.gov (United States)

    Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang

    2017-10-01

    The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

  10. Nitric-glycolic flowsheet evaluation with the slurry-fed melt rate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-01

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previously to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.

  11. Ergonomics Intervention in Unit Blast Furnace of a Typical Steel Company

    Directory of Open Access Journals (Sweden)

    Majid Mo'tamed-Zadeh

    2013-10-01

    Full Text Available Objective: Musculoskeletal disorders are a major part of occupational diseases in working environments. Prevention of the occurrence of these problems requires the use of ergonomic assessment techniques and intervention to improve working conditions. The purpose of this study was to investigate the prevalence of musculoskeletal disorders in workers in the blast furnace unit and the intervention to reduce the prevalence of these disorders. Materials & Methods: This study conducted on 24 people working in the furnace unit. Medical records of furnace workers were reviewed and Nordic Musculoskeletal Questionnaires (NMQ was completed. Drilling operation and oxygenation task were assessed by using Rapid Entire Body Assessment (REBA and workers were given the necessary training. Work stations of oxygenation for 24 workers were redesign and Drilling operation was mechanized. And employed workers with musculoskeletal disorders were changed. REBA and NMQ were used to reassess the intervention effects. Results: According to medical records and results of NMQ about 37.5 percent of workers had musculoskeletal disorders. REBA final score was 11 and 10 for the drilling and oxygenation tasks respectively. After redesigning the workstation, REBA final score was 5 for the oxygenation task and the drilling operation removed by mechanized. With the amendment procedures of musculoskeletal disorders was reduced 17.5 percent. Conclusion: According to REBA Score, the risk of musculoskeletal disorders was reduced by implementing amendments to the furnace unit and prevalence of musculoskeletal disorders also significantly reduced. Keyword: Ergonomic, MSDs, REBA, NMQ, Steel

  12. Blast furnace top gas and dusts; Masuunin huippukaasu ja poelyt

    Energy Technology Data Exchange (ETDEWEB)

    Lohi, T.K.; Mannila, P.; Karjalahti, T.; Haerkki, J.

    1997-12-31

    This report is related to the `Gas Phase Reactions in a Blast Furnace` project. The aim of the project is to clarify the behaviour of gas phase in a blast furnace with high oil injection rate. The effect of blast furnace operation, iron reduction reactions, the amount of oil injected, alkalis, zinc and sulfur on the formation of top gas and dusts has been examined in this work. In addition, the gas cleaning system, i.e. the dust sack, gas scrubber, venturi scrubbers and an electric filter, of the blast furnaces of Rautaruukki Oy is presented. The composition of the top gas as well as the amount and composition of the dust from the gas cleaners were investigates in the experimental part of the research. The work has been focused on the analysis of carbon, iron, zinc, sulfur and alkalis. In addition to this, possible systematic variations caused by the discharge of hot metal were investigated. The experiments were made at blast furnaces no 1 and 2 of Rautaruukki Raahe Steel. The relationship between dust quantity and composition in the dust sack and the quantity of oil injected was analyzed on the basis of collected data. On the basis of experimental results, hot metal discharge has no effect on the composition or quantity of the top gas and dust. The composition of the dust varied between different gas cleaners. The coarsest and heaviest material remains in the dust sack. The lightest material separates at the electric filter. The main components at every gas cleaner were iron (9.4 - 38.1 %) and carbon (31.5 - 63.7 %). Particles with zinc and sulfur were separated at the venturi scrubbers (Zn = 3.0 % and S = 2.2 %) and the electric filter (Zn = 3.2 % and S = 2.6 %). Particles with alkalis were separated at the end of the gas cleaning process. The amount of sodium at the venturi scrubbers and the electric filter was 1.0 % on average. The average amount of potassium was 0.5 % at the venturi scrubber and 1.4 % at the electric filter 28 refs., 31 figs.

  13. Time and Temperature Test Results for PFP Thermal Stabilization Furnaces

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain

  14. Performance characterization of the SERI High-Flux Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Bingham, C. (Solar Energy Research Inst., Golden, CO (United States)); O' Gallagher, J.; Winston, R.; Sagie, D. (Univ. of Chicago, IL (United States))

    1991-12-01

    This paper describes a unique, new solar furnace at the Solar Energy Research Institute (SERI) that can generate a wide range of flux concentrations to support research in areas including materials processing, high-temperature detoxification and high-flux optics. The furnace is unique in that it uses a flat, tracking heliostat along with a long focal length-to-diameter (f/D) primary concentrator in an off-axis configuration. The experiments are located inside a building completely outside the beam between the heliostat and primary concentrator. The long f/D ratio of the primary concentrator was designed to take advantage of a nonimaging secondary concentrator to significantly increase the flux concentration capabilities of the system. Results are reported for both the single-stage and two-stage configurations. (orig.).

  15. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    Energy Technology Data Exchange (ETDEWEB)

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  16. Design and performance of a skid-mounted portable compartment fire gas furnace and monitoring system

    Directory of Open Access Journals (Sweden)

    Mueller K.

    2013-09-01

    Full Text Available A custom, portable natural gas fire furnace was designed and constructed for use at the University of Notre Dame to experimentally investigate the out-of-plane behavior of full-scale reinforced concrete (RC bearing walls under fire. The unique aspects of this furnace allowed the application of large mechanical loads and non-contact optical response monitoring to be done while subjecting the wall to elevated temperatures. The performance of the experimental furnace, mechanical loading, and response monitoring system is reported using the results from the first two RC wall test specimens.

  17. Changes in Hydrogen Content During Steelmaking

    Directory of Open Access Journals (Sweden)

    Vrbek K.

    2015-04-01

    Full Text Available Štore Steel produces steel grades for spring, forging and engineering industry applications. Steelmaking technology consists of scrap melting in Electric Arc Furnace (EAF, secondary metallurgy in Ladle Furnace (LF and continuous casting of billets (CC. Hydrogen content during steelmaking of various steel grades and steelmaking technologies was measured. Samples of steel melt from EAF, LF and CC were collected and investigated. Sampling from Electric Arc Furnace and Ladle Furnace was carried out using vacuum pin tubes. Regular measurements of hydrogen content in steel melt were made using Hydris device. Hydrogen content results measured in tundish by Hydris device were compared with results from pin tube samples. Based on the measurement results it was established that hydrogen content during steelmaking increases. The highest values were determined in tundish during casting. Factors that influence the hydrogen content in liquid steel the most were steelmaking technology and alloying elements.

  18. Investigations Of A Pulsed Cathodic Vacuum Arc

    Science.gov (United States)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  19. Investigations Of A Pulsed Cathodic Vacuum Arc

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Denniss, P.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed

  20. Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc

    Science.gov (United States)

    Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki

    2018-04-01

    Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.