WorldWideScience

Sample records for arc coal process

  1. Solidification/stabilization of electric arc furnace dust using coal fly ash. Analysis of the stabilization process.

    Science.gov (United States)

    Pereira, C F; Rodríguez-Piñero, M; Vale, J

    2001-03-30

    In this paper, the stabilization of electric arc furnace (EAF) dust containing hazardous metals such as Pb, Cd, Cr or Zn is described. The treatment involves a waste solidification/stabilization (S/S) process, using coal fly ash as the fundamental raw material and main binder. The article also contains a brief review of the most important recent publications related to the use of fly ash as S/S agents. The efficacy of the process has been evaluated mainly through leaching tests on the solidified products and compliance with some imposed leachate limits. The concentration of metals leaching from the S/S products was strongly leachate pH dependent; thus, the final pH of the leachate is the most important variable in reaching the limits and, therefore, in meeting the stabilization goals. In this study, the dependence relationship between the leachate pH and the concentrations of metals in the leachate are analyzed; in some cases, this allows us to estimate the speciation of contaminants in the S/S solids and to understand the mechanism responsible for reduced leachability of heavy metals from solidified wastes.

  2. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  3. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  4. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  5. A Systematic Analysis of Coal Accumulation Process

    Institute of Scientific and Technical Information of China (English)

    CHENG Aiguo

    2008-01-01

    Formation of coal seam and coal-rich zone is an integrated result of a series of factors in coal accumulation process. The coal accumulation system is an architectural aggregation of coal accumulation factors. It can be classified into 4 levels: the global coal accumulation super-system, the coal accumulation domain mega.system, the coal accumulation basin system, and the coal seam or coal seam set sub-system. The coal accumulation process is an open, dynamic, and grey system, and is meanwhile a system with such natures as aggregation, relevance, entirety, purpose-orientated, hierarchy, and environment adaptability. In this paper, we take coal accumulation process as a system to study origin of coal seam and coal-rich zone; and we will discuss a methodology of the systematic analysis of coal accumulation process. As an example, the Ordos coal basin was investigated to elucidate the application of the method of the coal accumulation system analysis.

  6. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  7. Effect of arc on radiation thermometry in welding process

    Institute of Scientific and Technical Information of China (English)

    李亮玉; 王燕; 武宝林

    2002-01-01

    The effect of arc on radiation thermometry is analyzed in a field close to the arc during the welding process, and the ratio of signal to noise and other factors are obtained for a small current arc .The method of the temperature measurement is feasible when the arc current is decreased to a smaller value in the welding process.

  8. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  9. Collection of arc welding process data

    Directory of Open Access Journals (Sweden)

    K. Luksa

    2006-04-01

    Full Text Available Purpose: The aim of the research was to examine the possibility of detecting welding imperfections by recording the instant values of welding parameters. The microprocessor controlled system for real-time collection and display of welding parameters was designed, implemented and tested.Design/methodology/approach: The system records up to 4 digital or analog signals collected from welding process and displays their run on the LCD display. To disturb the welding process artificial disturbances were introduced.Findings: The occurrence of some welding imperfections is followed by changes of the welding parameters. In this case they can be revealed by the analysis of the instant values of the welding parameters.Research limitations/implications: In the paper results of monitoring manual metal arc welding and gas metal arc welding are presented.Practical implications: Monitoring of gas metal arc welding is a good tool for evaluation of the quality of weld. All introduced, artificial disturbances of the welding process destabilize the welding arc and produce changes in the instant values of the welding parameters.Originality/value: The paper presents a modern microprocessor controlled system for real-time collection and display of welding parameters. Results of tests show that simple statistical approach to welding parameters can help in evaluation of weld quality.

  10. GlidArc-assisted processing of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski, A.; Wesolowska, K. (ECP, La Ferte St Aubin (France)), Email: echph@wanadoo.fr

    2009-07-01

    Power generation or chemical applications of biogas can be difficult when CH{sub 4} content is too low and / or in the presence of sulphur compounds. We therefore propose two reformers based on electric discharges (GlidArc) that strike directly either in a poor biogas or in waste CO{sub 2} + H{sub 2}S mixture generated during biogas cleaning. Direct application of GlidArc discharges to the poor biogas enhances its flammability through a partial conversion of CH{sub 4} + CO{sub 2} into hydrogen and carbon monoxide (synthesis gas). Any level of sulphur (and other impurities) is accepted. Roughly 40 % of injected electric power is transferred into upgraded biogas as its additional chemical enthalpy. A few percent of resultant H{sub 2} and CO inside the biogas makes it more flammable, and therefore better to fuel an engine or gas turbine. As a result of biogas purification via amines-washing technologies, one gets concentrated pollutants in CO{sub 2} matrix. Instead of classical neutralisation, we propose H{sub 2}Svalorisation through the SulfArc process converting all H{sub 2}S into additional amounts of synthesis gas, while neutral elemental sulphur is removed from the system. Generated syngas can be injected into the main biogas flow to enhance its flammability. (orig.)

  11. Numerical Study on Arc Plasma Behavior During Arc Commutation Process in Direct Current Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    杨飞; 马瑞光; 吴翊; 孙昊; 纽春萍; 荣命哲

    2012-01-01

    This paper focuses on the numerical investigation of arc plasma behavior during arc commutation process in a medium-voltage direct current circuit breaker (DCCB) contact system. A three-dimensional magneto-hydrodynamic (MHD) model of air arc plasma in the contact system of a DCCB is developed, based on commercial software FLUENT. Coupled electromagnetic and gas dynamic interactions are considered as usual, and a thin layer of nonlinear electrical resistance elements is used to represent the voltage drop of plasma sheath and the formation of new arc root. The distributions of pressure, temperature, gas flow and current density of arc plasma in arc region are calculated. The simulation results indicate that the pressure distribution related to the contact system has a strong effect on the arc commutation process, arising from the change of electrical conductivity in the arc root region. In DCCB contact system, the pressure of arc root region will be concentrated and higher if the space above the moving contact is enclosed, which is not good for arc root commutation. However, when the region is opened, the pressure distribution would be lower and more evenly, which is favorable for the arc root commutation.

  12. Recent Advances in Precombustion Coal Cleaning Processes

    Institute of Scientific and Technical Information of China (English)

    Shiao-HungChiang; DaxinHe

    1994-01-01

    The mineral matter in coal constitutes a major impediment to the direct use of coal in power plants.A concerted effort has been mounted to reduce the ash/sulfur contents in product coal to meet the ever more stringent environmental regulations.In recent years,significant advances have taken place in fine coal cleaning technologies.A review of recent developments in aveanced physical,chemical and biological processes for deep-cleaning of fine coal is presented.

  13. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  14. Investigation on the stepping arc stud welding process

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhang Jianxun; Fu Jifei; Zhang Youquan

    2005-01-01

    Through the investigation on traditional arc stud welding process, a new welding gun and its control system were developed in this paper. The stepping arc stud welding gun was mainly made by a stepping motor as actuating unit and a screw-driven device as moving unit. A control system with a MCS-51 single-chip microcomputer as main control component was used to realize the new stud welding procedure. This new welding process with stepping stud welding gun is named as stepping arc stud welding. In the new welding process, the stud action can be looked as constituted by some micro steps. The setting and adjusting of the stepping arc welding gun behavior parameters are accomplished independently. It is indicated from the results of process tests and bending test that the stepping arc stud welding process is practicable.

  15. Coals and coal requirements for the COREX process

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

    1996-12-31

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  16. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Pang, L.S.K.; Wilson, M.A.; Quezada, R.A. [CSIRO Petroleum, North Ryde (Australia)] [and others

    1995-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  17. Process for selective grinding of coal

    Science.gov (United States)

    Venkatachari, Mukund K.; Benz, August D.; Huettenhain, Horst

    1991-01-01

    A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

  18. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  19. Process for treating moisture laden coal fines

    Science.gov (United States)

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  20. Application of microorganisms in coal cleaning processes

    International Nuclear Information System (INIS)

    A secure energy supply is one of the basic pre-requisites for a sound economic system, sustained standard and quality of life and eventually for the social well-being of each individual. For a progressive country like Pakistan, it is obligatory that all energy options must be pursued vigorously including coal utilization, which given the relatively large resources available, is considered to be one of the major options for the next few hundred years. Bioprocessing of coal in an emerging technology which has started to receive considerable research attention. Recent research activities involving coal cleaning, direct coal conversion, and indirect conversion of coal-derived materials have generated a plethora of facts regarding biochemistry, chemistry, and thermodynamic behavior of coal, in that its bioprocessing is on the verge of becoming and acceptable means to great coals. In this research report, investigations pertaining to the various aspects of coal bio processing, including desulfurization and depyritization are discussed. Bituminous coals varying in total sulfur contents of 3-6% were depyritized more than 90% by mesophilic acidophiles like Thiobacillus ferroxidans and Thiobacillus thio oxidans and thermophilic Sulfolobus brierleyi. The archaebacterium, Sulfolobus brierleyi was found to desulfurize inorganic and organic sulfur components of the coal. Conditions were established under which it can remove more than 30% of the organic sulfur present in the coals. Heterotrophic microorganisms including oxenic and soil isolates were also employed for studying sulfurization. A soil isolate, Oil-2, was found to remove more than 70% dibenzothiophenic sulfur present in an oil-water emulsion (1:20 ratio). Pseudomonas putida and the bacterium oil-2 also remove 60-70% organic sulfur present in the shale-oil. Preliminary results indicate the presence of putatively known Kodama's pathway in the oil-2. The mass balance for sulfate indicated the possibility of the presence

  1. BENCH SCALE DEVELOPMENT OF MEYERS PROCESS FOR COAL DESULFURIZATION

    Science.gov (United States)

    The report gives results of coal desulfurization experiments to determine the feasibility and advantages of combining gravity separation of coal with chemical desulfurization. The investigations led to the definition of the Gravichem Process, a combination physical/chemical coal ...

  2. A method of realizing visualization research on regional prediction of coal and gas outburst based on ArcView%一种基于ArcView实现瓦斯区域预测可视化的方法

    Institute of Scientific and Technical Information of China (English)

    宋金星; 刘玉芳

    2011-01-01

    Using GIS data processing method and ArcView GIS software,this paper applied coal gas parameters combining with gas geology analysis of method to regional prediction of coal and gas outburst based on spatial data management.ArcView software is executed in sequence five operations,including attaining the affect area of gas outburst point and dynamic phenomenon point,differentiating gas weathered zone,according to the gas pressure or gas content on regional prediction and division,the comprehensive analysis,the isoline analysis,achieved coal and gas outburst dangerous regional prediction.By means of which the 4th coal seam in Shaqv mining ares was divided into coal and gas outburst dangerous area and threatened area,and the danger of coal and gas outburst was assessed and predicted.The visualization managements of coal and gas outburst prediction are achieved,then the accuracy and time effectiveness of gas of coal and gas outburst prediction is improved.%应用煤层瓦斯参数结合瓦斯地质分析的区域预测方法,在空间数据管理的基础上,运用GIS数据处理方法,使用ArcView软件依次进行圈定突出点和动力现象点影响范围、划分煤层瓦斯风化带、根据煤层瓦斯压力或瓦斯含量进行区域预测和划分、综合分析、等值线分析5项操作,实现了煤与瓦斯突出危险性的区域预测,并以沙曲矿4号煤层为例划分煤与瓦斯突出危险区和无突出危险区,对其煤与瓦斯突出危险性做出评估,实现了煤与瓦斯突出预测的可视化管理,提高了瓦斯灾害预测的准确性和时效性.

  3. Thermocatalytical processing of coal and shales

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available The article investigates the questions of thermocatalytical conversion of organic mass of coal (OMC, it is shown that in the absence of a catalyst process is carried out by a radical process. Accumulated data on the properties for radicals of different structure and therefore different reaction capacity enables us to understand and interpret the conversion of OMC. Thermal conversion of OMC regarded as a kind of depolymerization, accompanied by decomposition of the functional groups with the formation of radicals, competing for hydrogen atom. Catalyst can change the direction and conditions of the process. Modern catalysts can reduce the process pressure up to 50 atm., with a high degree of coal conversion. We consider examples of simultaneous conversion of coal and shale, shale and masut, shale and tar.

  4. CLASSIFICATION OF PULSE ARC WELDING PROCESSES

    OpenAIRE

    KRAMPIT A.G.; KRAMPIT N.Y.; KRAMPIT M.A.; DMITRIEVA A.V.

    2012-01-01

    Pulse welding processes improve productivity; also they allow welding of thin sheets of metal without penetration. Splashing and expenses for cleaning surfaces from droplets are also reduced. Pulse welding processes have a wholesome effect on seam formation at the expenses of thermal exposure on welding puddle and HAZ.

  5. Collection of arc welding process data

    OpenAIRE

    K. Luksa; Z. Rymarski

    2006-01-01

    Purpose: The aim of the research was to examine the possibility of detecting welding imperfections by recording the instant values of welding parameters. The microprocessor controlled system for real-time collection and display of welding parameters was designed, implemented and tested.Design/methodology/approach: The system records up to 4 digital or analog signals collected from welding process and displays their run on the LCD display. To disturb the welding process artificial disturbances...

  6. Characteristic parameters of the coal briquetting process

    International Nuclear Information System (INIS)

    The complete knowledge about the energetic sources in our country - Republic of Macedonia, point to the fact that coals are the most attractive and highly productive, still keeping the leadership position. However, the process of lignite exploitation causes their degradation and formation of large amount of fine fractions. The industrial valorization of these fractions is the most actual problem that could be solved only through production of made-up enriched fuels of wide spectrum of application. Thus, briquetting formation, with or without use of binds, is a process of mechanical or combined modification of coal fine fractions. At the same time, this is a possible procedure of solid fuels enrichment. Lignite from the Macedonian coal deposits 'Suvodol', 'Priskupshtina' and 'Brik-Berovo' is analyzed, in order to examine the possibilities of its briquetting. The results show that the 'Suvodol' lignite satisfy the quality requirements given with the MKS B H1.031 standard as well as the 'Brik-Berovo' lignite

  7. Processing parameters for Cu nanopowders prepared by anodic arc plasma

    Institute of Scientific and Technical Information of China (English)

    WEI Zhi-qiang; XIA Tian-dong; MA Jun; FENG Wang-jun; DAI Jian-feng; WANG Qing; YAN Peng-xun

    2007-01-01

    Copper nanopowders were successfully prepared by anodic arc discharging plasma method with home-made experimental apparatus. The effects of various processing parameters on the particle size of Cu nanopowders were investigated in the process, and the optimum processing parameters were obtained. In addition, the morphology, crystal structure, particle size distribution of the nanopowders were characterized via X-ray diffraction(XRD), transmission electron microscopy(TEM) and the corresponding selected area electron diffraction(SAED). The experimental results show that the crystal structure of the samples is the same fcc structure as that of the bulk materials. The processing parameters play a major role in controlling the particle size. The particle size increases with the increase of the arc current or gas pressure.

  8. Electromagnetic processes in the laboratory of superpower electric arc furnaces

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.

    2014-12-01

    The electromagnetic processes in the laboratory of three-phase arc furnaces is simulated with allowance for the spatial energy release in electrodes and a charge. Main laws are established for the electric currents and the thermal energy released in the charge during the passage of conduction currents and heating due to the effects of proximity of the melted well walls and the electrodes. The magnetic field distribution over the furnace radius is found.

  9. Comparison between open phase fault of arc suppression coil and single phase to earth fault in coal mine distribution network

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bo; WANG Chong-lin

    2008-01-01

    When, in a coal mine distribution network whose neutral point is grounded by an arc suppression coil (ASC), a fault occurs in the ASC, compensation cannot be properly realized. Furthermore, it can damage the safe and reliable run of the network.We first introduce a three-phase five-column arc suppression coil (TPFCASC) and discuss its autotracking compensation theory.Then we compare the single phase to ground fault of the coal mine distribution network with an open phase fault at the TPFCASC using the Thévenin theory, the symmetrical-component method and the complex sequence network respectively. The results show that, in both types of faults, zero-sequence voltage of the network will appear and the maximum magnitude of this zero-sequence voltage is different in both faults. Based on this situation, a protection for the open phase fault at the TPFCASC should be estab-lished.

  10. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.; Linehan, J.C.; Robins, W.H. (Battelle Pacific Northwest Lab., Richland, WA (United States))

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL's contract.

  11. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    NIU Chunping; DING Juwen; YANG Fei; DONG Delong; RONG Mingzhe; XU Dan

    2016-01-01

    In this paper,a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB).The distributions of pressure,temperature,gas flow and current density of the arc plasma in the arc region are calculated,and the factors influencing the commutation process are analyzed according to the calculated results.Based on the airflow in the arc chamber,the causes of arc commutation asynchrony and the back commutation are investigated.It indicates that a reasonable contact space design is crucial to a successful arc commutation process.To verify the simulation results,the influence of contact space on arc voltage and arc commutation is tested.This research can provide methods and references to the optimization of ACB design.

  12. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing

  13. Geology Arc Export Layer From Coal Bearing Geology of the Gulf Coast Coal Region (gulf_geol_dd.e00)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a polygon vector coverage of coal bearing geologic units that occur in states which comprise the Gulf Coast Coal Assessment Region as defined by the...

  14. Upgrading low-rank coals using the liquids from coal (LFC) process

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.; Hoften, S.A. van

    1993-12-31

    Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

  15. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  16. High-Btu coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-01-01

    This evaluation provides estimates of performance and cost data for advanced technology, high-Btu, coal gasification facilities. The six processes discussed reflect the current state-of-the-art development. Because no large commercial gasification plants have yet been built in the United States, the information presented here is based only on pilot-plant experience. Performance characteristics that were investigated include unit efficiencies, product output, and pollution aspects. Total installed plant costs and operating costs are tabulated for the various processes. The information supplied here will assist in selecting energy conversion units for an Integrated Community Energy System (ICES).

  17. Survey and evaluation of current and potential coal beneficiation processes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.N.; Peterson, G. R.

    1979-03-01

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

  18. Effects of process parameters on arc shape and penetration in twin-wire indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Shun-shan ZHANG; Mei-qing CAO; Dong-ting WU; Zeng-da ZOU

    2009-01-01

    In this study, the effects of variable parameters on arc shape and depth of penetration in twin-wire indirect arc gas shielded welding were investigated. The variation of arc shape caused by changes of the parameters was recorded by a high-speed camera,and the depths of penetration of specimen were measured after bead welding by an optical microscope. Experiments indicated that proper parameters give birth to a concentrated and compressed welcimg arc, which Would increase the depth of penetration as the incensement of the arc foice Several pnncipal parameters including toe distance ot twin wires intersecting point to base metal,the included angle,and the content of shielding gas were determined. The arc turned more concentrated and the depth of penetration increased obviously as the welding current increased,the arc turned brighter while unobvlous change of penetration occurred as the arc voltage increased,and the deepest penetration was obtained when the welding speed was 10.5 mm/s..

  19. Robustness studies on coal gasification process variables

    Directory of Open Access Journals (Sweden)

    RLJ Coetzer

    2004-12-01

    Full Text Available Optimisation of the Sasol-Lurgi gasification process was carried out by utilising the method of Factorial Experimental Design on the process variables of interest from a specifically equipped full-scale test gasifier. The process variables that govern gasification are not always fully controllable during normal operation. This paper discusses the application of statistical robustness studies as a method for determining the most efficient combination of process variables that might be hard-to-control during normal operation. Response surface models were developed in the process variables for each of the performance variables. It will be shown how statistical robustness studies provided the optimal conditions for sustainable gasifier operability and throughput. In particular, the optimum operability region is significantly expanded towards higher oxygen loads by changing and controlling the particle size distribution of the coal.

  20. Coal liquefaction process research quarterly report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

    1980-03-01

    This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

  1. Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device

    International Nuclear Information System (INIS)

    This paper focuses on the numerical investigation of low-voltage arc plasma behaviour with the contact opening process included. A flexible experimental setup with a rotating contact is designed to support this study. Based on the magnetohydrodynamic arc model, the elongation and the commutation behaviour of the arc plasma during the contact rotation progress are simulated. Under the given conditions of the external magnetic field and the contact rotating velocity, the arc motion is described in detail by the temperature distribution. The stagnation together with the following rapid jump of two arc roots is observed by both calculation and experiment. The rapid rise in the arc voltage is mainly caused by the increasing difference between the two arc roots displacement in the moving direction, and the jump instant of the arc root on the moving contact is according to the moment of the maximal voltage value

  2. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  3. High resolution processing of 3D seismic data for thin coal seam in Guqiao coal mine

    Science.gov (United States)

    Li, Qiaoling; Peng, Suping; Zou, Guangui

    2015-04-01

    Accurate identification of small faults for coal seams is very important for coal-field exploration, which can greatly improve mining efficiency and safety. However, coal seams in China are mostly thin layers, ranging from 2-5 m. Moreover, the shallow coal seam with strong reflection forms a shield underneath thin coal seam which is only about 40 m deeper. This causes great difficulty in seismic processing and interpretation. The primary concern is to obtain high-resolution seismic image of underneath thin coal seam for mining safety. In this paper, field data is carefully analyzed and fit-for-purpose solutions are adopted in order to improve the quality of reprocessed data and resolution of target coal seam. Identification of small faults has been enhanced significantly.

  4. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF)

  5. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  6. New progress in the processing and efficient utilization of coal

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuemin; Liu Jiongtian; Wei Xianyong; Luo Zhenfu; Chen Qingru; Song Shulei

    2011-01-01

    Coal accounts for about 70% of the primary energy sources in China.The environmental pollution and resources waste involved with coal processing and utilization are serious.It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge.Based on our long-term basic research and technology development,the progress in beneficiation,cleaning,and transformation of coal,which includes dense phase fluidized bed dry beneficiation,deep screening of wet fine coal,micro-bubble flotation column separation,molecular coal chemistry,and transformation and separation of coal and its derivatives into value-added chemicals under mild conditions,is discussed.

  7. Optimization of Gas Metal Arc Welding Process Parameters

    Science.gov (United States)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  8. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Institute of Scientific and Technical Information of China (English)

    VeronicaA.B.Almeida; AnaSofiaC.M.D'Oliveira

    2004-01-01

    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  9. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Institute of Scientific and Technical Information of China (English)

    Ver(o)nica A. B. Almeida; Ana Sofia C. M. D'Oliveira

    2004-01-01

    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  10. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  11. Clean Processing and Utilization of Coal Energy

    Institute of Scientific and Technical Information of China (English)

    陈如清; 王海峰

    2006-01-01

    The dominant status of coal on the energy production and consumption structure of China will not be changed in the middle period of this century. To realize highly efficient utilization of coal, low pollution and low cost are great and impendent tasks. These difficult problems can be almost resolved through establishing large-scale pithead power stations using two-stage highly efficient dry coal-cleaning system before coal burning, which is a highly efficient, clean and economical strategy considering the current energy and environmental status of China. All these will be discussed in detail in this paper.

  12. Analysis of hybrid Nd:Yag laser-MAG arc welding processes.

    OpenAIRE

    Le Guen, Emilie; Fabbro, Rémy; CARIN, Muriel; Coste, Frédéric; LE MASSON, Philippe

    2011-01-01

    In the hybrid laser-arc welding process, a laser beam and an electric arc are coupled in order to combine the advantages of both processes: high welding speed, low thermal load and high depth penetration thanks to the laser; less demanding on joint preparation/fit-up, typical of arc welding. So the hybrid laser-MIG/MAG (Metal Inert or Active Gas) arc welding has very interesting properties: the improvement of productivity results in higher welding speeds, thicker welded materials, joint fit-u...

  13. Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system

    Science.gov (United States)

    Picard, Michel; Schneider, Jean-Luc; Boudon, Georges

    2006-12-01

    Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.

  14. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P.; Hamilton, Choo Y.

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  15. Flotation process diagnostics and modelling by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ofori, P; O' Brien, G.; Firth, B.; Jenkins, B. [CSIRO Energy Technology, Brisbane, Qld. (Australia)

    2006-05-15

    In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have different hydrophobicities and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. The information on grain size, density and composition is being used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices. A number of approaches may be taken to flotation modelling such as the probability approach and the kinetic model approach or a combination of the two. In the work reported here, a simple probability approach has been taken, which will be further refined in due course. The use of grain data to map the responses of different types of coal grains through various fine coal cleaning processes provided a more advanced diagnostic capability for fine coal cleaning circuits. This enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

  16. Approximate entropy--a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding

    Institute of Scientific and Technical Information of China (English)

    Cao Biao; Xiang Yuan-Peng; Lü Xiao-Qing; Zeng Min; Huang Shi-Sheng

    2008-01-01

    Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.

  17. Workplace exposure to nanoparticles from gas metal arc welding process

    International Nuclear Information System (INIS)

    Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace

  18. Numerical modeling of some nonlinear processes in electric arc furnace operation

    Science.gov (United States)

    Ghiormez, Loredana; Prostean, Octavian; Panoiu, Manuela; Panoiu, Caius

    2013-10-01

    This paper presents a study regarding the experimental validation of a mathematical model used to simulate the electric arc behavior, taking into consideration a technological phase of the electric arc furnace process. In order to do this, the mathematical model of the electric arc was implemented in Simulink software. In this paper were presented results obtained in the meltdown stage of the charging material. This model can be useful from the point of view of power quality analysis and electric arc control. Results obtained by simulation were compared with measured data.

  19. The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker

    Science.gov (United States)

    Niu, Chunping; Ding, Juwen; Yang, Fei; Dong, Delong; Rong, Mingzhe; Xu, Dan

    2016-05-01

    In this paper, a 3D magneto-hydrodynamic (MHD) arc simulation model is applied to analyze the arc motion during current interruption in a certain air circuit breaker (ACB). The distributions of pressure, temperature, gas flow and current density of the arc plasma in the arc region are calculated, and the factors influencing the commutation process are analyzed according to the calculated results. Based on the airflow in the arc chamber, the causes of arc commutation asynchrony and the back commutation are investigated. It indicates that a reasonable contact space design is crucial to a successful arc commutation process. To verify the simulation results, the influence of contact space on arc voltage and arc commutation is tested. This research can provide methods and references to the optimization of ACB design. supported by National Key Basic Research Program of China (973 Program) (Nos. 2015CB251002, 6132620303) and National Natural Science Foundation of China (Nos. 51221005, 51377128, 51577144), and Science and Technology Project Through Grid State Corporation (No. SGSNKYOOKJJS1501564)

  20. Supercritical Fluid Reactions for Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  1. One-knob self-optimizing fuzzy control of CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    俞建荣; 蒋力培

    2002-01-01

    A new one-knob self-optimizing fuzzy control system of CO2 arc welding is established based on the synthetic performance evaluation of droplet transfer process. It includes two kinds of self-optimizing fuzzy controllers: the arc voltage controller and the current waveform controller. The fuzzy control principle and the key points of the control patterns are presented. Through on-line detecting, computing of characteristic parameters and one-knob self-optimizing adjusting, the characteristic parameters and welding variables can be adjusted to suitable ranges under the control of the arc voltage controller. Meanwhile the current waveform controller is active in the rear-time stage of the short-circuiting and the instant of re-triggering arc. The experiment results show that the control and its algorithm can improve the synthetic performance of arc welding process apparently.

  2. Laser guided and stabilized gas metal arc welding processes (LGS-GMA)

    Science.gov (United States)

    Hermsdorf, Jörg; Barroi, Alexander; Kaierle, Stefan; Overmeyer, Ludger

    2013-05-01

    The demands of the industry are cheap and fast production of highly sophisticated parts without compromises in product quality. To realize this requirement, we have developed a laser guided and stabilized gas metal arc process (LGS-GMA welding). The new welding process is based on a gas metal arc process using low power laser radiation for stabilization. The laser stabilization of gas metal arcs welding is applied to joint welding and cladding. With only 400 W laser power and a focal spot of 1.6 mm the laser radiation is mainly interacting with the arc plasma in order to guide and stabilize it. In joint welding up to 100% increase in welding speed is possible, at equal penetration depth. The guidance effect also enables the process to weld in challenging situations like different sheet thicknesses. Used for cladding, the enhanced process stability allows low penetration depth with dilutions of only 3%. Coatings with up to 63 HRC were achieved.

  3. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  4. Numerical Simulation of the Eddy Current Effects on the Arc Splitting Process

    Institute of Scientific and Technical Information of China (English)

    杨飞; 荣命哲; 吴翊; 孙昊; 马瑞光; 纽春萍

    2012-01-01

    This paper focuses on a numerical simulation of the arc plasma behavior in the arc splitting process, considering the eddy currents in the electrodes and the splitter plate. Based on three-dimensional (3D) magneto-hydrodynamic (MHD) theory, a thin layer of nonlinear electrical resistance elements is used in the model to represent the voltage drop of plasma sheath and the formation of new arc root in order to include the arc splitting process in the simulation. In the arcing process, eddy currents in metal parts are generated by a time-varying magnetic field. The arc model is calculated with the time-varying magnetic field term, so that the eddy current effects can be considered. The effect of nonlinear permeability of a ferromagnetic material is also involved in the calculation. Using the simulation results for the temperature, velocity and current density distribution, the arc splitting process is analyzed in detail. The calculated results are compared with the simulation neglecting eddy currents.

  5. Analysis of chemical coal cleaning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  6. Coal damage mechanism in the developing process of coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    JIN Hong-wei; HU Qian-ting; LIANG Yun-pei

    2009-01-01

    Based on the damage analysis of elliptical aperture, the mechanism of coal dam-age in the developing process of coal and gas outburst was researched. The results show that the damage to coal by gas is mainly caused by the concentrated tensile stress appearing near the endpoint of the pores. Fractures in coal, gas pressure, ground stress and the tensile strength of the coal matrix are the major controlling factors of this kind of damage. When the ground stress releases abruptly and the gas pressure is high, tensile failure will occur around the endpoint of the small pores due to gas pressure, and the coal may be broken up like pow-der; this is called pulverization. Otherwise, when the gas pressure is low, the tensile stress can only occur around the endpoint of the large pores and fractures due to gas pressure, the frac-tures in coal extend and link together, the fracture extension direction is statistically perpen-dicular to the direction of the minor principal stress. This kind of damage is shown as the strati-fied spall around the outburst hole.

  7. Use of audible sound for on-line monitoring of gas metal arc welding process

    Directory of Open Access Journals (Sweden)

    Prezelj, J.

    2008-04-01

    Full Text Available In this paper sound generated during the gas-metal arc welding process was studded. Experimental analyses of the acoustic signals have shown that there are two main noise-generating mechanisms, first having impulse form is arc extinction and arc ignition; the second is the arc itself acting as an ionization sound source. The sound signal is used for assessing and monitoring of the welding process, and for prediction of welding process stability and quality. A new algorithm based on the measured welding current was established for the calculation of emitted sound during the welding process. The comparisons have shown that the calculated values are in good agreement with the measured values.

  8. Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-12-31

    With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

  9. Experimental study of coal topping process in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.G.; Lu, X.S.; Yao, J.X.; Lin, W.G.; Cui, L.J. [Chinese Academy of Science, Beijing (China). Inst. of Processing Engineering

    2005-02-02

    Experiments were carried out in a downer reactor integrated in a circulating fluidized bed combustor to examine the performance of the coal topping process. The effects of reaction temperature and coal particle size on the product distribution and their compositions were determined. The experimental results show that an increase in temperature will increase the yields of gas and liquid product, and the liquid yield decreases with the increase in coal particle size. The experiments exhibit an optimal condition for the liquid product. When the pyrolysis temperature is 660{sup o}C and coal particle size is less than 0.2-8 mm, the yield of light tar (hexane-soluble fraction) reaches 7.5 wt % (dry coal basis). The light tar is composed of acid groups (57.1 wt %), crude gasoline (aliphatics) (12.9 wt %), aromatics (21.4 wt %), and polar and basic groups (8.6 wt %). The experiments indicate that the coal topping process is a promising technology for partially converting coal into liquid fuels and fine chemicals.

  10. Influence of flux-cored wire composition on arc combustion process stability in wet underwater welding

    OpenAIRE

    Kakhovskyi, Mykola Yu.; Maksimov, Serhii Yu.

    2015-01-01

    The components-stabilizers, which increase the stability of the arc combustion process have been investigated. The aim of research was to introduce the components-stabilizers in the welding wire to determine the component which provides the most optimal stability process of the arc combustion. The welding wire characteristics were experimentally studied. They are the quantity of short circuits, the deviations of current and the voltage and nature of the electrode metal transfer. The most stab...

  11. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  12. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  13. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    Energy Technology Data Exchange (ETDEWEB)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  14. Complex technology of vacuum-arc processing of structural material surface

    Science.gov (United States)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  15. Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints

    Institute of Scientific and Technical Information of China (English)

    A K Lakshminarayanan; K Shanmugam; V Balasubramanian

    2009-01-01

    The effect of autogeneous arc welding processes on tensile and impact properties of ferritic stainless steel conformed to AISI 409M grade is studied.Rolled plates of 4 mm thickness have been used as the base material for preparing single pass butt welded jointa.Tensile and impact properties,microhardness,microstructure,and fracture surface morphology of continuous current gas tungsten arc welding (CCGTAW),pulsed current gas tungsten arc welding (PCGTAW),and plasma arc welding (PAW) joints are evaluated and the results are compared.It is found that the PAW joints of ferritic stainless steel show superior tensile and impact properties when compared with CCGTAW and PCGTAW joints,and this is mainly due to lower heat input,finer fusion zone grain diameter,and higher fusion zone hardness.

  16. High-speed imaging investigation of transient phenomena impacting plasma arc cutting process optimization

    International Nuclear Information System (INIS)

    In this work, we report on the investigation of selected transient phenomena taking place in plasma arc cutting (PAC) that are relevant for process optimization. High-speed imaging diagnostics is exploited for the characterization of different technological solutions in order to provide deeper insights into torch and process design. In particular, the pilot arc start-up phase is analysed for a 250 A automatic dual-gas torch equipped with electrodes with different shapes of the initial insert recess, revealing that there is no influence of the recess depth on the time for the stabilization of the pilot arc attachment on the cathode insert. The influence of different insert materials, including Ag–Hf and Cu–Zr binary alloys, on erosion during the shut-down phase is investigated at 120 A and reduced emission of material and faster shut-down is found for alloy inserts compared with standard Hf inserts. The start-up and shut-down transients are also investigated during transferred arc operation using a modified nozzle that comprises a viewing port on one side of the nozzle, and pulsing arc behaviour inside the plasma chamber that is correlated with cathode-nozzle voltage oscillations at a frequency of 7.7 kHz is found. Finally, results regarding the influence of different plasma gas diffusers on the arc stability during the cutting initiation phase in a 100 A mono-gas manual torch are reported. (paper)

  17. Investigation of processing properties of polyamide filled with hard coal

    Directory of Open Access Journals (Sweden)

    J. Stabik

    2009-04-01

    Full Text Available Purpose: The aim of this article is to present the influence of contents and kind of hard coal used as powder filler on rheological properties (viscosity of polyamide 6.Design/methodology/approach: Preparation of composite of polyamide 6 with hard coal was carried out on laboratory twin screw extruder. Extruded composite was granulated and in this form was used for MFR analysis. Taking into account MFR results viscosity was calculated. The influence of filler content on viscosity was next searched.Findings: Results of research showed that addition of powdered hard coal to polyamide 6 matrix cause pronounced decrease of MFR index. In this way significant increase of viscous flow was observed. It is often observed phenomenon for polymer composite filled with powder materials.Research limitations/implications: It is necessary to carry out the research with surface modified hard coal with coupling agents which provide better adhesion of polymer matrix to filler.Practical implications: Hard coal used as a filler in composites makes it possible to gain new and cheaper polymeric materials with many possible applications.Originality/value: Investigation described in article shows possibility of hard coal application as innovatory filler of polymers. The influence of this filler on rheological properties indicate that processing of these new materials may be accompanied with some problems.

  18. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  19. Design Fuels Corporation (DFC)-Apache, Inc. coal reclamation system for the plant of the future for processing clean coal

    International Nuclear Information System (INIS)

    The mechanical washing processing and drying portion of the DFC process offers an efficient method for cleaning of pyritic sulfur bearing compounds which represents 25% sulfur reduction from original run-of-mine coal quality. This reduction can be augmented with the use of calcium and sodium based compounds to reduce the sulfur in many coals to produce compliance quality coal. The use of mechanical/physical methods for the removal of the pyritic material found in coal is used by the DFC process as a first step to the final application of a complete coal refuse clean-up technology based on site specific conditions of the parent coal. The paper discusses the use of the DFC process to remediate slurry ponds and tailings piles and to improve coal cleaning by gravity separation methods, flotation, hydrocyclones and spiral separators, dense media separation, water only cyclones, and oil/solvent agglomeration. A typical DFC Project is the Rosa Coal Reclamation Project which involves the development of a bituminous coal waste impoundment reclamation and washery system. The plant would be located adjacent to a coal fines pond or tailings pond and refuse pile or gob pile at a former coal strip mine in Oneonta, Alabama. Design Fuels would provide a development program by which coal waste at the Rosa Mine could be reclaimed, cleaned and sold profitably. This feedstock could be furnished from recovered coal for direct use in blast furnaces, or as feedstock for coke ovens at 250,000 tons per year at an attractive price on a 10-year contract basis. The site has an old coal washing facility on the property that will be dismantled. Some equipment salvage has been considered; and removal of the existing plant would be the responsibility of Design Fuels. The paper briefly discusses the market potential of the process

  20. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

    2009-12-31

    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  1. Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

    Science.gov (United States)

    Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.

    2012-02-01

    The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.

  2. Evaluation model for process stability of short-circuiting arc welding

    Institute of Scientific and Technical Information of China (English)

    Cai Yan; Yang Hailan; Hua Xueming; Wu Yixiong

    2008-01-01

    stability of welding process is the prerequisite and assurance for ideal joint. The structure of stability model and its optimization are the key to on-line evaluation technology of arc welding. Characteristic parameters are extracted from the single transfer period while variation coefficients of the characteristic parameters are concerned for whole welding process of continuous drop transfer. Based on the characteristic parameters and their variation coefficients, stability model of short-circuit arc welding process is established by partial-least-square regression (PLSR) that can overcome multicollinearity of input parameters. The experiment results show that this model can meet the requirement of accuracy.

  3. Simulation of droplet transfer process and current waveform control of CO2 arc welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simulation system used in the arc welding short-circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical experiments. The simulation system can be used to simulate and test the current waveform control parameters with welding variables. By this simulation system, the influence regularities of the current waveform control parameters in the CO2 arc welding droplet short-circuit transfer process can be got. Moreover, the basic mode of real-time current waveform control can be also established by the simulation testing.

  4. Steam gasification of coal, project prototype plant nuclear process heat

    International Nuclear Information System (INIS)

    This report describes the tasks, which Bergbau-Forschung has carried out in the field of steam gasification of coal in cooperation with partners and contractors during the reference phase of the project. On the basis of the status achieved to date it can be stated, that the mode of operation of the gas-generator developed including the direct feeding of caking high volatile coal is technically feasible. Moreover through-put can be improved by 65% at minimum by using catalysts. On the whole industrial application of steam gasification - WKV - using nuclear process heat stays attractive compared with other gasification processes. Not only coal is conserved but also the costs of the gas manufactured are favourable. As confirmed by recent economic calculations these are 20 to 25% lower. (orig.)

  5. The Effect of Process Parameters on Twin Wire Arc Spray Pattern Shape

    Directory of Open Access Journals (Sweden)

    Allison Lynne Horner

    2015-04-01

    Full Text Available A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was most affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Coating deposition rate was most affected by arc current.

  6. Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust.

    Science.gov (United States)

    Xu, Fu-Qian; Huang, Shao-Bin; Liao, Wei-Tung; Wang, Lin-Chi; Chang, Yu-Cheng; Chang-Chien, Guo-Ping

    2014-01-01

    Besides the Waelz process, the submerged arc furnace (SAF) process has also been extensively used to retain metals from ashes and scraps in the metallurgical industry. However, very little is known about the formation and depletion of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from this thermal process. In this study, an electric arc furnace (EAF) dust treatment plant adopting the SAF process was investigated and compared to the plant adopting the Waelz process. The predominant contributor of PCDD/F I-TEQ input was the EAF dusts, accounting for 98.4% of the total. The PCDD/F contents in the generated fly ashes of the SAF were extremely low, as almost all the organic compounds for PCDD/F formation were decomposed by the high operating temperatures (1500-1700 °C) of the SAF. Therefore, the PCDD/F emission factor of the SAF process (46.9 μg I-TEQ/tonne-EAF dust) was significantly lower than that of the Waelz process (840-1120 μg I-TEQ/tonne-EAF dust). Its PCDD/F output/input ratios (0.23 and 0.50 based on mass and toxicity) were also lower than those of the Waelz process plant (0.62 and 1.19). Therefore, the SAF process is superior to the Waelz process in reducing the potential of PCDD/F formation.

  7. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  8. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  9. Numerical analysis on coal-breaking process under high pressure water jet

    Energy Technology Data Exchange (ETDEWEB)

    Jin-hua Chen; Yun-pei Liang; Guo-qiang Cheng [Shandong University of Science and Technology, Qingdao (China)

    2009-09-15

    Based on the theory of nonlinear dynamic finite element, a control equation of coal and water jet was acquired in the coal breaking process under a water jet. A calculation model of coal breaking under a water jet was established; the fluid-structure coupling of water jet and coal was implemented by penalty function and convection calculation. The dynamic process of coal breaking under a water jet was simulated and analyzed by combining the united fracture criteria of the maximum tensile strain and the maximal shear strain in the two cases of damage to coal and damage failure to coal. 5 refs., 5 figs., 2 tabs.

  10. Numerical analysis on coal-breaking process under high pressure water jet

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-hua; LIANG Yun-pei; CHENG Guo-qiang

    2009-01-01

    Based on the theory of nonlinear dynamic finite element, the control equation of coal and water jet was acquired in the coal breaking process under a water jet. The calcu-lation model of coal breaking under a water jet was established; the fluid-structure cou-pling of water jet and coal was implemented by penalty function and convection calculation. The dynamic process of coal breaking under a water jet was simulated and analyzed by combining the united fracture criteria of the maximum tensile strain and the maximal shear strain in the two cases of damage to coal and damage failure to coal.

  11. Application studies of RFID technology in the process of coal logistics transport

    Science.gov (United States)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  12. Plasma Processes : Arc root dynamics in high power plasma torches – Evidence of chaotic behavior

    Indian Academy of Sciences (India)

    A K Das

    2000-11-01

    Although plasma torches have been commercially available for about 50 years, areas such as plasma gun design, process efficiency, reproducibility, plasma stability, torch lives etc. have remained mostly unattended. Recent torch developments have been focusing on the basic understanding of the plasma column and its dynamics inside the plasma torch, the interaction of plasma jet and the powders, the interaction of the plasma jet with surroundings and the impingement of the jet on the substrate. Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper reviews the current state of understanding of these fluctuations as well as the dynamics of arc root movement in plasma torches. The work done at the author’s laboratory on studying the fluctuations in arc voltage, arc current, acoustic emissions and optical emissions are also presented. These fluctuations are observed to be chaotic and interrelated. Real time monitoring and controlling the arc instabilities through chaos characterization parameters can greatly contribute to the understanding of electrode erosion as well as improvement of plasma torch lifetime.

  13. Studies of steered arc motion and macroparticle production in PVD processing

    Energy Technology Data Exchange (ETDEWEB)

    Craven, A.L

    2000-03-01

    During the past decade the production industry has constantly strived to improve performance and cut costs, this has been aided by the development of high performance tools. The advancement of these tools has been accomplished by the application of hard wearing, low friction, coatings. A key process in the production of such coatings is Physical Vapour Deposition (PVD). Interest in such thin films has led to much research effort, both academic and industrial, being devoted to the area. In order that these advancements in technology continue, research into the fundamental aspects of PVD is required. This thesis describes research and experimental studies which have been performed to study the effect of 'steering' an electric arc on various aspects of its behaviour. 'Steering' of the arc is achieved by applying external magnetic fields which allow the guidance of the path of the arc. Work by earlier authors has aimed to control the arc more fully. The research presented here is based of a novel electromagnetic three coil steering array of cylindrical geometry. With such coils it is possible to vary the field profiles to a greater degree than has been previously achieved, permitting a greater range of steering arrangements/fields to be applied. The research presented is divided into two distinct areas: Firstly a number of experiments were performed to assess the effectiveness of the new steering coils on the motion of the arc. A personal computer was used here along with new arc motion monitoring electronics. This enabled the simultaneous measurement of the orbital transit times and also the degree of travel perpendicular to the steered direction of motion of the arc, as it traversed the surface of the cathode. Such information was then used to produce values for standard deviation of the arc from its steered path, velocity of the arc and a diffusion constant related to the motion of the are. Such values then allowed evaluation of the stochastic

  14. Arc Export File Of Permitted and Mined Out Coal Areas of the Gulf Coast Coal-Bearing (gulfmines.e00)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains permitted coal mines and mined out areas in the Gulf Coast coal-bearing geology prior to 1998. The data included in the coverage are mine...

  15. Elaboration of metallic and composite fillings by plasma transferred arc. Process analysis and tribological study

    International Nuclear Information System (INIS)

    The experimental part of this research thesis addresses the parametric study of two surface filling processes (by plasma transferred arc, and by plasma arc projection followed by a coating remelting by electron beam), the elaboration by plasma transferred arc and the metallurgical characterization of fillings of nickel base alloys and composite materials made of tungsten carbides dispersed in a nickel matrix, and the characterization of fretting wear of the so-elaborated fillings in aqueous environment. The results show that the plasma transferred arc filling technique allows coating quality and microstructure to be controlled by adjusting the mass energy of the transferred arc. Besides, this technique results in a very good control of nickel alloy coatings. The various studied composites show that it is better to use a matrix with very few alloying elements or pre-coated carbides in order to avoid any cracking phenomenon. The content of dispersed carbides must not be greater than 60 per cent in weight. The best wear behaviour is obtained with polyhedral tungsten carbides dispersed within a low alloyed nickel matrix

  16. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    Institute of Scientific and Technical Information of China (English)

    S. YUGESWARAN; V. SELVARAJAN; L. LUSVARGHI; A. I. Y. TOK; D. SIVA RAMA KRISHNA

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3 : 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the com-posites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes.

  17. Process for the extraction of thick coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Barsi, K.; Salamon, H.; Solymos, A.; Takacs, J.; Toth, I.

    1983-08-23

    There is disclosed a process for the extraction of thick coal seams by means of which coal seams not extractable in one bank or slice and/or located at peripheral areas may also be extracted under improved mine safety conditions and with high productivity. According to the invention the thick coal seam is if required, divided horizontally and/or vertically into extraction blocks which are bounded and separated by stowing pillars arranged according to the direction of advance of the extraction. The cavity of the pillars is advanced at a level higher than the level of the roof of the extraction space, after which the cavity of the pillar is back-filled. Then the block is extracted by means of block caving in a manner known per se. In a preferred embodiment of the invention incombustible material that agglomerates under the effect of the static pressure of the rock is used for stowing. The utilization of the process for extraction according to the invention results in a considerable increase of intensity. Whether the extraction is in one or more slices and whether using individual self-advancing supports, using track-bound or independent loading/conveyor equipment, an economic extraction of coal seams is achieved.

  18. Experimental and theoretical studies of recombination ionization and diffusion processes in an arc plasma

    International Nuclear Information System (INIS)

    We have experimentally determined the changes of the electron density and excited atom density in a wall-stabilized arc burning in argon at atmospheric pressure; we have deduced the changes of electronic temperature, and the difference between electronic temperature and gas temperature. Whe have found these parameters by means of two wavelengths laser interferometry and spectroscopy measurements. By means of collisional radiatif model, we have found ionization and recombination coefficients. Knowing electronic density profiles, we have determined the different plasma parameters and analysed the electronic energy losses using our model. Whe have studied the electronic loss processes during the early stages of arc extinction

  19. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  20. Process Parameter Optimization of the Pulsed Current Argon Tungsten Arc Welding of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    M.Balasubramanian; V.Jayabalan; V.Balasubramanian

    2008-01-01

    The selection of process parameters for obtaining optimal tensile properties in the pulsed current gas tungsten arc welding is presented. The tensile properties include ultimate tensile strength, yield strength and notch tensile strength. All these characteristics are considered together in the selection of process parameters by modified taguchi method to analyse the effect of each welding process parameter on tensile properties. Experimental results are furnished to illustrate the approach.

  1. Analysing the Effect of Parameters in Multipass Submerged arc Welding Process

    OpenAIRE

    Deepti Jaiswal

    2013-01-01

    Submerged arc welding (SAW) is a high quality, high deposition rate welding process commonly used to join plates of higher thickness in load bearing components. This process provide a purer and cleaner high volume weldment that has a relatively a higher material deposition rate compared to the traditional welding welding methods. The effect of controllable process variables on the heat input and the microhardness of weld metal and heat affected zone (HAZ) for bead on joint welding were calcul...

  2. Thermo-mechanical analysis of wire and arc additive manufacturing process

    OpenAIRE

    Ding, J

    2012-01-01

    Conventional manufacturing processes often require a large amount of machining and cannot satisfy the continuously increasing requirements of a sustainable, low cost, and environmentally friendly modern industry. Thus, Additive Manufacturing (AM) has become an important industrial process for the manufacture of custom-made metal workpieces. Among the different AM processes, Wire and Arc Additive Manufacture (WAAM) has the ability to manufacture large, low volume metal work-p...

  3. ARC Code TI: Block-GP: Scalable Gaussian Process Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — Block GP is a Gaussian Process regression framework for multimodal data, that can be an order of magnitude more scalable than existing state-of-the-art nonlinear...

  4. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  5. Brine disposal process for Morcinek coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J.H. [Aquatech Services, Inc., Citrus Heights, CA (United States)

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  6. Comparative cost estimates of five coal utilization processes

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Detailed capital and operating cost estimates were prepared for the generation of electric power in a new, net 500 MW (e), coal-burning facility by five alternative processes: conventional boiler with no control of SO/sub 2/ emissions, atmospheric fluidized bed steam generator (AFB), conventional boiler equipped with a limestone FGD system, conventional boiler equipped with magnesia FGD system, and coal beneficiation followed by a conventional boiler quipped with limestone FGD for part of the flue gas stream. For a coal containing 3.5% sulfur, meeting SO/sub 2/ emission limits of 1.2 pounds per million Btu fired was most economical with the limestone FGD system. This result was unchanged for a coal containing 5% sulfur; however, for 2% sulfur, limestone FGD and AFB were competitive methods of controlling SO/sub 2/ emissions. Brief consideration of 90% reduction of SO/sub 2/ emissions led to the choice of limestone FGD as the most economical method. Byproduct credit for the sulfuric acid produced in regenerating the magnesia could make that system competitive with the limestone FGD system, depending upon local markets. The cost of sludge fixation and disposal would make limestone FGD noneconomic in many situations, if these steps are necessary.

  7. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  8. Synthetically quantitative evaluation function of characteristic parameters on CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The statistical probability and their variation regularity of the measurable characteristic parameters in the CO2 arc welding droplet short-circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short-circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short-circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short-circuiting transfer process of CO2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short-circuiting transfer process with a variety of welding variables.

  9. Coal conversion processes and their materials requirements. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Voorde, M. van de; Betteridge, W.

    1984-01-01

    The coal conversion processes combustion, gasification and liquefaction are discussed with respect to current industrial developments and material problems in industrial plants due to fouling, corrosion and erosion. The available materials are discussed by means of high temperature corrosion, erosion, ductibility, creep, fatigue and physical properties. Ceramics and refractories which are particularly used as thermal insulation are also discussed by means of corrosion and erosion and mechanical properties.

  10. Study on the formation mechanism of shock wave in process of coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-ling; MIAO Fa-tian; LIANG Yun-pei

    2009-01-01

    According to the research results of motion parameters of coal-gas flow, ana-lyzed the formation mechanism of shock waves at different states of coal-gas flow in the process of coal and gas outburst, and briefly described the two possible cases of outburst shock wave formation and their formation conditions in the process of coal and gas out-burst, and then pointed out that a high degree of under-expanded coal-gas flow was the main reason for the formation of a highly destructive shock wave. The research results improved the shock wave theory in coal and gas outburst.

  11. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the

  12. Development of Process Maps in Two-Wire Tandem Submerged Arc Welding Process of HSLA Steel

    Science.gov (United States)

    Kiran, D. V.; Alam, S. A.; De, A.

    2013-04-01

    Appropriate selection of welding conditions to guarantee requisite weld joint mechanical properties is ever difficult because of their complex interactions. An approach is presented here to identify suitable welding conditions in typical two-wire tandem submerged arc welding (SAW-T) that involves many welding variables. First, an objective function is defined, which depicts the squared error between the mechanical properties of weld joint and of base material. A set of artificial neural network (ANN)-based models are developed next to estimate the weld joint properties as function of welding conditions using experimentally measured results. The neural network model-based predictions are used next to create a set of process map contours that depict the minimum achievable values of the objective function and the corresponding welding conditions. In typical SAW-T of HSLA steel, welding speed from 9.0 to 11.5 mm/s, leading wire current from 530 to 580 A, and trailing wire negative current from 680 to 910 A are found to be the most optimal.

  13. Study on chaos in short circuit gas metal arc welding process

    Institute of Scientific and Technical Information of China (English)

    Lü Xiaoqing; Cao Biao; Zeng Min; Wang Zhenmin; Huang Shisheng

    2007-01-01

    Based on the chaos theory, an idea is put forward to analyze the short circuit Gas Metal Arc Welding (GMAW-S) process. The theory of phase space reconstruction and related algorithms such as mutual information and so on, are applied to analyze the chaos of the GMAW-S process. The largest Lyapunov exponents of some current time series are calculated, and the results indicate that chaos exists in the GMAW-S process. The research of the chaos in the GMAW-S process can be help to get new knowledge of the process.

  14. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  15. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD)

    International Nuclear Information System (INIS)

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  16. Coal

    International Nuclear Information System (INIS)

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  17. Proximate and ultimate analysis of coal and products from coal liquefaction and pyrolysis processes

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.; Iacchelli, A.; Selucky, M.L.

    1982-01-01

    Procedures are given for analysis of coal, coal liquefaction products, and coal pyrolysis products. Proximate analysis (determination of moisture, ash, volatile matter and fixed carbon) using the Fisher Coal Analyzer Model 490, and ultimate analysis (determination of C, H, N, S, O, and occasionally Cl) using the Perkin-Elmer Elemental Analyzer are described. Determination of calorific value of coal using the oxygen bomb calorimeter is also detailed, as well as procedures for trace element analysis and for removal of halogenated solvents from gravity separation fractions of coal. 4 refs., 1 tab.

  18. Obtaining and processing Daymet data using Python and ArcGIS

    Science.gov (United States)

    Bohms, Stefanie

    2013-01-01

    This set of scripts was developed to automate the process of downloading and mosaicking daily Daymet data to a user defined extent using ArcGIS and Python programming language. The three steps are downloading the needed Daymet tiles for the study area extent, converting the netcdf file to a tif raster format, and mosaicking those rasters to one file. The set of scripts is intended for all levels of experience with Python programming language and requires no scripting by the user.

  19. Experimental simulation and numerical analysis of coal spontaneous combustion process at low temperature

    Institute of Scientific and Technical Information of China (English)

    文虎; 徐精彩; 葛岭梅

    2001-01-01

    The characteristic of coal spontaneous, combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large-scale experimental unit loading coal ! 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self-ignite at low temperature stage, and on the basis of hydromechanics and heat-transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self-ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self-ignite. It offers a quantitative theoretic criterion for coal self-ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal,spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self-ignite.

  20. Experimental simulation and numerical analysis of coal spontaneous combustion process at low temperature*

    Institute of Scientific and Technical Information of China (English)

    WEN Hu; XU Jing-cai; GE Ling-mei

    2001-01-01

    The characteristic of coal spontaneous combustion includes oxidative p roperty and exothermic capacity. It can really simulate the process of coal spon taneous combustion to use the large-scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determi ned through experiment of coal self-ignite at low temperature stage, and on the basis of hydromechanics and heat-transfer theory, some parameters can be calcul at ed at different low temperature stage, such as, oxygen consumption rate, heat li beration intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self-ignite and forecasting coal spontaneous combustion . According to coal exothermic capability and its thermal storage surroundings, t hermal equilibrium is applied to deduce the computational method of limit parame ter of coal self-ignite. It offers a quantitative theoretic criterion for coal s elf-ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spont aneous combustion is quantitatively analyzed, such as, spontaneous combustion pe riod of coal, critical temperature, oxygen consumption rate, heat liberation int ensity, and limit parameter of coal self-ignite.

  1. An analysis of the dynamic resistance and the instantaneous energy of the CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenmin; Xue Jiaxiang; Dong Fei; Yang Guohua; Lu Xiaoming

    2007-01-01

    A self-developed welding dynamic arc wavelet analyzer was adopted to analyze and assess the welding process of two CO2 arc welding machines. The experimental results indicate that the instantaneous energy can reflect the influence of the welding current and voltage on dynamic arc characteristic synthetically. Through calculating and analyzing the instantaneous energy, the energy during arc ignition and short circuit in CO2 welding process can be confirmed rationally, thus the foundation for the accurate design and control of the welding current and voltage can be provided. By reducing the ripple disturbance of the dynamic resistance, avoiding peak current and voltage waveform,and enhancing the transition frequency of short circuit suitably, the stability of the welding arc and the weld appearance can be improved.

  2. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  3. Characterization of Process Conditions in Industrial Stainless Steelmaking Electric Arc Furnace Using Optical Emission Spectrum Measurements

    Science.gov (United States)

    Aula, Matti; Leppänen, Ahti; Roininen, Juha; Heikkinen, Eetu-Pekka; Vallo, Kimmo; Fabritius, Timo; Huttula, Marko

    2014-06-01

    Emission spectroscopy is a potential method for gaining information on electric arc furnace (EAF) process conditions. Previous studies published in literature on industrial EAF emission spectra have focused on a smaller scales and DC arc furnaces. In this study emission spectrum measurements were conducted for 140t AC stainless steelmaking EAF at Outokumpu Stainless Oy, Tornio Works, Finland. Four basic types of emission spectra were obtained during the EAF process cycle. The first one is obscured by scrap steel, the second is dominated by thermal radiation of the slag, the third is dominated by alkali peaks and sodium D-lines and the fourth is characterized by multiple atomic emission peaks. The atomic emission peaks were identified by comparing them to the NIST database for atomic emission lines and previous laboratory measurements on EAF slag emission spectra. The comparison shows that the optic emission of an arc is dominated by slag components. Plasma conditions were analyzed by deriving plasma temperature from optical emissions of Ca I lines. The analysis suggests that accurate information on plasma conditions can be gained from outer plasma having a plasma temperature below 7000 K (6727 °C).

  4. Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model

    Institute of Scientific and Technical Information of China (English)

    CUI Xinglei; ZHOU Xue; ZHAI Guofu; PENG Xiyuan

    2016-01-01

    Evaporation erosion of the contacts is one of the fundamental failure mechanisms for relays.In this paper,the evaporation erosion characteristics are investigated for the copper contact pair breaking a resistive direct current (dc) 30 V/10 A circuit in the air.Molten pool simulation of thc contacts is coupled with the gas dynamics to cMculate the evaporation rate.A simplified arc model is constructed to obtain the contact voltage and current variations with time for the prediction of the current density and the heat flux distributions flowing from the arc into the contacts.The evaporation rate and mass variations with time during the breaking process are presented.Experiments are carried out to verify the simulation results.

  5. "Learning Arc": The process of resolving concerns through student-student discourse

    Science.gov (United States)

    Stewart, Sean; Angarita, Maria Paula; Durden, Jared; Sawtelle, Vashti

    2013-01-01

    In reformed classrooms that utilize student-student interactions, a student's concerns can often be resolved through student-student discourse with minimal to no direct input from the instructor. To gain insight into such interactions, we used video data from a Florida International University reformed introductory physics classroom. We micro-analyzed a segment in which the discourse between a group of students leads to the resolution of a concern. In this study, we identified a pattern of discourse which we are calling a "Learning Arc." In this paper, we present the "Learning Arc" as a 3-stage process by which students use discourse as a means to achieve a consensus that resolves a concern.

  6. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  7. Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)

    Science.gov (United States)

    Hartz-Behrend, K.; Schaup, J.; Zierhut, J.; Schein, J.

    2016-01-01

    One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.

  8. Sensitivity problems of control system of coal preparation processes

    Directory of Open Access Journals (Sweden)

    Kaula Roman

    2016-01-01

    Full Text Available Control of technological processes of coal preparation takes place in the presence of wide disturbances. An important problem is the choice of the controller which is robust for a variety of disturbances. No less important problem in the control process is the tuning of the controller parameters. In the paper the analysis of influence of changes in object model parameters on the course of the controlled value was carried out. For the controller settings, calculated according to model parameters research was carried out on object with other values of parameters. In the studies a sensitivity analysis method was used. The sensitivity analysis for the three methods of tuning PI controller for control systems of coal preparation processes characterized by dynamic properties of the inertial element with time delay was presented. Considerations were performed at various parameters of the object on the basis of the response of the control system for a constant value of the set point. The assessment of the considered tuning methods based on selected indices of control quality was realized.

  9. Study on the mechanism of coal liquefaction reaction and a new process concept

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-dong; LI Wen-bo; WANG Yong; GUO Zhi; LI Ke-jian

    2008-01-01

    The coal hydrogenation reaction process is simply considered as three steps. In the first step, the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating. In this step, some weaker bonds of the coal structure units are ruptured to form free radicals. The radicals are stabi-lized by hydrogen atoms from donor solvent and/or H2. In the second step, chain reaction occurs quickly. In the process of chain reaction, the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes. In the third step, asphaltenes are hydrogenated form more liquids and some gases. In coal liquefaction, the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals, and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield. A new concept of coal liquefaction process named as China direct coal lique-faction (CDCL) process is presented based on the mechanism study of coal liquefaction.

  10. Calculate land damage degree in the coal mining subsidence area by Python,ArcGIS script language%用 ArcGIS 的 Python 脚本计算采煤沉陷区土地损毁程度

    Institute of Scientific and Technical Information of China (English)

    朱宝才; 王文龙; 梁文俊

    2016-01-01

    For calculating land damage degree in the coal mining subsidence area,the Python that attached to ArcGIS,a script language compilation software,were used to predict the land damage degree area of every land use type.Land damaged degree result characterized as the SHP file format can be outputted directly and then the predicted figures of land damaged can be obtained,through the way that the subsidence contour,additional tilting contour and horizontal deformation contour files with DWG format and the land use file with SHP format were inputted altogether in the Py-thon software.The satisfactory result was obtained from SanYuanJiXiang Coal Mine.Therefore,the software can be applied directly to calculate land damaged degree in other coal mining subsidence area.It is promoted easily and conven-ient for the application of basic technician.%为计算井工煤矿采煤沉陷区土地损毁程度,利用 ArcGIS 的 Python 脚本语言编制软件,实现通过输入相同坐标系的下沉等值线、附加倾斜等值线及水平变形等值线3个 DWG 格式文件和土地利用现状 SHP 格式文件,直接输出土地损毁程度的 SHP 格式文件,从而获得沉陷区土地损毁程度预测图。通过对三元吉祥煤矿的实例分析,该软件亦可直接用于其他井工煤矿开采沉陷区土地损毁程度计算,且方便基层技术人员使用和推广。

  11. Discussion the Development of Image-Process Tools Based on ArcGIS%浅谈基于ArcGIS的影像处理工具集开发

    Institute of Scientific and Technical Information of China (English)

    周津津; 陈少锋; 刘晓娟

    2014-01-01

    随着数字省、数字城市的建设,对现势性好、分辨率高的正射影像需求呈现多样化。本文主要介绍Python脚本在ArcGIS软件影像处理中的应用,实现高效处理影像的同时,确保影像质量满足项目建设的要求。%With the construction of digital province and digital city , the demand for and current situation good and high -resolution digital orthophoto map presents various .This paper mainly introduced the application of Python script to image processing in ArcGIS , which could process images efficiently and make sure the quality of images satisfy the project construction requirement .

  12. Measurement of three-dimensional welding torch orientation for manual arc welding process

    International Nuclear Information System (INIS)

    Torch orientation plays an important role in welding quality control for a manual arc welding process. The detection of the torch orientation can facilitate weld monitoring, welder training, and may also open a door to many other interesting and useful applications. Yet, little research has been done in measuring the torch orientation in the manual arc welding process. This paper introduces a torch orientation measurement scheme that can be conveniently incorporated both in a real manual arc welding process and in a welder training system. The proposed measurement employs a miniature wireless inertial measurement unit (WIMU), which includes a tri-axial accelerometer and a tri-axial gyroscope. A quaternion-based unscented Kalman filter (UKF) has been designed to estimate the three-dimensional (3D) torch orientation, in which the quaternion associated with the orientation is included in the state vector, as is the angular rate measured by the gyroscope. In addition, an auto-nulling procedure has been developed where the WIMU drift and measurement noise are captured and adaptively compensated in-line to ensure the measurement accuracy. The performance of the proposed scheme has been evaluated by simulations and welding experiments with different types of processes and fit-ups. The simulation results show that the inclination (x- and y-axes) of the torch has been accurately measured with a root-mean-square error (RMSE) in the order of 0.3°. The major error obtained in the heading (z-axis) measurement has been reduced significantly by the proposed auto-nulling procedure. Statistics from welding experiments indicate the proposed scheme is able to provide a complete 3D orientation measurement with the RMSE in the order of 3°. (paper)

  13. Swelling and shrinkage behavior of raw and processed coals during pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhixin Fu; Zhancheng Guo; Zhangfu Yuan; Zhi Wang [Chinese Academy of Sciences, Beijing (China). Laboratory of Multiphase Reactions, Institute of Process Engineering

    2007-02-15

    Direct observation of transient swelling and shrinkage behavior of raw coals and processed coals was conducted by using a digital camera with a long focus lens, and quantitative description of swelling and shrinkage was resulted from subsequent image processing. The results showed that the raw and processed coals in pyrolysis behaved differently. The shrinkage of the processed coals was quite different, the maximum volumetric shrinkage ratio at 1000{sup o}C as in the range of 32-38% with swelling ratios less than 5%, and the volumetric swelling ratio increased and the shrinkage ratio decreased with the increase of coal sample density. The maximum volumetric swelling ratio of the raw coals was more prominent than those of the processed coals. The raw coal A{sub 2} showed a maximum swelling ratio of 20-85% and the raw coal B{sub 2} showed a maximum swelling ratio of 25-45%. The volumetric swelling ratios decreased and the shrinkage increased with the decrease of the sample size. It is considered that the different pyrolysis behaviors were mainly due to the variation in their macroscopic structures. However, the similar swelling and shrinkage curves of coal samples were observed for the same raw or processed coals. In addition, the effect of volatile matter on the volumetric shrinkage ratios would be weakened if the raw coal was crushed into powder and then pressed into processed coal samples. Scanning electron microscope analysis showed that the structure of coke after pyrolysis was also different. 19 refs., 9 figs., 2 tabs.

  14. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  15. Biodesulfurization of Malaysian coals using mixed microbial cultures in batch and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Najafpour, G.D.; Azizan, A.; Harun, A. [Universiti Sains Malaysia, Darul Ridzuan (Malaysia). School of Chemical Engineering

    2001-07-01

    The determination of chemolithotrophic microorganisms capable to grown on coal with high sulfur content, made it possible to develop mixed culture processes for coal desulfurization. The ability of the microbial cultures to metabolize different sulfur compounds originated from coal in the range of 3-5% sulfur, were demonstrated in batch experimental stage. Biodesulfurization of coal as suspended solid coal particles were carried out in a broth media for coal content of 1-5% solid. Four species of microbial culture were grown on coal and acclimated for optimal growth. The coal samples obtained from Malaysian coal mine with 2-5% of sulfur content were used in batch and continuous cultures experiments. The microbial cultures were used to reduce pyrite sulfur, inorganic sulfur content of coal. The culture isolated from pharmaceutical wastewater shown that more than 80% of sulfur content of coal was reduced. The growth of microorganisms on coal shown that maximum solid content of 5% was tolerable maximum grow on 3% coal shown high cell density. Nutrient media with acidic PH value of 3-4 was required for growth of Thiobacillus thiooxidans and Thiobacillus fierrooxidans. The growth was limited at PH = 2 but at PH 3-4 growth was stimulated. Phosphate buffer was used with coal solution to monitor the PH. The PH was initially adjusted but was not controlled during the period of incubation. An optimum PH for Thiobacillus species with maximum desulfuriation was 2.65. High coal content about 10% was shown that bacterial was unable to grow. The cell dry weight, cell optical density and sulfur content of coal samples using TGA and elemental analyzer were conducted for all experiments. 10 refs., 11 figs.

  16. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    Directory of Open Access Journals (Sweden)

    Wierzchowski Krzysztof

    2016-01-01

    Full Text Available Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse and medium coal size fractions for clean coal from heavy media vessels, amounts 68.9 μg/kg, and most of the results lay below the mean value, while for rejects it amounts 95.5 μg/kg. It means that it is for around 25 μg/kg greater than in the clean coal. The arithmetic mean mercury content in raw coal smalls amounts around 118 mg/kg. The cleaning of smalls in jigs results in clean coal and steam coal blends characterized by mean mercury content 96.8 μg/kg and rejects with mean mercury content 184.5 μg/kg.

  17. Carbon Nanostructures Production by AC Arc Discharge Plasma Process at Atmospheric Pressure

    OpenAIRE

    Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

    2011-01-01

    Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out at a voltage of 380 V, with a current of 6 A–20 A. The products were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and Raman spectra. The results sho...

  18. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    Science.gov (United States)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  19. Research on the evolvement of morphology of coking coal during the coking process.

    Science.gov (United States)

    Zhong, Xiangyun; Wu, Shiyong; Liu, Yang; Zhao, Zhenning; Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Xi, Bai

    2013-12-01

    The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

  20. Study of methanol-to-gasoline process for production of gasoline from coal

    Institute of Scientific and Technical Information of China (English)

    HE Tian-cai; CHENG Xiao-han; LI Ling; MENG Guo-ying

    2009-01-01

    The methanol-to-gasoline (MTG) process is an efficient way to produce liquid fuel.The academic basis of the coal-to-liquid process is described and two different syn-thesis processes are focused on: Fixed MTG process and Fluid Bed MTG process.Then,the superiority of the Fluid Bed MTG Process is pointed out relative to the Fixed MTG Process.In addition,the development of the coal-to-liquid technique in China is briefly summarized.

  1. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  2. Tectonic block rotation, arc curvature, and back-arc rifting: Insights into these processes in the Mediterranean and the western Pacific

    International Nuclear Information System (INIS)

    The fastest modern-day tectonic block rotations on Earth (up to 9 degrees/Myr) occur in the forearcs of convergent plate margins where a transition from collision of a bathymetric high to subduction of normal oceanic crust occurs. GPS techniques have enabled accurate documentation of the kinematics of these rotations, leading us to develop a conceptual model where the change from collision to subduction exerts a torque on microplates within the plate boundary zone, causing them to spin rapidly about an axis at the collision point. We have investigated geophysical and geological data from several active plate boundaries (from the western Pacific and Mediterranean regions) to document a compelling spatial and temporal relationship between the transition from collision to subduction, plate boundary curvature, and rapid tectonic block rotations. In some cases, these microplate rotations can initiate back-arc rifting. We also present numerical modelling results supporting our conceptual model for block rotations at collision/subduction transition. Our results suggest that the rate of microplate rotation depends on the incoming indentor velocity, and can be greatly enhanced by: (1) extensional stresses acting at the subduction interface (possibly due to slab roll back), and (2) a low-viscosity back-arc. Where viscosity of the back-arc is low, forearc microplate rotation dominates. In contrast, tectonic escape of strike-slip fault-bounded microplates is predicted in areas where the back-arc viscosity is high. Previous workers have suggested that the kinematics of the Anatolian block and back-arc rifting in the Aegean are influenced by some combination of forces associated with Arabia/Eurasia collision, and/or subduction (including slab rollback) at the Hellenic trench. Based on previous work from active western Pacific arcs, we propose that the collision of two separate indentors (Arabian promontory in the east, Apulian platform in the west), is a fundamental tectonic

  3. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  4. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  5. Effect of heat input on dilution and heat affected zone in submerged arc welding process

    Indian Academy of Sciences (India)

    Hari Om; Sunil Pandey

    2013-12-01

    Submerged arc welding (SAW) is a fusion joining process, known for its high deposition capabilities. This process is useful in joining thick section components used in various industries. Besides joining, SAW can also be used for surfacing applications. Heat Affected Zone (HAZ) produced within the base metal as a result of tremendous heat of arc is of big concern as it affects the performance of welded/surfaced structure in service due to metallurgical changes in the affected region. This work was carried out to investigate the effect of polarity and other SAW parameters on HAZ size and dilution and to establish their correlations. Influence of heat input on dilution and heat affected zone was then carried out. Four levels of heat input were used to study their effect on % dilution and HAZ area at both the electrode positive and electrode negative polarities. Proper management of heat input in welding is important, because power sources can be used more efficiently if one knows how the same heat input can be applied to get the better results. Empirical models have been developed using statistical technique.

  6. Computerized processing of Kosovo Coal Basin on a study scale. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Jovicic, R.

    1983-01-01

    This paper is the first of a series dealing with the computerized processing of the Kosovo Coal Basin. A study programme was initiated requiring the collection and processing of material to form as comprehensive a data base as possible. The project did not include a detailed analysis of the information, which dealt with coal, overburden, hydrological conditions, land costs, compension for subsidence, communications, etc.

  7. The Origin of Voluminous Dacite (vs. Andesite) at Mature, Thick Continental Arcs: A Reflection of Processes in the Deep Crust

    Science.gov (United States)

    Lange, R. A.

    2013-12-01

    An outstanding question is why some continental arc segments are characterized by voluminous eruptions of dacite (65-70 wt% SiO2), whereas others erupt more andesite (58-64 wt% SiO2) than any other magma type. An example of the former is the Altiplano-Puna region of the central Andean arc, which has erupted a predominance of dacite over all magma types 10-1 Ma (de Silva, 1989). In contrast, a 200-km arc segment of the Mexican volcanic arc (Michoacán-Guanajuato arc segment) has erupted ~75% andesite, ~26% basaltic andesite and 20%) of hornblende-rich (~40%) gabbronorite in the deep crust, driven by mantle-derived basalt intrusions at depths of 30-40 km. The absence of any dacite or rhyolite along this arc segment indicates that interstitial liquid from crystal-rich andesites never segregated to form eruptible magma. Thus, little upper-crust differentiation occurred along this arc segment. On the basis of phase-equilibrium experiments in the literature (e.g., Sisson et al., 2005), it is proposed that rhyolite and dacite did form during partial melting of the lower arc crust, but at melt fractions too low (≤15%) to permit efficient transport to the upper crust (Vigneresse and Tikoff, 1999). It is further proposed that the reason why dacite is so abundant at mature thick continental arcs (e.g., Altiplano-Puno complex) may be because mantle-derived basalts are primarily emplaced at similar depths (~30-40 km) in continental arc crustal columns. If so, in the central Andean arc, a depth of 30-40 km is within the middle dioritic crust (Graeber and Asch, 1999). Partial melts of hornblende diorite (vs. hornblende gabbro) are predicted to be dacitic (vs. andesitic) at melt fractions of 20-25%, which permits transport to the upper crust. It is therefore proposed that it is deep crustal processes that determine whether andesite or dacite is the most voluminous magma type emplaced into the upper crust and erupted at arcs.

  8. Prospects of LTC process of coal and pollutional potentiality of its wastewater

    International Nuclear Information System (INIS)

    Coal is one of the non-renewable energy sources and is available in plenty as a natural reserves in India. There are various technologies to convert coal into different forms of energy to be used for various purposes. Low temperature carbonization (LTC) of coal is one of the economically viable technology which is employed for low grade Indian coals to obtain the products, like domestic coke, tar, oil, etc. Some undesirable chemicals are also generated during LTC process of coal and get discharged into the environment in the form of liquid waste, Waste ammonia liquor (WAL). Such wastes are of environmental concern. Therefore, it is necessary to evaluate critically the prospects of LTC process of coal in Indian scenario, chemistry of different pollutants and pollutional potentiality of the wastewater. (author). 55 refs., 5 figs., 4 tabs

  9. Management of local economic and ecological system of coal processing company

    Science.gov (United States)

    Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.

    2016-10-01

    The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.

  10. Auxiliary particle filter-model predictive control of the vacuum arc remelting process

    Science.gov (United States)

    Lopez, F.; Beaman, J.; Williamson, R.

    2016-07-01

    Solidification control is required for the suppression of segregation defects in vacuum arc remelting of superalloys. In recent years, process controllers for the VAR process have been proposed based on linear models, which are known to be inaccurate in highly-dynamic conditions, e.g. start-up, hot-top and melt rate perturbations. A novel controller is proposed using auxiliary particle filter-model predictive control based on a nonlinear stochastic model. The auxiliary particle filter approximates the probability of the state, which is fed to a model predictive controller that returns an optimal control signal. For simplicity, the estimation and control problems are solved using Sequential Monte Carlo (SMC) methods. The validity of this approach is verified for a 430 mm (17 in) diameter Alloy 718 electrode melted into a 510 mm (20 in) diameter ingot. Simulation shows a more accurate and smoother performance than the one obtained with an earlier version of the controller.

  11. Weldability of Nb steel by the submerged arc process, using national consumables, at high speed

    International Nuclear Information System (INIS)

    A set of procedures was established for welding of Nb micro-alloyed steel by the submerged arc process, using national consumables, in order to simultaneously achieve a more economic welding and better mechanical properties. By a series of experiments involuing seven flux-wire combinations, and three different welding conditions, the properties of the weldments were evalvated by means of mechanical tests (tension, bending and impact). Analysis of results was based on chemical composition and microstructure of the weldments. The influence of the consumables on microstructure and chemical composition was verified by relating the properties with the several flux-wire combinations. The possibility of determining the parameters satisfying the requirements of economic welding with a few tests was verified. The influence of welding parameters on wire consumption, basicity, activity and flux consumption was also determined. Finaly, given the difficulties usually encountered when selecting submerged arc consumables, the possibility was shown of establishing a systematic approach towards that purpose. From all the analyses and observations conclusion was obtained that for some of the flux-wire combinations considered, the proposed objectives were achieved. (Author)

  12. COMPUTER PROCESSING OF MULTISPECTRAL SCANNER DATA OVER COAL STRIP MINES

    Science.gov (United States)

    There is little doubt that remote sensing techniques can be effectively applied to the task of monitoring coal strip mine progress and reclamation work. Aircraft multispectral scanner data acquired over six coal strip mines in the states of Wyoming, Montana, Colorado, and Arizona...

  13. Reserch process geomigration during underground gasification and coal combustion

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2014-12-01

    Full Text Available The chemical composition of subsoil water in the over- and subcoal deposits during underground combustion of brown coal can vary under coals thermal development product and pollution. Analysis of the substances-contaminants migratory in water is one of the main issues of further implementation of technologies UCG and UCC.

  14. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  15. Sulfur Isotopic Characteristics of Coal in China and Sulfur Isotopic Fractionation during Coal—burning Process

    Institute of Scientific and Technical Information of China (English)

    洪业汤; 张鸿斌; 等

    1993-01-01

    The determined results of the sulfur contents and isotopic composition of coal samples from major coal mines in 15 provinces and regions of China show that the coal mined in the north of China is characterized by higher 34S and lower sulfur content, but that in the south of China has lower 34S and higher sulfur content.During the coal-burning process in both indrstrial and daily use of coal as fuel the released sulfur dioxide is always enriched in lighter sulfur isotope relative to the corresponding coal;the particles are always enriched in heavier sulfur isotope.The discussion on the environmental geochemical significance of the above-mentioned results also has been made.

  16. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-07-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

  17. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  18. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  19. Detection of short circuit in pulse gas metal arc welding process

    Directory of Open Access Journals (Sweden)

    P.K.D.V. Yarlagadda

    2007-09-01

    Full Text Available Purpose: The paper discusses several methods of detecting occurrence of short circuit and short circuit severity in pulse gas metal arc welding process (GMAW-P.Design/methodology/approach: Welding experiments with different values of pulsing parameter and simultaneous recording of high speed camera pictures and welding signals (such as current and voltage were used to identify the occurrence of short circuit and its severity in GMAW-P process. The investigation is based on the measurement of welding signals specifically current and voltage signals and their synchronization with high speed camera to investigate the short circuit phenomenon in GMAW-P process.Findings: The results reveal that short circuit can be detected using signal processing techniques and its severity can be predicted by using statistical models and artificial intelligence techniques in GMAW-P process.Research limitations/implications: Several factors are responsible for short circuit occurrence in GMAW-P process. The results show that voltage and current signal carry rich information about the metal transfer and especially short circuit occurrence in GMAW-P process. Hence it’s possible to detect short circuit occurrence in GMAW-P process. Future work should concentrate on development of advance techniques to improve reliability of techniques mentioned in this paper for short circuit detection and prediction in GMAW-P process.Originality/value: For achieving atomization of the welding processes, implementation of real time monitoring of weld quality is essential. Specifically for GMAW-P process which is widely used for light weight metal which is widely gaining popularity in manufacturing industry. However, in case of GMAW-P process hardly any attempt is made to analyse techniques to detect and predict occurrence of short circuit. This paper analyses different techniques that can be employed for real time monitoring and prediction of short circuit and its severity in the

  20. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    CERN Document Server

    Peng, Y C; Yang, Y R; Hsieh, W Y; Hsieh, Y F

    1999-01-01

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules.

  1. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    International Nuclear Information System (INIS)

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules

  2. 基于 Python 的 ArcGIS 地理数据批处理%The Batch Processing of ArcGIS Geographic Data Based on Python

    Institute of Scientific and Technical Information of China (English)

    方圣辉; 张玉贤; 佃袁勇; 毕创; 任赳龙

    2015-01-01

    ArcGIS地理处理工具一般只针对单个数据集执行,而运用Python脚本语言可以实现地理数据的批处理。本文以原始DEM影像插值生成特定空间分辨率的DEM影像为例,给出数据批处理的具体实现过程。%ArcGIS geoprocessing tools are usually used to process single dataset , however , the batch processing of geographic data can be achieved by using Python language .This article represents the specific processes of achieving the batch processing of geographic data , and gives an example of generating DEM images of specific special resolution with original DEM images .

  3. Fractal characteristics of surface crack evolution in the process of gas-containing coal extrusion

    Institute of Scientific and Technical Information of China (English)

    Chen Peng; Wang Enyuan; Ou Jianchun; Li Zhonghui; Wei Mingyao; Li Xuelong

    2013-01-01

    In this paper,simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion.In the experiment,coal surface cracks were observed with a highspeed camera and then the images were processed by sketch.Based on the above description,the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time.The results show that there is a growing parabola treen of crack dimension value in the process of coal extrusion.Accordingly,we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase.On the basis of factal dimension values taken from different parts of coal masses,a fractal dimension of the contour map was drawn.Thus,it is clear that the contour map involves different crack fractal dimension values from different positions.To be specific,where there are complicated force and violent movement In coal mass,there are higher fractal dimension values,i.e.,the further the middle of observation surface is from the exit of coal mass,and the lower the fractal dimension value is.In line with fractal geometry and energy theory of coal and gas outburst,this study presents the relation between fractal dimension and energy in the process of extruding.In conclusion,the evolution of crack fractal dimension value can signify that of energy,which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion.

  4. Evaluation of stress-controlled coal swelling processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jishan; Chen, Zhongwei [Shool of Mechanical Engineering, The University of Western Australia, WA, 6009 (Australia); Elsworth, Derek [Department of Energy and Mineral Engineering, Penn State University, PA 16802-5000 (United States); Miao, Xiexing; Mao, Xianbiao [State Key Laboratory for Geomechanics and Underground Engineering, China University of Mining and Technology (China)

    2010-09-01

    Stress-controlled swelling tests are normally conducted in the laboratory to characterize the evolution of coal permeability under the influence of gas sorption. Typically reductions in permeability are observed from gas-sorption-induced swelling even where effective stresses remain constant. This behavior remains enigmatic as the permeability of the porous coal is determined by the effective stress only. When these observations were interpreted, a matchstick or cubic coal model was assumed. Under this assumption, matrix swelling would not affect coal permeability because of the complete separation between matrix blocks caused by through-going fractures. This is why current coal permeability models have little success in explaining this inconsistency. It is generally believed that the reason for the failure is the inconsistency between the experimental conditions and the model assumptions. However, in this paper, it is considered that the reason may be the internal actions between coal fractures and matrixes have not been taken into consideration. In this study, a model capable of replicating this apparently anomalous behavior is developed. We consider the interactions of the fractured coal mass where cleats do not create a full separation between adjacent matrix blocks but where solid rock bridges are present. We accommodate the role of swelling strains both over contact bridges that hold cleat faces apart but also over the non-contacting span between these bridges. The effects of swelling act competitively over these two components: increasing porosity and permeability due to swelling of the bridging contacts but reducing porosity and permeability due to the swelling of the intervening free-faces. Under these conditions, a new permeability model is formulated. The new model is the key cross link that couples the multiphysics of coal-gas interactions. The formulation and incorporation of this permeability model into the multiphysics simulation of coal

  5. Membrane-integrated oxy-fuel combustion of coal: Process design and simulation

    NARCIS (Netherlands)

    Chen, Wei; Ham, van der A.G.J.; Nijmeijer, A.; Winnubst, A.J.A.

    2015-01-01

    A membrane-integrated oxy-fuel combustion process is designed and simulated in UniSim Design®. The results of the simulation indicate that a net efficiency of 31.8% is obtained for a coal-fired power plant of 182 MWth (assuming only carbon in the coal), including the compression of CO2 to 100 bar. T

  6. Evaluation of the graphite electrode arc melter for processing heterogeneous waste

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Turner, Paul C.; Soelberg, N.R. (Idaho National Engineering Laboratory); Anderson, G.L. (Idaho National Engineering Laboratory)

    1996-01-01

    The U.S. Bureau of Mines (USBM) conducted a series of 4 demonstration melting tests in a 3-phase AC graphite electrode arc furnace at its Albany Research Center (ALRC) thermal treatment facility in Albany, Oregon (now part of the U.S. Department of Energy, DOE). The scope of these tests provides a unique opportunity to evaluate a single melting technology regarding its applicability to the treatment of several different heterogeneous mixed wastes. The current system can continuously process combustible-bearing wastes at feedrates to 682 kg/h (1,500 lb/h), continuously tap slag or glass, and intermittently tap metal products, and includes a close-coupled thermal oxidizer and air pollution control system (APCS). The 4 demonstration melting tests were conducted in cooperation with the American Society of Mechanical Engineers (ASME), the Idaho National Engineering Laboratory (INEL), and the Westinghouse Hanford Company (WHC).

  7. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  8. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  9. A two-stage metal valorisation process from electric arc furnace dust (EAFD

    Directory of Open Access Journals (Sweden)

    H. Issa

    2016-04-01

    Full Text Available This paper demonstrates possibility of separate zinc and lead recovery from coal composite pellets, composed of EAFD with other synergetic iron-bearing wastes and by-products (mill scale, pyrite-cinder, magnetite concentrate, through a two-stage process. The results show that in the first, low temp erature stage performed in electro-resistant furnace, removal of lead is enabled due to presence of chlorides in the system. In the second stage, performed at higher temperatures in Direct Current (DC plasma furnace, valorisation of zinc is conducted. Using this process, several final products were obtained, including a higher purity zinc oxide, which, by its properties, corresponds washed Waelz oxide.

  10. Repair of power generation components by laser and plasma transferred arc processes: procedures and qualification

    International Nuclear Information System (INIS)

    The power generation industry in Australia recognises the need to develop procedure guidelines for metal deposition processes to protect valuable and critical components used in steam power plants. The components are typically used in boilers and regulating valves and can be subjected to a range of types of wear. Although many of the components examined were already deposited with specific alloys in specific areas, they still exhibited a high degree of wear. The project focused on worn components which were deemed to have reached the end of their operating life. The procedure guidelines and selection of materials for the deposition process are expected to provide the options for re-use of the critical components for additional and longer service life compared to the original design. Several metal deposition processes were initially identified as potential repair processes for the refurbishment of various components. Two processes, laser and plasma transferred arc (PTA) deposition, were selected for the study. Laboratory trials were carried out to examine the performance of the coating and then the actual parts were repaired based on the laboratory results. A company specialising in the laser cladding repair of engineering components carried out the repair of a number of power station components, which were subsequently returned to the relevant power stations for service evaluation. The paper discusses the research conducted and presents the procedures developed to assist local power generators in selection of the most appropriate materials and parameters for the repair of worn components.

  11. Investigation of processing properties of polyamide filled with hard coal

    OpenAIRE

    J. Stabik; Ł. Suchoń; M. Rojek; M. Szczepanik

    2009-01-01

    Purpose: The aim of this article is to present the influence of contents and kind of hard coal used as powder filler on rheological properties (viscosity) of polyamide 6.Design/methodology/approach: Preparation of composite of polyamide 6 with hard coal was carried out on laboratory twin screw extruder. Extruded composite was granulated and in this form was used for MFR analysis. Taking into account MFR results viscosity was calculated. The influence of filler content on viscosity was next se...

  12. Energy and Entropy Fluxes in Coal Gasification and Liquefaction Processes

    OpenAIRE

    H. Voigt

    1980-01-01

    In the long-term studies on energy systems performed at IIASA, scenarios that provide for substitutes for fossil oil and gas are considered. In the future coal is expected to contribute to energy supplies to a greatly increasing extent only if it is converted to liquid or gaseous fuels or electricity. Coal conversion systems are rather complex, not only internally but also with respect to their exchanges with the environment; some use auxiliary energy, others yield byproducts. Therefore, the ...

  13. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-28

    This report describes progress on three fronts of the project. First in studies to elucidate optimal growing conditions for the consortia of coal degraders employed indicates that best growth occurs with 0. 2% w/v Shefton T. Secondly in comparing the biodegradative properties of the coal degraders, isolates identified as Mic-1 and Mic-4 were the best performers. And lastly bioreactors studies in batch mode are related.

  14. Digital-image Based Numerical Simulation on Failure Process of High-sulfur Coal

    Directory of Open Access Journals (Sweden)

    Ye Junjian

    2013-01-01

    Full Text Available Crushing of high-sulfur coal was important for physical desulfurization, but there were little research on crushing mechanism. This paper combined digital image processing technology and rock failure process analysis system RFPA2D to simulate the failure process of high-sulfur coal in Pu'an of Guizhou under uniaxial compression, and discussed the influence of horizontal restraint, existence and different geometric distribution of pyrite particle on mechanical performance and failure process of high-sulfur coal. The numerical results indicated that without horizontal restraint the compressive strength of high-sulfur coal was lower and monomial dissociation of pyrite particle was more sufficient than that with horizontal restraint. The compressive strength of coal containing pyrite particle was larger than that of pure coal and there was stress concentration in upper and lower pyrite particle during failure process. When pyrite particle distributed in the middle position of a coal sample, the compressive strength was higher than that of the other three positions, but monomial dissociation of pyrite particle was more sufficient than that of the other three positions, and this was beneficial to the following desulfurization operation. The study had certain reference value for crushing mechanism, crushing process design, selection of breaking equipment and energy saving and consumption reduction.

  15. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  16. Relationship between geometric welding parameters and optical-acoustic emissions from electric arc in GMAW-S process

    Directory of Open Access Journals (Sweden)

    E. Huanca Cayo

    2011-05-01

    Full Text Available Purpose: Show the relationship between geometric characteristics of the weld bead and the optical-acoustic emissions from electric arc during welding in the GMAW-S process.Design/methodology/approach: Bead on plate welding experiments was carried out setting different process parameters. Every welding parameter group was set aiming to reach a high stability level what guarantee a geometrical uniformity in the weld beads. In each experiment was simultaneously acquired arc voltage, welding current, infrared and acoustic emissions; from them were computed parameters as arc power, acoustic peaks rate and infrared radiation rate. It was used a tri-dimensional LASER scanner for to acquire geometrical information from the weld beads surface as width and height of the bead. Depth penetration was measured from sectional cross cutting of weld beads.Findings: Previous analysis showed that the arc emission parameters reach a stationary state with different characteristic for each experiment group which means that there is some correlation level between them. Posterior analysis showed that from infrared parameter is possible to monitoring external weld bead geometry and principally its penetration depth. From acoustic parameter is possible to monitoring principally the external weld bead geometry. Therefore is concluded that there is a close relation between the arc emissions and the weld bead geometry and that them could be used to measuring the welding geometrical parameters.Research limitations/implications: After analysis it was noticed that the infrared sensing has a better performance than acoustic sensing in the depth penetration monitoring. Infrared sensing also sources some information about external geometric parameters that in conjunction with the acoustic sensing is possible to have reliable information about weld bead geometry. This method of sensing geometric parameters could be applied in other welding processes, but is necessary to have

  17. Field study of disposed solid wastes from advanced coal processes

    International Nuclear Information System (INIS)

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells

  18. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  19. Analysing the Effect of Parameters in Multipass Submerged arc Welding Process

    Directory of Open Access Journals (Sweden)

    Deepti Jaiswal

    2013-08-01

    Full Text Available Submerged arc welding (SAW is a high quality, high deposition rate welding process commonly used to join plates of higher thickness in load bearing components. This process provide a purer and cleaner high volume weldment that has a relatively a higher material deposition rate compared to the traditional welding welding methods. The effect of controllable process variables on the heat input and the microhardness of weld metal and heat affected zone (HAZ for bead on joint welding were calculated and analysed using design of experiment software and fractional factorial technique developed for the multipass SAW of boiler and pressure vessel plates. The main purpose of present work is to investigate and correlated the relationship between various parameters and microhardness and microhardness of single “V” butt joint and predicting weld bead qualities before applying to the actual joining of metal by welding. It is found that the microhardness of weld metal and heat affected zone decreased when the number of passes increases that is total heat input increased.

  20. Effect of annealing process on TiN/TiC bilayers grown by pulsed arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Rivera, L., E-mail: lramosr@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia); Escobar, D.; Benavides-Palacios, V.; Arango, P.J.; Restrepo-Parra, E. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Aeropuerto Campus La Nubia (Colombia)

    2012-08-15

    In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 Degree-Sign C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 Degree-Sign C, TiO{sub 2} phase begun to appear and it was well observed at 500 Degree-Sign C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.

  1. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  2. Amenability to dry processing of high ash thermal coal using a pneumatic table

    Institute of Scientific and Technical Information of China (English)

    Dey Shobhana; Gangadhar B.; Gopalkrishna S.J.

    2015-01-01

    High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2%ash was subjected to washability studies at variant densities from 1.4 to 2.2 to assess the amenability to separa-tion. The experiments were conducted using a central composite design for assessing the interactive effects of the variable parameters of a pneumatic table on the product yield and ash content. The perfor-mance of the pneumatic table was analyzed in terms of clean coal yield, recovery of combustibles, separation efficiency (Esp) and useful heat value of clean coal. The combustibles of clean coal obtained through a single stage operation at 35% and 38.7% ash were 40% and 63% respectively. However, the two stage processing was more effective in reducing the ash content in the clean coal. The rougher con-centrate generated at higher ash level was subsequently processed in different conditions at 35% ash level, and 58%combustibles could be recovered. Hence, two stage processing increases the combustibles by 18 units and the useful heat value of clean coal increases from 1190 kcal/kg to 3750 kcal/kg.

  3. Development of processes for the utilization of Brazilian coal using nuclear process heat and/or nuclear process steam

    International Nuclear Information System (INIS)

    Status of the project: End of the project definition phase and preparation of the planned conceptual phase. Objective of the project: Development of processes for the utilization of nuclear process heat and/or nuclear process steam for the gasification of coal with high ash content, in particular coal from Brazil. Results: With the data of Brazilian coal of high ash content (mine Leao/ 43% ash in the mine-mouth quality, 20% ash after preparation) there have been worked out proposals for the mine planning and for a number of processes. On the basis of these proposals and under consideration of the main data specified by the Brazilian working group there have been choosen two processes and worked out in a conceptual design: 1) pressurized water reactor + LURGI-pressure gasifier/hydrogasification for the production of SNG and 2) high temperature reactor steam gasification for the production of town gas. The economic evaluation showed that the two processes are not substantially different in their cost efficiency and they are economical on a long-term basis. For more specific design work there has been planned the implementation of an experimental programme using the semi-technical plants 'hydrogasification' in Wesseling and 'steam gasification' in Essen as the conceptual phase. (orig.)

  4. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts

    OpenAIRE

    Ding, J.; Colegrove, Paul A.; Mehnen, Jorn; Ganguly, Supriyo; Sequeira Almeida, P. M.; Wang, F.; Williams, Stewart W.

    2011-01-01

    Wire and Arc Additive Layer Manufacturing (WAALM) is gaining increasing popularity as the process allows the production of large custom-made metal workpieces with high deposition rates. The high power input of the welding process, causes significant residual stress and distortion of the workpiece. This paper describes the thermo-mechanical behaviour of the multi-layer wall structure made by the WAALM process. A 3D thermo-elastic–plastic transient model and a model based on a...

  5. Deposição por plasma com arco transferido Hardfacing by plasma transfer arc process

    Directory of Open Access Journals (Sweden)

    Víctor Vergara Díaz

    2010-03-01

    Full Text Available Em virtude do Processo de Soldagem Plasma com Alimentação de Pó ter similaridades com o Processo de Soldagem Plasma com Alimentação de Arame, foi realizado um estudo comparativo entre ambos os processos utilizando-se a liga a base de cobalto comercialmente conhecida como Stellite 6, como material de adição na forma de pó e arame. A pesquisa foi realizada com a expectativa de ser aplicada nas operações de revestimentos de superfícies, em especial em pás de turbinas hidráulicas desgastadas por cavitação. A seleção do material de adição a ser empregado depende da natureza do mecanismo de desgaste encontrado. No Labsolda, a liga Stellite 6 vem sendo uma das mais utilizadas, por apresentar uma excelente resistência ao desgaste erosivo por cavitação. Foi avaliada a influência da vazão de gás de plasma a partir dos valores de diluição, dimensões do cordão, dureza e microestrutura. O Processo de Soldagem Plasma com Alimentação de Pó foi o que produziu o melhor acabamento superficial, menor diluição, melhor molhamento e maior largura. Com isto abre-se uma nova perspectiva para revestimentos metálicos e neste contexto se insere a recuperação por soldagem de partes erodidas de turbinas hidráulicas.The Plasma powder transferred arc welding process, which uses feed stock in the powder form, has similarities with Plasma wire transferred arc welding. This work describes a comparative study of the two processes using a Cobalt-based alloy commercially known as Stellite 6. This Co-based alloy is recognized for its superior cavitation erosion resistance. The aim of this work is to investigate the potential of PTA coatings for the protection and refurbishiment hydraulic turbine blades. Coatings were evaluated for the influence of Plasma gas flow rate on coating dilution, geometry, hardness and microstructure. Coatings processed with the atomized Stellite 6 powder feestock showed a superior surface quality, lower dilution

  6. Activities of the Institute of Chemical Processing of Coal at Zabrze

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  7. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    OpenAIRE

    Belošević Srđan V.; Tomanović Ivan D.; Crnomarković Nenad Đ.; Milićević Aleksandar R.; Tucaković Dragan R.

    2016-01-01

    Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by c...

  8. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.

  9. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. PMID:26433358

  10. Analysis and application of partial least square regression in arc welding process

    Institute of Scientific and Technical Information of China (English)

    YANG Hai-lan; CAI Yan; BAO Ye-feng; ZHOU Yun

    2005-01-01

    Because of the relativity among the parameters, partial least square regression(PLSR)was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i.e. surface width, weld penetration and weld reinforcement) to process parameters(i.e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current)was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory.

  11. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy

    International Nuclear Information System (INIS)

    PWR reactors employ, as nuclear fuel, UO2 pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  12. Change in surface characteristics of coal in upgrading of low-rank coals; Teihin`itan kaishitsu process ni okeru sekitan hyomen seijo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Oki, A.; Xie, X.; Nakajima, T.; Maeda, S. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1996-10-28

    With an objective to learn mechanisms in low-rank coal reformation processes, change of properties on coal surface was discussed. Difficulty in handling low-rank coal is attributed to large intrinsic water content. Since it contains highly volatile components, it has a danger of spontaneous ignition. The hot water drying (HWD) method was used for reformation. Coal which has been dry-pulverized to a grain size of 1 mm or smaller was mixed with water to make slurry, heated in an autoclave, cooled, filtered, and dried in vacuum. The HWD applied to Loy Yang and Yallourn coals resulted in rapid rise in pressure starting from about 250{degree}C. Water content (ANA value) absorbed into the coal has decreased largely, with the surface made hydrophobic effectively due to high temperature and pressure. Hydroxyl group and carbonyl group contents in the coal have decreased largely with rising reformation treatment temperature (according to FT-IR measurement). Specific surface area of the original coal of the Loy Yang coal was 138 m{sup 2}/g, while it has decreased largely to 73 m{sup 2}/g when the reformation temperature was raised to 350{degree}C. This is because of volatile components dissolving from the coal as tar and blocking the surface pores. 2 refs., 4 figs.

  13. Sasol process technology - the challenge of synfuels from coal

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.N.

    1986-08-01

    Description is given of how the design challenges were met in commissioning the Sasol Two plant in 1980, a larger plant than Sasol One, and devoted to producing liquid fuels. The design parameters included treating South African coals of poor quality with high ash contents, and rapidity in building the plant.

  14. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  15. Influence of Process Parameters on Coal Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    investigated experimentally in a 400 MWe corner fired boiler with over fire air, a 350 MWe opposed fired boiler, and in a 160 kWt pilot scale test rig. Three different coals were fired in each of the furnaces as part of the activities in group 3 of the European Union JOULE 2 Extension project "Atmospheric...

  16. Fundamental research on novel process alternatives for coal gasification: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  17. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  18. Seismic response to recent tectonic processes in the Banda Arc region

    Science.gov (United States)

    Špičák, Aleš; Matějková, Radka; Vaněk, Jiří

    2013-03-01

    Internal structure and recent tectonics of the geologically complex Banda Arc region (latitude 1-9°S, longitude 124-135°E) have been studied by means of the analysis of global seismological data. Relocated hypocentral determinations of the International Seismological Center (EHB data) and fault plane solutions of the Global Centroid Moment Tensor Project have been used together with previously published information on regional geology and dynamics. The analysis considered earthquakes in the lithospheric wedges above subducting slabs and earthquakes in the uppermost portions of the Wadati-Benioff zones (focal depth Banda subduction in the south and southward dipping Seram subduction in the north. Though the shallow parts of the WBZs of both these subduction zones reach a similar depth of 100 km, the two WBZs differ substantially by dip angle and relation between shallow and intermediate-depth portions. A depth of 100 km of the shallow WBZs corresponds to - assuming an invariable plate convergence rate - a subduction cycle starting about 1-1.5 Ma ago. The present Banda subduction cycle follows the collisional event of the Timor-Tanimbar segment of the Australian plate; this collision now persists west and east of the Banda subduction zone around Timor and Tanimbar, as revealed by respective domains of earthquakes. No westward dipping WBZ has been observed to interconnect the Seram and Banda subduction zones into a single bent subduction zone. Instead, the area between them is cut by a significant elongated domain of earthquakes corresponding to the westward continuation (up to 129.5°E) of the Tarera-Aiduna fault zone. Another two significant domains of earthquakes characterised by frequent earthquake clustering in space and time are associated with active subduction-related Banda and Ambon volcanic arcs, respectively. A majority of these earthquakes/earthquake sequences is probably induced by magmatic processes beneath calc-alkaline volcanoes. Concentration of

  19. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.

    Science.gov (United States)

    Youcai, Z; Stanforth, R

    2000-12-30

    In this study, a novel and integrated hydrometallurgical process for the production of zinc powder from electric arc furnace (EAF) dust in alkaline medium is reported. The dust is firstly hydrolysed in water, and then fused in caustic soda at 350 degrees C for 1h, followed by leaching in alkaline solution in which both zinc and lead are effectively extracted. Zinc powder is then produced by electrowinning from the leach solution after the lead is selectively removed by precipitation using sodium sulphide as precipitant. The EAF dust tested contained 25% Zn, 1.8% Pb and 33% Fe. It was found that 38% of zinc and 68% of lead could be extracted from the dust when leached directly in caustic soda solution. Leaching of zinc increased to 80% when dust was directly fused with caustic soda followed by alkaline leaching. However, the leaching further increased to 95% when the dust was hydrolysed first with water before fusion. Zinc powder with a purity of 99.95% was then produced by electrowinning from the lead depleted solution. Stainless electrodes were used as both anode and cathode.

  20. A comparison of thermal conversion process for several coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Shui, H.; Yuan, X. [East China Metallurgical Institute, Ma`anshan (China)

    1995-03-01

    The property and constituents of coal tar pitch are of great importance to the production of raw material for needle coke. Structural constituents of five coal tar pitches were determined using {sup 1}H-NMR. Besides, thermal conversion process of these pitches in which primary quinoline in soluble fraction was removed by centrifugal separation method was also investigated. The experimental results show Baogang (I) and Meishan coal tar pitches meet the requirements of raw material for needle coke. The thermal conversion data was correlated with structural parameters. 6 refs.,1 fig., 1 tab.

  1. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  2. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  3. Denver Coal Basin boundary from 1999 National Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representing the extent of the Denver coal basin boundary. This theme was created specifically for the National Coal...

  4. Raton Coal Basin boundary, 1999 Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shape file contains a polygon representing the extent of the Raton Coal Basin boundary. This theme was created specifically for the National Coal...

  5. Modeling and numerical analysis of an atypical convective coal drying process

    Energy Technology Data Exchange (ETDEWEB)

    Stakic, M.; Tsotsas, E. [Otto von Guericke University, Magdeburg (Germany)

    2004-07-01

    This work presents modeling and numerical simulation of batch convective coal drying in a deep packed bed after a high-pressure steam treatment (a part of the Fleissner coal drying process). The process is atypical, because ambient air is used to dry, and cool hot particles, while usually, e.g., in the deep packed bed drying of biomaterials, hot air is contacting cold particles. Product-specific data (intraparticle mass transfer, gas-solids moisture equilibrium) for coal (here lignite) are taken from the literature. Available data on coal drying in packed beds of medium height are used for model validation. Then, the model is applied to the considered industrial process. The design point of the process is critically reviewed, and alternatives are developed by systematically simulating the influence of inlet air conditions (temperature, humidity, flow-rate) and coal particle size. This type of analysis is necessary for efficiently scheduling plant dryers, since coal particle size may change, and air inlet temperature and humidity are changing with the ambient conditions.

  6. Sulfur retention by ash during coal combustion. Part II. A model of the process

    Directory of Open Access Journals (Sweden)

    BRANIMIR JOVANCICEVIC

    2003-03-01

    Full Text Available An overall model for sulfur self-retention in ash during coal particle combustion is developed in this paper. It is assumed that sulfur retention during char combustion occurs due to the reaction between SO2 and CaO in the form of uniformly distributed non-porous grains. Parametric analysis shows that the process of sulfur self-retention is limited by solid difussion through the non-porous product layer formed on the CaO grains and that the most important coal characteristics which influence sulfur self-retention are coal rank, content of sulfur forms, molar Ca/S ratio and particle radius. A comparison with the experimentally obtained values in a FB reactor showed that the model can adequately predict the kinetics of the process, the levels of the obtained values of the SSR efficiencies, as well as the influence of temperature and coal particle size.

  7. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    Directory of Open Access Journals (Sweden)

    Kartika K. Hendratna

    2010-01-01

    Full Text Available Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory scale furnace for more stable of combustion. Approach: New way for preparation for liquid coal oil steady combustion on a 2.75 m horizontal boiler with four annular segment tubes, a water jacket system and a system for measurement of water temperature inside was archived. Data was gained by applying liquid coal in the experiment. Detailed preparation and setting for steady combustion of coal oil and formation of the exhaust gas were discussed based on data sampling from four sample points in each centre of the angular tube segments. Results: Preparation for coal oil combustion is an important point in the successful of combustion. Heating coal fuel to than 100°C, heating the fuel line to the same temperature and providing enough air pressure for atomization of coal oil until 0.1 MPa allows coal fuel smoothly atomized in the semi gas phase. There was enough of air combustion via a blower with 4500 L min-1 of flow rate and a 24 L min-1 of water flow rate in the water jacket transforms the energy of the fuel to the heat. Uncolored of the exhaust gas and the physical inspection describes the completion of combustion. This result close-relates with the pollutants formation in the exhaust gas. Conclusion: By conducting a deep research process, there is a chance for the substitute of heavy fuel oil with liquid coal fuel with no special treatment needed in combustion process without ignoring the contribution of the combustion results as an environmental problem.

  8. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    Science.gov (United States)

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  9. Uniaxial compression CT and acoustic emission test on the coal crack propagation destruction process

    Institute of Scientific and Technical Information of China (English)

    Jing-hong LIU; Yao-dong JIANG; Yi-xin ZHAO; Jie ZHU

    2013-01-01

    Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation.A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission.The test comparison analyzes the acoustic emission load and CT images for an effective observation on the entire process,from crack propagation to the samples' destruction.The box dimension of the coal samples' acoustic emission series and the CT images were obtained through calculations by using the authors' own program.The results show that the fractal dimension of both the acoustic emission energy and CT image increase rapidly,indicating coal and rock mass has entered a dangerous condition.Hence,measures should be taken to unload the pressure of the coal and rock mass.The test results provide intuitive observation data for the coal meso-damage model.The test contributes to in-depth studies of coal or rock crack propagation mechanisms and provides a theoretical basis for rock burst mechanism.

  10. GMAW (Gas Metal Arc Welding) process development for girth welding of high strength pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Vaidyanath; Daniel, Joe; Quintana, Marie [The Lincoln Electric Company, Cleveland, OH (United States); Chen, Yaoshan [Center for Reliable Energy Systems (CRES), Dublin, OH (United States); Souza, Antonio [Lincoln Electric do Brasil, Guarulhos, SP (Brazil)

    2009-07-01

    This paper highlights some of the results and findings from the first phase of a consolidated program co-funded by US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) and Pipeline Research Council Inc (PRCI) to develop pipe weld assessment and qualification methods and optimize X 100 pipe welding technologies. One objective of the program is to establish the range of viable welding options for X 100 line pipe, and define the essential variables to provide welding process control for reliable and consistent mechanical performance of the weldments. In this first phase, a series of narrow gap girth welds were made with pulsed gas metal arc welding (GMAW), instrumented with thermocouples in the heat affected zone (HAZ) and weld metal to obtain the associated thermal profiles, and instrumented to measure true energy input as opposed to conventional heat input. Results reveal that true heat input is 16%-22% higher than conventional heat input. The thermal profile measurements correlate very well with thermal model predictions using true energy input data, which indicates the viability of treating the latter as an essential variable. Ongoing microstructural and mechanical testing work will enable validation of an integrated thermal-microstructural model being developed for these applications. Outputs from this model will be used to correlate essential welding process variables with weld microstructure and hardness. This will ultimately enable development of a list of essential variables and the ranges needed to ensure mechanical properties are achieved in practice, recommendations for controlling and monitoring these essential variables and test methods suitable for classification of welding consumables. (author)

  11. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    Science.gov (United States)

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2).

  12. Low- and medium-Btu coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-01-01

    Coal gasifiers, for the production of low- and medium-Btu fuel gases, come in a wide variety of designs and capacities. For single gasifier vessels gas energy production rates range from about 1 to 18 billion Btu/day. The key characteristics of gasifiers that would be of importance for their application as an energy source in Integrated Community Energy Systems (ICES) are evaluated here. The types of gasifiers considered here are single- and two-stage, fixed-bed units; fluidized-bed units; and entrained-bed units, as producers of both low-Btu (less than 200 Btu/SCF and medium-Btu (200 to 400 Btu/SCF) gases. The gasifiers are discussed with respect to maximum and minimum capacity, the effect of feed coal parameters, product characteristics, thermal efficiency, environmental effects, operating and maintenance requirements, reliability, and cost. Some of the most recent development work in this area of coal conversion, and use of these gas products also is considered. Except in small plant installations (< 10/sup 9/ Btu/day) the annual operating costs for the various gasifier types are approximately the same. This is somewhat surprising in view of the personnel requirements, efficiencies, utility requirements, heating value of the product gas, and operating characteristics associated with each. Operating costs tend to increase with a power function exponent of 0.92 (i.e., a doubling in plant capacity increases the operating cost by about 1.9).

  13. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-12-12

    High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.

  14. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  15. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  16. 煤质变化对Shell粉煤气化工艺的影响%THE EFFECT OF COAL QUALITY CHANGE ON SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2011-01-01

    The Shell pulverized-coal gasification process is introduced,the specific requirement for coal quality by Shell pulverized-coal gasification process summarized,several factors related to coal quality and the effect of the changes of these factors on Shell pulverized-coal gasification plant highlighted and the preventive measures based on the effects concluded.%介绍Shell粉煤气化工艺流程,总结Shell粉煤气化工艺对煤质的具体要求,阐述与煤质相关的几方面因素及这些因素的变化对Shell粉煤气化装置的影响,并根据这些影响得出相应的预防措施。

  17. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    Science.gov (United States)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-08-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters ( i.e., laser power ( P), welding current ( A), distance between laser and arc ( D), and welding speed ( V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  18. Optimization of Process Parameters of Hybrid Laser-Arc Welding onto 316L Using Ensemble of Metamodels

    Science.gov (United States)

    Zhou, Qi; Jiang, Ping; Shao, Xinyu; Gao, Zhongmei; Cao, Longchao; Yue, Chen; Li, Xiongbin

    2016-04-01

    Hybrid laser-arc welding (LAW) provides an effective way to overcome problems commonly encountered during either laser or arc welding such as brittle phase formation, cracking, and porosity. The process parameters of LAW have significant effects on the bead profile and hence the quality of joint. This paper proposes an optimization methodology by combining non-dominated sorting genetic algorithm (NSGA-II) and ensemble of metamodels (EMs) to address multi-objective process parameter optimization in LAW onto 316L. Firstly, Taguchi experimental design is adopted to generate the experimental samples. Secondly, the relationships between process parameters (i.e., laser power (P), welding current (A), distance between laser and arc (D), and welding speed (V)) and the bead geometries are fitted using EMs. The comparative results show that the EMs can take advantage of the prediction ability of each stand-alone metamodel and thus decrease the risk of adopting inappropriate metamodels. Then, the NSGA-II is used to facilitate design space exploration. Besides, the main effects and contribution rates of process parameters on bead profile are analyzed. Eventually, the verification experiments of the obtained optima are carried out and compared with the un-optimized weld seam for bead geometries, weld appearances, and welding defects. Results illustrate that the proposed hybrid approach exhibits great capability of improving welding quality in LAW.

  19. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    Science.gov (United States)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  20. Process for the production of coal briquettes and installation for carrying out this process

    Energy Technology Data Exchange (ETDEWEB)

    Fried, R.

    1989-01-25

    Coal briquettes are produced with the aid of a granular mixture of bituminous coal and inert coal by heating the bituminous coal above its softening point in contact with the inert coal previously heated to a higher temperature and mixed with the bituminous coal in a mixer to form a pasty substance through the softening of the bituminous coal. This pasty substance is extracted through the bottom of the mixer and guided into a briquette forming apparatus, the briquettes then being hardened and cooled. The gases produced in the mixer are delivered into a separator, at the bottom of which the solid constituents entrained by the gases are recovered and are recycled into the mixer at a point below the top level of the mixture.

  1. Growth of small diameter multi-walled carbon nanotubes by arc discharge process

    Science.gov (United States)

    T. Chaudhary, K.; J., Ali; P. Yupapin, P.

    2014-03-01

    Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.

  2. Gas tungsten arc and laser beam welding processes effects on duplex stainless steel 2205 properties

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, A-H.I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box. 17555 (United Arab Emirates); Khourshid, A.; Sharef, T. [Mechanical Design and Production Department, Faculty of Engineering, Tanta University, Tanta (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer LBW results in considerable variation in the ferrite-austenite balance of FZ. Black-Right-Pointing-Pointer LBW produces smaller FZ size than GTAW. Black-Right-Pointing-Pointer The effect of FZ size is more pronounced than that of ferrite-austenite balance. Black-Right-Pointing-Pointer Satisfactory mechanical properties were obtained using both GTAW and LBW. Black-Right-Pointing-Pointer LBW process has produced welded joint properties comparable to BM. - Abstract: A comparative study on the influence of gas tungsten arc welding (GTAW) and carbon dioxide laser beam welding (LBW) processes on the size and microstructure of fusion zone FZ then, on the mechanical and corrosion properties of duplex stainless steel DSS grade 2205 plates of 6.4 mm thickness was investigated. Autogenous butt welded joints were made using both GTAW and LBW. The GTA welded joint was made using well established welding parameters (i.e., current ampere of 110 A, voltage of 12 V, welding speed of 0.15 m/min and argon shielding rate of 15 l/min). While optimum LBW parameters were used (i.e., welding speed of 0.5 m/min, defocusing distance of 0.0 mm, argon shielding flow rate of 20 l/min and maximum output laser power of 8 kW). The results achieved in this investigation disclose that welding process play an important role in obtaining satisfactory weld properties. In comparison with GTAW, LBW has produced welded joint with a significant decrease in FZ size and acceptable weld profile. The ferrite-austenite balance of both weld metal WM and heat affected zone (HAZ) are influenced by heat input which is a function of welding process. In comparison with LBW, GTAW has resulted in ferrite-austenite balance close to that of base metal BM due to higher heat input in GTAW. However, properties of LB welded joint, particularly corrosion resistance are much better than that of GTA welded joint. The measured corrosion rates for LBW and GTAW joints are 0.05334 mm

  3. Gas tungsten arc and laser beam welding processes effects on duplex stainless steel 2205 properties

    International Nuclear Information System (INIS)

    Highlights: ► LBW results in considerable variation in the ferrite–austenite balance of FZ. ► LBW produces smaller FZ size than GTAW. ► The effect of FZ size is more pronounced than that of ferrite–austenite balance. ► Satisfactory mechanical properties were obtained using both GTAW and LBW. ► LBW process has produced welded joint properties comparable to BM. - Abstract: A comparative study on the influence of gas tungsten arc welding (GTAW) and carbon dioxide laser beam welding (LBW) processes on the size and microstructure of fusion zone FZ then, on the mechanical and corrosion properties of duplex stainless steel DSS grade 2205 plates of 6.4 mm thickness was investigated. Autogenous butt welded joints were made using both GTAW and LBW. The GTA welded joint was made using well established welding parameters (i.e., current ampere of 110 A, voltage of 12 V, welding speed of 0.15 m/min and argon shielding rate of 15 l/min). While optimum LBW parameters were used (i.e., welding speed of 0.5 m/min, defocusing distance of 0.0 mm, argon shielding flow rate of 20 l/min and maximum output laser power of 8 kW). The results achieved in this investigation disclose that welding process play an important role in obtaining satisfactory weld properties. In comparison with GTAW, LBW has produced welded joint with a significant decrease in FZ size and acceptable weld profile. The ferrite–austenite balance of both weld metal WM and heat affected zone (HAZ) are influenced by heat input which is a function of welding process. In comparison with LBW, GTAW has resulted in ferrite–austenite balance close to that of base metal BM due to higher heat input in GTAW. However, properties of LB welded joint, particularly corrosion resistance are much better than that of GTA welded joint. The measured corrosion rates for LBW and GTAW joints are 0.05334 mm/year and 0.2456 mm/year, respectively. This is related to the relatively small size of both WM and HAZ produced in the case

  4. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  5. Net coal thickness in the Johnson-107 coal zone, South Carbon coalfield, Wyoming (sccat)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a representation of the Johnson-107 coal zone net coal thickness. The Johnson-107 coal zone is in the South Carbon coalfield in the...

  6. CHINA'S RECENT DEVELOPMENT IN COAL MINING,PROCESSING AND UTILIZATION

    Institute of Scientific and Technical Information of China (English)

    范维唐; 王成龙; 朱德仁

    1996-01-01

    This paper describes the state-of-the-art and outlook of coal mining and clean coal echnology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71%. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting, mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.

  7. Welding stability assessment in the GMAW-S process based on fuzzy logic by acoustic sensing from arc emissions

    Directory of Open Access Journals (Sweden)

    E. Huanca Cayo

    2012-11-01

    Full Text Available Purpose: The present research work has as purpose detecting perturbations, measuring and assessing the welding stability in GMAW process in short circuit mode named hereafter as GMAW-S process.Design/methodology/approach: Welding trials were performed with a set of optimal input welding parameters. During experiments were induced some perturbations on the welding trajectory. It causes alteration on the stability of welding resulting as consequence geometrical shape deformations. During each experiments, acoustic emission signal coming from electric arc as well as arc voltage and welding current were acquired aided by a card acquisition and virtual instrumentation software. A heuristic model was performed as knowledge base rules of a fuzzy logic system. This system has two inputs and one output. Some additional welding trials were performed for assessing its performance.Findings: It was performed a welding stability assessment system based on fuzzy logic. As well as, this system is based on non-contact sensing what reduces the loading effects on the welding process.Research limitations/implications: In the present work was monitored just the acoustic emissions coming from arc. Although that, the results were satisfactory, an approach on data fusion of sensors including electromagnetic emission sensors could improve the quality assessments system.Originality/value: The non-contact welding stability assessment methods have reduces loading effects and a heuristic approach on the relations between arc emissions and welding stability allows quantifying nonlinear variables such as knowledge and experience of skilled welders, such that, it is possible to represent linguistic terms numerically what could be used as an on-line monitoring system of welding processes.

  8. Arc-welding process control based on back face thermography: application to the manufacturing of nuclear steam generators

    OpenAIRE

    Cobo García, Adolfo; Mirapeix Serrano, Jesús María; Conde Portilla, Olga María; García Allende, Pilar Beatriz; Madruga Saavedra, Francisco Javier; López Higuera, José Miguel

    2007-01-01

    The possibility of reducing defects in the arc welding process has attracted research interest, particularly, in the aerospace and nuclear sectors where the resulting weld quality is a major concern and must be assured by costly, time-consuming, non-destructive testing (NDT) procedures. One possible approach is the analysis of a measurand correlated with the formation of defects, from which a control action is derived. Among others, the thermographic analysis of the weld pool and the heat-aff...

  9. Blending Influence on the Conversion Efficiency of the Cogasification Process of Corn Stover and Coal

    Directory of Open Access Journals (Sweden)

    Anthony Ike Anukam

    2016-01-01

    Full Text Available Characterizations of biomass and coal were undertaken in order to compare their properties and determine the combustion characteristics of both feedstocks. The study was also intended to establish whether the biomass (corn stover used for this study is a suitable feedstock for blending with coal for the purpose of cogasification based on composition and properties. Proximate and ultimate analyses as well as energy value of both samples including their blends were undertaken and results showed that corn stover is a biomass material well suited for blending with coal for the purpose of cogasification, given its high volatile matter content which was measured and found to be 75.3% and its low ash content of 3.3% including its moderate calorific value of 16.1%. The results of the compositional analyses of both pure and blended samples of corn stover and coal were used to conduct computer simulation of the cogasification processes in order to establish the best blend that would result in optimum cogasification efficiency under standard gasifier operating conditions. The final result of the cogasification simulation process indicated that 90% corn stover/10% coal resulted in a maximum efficiency of about 58% because conversion was efficiently achieved at a temperature that is intermediate to that of coal and corn stover independently.

  10. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Fujia Xu; Yaohui Lv; Yuxin Liu; Fengyuan Shu; Peng He; Binshi Xu

    2013-01-01

    Pulsed plasma arc deposition (PPAD),which combines pulsed plasma cladding with rapid prototyping,is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing.In the present research,PPAD was successfully used to fabricate the Ni-based superalloy Inconel 625 components.The microstructures and mechanical properties of deposits were investigated by scanning electron microscopy (SEM),optical microscopy (OM),transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS),microhardness and tensile testers.It was found that the as-deposited structure exhibited homogenous columnar dendrite structure,which grew epitaxially along the deposition direction.Moreover,some intermetallic phases such as Laves phase,minor MC (NbC,TiC) carbides and needle-like δ-Ni3Nb were observed in γ-Ni matrix.Precipitation mechanism and distribution characteristics of these intermetallic phases in the as-deposited 625 alloy sample were analyzed.In order to evaluate the mechanical properties of the deposits,microhardness was measured at various location (including transverse plane and longitudinal plane).The results revealed hardness was in the range of 260-285 HVo.2.In particular,microhardness at the interface region between two adjacent deposited layers was slightly higher than that at other regions due to highly refined structure and the disperse distribution of Laves particles.Finally,the influence of precipitation phases and fabrication strategies on the tensile properties of the as-deposited samples was investigated.The failure modes of the tensile specimens were analyzed with fractography.

  11. Gliding arc surface modification of carrot nanofibre coating - perspective for composite processing

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Berglund, L; Aitomäki, Y;

    2016-01-01

    Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials, these c......Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials...

  12. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann;

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt......-joint with a V-groove with varying root gapthe system demonstrated increased welding quality compared to the system with no control. The system was implemented with a low cost vision system, which makes the system interesting to apply in industrial welding automation systems....

  13. Numerical Simulation of Gas Flow During Arcing Process for 252 kV Puffer Circuit Breakers%Numerical Simulation of Gas Flow During Arcing Process for 252 kV Puffer Circuit Breakers

    Institute of Scientific and Technical Information of China (English)

    吴军辉; 王小华; 马志瀛; 荣命哲; 闫静

    2011-01-01

    A numerical simulation model for 252 kV puffer circuit breaker is constructed, by using a proven commercial computational fluid dynamics (CFD) package, PHOENICS. The model takes into account the moving parts in the circuit breaker, turbulence enhanced momentum and energy transport, radiation transport. The arcing process in a SF6 puffer circuit breaker with two hollow contacts is simulated under different conditions, and the simulation results are verified with experimental results. Through simulation, the pressure, temperature and velocity in the arc quenching chamber can be obtained. The simulation model is also capable of predicting the influence of design parameters variations on breaker performance, and can thus help to reduce the number of short-circuit tests during the design stage.

  14. The Develo pment of ArcObjects Based on VBAin the Application of Data Processing:For Example the Shapefile Merge and Split Batch Processing%基于 VBA 的 ArcObjects 二次开发在数据处理中的应用--以 Shapefile 的 Merge 和 Split批处理为例

    Institute of Scientific and Technical Information of China (English)

    颜振宇; 李昌庆; 陈美

    2016-01-01

    Analyzes the data processing based on ArcGIS platform, combined with the data processing in the land change survey work, analyzes the deficiencies of the ArcToolBox, In the Merge and Split tool, for example.To discussing the principle and design idea of ArcObjects secondary development based on VBA when oriented task, provide reference for other data processing in the actual work.%以ArcGIS为数据处理平台,结合土地变更调查中的数据处理工作,分析ArcToolBox中工具存在的不足,以Merge和Split工具为例,探讨面向任务时基于VBA的ArcObjects二次开发的基本原理与设计思路,可为实际工作中的其他数据处理提供借鉴。

  15. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2015-12-01

    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  16. Process simulation and optimization for fry drying of low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Chun, D.H.; Kim, S.D.; Rhim, Y.J.; Rho, N.S.; Choi, H.K.; Yoo, J.H.; Lim, J.H.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of). Clean Fossil energy Research Center

    2013-07-01

    We conducted fry drying process simulations of low rank coal and operation optimization. We set up the operating condition of evaporator so that the coal moisture content would come down from 35 to 10 wt.% during the drying process. Through process simulations, we calculated the heat duty supplied and power consumption under each operating condition. From the simulation results, we calculated operating costs on the basis of prices in Indonesia which is a coal producing place. Cases where thermal energy was reused through MVR showed an effect of reducing operating costs by around 50%. The operating conditions were optimized through operating cost analysis and the results indicated that the optimum operating conditions were evaporator pressure 500 kPa and temperature 168 C.

  17. New Coke Oven Facilities at Linhuan Coal Chemical Company Adopt LyondellBasell's Aromatics Extraction Process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The new 80 kt/a coal chemical unit at the Linhuan Coal Chemical Company in Anhui province will adopt the aro-matics extraction process licensed by LyondellBasell Company. This unit is expected to come on stream by 2009.This technology is suitable for manufacture of high-purity aromatics with broad adaptability and large scale produc-tion capability. In the previous year LyondellBasell was awarded six patents on aromatics extraction process. It is told that the achievements to be adopted by the Linhuan Coal Chemical Company are partly a series of aromatics extrac-tion processes for recovery of coke oven light oil performed by LyondellBasell.

  18. Hocodems technology in comparison with conventional separation processes for coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, P. [Heinrich Holter GmbH, Gladbeck (Germany)

    1999-11-01

    The new Hocodems technology, which is an advanced development of the Larcodems process, is presented and compared with conventional separation processes in coal preparation: Ep values and separation densities for a selected particle size range are compared. Comparisons of investment and operating costs are also made. 2 refs., 4 figs., 2 tabs.

  19. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport. PMID:11341293

  20. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  1. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  2. IMPROVING METHODS OF MODELING CANAL WAVES PROPAGATION PROCESS IN COAL SEAMS

    Directory of Open Access Journals (Sweden)

    SMIRNOV YU.M.

    2012-01-01

    Full Text Available There has been analyzed the principal methods of modeling the process of canal waves propagation in coal seams when carrying out mining geophysical studies. There has been established that the wave guide moving into the surface of the elastic half-space doesn’t practically change the main properties of the interferential waves propagating in them. There has been recommended to use Fourier integral describing the single pulse spectrum for studying the registered seismograms. There have been formulated the main problems of improving physical processes modeling in coal seams when carrying out their geological studying

  3. Application of coal-water slurry on the rotary calcining kiln of pedgion magnesium reduction process

    Institute of Scientific and Technical Information of China (English)

    LI Hua-qing; XIE Shui-sheng; LIU Jin-ping; WU Peng-yue; HUANG Guo-jie

    2006-01-01

    Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.

  4. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    Science.gov (United States)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  5. The Sumba enigma: Is Sumba a diapiric fore-arc nappe in process of formation?

    Science.gov (United States)

    Audley-Charles, M. G.

    1985-10-01

    The anomalous updomed morphological expression of Sumba island, its enigmatic lack of strong Neogene deformation and the northward morphological indentation of southern Sumbawa and Flores require explanation. The stratigraphy of Sumba may be correlated with the Cretaceous to Miocene part of the Timor allochthon. The sedimentary and eruptive rock succession in Sumba shows remarkable similarities with the allochthonous Palelo, Wiluba and Cablac deposits of Timor. In both islands the Cretaceous parts of these sequences are regarded as characteristic of fore-arc deposits built on thin continental crust. The Timor nappe is interpreted as a 5 km thick tectonic flake of the Banda fore-arc thrust onto the Australian continental margin in the mid-Pliocene collision. The postulated Sumba nappe has not yet been thrust onto the Australian margin which, in the Sumba region, has not yet converged as close to the arc as in the Timor area. The postulated Sumba nappe is interpreted as a diapiric elongated dome of the Sunda fore-arc that is being squeezed by the converging margin of Australia against the volcanic islands of Sumbawa and Flores. The absence of indications on the seismic reflection profiles for the presence of the thrust fault of the Sumba nappe may perhaps be explained by the thrusts being nearly horizontal within flat-lying strata. The Savu thrust is correlated with the probably older (pre-Late Pliocene) Wetar Suture as a major southward dipping lithospheric rupture. East of 124°E, this suture does not seem to have moved much since the mid-Pliocene collision that emplaced the nappes on Timor. However, microearthquake data suggest some activity is continuing.

  6. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  7. Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  8. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining...

  9. Space Data Collection and Processing of Census for Water Based on ArcGIS%借助ArcGIS进行水利普查空间数据的采集与处理

    Institute of Scientific and Technical Information of China (English)

    宋智丽; 王尊旗

    2013-01-01

    结合江苏省水利普查项目实践,总结了借助ArcGIS平台进行水利普查空间数据的采集与处理的作业经验,有利于作业人员较快掌握有关技术要领.%Combined with Jiangsu census for water project practice, the paper sums up the space data collection and processing of census for water based on ArcGIS, which is conducive to the operating personnel to master the technical essential.

  10. Coal Mines, Abandoned - COAL_MINE_ENTRIES_IN: Underground Coal Mine Entrances in Indiana (Indiana Geological Survey, 1:24,000, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — SW_COAL_ENTRY, the predecessor of COAL_MINE_ENTRIES_IN, is a point- based ESRI ArcView shapefile that shows the locations of underground coal mine entrances in the...

  11. Coal Mines, Abandoned - COAL_MINE_UNDERGROUND_IN: Underground Coal Mines in Indiana (Indiana Geological Survey, 1:24,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — COAL_UND, the predecessor of COAL_MINE_UNDERGROUND_IN, is a polygon-based ESRI ArcView shapefile that shows the location and extent of underground coal mines in the...

  12. Coal liquefaction process streams characterization and evaluation. Topical report: Analytical methods for application to coal-derived resids, A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.

    1993-06-01

    This literature survey was conducted to address an important question: What are the methods available in the realm of analytical chemistry that may have potential usefulness to the development of coal liquefaction technology? In an attempt to answer to that question, the emphasis of this survey was directed at analytical techniques which would be applicable to the high molecular weight, non-distillable residue of coal-derived liquids. It is this material which is most problematic to the analytical investigator and the developer of direct coal liquefaction processes. A number of comprehensive analytical reviews of literature dealing with coal and other fossil fuels are available. This literature survey will (1) be limited to articles published between 1980--1991, with some exceptions; (2) be limited to the use of analytical methods for high molecular weight, primarily nondistillable, fossil fuel-derived materials, except where the application of an analytical method to coals or distillates may show promise for application to non-distillable coal-derived materials; and (3) demonstrate the potential usefulness of an analytical method by showing how the method has been applied to high molecular weight, non-distillable materials, if not specifically to coal liquids. The text is divided by type of methodology, i.e. spectroscopy, microscopy, etc. Each section will be essentially free-standing. An historical background is provided.

  13. Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes

    OpenAIRE

    Arunkumar, S.; P.Rangarajan; K. Devakumaran; P.Sathiya

    2015-01-01

    Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint. These effects increase with increase in heat input. Thus, special atte...

  14. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

    1985-01-01

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  15. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.; Foster, E.P.

    1985-11-26

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  16. The Release of Trace Elements in the Process of Coal Coking

    OpenAIRE

    Jan Konieczyński; Elwira Zajusz-Zubek; Magdalena Jabłońska

    2012-01-01

    In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of ...

  17. Catalyst system and process for benzyl ether fragmentation and coal liquefaction

    Science.gov (United States)

    Zoeller, Joseph Robert

    1998-04-28

    Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

  18. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  19. Usage of Thermodynamic Activity for Optimization of Power Expenses in Respect of Casting Process in Arc Steel-Melting Furnace

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The equilibrium between carbon and oxygen has been investigated during oxidizing refining in an arc steel-melting furnace. It is shown that there is a possibility to apply an equilibrium thermodynamic. It has been established that during oxidizing refining FeO concentration in slag practically does not depend on C concentration in metal. It is demonstrated that in a number of cases metal carbon oxidation is characterized by the presence of a transit period that may be attributed to incomplete slag-formation process.

  20. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  1. Image pre-processing research of coal level in underground coal pocket

    Institute of Scientific and Technical Information of China (English)

    WU Bing; GAO Na

    2008-01-01

    Mathematical morphology is widely applicated in digital image procesing. Vari-ary morphology construction and algorithm being developed are used in deferent digital image processing. The basic idea of mathematical morphology is to use construction ele-ment measure image morphology for solving understand problem. The article presented advanced cellular neural network that forms mathematical morphological cellular neural network (MMCNN) equation to be suit for mathematical morphology filter. It gave the theo-ries of MMCNN dynamic extent and stable state. It is evidenced that arrived mathematical morphology filter through steady of dynamic process in definite condition.

  2. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  3. Investigation of non-isothermal and isothermal gasification process of coal char using different kinetic model

    Institute of Scientific and Technical Information of China (English)

    Wang Guangwei; Zhang Jianliang; Shao Jiugang; Li Kejiang; Zuo Haibin

    2015-01-01

    Isothermal and non-isothermal gasification kinetics of coal char were investigated by using thermogravi-metric analysis (TGA) in CO2 atmosphere, and the experimental data were interpreted with the aids of random pore model (RPM), unreacted shrinking core model (URCM) and volume model (VM). With the increase of heating rate, gasification curve moves into high temperature zone and peak rate of gasification increases;with the increase of gasification temperature, gasification rate increases and the total time of gasification is shortened. The increase of both heating rate and gasification temperature could improve gasification process of coal char. Kinetics analysis indicates that experimental data agree better with the RPM than with the other two models. The apparent activation energy of non-isothermal and isother-mal gasification of coal char using RPM is 193.9 kJ/mol and 212.6 kJ/mol respectively, which are in accor-dance with reported data. Gasification process of coal char under different heating rates and different temperatures are predicted by the RPM derived in this study, and it is found that the RPM predicts the reaction process satisfactorily.

  4. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  5. Microstructure and abrasive wear properties of M(Cr,Fe)7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW) process

    OpenAIRE

    Buytoz, Soner; M.Mustafa YILDIRIM

    2010-01-01

    In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW) process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectroscopy (EDS). Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were c...

  6. A combined physical/microbial process for the beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.F.; Stevens, C.J.; Noah, K.S.; McIlwain, M.E.

    1993-09-01

    A large-laboratory scale physical/microbial process was demonstrated for the removal of pyritic sulfur from coal. The process took place in an aerated-trough slurry reactor with a total slurry volume of 150 L. The reactor was divided into six sections, each of which acted as a physical separator and a bioreactor. The process objective was to physically remove the larger pyritic inclusions and to biodegrade the small inclusions (micropyrite). The process was continuously operated for 120 days, treating approximately 1 ton of Illinois {number_sign}6 coal. Ninety percent pyrite removal was achieved at a 20% slurry concentration and a reactor residence time of 5 days. Additional research should be performed to find the optimum values for reactor residence time, slurry concentration, and process hydraulic residence time (or recycle ratio). Finding these optimum values will enable a process to be developed that will maximize the amount of coal that can be processed per unit reactor volume per unit time with the desired level of pyritic sulfur removal.

  7. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce mining costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam

  8. Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining

    OpenAIRE

    Chen Wang; Shihao Tu

    2015-01-01

    Mechanized mining technical process (MMTP) related to the control method of the shearer is a vital process in thin coal seam mining operations. An appropriate MMTP is closely related to safety, productivity, labour intensity, and efficiency. Hence, the evaluation of alternative MMTP is an important part of the mining design. Several parameters should be considered in MMTP evaluation, so the evaluation is complex and must be compliant with a set of criteria. In this paper, two multiple criteri...

  9. Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.

    1983-09-01

    This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

  10. Automatic Processing of Alignment Measurement Outcome Based on ArcGIS Modeling Tools%利用 ArcGIS10建模工具实现放线测量成果的自动处理

    Institute of Scientific and Technical Information of China (English)

    王永峰; 王涛; 徐莹

    2014-01-01

    Urban underground pipeline alignment measurement outcome includes shapefile data of alignment routing , planar coordinate outcome of alignment pile points and control points information of surveying area .This task is usually completed by manual operation .This paper researches that this process can be realized automatically through using Arc-GIS10 modeling tools ,this method mainly includes CAD features shapefile formatting and spatial analysis process of vec -tor data.This paper reveals complementarity of ArcGIS spatial analysis function and CAD graphics editing ability .%城市地下管线放线测量成果包括放线路由shapefiles数据,放线桩点平面坐标成果和测区范围控制点信息等内容。这部分工作通常是人工操作完成,通过研究发现利用ArcGIS10建模工具ModelBuilder可自动实现上述处理,其主要经过了CAD要素的shapefile格式化和矢量数据的空间分析处理两大步骤。这一自动化处理体现了ArcGIS软件的空间分析功能与CAD图形编辑能力的互补。

  11. A Study on Comparison of Liquid-phase Methanol Synthesis Processes for Coal-Derived Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jang Sik; Lee, Jong Dae [Dept. of Chem. Eng., Chungbuk National University, Cheongju (Korea); Jong, Heon [Energy Conversion Research Team, Korea Institute of Energy Research, Taejon (Korea)

    2001-04-01

    Two liquid-phase methanol synthesis processed, the 'Methyl Formate Intermediate' process(MF process) and the LPMEOH process, were experimentally investigated to find the suitability of the process for the coal-derived syngas. The MF process showed the superior methanol synthesis rate at the same gas hourly space velocity(GHSV) than LPMEOH process. The MF process showed more than 50% conversion of syngas per pass and 3.7%/day of deactivation rate which are far better than 30% conversion per pass and 24%/day deactivation rate of the LPMEOH process. The reaction condition of the MF process is milder than that of the LPMEOH process. The weakness of the MF process, which is the severe poisoning by small amounts of CO{sub 2}, was able to be overcome from the experimental result that the reaction proceeded even with the syngas with 0.5% CO{sub 2}. Overall comparison reveals that MF process is more suitable than the LPMEOH process when the coal-derived syngas is to be used for methanol synthesis. 18 refs., 12 figs., 2 tabs.

  12. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  13. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun, E-mail: lijunwang@mail.xjtu.edu.cn; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  14. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    Science.gov (United States)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  15. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    International Nuclear Information System (INIS)

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region

  16. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  17. Coal fields and outlines of coal-bearing strata in the Colorado Plateau coal assessment study area (cpcf*g)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These are shapefiles and ARC/INFO coverages of coal fields and coal-bearing formations in the Colorado Plateau. These GIS layers were created by combining numerous...

  18. Safety research in the gasification process of novel multi-thermal-source coal gasifier

    Institute of Scientific and Technical Information of China (English)

    TIAN Yu-xian; WU Min-huan; WANG Xiao-gang; ZHANG Ya-ping; QIANG Jun-feng; TIAN Xin-wei; WANG Xi-lian

    2009-01-01

    In order to collect the gas safely produced in the gasification process of the novel multi-thermal-source coal gasifier,based on its gasification skill and the characteristics of the products, this paper analyzes the possible dangers in the gasification process, devises the gasifier eruption and explosion experiments, explores the conditions of gasifier eruption and gas explosion, studies their effects on the gasification process and establishes safe operation measures. Gasifier eruption hazard occurs easily in the gasification process of one-thermal-source coal gasifier when Msio: is far higher than that in the normal adjuvant. The gas permeability in the gasifier is not the same and the power supply is too large. However, similar conditions in the gasification of multi-thermal-source coal gasifier do not produce a gasifier eruption accident so easily. When it erupts, the gasifier should be stopped and then cooled down naturally or inert gas can be sprayed on the gasifier to cool it off, and thus gas explosion can be avoided. There is a possibility of direct gas explosion, but it can be avoided when the gas in the gas collecting space is replaced slowly by supplying a small amount of power or the inert gas fills the space in the previous gasification. The time a fire is lit is strictly controlled, the gas is drawn in by using the aspirator pump, and the gasifier pressure is kept in the state of micro-positive pressure in the middle and later gasification process. The conclusion is that the gasification process of the novel multi-thermal-source coal gasifier is safe according to normal operation rules.

  19. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  20. Coal Fields - COAL_NCRDS_IN: Coal Resource Data in Indiana, Derived from the National Coal Resource Data System (Indiana Geological Survey, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This ESRI ArcInfo point shapefile depicts the location of 9,117 public point-source coal resource data points in Indiana. This shapefile includes location and coal...

  1. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  2. Evolution of Ataúro Island: Temporal constraints on subduction processes beneath the Wetar zone, Banda Arc

    Science.gov (United States)

    Ely, Kim S.; Sandiford, Mike; Hawke, Margaret L.; Phillips, David; Quigley, Mark; Reis, Joao Edmundo dos

    2011-06-01

    Ataúro is a key to understanding the late stage volcanic and subduction history of the Banda Arc to the north of Timor. A volcanic history of bi-modal subaqueous volcanism has been established and new whole rock and trace element geochemical data show two compositional groups, basaltic andesite and dacite-rhyolite. 40Ar/ 39Ar geochronology of hornblende from rhyo-dacitic lavas confirms that volcanism continued until 3.3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. Local scale landscape features of the eastern parts of Ataúro are strongly controlled by normal faults. The continuation of arc-related volcanism on Ataúro until at least 3.3 Ma suggests that subduction of Australian lithosphere continued until near this time. This data is consistent with findings from the earthquake record where the extent of the Wetar seismic gap to a depth of 350 km suggests slab breakoff, as a result of collision, commenced at ˜4 Ma, leading to subsequent regional uplift recorded in elevated terraces on Ataúro and neighbouring islands.

  3. The production of a premium solid fuel from Powder River Basin coal. [COMPCOAL Process

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.; Sethi, V.; Thomas, K.; Grimes, R.W.

    1992-01-01

    This report describes our initial evaluation of a process designed to produce premium-quality solid fuel from Powder River Basin (PRB) coal. The process is based upon our experience gained by producing highly-reactive, high-heating-value char as part of a mild-gasification project. In the process, char containing 20 to 25 wt % volatiles and having a gross heating value of 12,500 to 13,000 Btu/lb is produced. The char is then contacted by coal-derived liquid. The result is a deposit of 6 to 8 wt % pitch on the char particles. The lower boiling component of the coal-derived liquid which is not deposited on the char is burned as fuel. Our economic evaluation shows the process will be economically attractive if the product can be sold for about $20/ton or more. Our preliminary tests show that we can deposit pitch on to the char, and the product is less dusty, less susceptible to readsorption of moisture, and has reduced susceptibility to self heating.

  4. New Approach to Study the Ignition Processes of Organic Coal-Water Fuels in an Oxidizer Flow

    Directory of Open Access Journals (Sweden)

    Valiullin T.R.

    2016-01-01

    Full Text Available To converge the conditions of organic water-coal fuel composition combustion in the typical power equipment we developed a new approach and installed an experimental setup, eliminating the traditional fixing the fuel droplets on the thermocouples or rods. Specialized cone-shaped chamber was used to implement the process of lingering of organic water-coal fuel droplets. Necessary and sufficient conditions for the lingering of organic water-coal fuel droplets were established. We determined the parameters of the system (droplet size of 0.4-0.6 mm, temperatures 823-903 K and the velocity of the oxidizer flow 1.5-6 m/s at which the droplets were consistently ignited in the process of lingering. Minimum temperatures and ignition delay times of organic water-coal fuel droplets based on brown coal, used motor, turbine, transformer oils, kerosene, gasoline and water were defined.

  5. Clean coal technology: commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The report discusses the demonstration of Air Products and Chemical, Inc.`s Liquid Phase Methanol (LPMEOTH {trademark}) Process which is designed to convert synthesis gas derived from the gasification of coal into methanol for use as a chemical intermediate or as a low-sulfur dioxide and low-nitrogen oxides emitting alternative fuel. The project was selected for funding by the US Clean Coal Technology Program Round III in 1992. Construction of the Demonstration Project at Eastman Chemical Co`s Kingsport complex began in October 1995 and was completed in January 1997. Production rates of over 300 tons per day of methanol have been achieved and availability for the unit has exceeded 96% since startup. The LPMEOH{trademark} Process can enhance integrated gasification combined cycle (IGCC) power generation by converting part of the syngas from the gasifier to methanol which can be solid or used as a peak-sharing fuel. 50 refs., 5 figs., 7 photos.

  6. Coal liquefaction process streams characterization and evaluation. Volume 2, Participants program final summary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process develpment, and in so doing, provide a bridge between process design, development, and operation and analytical chemistry. To achieve this direct coal liquefaction-derived materials. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  7. ALICE - ARC integration

    OpenAIRE

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva; Peters, Andreas; Siaz, Pablo

    2007-01-01

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructur...

  8. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process

    International Nuclear Information System (INIS)

    Combustion characteristic of a bituminous coal and an anthracite coal in oxygen/carbon dioxide (O2/CO2) atmosphere is investigated in a thermogravimetric (TG) analyzer. The characteristic parameters, which are deduced from the TG-DTG (differential thermogravimetric) curves, show that the coal combustion process is basically kept consistent in O2/CO2 and O2/N2 atmosphere at the O2 concentration of 20%. The Coats-Redfern method with the reaction order of 1.25 could perfectly describe the combustion process in these two different atmospheres through the calculation of the kinetic parameters for the two coals. Nitric oxide (NO) release is concentrated in a narrower time period in O2/CO2 atmosphere compared with the one in O2/N2 atmosphere during the coal combustion process. Though the high value of the NO release rate peak, the total conversion of the fuel-N to NO is strongly depressed in O2/CO2 atmosphere, and at 1473 K, the conversion is reduced by 28.99% for the bituminous coal and 22.54% for the anthracite coal, respectively. When O2 concentration is increased from 20% to 40% in O2/CO2 atmosphere, the coal combustion property is obviously improved with the shift of the whole process into the lower temperature zone and the more intensive of the reaction occurrence in a narrower temperature range. However, the total fuel-N to NO conversion is increased accordingly. For bituminous coal the increase is 17.22% at 1073 K and 20.51% at 1173 K, and for anthracite coal the increase is 15.73% at 1073 K and 16.19% at 1173 K.

  9. Assessment of H-Coal process developments: impact on the performance and economics of a proposed commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Talib, A.; Gray, D.; Neuworth, M.

    1984-01-01

    This report assesses the performance of the H-Coal process, a catalytic direct liquefaction process, at a process development and large pilot-plant scale of operation. The assessment focused on the evaluation of operating results from selected long-term successful process development unit (PDU) and pilot plant runs made on Illinois No. 6 coal. The pilot plant has largely duplicated the product yield structure obtained during the PDU runs. Also, the quality of products, particularly liquid products, produced during the pilot plant run is quite comparable to that produced during the PDU runs. This confirms the scalability of the H-Coal ebullated-bed reactor system from a PDU-scale, 3 tons of coal per day, to a large pilot scale, 220 tons of coal per day, plant. The minor product yield differences, such as higher yields of C/sub 3/, C/sub 4/, and naphtha fractions, and lower yields of distillate oils obtained during pilot plant runs as compared to the PDU runs, will not impact the projected technical and economic performance of a first-of-a-kind commercial H-Coal plant. Thus, the process yield and operating data collected during the PDU operations provided an adequate basis for projecting the technical and economic performance of the proposed H-Coal commercial plant. 18 references, 9 figures, 56 tables.

  10. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  11. Environmental quality and energy conservation in coal conversion processes. [Overall minimization of energy required for sulfur pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.L.; Hill, A.H.; Fleming, D.K.

    1979-01-01

    In general, controlling emissions from a coal conversion process is an energy consuming process. In this paper, a parametric assessment of energy requirements for sulfur management in a coal gasification process to produce substitute natural gas is presented. The results of this assessment suggest that the least energy intensive sulfur management practice to utilize in coal gasification plants using low sulfur coal (< 3.5%) is an H/sub 2/S selective removal process providing a Claus plant feed-stream containing 10% or less H/sub 2/S with tail gas from the Claus plant being incinerated in the coal-fired boiler and the additional SO/sub 2/ removed in the flue gas desulfurization (FGD) system. For high sulfur coals (> 3.5%), energy consumptions for all combinations were similar for a given FGD SO/sub 2/ removal specification. As the SO/sub 2/ specification increases for the FGD system, the total energy required for sulfur management also increases. Finally, contrary to expectations, the total energy requirements for sulfur management decrease with increasing sulfur content of the feed coal indicating that the energy requiements of the H/sub 2/S removal process dominates. The total energy requirements for the two Claus plant tail gas treatment processes are similar. Incineration in the boiler is slightly more energy efficient. For low sulfur coals (< 3.5%) the total energy requirements decreased rapidly as the level of H/sub 2/S selective acid-gas removal process decreased from 30% to 10%. For high sulfur coals (> 3.5%) the total energy requirements were similar for all levels of H/sub 2/S in the Claus plant feed gas with a possible minimum in energy requirements for the 15% H/sub 2/S cases.

  12. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    Part 3 consists of appendices 5, 6 and 7, which have been entered individually into EDB and ERA. They deal with regression analysis of pilot plant SRC-II yields to develop thermal response models of the process and the possibility of predicting yields from coal properties. The possibility of a runaway exothermal reaction under some operating conditions on the demonstration plant scale is also considered. (LTN)

  13. Airborne contamination of forest soils by carbonaceous particles from industrial coal processing

    OpenAIRE

    Schmidt, M. W. I.; Knicker, Heike; Hatcher, Patrick G.; Kögel-Knabner, I.

    2000-01-01

    In the German Ruhr-area industrial coal processing emitted large amounts of carbonaceous particles for a century until 1970. Our objectives were to detect the presence of airborne carbonaceous particles and assess their impact on the chemical structure of soil organic matter in two forest soils (Podzols) with potential sources of carbonaceous particles approximately 10 to 30 km away. Contamination was not visible macroscopicaily. Organic matter was characterized in bulk soils and in particle-...

  14. IMPROVING METHODS OF MODELING CANAL WAVES PROPAGATION PROCESS IN COAL SEAMS

    OpenAIRE

    SMIRNOV YU.M.; КЕNZHIN B.М.

    2012-01-01

    There has been analyzed the principal methods of modeling the process of canal waves propagation in coal seams when carrying out mining geophysical studies. There has been established that the wave guide moving into the surface of the elastic half-space doesn’t practically change the main properties of the interferential waves propagating in them. There has been recommended to use Fourier integral describing the single pulse spectrum for studying the registered seismograms. There have been fo...

  15. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  16. Role of the Liquids From Coal process in the world energy picture

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, J.P.; Knottnerus, B.A. [ENCOAL Corp., Gillette, WY (United States)

    1997-12-31

    ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than three million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.

  17. Coal cinder filtration as pretreatment with biological processes to treat pharmaceutical wastewater.

    Science.gov (United States)

    Zheng, Wei; Li, Xiao-ming; Hao, Zhi-ming; Wang, Dong-bo; Yang, Qi; Zeng, Guang-ming

    2010-01-01

    This study aims at coupling coal cinder filter with biological process to improve pharmaceutical wastewater quality and reduce the disposal cost. In the coal cinder filter, the removal efficiencies of COD, BOD(5), SS and color were 90+/-2%, 72+/-2%, 95+/-2% and 80+/-2%, respectively. The results attribute to the big specific surface area and strong adsorption ability. Coal cinder filter removes a large portion of the pollutants in the influent wastewater, which would strongly stable the effluent waste water quality, and reduce the load of follow-up biological treatment process. The average removal efficiencies for COD, BOD(5), SS and color of the combined process were about 99.7+/-3%, 98.2+/-4%, 98.5+/-3% and 96.3+/-2%, respectively, with the average effluent quality of COD 16+/-1 mg/L, BOD(5) 11+/-1 mg/L, SS 10+/-0.6 mg/L and color 22+/-1 (multiple), which are consistent with the national requirements of the waste pollutants for pharmaceutical industry of chinese traditional medicine discharge standard (GB 21906-2008). The results indicated that the combined procedure could offer an attractive solution for pharmaceutical wastewater treatment with considerable low cost.

  18. Twin-wire Submerged Arc Welding Process of a High-strength Low-alloy Steel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiuzhi; XU Qinghua; YIN Niandong; XIAO Xinhua

    2011-01-01

    The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA)subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.

  19. Study of the processes for of remelting zirconium alloys in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz A.T.; Rossi, Jesualdo L.; Costa, Guilherme R.; Martinez, Luis G.; Sato, Ivone M., E-mail: luiz.atp@uol.com.br, E-mail: jelrossi@ipen.br, E-mail: guilhermeramoscosta@gmail.com, E-mail: lgallego@ipen.br, E-mail: imsato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Zirconium alloy tubes are used as cladding for fuel elements of PWR nuclear reactors, which contains the UO{sub 2} pellets. In the manufacture of these fuel element parts, machining chips from the nuclear grade zirconium alloys are generated. Hence, these machining chips cannot be discarded, as ordinary metallic waste. Thus, the recycling of this material is a strategic aspect for the nuclear technology, both for economic and environmental issues. The main reason is that nuclear grade alloys have very high cost, are not commercially produced in Brazil and has to be imported for the manufacture of the nuclear fuels. This work discusses a method to melt and recycle Zircaloy chips, using an electric-arc furnace to obtain small laboratory ingots. The chemical composition of the ingots was determined using X-ray fluorescence spectroscopy and was compared to the specifications of nuclear grade Zircaloy and to the chemical composition of the received machining chips. The ingots were annealed in high vacuum, as well as were hot rolled in a mill. The microstructures were characterized by optical microscopy. The hardness was evaluated using the Rockwell B scale hardness. The results showed that the compositions of the recycled Zircaloy comply with the chemical specifications and a suitable microstructure has been obtained for nuclear use. (author)

  20. Study of the processes for of remelting zirconium alloys in an electric arc furnace

    International Nuclear Information System (INIS)

    Zirconium alloy tubes are used as cladding for fuel elements of PWR nuclear reactors, which contains the UO2 pellets. In the manufacture of these fuel element parts, machining chips from the nuclear grade zirconium alloys are generated. Hence, these machining chips cannot be discarded, as ordinary metallic waste. Thus, the recycling of this material is a strategic aspect for the nuclear technology, both for economic and environmental issues. The main reason is that nuclear grade alloys have very high cost, are not commercially produced in Brazil and has to be imported for the manufacture of the nuclear fuels. This work discusses a method to melt and recycle Zircaloy chips, using an electric-arc furnace to obtain small laboratory ingots. The chemical composition of the ingots was determined using X-ray fluorescence spectroscopy and was compared to the specifications of nuclear grade Zircaloy and to the chemical composition of the received machining chips. The ingots were annealed in high vacuum, as well as were hot rolled in a mill. The microstructures were characterized by optical microscopy. The hardness was evaluated using the Rockwell B scale hardness. The results showed that the compositions of the recycled Zircaloy comply with the chemical specifications and a suitable microstructure has been obtained for nuclear use. (author)

  1. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  2. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  3. Steam gasification of coal, project prototype plant nuclear process heat: Report at the end of the reference phase

    Science.gov (United States)

    Vanheek, K. H.

    1982-05-01

    The work carried out in the field of steam gasification of coal is described. On the basis of the status achieved to date, it can be stated that the mode of operation of the gas generator developed, including the direct feeding of caking high volatile coal, is technically feasible. Moreover, throughput can be improved by 65% at minimum by using catalysts. On the whole, industrial application of steam gasification, using nuclear process heat, stays attractive compared with other gasification processes. Not only coal is conserved, but also the costs of the gas manufactured are favorable. As confirmed by recent economic calculations, these are 20 to 25% lower.

  4. Effect of Included Angle in V-Groove Butt Joints on Shrinkages in Submerged Arc Welding Process

    Directory of Open Access Journals (Sweden)

    N. LAKSHMANA SWAMY

    2012-04-01

    Full Text Available The problems of distortion, residual stresses and reduced strength of structure in and around a welded joint are of major concern in the shipbuilding industry and in other similar manufacturing industries. The predictions of the degree of shrinkages in ship panels due to welding are of great importance from the point of view of dimensional control and it is important to analyze transverse and longitudinal shrinkage. This paper deals with the experimental analysis of transverse and longitudinal shrinkage in single and double V-groove butt joints in submerged arc welding by varying included angle and keeping process parameters constant. It is found that, the maximum shrinkage was at the centre of the plate and minimum at the ends. It is also found that, the transverse and longitudinal shrinkage increase with increase in the included angle. There is a significant increase in the transverse shrinkage and small variation in longitudinal shrinkage.

  5. STUDY ON THE PRESSURE IN PLASMA ARC

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The axial pressure in plasma arc is measured under different conditions. The effects of the parameters, such as welding current, plasma gas flow rate, electrode setback and arc length, on the pressure in plasma arc are investigated and quantitative analyzed to explain the relationship between the quality of weld and the matching of parameters in plasma arc welding process.

  6. Numerical Analysis of Two-Way Interaction between Weld-Pool and Arc for GTA Welding Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A mathematical model to describe the heat transfer and fluid flow in the mutually coupled weld pool and arc by an interactive free surface of the pool for a stationary gas tungsten arc welding (GTAW) is developed. The two sets of governing equations and auxiliary formulas, controlling the weld pool and plasma arc systems respectively, were solved by a finite difference method. A boundary-fitted coordinate system was adopted because the free surface has a curved and unknown shape during welding. The results of this work provide a fundamental basis for predicting the behavior of an integrated weld pool and arc system from first principles.

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  8. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  9. Hydrometallurgical-UV process to produce ferrous sulfate from the pyrite present in coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Viganico, E.M.; Silva, R.A. [South Rio Grande Federal Univ., Porto Alegre (Brazil).Graduate Program in Mining, Metallurgical and Materials Technology Center

    2010-07-01

    The oxidation of pyrite can promote acid mine drainage (AMD). This study developed a hydrometallurgical-UV route for the production of ferrous sulfate. The laboratory study was conducted using a pyrite concentrate obtained from a processed coal tailing. Leaching of the tailing was performed in packed bed columns in an oxidizing environment with an aqueous medium. Recirculation of the liquor produced an Fe{sup 3+} iron rich extract. Ultraviolet irradiation was then used to convert the Fe{sup 3+} to Fe{sup 2+}. Heat provided by the UV lamps caused the ferrous sulfate to crystallize. X-ray diffraction (XRD) studies of the crystals demonstrated that it is possible to produce commercial-grade ferrous sulfate heptahydrate crystals from the pyrite present in coal tailings. The crystals are used to treat anemia in humans and animals, and are also used as reagents for waste and waste water treatment. 7 refs., 2 tabs., 2 figs.

  10. State of the art of biological processes for coal gasification wastewater treatment.

    Science.gov (United States)

    Zhao, Qian; Liu, Yu

    2016-01-01

    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge. PMID:27364381

  11. Research of the Institute of Chemical Processing of Coal on hot briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Malczyk, R.; Rychly, J.; Sekula, M.; Zakrzewski, Z. (Instytut Chemicznej Przerobki Wegla, Zabrze (Poland))

    1992-04-01

    Reviews research work carried out for the past 40 years by the Institute of Chemical Processing of Coal in Zabrze, Poland in the field of coal briquetting. The first task faced by the Institute in the mid 1950s was briquetting of semicoke. General briquetting parameters for semicoke are discussed. The history and achievements of the Institute's research and development from the early 60s up to today is outlined. In addition to economic aspects, environmental problems became more and more the focus of study. Production of smokeless fuel is the subject of recent studies. Future activities to be performed in this field and perspectives for their implementation in industry are pointed out. 26 refs.

  12. Dynamic process simulation as an engineering tool. A case of analysing a coal plant evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, Jari; Juslin, Kaj [VTT Technical Research Centre of Finland, Espoo (Finland); Blom, Harri [Fortum Power and Heat Oy, Naantali (Finland)

    2012-07-01

    Methods relying on mathematical models, such as simulation and optimisation, have been adopted in process industry and routinely used in various engineering tasks. This paper discusses the current status of simulation, especially dynamic simulation (DS), in engineering projects, which provides means to study process behaviour in both normal operation and during incidents. A case example of solving an engineering problem with DS at the power plant is presented. A model of a once-through evaporator of a coal-fired power plant was developed, and used to analyse thermal behaviour of the evaporator pipes. (orig.)

  13. Experimental study on a new process of producing hydrogen in consumption of water and coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Jia, C.X.; Zhang, Y.; Liu, C.F.; Huang, D.S.; Sun, Y.; Zhou, L. [Tianjin University, Tianjin (China)

    2008-05-15

    A new process of producing pure H{sub 2} in consumption of H{sub 2}O and carbon is presented. It contains three reactions: (1) Steam reacts with FeO at 800{sup o}C generating pure H{sub 2} and Fe3O{sub 4}/Fe{sub 2}O{sub 3}; (2) Fe3O{sub 4}/Fe{sub 2}O{sub 3} are reduced to FeO by CO at same temperature while CO changes to CO{sub 2}; (3) The produced CO{sub 2} reacts with carbon generating CO at 900{sup o}C. The net product of the process is H{sub 2} and CO. Theoretical energy gain of the new process is much higher than 1.0 and is energetically more than autarky. Some CO satisfies the process energy requirement and the surplus CO outputs as by-product. Experiments proved the feasibility of the process with indication of the importance to control the extent of reduction. The prominent advantages embedded allow the process applied in large-scale to trade coal for hydrogen. As such, instead of burning coal, hydrogen is burnt wherever energy is consumed.

  14. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    Science.gov (United States)

    Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-06-01

    A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.

  15. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U/sub 3/O/sub 8/ resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed.

  16. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    International Nuclear Information System (INIS)

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U3O8 resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed

  17. Evaluation of Structural Changes in the Coal Specimen Heating Process and UCG Model Experiments for Developing Efficient UCG Systems

    Directory of Open Access Journals (Sweden)

    Gota Deguchi

    2013-05-01

    Full Text Available In the underground coal gasification (UCG process, cavity growth with crack extension inside the coal seam is an important phenomenon that directly influences gasification efficiency. An efficient and environmentally friendly UCG system also relies upon the precise control and evaluation of the gasification zone. This paper presents details of laboratory studies undertaken to evaluate structural changes that occur inside the coal under thermal stress and to evaluate underground coal-oxygen gasification simulated in an ex-situ reactor. The effects of feed temperature, the direction of the stratified plane, and the inherent microcracks on the coal fracture and crack extension were investigated using some heating experiments performed using plate-shaped and cylindrical coal specimens. To monitor the failure process and to measure the microcrack distribution inside the coal specimen before and after heating, acoustic emission (AE analysis and X-ray CT were applied. We also introduce a laboratory-scale UCG model experiment conducted with set design and operating parameters. The temperature profiles, AE activities, product gas concentration as well as the gasifier weight lossess were measured successively during gasification. The product gas mainly comprised combustible components such as CO, CH4, and H2 (27.5, 5.5, and 17.2 vol% respectively, which produced a high average calorific value (9.1 MJ/m3.

  18. Diagnostics of plasma arc during the process of remelting of surface layer in 40Cr4 steel

    Directory of Open Access Journals (Sweden)

    Z. Nitkiewicz

    2007-06-01

    Full Text Available Purpose: The purpose of this work is to propose a research method for diagnostics and determination of temperature and shape of plasma arc used for surface treatment of 40Cr4 steel with TiO2 coating.Design/methodology/approach: The surfaces of samples, previously coated with ceramic coating, have been remelted with plasma arc. For investigations of arc shape the high-resolution modern visible light camera and thermovision camera have been used.Findings: The temperature distribution in plasma arc with percentage quantity of temperature fields has been determined. The arc limiting profiles with isotherms have also been determined.Research limitations/implications: Further research is aimed to assign the identified spatial points of the arc with the appropriate values of temperature.Practical implications: Selection of remelting parameters is performed by trial and error method, which is time-consuming and expensive. In-depth recognition of parameters, which characterise the source, will be useful in creation of the method of fast prognosis of parameters for the used source with the effects of remelting.Originality/value: The diagnostics of plasma arc which consists in estimation of the temperature and the shape of the arc by means of high-resolution visible light camera and the thermovision camera.

  19. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

  20. Materials technology for coal-conversion processes. Progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, William A.

    1980-06-01

    The program entails nondestructive testing, failure analysis, and studies of erosive wear, corrosion, and refractory degradation. Analysis of recent refractory-slag interaction tests suggests that as the chromia content is increased from 10 to 32%, the primary reaction product changes from calcium hexaluminate to spinel, significantly increasing the corrosion resistance of the refractory. Field reliability of the high-temperature ultrasonic erosion scanner was demonstrated at both a coal liquefaction plant (SRC at Tacoma, WA) and a coal gasification plant (Morgantown, WV). Continuous high-temperature operation has been demonstrated and an accuracy of +-0.025 mm seems achievable. Equipment has been ordered for field tests of passive acoustic systems at Exxon. This includes a four-channel tape recorder, differential amplifiers, and signal conditioners. Corrosion studies have been completed on effects of multicomponent gas environments on corrosion mechanisms and uniaxial tensile properties of Fe-Ni-Cr alloys. Results of these and other tests utilizing 10,000-h exposures suggest that corrosion rates of 0.6 mm/y can be expected. Failure analysis activities included studies of compressor diaphragms from the Grand Forks Energy Technology Center coal-liquefaction continuous-process unit. Cracks were found in two of the three diaphragms. Failure of an internal solids transfer line from HYGAS appears to have been caused by severe localized sulfidation of the high-nickel Inconel 182 weld metal used to fabricate the line.

  1. The Process of Separating Bovine Serum Albumin Using Hydroxyapatite and Active Babassu Coal (Orbignya martiana

    Directory of Open Access Journals (Sweden)

    Márcia Regina Ribeiro Alves

    2016-01-01

    Full Text Available Bovine serum albumin is one of the major serum proteins; it plays an important role as a result of its functional and nutritional properties which have bioactive peptides. Adsorption method was used to separate protein, which involves hydroxyapatite, synthetic hydroxyapatite, and active babassu coal. Initially, characterization was carried out using the zeta potential of the adsorbents. Kinetic pseudo-first- and pseudo-second-order models were applied. For isotherms, equilibrium data studies were carried out using the Langmuir and Freundlich models, in addition to determining the efficiency of adsorptive process. The results of the zeta potential showed loads ranging from +6.9 to −42.8 mV. The kinetic data were better represented in the pseudo-second-order model with chemisorption characteristics. The adsorption capacity of the adsorbents decreased as pH increased, indicating that the electrostatic bonds and some functional groups of active babassu coal contributed to the reduction of adsorption, especially oxygen linked to carbon atoms. The value of pH 4.0 showed the best results of adsorption, being obtained as the maximum adsorption capacity (qm and yield (% (where qm=87.95 mg g−1 and 74.2%; 68.26 mg g−1 and 68.6%; and 36.18 mg g−1, 37.4% of hydroxyapatite, synthetic hydroxyapatite, and active babassu coal, respectively.

  2. The Release of Trace Elements in the Process of Coal Coking

    Directory of Open Access Journals (Sweden)

    Jan Konieczyński

    2012-01-01

    Full Text Available In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury.

  3. The Process of Separating Bovine Serum Albumin Using Hydroxyapatite and Active Babassu Coal (Orbignya martiana)

    Science.gov (United States)

    Zuñiga, Abraham Damian Giraldo; Sousa, Rita de Cássia Superbi; Zacchi Scolforo, Carmelita

    2016-01-01

    Bovine serum albumin is one of the major serum proteins; it plays an important role as a result of its functional and nutritional properties which have bioactive peptides. Adsorption method was used to separate protein, which involves hydroxyapatite, synthetic hydroxyapatite, and active babassu coal. Initially, characterization was carried out using the zeta potential of the adsorbents. Kinetic pseudo-first- and pseudo-second-order models were applied. For isotherms, equilibrium data studies were carried out using the Langmuir and Freundlich models, in addition to determining the efficiency of adsorptive process. The results of the zeta potential showed loads ranging from +6.9 to −42.8 mV. The kinetic data were better represented in the pseudo-second-order model with chemisorption characteristics. The adsorption capacity of the adsorbents decreased as pH increased, indicating that the electrostatic bonds and some functional groups of active babassu coal contributed to the reduction of adsorption, especially oxygen linked to carbon atoms. The value of pH 4.0 showed the best results of adsorption, being obtained as the maximum adsorption capacity (qm) and yield (%) (where qm = 87.95 mg g−1 and 74.2%; 68.26 mg g−1 and 68.6%; and 36.18 mg g−1, 37.4%) of hydroxyapatite, synthetic hydroxyapatite, and active babassu coal, respectively. PMID:27376149

  4. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  5. Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Online measurement of carbon content of coal is important for coal-fired power plants to realize the combustion optimization of coal-fired boilers. Given that the measurement of carbon content of coal using laser-induced breakdown spectroscopy (LIBS) suffers from low measurement accuracy because of matrix effects, our previous study has proposed a combination model to improve the measurement accuracy of carbon content of coal. The spatial confinement method, which utilizes the spectral emissions of laser-induced plasmas spatially confined by cavities for quantitative analysis, has potential to improve quantitative analysis performance. In the present study, the combination model was used for coal measurement with cylindrical cavity confinement to further improve the measurement accuracy of carbon content of coal. Results showed that measurement accuracy was improved when the combination model was used with spatial confinement method. The coefficient of determination, root-mean-square error of prediction, average relative error, and average absolute error for the combination model with cylindrical cavity confinement were 0.99, 1.35%, 1.66%, and 1.08%, respectively, whereas values for the combination model without cylindrical cavity confinement were 0.99, 1.63%, 1.82%, and 1.27%, respectively. This is the first time that the average absolute error of carbon measurement for coal analysis has achieved close to 1.0% using LIBS, which is the critical requirement set for traditional chemical processing method by Chinese national standard. These results indicated that LIBS had significant application potential for coal analysis. - Highlights: • Spatial confinement method is applied for the measurement of carbon content in coal. • Previously proposed combination model is used with spatial confinement method. • The final result is firstly close to the critical reproducibility requirement of Chinese national standard

  6. A CUSP CATASTROPHE, PRECURSORS PATTERN ANDEVOLUTION PROCESS OF ROCKBUST OF COAL PILLARUNDER A HARD ROCK SUBJECT TO ELASTIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    徐曾和; 徐小荷

    1996-01-01

    The rockburst of the coal pillar under a thick hard roof stratum is modelled as the instability failure problem of coal pillars under strata subject to elastic support. The instability mechanism of rockburst is studied by applying cusp catastrophic theory. The effects of the stiffness ratio of the system and loads imposed on the system on the rockburst are explicated.The factors affecting rockbursts are discussed. Based on them, the "evolution process, the forewarning regularity and forewarning sings of rockbursts are studied. It is indicated that the subsidence velocity of roof stratum, which increases quickly and tends to infinity, is the forewarning measurable signs of the rockbursts of coal pillar.

  7. Combined coal gasification and Fe{sub 3}O{sub 4}-reduction using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Tamaura, Y. [Tokyo Inst. of Technology, Tokyo (Japan); Ehrensberger, K.; Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The coal/Fe{sub 3}O{sub 4} system was experimentally studied at PSI solar furnace. The reactants were directly exposed to a solar flux irradiation of 3,000 suns (1 sun = 1 kW/m{sup 2}). The combined gasification of coal and reduction of Fe{sub 2}O{sub 3} proceeded rapidly after only one second exposure, suggesting an efficient heat transfer and chemical conversion by direct solar energy absorption at the reaction site. The proposed solar thermochemical process offers the possibility of converting coal to a cleaner fluid fuel with a solar-upgraded calorific value. (author) 2 figs., 8 refs.

  8. Optimization of Welding Parameters of Submerged Arc Welding Using Analytic Hierarchy Process (AHP) Based on Taguchi Technique

    Science.gov (United States)

    Sarkar, A.; Roy, J.; Majumder, A.; Saha, S. C.

    2014-04-01

    The present paper reports a new procedure using an analytic hierarchy process (AHP) based Taguchi method for the selection of the best welding parameters to fabricate submerged arc welding of plain carbon steel. Selection of best welding parameters is an unstructured decision problem involving process parameters for multiple weldments. In the present investigation, three process parameter variables i.e. wire feed rate (Wf), stick out (So) and traverse speed (Ts) and the three response parameters i.e. penetration, bead width and bead reinforcement have been considered. The objective of the present work is thus to improve the quality of the welded elements by using AHP analysis based Taguchi method. Taguchi L16 orthogonal array is used to perform with less number of experimental runs. Taguchi approach is insufficient to solve a multi response optimization problem. In order to overcome this limitation, a multi criteria decision making method, AHP is applied in the present study. The optimal condition to have a quality weld (i.e. bead geometry) is found at 210 mm/min of wire feed rate, 15 mm of stick out and 0.75 m/min of traverse speed and also observed that the effect of wire feed rate on the overall bead geometry properties is more significant than other welding parameters. Finally, a confirmatory test has been carried out to verify the optimal setting so obtained.

  9. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    Science.gov (United States)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  10. Solvent Refined Coal (SRC) process. Research and development report No. 53, interim report No. 29, August-November, 1978. Volume VI. Process development unit studies. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    This report presents the results of seven SRC-II runs on Process Development Unit P99 feeding Pittsburgh Seam coal. Four of these runs (Runs 41-44) were made feeding coal from the Robinson Run Mine and three (Runs 45-47) were made feeding a second shipment of coal from the Powhatan No. 5 Mine. This work showed that both these coals are satisfactory feedstocks for the SRC-II process. Increasing dissolver outlet hydrogen partial pressure from approximately 1300 to about 1400 psia did not have a significant effect on yields from Robinson Run coal, but simultaneously increasing coal concentration in the feed slurry from 25 to 30 wt% and decreasing the percent recycle solids from 21% to 17% lowered distillate yields. With the Powhatan coal, a modest increase in the boiling temperature (approximately 35/sup 0/F) at the 10% point) of the process solvent had essentially no effect on product yields, while lowering the average dissolver temperature from 851/sup 0/F to 842/sup 0/F reduced gas yield.

  11. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  12. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  13. On the Modeling of Vacuum Arc Remelting Process in Titanium Alloys

    Science.gov (United States)

    Patel, Ashish; Fiore, Daniel

    2016-07-01

    Mathematical modeling is routinely used in the process development and production of advanced aerospace alloys to gain greater insight into the effect of process parameters on final properties. This article describes the application of a 2-D mathematical VAR model presented at previous LMPC meetings. The impact of process parameters on melt pool geometry, solidification behavior, fluid-flow and chemistry in a Ti-6Al-4V ingot is discussed. Model predictions are validated against published data from a industrial size ingot, and results of a parametric study on particle dissolution are also discussed.

  14. Laser Shock Processing of Surface Copperize on Arc-Meshes Gear

    Institute of Scientific and Technical Information of China (English)

    马德毅; 刘继光; 宋丹路

    2004-01-01

    This paper presents surface modifications of aluminum-alloy induced by laser-shock processing (LSP). In the first part, the basic principles are discussed to provide an overview of the physical processes involved in laser shock processing, and to introduce pressure loadings generated by different laser generators. In the second part, emphases are given to the effects of laser intensity, target material, laser pulse duration and laser wavelength, and uniform and localized modeling of fatigue behavior after LSP. In the third part,experimental results are given to show the laser-induced pure mechanical effects on aluminum-alloy by using LSP.

  15. Numerical modeling of a hybrid arc / laser welding process in a level set framework : application to multipass welding of high thickness steel sheets

    OpenAIRE

    Desmaison, Olivier

    2013-01-01

    Hybrid arc / laser welding represents the solution for high thickness steel sheets assembly. The laser heat source added to the MIG torch improves the process productivity while respecting quality standards. Nevertheless, the phenomenology of the process remains complex and not totally understood. This is the thrust for the development of numerical simulation. The present study has been carried out as part of the "SISHYFE" Material and Process ANR project.For that purpose, a new non stationar...

  16. The whole process confirmation management and its application in coal mine safe production

    Institute of Scientific and Technical Information of China (English)

    YAO Hai-fei

    2012-01-01

    After analyzing the reasons for coal mine accidents and the current management methods,effective actions for the implementation of safety management were put forward by carrying out the whole process confirmation management.The basic content and the five implementation steps were described,and the implementation method and the program of every step were introduced.Some rules for the implementation of the whole process confirmation management in coal mine safety production were explained,such as during the process of preproduction,before descent,descent,after descent,walking in the roadway,post-operation,shift,and hoisting after work.The results show that the guardians and the executors should both confirm the implementation,which can improve the workers' attention and self-awareness to avoid errors in detail and reduce the "three violations" phenomenon.To ensure the effect of the whole process confirmation management,relevant departments should designate a person-in-charge in the specific work in all stages,make a work plan,and strengthen the internal evaluation.

  17. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash.

    Science.gov (United States)

    Zhang, Lingen; Xu, Zhenming

    2016-07-15

    The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173K and 10Pa with 10wt% coke addition for 40min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473K, 1-10Pa and heating time 40min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes. PMID:27015376

  18. The Complex Alarming Event Detecting and Disposal Processing Approach for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Cheng Bo; Zhou Peng; Zhu Da; Chen Junliang

    2012-01-01

    Due to the complex environment of the coal mine, the accidents can occur at any time and often result in partial or total evacuation of mine personnel and could result in the loss of lives. Therefore, it is important and necessary to detect the accidents and generate a corresponding alarming disposal in time. This paper proposed a real-time complex alarming event detecting and disposal processing approach for coal mine safety using wireless sensor network. Firstly, we introduce the event and ...

  19. Thermodynamic and kinetic processes associated with CO 2-sequestration and CO 2-enhanced coalbed methane production from unminable coal seams

    OpenAIRE

    Busch, Andreas

    2005-01-01

    The present thesis investigates the thermodynamic and kinetic processes associated with gas sorption (CO2, CH4) on coal. It is incorporated into a research field which studies CO2-sequestration in combination with CO2-enhanced coalbed methane production in unminable coal seams. This combination is regarded as a viable and promising option to reduce anthropogenic CO2-emissions. At the moment numerous world-wide research projects investigate the feasibility of this concept under different geolo...

  20. Real time error detection in metal arc welding process using Artificial Neural Netwroks

    OpenAIRE

    Sharma, Prashant; Shaju K. Albert; Rajeswari, S.

    2016-01-01

    Quality assurance in production line demands reliable weld joints. Human made errors is a major cause of faulty production. Promptly Identifying errors in the weld while welding is in progress will decrease the post inspection cost spent on the welding process. Electrical parameters generated during welding, could able to characterize the process efficiently. Parameter values are collected using high speed data acquisition system. Time series analysis tasks such as filtering, pattern recognit...

  1. Cylindrical particle modelling in pulverized coal and biomass co-firing process

    International Nuclear Information System (INIS)

    Numerical analysis of co-firing pulverized coal and biomass in a vertical cylindrical laboratory furnace is explored. The ratio of coal and biomass in the fuel was 80:20 by mass for all cases. The mathematical model of combustion in the furnace was established by describing physical phenomena such as turbulent flow, heat and mass transfer, devolatilization and combustion. A 3D-model of combustion in a laboratory furnace was created using the CFD software FLUENT. The shape of the biomass particles was estimated as cylindrical and was accounted for in the calculation of particle trajectories via a custom-developed model. Experimental measurements were conducted on a 20 kW laboratory furnace with controllable wall temperature. The temperature varied in the range from 1233 K to 1823 K, depending on the case. Excess air for combustion was set at 10% or 20%, depending on the case. The developed model shows better agreement with the experimental data than the existing models, which estimate particles as spheres. Analysis of the results shows that the influence of the particle size increases with the size of the particle. Also, the geometry of the cylindrical particles strongly influences the beginning and the intensity of the devolatilization process and subsequently the combustion process. - Highlights: • Co-firing of pulverized biomass and coal is modelled using CFD Software Fluent. • Shape of biomass particles is taken into consideration in the model. • Geometry of particles influences the process of devolatilization and combustion. • Influence of the particle shape and size increases with the particle size

  2. Improvement in the morphology of micro-arc oxidised titanium surfaces: A new process to increase osteoblast response

    International Nuclear Information System (INIS)

    This study describes a method for combining sandblast-acid etching and micro-arc oxidation to optimise titanium implant surfaces, and examines the effects of these surfaces on osteoblast response. Titanium discs were grouped as: micro-arc oxidised (MAO), sandblast-acid etched and micro-arc oxidised (MAO-SA), micro-arc oxidised and heated (MAO-HT), and untreated smooth surface. The combination of sandblast-acid etching and micro-arc oxidation in the MAO-SA group created an average surface roughness of 2.02 ± 0.15 μm compared to the untreated machined surface of 0.31 ± 0.06 μm. Scanning electron microscopy observations of the surface structures showed that the irregularly ordered valleys created by sandblast-acid etching remained after micro-arc oxidation and that micropores had also formed. These microstructures provided a better place for osteoblasts to spread compared with the other surfaces. In addition, our results indicated that adherent osteoblasts expressed greater alkaline phosphatase (ALP) activity and osteocalcin (OC) production on MAO-SA surfaces compared with MAO, MAO-HT, and smooth surfaces. The overall results clearly indicate that combining sandblast-acid etching and micro-arc oxidation techniques improves the titanium surface morphology and increases the roughness, which provides an optimal surface for cell differentiation and osseointegration.

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  4. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    This report describes the Western Research Institute (WRI) COMPCOAL{trademark} process which is designed to produce a stable, high-Btu fuel from Powder River Basin (PRB) and other low-rank coals. The process is designed to overcome the problems of oxidation and spontaneous combustion, readsorption of moisture, and dust formation from the friable coal. PRB coal is susceptible to low-temperature oxidation and self-heating, particularly after it has been dried. This report describes a method WRI has developed to prevent self-heating of dried PRB coal. The ``accelerated aging`` not only stabilizes the dried coal, but it also increases the heating value of the COMPCOAL product. The stabilized COMPCOAL product has a heating value of 12,000 to 12,700 Btu/lb, contains 35 to 40 wt % volatiles, and is comparable to unprocessed PRB coal in self-heating and low-temperature oxidation characteristics. Importantly, the self-heating tendency can be controlled by slightly adjusting the ``aging`` step in the process.

  5. Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; QIAN Shi-qiang; ZHOU Xi-ying

    2009-01-01

    The TiN/Ni composite coatings were deposited on 7005 aluminium alloy by high speed jet electroplating and then processed with plasma transferred arc(PTA) scanning process. The microstructure, microhardness and friction coefficient of PTA scanning treated specimens were investigated. It is shown that the PTA scanning treated specimens have a rapidly solidified microstructure consisting of the uniformly distributed TiN phase and fine Al3Ni2 intermetallic phases. The composite coating has an average microhardness of approximately HV 800. The friction coefficient of PTA scanning treated specimens (oscillated at around 0.25) is considerably lower than that of TiN/Ni composite coating (oscillated at around 0.35). The corrosion behavior of the composite coating in 3.5% NaCl solution at room temperature was also determined using a potentiostat system. In comparison with the corrosion potential φcorr of -0.753 V for 7005 aluminium alloy, the corrosion potentials for TiN/Ti composite coating and PTA scanning treated specimen are increased by 0.148 V and 0.305 V, respectively. The PTA scanning treated specimen has the lowest corrosion current density Jcorr as well as the highest corrosion potential φcorr, showing an improved corrosion resistance compared with 7005 aluminium alloy.

  6. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region

    Energy Technology Data Exchange (ETDEWEB)

    Smolka-Danielowska, D. [University of Silesia, Sosnowiec (Poland). Faculty of Earth Science

    2010-11-15

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations of Th-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: {sup 226}Ra - 85.4 Bq kg{sup -1}, {sup 40}K-689 Bq kg{sup -1}, {sup 232}Th - 100.8 Bq kg{sup -1}, {sup 235}U - 13.5 Bq kg{sup -1}, {sup 238}U - 50 Bq kg{sup -1} and {sup 228}Ac - 82.4 Bq kg{sup -1}.

  7. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    Science.gov (United States)

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  8. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  9. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    王萍; 李建平; 郭永春; 杨忠

    2010-01-01

    The regulation of ceramic coating formed by micro-arc oxidation on Mg-11Gd-1Y-0.5Zn (wt.%) magnesium alloys was investigated by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The relation of phase structure and corrosion resistance of MgO coating formed by micro-arc oxidation in different growth stages was analyzed. The results showed that the growth of coating accorded with linear regularity in the initial stage of micro-arc oxidation, which was the stage of anodic oxidation controlled ...

  10. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Qu, X. [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Liang, P. [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao (China); Wang, Z. [Ningbo Branch of Academy of Ordnace Science, Ningbo (China); Zhang, R.; Sun, D.; Bi, J. [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China); Gong, X. [Hengyuan Coal Electrochemical Co., Ltd, Fugu (China); Gan, Z. [State Key Laboratory of Low Carbon Energy, ENN Science and Technology Ltd, Langfang (China)

    2011-01-15

    A pilot polygeneration process of a 75 t h{sup -1} circulating fluidized bed (CFB) boiler combined with a moving bed coal pyrolyzer was developed based on laboratory-scale experimental results. The process operation showed good consistency and integration between boiler and pyrolyzer. Some critical operating parameters such as hot ash split flow from the CFB boiler to the pyrolyzer, mixing of hot ash and coal particles, control of pyrolysis temperature and solid inventory in the pyrolyzer, and pyrolysis gas clean-up were investigated. Yields of 6.0 wt-% tar and 8.0 wt-% gas with a heating value of about 26 MJ m{sup -3} at 600 C were obtained. Particulate content in tar was restrained less than 4.0 wt-% by using a granular filter of the moving bed. Operation results showed that this pilot polygeneration process was successfully scaled up. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  12. Recycling of electric arc furnace (EAF dust for use in steel making process

    Directory of Open Access Journals (Sweden)

    José Alencastro de Araújo

    2014-07-01

    Full Text Available The EAF dust is listed as hazardous waste from specific source, K061, according to ABNT 10004:2004 and constitutes one of the major problems of electrical steel plant. This work suggests recycling of the EAF dust by sintering of a composite, pre-cast agglomerate (PCA consisting of EAF dust agglomerate to coke particles, mill scale and ceramic fluorite into pellets. The work was divided into three stages, in the first stage the technical viability of using only solid waste industrial to produce a PCA was observed, in the second phase, the main effects between the components of the PCA to obtain the optimal formulation was tested. In the third phase the intensity of the variables, coke and fluorite ceramics, for removing zinc of PCA was checked. Every stage was chemically analyzed by X-ray fluorescence spectrometer and X-ray diffraction. The first two stages of the production PCA were carried out in a pilot plant sintering downstream and the third phase in a pilot plant upstream. As a result of the process two by-products were obtained, the pre-cast agglomerated, PCA, with total iron content exceeding 70%, object of the process of sintering and zinc dust, containing more than 50% zinc resulting from volatilization of this metal during the sintering process and collected by bag filter. In addition, approximately 90% of lead and cadmium contained in the initial EAF dust was extracted.

  13. Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA

    Science.gov (United States)

    Cravotta, III, Charles A.; Keith B.C. Brady,

    2015-01-01

    Clean sampling and analysis procedures were used to quantify more than 70 inorganic constituents, including 35 potentially toxic or hazardous constituents, organic carbon, and other characteristics of untreated (influent) and treated (effluent) coal-mine discharges (CMD) at 38 permitted coal-mining or coal-processing facilities in the bituminous coalfield and 4 facilities in the anthracite coalfield of Pennsylvania. Of the 42 facilities sampled during 2011, 26 were surface mines, 11 were underground mines, and 5 were coal refuse disposal operations. Treatment of CMD with caustic soda (NaOH), lime (CaO or Ca(OH)2), flocculent, or limestone was ongoing at 21%, 40%, 6%, and 4% of the facilities, respectively; no chemicals were added at the remaining facilities. All facilities with CMD treatment incorporated structures for active or passive aeration and settling of metal-rich precipitate.

  14. Research Progress of Micro-arc Oxidation Process for Magnesium Alloy%镁合金微弧氧化研究进展

    Institute of Scientific and Technical Information of China (English)

    赵晓鑫; 马颖; 孙钢

    2013-01-01

    介绍了镁合金微弧氧化直流电源、交流电源、脉冲电源、多种电源的发展现状.同时对酸性、碱性电解液体系以及添加剂对微弧氧化的影响进行了分析.通过几个应用实例阐述了制约镁合金微弧氧化发展的主要因素,对镁合金微弧氧化技术的未来发展方向进行了展望.%The development of micro-arc oxidation process for magnesium alloy with DC power, AC power, pulse power, and the variety of power was described. And the effects of acidic, alkaline electrolyte and additives on micro-arc oxidation was analyzed. By several application examples, the main factors restricting the development of magnesium alloy micro-arc oxidation were describes. And the development direction of micro-arc oxidation process for magnesium alloy was prospected in future.

  15. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  16. Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.

    1987-03-01

    This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

  17. 太原选煤厂煤泥脱水工艺改造%Transformation of Coal Slime Dehydration Process in Taiyuan Coal Preparation Plant

    Institute of Scientific and Technical Information of China (English)

    刘仙萍

    2014-01-01

    According to the characteristics of production technology of Taiyuan coal preparation plant and the ac-tual situation,reformed the dehydration process of three links of the coarse slime(clean coal),flotation concentrate and tailings slime.Coarse coal slime dewatering adopts advanced coal hydrocyclone and changes the dewatering screen feeding method.Flotation concentrate dewatering reformed the whole process system by swift diaphragm filter press. The tailings slime was grading concentrated by coal slime hydrocyclone before it entered into dewatering screen,im-proved the material concentration of dewatering screen.Through the transformation of coal slime dewatering process, the water content of the final concentrate and tailings slime are greatly reduced,improved the quality of the products, won the market,obtained good economic benefits.%根据太原选煤厂生产工艺的特点和现场的实际情况,对该厂的粗煤泥(精煤)、浮精和尾矿煤泥3个环节的脱水工艺进行了改造。粗煤泥脱水采用先进的煤泥旋流器,同时改变了脱水筛的入料方式;浮精脱水运用快开式隔膜压滤机,进行了整个工艺系统的改造;尾矿煤泥在脱水筛前,用煤泥旋流器进行了预先分级浓缩,提高了脱水筛的入料浓度。通过煤泥脱水环节的改造,使精煤和尾矿煤泥的水分降低,提高了产品质量,赢得了市场,取得了较好的经济效益。

  18. ArcGIS 字段计算工具在空间数据属性处理中的应用%The Application of ArcGIS Field Calculate Tools in the Processing of Vector Data Attributes

    Institute of Scientific and Technical Information of China (English)

    余咏胜; 傅晓俊; 李琼; 魏祥

    2015-01-01

    针对地理空间数据生产中常见的属性数据处理问题,通过ArcGIS系统中的字段计算工具,结合Python脚本语言对空间数据的几何属性和非几何属性进行操作与处理,满足各类不同的应用需求,避免使用第三方工具或软件,提高了地理空间数据属性处理的工作效率。%According to the attribute data processing problems in geospatial data production , geometric properties and non -geometric attributes of spatial data were operated and processed through field calculate tools in ArcGIS system and python script language .Differ-ent sorts of application requirements were met without using third party tools or software .The working efficiency of geographic spatial data and attribute processing were greatly improved .

  19. 手工电弧焊过程危害及防护研究∗%Study on Harm and Protection of Manual Arc Welding Process

    Institute of Scientific and Technical Information of China (English)

    李学凌

    2016-01-01

    The arc welding is a common metal thermal processing technology, because its operation is simple and flexible, it is widely used in various machinery manufacturing fields, and it plays an important role. Its working principle is to make the metal junction surface melt into the plastic state with the use of heat or pressure, thus to achieve the purpose of permanent firmly adhered. While in the process of manual electric arc welding, there are many contact opportunities for occupational haz-ard factors, such as smoke, gas, noise, and arc radiation, they all would harm the health of operators. Therefore, the working principle of manual electric arc welding will be briefly introduced in this paper, and based on the damage in the process of manual arc welding, the corresponding protective measures will be proposed.%电弧焊是常见的金属热加工的工艺,因其操作简单灵活,因而被广泛应用于机械制造的各个领域,发挥了重要的作用。其工作原理是利用加热或者加压来使金属连接面融化成为塑性状态,从而达到永久牢固粘接的目的。而在手工电弧焊的过程中接触职业病危害因素的机会很多,烟尘、气体、噪声、弧光辐射都会对操作人员的健康带来危害。简要介绍手工电弧焊的工作原理,并基于手工电弧焊接过程中的危害提出相应的防护措施。

  20. Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Brian G. Williams

    2005-05-01

    This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

  1. Evaluation of erythemal UV effective irradiance from UV lamp exposure and the application in shield metal arc welding processing.

    Science.gov (United States)

    Chang, Cheng-Ping; Liu, Hung-Hsin; Peng, Chiung-Yu; Fang, Hsin-Yu; Tsao, Ta-Ho; Lan, Cheng-Hang

    2008-04-01

    Ultraviolet radiation (UVR) exposure is known to cause potential effects such as erythema in skin. For UV-induced erythema (sunburn), the action spectrum from the Commission Internationale de l'Eclairage, International Commission on Illumination (CIE) was adopted. Erythemal UV effects from UVR lamp exposure were investigated with commercial spectroradiometry devices in this research. Three kinds of portable UV germicidal lamps with broadband UVA (BB UVA, 350-400 nm), broadband UVB (BB UVB, 280-350 nm), and narrowband UVC (NB UVC, 254 nm) wavelengths served as the UVR emission sources. An action spectrum expresses the effectiveness of radiation for assessing the hazard of UVR in the erythemal action spectrum from 250-400 nm. The UV Index (UVI) is an irradiance scale computed by multiplying the CIE erythemal irradiance integral in milliwatts per square meter by 0.04 m mW. A comprehensive approach to detecting erythemal UVR magnitude was developed to monitor the effective exposure from UV lamps. The erythemal UVR measurement was established and the exposure assessment was applied to monitor erythemal UVR magnitude from shield metal arc welding (SMAW) processing. From this study, the erythemal UVR exposures were assessed and evaluated with environmental solar simulation of the UVI exposure.

  2. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    Science.gov (United States)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  3. Seepage laws of two kinds of disastrous gas in complete stress-strain process of coal

    Institute of Scientific and Technical Information of China (English)

    Cao Shugang; Guo Ping; Zhang Zunguo; Li Yi; Wang Yong

    2011-01-01

    The similarities and differences in seepage flow evolution laws of CH4 and CO2 during complete stressstrain process of samples were comparatively analyzed.The results show that the seepage flow evolution laws of CH4 and CO2 are extremely similar during the stress-strain process,showing that the characteristic first decreased and then increased.A mathematical model was also established according to the relationship of seepage velocity and axial strain.However,due to the strong adsorption ability of CO2,the coal samples generated a more serious “Klinkenberg effect” under the condition of CO2.Owing to this,the CO2 seepage flow resulted into occurrence of “stagnation” phenomenon during the late linear elastic stage Ⅱ.In the strain consolidation stage Ⅲ,the increment rate of CH4 seepage velocity was significantly greater than that of CO2.In the stress descent stage Ⅳ,when the axial load reached the peak pressure of coal,the increment rates of CH4 seepage velocity presented a turning point.But the changing rate of CO2 seepage velocity still remained slow and a turning point was presented at one time after the peak of the strain pressure,which showed an obvious feature of hysteresis.

  4. Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.

    1993-06-01

    Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

  5. Analysis of Combustion Process of Sewage Sludge in Reference to Coals and Biomass

    Science.gov (United States)

    Środa, Katarzyna; Kijo-Kleczkowska, Agnieszka

    2016-06-01

    Production of sewage sludge is an inseparable part of the treatment process. The chemical and sanitary composition of sewage sludge flowing into the treatment plant is a very important factor determining the further use of the final product obtained in these plants. The sewage sludge is characterized by heterogeneity and multi-components properties, because they have characteristics of the classical and fertilizer wastes and energetic fuels. The thermal utilization of sewage sludge is necessary due to the unfavorable sanitary characteristics and the addition of the industrial sewage. This method ensures use of sewage sludge energy and return of expenditure incurred for the treatment of these wastes and their disposal. Sewage sludge should be analyzed in relation to conventional fuels (coals and biomass). They must comply with the applicable requirements, for example by an appropriate degree of dehydration, which guarantee the stable and efficient combustion. This paper takes the issue of the combustion process of the different sewage sludge and their comparison of the coal and biomass fuels.

  6. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  7. Recovery of reagent in a process for producing ultra clean coal

    Energy Technology Data Exchange (ETDEWEB)

    K.M. Steel; J.W. Patrick [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2003-07-01

    A technique for selectively separating approximately 65 wt% of the Si(IV) in coal has been developed. The technique first uses aqueous HF to react with aluminosilicates and quartz to form fluoride complexed Al and Si species in solution. Aluminium cations, in the form of Al(NO{sub 3}){sub 3}, are then added to the solution to complex fluoride as AlF{sub 2}{sup +} and hydrolyse the silicon fluoride species to silicon hydroxide, which precipitates as pure silica gel and is removed by filtration. The solution is then distilled to recover a water stream, a nitric acid stream and a solid residue. The water stream is used to pyrohydrolyse the solid residue at temperatures in excess of 500{sup o}C to liberate HF for recycling. To complete the circuit, the solid remaining after pyrohydrolysis is treated with the nitric acid stream to produce Al(NO{sub 3}){sub 3} for recycling. The application of this work is primarily as part of a process for producing ultra-clean coal. As it is a technique for the selective separation of Al and Si from aluminosilicates, it may have application in other areas of mineral processing. 10 refs., 3 figs., 2 tabs.

  8. Usage of calculation experiment for coal combustion process optimization with purpose of toxic discharges decrease. Chapter 4

    International Nuclear Information System (INIS)

    In the chapter 4 the results of numerical simulation of dust-coal combustion process before and after radiation treatment on the base of three-dimensional equation of convective heat-mass exchange with taking into account the combustion reactions is presented. Conducted numerical experiments allow to create perfect ways for combustion of solid fuel with high moisture and ashiness to increase of combustion processes efficiency and to give suitable conception for power generation with minimal quantity of harmful substances with taking into consideration preliminary coal processing

  9. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  10. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  11. Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases

    Science.gov (United States)

    Kozakov, R.; Schöpp, H.; Gött, G.; Sperl, A.; Wilhelm, G.; Uhrlandt, D.

    2013-11-01

    The temperature determination of liquid metals is difficult and depends strongly on the emissivity. However, the surface temperature distribution of the weld pool is an important characteristic of an arc weld process. As an example, short-arc welding of steel with a cold metal transfer (CMT) process is considered. With optical emission spectroscopy in the spectral region between 660 and 840 nm and absolute calibrated high-speed camera images the relation between temperature and emissivity of the weld pool is determined. This method is used to obtain two-dimensional temperature profiles in the pictures. Results are presented for welding materials (wire G3Si1 on base material S235) using different welding CMT processes with CO2 (100%), Corgon 18 (18% CO2 + 82% Ar), VarigonH6 (93.5% Ar + 6.5% H2) and He (100%) as shielding gases. The different gases are used to study their influence on the weld pool temperature.

  12. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  13. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. This report describes leach tests and groundwater monitoring.

  14. Early maturation processes in coal. Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the Morwell Brown Coal seam

    CERN Document Server

    Salmon, Elodie; Lorant, François; Hatcher, Patrick G; Marquaire, Paul-Marie; 10.1016/j.orggeochem.2009.01.004

    2009-01-01

    In this work, we develop a theoretical approach to evaluate maturation process of kerogen-like material, involving molecular dynamic reactive modeling with a reactive force field to simulate the thermal stress. The Morwell coal has been selected to study the thermal evolution of terrestrial organic matter. To achieve this, a structural model is first constructed based on models from the literature and analytical characterization of our samples by modern 1-and 2-D NMR, FTIR, and elemental analysis. Then, artificial maturation of the Morwell coal is performed at low conversions in order to obtain, quantitative and qualitative, detailed evidences of structural evolution of the kerogen upon maturation. The observed chemical changes are a defunctionalization of the carboxyl, carbonyl and methoxy functional groups coupling with an increase of cross linking in the residual mature kerogen. Gaseous and liquids hydrocarbons, essentially CH4, C4H8 and C14+ liquid hydrocarbons, are generated in low amount, merely by clea...

  15. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    Science.gov (United States)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10‑3 s range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  16. Structure and Pozzolanic Activity of Calcined Coal Gangue during the Process of Mechanical Activation

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; LI Dongxu; CHEN Jianhua; YANG Nanru

    2009-01-01

    On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR,NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.

  17. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  18. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut [Deutsche Montan Technologie GmbH ? Mining Service Division?Essen (Germany)

    2006-06-06

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  19. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    International Nuclear Information System (INIS)

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  20. ALICE-ARC integration

    International Nuclear Information System (INIS)

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a module implementing the functionalities necessary to achieve AliEn job submission and management to ARC enabled sites

  1. Test study on rupture process and permeability properties of coal-rock in simulating mining stress effect

    Institute of Scientific and Technical Information of China (English)

    GAO gao-bin; LI Hua-min; QIAO Chun-sheng; SU Cheng-dong; WANG Wen

    2009-01-01

    A test system was designed by using a set of self-made experimental devices of coupled coal-gas in simulating mining stress effect,combining the equipment with RMT-150B rock mechanical experimental system,monitoring the rupture process of coal-rock with an acoustic emission (AE) device and collecting gas-flow rate and gas-stress data in real-time automatically with a gas flow-meter and gas pressure sensor.The fracture process and permeability properties test of the coal-rock in mining stress ef-fect was carried out.Test results indicate that AE events and variation of stresses have the same variance tendency and the rupture process of coal-rock can be monitored by AE.The relation curves among stresses,parameters of AE and permeability properties dem-onstrate that the permeability of coal-rock decreases gradually at quasi-elastic stage,in-creases gradually at plastic damage micro-fracture stage,rises suddenly near the peak point and has multi-variation at post-peak slip stage.From the results,such conclusion can be drawn that the variation of permeability can be monitored by AE parameters or stress change.

  2. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  3. Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation

    Directory of Open Access Journals (Sweden)

    Junaid Akhlas

    2015-10-01

    Full Text Available In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM, integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide.

  4. Application of hybrid coal reburning/SNCR processes for NOx reduction in a coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.J.; Zhou, Z.J.; Zhou, J.H.; Hongkun, L.V.; Liu, J.Z.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    Boilers in Beijing Thermal Power Plant of Zhongdian Guohua Co. in China are coal-fired with natural circulation and tangential fired method, and the economical continuous rate is 410 ton per hour of steam. Hybrid coal reburning/SNCR technology was applied and it successfully reduced NOx to about 170 mg/Nm{sup 3} from about 540 mg/Nm{sup 3}, meanwhile ammonia slip was lower than 10 ppm at 450-210 t/h load and the total reduction efficiency was about 70%. Normal fineness pulverized coal from the bin was chosen as the reburning fuel and the nozzles of the upper primary air were retrofitted to be used as the reburning fuel nozzles. The reducing agent of SNCR was an urea solution, and it was injected by the four layer injectors after online dilution. At 410 t/h load, NOx emission was about 300 mg/Nm{sup 3} when the ratio of reburning fuel to the total fuel was 25.9%-33.4%. Controlling the oxygen content of the gas in the reversal chamber to less than 3.4% resulted in not only low NOx emission but also high combustion efficiency. Ammonia slip distribution in the down gas pass was uneven and ammonia slip was higher in the front of the down gas pass than in the rear of the down gas pass. NSR and NOx reduction were proportional to each other and usually resulted in more ammonia slip with reduction in NOx. About 100 mg/Nm{sup 3} NOx emission could be achieved with about 40 ppm NH{sub 3} slip at 300-450 t/h, and ammonia slip from the SNCR reactions could be used as reducing agent of SCR, which was favorable for the future SCR retrofit.

  5. Post-combustion CO2 capture : energetic evaluation of chemical absorption processes in coal-fired steam power plants

    OpenAIRE

    Oexmann, Jochen

    2011-01-01

    In this work, a semi-empirical column model is developed to represent absorber and desorber columns of post-combustion CO2 capture processes in coal-fired steam power plants. The chemical solvents are represented by empirical correlations on the basis of fundamental measurement data (CO2 solubility, heat capacity, density). The model of a CO2 capture process including the column model is coupled to detailed models of a hard-coal-fired steam power plant and of a CO2 compressor to evaluate and ...

  6. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite (South China)

    Science.gov (United States)

    Wang, Xin-Shui; Gao, Jun; Klemd, Reiner; Jiang, Tuo; Zhai, Qing-Guo; Xiao, Xu-Chang; Liang, Xin-Quan

    2015-11-01

    ophiolite originated from an isotopically homogeneous depleted mantle source. The diversity of MORB- to IAB-like basalts and the presence of Fe-Ti basalts favor a formation of the NE Jiangxi ophiolite during the initial rifting phase of an intra-oceanic back-arc basin between an oceanic arc (Huaiyu Terrane) and the continental margin of the Yangtze Block (Jiuling Terrane) at ca. 990 Ma. Both the present and previous studies imply that multiple arc-back-arc systems formed during long-lasting subduction-accretion processes between the Yangtze and Cathaysia blocks during the early Neoproterozoic.

  7. Weldability and toughness evaluation of pressure vessel quality steel using the shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Datta, R.; Mukerjee, D.; Mishra, S.

    1998-12-01

    The present study was carried out to assess the weldability properties of ASTM A 537 Cl. 1 pressure-vessel quality steel using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were conducted under different welding conditions to determine the cold cracking susceptibility of the steel. The static fatigue limit values determined for the implant test indicate adequate resistance to cold cracking even with unbaked electrodes. The ERC test, however, established the necessity to rebake the electrodes before use. Lamellar tearing tests carried out using full-thickness plates under three welding conditions showed no incidence of lamellar tearing upon visual examination, ultrasonic inspection, and four-section macroexamination. Lamellar tearing tests were repeated using machined plates, such that the central segregated band located at the midthickness of the plate corresponded to the heat-affected zone (HAZ) of the weld. Only in one (no rebake, heat input: 14.2 kj cm-1, weld restraint load: 42 kg mm-2) of the eight samples tested was lamellar tearing observed. This was probably accentuated due to the combined effects of the presence of localized pockets of a hard phase (bainite) and a high hydrogen level (unbaked electrodes) in the weld joint. Optimal welding conditions were formulated based on the above tests. The weld joint was subjected to extensive tests and found to exhibit excellent strength (tensile strength: 56.8 kg mm-2, or 557 MPa), and low temperature impact toughness (7.4 and 4.5 kg-m at-20 °C for weld metal, WM, and HAZ) properties. Crack tip opening displacement tests carried out for the WM and HAZ resulted in δm values 0.36 and 0.27 mm, respectively, which indicates adequate resistance to brittle fracture.

  8. Simulation of the Process of Arc Energy-Effect in High Voltage Auto-Expansion SF6 Circuit Breaker

    Institute of Scientific and Technical Information of China (English)

    Rong Mingzhe; Yang Qian; Fan Chunduo

    2005-01-01

    A new magnetic hydro-dynamics (MHD) model of arc in H.V. auto-expansion SF6circuit breaker that takes into consideration nozzle ablation due to both radiation and thermal conduction is presented in this paper. The effect of PTFE (polytetrafluorethylene) vapor is considered in the mass, momentum and energy conservation equations of the constructed model. Then,the gas flow fields with and without conduction considered are simulated. By comparing the aforementioned two results, it is indicated that the arc's maximal temperature with conduction considered is 90 percent of that without considering conduction.

  9. Wind River Basin boundary, 1999 Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shape file contains a polygon representing the extent of the Wind River coal basin boundary. This theme was created specifically for the National Coal...

  10. North Park Basin, Colorado, for 1999 National Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representing the extent of the North Park coal basin boundary. This theme was created specifically for the National Coal...

  11. Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power

    International Nuclear Information System (INIS)

    Calcination carbonation reaction (CCR) process is regarded as a promising option for pulverized coal power plant to mitigate CO2 emission. In this paper, concentrated solar power (CSP) substitutes for coal to supply part of the calcination energy in order to reduce the fossil fuel consumption associated with the calciner. A CCR process driven by coal and CSP is examined from the perspective of energy efficiency. This paper focuses on the parameters of heat recovery efficiency, CSP capacity, compression energy, air separation energy and recycled energy to determine the contribution of each to the overall energy penalty. In addition, the effects of heat recovery efficiency, CSP capacity, purge percentage and CO2 capture efficiency on the co-driven case are analyzed through a sensitivity analysis. The results indicate that the thermal efficiency of integrating CCR co-driven process into an ultra-supercritical 1019 MW power plant is 35.37%, which means that the overall efficiency penalty is 9.63 percentage points. Moreover, the co-driven case reduces the fossil fuel consumption and the mass flow rate of fresh sorbent and circulation solids compared with coal-driven case. Increasing heat recovery efficiency and CSP efficiency can improve the co-driven case performance. - Highlights: • We examine a CCR process driven by coal and concentrated solar power simultaneously. • The contributors to the overall energy penalty are quantitatively identified. • Obvious coal-saving effect has been found in the co-driven system. • A sensitivity analysis is conducted to find the impact of key parameters

  12. Net coal thickness in the Hanna 77, 78, 79 and 81 coal zones of Hanna Basin, Wyoming (ha*catg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These ArcView shapefiles contain representations of the net coal thickness in the Hanna 77, 78, 79 and 81 coal zones, Hanna coalfield, Hanna Basin, Wyoming. These...

  13. Net coal thickness isopachs, Ferris 23, 25, 31, 50 and 65 coal zones, Hanna Basin Wyoming (fer*catg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These ArcView shapefiles contain representations of the net coal thickness in the Ferris 23, 25, 31, 50 and 65 coal zones in the Ferris coalfield, Hanna Basin,...

  14. A novel process for preparation of ultra-clean micronized coal by high pressure water jet comminution technique

    Energy Technology Data Exchange (ETDEWEB)

    Longlian Cui; Liqian An; Weili Gong; Hejin Jiang [China University of Mining and Technology, Beijing (China). School of Mechanics, Architecture and Civil Engineering

    2007-03-15

    A novel process for the preparation of ultra-clean micronized coal is presented in this paper. High pressure water jet mill replacing the ball mill is employed for coal comminution in the new preparation process, which is the essential difference from the traditional one. To compare the new preparation process with the traditional one, the comparison experiments were performed, with froth flotation tests of the fine particles ground by both mills using diesel oil and n-dodecane as collector, 2-octanol as frother, and sink-float separation tests using mixtures of carbon tetrachloride-benzene and carbon tetrachloride-bromoform as dense liquid. Different parameters including combustible recovery, ash content of the clean coal, separation efficiency, and energy consumption were investigated based on the two different preparation processes. The results show that the new preparation process has high combustible recovery, low ash content of the product, high separation efficiency, and low energy consumption compared with the traditional one. The comminution mechanism of high pressure water jet mill is introduced in this paper. The high pressure water jet comminution technique has great potential in coal pulverization, having the advantages of low energy consumption, low iron content, and low equipment wear. 35 refs., 4 figs., 7 tabs.

  15. Exxon catalytic coal gasification process development program. Quarterly technical progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    This report covers the activites for the Exxon Catalytic Coal Gasification Development Program during the quarter January 1-March 31, 1979. Construction of a bench apparatus to study reactions of product and recycle gas in furnace and heat exchanger tubes was completed and checkout of the apparatus was begun. A Startup and Initial Operation Schedule, a Checkout Test Plan, and an Initial Startup Plan were developed for the Process Develoment Unit (PDU). The PDU will be started up in a sequential manner, with the gasification system being started up on a once-through basis first. The gas separation system will be started up next, followed by the catalyst recovery system. The programmable controller, which handles valve sequencing, alarming, and other miscellaneous functions on the PDU, was programmed and checkout was completed on the coal feed, gas feed, and filter systems. Work continued on defining the cause of the breakdown of char and lime during digestion in the prototype catalyst recovery unit. It was concluded that both the lime and char particles are fragile and will break down to fines if handled roughly. Removal of the potassium from the char by water washing does not cause the char particles to disintegrate. The perferred processing sequence for catalyst recovery in the PDU has been identified. Bench scale tests confirmed that the change in catalyst from K/sub 2/CO/sub 3/ to KOH was not responsible for the differences in fluidized bed densities between the present and the predevelopment operations of the FBG. Work was completed on a revised offsites facilities definition and cost estimate to update the CCG Commercial Plant Study Design prepared during the predevelopment program.

  16. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  17. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    Energy Technology Data Exchange (ETDEWEB)

    Murray, P.E.; Smartt, H.B.; Johnson, J.A. [Lockheed Martin Idaho Technologies, Idaho Falls, ID (United States)

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  18. Study on activity evaluation of activated coal-gangue and the hydration process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical compositions, mineral compositions and the activated mechanism of the coal-gangue were analyzed. And pozzolana activities of the coal-gangue were evaluated after activated. Moreover, hydration heat and hydration compositions of activated coal-gangue-calcium oxide system, as well as hydration degree and hardened paste microstructures of activated coal-gangue-cement system were studied. Results show that pozzolana activities of the activated coal-gangue root in amorphous SiO2 and activated Al2 O3. With the exciting of gypsum, the reaction of activated coal-gangue and Ca(OH)2 would produce hydration products as ettringite, calcium silicate hydrate, and calcium aluminate. The relationship between the curing age and the content of Ca(OH)2 in coal-gangue-cement system was ascertained. Unhydrated particles in the coal-gangue-cement paste were more than that in the neat cement paste at the same hydration periods, and even existed at the later stage of hydration. Furthermore, the activated coal-gangue could inhibit growth and gathering of the calcium oxide crystal, and improve the structure of hardened cement paste.

  19. A review of state-of-the-art processing operations in coal preparation

    Institute of Scientific and Technical Information of China (English)

    Noble Aaron; Luttrell Gerald H.

    2015-01-01

    Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac-ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the U.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.

  20. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  1. Measurement and modeling of advanced coal conversion processes, Volume I, Part 2. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.

  2. Fires in Operating or Abandoned Coal Mines or Heaps of Reactive Materials and the Governing Transport and Reaction Processes

    Science.gov (United States)

    Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.

    2007-05-01

    Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M

  3. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  4. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  5. Further Processing of Coal Tar Pitch%煤焦油沥青深加工利用综述

    Institute of Scientific and Technical Information of China (English)

    王永林; 李好管

    2001-01-01

    Further Processing of coal tar pitch to raise the additionalvalue is one of key subjects in coal tar pro cessing. This paper discusses the present situation of coal tar pitch derived products such as modified pitch, paving pitch, coatings, carbon fiber, needle-coke.%概述了国外煤焦油沥青深加工利用现状,并对改质沥青(浸渍剂、粘结剂)、筑路沥青、涂料、碳纤维、针状焦等煤沥青深加工产品的技术开发、生产及应用进行了分析。

  6. Emission characteristics of chlorine in the process of coal and WP co-pyrolysising and exploring on its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Liu, Z.; Zhao, Y.; Shi, Y.; Zhao, S. [Shandong University of Science and Technology, Qingdao (China)

    2007-04-15

    The emission characteristics of chlorine as well a the yield of coke during the process of waste plastic (WP) and coal co-pyrolysis was studied. The result indicates that the emission ratio of chlorine and yield of coke are dependent on pyrolysing temperature, percentage of WP and time of constant temperature. When percentage of WP is big the remains of chlorine in the coke is the same as it in common coal, even though pyrolysis temperature is 1000{sup o}C. However the remains of chlorine in coke decreases with the increase of constant temperature time. So the remains of chlorine in coke can be controlled by controlling the constant temperature time. Additionally, the mechanism of chlorine emission was studied base don the experimental data and comparison with co-pyrolysis of coal and PVC, and a dynamic equation of chlorine emission was derived. 9 refs., 5 figs., 2 tabs.

  7. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic"

    Science.gov (United States)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne

    2015-04-01

    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  8. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section A

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuels consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.

  9. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section B

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.

  10. Reasonable Optimization of Coal Preparation Process Improve Efficiency of Coal Slime Recovery%合理优化选煤工艺提高煤泥回收效率

    Institute of Scientific and Technical Information of China (English)

    吕勇

    2014-01-01

    There is a coal preparation plant which type is a capacity of 5 .00 Mt/a mine coal preparation plant. Through the analysis of the status quo and existing problems of production,the existing process is improved.Puts for-ward the optimization scheme and adjusts the layout process and make full use of existing equipment to reach the best washing effect.Through the improvement of the coal slime water system process,can reduce the coal slime water re-tention time,increase the coal washing proportion of fine coal,improve the efficiency of the coal slime recovery.%某选煤厂是一座处理能力5.00 Mt/a矿井型选煤厂,通过分析其生产现状及存在问题,对现有工艺进行了改进,提出了优化方案并调整布置工艺,充分利用现有设备,达到最佳洗选效果;通过对煤泥水系统工艺的改进,减少了煤泥水滞留时间,增加了末煤洗选比例,提高了煤泥回收效率。

  11. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report: March 1, 1993 to May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S. [North Carolina A and T State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1993-11-01

    The viscosity of coal derived liquids is an important property that is required for the design of the coal liquefaction processes, as well as for understanding the flow characteristics of coal liquids. Coal liquids are complex undefined mixtures and boil over a wide range of temperatures. One method of characterizing coal liquids is to treat coal liquids as a continuous distribution of molecular weights. Upon review of the literature for viscosity correlations, the authors quickly concluded that there is no accurate method available that may be successfully applied to coal liquids. They generally believe that correlations based on molecular structure of materials are superior to those that use solely the characterization parameters such as refractive index, critical properties, density, boiling points etc. A few correlations in the literature do consider molecular structures in viscosity determinations. Using important features in these correlations, they set out to develop a new viscosity correlation that would apply to model coal aromatic compounds, their mixtures and finally to coal derived liquids themselves. The correlation for pure compounds and mixtures has been developed and is discussed below. Attempts are now being made to apply this to coal derived liquids.

  12. ALICE: ARC integration

    CERN Document Server

    Anderlik, C; Kleist, J; Peters, A; Saiz, P

    2008-01-01

    AliEn or Alice Environment is the Grid middleware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The inter-operation has two aspects, one is the data management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. Therefore, we will concentrate on the second part. Solving it, was somewhat cumbersome, mainly due to the different computing models employed by AliEn and ARC. AliEN uses an Agent based pull model while ARC handles jobs through the more 'traditional' push model. The solution comes as a modu...

  13. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  14. Engineering support services for the DOE/GRI coal-gasification research program. Technical and economic assessment of the Westinghouse fluidized-bed coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Ethridge, T.R.

    1981-04-01

    Kellogg was requested by DOE/GRI to perform a technical and economic assessment of the Westinghouse fluidized bed coal gasification process as applied to production of SNG equivalent to 250 billion BTU/day from Pittsburgh No. 8 coal. Based on operating experiences in the PDU, where most of the key variables have been demonstrated during 5+ years of testing, Westinghouse provided process data for the gasifier area. Kellogg selected the overall processing sequence and established design bases for the balance of the plant. This work was subsequent to a previous (1979) screening evaluation of Westinghouse by Kellogg: comparison of the two designs reveals the following: The 1980 gasifier design basis, while more detailed, is almost identical to that of 1979. The gas treatment and sulfur recovery schemes were significantly changed: Combined shift/methanation was substituted for stand-alone reaction units; independent Selexol units for removal of H/sub 2/S and CO/sub 2/ replaced a non-selective Benfield unit; and a Claus-SCOT combination replaced Stretford units and significantly improved the flue gas desulfurization. Key results of the current efforts are compared with those of the screening evaluation. The reductions in efficiencies in the new calculations are attributed to a more realistic evaluation of plant energy requirements and to lack of optimization of individual plant section designs. The economic data indicate that a noteworthy reduction in gas cost was accomplished by a reduction in the capital cost of the plant, such that Kellogg concludes, as previously for the screening evaluation, that the Westinghouse process appears to be superior to existing processes (i.e., Lurgi) and at least competitive with other processes evaluated under the DOE/GRI joint program.

  15. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States))

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  16. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  17. Development of biotechnical processes for purification of liquid waste from coal processing. Final report. Entwicklung biotechnischer Verfahren zur Behandlung von Abwaessern aus der Kohleveredlung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jockers, R.; Patalas, N.; Schacht, S.; Rehm, H.J.; Freier, D.

    1988-04-01

    Within the framework of the project special cultures of microorganisms were tested for their efficiency for the degradation of phenol-containing waste waters from coal upgrading plants. Furthermore, different immobilization methods and reactor types for the use of highly polluted waste waters were tested. A biotechnical process was developed which is expected to have excellent chances for practical realization on an industrial scale.

  18. Development of data processing system for regional geophysical and geochemical exploration of sandstone-hosted uranium deposits based on ArcGIS Engine

    International Nuclear Information System (INIS)

    According to the data processing need of geophysical and geochemical exploration of sandstone-hosted uranium deposits, the function design of the regional geophysical and geochemical data processing system is completed in the paper. The geophysical and geochemical data processing software with powerful functions is also developed based on ArcGIS Engine which remedies the shortage of GIS software for performing the geophysical and geochemical data processing. The development technique route of system software and key techniques are introduced, and the development processes of system software are showed through some development examples. Application practices indicate that the interface of developed system software with friendly interface and utility functions, may quickly perform the data processing of regional geophysical and geochemical exploration and provide the helpful deep information for predicting metallogenic prospective areas of sandstone-hosted uranium deposits. The system software is of a great application foreground. (authors)

  19. Characterization of semi-coke generated by coal-based direct reduction process of siderite

    Institute of Scientific and Technical Information of China (English)

    朱德庆; 罗艳红; 潘建; 周仙霖

    2015-01-01

    Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke’s particle size.

  20. Monitoring temperatures in coal conversion and combustion processes via ultrasound. [Ultrasonic thermometry proposal

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

  1. Explosions of coal powder in pressured process; Explosiones de Polvo de Carbon en Procesos a Presion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    As continuation of the previous introductory work about explosions of coal under hyperbaric conditions and considering the higher risk of explosions repercution with pressure; it was decided to develop this ambitious project, taking into account the more extensive range of type of coals: since subbituminous coals through hard coal to anthracite. It has been considered also several type of sorbents as limestones and others. The main objective of the project is to define, by experimental way, the utilization conditions for a safety coal handling. Many variables have been analyzed: Coal characteristics and origin, type of limestones, oxygen. moisture, temperature, and pressure. Due the great project complexity it was necessary to build one especial installation for trails under high pressure, where it was possible to use all the big number of variable combinations. The main research result has been the development of a model which has the possibility to simulate and analyze the foreseeable performance of coals and sorbent blends, in order to avoid the exploitations using specific handling methods. (Author)

  2. Effect of different milling processes on the mineral distribution in a coal powder

    Institute of Scientific and Technical Information of China (English)

    Hao Juan; Zhang Hong; Yang Keyang; Lu Chao; Chen Jiabao; Li Yanan

    2012-01-01

    Coal samples obtained from Wanbei (WB),Pingxiang (PX),Liupanshui (LP),and Datong (DT) mines were pulverized,using either a vibration mill or a ball mill,to different degrees of fineness.The effect of the different grinding methods on the mineral distribution within the pulverized coal was investigated by using proximate analysis,particle size analysis,and float-sink tests.The results show that the ash content in WB,PX,and DT coal increases with increasing particle size overall,while the ash content of the LP coal remain almost the same within each size fraction.In that case the ash in each fraction is similar to that of the raw coal.The ash versus size distributions for the same coal sample milled with the same grinding method to different degrees of fineness are similar.The ash versus size distribution of the coal powder with a 15% screen residue that was prepared with the vibration mill is different from the distribution of a similar sample prepared with a ball mill.The curves also vary between different coal samples.The grinding method has a great influence on the distribution of minerals across the various particle sizes.The float-sink tests and the laser particle size analysis results on PX and DT coal samples show that fines dominate the higher density fractions although the large +2.0 g/cm3 fraction was dominated by coarse particles.The size distribution of the low density fraction and +2.0g/cm3 density fraction is bimodal.The size distribution of the intermediate density fraction is multimodal.

  3. Engineering support services for the DOE/GRI coal gasification research program. Safety assurance study of high-Btu coal-gasification pilot plants and process development units

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Chen, R.G.; Coyle, D.A.; Ethridge, T.R.; Hubbard, D.A.; Scales, D.; Senules, E.A.; Shah, K.V.; Singer, D.L.; Smith, M.R.

    1981-04-01

    The purpose of this study was to identify risks and provide suggestions to improve and assure the safety of the high BTU coal gasification units (pilot plants and process development units) currently in the joint US Department of Energy and The Gas Research Institute (DOE/GRI) program. This was accomplished by performing a systematic detailed investigation of the gasifiers for each of the processes to identify operating conditions or equipment deficiences that could lead to potential hazards. This report documents the potential hazards identified to date. It is expected that the study will contribute to the improved safety aspect of larger scale production units by providing descriptions of the lessons learned. This safety assurance study involved a detailed systematic investigation of the gasifier area and related equipment of six different gasification units: Bell Aerosopace, BI-GAS, Exxon, Hygas, Rockwell and Westinghouse.

  4. OPTIMIZATION OF PROCESS PARAMETERS TO MINIMIZE ANGULAR DISTORTION IN GAS TUNGSTEN ARC WELDED STAINLESS STEEL 202 GRADE PLATES USING PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    R. SUDHAKARAN

    2012-04-01

    Full Text Available This paper presents a study on optimization of process parameters using particle swarm optimization to minimize angular distortion in 202 grade stainless steel gas tungsten arc welded plates. Angular distortion is a major problem and most pronounced among different types of distortion in butt welded plates. The process control parameters chosen for the study are welding gun angle, welding speed, plate length, welding current and gas flow rate. The experiments were conducted using design of experiments technique with five factor five level central composite rotatable design with full replication technique. A mathematical model was developed correlating the process parameters with angular distortion. A source code was developed in MATLAB 7.6 to do the optimization. The optimal process parameters gave a value of 0.0305° for angular distortion which demonstrates the accuracy of the model developed. The results indicate that the optimized values for the process parameters are capable of producing weld with minimum distortion.

  5. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  6. Integration of coal pyrolysis process with iron ore reduction:Reduction behaviors of iron ore with benzene-containing coal pyrolysis gas as a reducing agent☆

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Helong Hui; Songgeng Li; Lu He; Lijie Cui

    2016-01-01

    An integrated coal pyrolysis process with iron ore reduction is proposed in this article. As the first step, iron oxide reduction is studied in a fixed bed reactor using simulated coal pyrolysis gas with benzene as a model tar com-pound. Variables such as reduction temperature, reduction time and benzene concentration are studied. The car-bon deposition of benzene results in the retarded iron reduction at low temperatures. At high temperatures over 800 °C, the presence of benzene in the gas can promote iron reduction. The metallization can reach up to 99%in 20 min at 900 °C in the presence of benzene. Significant increases of hydrogen and CO/CO2 ratio are observed in the gas. It is indicated that iron reduction is accompanied by the reforming and decomposition of benzene. The degree of metal ization and reduction increases with the increasing benzene concentration. Iron oxide can nearly completely be converted into cementite with benzene present in the gas under the experimental conditions. No sintering is found in the reduced sample with benzene in the gas.

  7. Some Studies of Optimal Process Parameters For Solid Wire Gas Metal Arc Welding Using Neural Network Technique And Simulation Using Ansys

    Directory of Open Access Journals (Sweden)

    Saritprava Sahoo

    2013-08-01

    Full Text Available GMAW (Gas Metal Arc Welding is an arc welding process which is widely used in industry to join the metals. In this present work we have investigated the effect of varying welding parameters on the weld bead quality of Mild Steel flat having 12mm thickness. The chosen input parameters for the study are Welding Voltage, Welding Current and the travel speed of welding torch. The output parameters chosen are Weld Bead Width, Weld Bead Height, Depth of Penetration and Depth of Heat Affected Zone (HAZ. The four levels of experimental set-ups for each of the input parameters are considered and other process parameters are kept constant for the study. Hence the total numbers of experimental set-ups are 64 and the corresponding values of output parameters are found. As this is a Multi-Response Problem, it is being optimized to Single-Response Problem using Weighted Principal Components (WPC Method. Artificial Neural Networks (sANN, Error Back Propagation Procedure is being used for the prediction of optimal process parameters for GMAW process in this present work. The finite element analysis of residual stresses in butt welding of two similar plates is performed with the ANSYS software.

  8. Journal of Coal Science & Engineering(China)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Guide for Authors Journal of Coal Science & Engineering(English Edition), a comprehensive academic periodical of the China Coal Society, covers the fields of coal science and technology including coal geology, exploration,mine survey, mine project assessment, mine construction, coal mining, coal mine electrical machinery,mine safety, coal processing and utilization, coal mine environmental protection, etc. It reflects the latest research results and findings.

  9. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  10. Coherence of Auger and inter-Coulombic decay processes in the photoionization of Ar@C60 versus Kr@C60

    CERN Document Server

    Magrakvelidze, Maia; Javani, Mohammad H; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2015-01-01

    For the asymmetric spherical dimer of an endohedrally confined atom and a host fullerene, an innershell vacancy of either system can decay through the continuum of an outer electron hybridized between the systems. Such decays, viewed as coherent superpositions of the single-center Auger and two-center inter-Coulombic (ICD) amplitudes, are found to govern leading decay mechanisms in noble-gas endofullerenes, and are likely omnipresent in this class of nanomolecules. A comparison between resulting autoionizing resonances calculated in the photoionization of Ar@C60 and Kr@C60 exhibits details of the underlying processes.

  11. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-23

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  12. An extremely rapid, convenient and mild coal desulfurization new process: Sodium borohydride reduction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhiling; Sun, Tonghua; Jia, Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2010-09-15

    The present work describes the desulfurization of coal using mildly reductive method. Both a Yanzhou and a Yanshan coal (referred to as YZ and YS coal, respectively), were treated in an aqueous media employing sodium borohydride (NaBH{sub 4}) as reducing agent, which is a well known hydrogen storage. Reaction variables investigated include concentration of reductant, time, pH of initial media, temperature, stirring rate and particle size. The calorific values and ignition temperatures of the coal samples before and after treatment were determined. Results show that the total sulfur removal improved with the increase in the concentration of NaBH{sub 4}, shaking rate and temperature and with the decrease in the particle size. Meanwhile, decreasing the particle size from - 250 to - 109 {mu}m increased the organic sulfur removal by more than six times for either of the coal samples. Considering economic rationality and operational convenience, the desulfurization conditions determined were 1.6 mM of NaBH{sub 4} concentration, - 109 {mu}m of particle size, neutral pH of initial media, 1 min of treated time, 100 rpm of shaking rate, 30 C of temperature. This led to 23.8% and 59.0% reduction in the pyritic, 70.4% and 100% reduction in the sulfate, and 11.0% and 15.0% reduction in the organic sulfur, giving 31.3% and 40.8% reduction in the total sulfur for the YZ coal and the YS coal, respectively. Moreover, this resulted in the increase in the calorific values by 3.4-6.9% and the decrease in the ignition temperatures by 2-21 C for the coal samples. The desulfurization method described here is extremely rapid, convenient, inexpensive and mild, and therefore, has considerable technological interest. (author)

  13. Development of biological coal gasification (MicGAS Process). Eighth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-28

    This report describes progress on three fronts of the project. First in studies to elucidate optimal growing conditions for the consortia of coal degraders employed indicates that best growth occurs with 0. 2% w/v Shefton T. Secondly in comparing the biodegradative properties of the coal degraders, isolates identified as Mic-1 and Mic-4 were the best performers. And lastly bioreactors studies in batch mode are related.

  14. Fabrication of Fe-FeAl Functionally Graded Material Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Roberts, Jon; Li, Huijun

    2016-02-01

    A functionally gradient iron-aluminum wall structure with aluminum composition gradient from 0 at. pct to over 50 at. pct is fabricated using a wire-arc additive manufacturing (WAAM) system. The as-fabricated alloy is investigated using optical microstructure analysis, hardness testing, tensile testing, X-ray diffraction phase characterization, and electron-dispersive spectrometry. The comprehensive analysis of the experimental samples has shown that the WAAM system can be used for manufacturing iron aluminide functionally graded material with full density, desired composition, and reasonable mechanical properties.

  15. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data......AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  16. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data......AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  17. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts.

    Science.gov (United States)

    Noel, James D; Biswas, Pratim; Giammar, Daniel E

    2007-07-01

    Leaching of mercury from coal combustion byproducts is a concern because of the toxicity of mercury. Leachability of mercury can be assessed by using sequential extraction procedures. Sequential extraction procedures are commonly used to determine the speciation and mobility of trace metals in solid samples and are designed to differentiate among metals bound by different mechanisms and to different solid phases. This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acid-soluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto

  18. Arc saw development report

    International Nuclear Information System (INIS)

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  19. 德国IGOR煤液化工艺及云南先锋褐煤液化%IGOR PROCESS OF DIRECT COAL LIQUEFACTION AND XIANFENG BROWN COAL LIQUEFACTION IN IT

    Institute of Scientific and Technical Information of China (English)

    李克健; 史士东; 李文博

    2001-01-01

    In this paper, IGOR process of direct coal liquefaction in Germany and experimental results of Xianfeng brown coal in 200 kg/d PDU of IGOR process in Germany are introduced. Compared with other direct coal liquefaction processes, IGOR process is characterized with higher throughout of coal hydrogenation reactor, higher integration degree and higher quality of oils. The results of Xianfeng coal tested in 200 kg/d PDU of IGOR process in Germany showed IGOR process marched Xianfeng brown coal well with 53% of oil yield, 2 mg/kg and 17 mg/kg of N and S contents. Qualified 0# diesel oil can be produced from Xianfeng coal oil with simple distillation and qualified 90# lead free gasoline can be produced from it with reforming step.%介绍了德国IGOR煤直接液化工艺和云南先锋褐煤在IGOR工艺200 kg/d的PDU装置的试验结果. 与其它煤直接液化工艺相比, IGOR工艺具有煤直接液化反应器的空速高、系统集成度高和油品质量好的特点. 云南先锋褐煤在IGOR工艺200 kg/d的PDU装置上的试验结果表明, 先锋褐煤是适宜IGOR煤液化的煤种, 得到的油收率为53%, 油品中氮和硫的含量分别为2 mg/kg和17 mg/kg.煤液化油经过简单蒸馏可得到合格的0#柴油,经过重整可得到合格的90#无铅汽油.

  20. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    Science.gov (United States)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  1. Coal liquefaction process solvent characterization and evaluation: Technical progress report, July 1, 1986 through September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1987-03-01

    Conoco Coal Research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils, to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. Close cooperation is maintained with the process developers and with DOE in order to maximize the benefits of the work. Analytical methods used are based on their ability to provide quantitatively valid measures of process oil composition. Particular use is made of methods which provide chemical/molecular information of proven relevance to process performance. In addition, all samples are treated using conventional methods of analysis and preparation so that unit performance parameters, such as conversions and yields, can be independently determined to assure sample validity and correlation of analytical results among various plant operations. 10 refs., 3 figs., 20 tabs.

  2. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  3. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  4. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  5. Study on law of raw coal seepage during loading process at different gas pressures

    Institute of Scientific and Technical Information of China (English)

    Meng Junqing; Nie Baisheng; Zhao Bi; Ma Yechao

    2015-01-01

    In order to reveal the law of raw coal seepage at different gas pressures, the gravity constant load seepage experimental system was developed and used. The law of raw coal seepage at different gas pressures with He, N2 and CO2 was investigated. The results show that, in a given state of stress during the experiment, with the increase of gas pressure, the permeability of raw coal sample prone to outburst exhibits a significantly decrease, and then exhibits an increasing trend when reaching the extreme point. The law of Klingberg coefficient related to the stress state and the gas adsorption properties was also obtained. Under the same experimental conditions, the Klingberg coefficient of He is greater than that of N2; and the Klingberg coefficient of CO2 has minimum value; so the stronger the gas adsorption is, the smaller the Klingberg coefficient of gas goes. Klinkenberg coefficient decreases with the increase of effective stress. Under the same conditions, the permeability of He is greater than that of N2; the permeability of CO2 has minimum value;so the stronger the gas adsorption is, the lower the permeability of the coal sample goes. The results have important significance in revealing the mechanism of gas seepage, predicting coal mine gas disaster, and gas drainage and safety production.

  6. A novel process for preparation of active carbon from sapropelitic coals

    Energy Technology Data Exchange (ETDEWEB)

    Bodoev, N.V.; Gruber, R.; Kucherenko, V.A.; Guet, J.-M.; Khabarova, T.; Cohaut, N.; Heintz, O.; Rokosova, N.N. [Siberian Branch of the Russian Academy of Sciences, Kemerovo (Russian Federation). Inst. of Carbon Material Chemistry

    1998-05-01

    The paper reports the preparation of active carbons starting from sapropelitic coals. First a traditional route of manufacturing, coking and activation (820{degree}C) was carried out. The specific area (BET) of the activated semicokes of six sapropelitic coal samples varied from a few square meters to about five hundred (for Taimylir coal). Secondly, using Taimylir coal, a novel way of active carbon preparation was attempted combining low temperature modification and chemical activation. The modification was carried out using nitric acid-acetic anhydride mixture at room temperature and tested by swelling and weight uptake measurements. The modified coal samples were analyzed by thermogravimetry (TGA) and FT-IR spectroscopy. The chemical activation route included impregnation by an activant (KOH) and a subsequent heating (2 hr under argon) at selected temperatures ranging from 300 to 900{degree}C. Surface areas were determined by BET and SAXS methods. The chemical modification resulted in a new functional group formation and organic framework reorganization, which strongly affected the activation, as a value of 1200 m{sup 2} g{sup -1} was obtained after chemical activation. 11 refs., 4 figs., 4 tabs.

  7. Solvent Refined Coal (SRC) process. [Runs 49 to 57 and 59 to 62

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project for the period January 1, 1979 through December 31, 1979. The fourth quarter of 1979 is reported here in detail. Turnaround activities at the Fort Lewis SRC-II Pilot Plant were completed. During the shutdown, installation of Slurry Preheater B was completed. In addition, extensive modifications were completed to improve operability and slurry handling capabilities. The experimental program for testing Slurry Preheater B was revised to improve the data base for design scale-up considerations. Coal feed was established using Powhatan No. 6 coal. Twenty slurry survey tests were designed to establish the effects of varous slurry and heater inlet hydrogen flow rates on heat transfer, heater coil pressure drop, and heater operability. Additional tests were also added to the preheater evaluation program to study the effects of coal concentration, recycle pyridine insoluble concentration and preheater outlet temperatures. During 1979, PDU P-99 completed 13 runs (Runs 49 to 57 and 59 to 62). All these runs were made feeding coal from the Powhatan No. 5 Mine.

  8. Coal in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, A.R.

    1982-01-01

    This paper comprises a report on the coal industry in the Republic of South Africa. Stresses the importance of coal in the South African economy (meets 75% of the country's energy requirements and is in second place in the South African exports table). Covers deposits, production and prices, exports policy; winning methods, productivity and the various grades of coal. Also includes data on investments and refers to synthetic fuels from coal (Sasol I, II, III processes).

  9. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    Science.gov (United States)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  10. TRANSIENT FINITE ELEMENT SIMULATION AND MICROSTRUCTURE EVOLUTION OF AA2219 WELD JOINT USING GAS TUNGSTEN ARC WELDING PROCESS

    Directory of Open Access Journals (Sweden)

    Sivaraman Arunkumar

    2016-09-01

    Full Text Available In this study we focus on finite element simulation of gas tungsten arc welding (GTAW of AA2219 aluminum alloy and the behavioral of the microstructure before and after weld. The simulations were performed using commercial COMSOL Multiphysics software. The thermal history of the weld region was studied by initially developed mathematical model. A sweep type meshing was used and transient analysis was performed for one welding cycle. The highest temperature noted was 3568 °C during welding. The welding operation was performed on 200×100×25 mm plates. Through metallurgical characterization, it was observed that a fair copper rich cellular (CRC network existed in the weld region. A small amount of intermetallic compounds like Al2Cu is observed through the XRD pattern.

  11. Waste Minimization Protocols for the Process of Synthesizing Zeolites from South African Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Leslie F. Petrik

    2013-04-01

    Full Text Available Production of a high value zeolite from fly ash has been shown to be an avenue for the utilization of South African fly ash which presently constitutes a huge disposal problem. The synthesis of zeolites Na-P1 and analcime on a micro-scale has been successful and preliminary investigation shows that scale-up synthesis is promising. However, the post-synthesis supernatant waste generated contains high levels of NaOH that may constitute a secondary disposal problem. A waste minimization protocol was developed to reduce the volume of waste generated with a view to enhancing the feasibility of the scale synthesis. Series of experiments were conducted in 100 mL jacketed batch reactors. Fly ash was reacted with 5 Mol NaOH on a 1:1 mass basis during the aging step, followed by hydrothermal treatment in which ultrapure water was added to the slurry. This study shows that by re-introducing the supernatant waste into the experiments in such a way that it supplies the required reagent (NaOH for the zeolite synthesis, zeolite Na-P1 and analcime can be synthesized. It also shows that the synthesis process can be altered to allow up to 100% re-use of the supernatant waste to yield high value zeolitic products. This study effectively constructed two protocols for the minimization of waste generated during the synthesis of zeolites from South African coal fly ash. This result could be used to establish a basis for legal and environmental aspects involved in the commission of a full-scale plant synthesizing zeolites NaP1 and analcime.

  12. Dung beetle communities in coal mining areas in the process of recovery

    Directory of Open Access Journals (Sweden)

    Joana Zamprônio Bett

    2014-09-01

    Full Text Available Dung beetles that are sensitive to environmental alterations may be used as indicator species to mark the recovery of degraded areas. This work aimed at registering and comparing the communities of Scarabaeinae located in areas with different periods of environmental recovery after being used for coal mining. This study was developed in Lauro Müller, Santa Catarina, and consisted of two areas in the process of recovery, one for one year and one for five years. Fifteen pitfall traps baited with human feces were placed in each area in order to attract the dung beetles. The counting, identification and measurement of body size and biomass of the specimens captured were carried out in the laboratory. Sampling sufficiency was verified and variables from both areas were compared using a t test. The recorded species were Canthon aff. chalybaeus, Canthon angularis, Canthon rutilans cyanescens, Deltochilum multicolor, Dichotomius sericeus, Eurysternus parallelus and Ontherus sulcator. A total of 35 individuals were captured, three in the one-year recovery area and 32 in the area under recovery for five years, C. rutilans cyanescens being the most abundant species (40.6%. All species collected were found in the five-years recovery area, whereas only C. aff. chalybaeus and D. multicolor were found in the one-year recovery area. Individuals sampled in the area with one year of recovery had an average size of 11.03 mm and average biomass of 0.051 g, whereas in the five-years recovery area the average size and the biomass of the dung beetles sampled was 12.25 mm and 0.093 g, respectively.

  13. Volcano-sedimentary processes operating on a marginal continental arc: the Archean Raquette Lake Formation, Slave Province, Canada

    Science.gov (United States)

    Mueller, W. U.; Corcoran, P. L.

    2001-06-01

    The 200-m thick, volcano-sedimentary Raquette Lake Formation, located in the south-central Archean Slave Province, represents a remnant arc segment floored by continental crust. The formation overlies the gneissic Sleepy Dragon Complex unconformably, is laterally interstratified with subaqueous mafic basalts of the Cameron River volcanic belt, and is considered the proximal equivalent of the turbidite-dominated Burwash Formation. A continuum of events associated with volcanism and sedimentation, and controlled by extensional tectonics, is advocated. A complex stratigraphy with three volcanic and three sedimentary lithofacies constitute the volcano-sedimentary succession. The volcanic lithofacies include: (1) a mafic volcanic lithofacies composed of subaqueous pillow-pillow breccia, and subaerial massive to blocky flows, (2) a felsic volcanic lithofacies representing felsic flows that were deposited in a subaerial environment, and (3) a felsic volcanic sandstone lithofacies interpreted as shallow-water, wave- and storm-reworked pyroclastic debris derived from explosive eruptions. The sedimentary lithofacies are represented by: (1) a conglomerate-sandstone lithofacies consistent with unconfined debris flow, hyperconcentrated flood flow and talus scree deposits, as well as minor high-energy stream flow conglomerates that formed coalescing, steep-sloped, coarse-clastic fan deltas, (2) a sandstone lithofacies, interpreted as hyperconcentrated flood flow deposits that accumulated at the subaerial-subaqueous interface, and (3) a mudstone lithofacies consistent with suspension sedimentation in a small restricted lagoon-type setting. The Raquette Lake Formation is interpreted as a fringing continental arc that displays both high-energy clastic sedimentation and contemporaneous effusive and explosive mafic and felsic volcanism. Modern analogues that develop along active plate margins in which continental crust plays a significant role include Japan and the Baja California

  14. Using the extended parallel process model to prevent noise-induced hearing loss among coal miners in Appalachia

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Johnson, L.; Witte, K.; Patel, D.; Orrego, V.; Zuckerman, C.; Maxfield, A.M.; Thimons, E.D. [Ohio State University, Columbus, OH (US)

    2004-12-15

    Occupational noise-induced hearing loss is the second most self-reported occupational illness or injury in the United States. Among coal miners, more than 90% of the population reports a hearing deficit by age 55. In this formative evaluation, focus groups were conducted with coal miners in Appalachia to ascertain whether miners perceive hearing loss as a major health risk and if so, what would motivate the consistent wearing of hearing protection devices (HPDs). The theoretical framework of the Extended Parallel Process Model was used to identify the miners' knowledge, attitudes, beliefs, and current behaviors regarding hearing protection. Focus group participants had strong perceived severity and varying levels of perceived susceptibility to hearing loss. Various barriers significantly reduced the self-efficacy and the response efficacy of using hearing protection.

  15. Gasification Coupled Chemical Looping Combustion of Coal: A Thermodynamic Process Design Study

    OpenAIRE

    Sonali A. Borkhade; Shriwas, Preksha A.; Ganesh R. Kale

    2013-01-01

    A thermodynamic investigation of gasification coupled chemical looping combustion (CLC) of carbon (coal) is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200°C. Chemical equilibrium model was considered for the gasifier and CLC fuel reactor. The trends in product compositions and energy requirements of the gasifier, fuel reactor, and air reactor were determined. Coal (carbon) gasification using 1.5 mol H2O and 1.5 mol CO2 per mole c...

  16. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    Science.gov (United States)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  17. EDS coal liquefaction process development. Phase V. EDS commercial plant study design update. Illinois coal. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W. R.

    1981-03-01

    The objectives of the Study Design Update (SDU) were to identify the technical issues facing a potential commercial-size EDS plant design; to provide a reliable basis for estimating the cost of EDS products; and to furnish research guidance to the EDS Project. The SDU consists of two distinct studies in which different processing schemes are used to produce the hydrogen and fuel gas required by the plant. These studies are referred to as the Base Case and the Market Flexibility Sensitivity Case. In the Base Case, hydrogen is generated by steam reforming of the light hydrocarbon gases produced in the plant. Fuel gas is generated by feeding the bottoms stream from the liquefaction section vacuum pipestill to a FLEXICOKING unit. In the FLEXICOKING unit reactor, the bottoms stream is converted to coke; additional liquid product is also recovered. The coke is converted to low-Btu fuel gas in the FLEXICOKING unit gasifier. In the Market Flexibility Sensitivity (MFS) Case, the bottoms stream from the vacuum pipestill is split, and about half is sent to the FLEXICOKING unit for recovery of additional liquid product and production of fuel gas. The remainder of the bottoms stream is converted to hydrogen in a Partial Oxidation Unit. Hence the MFS Case does not consume light hydrocarbon gases produced and they are available for sale. The study of these two cases has demonstrated the importance of bottoms process selection to the economics and thermal efficiency of an EDS plant. Volume 1 - Main Report has been developed to be a stand-alone document. Both the Base Case and Market Flexibility Sensitivity (MFS) Case are covered. This volume includes an overview and detailed case summaries. It also covers economics, product recovery factors, material and energy balances, cost estimates and enviromental considerations.

  18. Engineering support services for the DOE/GRI coal gasification research program. Technical and economic assessment of the Exxon Catalytic Coal-Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Coyle, D.A.; Laramore, R.W.

    1981-04-01

    In this assessment Kellogg utilized operating experience and data from the Exxon PDU wherever possible: modifications to the coal drying system, the catalyst recovery system and gasifier sizing criteria resulted from PDU observation since the previous (1979) screening evaluation. No data describing operation of the gasifier or the pretreatment unit in the PDU were available, however. This study must therefore be regarded as highly speculative, since substantial uncertainties still exist regarding these crucial segments of the Exxon Process. The principal results of this study are that the revised values for total plant investment and net operating cost are reduced by 9 and 2%, respectively, such that the average gas cost is reduced 4%, all in comparison to results of the screening evaluation. Development of additional data during future PDU operation could lead to major increases in capital and operating costs: Kellogg suggests that optimization studies relating the cost of pretreatment and gasification should be undertaken as a high priority task. The overall result of this study agrees with the main conclusion from the screening evaluation: the Exxon CCG process appears to be somewhat superior to the Lurgi process in terms of gas cost. Costs for individual plant sections, for this study, were obtained by modification of costs from the earlier screening evaluation. In general these modifications tended toward decreasing the gas cost. Further changes in the design basis appear (to Kellogg) to be inevitable, however, and could lead to major increases or decreases in the gas cost. Effects of possible changes cannot presently be predicted.

  19. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  20. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  1. Isopachs of total net coal in A-D coal zones, Yampa Coal Field (yam*thkg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These are shapefiles and ARC/INFO polygon coverages showing the isopachs of total net coal in beds greater than or equal to 1.2' thick for the A, B, C, and D coal...

  2. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  3. Mechanical effects of sorption processes in coal and implications for coalbed methane recovery

    NARCIS (Netherlands)

    Liu, J.

    2016-01-01

    In this thesis, I present the results of a theoretical and experimental study of the response of dry coal matrix material to pure CH4, pure H2O and CH4-CO2 mixtures under in-situ conditions, with the aim of providing fundamental data that can contribute to assessing future strategies for enhanced co

  4. New method for capturing arc of moving on switching apparatus

    Institute of Scientific and Technical Information of China (English)

    LIU Jiao-min; WANG Jing-hong

    2007-01-01

    The switching arc that occurs in contact gap when contact of low voltage apparatus closes or breaks in electric circuit is harmful to the contacts, insulation, and reliability of electrical gear because of its very high temperature. As arcing time is very short in switching gear, it is very difficult to observe arc phenomena directly for researchers. Therefore, visualization of switching arc is important for understanding arc phenomena, to analyze the arc features, and to improve the design and reliability of switching gear. Based on analyzing the visualization methods proposed by researchers, a new switching arc capturing approach is introduced in this paper. Arc image acquisition, and image processing techniques were studied. A switching arc image acquisition and visual simulation software based on high speed CCD camera hard ware system was designed and implemented to yield enhanced arc image with good visual effect.

  5. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  6. Coal geopolitics

    International Nuclear Information System (INIS)

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs

  7. A comparison of the seismic structure of oceanic island arc crust and continental accreted arc terranes

    Science.gov (United States)

    Calvert, A. J.

    2015-12-01

    Amalgamation of island arcs and their accretion to pre-existing continents is considered to have been one of the primary mechanisms of continental growth over the last 3 Ga, with arc terranes identified within Late Archean, Proterozoic, and Phanerozoic continental crust. Crustal-scale seismic refraction surveys can provide P wave velocity models that can be used as a proxy for crustal composition, and although they indicate some velocity variation in accreted arcs, these terranes have significantly lower velocities, and are hence significantly more felsic, than modern island arcs. Modern oceanic arcs exhibit significant variations in crustal thickness, from as little as 10 km in the Bonin arc to 35 km in the Aleutian and northern Izu arcs. Although globally island arcs appear to have a mafic composition, intermediate composition crust is inferred in central America and parts of the Izu arc. The absence of a sharp velocity contrast at the Moho appears to be a first order characteristic of island arc crust, and indicates the existence of a broad crust-mantle transition zone. Multichannel seismic reflection surveys complement refraction surveys by revealing structures associated with variations in density and seismic velocity at the scale of a few hundred meters or less to depths of 60 km or more. Surveys from the Mariana and Aleutian arcs show that modern middle and lower arc crust is mostly non-reflective, but reflections are observed from depths 5-25 km below the refraction Moho suggesting the localized presence of arc roots that may comprise gabbro, garnet gabbro, and pyroxenite within a broad transition from mafic lower crust to ultramafic mantle. Such reflective, high velocity roots are likely separated from the overlying arc crust prior to, or during arc-continent collision, and seismic reflections within accreted arc crust document the collisional process and final crustal architecture.

  8. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    Science.gov (United States)

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  9. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  10. Danforth Hills coal resources calculation area, Northwest Colorado (dan*bndg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These are shapefiles and ARC/INFO coverages that outline the areas within which coal resources are calculated and reported for the A/B through G coal zones,...

  11. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  12. Optimization of Process Parameters to Minimize Angular Distortion in Gas Tungsten Arc Welded Stainless Steel 202 Grade Plates Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Sudhakaran .R,

    2010-05-01

    Full Text Available This paper presents a study on optimization of process parameters using genetic algorithm to minimize angular distortion in 202 grade stainless steel gas tungsten arc welded plates. Angular distortion is a major problem and most pronounced among different types of distortion in butt welded plates. The extent of distortion depends onthe welding process control parameters. The important process control parameters chosen for study are gun angle (θ, welding speed (V, plate length (L, welding current (I and gas flow rate (Q. The experiments are conducted based on five factor five level central composite rotatable designs with full replication technique. A mathematical model was developed correlating the process parameters and the angular distortion. The developed model is checked for the adequacy based on ANOVA analysis and accuracy of prediction by confirmatory test. The optimization of process parameters was done using genetic algorithms (GA. A source code was developed using C language to do the optimization. The optimal process parameters gave a value of 0.000379° for angular distortion which demonstrates the accuracy and effectiveness of the model presented and program developed. The obtained results indicate that the optimized parameters are capable of producing weld with minimum distortion.

  13. Coexistence of compositionally heterogeneous podiform chromitites in the Antalya-Isparta ophiolitic suite, SW Turkey: a record of sequential magmatic processes in the sub-arc lithospheric mantle

    Science.gov (United States)

    Uysal, Ibrahim; Kapsiotis, Argyrios; Melih Akmaz, Recep; Saka, Samet; Avci, Erdi; Müller, Dirk

    2015-04-01

    The Antalya-Isparta region in southwestern Turkey is well known for large, ophiolitic in origin, peridotite exposures hosting various chromite orebodies. These are small-sized, massive to disseminated in texture chromitites that occur in the form of lenses or veinlets and are commonly surrounded by dunite envelopes of variable thickness. Chromitite seams from the Antalya mantle suite belong to both high-Cr and high-Al varieties (Cr#: 0.56-0.83), whereas chromitites in the Isparta mantle sequence are merely Cr-rich (Cr#: 0.75-0.85). In situ minor and trace element abundances obtained by LA-ICP-MS analyses of unaltered Cr-spinel from the Cr-rich chromitites are comparable to those reported in Cr-spinel of chromitites from typical fore-arc peridotite complexes. Nevertheless, minor and trace element concentrations in Cr-spinel from the Al-rich chromitites do not bear resemblance with those acquired from Cr-spinels of chromitites from well-known back-arc basin-derived ultramafic massifs. Calculation of parental magma compositions indicates that both types of chromitites share a common parentage with progressively fractionating arc-related melts. A quite interesting dissimilarity between the unaltered Cr-spinel compositions from both Cr-rich and Al-rich chromitites is that the former display a perceptible positive Ti anomaly in ChromiteMORB-normalized profiles, which signifies the hidden impact of post-magmatic processes in the composition of the high-Cr chromitite bodies that otherwise seem to be unaffected by metamorphism. The studied chromitites are characterized by a systematic enrichment in IPGE [Os, Ir and Ru (41-317 ppb)] with respect to PPGE [Rh, Pt and Pd (3-49 ppb)], resulting to negatively sloping chondrite-normalized PGE patterns that are less fractionated in case of high-Al chromitites. Their noble mineral assemblage is vastly dominated by tiny (up to 10 μm), euhedral laurite crystals followed by subsidiary irarsite and trivial Os-Ir alloy grains. PGM

  14. BASIC THEORY AND METHOD OF WELDING ARC SPECTRAL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    Li Junyue; Li Zhiyong; Li Huan; Xue Haitao

    2004-01-01

    Arc spectral information is a rising information source which can solve many problems that can not be done with arc electric information and other arc information.It is of important significance to develop automatic control technique of welding process.The basic theory and methods on it play an important role in expounding and applying arc spectral information.Using concerned equation in plasma physics and spectrum theory,a system of equations including 12 equations which serve as basic theory of arc spectral information is set up.Through analyzing of the 12 equations,a basic view that arc spectral information is the reflection of arc state and state variation,and is the most abundant information resource reflecting welding arc process is drawn.Furthermore,based on the basic theory,the basic methods of test and control of arc spectral information and points out some applications of it are discussesed.

  15. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  16. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  17. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Castellan, J.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2009-04-15

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidized bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (similar to 60%) for Ca/S = 2 was obtained.

  18. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones

    Energy Technology Data Exchange (ETDEWEB)

    S.R. Braganca; J.L. Castellan [Federal University of Rio Grande do Sul, Porto Alegre (Brazil)

    2009-07-01

    A metamorphic limestone and a dolomite were employed as SO{sub 2} sorbents in the desulfurization of gas from coal combustion. The tests were performed in a fluidised bed reactor on a bench and pilot scale. Several parameters such as bed temperature, sorbent type, and sorbent particle size at different Ca/S molar ratios were analyzed. These parameters were evaluated for the combustion of coal with low-sulfur/high-ash content, experimental conditions of high air excess and high O{sub 2} level in fluidization air. Under these conditions, typical of furnaces, few published data can be found. In this work, a medium level of desulfurization efficiency (about 60%) for Ca/S = 2 was obtained. 25 refs., 5 figs.

  19. Biohydrometallurgical process to produce the coagulant ferric sulfate from the pyrite present in coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Colling, A.V.; Santos Menezes dos, J.C.S.; Silveira, P.S.; Schneider, I.A.H. [South Rio Grande Federal Univ., Porto Alegre (Brazil). Graduate Program in Mining, Metallurgical and Materials Technology Center

    2010-07-01

    This paper presented details of a biohydrometallurgical study conducted to characterize the production of a ferric sulfate coagulate from pyrite (FeS{sub 2}) contained in coal tailings. Leaching experiments were conducted with coal tailings samples from the Santa Catarina mining site in Brazil. The experiments were conducted for sterile and non-sterile samples, as well as samples inoculated with acidophilic bacteria and acidophilic bacteria with the addition of nutrients. Samples were collected weekly in order to analyze total iron, sulfate, and the amounts of Acidithiobacillus ferroxidans bacteria. An analysis of the samples showed that the pyrite oxidation, iron sulfate production, and quantities of bacteria were higher in the column inoculated with the bacteria and nutrient additions. The samples produced an aqueous solution that was rich in ferric sulfate. Water treatment tests demonstrated that the resulting coagulant is as efficient as conventionally-produced coagulants. 8 refs., 2 tab., 2 figs.

  20. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  1. Use of nuclear techniques for coal analysis in exploration, mining and processing

    International Nuclear Information System (INIS)

    Nuclear techniques have a long history of application in the coal industry, during exploration and especially during coal preparation, for the measurement of ash content. The preferred techniques are based on X- and gamma-ray scattering and borehole logging, and on-line equipment incorporating these techniques are now in world-wide routine use. However, gamma-ray techniques are mainly restricted to density measurement and X-ray techniques are principally used for ash determinations. They have a limited range and when used on-line some size reduction of the coal is usually required and a full elemental analysis is not possible. In particular, X- and gamma-ray techniques are insensitive to the principal elements in the combustible component and to many of the important elements in the mineral fraction. Neutron techniques on the other hand have a range which is compatible with on-line requirements and all elements in the combustible component and virtually all elements in the mineral component can be observed. A complete elemental analysis of coal then allows the ash content and the calorific value to be determined on-line. This paper surveys the various nuclear techniques now in use and gives particular attention to the present state of development of neutron methods and to their advantages and limitations. Although it is shown that considerable further development and operational experience are still required, equipment now being introduced has a performance which matches many of the identified requirements and an early improvement in specification can be anticipated

  2. Comparison of CO2 From Coal Capture Processes and Valorisation Technologies

    OpenAIRE

    Martin Gonzalez, Mercedes; Clemente Jul, María del Carmen

    2011-01-01

    Coal is the most plentiful and evenly distributed fossil fuel worldwide. Based on current production, it is estimated that the reserves will last approximately 130 years. Its use worldwide has been increasing, mainly due to consumption by emerging countries. CO2 emissions generated by combustion and the repercussions of such on climate change support the view that it could no longer be used. CO2 capture may be the solution to continue using it, which would cater for the growing energy demand ...

  3. Accidental Continuous Releases from Coal Processing in Semi-Confined Environment

    OpenAIRE

    Bruno Fabiano; Emilio Palazzi; Fabio Currò

    2013-01-01

    Notwithstanding the enforcement of ATEX EU Directives (94/9/EC of 23 March 1994) and safety management system application, explosions in the coal sector still claim lives and cause huge economic losses. Even a consolidated activity like coke dry distillation allows the opportunity of preventing explosion risk connected to fugitive emissions of coke oven gas. Considering accidental releases under semi-confined conditions, a simplified mathematical approach to the maximum allowed gaseous build-...

  4. A characterization and evaluation of coal liquefaction process streams. Status assessment

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.

    1995-07-01

    A review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils and an updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams is presented in this document. Analytical methodologies included here are either those which are different than those previously surveyed or are improvements on, or significantly different applications of methods previously surveyed. The literature cited spans the time period from 1991 to the present. The literature was examined from the 1960s through the present. When possible, for each model described, the methodology for deriving the model and the relative quality of the kinetic parameters derived is discussed. Proposed reaction schemes used for constructing coal-conversion models, in many cases, include the conversion of a resid intermediate to light products. These models are, therefore, also of interest, and are included here. Analytical techniques were identified that were shown to be useful for providing physico-chemical information of coal-liquefaction resids. These techniques are nuclear magnetic resonance spectroscopy, mass spectrometry (especially the technique of field ionization mass spectrometry), electron spin resonance spectroscopy coupled to thermogravimetric analysis, and a suite of petroleum inspection tests. It is recommended that these techniques be used in the present contract. 76 refs.

  5. Arcing Model of a Disconnector and its Effect on VFTO

    International Nuclear Information System (INIS)

    In the computational process of very fast transient over-voltage (VFTO), it is essential to find an accurate model for a gas insulated substation. The arcing model of the disconnector is particularly important. The general arcing model is not able to give a good description of the arc development process. In this paper, based on the physical process of arcing and existing arc models (the exponential time-varying resistance model and the segmental arcing models), a dynamic arcing model is proposed, which is divided into two stages before and after the zero crossing. The dynamic arcing model combines hyperbola time-varying resistance and the Mayr model to describe the dynamic process of arcing. The present paper creates an arc model blockset upon the Matlab/Simulink software platform. Moreover for a specific 1100 kV station, VFTO is simulated in detail based on different arcing models. It is demonstrated that the dynamic arcing model can describe the physical arc process precisely and is useful for improving the accuracy of VFTO simulations

  6. Analysis and Processing about Spontaneous Combustion of Coal in Enclosed Circular Coal Yard with Large Coal Reserves%封闭式大储量圆形煤场储煤自燃分析及处理

    Institute of Scientific and Technical Information of China (English)

    金建华; 沈建军; 龚福; 黄健

    2014-01-01

    Due to many spontaneous combustions of coal in enclosed circular coal yard with large coal reserves, it is imminent to know how to prevent and control coal spontaneous combustion.As analysised,the main rea-sons of coal spontaneous combustion are Coal stocks,high coal volatile,increase of coal oxidation layer and water catalytic.So,the keys to prevent and control coal spontaneous combustion are reduce of the contact area of the air and coal,control of moisture content in coal,good ventilation cooling measures and so on.There-fore,,putting forward the establishment of a sound quality management files,“first in first out,burn the old new,regular replacement”,control of the oxygen supply for spontaneous combustion of coal,timely treatment once finding the signs,strict control of time of spontaneous combustion of coal entry storage and measures on how to treat the spontaneous combustion of coal strategy measures can greatly improve the safety factor of the coal yard and the economic benefits of the power plant.%针对燃煤电厂发生多起封闭式大储量圆形煤场储煤自燃问题,如何防止和治理煤炭自燃迫在眉睫。分析认为,煤炭自燃的主要原因是煤场库存量大、煤炭挥发分高、堆煤氧化层增大和水分催化,而减少空气与煤的接触面,控制煤中的水分含量,做好通风散热等措施,是预防和治理圆形煤场储煤自燃的关键。为此,提出建立健全煤质管理档案、“先进先出,烧旧存新,定期置换”、控制煤炭自燃的供氧量、发现自燃征兆及时处理、严控自燃煤的入场堆存时间和处理煤炭自燃的策略等措施,提高煤场的安全运行和电厂的经济效益。

  7. Chemical analysis of Argonne premium coal samples. Bulletin

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C.A.

    1997-11-01

    Contents: The Chemical Analysis of Argonne Premium Coal Samples: An Introduction; Rehydration of Desiccated Argonne Premium Coal Samples; Determination of 62 Elements in 8 Argonne Premium Coal Ash Samples by Automated Semiquantitative Direct-Current Arc Atomic Emission Spectrography; Determination of 18 Elements in 5 Whole Argonne Premium Coal Samples by Quantitative Direct-Current Arc Atomic Emission Spectrography; Determination of Major and Trace Elements in Eight Argonne Premium Coal Samples (Ash and Whole Coal) by X-Ray Fluorescence Spectrometry; Determination of 29 Elements in 8 Argonne Premium Coal Samples by Instrumental Neutron Activation Analysis; Determination of Selected Elements in Coal Ash from Eight Argonne Premium Coal Samples by Atomic Absorption Spectrometry and Atomic Emission Spectrometry; Determination of 25 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Atomic Emission Spectrometry; Determination of 33 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Mass Spectrometry; Determination of Mercury and Selenium in Eight Argonne Premium Coal Samples by Cold-Vapor and Hydride-Generation Atomic Absorption Spectrometry; Determinaton of Carbon, Hydrogen, and Nitrogen in Eight Argonne Premium Coal Samples by Using a Gas Chromatographic Analyzer with a Thermal Conductivity Detector; and Compilation of Multitechnique Determinations of 51 Elements in 8 Argonne Premium Coal Samples.

  8. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszkowicz, Krzysztof, E-mail: krzysztof.lukaszkowicz@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego St. 18A, 44-100 Gliwice (Poland); Sondor, Jozef, E-mail: j.sondor@liss.cz [LISS, a.s., Dopravni 2603, 756 61 Roznov p.R. (Czech Republic); Balin, Katarzyna, E-mail: katarzyna.balin@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kubacki, Jerzy, E-mail: jerzy.kubacki@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2014-09-01

    Highlights: • The chemical composition of the CrAlSiN + DLC coatings was studied. • The coatings have nanostructural character with fine crystallites. • Their average size grain is less than 10 nm. • The coatings demonstrate friction coefficient within the range 0.05–0.07. • The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate. - Abstract: Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction 〈3 1 1〉 is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  9. ArcGIS 10.1地理信息系统软件在国情地表覆盖数据处理中的应用和拓扑检查%Application of ArcGIS10.1 Geographic Information System Software in the National Land Cover and Topology Check in Data Processing

    Institute of Scientific and Technical Information of China (English)

    黄亮

    2014-01-01

    介绍了ArcGIS 10.1地理信息系统软件的基本运用、扩展功能及在辽宁省第一次国情普查中地表覆盖数据处理中的运用,以地表覆盖数据和最新遥感影像为基础,利用计算机、GIS、数据库和网络等技术,建立国情覆盖利用数据库。本文着重阐述了ArcGIS 10.1在国情覆盖数据中的转换应用和拓扑检查的流程方法,对软件不完善的功能做出了说明。%Ab stract:This article describes the basic use and expansion capabilities of ArcGIS 10.1 geographic information system software and the application of the system in the land cover data processing of the first national condition survey in Liaoning province .Based on land cover data and latest remote sensing image , the article uses computer , GIS, database and network to establish the database for land cover.The paper focuses on the application of ArcGIS10 .1 in the conversion of national condition cover data and topology processing methods , which specifies the functions of the software .

  10. Evaluation of steelmaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Fruehan, R.J. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1994-01-01

    Objective of the AISI Direct Steelmaking Program is to develop a process for producing steel directly from ore and coal; the process should be less capital intensive, consume less energy, and have higher productivity. A task force was formed to examine available processes: trough, posthearth, IRSID, Electric Arc Furnace, energy optimizing furnace. It is concluded that there is insufficient incentive to replace a working BOF with any of these processes to refine hot metal; however, if new steelmaking capacity is required, IRSID and EOF should be considered. A fully continuous process should not be considered until direct ironmaking and continuous refining are perfected.

  11. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO3–Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  12. Characterization of Micro-arc Oxidized Titanium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The observation of the sparkling discharges during the micro-arc oxidation process in KOH aqueous electrolyte was achieved. The change of surface morphology was progressively observed and a plausible pore formation mechanism is proposed. Cell proliferation and ALP activity of micro-arc oxidized titanium was evaluated by human body derived osteoblasts and slightly better than those of blasted surface.

  13. Rotating arc spark plug

    Science.gov (United States)

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  14. Characterization and Surface Treatment of Materials Used in MADEAL S.A. Industry Productive Process of Rims by Plasma Assisted Repetitive Pulsed Arcs Technique

    International Nuclear Information System (INIS)

    A study of materials used in the molds production to aluminium rims manufacture in the MADEAL S.A. factory was carried out for apply a plasma assisted surface treatment consists in growing TiAlN hard coatings that it protects this molds in the productive process. This coating resists high oxidation temperatures, of the other of 800 deg. C, high hardness (2800 Vickers) and low friction coefficient. A plasma assisted repetitive pulsed arcs mono-evaporator system was used in the grow of the TiAlN coatings, the TiAlN target is a sinterized 50% Ti and 50% Al, in the substrate they were used two types of steel that compose the molds injection pieces for the rims production. These materials were subjected to linear and fluctuating thermal changes in the Bruker axs X-Ray diffractometer temperature chamber, what simulated the molds thermal variation in the rims production process and they were compared with TiAlN coatings subjected to same thermal changes. The Materials characterization, before and later of thermal process, was carried out using XRD, SPM and EDS techniques, to analyze the crystallographic, topographic and chemical surface structure behaviours

  15. Geologic Map and Eruptive History of Veniaminof Volcano Record Aleutian Arc Processing of Mantle-Derived Melts

    Science.gov (United States)

    Bacon, C. R.; Sisson, T. W.; Calvert, A. T.; Nye, C. J.

    2009-12-01

    Mount Veniaminof, one of the largest volcanoes in the Aleutian arc, has a basal diameter of ~40 km, a volume of ~350 km3, an 8-km-diameter ice-filled caldera, and an active intracaldera cone. The geology of this tholeiitic basalt-to-dacite volcano has been mapped at 1:50,000 scale. Over 100 Quaternary volcanic map units are characterized by 600 chemical analyses of rocks and nearly 100 40Ar/39Ar and K-Ar ages. Throughout its history, lava flows from Veniaminof recorded alternately ice/melt-water chilling or ice-free conditions that are consistent with independent paleoclimatic records. Exposures from deep glacial valleys to the caldera rim reveal a long history dominated by basalt and basaltic andesite from ≥260 ka to 150 ka that includes compositions as primitive as 9.4% MgO and 130 ppm Ni at 50% SiO2. Basaltic andesite, common throughout Veniaminof's history, has low compatible-element contents that indicate an origin by fractionation of basaltic magma. Repeated eruption of more differentiated melts from a shallow intrusive complex, represented by granodiorite (crystallized dacitic magma) and cumulate gabbro and diorite xenoliths in pyroclastic deposits, has featured virtually aphyric andesite since 150 ka and dacite (to 69.5% SiO2) beginning ~110 ka. These variably differentiated liquids segregated from crystal mush, possibly by gas-driven filter pressing, and commonly vented but also solidified at depth. A large composite cone was present at least as early as 200 ka. Although asymmetric edifice morphology hints at early sector collapse to the southeast, coeval vents on northwest and southeast flanks and the distribution of extensive lava units indicate that a large cone (again) was present by 120 ka. Flank eruption of a wide variety of Veniaminof magmas was common from plate-convergence-parallel northwest-trending fissures from at least as early as ca. 80 ka. At 56 ka and at 46 ka, voluminous dacite lava erupted on both northwest and southeast flanks. A

  16. Engineering support services for the DOE/GRI coal-gasification research program. Technical and economical comparisons of the Westinghouse and I. G. T. U-Gas coal-gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Koneru, P.B.

    1981-07-01

    Kellogg was requested by DOE/GRI to prepare technical and economic assessments of the Westinghouse and IGT U-Gas processes such that comparison of the two would be on a consistent basis. Kellogg carried out this task in essentially two phases: (a) preparation of consistent designs of coal-to-SNG plants using the two processes, and (b) evaluation of the design bases in light of research data. Comparable designs and economics were prepared for grass-roots facilities to produce SNG equivalent to 250 billion Btu/day from Pittsburgh No. 8 coal, using the Westinghouse and U-Gas gasifiers. The C.F. Braun Guidelines were followed. The capital and operating costs are almost identical for the two processes. In Kellogg's view, the economics as developed during this study do not show cause to favor either process over the other. The small differences in costs are well within the accuracies of the estimates and should be considered insignificant. Nine differences between the Westinghouse and U-Gas processes are listed which could possibly provide an advantage to one or to the other. Opportunities exist for both processes to enhance efficiencies and/or to reduce costs by optimization of the gas treating and byproduct recovery areas. Kellogg observes that both Westinghouse and U-Gas appear to be very competitive (in economics as developed during this study) with other coal gasification processes evaluated under the Joint DOE/GRI Program.

  17. 瓦斯突出煤体形成的物理条件和过程%Physical conditions and process of gas outburst coal forming

    Institute of Scientific and Technical Information of China (English)

    张小兵; 闫江伟

    2014-01-01

    Coal-gas outburst is a serious threat to the safety production of coal mine.However, the systematic in-depth study to the formation mechanism of gas outburst coal is scarce.Gas outburst coal which is consisted by heav-ily damaged deformed coal delamination and high-energy coal seam gas, has coal-gas outburst danger in coal seam. Focusing on deformation-metamorphism of coal, the physical conditions and process of gas outburst coal forming were revealed based on the references and previous researches of authors.It was summarized as follows: heavily damaged deformed coal and abundant gas accumulation in coal seam, are the material basis of gas outburst coal forming;the dynamic basis of gas outburst coal forming include tectonic stress and gravity, adsorption/desorption, gas slipping and wedge actions;the main characteristics of gas outburst coal forming are coal body failure, gas ac-cumulation and closed compaction.The research plays an important role on the prediction and prevention of coal-gas outburst hazard in complex geological environments.%煤与瓦斯突出灾害严重威胁着煤矿安全生产,但目前对煤与瓦斯突出的物质载体形成机理研究鲜有报道。瓦斯突出煤体系指含有高能瓦斯且以强烈韧性破坏为主的构造煤体,具备发生煤与瓦斯突出的固体和气体介质条件。以煤体变形变质为主线,综述相关文献并结合研究积累,分析揭示了瓦斯突出煤体形成的物理条件和过程:煤体结构严重破坏的构造煤、积聚于此的大量瓦斯,是瓦斯突出煤体形成的物质基础;构造应力与重力、吸附/解吸作用、气体增滑与气楔作用,是瓦斯突出煤体形成的动力基础;煤体破坏、瓦斯积聚、封闭压实,是瓦斯突出煤体形成过程的主要特征。本研究对复杂地质条件下区域瓦斯预测防治具有重要指导作用。

  18. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  19. Acoustic emission generated during the gas sorption-desorption process in coal

    Institute of Scientific and Technical Information of China (English)

    Ma Yankun; Wang Enyuan; Xiao Dong; Li Zhonghui; Liu Jie; Gan Lijia

    2012-01-01

    An experimental system for monitoring the acoustic signals generated in coal during gas sorption and/or desorption was designed and the acoustic signals were observed under different gas pressures.The experimental results show that signals generated by the coal during gas adsorption are attenuated over time.Also,the signals are not continuous but are impulsive.The intensity of the signals generated during gas desorption is far smaller than that observed during adsorption.The signal seen during desorption remains essentially stable.Cycles of sorption and desorption cause acoustic emission signals that exhibit a memory effect,which depends upon the maximum gas pressure the sample was exposed to in earlier cycles.Lower pressures in subsequent cycles,compared to the maximum adsorption pressure in previous cycles,cause both the energy and impulse frequency to be lower than previously.On the contrary,a gas adsorption pressure that exceeds the maximum pressure seen by the sample during earlier cycles causes both the energy and impulse frequency to be high.

  20. Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant

    CERN Document Server

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01

    The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...