WorldWideScience

Sample records for arbuscular mycorrhizas contribute

  1. Arbuscular Mycorrhiza

    Science.gov (United States)

    Martin, Holger; Cohen, David; Fitz, Michael; Wipf, Daniel

    2007-01-01

    The intimate arbuscular mycorrhiza (AM) association between roots and obligate symbiotic Glomeromycota (‘AM fungi’) ‘feeds’ about 80% of land plants. AM forming fungi supply land plants with inorganic nutrients and have an enormous impact on terrestrial ecosystems. In return, AM fungi obtain up to 20% of the plant-fixed CO2, putatively as monosaccharides. In a recent work we have reported the characterization of the first glomeromycotan monosaccharide transporter, GpMST1, and its gene sequence. We discuss that AM fungi might take up sugars deriving from plant cell-wall material. The GpMST1 sequence delivers valuable data for the isolation of orthologues from other AM fungi and may eventually lead to the understanding of C-flows in the AM. PMID:19704624

  2. Arbuscular fungi and mycorrhizae of agricultural soils of the Western Pomerania. Part I. Occurrence of arbuscular fungi and mycorrhizae

    Directory of Open Access Journals (Sweden)

    Anna Iwaniuk

    2014-08-01

    Full Text Available This paper presents results of three-year investigations on the occurrence of arbuscular mycorrhizal fungi and arbuscular mycorrhizae of the phylum Glomeromycota in agricultural soils of the Western Pomerania, north-western Poland. The occurrence of these fungi was determined basing on soil-root mixtures collected from both the field and trap cultures.

  3. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...

  4. Sulfur Transfer through an Arbuscular Mycorrhiza1

    Science.gov (United States)

    Allen, James W.; Shachar-Hill, Yair

    2009-01-01

    Despite the importance of sulfur (S) for plant nutrition, the role of the arbuscular mycorrhizal (AM) symbiosis in S uptake has received little attention. To address this issue, 35S-labeling experiments were performed on mycorrhizas of transformed carrot (Daucus carota) roots and Glomus intraradices grown monoxenically on bicompartmental petri dishes. The uptake and transfer of 35SO42− by the fungus and resulting 35S partitioning into different metabolic pools in the host roots was analyzed when altering the sulfate concentration available to roots and supplying the fungal compartment with cysteine (Cys), methionine (Met), or glutathione. Additionally, the uptake, transfer, and partitioning of 35S from the reduced S sources [35S]Cys and [35S]Met was determined. Sulfate was taken up by the fungus and transferred to mycorrhizal roots, increasing root S contents by 25% in a moderate (not growth-limiting) concentration of sulfate. High sulfate levels in the mycorrhizal root compartment halved the uptake of 35SO42− from the fungal compartment. The addition of 1 mm Met, Cys, or glutathione to the fungal compartment reduced the transfer of sulfate by 26%, 45%, and 80%, respectively, over 1 month. Similar quantities of 35S were transferred to mycorrhizal roots whether 35SO42−, [35S]Cys, or [35S]Met was supplied in the fungal compartment. Fungal transcripts for putative S assimilatory genes were identified, indicating the presence of the trans-sulfuration pathway. The suppression of fungal sulfate transfer in the presence of Cys coincided with a reduction in putative sulfate permease and not sulfate adenylyltransferase transcripts, suggesting a role for fungal transcriptional regulation in S transfer to the host. A testable model is proposed describing root S acquisition through the AM symbiosis. PMID:18978070

  5. Arbuscular mycorrhiza in soil quality assessment

    DEFF Research Database (Denmark)

    Kling, M.; Jakobsen, I.

    1998-01-01

    quantitative and qualitative measurements of this important biological resource. Various methods for the assessment of the potential for mycorrhiza formation and function are presented. Examples are given of the application of these methods to assess the impact of pesticides on the mycorrhiza....

  6. Auxins as Signals in Arbuscular Mycorrhiza Formation

    Science.gov (United States)

    Güther, Mike

    2007-01-01

    Plant hormones such as auxin derivatives are likely signals during the establishment of an arbuscular mycorrhizal (AM) symbiosis. Although reports on auxin levels during AM in different plant species are contradictory, the contribution of auxins to the establishment of an AM symbiosis might be an important factor especially for the development of lateral roots which are the preferred infection sites for the fungi. In addition to evidence that different auxins could be elevated after colonization with AM fungi, there are also overlapping gene expression patterns between auxin-treated and AM-inoculated roots that provide further clues on auxin-triggered colonization events. Using an auxin-inducible promoter-reporter system it was shown that the reporter was strongly induced in AM colonized roots, although co-localization with AM fungi was not observed. Our data are discussed in frame of a model together with other plant hormones which might be involved in the AM colonization processes. PMID:19704695

  7. Dinâmica e contribuição da micorriza arbuscular em sistemas de produção com rotação de culturas Dynamics and contribution of arbuscular mycorrhiza in culture systems with crop rotation

    Directory of Open Access Journals (Sweden)

    Jeanne Christine Claessen de Miranda

    2005-10-01

    Full Text Available Rotação de culturas e variações sazonais podem promover alterações quantitativas e qualitativas na comunidade de fungos micorrízicos arbusculares nativos e na formação da micorriza arbuscular. Essa dinâmica foi avaliada, em campo, num Latossolo Vermelho, em relação ao tempo de cultivo e variação sazonal, em sistemas de rotação de culturas. Em casa de vegetação, avaliou-se, em solo proveniente da área experimental, a contribuição da micorriza arbuscular no crescimento de soja e capim-andropógon utilizados na rotação. O número de esporos dos fungos aumentou no solo cultivado. O número de esporos e o porcentual de colonização radicular, inicialmente maiores sob pastagem, variaram de acordo com o tempo de cultivo, as estações seca e chuvosa, a cultura e o sistema de rotação utilizados. O número de gêneros e espécies aumentou com o tempo de cultivo e manejo de culturas e foi maior sob culturas anuais em rotação. A presença dos fungos no solo contribuiu no crescimento da soja e do capim-andropógon em 53% e 95%, respectivamente. A cultura e o sistema de cultivo são fatores determinantes para o enriquecimento do sistema com micorriza arbuscular.Crop rotation and seasonal variations can promote quantitative and qualitative changes in the indigenous arbuscular mycorrhizal fungi population in the soil and arbuscular mycorrhiza establishment. These fungi dynamics were evaluated in the field, in a Red Latosol, in relation to cropping time, seasonal variation and rotation systems. The contribution of arbuscular mycorrhiza to the growth of andropogon grass and soybean, which were used in the systems, was evaluated in a greenhouse experiment using soil from the experimental area. The number of spores of the fungi increased in the cultivated soil. The spores number and percent root colonization varied according to cropping time, soil moisture, crops and rotation system and were, initially, higher under pasture. The number

  8. [Ecological significance of arbuscular mycorrhiza biotechnology in modern agricultural system].

    Science.gov (United States)

    Zhang, Yong; Zeng, Ming; Xiong, Bingquan; Yang, Xiaohong

    2003-04-01

    Mycorrhiza plays a key role in nutrient cycling in ecosystem, and protects host plant against environmental stress. Under natural condition, plant's mycorrhizal structure is a normal phenomenon, and arbuscular mycorrhiza (AM) association is the commonest mycorrhizal type. If well mycorrhizal structure can be formed during plant root system developing process, the quantity and quality of plant production will be improved in large. Because of its effects on plant growth and health, it is accepted that AM symbiosis can reduce chemical fertilizer and pesticide inputs. Consequently, this will lead to a reduction in harmful chemical substance impact on environment. The key effects of AM symbiosis can be summarized as follows: (1) improving rooting and plant establishment; (2) improving uptake of low mobile ions; (3) improving nutrient cycling; (4) enhancing plant tolerance to (biotic and abiotic) stress; (5) improving quality of soil structure; and (6) enhancing plant community diversity. In this paper, the ecological characteristic of arbuscular mycorrhiza fungi (AMF), effects of AM on host plant, and ecologic significance of AM biotechnology in agricultural system were reviewed.

  9. Arbuscular mycorrhizas reduce nitrogen loss via leaching.

    Directory of Open Access Journals (Sweden)

    Hamid R Asghari

    Full Text Available The capacity of mycorrhizal and non-mycorrhizal root systems to reduce nitrate (NO₃⁻ and ammonium (NH₄⁺ loss from soils via leaching was investigated in a microcosm-based study. A mycorrhiza defective tomato mutant and its mycorrhizal wildtype progenitor were used in this experiment in order to avoid the indirect effects of establishing non-mycorrhizal control treatments on soil nitrogen cycling and the wider soil biota. Mycorrhizal root systems dramatically reduced nitrate loss (almost 40 times less via leaching, compared to their non-mycorrhizal counterparts, following a pulse application of ammonium nitrate to experimental microcosms. The capacity of AM to reduce nutrient loss via leaching has received relatively little attention, but as demonstrated here, can be significant. Taken together, these data highlight the need to consider the potential benefits of AM beyond improvements in plant nutrition alone.

  10. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    This review discusses the role arbuscular mycorrhizal fungi play in the regulation of plant nutrient transporter genes. Many plant nutrient transporter genes appear to be transcriptionally regulated by a feed-back mechanism that reduces their expression when the plant reaches an optimal level of...... nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression of the...... high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  11. Successful joint ventures of plants: arbuscular mycorrhiza and beyond.

    Science.gov (United States)

    Ercolin, Flavia; Reinhardt, Didier

    2011-07-01

    Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis. PMID:21459657

  12. Successful joint ventures of plants: arbuscular mycorrhiza and beyond.

    Science.gov (United States)

    Ercolin, Flavia; Reinhardt, Didier

    2011-07-01

    Among the oldest symbiotic associations of plants are arbuscular mycorrhiza (AM) with fungi of the phylum Glomeromycota. Although many of the symbiotic signaling components have been identified on the side of the plant, AM fungi have long evaded genetic analysis owing to their strict biotrophy and their exceptional genetics. Recently, the identification of the fungal symbiosis signal (Myc factor) and of a corresponding Myc factor receptor, and new insights into AM fungal genetics, have opened new avenues to address early communication and functional aspects of AM symbiosis. These advances will pave the way for breeding programs towards adapted AM fungi for crop production, and will shed light on the ecology and evolution of this remarkably successful symbiosis.

  13. Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza1.

    Science.gov (United States)

    Park, Hee-Jin; Floss, Daniela S; Levesque-Tremblay, Veronique; Bravo, Armando; Harrison, Maria J

    2015-12-01

    During arbuscular mycorrhizal symbiosis, arbuscule development in the root cortical cell and simultaneous deposition of the plant periarbuscular membrane generate the interface for symbiotic nutrient exchange. The transcriptional changes that accompany arbuscule development are extensive and well documented. By contrast, the transcriptional regulators that control these programs are largely unknown. Here, we provide a detailed characterization of an insertion allele of Medicago truncatula Reduced Arbuscular Mycorrhiza1 (RAM1), ram1-3, which reveals that RAM1 is not necessary to enable hyphopodium formation or hyphal entry into the root but is essential to support arbuscule branching. In ram1-3, arbuscules consist only of the arbuscule trunk and in some cases, a few initial thick hyphal branches. ram1-3 is also insensitive to phosphate-mediated regulation of the symbiosis. Transcript analysis of ram1-3 and ectopic expression of RAM1 indicate that RAM1 regulates expression of EXO70I and Stunted Arbuscule, two genes whose loss of function impacts arbuscule branching. Furthermore, RAM1 regulates expression of a transcription factor Required for Arbuscule Development (RAD1). RAD1 is also required for arbuscular mycorrhizal symbiosis, and rad1 mutants show reduced colonization. RAM1 itself is induced in colonized root cortical cells, and expression of RAM1 and RAD1 is modulated by DELLAs. Thus, the data suggest that DELLAs regulate arbuscule development through modulation of RAM1 and RAD1 and that the precise transcriptional control essential to place proteins in the periarbuscular membrane is controlled, at least in part, by RAM1.

  14. Arbuscular mycorrhiza of plants spontaneously colonizing the soda heap in Jaworzno (southern Poland

    Directory of Open Access Journals (Sweden)

    Ewa Gucwa-Przepióra

    2011-04-01

    Full Text Available The results of studies of the mycorrhizal status of plant species spontaneously established on the soda heap located in Jaworzno (Upper Silesia, Poland are presented. Additionally, the species of arbuscular fungi of the phylum Glomeromycota extracted from field-collected rhizosphere substrate samples of the heap are showed. Arbuscular mycorrhizae were described in 17 plant species. Five Glomus spp. were recognized in the spore populations of arbuscular fungi isolated. The investigation presented in this paper for the first time revealed Centaurea stoebe and Trifolium montanum to be hosts of arbuscular fungi.

  15. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Per [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Jakobsen, Iver [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark)], E-mail: iver.jakobsen@risoe.dk

    2008-05-15

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock.

  16. Isolation and Identification of Vesicular-Arbuscular Mycorrhiza-Stimulatory Compounds from Clover (Trifolium repens) Roots

    Science.gov (United States)

    Nair, Muraleedharan G.; Safir, Gene R.; Siqueira, Jose O.

    1991-01-01

    Two isoflavonoids isolated from clover roots grown under phosphate stress were characterized as formononetin (7-hydroxy,4′-methoxy isoflavone) and biochanin A (5,7-dihydroxy,4′-methoxy isoflavone). At 5 ppm, these compounds stimulated hyphal growth in vitro and root colonization of an undescribed vesicular-arbuscular mycorrhiza, a Glomus sp. (INVAM-112). The permethylated products of the two compounds were inactive. These findings suggest that the isoflavonoids studied may act as signal molecules in vesicular-arbuscular mycorrhiza symbiosis. PMID:16348409

  17. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    DEFF Research Database (Denmark)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non......-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock. (c) 2007 Elsevier Ltd. All rights...

  18. Arbuscular mycorrhiza: the mother of plant root endosymbioses.

    Science.gov (United States)

    Parniske, Martin

    2008-10-01

    Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.

  19. [Structure and function of arbuscular mycorrhiza: a review].

    Science.gov (United States)

    Tian, Mi; Chen, Ying-long; Li, Min; Liu, Run-jin

    2013-08-01

    Arbuscular mycorrhiza (AM) is one of the most widely distributed and the most important mutualistic symbionts in terrestrial ecosystems, playing a significant role in enhancing plant resistance to stresses, remediating polluted environments, and maintaining ecosystem stabilization and sustainable productivity. The structural characteristics of AM are the main indicators determining the mycorrhizal formation in root system, and have close relations to the mycorrhizal functions. This paper summarized the structural characteristics of arbuscules, vesicles, mycelia and invasion points of AM, and analyzed the relationships between the Arum (A) type arbuscules, Paris (P) type arbuscules, vesicles, and external mycelia and their functions in improving plant nutrient acquisition and growth, enhancing plant resistance to drought, waterlogging, salinity, high temperature, diseases, heavy metals toxicity, and promoting toxic organic substances decomposition and polluted and degraded soil remediation. The factors affecting the AM structure and functions as well as the action mechanisms of mycorrhizal functions were also discussed. This review would provide a basis for the systemic study of AM structural characteristics and functional mechanisms and for evaluating and screening efficient AM fungal species.

  20. Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Up take of Mineral Nutrition in Ipomoea Aquatica.

    Directory of Open Access Journals (Sweden)

    Milton Halder

    2015-04-01

    Full Text Available A green house experiment was conducted to investigate the effect of arbuscular mycorrhiza inoculation on plant growth and uptake of mineral nutrition in Ipomoea aquatica considering the objective of using environmental friendly biofertilizer instead of chemical fertilizer. A common leafy vegetable plant Ipomoea aquatica was grown with mycorrhiza and without mycorrhiza for 42 days. After harvest the plants were analyzed for mineral nutrition concentration. Plant fresh weight, dry weight, macronutrient (P, K, Mg, Na, micronutrient (Fe, Mn, Zn concentration was higher in arbuscular mycorrhiza inoculated plant than non-mycorrhiza inoculated plant. For sustainable agriculture, introducing biofertilizer by using arbuscular mycorrhiza inoculation would be one of the most efficient techniques for replacing chemical fertilizer to meet the nutrient deficiency in nutrient deficient soils of Bangladesh.

  1. The development and significance of vesicular-arbuscular mycorrhizas as influenced by agricultural practices

    NARCIS (Netherlands)

    Ruissen, M.A.

    1982-01-01

    The development and significance of vesicular- arbuscular mycorrhizas (VAM) in wheat and potatoes have been studied in relation to various farming systems and agricultural practices. The effects of farming systems on VAM have been observed on three neighbouring experimental farms in the vicinity of

  2. Enhanced Growth of Multipurpose Calliandra (Calliandra calothyrsus) Using Arbuscular Mycorrhiza Fungi in Uganda

    Science.gov (United States)

    Sebuliba, Esther; Nyeko, Phillip; Majaliwa, Mwanjalolo; Eilu, Gerald; Kizza, Charles Luswata; Ekwamu, Adipala

    2012-01-01

    This study was conducted to compare the effect of selected arbuscular mycorrhiza fungi genera and their application rates for enhanced Calliandra growth in Uganda. The performance of Calliandra under different types and rates of arbuscular mycorrhiza fungi inoculation was assessed in the greenhouse using sterilized Mabira soils. Four dominant genera were isolated from the rhizosphere of sorghum in the laboratory. Calliandra seeds were grown in pots and the seed coating method of application was used at concentrations of 0 spores, 30 spores and 50 spores. Each treatment was replicated three times. All Calliandra inoculated seedlings showed improved seedling growth (in terms of height and shoot dry matter weight) compared to the control (P < 0.05) except with the arbuscular mycorrhiza fungi mixture treated Calliandra at 50 spores rate. Glomus sp. and Acaulospora sp. had significant influence on the height of Calliandra, while AMF mixture performed best in terms of shoot dry weight (P < 0.05). This study provides a good scope for commercially utilizing the efficient strains of arbuscular mycorrhiza fungi for beneficial effects in the primary establishment of slow growing seedlings ensuring better survival and improved growth. PMID:23365530

  3. Enhanced Growth of Multipurpose Calliandra (Calliandra calothyrsus Using Arbuscular Mycorrhiza Fungi in Uganda

    Directory of Open Access Journals (Sweden)

    Esther Sebuliba

    2012-01-01

    Full Text Available This study was conducted to compare the effect of selected arbuscular mycorrhiza fungi genera and their application rates for enhanced Calliandra growth in Uganda. The performance of Calliandra under different types and rates of arbuscular mycorrhiza fungi inoculation was assessed in the greenhouse using sterilized Mabira soils. Four dominant genera were isolated from the rhizosphere of sorghum in the laboratory. Calliandra seeds were grown in pots and the seed coating method of application was used at concentrations of 0 spores, 30 spores and 50 spores. Each treatment was replicated three times. All Calliandra inoculated seedlings showed improved seedling growth (in terms of height and shoot dry matter weight compared to the control (P<0.05 except with the arbuscular mycorrhiza fungi mixture treated Calliandra at 50 spores rate. Glomus sp. and Acaulospora sp. had significant influence on the height of Calliandra, while AMF mixture performed best in terms of shoot dry weight (P<0.05. This study provides a good scope for commercially utilizing the efficient strains of arbuscular mycorrhiza fungi for beneficial effects in the primary establishment of slow growing seedlings ensuring better survival and improved growth.

  4. SOME PRELIMINARY DATA ABOUT VESICULAR – ARBUSCULAR MYCORRHIZAS AT DIFFERENT SPECIES OF PLANTAGO

    Directory of Open Access Journals (Sweden)

    Nicoleta IANOVICI

    2010-01-01

    Full Text Available Vesicular – arbuscular mycorrhizas are though widely distributed. Root colonization of VAM fungi was studied in seven different species of Plantago. Colonization was high among all species. The highest intensity of root cortex colonization (M%, relative arbuscular richness (A% and arbuscule richness in root fragments were found in the Plantago schwarzenbergiana. Comparison of the VAM colonization in roots from different ecosystems suggested that plants grown in the saline habitats might be more dependence on VAM. There is a suggestion that AM fungi were able to detect variations in land. There is also an indication that VAM abundance was a response to stress.

  5. EFFECT OF ARBUSCULAR MYCORRHIZA FUNGI INOCULATION ON TEAK (Tectona grandis Linn. F AT CIKAMPEK, WEST JAVA

    Directory of Open Access Journals (Sweden)

    Ragil S.B. Irianto

    2005-07-01

    Full Text Available The aim of this study was to identify the effect of Arbuscular Mycorhiza Fungi (AMF on the early growth of teak (Tectona grandis Linn. F plantation. Teak seedlings were inoculated with Glomus aggregatum or Mycofer (mixing of four Arbuscular Mycorrhiza Fungi (AMF : G. margarita, G. manihotis, G. etunicatum and Acalospora spinosa at the time of transplantation. At  three months old the seedlings were planted in Cikampek experimental forest. Results showed that application of G. aggregatum or mycofer to teak could accelerate height and diameter growth by up to 61%and4 7%, respectively, after three months in the field.

  6. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp.

    OpenAIRE

    Santos Vera Lúcia dos; Muchovej Rosa Maria; Borges Arnaldo Chaer; Neves Júlio César L.; Kasuya Maria Catarina M.

    2001-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM) in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per.) Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonizatio...

  7. Regulação do desenvolvimento de micorrizas arbusculares Regulation of arbuscular mycorrhizae development

    Directory of Open Access Journals (Sweden)

    Soraya Gabriela Kiriachek

    2009-02-01

    Full Text Available As micorrizas arbusculares (MAs são associações simbióticas mutualistas entre fungos do filo Glomeromycota e a maioria das plantas terrestres. A formação e o funcionamento das MAs depende de um complexo processo de troca de sinais, que resulta em mudanças no metabolismo dos simbiontes e na diferenciação de uma interface simbiótica no interior das células das raízes. Os mecanismos que regulam a formação das MAs são pouco conhecidos, mas sabe-se que a concentração de fosfato (P na planta é um fator determinante para o desenvolvimento da simbiose. A disponibilidade de P na planta pode afetar o balanço de açúcares e de fitormônios (FHs, além da expressão de genes de defesa vegetal. Com o advento da genômica e proteômica, vários genes essenciais para o desenvolvimento das MAs já foram identificados e seus mecanismos de regulação estão sendo estudados. Até o presente, sabe-se que as plantas secretam substâncias que estimulam a germinação de esporos e o crescimento de fungos micorrízicos arbusculares (FMAs. Há evidências também de que os FMAs sintetizam moléculas sinalizadoras, que são reconhecidas pelas plantas hospedeiras. Pelo menos três genes são essenciais para o reconhecimento dessa molécula e a transdução do sinal molecular. Discutem-se os papéis desses genes e os possíveis mecanismos que regulam sua expressão, bem como os papéis dos FHs na regulação de MAs são discutidos.Arbuscular mycorrhizae (AM are mutualistic symbiotic associations between fungi of the phylum Glomeromycota and most terrestrial plants. The formation and functioning of AM depend on a complex signal exchange process, which ultimately results in shifts in the metabolism of the symbionts and differentiation of a symbiotic interface in cortical root cells. The mechanisms regulating AM development are not well understood, but it is known that phosphate (P concentration in plants plays a key role in this process. Plant P

  8. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.

    Science.gov (United States)

    Gianinazzi, Silvio; Gollotte, Armelle; Binet, Marie-Noëlle; van Tuinen, Diederik; Redecker, Dirk; Wipf, Daniel

    2010-11-01

    The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society's balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society. PMID:20697748

  9. Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza

    Science.gov (United States)

    León Morcillo, Rafael Jorge; Ocampo, Juan A.; García Garrido, José M.

    2012-01-01

    The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants. PMID:23073021

  10. Using mycorrhiza-defective mutant genotypes of non-legume plant species to study the formation and functioning of arbuscular mycorrhiza: a review.

    Science.gov (United States)

    Watts-Williams, Stephanie J; Cavagnaro, Timothy R

    2015-11-01

    A significant challenge facing the study of arbuscular mycorrhiza is the establishment of suitable non-mycorrhizal treatments that can be compared with mycorrhizal treatments. A number of options are available, including soil disinfection or sterilisation, comparison of constitutively mycorrhizal and non-mycorrhizal plant species, comparison of plants grown in soils with different inoculum potential and the comparison of mycorrhiza-defective mutant genotypes with their mycorrhizal wild-type progenitors. Each option has its inherent advantages and limitations. Here, the potential to use mycorrhiza-defective mutant and wild-type genotype plant pairs as tools to study the functioning of mycorrhiza is reviewed. The emphasis of this review is placed on non-legume plant species, as mycorrhiza-defective plant genotypes in legumes have recently been extensively reviewed. It is concluded that non-legume mycorrhiza-defective mutant and wild-type pairs are useful tools in the study of mycorrhiza. However, the mutant genotypes should be well characterised and, ideally, meet a number of key criteria. The generation of more mycorrhiza-defective mutant genotypes in agronomically important plant species would be of benefit, as would be more research using these genotype pairs, especially under field conditions.

  11. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition

    DEFF Research Database (Denmark)

    Smith, S.E.; Jakobsen, Iver; Grønlund, Mette;

    2011-01-01

    In this Update, we review new findings about the roles of the arbuscular mycorrhizas (mycorrhiza = fungus plus root) in plant growth and phosphorus (P) nutrition. We focus particularly on the function of arbuscular mycorrhizal (AM) symbioses with different outcomes for plant growth (from positive...... to negative) and especially on the interplay between direct P uptake via root epidermis (including root hairs when present) and uptake via the AM fungal pathway. The results are highly relevant to many aspects of AM symbiosis, ranging from signaling involved in the development of colonization...

  12. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  13. Laboratory bioassay for assessing the effects of sludge supernatant on plant growth and vesicular-arbuscular mycorrhiza formation

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, K.S.; Liberta, A.E.

    1982-12-01

    A laboratory bioassay is described for assessing the effects of sludge supernatant on juvenile corn growth and the ability of vesicular-arbuscular (VA) mycorrhizal fungi, indigenous to coal spoil, to form mycorrhizae. The bioassay demonstrated that application rates can be identified that have the potential to promote increased plant dry weight without suppressing the formation of VA mycorrhizae in a plant's root system.

  14. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1983-01-01

    The effect of inoculation with vesicular–arbuscular mycorrhizal fungi on the growth of barley in the field was studied at two levels of soil P on plots fumigated with methyl bromide. During the vegetative phase, growth and P uptake was influenced only by soil P; P uptake in the period from earing...

  15. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi

    DEFF Research Database (Denmark)

    Cruz, C.; Egsgaard, Helge; Trujillo, C.;

    2007-01-01

    Key enzymes of the urea cycle and N-15-labeling patterns of arginine (Arg) were measured to elucidate the involvement of Arg in nitrogen translocation by arbuscular mycorrhizal (AM) fungi. Mycorrhiza was established between transformed carrot (Daucus carota) roots and Glomus intraradices in two......- compartment petri dishes and three ammonium levels were supplied to the compartment containing the extraradical mycelium (ERM), but no roots. Time courses of specific enzyme activity were obtained for glutamine synthetase, argininosuccinate synthetase, arginase, and urease in the ERM and AM roots. 15 NH 4 1...

  16. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown.

    Science.gov (United States)

    Corrêa, A; Cruz, C; Ferrol, N

    2015-10-01

    Many studies have established that arbuscular mycorrhizal fungi transfer N to the host plant. However, the role and importance of arbuscular mycorrhiza (AM) in plant N nutrition is still uncertain, as are the C/N interactions within the symbiosis. Published reports provide differing, and often contradictory, results that are difficult to combine in a coherent framework. This review explores questions such as: What makes the difference between a positive and a negative effect of AM on plant N nutrition? Is the mycorrhizal N response (MNR) correlated to the mycorrhizal growth response (MGR), and how or under which conditions? Is the MNR effect on plant growth C mediated? Is plant C investment on fungal growth related to N needs or N benefit? How is the N for C trade between symbionts regulated? The patternless nature of current knowledge is made evident, and possible reasons for this are discussed.

  17. APPARENT LACK OF VESICULAR-ARBUSCULAR MYCORRHIZA (VAM) IN SEAGRASSES ZOSTERA MARINA L. AND THALASSIA TESTUDIUM BANKS EX KONIG

    Science.gov (United States)

    We examined two populations of Zostera marina L. and one of Thalassia testudinum Banks ex Konig for presence of vesicular-arbuscular mycorrhiza (VAM). None of these plants showed any VAM colonization. In addition, we were unable to find any literature references on the presence o...

  18. Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta; Zak, Marcelo R; Bartoloni, Norberto

    2009-01-01

    In Argentina the Yungas forests are among the ecosystems most affected by human activity, with loss of biodiversity. To assess the arbuscular mycorrhizal (AM) colonization and the arbuscular mycorrhizal fungi (AMF) spore numbers in these ecosystems, the roots of the most dominant native plants (one tree, Alnus acuminata; three herbaceous, Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub, Sambucus peruviana) were studied throughout the year from two sites of Yungas forests. Assessments of mycorrhizal colonization (percent root length, intraradical structures) were made by washing and staining the roots. Soil samples of each plant species were pooled and subsamples were obtained to determine AM spore numbers. The herbaceous species formed both Arum- and Paris-type morphologies, whereas the tree and the shrub species formed respectively single structural types of Arum- and Paris-type. AM colonization, intraradical fungi structures and AMF spore numbers displayed variation in species, seasons and sites. D. indica showed the highest AM colonization, whereas the highest spore numbers was observed in the rhizosphere of A. acuminata. No correlation was observed between spore numbers and root length percentage colonized by AM fungi. Results of this study showed that Alnus acuminata is facultatively AM. The AM colonization, intraradical fungi structures and AMF spore numbers varied in species depending on phenological, climatic and edaphic conditions. PMID:19750940

  19. Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession.

    Science.gov (United States)

    Rydlová, Jana; Püschel, David; Dostálová, Magdalena; Janoušková, Martina; Frouz, Jan

    2016-10-01

    Little is known about the functioning of arbuscular mycorrhizal (AM) symbiosis over the course of primary succession, where soil, host plants, and AM fungal communities all undergo significant changes. Over the course of succession at the studied post-mining site, plant cover changes from an herbaceous community to the closed canopy of a deciduous forest. Calamagrostis epigejos (Poaceae) is a common denominator at all stages, and it dominates among AM host species. Its growth response to AM fungi was studied at four distinctive stages of natural succession: 12, 20, 30, and 50 years of age, each represented by three spatially separated sites. Soils obtained from all 12 studied sites were γ-sterilized and used in a greenhouse experiment in which C. epigejos plants were (1) inoculated with a respective community of native AM fungi, (2) inoculated with reference AM fungal isolates from laboratory collection, or (3) cultivated without AM fungi. AM fungi strongly boosted plant growth during the first two stages but not during the latter two, where the effect was neutral or even negative. While plant phosphorus (P) uptake was generally increased by AM fungi, no contribution of mycorrhizae to nitrogen (N) uptake was recorded. Based on N:P in plant biomass, we related the turn from a positive to a neutral/negative effect of AM fungi on plant growth, observed along the chronosequence, to a shift in relative P and N availability. No functional differences were found between native and reference inocula, yet root colonization by the native AM fungi decreased relative to the reference inoculum in the later succession stages, thereby indicating shifts in the composition of AM fungal communities reflected in different functional characteristics of their members.

  20. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    Science.gov (United States)

    de Azevedo, Lucas Carvalho Basilio; Stürmer, Sidney Luiz; Lambais, Marcio Rodrigues

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development. PMID:25477936

  1. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    Directory of Open Access Journals (Sweden)

    Lucas Carvalho Basilio de Azevedo

    2014-09-01

    Full Text Available Sugarcane (Saccharum spp. is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning. Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.

  2. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    Directory of Open Access Journals (Sweden)

    Lin, XG.

    1993-01-01

    Full Text Available Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight of shoots and roots, total uptake of nitrogen, phosphorus and other elements, the final yields and recovery of phosphorus of white clover were significantly increased by vesicular-arbuscular mycorrhizal inoculation and dual inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobium. The highest response of inoculation was obtained by adding fertilizer phosphorus at the level of 60 kg P205 ha in form of superphosphate.

  3. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp. Sucessão de micorrizas vesicular-arbuscular e ectomicorrizas em mudas de Eucalyptus spp.

    OpenAIRE

    Vera Lúcia dos Santos; Rosa Maria Muchovej; Arnaldo Chaer Borges; Júlio César L. Neves; Maria Catarina M. Kasuya

    2001-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM) in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per.) Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonizatio...

  4. [Potential role of arbuscular mycorrhiza in bioremediation of uranium contaminated environments].

    Science.gov (United States)

    Chen, Bao-Dong; Chen, Mei-Mei; Bai, Ren

    2011-03-01

    With the increasing demand for new energy, nuclear industry has been developing very fast, and uranium (U) pollution becomes a serious environmental problem especially in the mining area. The discharge of U products and wastes can contaminate soil and water, and finally threaten human health. On the other side, as an environment-friendly biotechnology, the importance of mycorrhizal technology in remediation of polluted environments has received much attention in recent years. Following a brief introduction of the environmental impacts of U contamination, this review summarized the effects of arbuscular mycorrhiza (AM) on U uptake and accumulation by plants based on recent research progresses, suggested possible application of AM fungi in remediation of U contaminated environment, and finally discussed about the perspectives in relevant research area.

  5. Morphological identification of vesicular-arbuscular mycorrhiza on bulbous plants (Taurus mountain in Turkey

    Directory of Open Access Journals (Sweden)

    Karaarslan Emel

    2015-01-01

    Full Text Available This study was conducted to investigate the morphological identification of vesicular-arbuscular mycorrhiza (VAM on bulbous plants in the Taurus Mountains in Turkey. Thirteen soil samples and bulbous roots were taken from the rhizosphere of bulbous plants. The soils were analyzed for the number of VAM spores and chemical and physical properties. In addition, the roots were examined for infection levels, and morphological identification of VAM spores was made. All tested plants are considered mycorrhizal plants. We determined three spore species (Glomus mosseae, Glomus hoi and Scutellospora calospora from the surveyed soils. The spore distribution rates were as follows: G. Mossea 61.54 %, G. Hoi 23.07 % and Scutellospora calospora 15.38 %. Results suggest that VAM fungal spores and root colonization display variation in rhizosphere under bulbous plants in different ecological conditions.

  6. Biochemical contents of pepper seedlings inoculated with phytophthora infestans and arbuscular mycorrhiza

    Directory of Open Access Journals (Sweden)

    Odebode A.C.

    2004-01-01

    Full Text Available The effect of interactions between Arbuscular Glomus etunicatum and fungus Phytophthora infestans on biochemical contents of pepper plants was investigated in a greenhouse experiment. The sugar contents (i.e. Glucose fructose and sucrose were higher in the control and mycorrhizal inoculated pepper seedlings and the lowest in pathogen inoculated seedlings. Free amino acids were the highest in the simultaneously inoculated pepper seedlings while total phenol was found to be the highest in pepper seedlings inoculated with P. infestans. The levels of nitrogen, phosphorus and potassium varied in the inoculated pepper seedlings without any significant difference in the treatment. The results obtained suggest protective influence of mycorrhiza by enhancing the nutritional status of the inoculated pepper seedlings.

  7. Phosphorus Effects on Metabolic Processes in Monoxenic Arbuscular Mycorrhiza Cultures1

    Science.gov (United States)

    Olsson, Pål Axel; van Aarle, Ingrid M.; Allaway, William G.; Ashford, Anne E.; Rouhier, Hervé

    2002-01-01

    The influence of external phosphorus (P) on carbon (C) allocation and metabolism as well as processes related to P metabolism was studied in monoxenic arbuscular mycorrhiza cultures of carrot (Daucus carota). Fungal hyphae of Glomus intraradices proliferated from the solid minimal medium containing the colonized roots into C-free liquid minimal medium with different P treatments. The fungus formed around three times higher biomass in P-free liquid medium than in medium with 2.5 mm inorganic P (high-P). Mycelium in the second experiment was harvested at an earlier growth stage to study metabolic processes when the mycelium was actively growing. P treatment influenced the root P content and [13C]glucose administered to the roots 7 d before harvest gave a negative correlation between root P content and 13C enrichment in arbuscular mycorrhiza fungal storage lipids in the extraradical hyphae. Eighteen percent of the enriched 13C in extraradical hyphae was recovered in the fatty acid 16:1ω5 from neutral lipids. Polyphosphate accumulated in hyphae even in P-free medium. No influence of P treatment on fungal acid phosphatase activity was observed, whereas the proportion of alkaline-phosphatase-active hyphae was highest in high-P medium. We demonstrated the presence of a motile tubular vacuolar system in G. intraradices. This system was rarely seen in hyphae subjected to the highest P treatment. We concluded that the direct responses of the extraradical hyphae to the P concentration in the medium are limited. The effects found in hyphae seemed instead to be related to increased availability of P to the host root. PMID:12427983

  8. The importance of arbuscular mycorrhiza for Cyclamen purpurascens subsp. immaculatum endemic in Slovakia.

    Science.gov (United States)

    Rydlová, Jana; Sýkorová, Zuzana; Slavíková, Renata; Turis, Peter

    2015-11-01

    At present, there is no relevant information on arbuscular mycorrhiza and the effect of the symbiosis on the growth of wild populations of cyclamens. To fill this gap, two populations of Cyclamen purpurascens subsp. immaculatum, endemic in Nízke Tatry (NT) mountains and Veľká Fatra (VF) mountains, Slovakia, were studied in situ as well as in a greenhouse pot experiment. For both populations, mycorrhizal root colonization of native plants was assessed, and mycorrhizal inoculation potential (MIP) of the soils at the two sites was determined in 3 consecutive years. In the greenhouse experiment, the growth response of cyclamens to cross-inoculation with arbuscular mycorrhizal fungi (AMF) was tested: plants from both sites were grown in their native soils and inoculated with a Septoglomus constrictum isolate originating either from the same or from the other plant locality. Although the MIP of soil at the NT site was significantly higher than at the VF site, the level of AMF root colonization of C. purpurascens subsp. immaculatum plants in the field did not significantly differ between the two localities. In the greenhouse experiment, inoculation with AMF generally accelerated cyclamen growth and significantly increased all growth parameters (shoot dry weight, leaf number and area, number of flowers, tuber, and root dry weight) and P uptake. The two populations of C. purpurascens subsp. immaculatum grown in their native soils, however, differed in their response to inoculation. The mycorrhizal growth response of NT plants was one-order higher compared to VF plants, and all their measured growth parameters were stimulated regardless of the fungal isolates' origin. In the VF plants, only the non-native (NT originating) isolate showed a significant positive effect on several growth traits. It can be concluded that mycorrhiza significantly increased fitness of C. purpurascens subsp. immaculatum, despite the differences between plant populations, implying that AMF

  9. Effects of Arbuscular Mycorrhiza Fungi on Growth Characteristics of Dactylis glomerata L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Apostolos P. KYRIAZOPOULOS

    2014-06-01

    Full Text Available Limited information is available regarding the selection of effective mycorrhizae and the exploitation of their beneficial effects on the enhancement of the forage production of Dactylis glomerata under the predicted warmer and drier conditions in the Mediterranean region. The objective of this study was to test the effects of Glomus intraradices, Glomus mosseae and their mix inoculation on growth characteristics and dry matter production of Dactylis glomerata in relation to full and limited irrigation. The experiment was conducted in Orestiada, Northeastern Greece. Limited irrigation significantly decreased yield and yield components of Dactylis glomerataover the full irrigation. Drought stressed plants had significantly higher root dry weight as a response for better survival under water deficit conditions. The Arbuscular mycorrhizal fungi (AMF inoculated plants had significant higher shoot dry weight, tiller height and number of leaves in comparison to the non-inoculated plants. On the contrary, under drought stress conditions all AMF plants had lower root dry weights than control plants. Among the studied mycorrhizae species, Glomus intraradices performed better than Glomus mosseae and their mixture as it increased S/R ratio, tiller height and number of leaves.

  10. A systems approach to the management of arbuscular mycorrhiza: Bioassay and study of the impact of phosphorus supply

    OpenAIRE

    Kahiluoto, Helena

    2000-01-01

    The aim of this study was to find out whether utilization of arbuscular mycorrhiza (AM), in crop production in Nordic conditions, can be promoted through management of the cropping system. P fertilization was chosen as the pilot system to manage because it has a major effect on AM and because it is problematic from the viewpoint of sustainability. Our scant knowledge of AM functioning and its effects in the field is mainly due to the methodological problems of research. Therefore, a bioassay ...

  11. Arbuscular mycorrhiza formation in cordate gametophytes of two ferns, Angiopteris lygodiifolia and Osmunda japonica.

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Sakoda, Aki; Ebihara, Atsushi; Yukawa, Tomohisa; Imaichi, Ryoko

    2013-01-01

    Mycorrhizal symbiosis is common among land plants including pteridophytes (monilophytes and lycophytes). In pteridophytes with diplohaplontic life cycle, mycorrhizal formations were mostly reported for sporophytes, but very few for gametophytes. To clarify the mycorrhizal association of photosynthetic gametophytes, field-collected gametophytes of Angiopteris lygodiifolia (Marattiaceae, n = 52) and Osmunda japonica (Osmundaceae, n = 45) were examined using microscopic and molecular techniques. Collected gametophytes were mostly cut into two pieces. One piece was used for light and scanning microscopic observations, and the other for molecular identification of plant species (chloroplast rbcL sequences) and mycorrhizal fungi (small subunit rDNA sequences). Microscopic observations showed that 96 % (50/52) of Angiopteris and 95 % (41/43) of Osmunda gametophytes contained intracellular hyphae with arbuscules and/or vesicles and fungal colonization was limited to the inner tissue of the thick midribs (cushion). Fungal DNA analyses showed that 92 % (48/52) of Angiopteris and 92 % (35/38) of Osmunda have sequences of arbuscular mycorrhizal fungi, which were highly divergent but all belonged to Glomus group A. These results suggest that A. lygodiifolia and O. japonica gametophytes consistently form arbuscular mycorrhizae. Mycorrhizal formation in wild fern gametophytes, based on large-scale sampling with molecular identification of host plant species, was demonstrated for the first time.

  12. Carbon Uptake and the Metabolism and Transport of Lipids in an Arbuscular Mycorrhiza1

    Science.gov (United States)

    Pfeffer, Philip E.; Douds, David D.; Bécard, Guillaume; Shachar-Hill, Yair

    1999-01-01

    Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant. PMID:10364411

  13. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria

    Science.gov (United States)

    Gherbi, Hassen; Markmann, Katharina; Svistoonoff, Sergio; Estevan, Joan; Autran, Daphné; Giczey, Gabor; Auguy, Florence; Péret, Benjamin; Laplaze, Laurent; Franche, Claudine; Parniske, Martin; Bogusz, Didier

    2008-01-01

    Root endosymbioses vitally contribute to plant nutrition and fitness worldwide. Nitrogen-fixing root nodulation, confined to four plant orders, encompasses two distinct types of associations, the interaction of legumes (Fabales) with rhizobia bacteria and actinorhizal symbioses, where the bacterial symbionts are actinomycetes of the genus Frankia. Although several genetic components of the host–symbiont interaction have been identified in legumes, the genetic basis of actinorhiza formation is unknown. Here, we show that the receptor-like kinase gene SymRK, which is required for nodulation in legumes, is also necessary for actinorhiza formation in the tree Casuarina glauca. This indicates that both types of nodulation symbiosis share genetic components. Like several other legume genes involved in the interaction with rhizobia, SymRK is also required for the interaction with arbuscular mycorrhiza (AM) fungi. We show that SymRK is involved in AM formation in C. glauca as well and can restore both nodulation and AM symbioses in a Lotus japonicus symrk mutant. Taken together, our results demonstrate that SymRK functions as a vital component of the genetic basis for both plant–fungal and plant–bacterial endosymbioses and is conserved between legumes and actinorhiza-forming Fagales. PMID:18316735

  14. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil

    Institute of Scientific and Technical Information of China (English)

    HUANG Yi; TAO Shu; CHEN You-jian

    2005-01-01

    To understand the roles of mycorrhiza in metal speciation in the rhizosphere and the impact on increasing host plant tolerance against excessive heavy metals in soil, maize ( Zea mays L. ) inoculated with arbuscular mycorrhizal fungus ( Glomus mosseae) was cultivated in heavy metal contaminated soil. Speciations of copper, zinc and lead in the soil were analyzed with the technique of sequential extraction. The results showed that, in comparison to the bolked soil, the exchangeable copper increased from 26 % to 43 % in non-infected and AM-infected rhizoshpere respectively; while other speciation (organic, carbonate and Fe-Mn oxide copper) remained constant and the organic bound zinc and lead also increased but the exchangeable zinc and lead were undetectable. The organic bound copper, zinc and lead were higher by 15%, 40% and 20%, respectively, in the rhizosphere of arbuscular mycorrhiza infected maize in comparison to the non-infected maize. The results might indicate that mycorrhiza could protect its host plants from the phytotoxicity of excessive copper, zinc and lead by changing the speciation from bio-available to the non-bio-available form. The fact that copper and zinc accumulation in the roots and shoots of mycorrhia infected plants were significantly lower than those in the non-infected plants might also suggest that mycorrhiza efficiently restricted excessive copper and zinc absorptions into the host plants. Compared to the non-infected seedlings, the lead content of infected seedlings was 60% higher in shoots. This might illustrate that mycorrhiza have a different mechanism for protecting its host from excessive lead phytotoxicity by chelating lead in the shoots.

  15. Micorriza arbuscular e a tolerância das plantas ao estresse Arbuscular mycorrhiza and plant tolerance to stress

    Directory of Open Access Journals (Sweden)

    Muriel da Silva Folli-Pereira

    2012-12-01

    Full Text Available Fungos micorrízicos arbusculares (FMAs são fungos de solo, biotróficos obrigatórios e formadores da simbiose mutualista mais comum na natureza: a micorriza arbuscular (MA. Essa associação ocorre nas raízes da maioria das plantas terrestres, promovendo melhorias no crescimento, desenvolvimento e aumento na tolerância e, ou, resistência das plantas a vários agentes ambientais adversos. Além disso, os FMAs podem ser utilizados como potenciais agentes de controle biológico de doenças de plantas. Esses fungos produzem ainda glomalina, uma proteína que desempenha papel fundamental na estabilidade do solo e bioestabilização de solos contaminados. As diferentes respostas das plantas a essa simbiose podem ser atribuídas à diversidade funcional das MAs, em função da interação FMA-planta-condições ambientais. O estabelecimento e funcionamento da MA durante as condições de estresse envolvem um complexo processo de reconhecimento e desenvolvimento, concomitantemente às alterações bioquímicas, fisiológicas e moleculares em ambos os simbiontes. Além disso, a colonização micorrízica das raízes tem impacto significativo na expressão de genes de diversas plantas que codificam proteínas presumivelmente envolvidas na tolerância ao estresse. Nesse contexto, considerando que os FMAs são essenciais no estabelecimento e adaptação das plantas em locais perturbados, nesta revisão são abordados os mecanismos fisiológicos e moleculares da associação MA responsáveis por essa adaptação e pela maior tolerância das plantas ao estresse.Arbuscular mycorrhizal fungi (AMF are soil fungi, obligate biotrophic fungi and form the most common mutualistic symbiosis in nature: the arbuscular mycorrhiza (AM. This association occurs on the roots of most plants, promoting improvements in plant growth and development and increasing tolerance and/or plant resistance to several adverse environmental agents. In addition, AMF can be a potential

  16. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family.

    Science.gov (United States)

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  17. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza.

    Science.gov (United States)

    Rivera-Becerril, Facundo; Juárez-Vázquez, Lucía V; Hernández-Cervantes, Saúl C; Acevedo-Sandoval, Otilio A; Vela-Correa, Gilberto; Cruz-Chávez, Enrique; Moreno-Espíndola, Iván P; Esquivel-Herrera, Alfonso; de León-González, Fernando

    2013-02-01

    The mining district of Molango in the Hidalgo State, Mexico, possesses one of the largest deposits of manganese (Mn) ore in the world. This research assessed the impacts of Mn mining activity on the environment, particularly the interactions among soil, plants, and arbuscular mycorrhiza (AM) at a location under the influence of an open Mn mine. Soils and plants from three sites (soil under maize, soil under native vegetation, and mine wastes with some vegetation) were analyzed. Available Mn in both soil types and mine wastes did not reach toxic levels. Samples of the two soil types were similar regarding physical, chemical, and biological properties; mine wastes were characterized by poor physical structure, nutrient deficiencies, and a decreased number of arbuscular mycorrhizal fungi (AMF) spores. Tissues of six plant species accumulated Mn at normal levels. AM was absent in the five plant species (Ambrosia psilostachya, Chenopodium ambrosoides, Cynodon dactylon, Polygonum hydropiperoides, and Wigandia urens) established in mine wastes, which was consistent with the significantly lower number of AMF spores compared with both soil types. A. psilostachya (native vegetation) and Zea mays showed mycorrhizal colonization in their root systems; in the former, AM significantly decreased Mn uptake. The following was concluded: (1) soils, mine wastes, and plant tissues did not accumulate Mn at toxic levels; (2) despite its poor physical structure and nutrient deficiencies, the mine waste site was colonized by at least five plant species; (3) plants growing in both soil types interacted with AMF; and (4) mycorrhizal colonization of A. psilostachya influenced low uptake of Mn by plant tissues. PMID:23124167

  18. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza

    Science.gov (United States)

    Bapaume, Laure; Reinhardt, Didier

    2012-01-01

    As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis. PMID:23060892

  19. Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors

    Science.gov (United States)

    Miller, R.L.; Jackson, L.E.

    1998-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (VAM) root colonization and spore number in soil was assessed for 18 fields under intensive lettuce (Lactuca sativa L.) production in California during July and August of 1995. Data on management practices and soil characteristics were compiled for each field, and included a wide range of conditions. The relationship between these factors and the occurrence of VAM in these fields was explored with multivariate statistical analysis. VAM colonization of lettuce tended to decrease with the use of chemical inputs, such as pesticides and high amounts of P and N fertilizers. Addition of soil organic matter amendments, the occurrence of other host crops in the rotation, and soil carbon:phosphorus and carbon:nitrogen ratios, were positively associated with VAM colonization of lettuce roots. The number of VAM spores in soil was strongly correlated with the number of other host crops in the rotation, the occurrence of weed hosts and sampling date, but was more affected by general soil conditions than by management inputs. Higher total soil N, C and P, as well as CEC, were inversely related to soil spore number. A glasshouse study of the two primary lettuce types sampled in the field showed no significant differences in the extent of root colonization under similar growing conditions. The results of this study are compared with other studies on the effects of management and soil conditions on mycorrhizal occurrence in agriculture.

  20. How membranes shape plant symbioses: Signaling and transport in nodulation and arbuscular mycorrhiza

    Directory of Open Access Journals (Sweden)

    Laure eBapaume

    2012-10-01

    Full Text Available As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM and in root nodule symbiosis (RNS, AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER, and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.

  1. Arbuscular mycorrhiza of herbs colonizing a salt affected area near Kraków (Poland

    Directory of Open Access Journals (Sweden)

    Barbara Grzybowska

    2011-04-01

    Full Text Available The arbuscular mycorrhizal (AM status of plants colonizing an area affected by leakage of salty water (Barycz near Kraków, Poland was studied in 2000 and 2001. The occurrence of plants typical for soils of increased salinity was observed. Among the 13 examined plant species 7 were mycorrhizal. The abundance of mycorrhizal plant populations was increased in the second year of study. Strains of 4 species of AMF, including Glomus caledonium, G. claroideum, G. geosporum and G. intraradices were isolated using trap cultures. On the basis of morphological characters the presence of G. tenue was detected in plant roots of several species from the study area. The efficiency of mycorrhizal colonization and arbuscule formation by two strains of G. geosporum isolated from a saline area and a strain of G. intraradices from unaffected sites was tested in an experiment carried out on Plantago lanceolata cultivated on substrata of different salinity levels. The increase in mycorrhizal parameters with growing salt content was observed in the case of strains originating from the salt-affected area. At the highest salt level these strains formed better developed mycorrhiza than the strain from the non-saline site, suggesting a better adaptation of the strains from the saline area. The data on vitality (alkaline phosphatase test of intraradical AM fungi gave a clearer picture than those obtained by the conventional aniline blue staining.

  2. The Arbuscular Mycorrhiza Rhizophagus intraradices Reduces the Negative Effects of Arsenic on Soybean Plants

    Directory of Open Access Journals (Sweden)

    Federico Spagnoletti

    2015-05-01

    Full Text Available Arsenic (As in soils causes several detrimental effects, including death. Arsenic toxicity in soybean plants (Glycine max L. has been little studied. Arbuscular mycorrhiza (AM increase the tolerance of host plants to abiotic stress, like As. We investigated the effects of AM fungi on soybean grown in As-contaminated soils. A pot experiment was carried out in a glasshouse, at random with five replications. We applied three levels of As (0, 25, and 50 mg As kg−1, inoculated and non-inoculated with the AM fungus Rhizophagus intraradices (N.C. Schenck & G.S. Sm. C. Walker & A. Schüßler. Plant parameters and mycorrhizal colonization were measured. Arsenic in the substrate, roots, and leaves was quantified. Arsenic negatively affected the AM percentage of spore germination and hyphal length. As also affected soybean plants negatively: an extreme treatment caused a reduction of more than 77.47% in aerial biomass, 68.19% in plant height, 78.35% in number of leaves, and 44.96% reduction in root length, and delayed the phenological evolution. Mycorrhizal inoculation improved all of these parameters, and decreased plant As accumulation (from 7.8 mg As kg−1 to 6.0 mg As kg−1. AM inoculation showed potential to reduce As toxicity in contaminated areas. The AM fungi decreased As concentration in plants following different ways: dilution effect, less As intake by roots, and improving soybean tolerance to As.

  3. Effect of Arbuscular Mycorrhiza on the Drought Tolerance of Poncirus trifoliata Seedlings

    Institute of Scientific and Technical Information of China (English)

    Wu Qiangsheng; Xia Renxue; Hu Zhengjia

    2006-01-01

    The effects of Glomus mosseae colonization on the plant growth and drought tolerance of 1-year-old trifoliate Poncirus trifoliata seedlings in potted culture were studied in natural water stress and rewatering conditions.Results showed that arbuscular mycorrhizal (AM)inoculation significantly improved the height,stem diameter,and fresh weight of P.trifoliata seedlings before natural water stress.By the end of the experiment,the survival percentage of AM-transplanted seedlings was 8%higher than those of non-AM ones.During water stress and rewatering,AM significantly increased the contents of soluble sugars and proteins in leaves,and enhanced the activities of superoxide dismutase (SOD),guaiacol peroxidase (G-POD),and catalase (CAT) in either seedling leaves or roots,which indicated that AM colonization could improve the osmotic adjustment response of P.trifoliata,enhance its defense system,and alleviate oxidative damages to membrane lipids and proteins.These results demonstrated that the drought tolerance of P.trifoliata seedlings was increased by inoculation with AM fungi.The functional mechanism underlying the observation that mycorrhizas increased the host's drought tolerance was closely related to enzymatic and nonenzymatic antioxidant defense systems such as SOD,GPOD,CAT,and soluble protein.

  4. VA菌根在植物生态学研究中的意义%Importance of Vesicular Arbuscular Mycorrhiza in Plant Ecological Research.

    Institute of Scientific and Technical Information of China (English)

    赵之伟

    2001-01-01

    Vesicular arbuscular mycorrhiza is the symbiont of plant and Glomales fungus.This symbiont is a very popular biological phenomenon in the terrestrial ecosystem.Based on the popularity and the non-specificity between the symbiotic partners,the potential determinant roles of VA mycorrhizal fungi in the occur rence,succession and the structure of plant community,and the mechanisms of VA mycorrhiza in the maintenance of plant biodiversity,the stability and the pro ductivity of the ecosystem were discussed in this paper.The functional roles of VA mycorrhiza in the plant biodiversity conservation was also discussed.

  5. Occurrence of Arbuscular Mycorrhizas and Dark Septate Endophytes in Hydrophytes from Lakes and Streams in Southwest China

    Science.gov (United States)

    Kai, Wang; Zhiwei, Zhao

    2006-02-01

    In this study, the colonization of arbuscular mycorrhizas (AM) and dark septate endophytes (DSE) in 140 specimens of 32 hydrophytes collected from four lakes and four streams in southwest China were investigated. The arbuscular mycorrhizal fungi (AMF) and DSE colonization in these hydrophytes were rare. Typical AM structures were observed in one of the 25 hydrophytic species collected in lakes and six of the 17 species collected in streams.Spores of 10 identified AMF species and an unidentified Acaulospora sp. were isolated from the sediments. The identified AMF came from the four genera, Acaulospora, Gigaspora, Glomus and Scutellospora . Glomus and G. mosseae were the dominant genus and species respectively in these aquatic environments.The presence of DSE in hydrophytes was recorded for the first time. DSE occurred in one of the 25 hydrophyte species collected in lakes and three of the 17 species collected in streams.

  6. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family

    Directory of Open Access Journals (Sweden)

    Jasmin eManck-Götzenberger

    2016-04-01

    Full Text Available Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic arbuscular mycorrhizal (AM fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the twelve induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10 corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical

  7. A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes

    NARCIS (Netherlands)

    Boddington, C.L.; Dodd, J.C.

    1998-01-01

    Two glasshouse experiments were done to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on either Pueraria phaseoloides L. or Desmodium ovalifolium L. plants. The seco

  8. Field inoculation of arbuscular mycorrhiza on maize (Zea mays L. under low inputs: preliminary study on quantitative and qualitative aspects

    Directory of Open Access Journals (Sweden)

    Emilio Sabia

    2015-03-01

    Full Text Available Arbuscular mycorrhizal symbiosis contributes to the sustainability of soil-plant system. A field experiment was conducted to examine the effect of arbuscular mycorrhiza (AM on quantitative and qualitative performance in forage maize (Zea mays L.. Within the project Sviluppo di modelli zootecnici ai fini della sostenibilità (SOS-ZOOT a trial was conducted at the experimental farm of the Agricultural Research Council in Bella (PZ, located in Basilicata region (Southern Italy at 360 m asl, characterised by an annual rainfall of approximately 650 mm. For spring sowing, two plots of 2500 m2 were used, one sown with seeds inoculated with AM (M, 1.0 kg/ha, and the other one with non-inoculated seeds (NM. After 120 days after sowing, when plants showed 30% dry matter, five replicates of 1 m2 per plot were used to estimate dry matter yield (DMY, while half plot was dedicated to the assessment of grain production. For each replicate, three representative plants were considered; each plant was measured for height and was divided into leaves, stem and ear. For each plot, the following constituents were determined: crude protein, ash, ether extract, crude fibre (CF, fractions of fibre [neutral detergent (NDF, acid detergent fibre (ADF and sulphuric acid lignin] and phosphorus (P. Throughout the period of plants’ growth, no herbicides, organic or inorganic fertilisation, and irrigation water were distributed. The preliminary results revealed a significant effect of AM inoculation on forage maize DMY, P content in the whole plant, into the leaves and on the quality of steam. The M thesis showed a significant increase in terms of DMY in comparison with the NM thesis: 21.2 vs 17.9 t/ha (P<0.05. The mycorrhized whole plants [0.22 vs 0.17% dry matter (DM, P<0.05] and leaves (0.14 vs 0.09% DM, P<0.05 showed an increased P content. The stems of M plants showed a content of CF, NDF, ADF and Ash significantly lower compared with NM plants. No significant

  9. [Effect of Arbuscular Mycorrhiza (AM) on Tolerance of Cattail to Cd Stress in Aquatic Environment].

    Science.gov (United States)

    Luo, Peng-cheng; Li, Hang; Wang, Shu-guang

    2016-02-15

    Hygrophytes are planted more and more in landscaping and greening in many cities, but they often encounter threat from environmental pollution. Arbuscular mycorrhiza ( AM ) have been confirmed to enhance the tolerance of terrestrial plants to environmental pollution in many previous studies, but it is unclear how they affect hygrophytes. In the present study, a hydroponic culture experiment was carried out to investigate the effects of AM fungi (Glomus etunicatum) inoculation on the tolerance of cattail (Typha latifolia) to different concentrations Cd2+ (0, 2.5, 5.0 mg x L(-1)). The aim was to provide reference for evaluating whether mycorrhizal technology can be used to enhance the tolerance of hygrophytes to environmental pollution. The results showed that symbiotic association was well established between AM fungi and cattail roots, and the mycorrhizal colonization rates (MCR) were beyond 30%. However, MCR presented downward trend one month after mycorrhizal cattails were transported to solution, and the maximal decrease was 25.5% (P < 0.05). AM increased pigment concentrations and peroxidase (POD) activity in cattail leaves, and also increased roots radial oxygen loss. However, AM only produced significant effect on increase of fresh weight in 5 mg x L(-1) Cd2+ solution. Although plant growth was inhibited by 5 mg x L(-1) Cd2+ and MCR was lower, AM increased Cd uptake of cattail at the two Cd2+ levels, and the maximal increments were 40.24% and 56.52% in aboveground and underground parts, respectively. This study indicates that AM has potential to enhance the tolerance of hygrophytes to environmental pollution and might be used to remedy heavy metal pollution.

  10. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza1

    Science.gov (United States)

    Rich, Mélanie K.

    2015-01-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) GIBBERELLIC ACID INSENSITIVE, REPRESSOR of GIBBERELLIC ACID INSENSITIVE, and SCARECROW (GRAS)-type transcription factor, ATYPICAL ARBUSCULE (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of REQUIRED FOR ARBUSCULAR MYCORRHIZA1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550

  11. Influence of Arbuscular Mycorrhiza on Membrane Lipid Peroxidation and Soluble Sugar Content of Soybean under Salt Stress

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2015-01-01

    Full Text Available The influence of the arbuscular mycorrhizal (AM fungus, Glomus mosseae, on characteristics of growth, membrane lipid peroxidation and soluble sugar content in the shoots and roots of soybean (Glycine max plants was studied in pot culture under salt stress. The experiment was arranged as a factorial in Randomized Complete Block Design (RCBD with four replications in greenhouse of College of Agriculture, Tehran University, Iran. The plants inoculated with mycorrhiza had significantly greater shoot and root biomass than the nonmycorrhizal plants at all salinity levels. AM symbiosis decreased membrane relative permeability and malondialdehyde content in shoots and roots. The soluble sugar content in roots was higher in mycorrhizal than nonmycorrhizal plants, but there was no significant difference in soluble sugar content in shoots between mycorrhizal and nonmycorrhizal plants. The results indicate that the AM fungus is capable of alleviating the damage caused by salt stress on soybean plants by reducing membrane lipid peroxidation and increasing the accumulation of soluble sugar content. Consequently, arbuscular mycorrhiza formation highly enhanced the salinity tolerance of soybean plant, which increased host biomass and promoted plant growth.

  12. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza.

    Science.gov (United States)

    Rich, Mélanie K; Schorderet, Martine; Bapaume, Laure; Falquet, Laurent; Morel, Patrice; Vandenbussche, Michiel; Reinhardt, Didier

    2015-07-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function.

  13. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes.

    Science.gov (United States)

    Rivera-Becerril, Facundo; Calantzis, Catherine; Turnau, Katarzyna; Caussanel, Jean-Pierre; Belimov, Andrei A; Gianinazzi, Silvio; Strasser, Reto J; Gianinazzi-Pearson, Vivienne

    2002-05-01

    The role of arbuscular mycorrhiza in reducing Cd stress was investigated in three genotypes of Pisum sativum L. (cv. Frisson, VIR4788, VIR7128), grown in soil/sand pot cultures in the presence and absence of 2-3 mg kg(-1) bioavailable Cd, and inoculated or not with the arbuscular mycorrhizal fungus Glomus intraradices. Shoot, root and pod biomass were decreased by Cd in non-mycorrhizal plants. The presence of mycorrhiza attenuated the negative effect of Cd so that shoot biomass and activity of photosystem II, based on chlorophyll a fluorescence, were not significantly different between mycorrhizal plants growing in the presence or absence of the heavy metal (HM). Total P concentrations were not significantly different between mycorrhizal and non-mycorrhizal plants treated with Cd. From 20-50-fold more Cd accumulated in roots than in shoots of Cd-treated plants, and overall levels were comparable to other metal-accumulating plants. Genetic variability in Cd accumulation existed between the pea genotypes. Concentration of the HM was lowest in roots of VIR4788 and in pods of VIR4788 and VIR7128. G. intraradices inoculation decreased Cd accumulation in roots and pods of cv. Frisson, whilst high concentrations were maintained in roots and pods of mycorrhizal VIR7128. Shoot concentrations of Cd increased in mycorrhizal cv. Frisson and VIR4788. Sequestration of Cd in root cell walls and/or cytoplasm, measured by EDS/SEM, was comparable between non-mycorrhizal pea genotypes but considerably decreased in mycorrhizal cv. Frisson and VIR7128. Possible mechanisms for mycorrhiza buffering of Cd-induced stress in the pea genotypes are discussed.

  14. [Development of Arbuscular Mycorrhiza in Highly Responsive and Mycotrophic Host Plant-Black Medick (Medicago lupulina L.)].

    Science.gov (United States)

    Yurkova, A P; Jacobi, L M; Gapeeva, N E; Stepanova, G V; Shishova, M F

    2015-01-01

    The main phases of arbuscular mycorrhiza (AM) development were analyzed in black medick (Medicago lupulina) with Glomus intraradices. Methods of light and transmission electron microscopy were used to investigate AM. The first mycorrhization was identified on the seventh day after sowing. M. lupulina with AM-fungus Glomus intraradices formed Arum type of AM. Roots of black medick at fruiting stage (on the 88th day) were characterized by the development of forceful mycelium. The thickness of mycelium was comparable with the vascular system of root central cylinder. The development of vesicules into intraradical spores was shown. Micelium, arbuscules, and vesicules developed in close vicinity to the division zone of root tip. This might be evidence of an active symbiotic interaction between partners. All stages of fungal development and breeding, including intraradical spores (in inter-cellular matrix of root cortex), were identified in the roots of black medick, which indicated an active utilization of host plant nutrient substrates by the mycosymbiont. Plant cell cytoplasm extension was identified around young arbuscular branches but not for intracellular hyphae. The presence of active symbiosis was confirmed by increased accumulation of phosphorus in M. lupulina root tissues under conditions of G. intraradices inoculation and low phosphorus level in the soil. Thus, black medick cultivar-population can be characterized as an ecologically obligate mycotrophic plant under conditions of low level of available phosphorus in the soil. Specific features of AM development in intensively mycotrophic black medick, starting from the stage of the first true leaf until host plant fruiting, were evaluated. The obtained plant-microbe system is a perspective model object for further ultracytological and molecular genetic studies of the mechanisms controlling arbuscular mycorrhiza symbiotic efficiency, including selection and investigation of new symbiotic plant mutants.

  15. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India

    Directory of Open Access Journals (Sweden)

    RAJA RISHI

    2013-10-01

    Full Text Available Kumar R, Tapwal A, Pandey S, Rishi R, Borah D. 2013. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India. Biodiversitas 14: 67-72. Non-timber forest products constitute an important source of livelihood for rural households from forest fringe communities across the world. Utilization of wild edible tuber plants is an integral component of their culture. Mycorrhizal associations influence the establishment and production of tuber plants under field conditions.The aim of present study is to explore the diversity and arbuscular mycorrhizal (AMF colonization of wild edible tuber plants grown in wet evergreen forest of Assam, India. A survey was conducted in 2009-10 in Sunaikuchi, Khulahat, and Bura Mayong reserved forest of Morigaon district of Assam to determine the AMF spore population in rhizosphere soils and root colonization of 14 tuberous edible plants belonging to five families. The results revealed AMF colonization of all selected species in all seasons. The percent colonization and spore count was less in summer, moderate in winter and highest in rainy season. Seventeen species of arbuscular mycorrhizal fungi were recorded in four genera viz. Acaulospora (7 species, Glomus (5 species, Sclerocystis (3 species and Gigaspora (2 species.

  16. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Gucwa-Przepiora, E.; Malkowski, E.; Sas-Nowosielska, A.; Kucharski, R.; Krzyzak, J.; Kita, A.; Romkens, P.F.A.M. [University of Silesia, Katowice (Poland)

    2007-12-15

    The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously, growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus.

  17. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria

    Science.gov (United States)

    Abdel-Lateif, Khalid; Bogusz, Didier; Hocher, Valérie

    2012-01-01

    Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed. PMID:22580697

  18. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum sp. and Arbuscular Mycorrhizae Fungi

    Directory of Open Access Journals (Sweden)

    NOVRI YOULA KANDOWANGKO

    2009-03-01

    Full Text Available Plants that undergo drought stress perform a physiological response such as accumulation of proline in the leaves and increased content abscisic acid. A research was conducted to study proline and abscisic acid (ABA content on drought-stressed corn plant with Azospirillum sp. and arbuscular mycorrhizae fungi (AMF inoculated at inceptisol soil from Bogor, West Java. The experiments were carried out in a green house from June up to September 2003, using a factorial randomized block design. In pot experiments, two factors were assigned, i.e. inoculation with Azospirillum (0, 0.50, 1.00, 1.50 ml/pot and inoculation with AMF Glomus manihotis (0, 12.50, 25.00, 37.50 g/pot. The plants were observed during tasseling up to seed filling periods. Results of experiments showed that the interaction between Azospirillum sp. and AMF was synergistically increased proline, however it decreased ABA.

  19. Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus Hu) seedlings

    Institute of Scientific and Technical Information of China (English)

    LU Jinying; LIU Min; MAO Yongmin; SHEN Lianying

    2007-01-01

    The current study explored the effects of vesicular-arbuscular mycorrhizae (VAM) inoculation on the growth and water requirement of pot-grown wild jujube (Zizyphs spinosus Hu).Three water regimes (20%,40% and 60% of soil water content) were conducted.The VAM inoculation could significantly increase plant growth (including plant height,leaf area,and fresh and dry mass),enhance relative leaf water content,photosynthetic rates,transpiration rates and stomatal conductance,and improve plant drought tolerance.The water consumption of the mycorrhizal plants producing 1 g of dry matter was 18.7%-26.6% lower than the consumption of non-mycorrhizal plants grown under the same soil water content conditions.

  20. Micorrizas arbusculares en plantines de Alnus acuminata (Betulaceae inoculados con Glomus intraradices (Glomaceae Arbuscular mycorrhizas in Alnus acuminata (Betulaceae seedlings inoculated with Glomus intraradices (Glomaceae

    Directory of Open Access Journals (Sweden)

    Alejandra Becerra

    Full Text Available En este trabajo se cita y describe por primera vez la asociación de Alnus acuminata Kunth «aliso del cerro» con el hongo formador de micorrizas arbusculares (MA Glomus intraradices Schenk & Smith. En un bioensayo en invernadero, se inocularon plantines de A. acuminata con fragmentos radicales de Medicago sativa L. colonizados por G. intraradices . Se describe la colonización MA y el tipo anatómico Arum . Se establece la funcionalidad de la simbiosis por la presencia de arbúsculos en las células corticales de la raíz.This work described for the first time the arbuscular mycorrhiza (AM development in A. acuminata Kunth «andean alder» with G. intraradices Schenk & Smith. Seedlings of A. acuminata were inoculated with root fragments of Medicago sativa L. colonized by G. intraradices in a greenhouse. The Arum -type and AM colonization are described in A. acuminata seedlings. The presence of arbuscules in A. acuminata cortical cells define a functional symbiosis.

  1. Membrane-Mediated Decrease in Root Exudation Responsible for Phorphorus Inhibition of Vesicular-Arbuscular Mycorrhiza Formation

    Science.gov (United States)

    Graham, James H.; Leonard, Robert T.; Menge, John A.

    1981-01-01

    The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites. PMID:16661955

  2. Herbivory and arbuscular mycorrhiza in natural populations of Datura stramonium L.: correlation with the availability of nutrients in the soil

    Directory of Open Access Journals (Sweden)

    Ana Aguilar-Chama

    2016-03-01

    Full Text Available Trophic interactions impose important costs to their host plants, affecting patterns of resource allocation. The relationship between host and consumers is also influenced by the availability of resources, e. g., soil nutrients. In this study, we explored the relationship among mycorrhiza-plant-herbivore in natural populations of Datura stramonium and their correlation with the content of phosphorus, nitrogen and carbon in the soil. We estimated the vegetative and reproductive biomass of plants, the arbuscular mycorrhizal colonization and the level of herbivory in populations of D. stramonium. The local abundance of D. stramonium was negatively related to the content of phosphorus in the soil. In contrast, soil carbon concentration affected positively the vegetative and reproductive mass of D. stramonium, although it was negatively correlated with the specific leaf area (SLA. Of the trophic interactions only herbivory was significantly correlated with the SLA and no relationship was detected between the two interaction types. The lack of significant response of mycorrhizae to the soil nutrients concentration, plant performance, and herbivory may result from the stochasticity in the availability of mycorrhizal inoculum (identity and abundance in the populations studied.

  3. [Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes, accumulation and chemical forms of cadmium in different varieties of tomato].

    Science.gov (United States)

    Jiang, Ling; Yang, Yun; Xu, Wei-Hong; Wang, Chong-Li; Chen, Rong; Xiong, Shi-Juan; Xie, Wen-Wen; Zhang, Jin-Zhong; Xiong, Zhi-Ting; Wang, Zheng-Yin; Xie, De-Ti

    2014-06-01

    Pot experiments were carried out to investigate the effects of ryegrass and arbuscular mycorrhiza on the plant growth, malondialdehyde (MDA), antioxidant enzyme activities of leaf and root, accumulation and chemical forms of cadmium (Cd) in tow varieties of tomato when exposed to Cd (20 mg x kg(-1)). The results showed that dry weights of fruit and plant, and contents of malondialdehyde (MDA) and antioxidant enzyme activities of leaf and root, and concentrations and accumulations of Cd significantly differed between two varieties of tomato. Dry weights of fruit, roots, stem, leaf and plant were increased by single or combined remediation of ryegrass and arbuscular mycorrhiza, while MDA contents and antioxidant enzyme activities of leaf and root reduced. The total extractable Cd, F(E), F(W), F(NaCl), F(HAc), F(HCl), and F(R) in fruit of two varieties of tomato reduced by 19.4% - 52.4%, 31.0% - 75.2%, 19.7% - 59.1%, 3.1% - 48.2%, 20.0% - 65.0%, 40.7% - 100.0% and 15.2% - 50.0%, respectively. Cadmium accumulations in tomato were in the order of leaf > stem > fruit > root. Cadmium concentrations in leaf, stem, root and fruit of both varieties decreased by single or combined remediation of ryegrass and arbuscular mycorrhiza, and Cd accumulations of stem and plant of two varieties also reduced. Cd accumulations in fruit of two varieties decreased by 42.9% and 43.7% in the combined remediation treatments, respectively. Tolerance and resistance of 'LUO BEI QI' on Cd was more than 'De Fu mm-8', and Cd concentrations and Cd accumulations in fruit and plant were in the order of 'LUO BEI QI' < 'De Fu mm-8' in the presence or absence of single or combined remediation of ryegrass and arbuscular mycorrhiza.

  4. Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae at different soil depths in highly metal-contaminated site in southern Poland

    Directory of Open Access Journals (Sweden)

    Ewa Gucwa-Przepióra

    2013-12-01

    Full Text Available This study presents root colonization of Deschampsia cespitosa growing in the immediate vicinity of a former Pb/Zn smelter by arbuscular mycorhizal fungi (AMF and dark septated endophytes (DSE at different soil depths. AMF spores and species distribution in soil profile were also assessed. Arbuscular mycorrhiza (AM and DSE were found in D. cespitosa roots at all investigated soil levels. However, mycorrhizal colonization in topsoil was extremely low with sporadically occurring arbuscules. AM parameters: frequency of mycorrhization of root fragments (F%, intensity of root cortex colonization (M%, intensity of colonization within individual mycorrhizal roots (m%, and arbuscule abundance in the root system (A% were markedly higher at 20–40, 40–60 cm soil levels and differed in a statistically significant manner from AM parameters from 0–10 and 10–20 cm layers. Mycorrhizal colonization was negatively correlated with bioavailable Cd, Pb and Zn concentrations. The number of AMF spores in topsoil was very low and increased with soil depth (20–40 and 40–60 cm. At the study area spores of three morphologically distinctive AMF species were found: Archaeospora trappei, Funneliformis mosseae and Scutellospora dipurpurescens. The fourth species Glomus tenue colonized roots of D. cespitosa and was observed in the root cortex at 20–40 and 40–60 soil depth, however, its spores were not found at the site.

  5. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland

    Energy Technology Data Exchange (ETDEWEB)

    Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B.

    2002-04-01

    Despite the importance of arbuscular mycorrhizae to the functioning of terrestrial ecosystems (e.g. nutrient uptake, soil aggregation), and the increasing evidence of global warming, responses of arbuscular mycorrhizal fungi (AMF) to climate warming are poorly understood. In a field experiment using infrared heaters, we found effects of warming on AMF after one growing season in an annual grassland, in the absence of any effects on measured root parameters (weight, length, average diameter). AMF soil hyphal length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root colonization increase. In the following year, root weight was again not significantly changed, and AMF root colonization increased significantly in the warmed plots. Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance in soil aggregation, was decreased in the warmed plots. Soil aggregate water stability, measured for five diameter size classes, was also decreased significantly. In the following year, soil aggregate weight in two size classes was decreased significantly, but the effect size was very small. These results indicate that ecosystem warming may have stimulated carbon allocation to AMF. Other factors either influenced glomalin decomposition or production, hence influencing the role of these symbionts in soil aggregation. The observed small changes in soil aggregation, if widespread among terrestrial ecosystems, could have important consequences for soil carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming. (au)

  6. Arbuscular mycorrhiza in species of Commelinidae (Liliopsida in the state of Pernambuco (Brazil Micorrizas arbusculares em espécies de Commelinidae (Liliopsida no Estado de Pernambuco (Brasil

    Directory of Open Access Journals (Sweden)

    Gladstone Alves da Silva

    2001-08-01

    Full Text Available Mycorrhiza are a mutualistic symbiosis between fungi and plant roots, the main benefit to the plant being increased nutrient uptake. The arbuscular is the most important kind of mycorrhiza for agriculture and it is widespread in occurrence and distribution in most ecosystems. The aim of this work was to study the mycorrhizal status of the species of Commelinidae that occur in the State of Pernambuco. Plant roots, collected in ten municipalities, were washed, cleared in KOH, stained with Trypan blue in lactoglycerol and observed under a light microscope in order to assess presence and identification of the mycorrhizal type. Percentage of root colonization was evaluated by the gridline intersect method. Forty specimens representing 30 species were observed. From these specimens, 70% were colonized by arbuscular mycorrhizal fungi (AMF. In one family (Typhaceae, mycorrhizal structures were not observed, in two of them (Eriocaulaceae and Juncaceae all specimens showed the association, and three families (Commelinaceae, Cyperaceae and Poaceae presented specimens with or without AMF. In some of the roots, other fungi were observed together with the AMF. The results indicate that AMF are widely distributed among species of Commelinidae in Pernambuco, being probably important for their establishment in the areas visited.Micorrizas são associações simbióticas mutualísticas formadas entre fungos e raízes de plantas, sendo o principal benefício para a planta o aumento do aporte de nutrientes. Agronomicamente, a micorriza arbuscular (MA é o tipo mais importante de micorrizas e apresenta-se distribuído na maioria dos ecossistemas. O objetivo deste trabalho foi estudar a condição micorrízica de espécies de Commelinidae que ocorrem no Estado de Pernambuco. Raízes dessas plantas, coletadas em 10 municípios, foram lavadas, clareadas em KOH, coradas com azul de Tripano em lactoglicerol e observadas em microscópio para determinação da presença e

  7. Factors influencing survival of vesicular-arbuscular mycorrhiza propagules during topsoil storage

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.; Carnes, B.A.; Moorman, T.B.

    1985-01-01

    The survival dynamics of vesicular-arbuscular mycorrhizal fungi were determined, (using a bioassay procedure) for soils stored from 0.5 to 6.0 years in topsoil stockpiles associated with a coal surface-mine in the western United States. Propagule mortality could best be related to in situ soil moisture potential using a piecewise regression model (R/sup 2/ = 0.57; P less than or equal to 0.001) with the breaking point occurring at -2 MPa. The addition of length of storage time was found to contribute significantly to the accuracy of the model (R/sup 2/ = 0.70; P less than or equal to 0.001). In addition, the piece-wise nature of the data suggested two separate populations of VAM fungi - those propagules found in soils with moisture potentials less than -2 MPa and those occurring in soils with moisture potentials greater than -2 MPa. Soil moisture and length of storage time had differing effects on each of these populations. When water potential was less than -2 MPa, moisture was an important predictor of inoculum (P < 0.001), while length of storage had little predictive capability (P = 0.17). However, when water potentials were greater than -2 MPa, the predictive importance of soil moisture (P = 0.86) and length of storage (P = 0.04) were reversed. The significance of these findings to topsoil replacement and subsequent plant community development are discussed. 28 references, 2 figures, 2 tables.

  8. Influence of Arbuscular Mycorrhiza on Membrane Lipid Peroxidation and Soluble Sugar Content of Soybean under Salt Stress

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2015-03-01

    Full Text Available The influence of the arbuscular mycorrhizal (AM fungus, Glomus mosseae, on characteristics of growth, membrane lipid peroxidation and soluble sugar content in the shoots and roots of soybean (Glycine max plants was studied in pot culture under salt stress. The experiment was arranged as a factorial in Randomized Complete Block Design (RCBD with four replications in greenhouse of College of Agriculture, Tehran University, Iran. The plants inoculated with mycorrhiza had significantly greater shoot and root biomass than the nonmycorrhizal plants at all salinity levels. AM symbiosis decreased membrane relative permeability and malondialdehyde content in shoots and roots. The soluble sugar content in roots was higher in mycorrhizal than nonmycorrhizal plants, but there was no significant difference in soluble sugar content in shoots between mycorrhizal and nonmycorrhizal plants. The results indicate that the AM fungus is capable of alleviating the damage caused by salt stress on soybean plants by reducing membrane lipid peroxidation and increasing the accumulation of soluble sugar content. Consequently, arbuscular mycorrhiza formation highly enhanced the salinity tolerance of soybean plant, which increased host biomass and promoted plant growth. Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;}

  9. Interspecific plant association effects on vesicular-arbuscular mycorrhiza occurrence in Atriplex confertifolia

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.; Moorman, T.B.; Schmidt, S.K.

    1983-01-01

    Earlier studies with the shrub Atriplex confertifolia (Chenopodiaceae) suggested that the occurrence of mycotrophy was related to the community from which root samples were obtained; plants in disturbed areas were non-mycotrophic, while those growing in native areas possessed infection. Upon closer examination when neighbouring plants were studied, the level of mycorrhizal infection of Atriplex confertifolia was found to be related to its interspecific plant associations. When Atriplex confertifolia occurred solitarily, or in the presence of non-mycorrhizal A. gardneri, it was non-mycotrophic. However, when occurring near grasses or Artemisia spinescens, it possessed mycorrhiza infection. What appeared to be a community effect for the occurrence of mycorrhiza is nothing more than an association effect in which level of infection is related to the degree of mycorrhizal host plant cover. In disturbed communities little chance occurs for encountering a neighbouring mycorrhizal plant, while native plant communities are composed primarily of mycorrhizal counterparts. 22 references, 1 figure, 3 tables.

  10. 13C Incorporation into Signature Fatty Acids as an Assay for Carbon Allocation in Arbuscular Mycorrhiza

    Science.gov (United States)

    Olsson, Pål Axel; van Aarle, Ingrid M.; Gavito, Mayra E.; Bengtson, Per; Bengtsson, Göran

    2005-01-01

    The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia. PMID:15870350

  11. Effect of zinc rates, arbuscular mycorrhiza and two types of organic matter on corn growth and micronutrients-uptake in a calcareous soil

    Directory of Open Access Journals (Sweden)

    L. Gholami

    2016-09-01

    Full Text Available A greenhouse experiment was conducted to study the effect of zinc rates, arbuscular mycorrhiza and organic matter, on corn growth and micronutrients-uptake in a calcareous soil. Experimental design was factorial based on complete randomized design with 3 replications. Treatments consisted of 3 levels of Zn (0, 5 and 10 mg Zn/kg, 2 types of organic manure (sheep manure and municipal waste compost, each at 0 or 1% w/w and 2 levels of mycorrhiza (no inoculation and inoculation with Glomus intraradices. Plants were harvested 8 weeks after emergence and used for chemical analysis. Roots were used to determine the degree of colonization. Results showed that application of Zn increased plant dry matter weight, total Zn and Cu uptake, root mycorrhizal colonization and decreased total Fe and Mn uptake. Arbuscular mycorrhiza increased plant dry matter weight, root mycorrhizal colonization and total Zn, Fe, Mn and Cu uptake. Application of both organic manures increased plant dry matter weight, root mycorrhizal colonization and total Zn, Fe, Mn and Cu uptake. 

  12. Influences of agricultural management practices on Arbuscular Mycorrhiza Fungal symbioses in Kenyan agro-ecosystems

    NARCIS (Netherlands)

    Muriithi-Muchane, M.N.

    2013-01-01

    Conservation agriculture (CA) and integrated soil fertility management (ISFM) practices are receiving increased attention as pathways to sustainable high-production agriculture in sub-Saharan Africa. However, little is known about the effects of these practices on arbuscular mycorrhizal fungi (AMF).

  13. Arbuscular fungi and mycorrhizae in agricultural soils of the Western Pomerania.II. Distribution of arbuscular fungi

    Directory of Open Access Journals (Sweden)

    Anna Iwaniuk

    2014-08-01

    Full Text Available This part of the two-part paper of arbuscular mycorrhizal fungi (AMF of the phylum Glomeromycota of agricultural soils of the Western Pomerania, north-western Poland, presents the distribution of 26 species of these fungi in both the sites considered in this study and cultivated soils of other regions of Poland and the world investigated previously. The fungi were isolated from both field-collected rhizosphere soil and root mixtures and trap cultures established from each field sample and seeded with three species of plant hosts. Among the fungal species characterized, 18 are of the genus Glomus, one each of the genera Archaeospora, Entrophospora and Paraglomus and three and two of the genera Acaulospora and Scutellospora, respectively.

  14. Colonization of Greek olive cultivars' root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants

    Directory of Open Access Journals (Sweden)

    Theocharis Chatzistathis

    2013-06-01

    Full Text Available Rooted leafy cuttings of three Greek olive (Olea europaea L. cultivars (Koroneiki, Kothreiki and Chondrolia Chalkidikis were grown for six months in three soil types, in an experimental greenhouse, in order to investigate: i if their root system was colonized by arbuscular mycorrhiza fungus (AMF genus and, ii if genotypic differences concerning growth and mineral nutrition of olive plants existed. Gigaspora sp. colonized the root system of the three cultivars studied, while Glomus sp. colonized only the root system of 'Koroneiki'. Furthermore, in most cases root colonization by AMF differed among cultivars and soil types. The maximum root colonization, in all soils, was found in 'Chondrolia Chalkidikis'. In the three soils studied, the ratio shoot dry weight (SDW/ root dry weight (RDW was higher in 'Chondrolia Chalkidikis' than in the other two cultivars. Furthermore, root system morphology of the three olive cultivars was completely different, irrespectively of soil type. Leaf Mn, Fe, Zn, Ca, Mg, K and P concentrations, as well as total per plant nutrient content and nutrient use efficiency, differed among cultivars under the same soil conditions. These differences concerning root morphology, SDW/RDW, as well as nutrient uptake and use efficiency, could be possibly ascribed to the differential AMF colonization by Glomus sp. and Gigaspora sp.

  15. Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza

    Science.gov (United States)

    Bitterlich, Michael; Krügel, Undine; Boldt-Burisch, Katja; Franken, Philipp; Kühn, Christina

    2014-01-01

    Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant dx defective in BR synthesis1 showed significantly reduced mycorrhization parameters.2 The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval. PMID:25482803

  16. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.

  17. [Effects of arbuscular mycorrhiza fungi (AMF) on the plant growth, fruit yield, and fruit quality of cucumber under salt stress].

    Science.gov (United States)

    Han, Bing; Guo, Shi-Rong; He, Chao-Xing; Yan, Yan; Yu, Xian-Chang

    2012-01-01

    By adopting organic substrate culture, and salt-sensitive cucumber variety 'Jinchun No. 2' was used as test material, this paper studied the effects of inoculating arbuscular mycorrhiza fungi (AMF) on the plant growth, fruit yield, and fruit quality of cucumber under salt stress. AMF-inoculation could effectively promote the plant growth and nutrient uptake, and improve the fruit yield and fruit nutrient quality, compared with ordinary cultivation. Under salt stress, the plant growth was inhibited, and the plant N, P, K, Cu, and Zn contents and K+/Na+ ratio, fruit yield, and fruit soluble protein, total sugar, vitamin C, and nitrate contents decreased, while inoculation with AMF could mitigate the inhibitory effect of salt stress on the plant growth, made the plant N, P, K, Cu, and Zn contents increased by 7.3%, 11.7%, 28.2%, 13.5%, and 9.9%, respectively, and made the plant K+/Na+ ratio, fruit yield, and fruit soluble protein, total sugar, and vitamin C contents have an obvious increase and the fruit nitrate content have a significant decrease. It was suggested that AMF could promote the plant growth and nutrient uptake of cucumber under salt stress, increase the plant salt-tolerance, and improve the fruit yield and its nutrient quality.

  18. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    OpenAIRE

    Lucas Carvalho Basilio Azevedo; Sidney Luiz Stürmer; Marcio Rodrigues Lambais

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcan...

  19. Vesicular-Arbuscular Mycorrhiza and Growth in Barley - Effects of Irradiation and Heating of Soil

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Andersen, A. J.

    1982-01-01

    The influence of soil irradiation (0.25–4.0 Mrad) and soil heating on mycorrhizal survival, establishment and development after reinoculation, and on plant growth, was investigated. The lowest radiation dose applied, completely eliminated the infectivity of a soil with a high number of mycorrhizal...... propagules. Mycorrhiza developed more slowly after inoculation in irradiated soils than in untreated soils. This could have been due to the small amounts of inoculum used, but the high concentrations of nutrients released by irradiation of the soil were probably of greater significance particularly the...... increased amounts of plant-available N as indicated by incubation experiments. Inorganic N was increased to similar levels by the various treatments. Available soil P increased with increasing irradiation dose. Incubation of inoculum in soil for 40 days before sowing increased mycorrhizal infection....

  20. Arbuscular mycorrhiza of Arnica montana under field conditions--conventional and molecular studies.

    Science.gov (United States)

    Ryszka, Przemysław; Błaszkowski, Janusz; Jurkiewicz, Anna; Turnau, Katarzyna

    2010-11-01

    Two distinct populations of Arnica montana, an endangered medicinal plant, were studied under field conditions. The material was investigated using microscopic and molecular methods. The analyzed plants were always found to be mycorrhizal. Nineteen arbuscular mycorrhizal fungal DNA sequences were obtained from the roots. They were related to Glomus Group A, but most did not match any known species. Some showed a degree of similarity to fungi colonizing liverworts. Conventional analysis of spores isolated from soil samples allowed to identify different fungal taxa: Glomus macrocarpum, Glomus mosseae, Acaulospora lacunosa, and Scutellospora dipurpurescens. Their spores were also isolated from trap cultures.

  1. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    Science.gov (United States)

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields.

  2. Increasing phosphorus supply is not the mechanism by which arbuscular mycorrhiza increase attractiveness of bean (Vicia faba) to aphids

    Science.gov (United States)

    Babikova, Zdenka; Gilbert, Lucy; Randall, Kate C.; Bruce, Toby J. A.; Pickett, John A.; Johnson, David

    2014-01-01

    Arbuscular mycorrhizal (AM) fungi, important plant mutualists, provide plants with nutrients such as phosphorus (P) in return for carbon. AM fungi also enhance the attractiveness of plants to aphids via effects on emissions of plant volatiles used in aphid host location. We tested whether increased P uptake by plants is the mechanism through which AM fungi alter the volatile profile of plants and aphid behavioural responses by manipulating the availability of P and AM fungi to broad beans (Vicia faba L.) in a multi-factorial design. If AM fungi affect plant volatiles only via increased P acquisition, we predicted that the emission of volatiles and the attractiveness of mycorrhizal beans to aphids would be similar to those of non-mycorrhizal beans supplied with additional P. AM fungi and P addition increased leaf P concentrations by 40 and 24%, respectively. The production of naphthalene was less in mycorrhizal plants, regardless of P addition. By contrast, production of (S)-linalool, (E)-caryophyllene and (R)-germacrene D was less in plants colonized by AM fungi but only in the absence of P additions. The attractiveness of plants to pea aphids (Acyrthosiphon pisum Harris) was positively affected by AM fungi and correlated with the extent of root colonization; however, attractiveness was neither affected by P treatment nor correlated with leaf P concentration. These findings suggest that increased P uptake is not the main mechanism by which mycorrhiza increase the attractiveness of plants to aphids. Instead, the mechanism is likely to operate via AM fungi-induced plant systemic signalling. PMID:25200735

  3. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    Science.gov (United States)

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  4. Unraveling the signaling and signal transduction mechanisms controlling arbuscular mycorrhiza development Desenredando os mecanismo de sinalização e transdução de sinais que controlam o desenvolvimento de micorrizas arbusculares

    Directory of Open Access Journals (Sweden)

    Marcio Rodrigues Lambais

    2006-08-01

    Full Text Available Arbuscular mycorrhiza (AM are the most widespread symbiotic associations between plant roots and soil fungi. AM can contribute to increasing the survival and fitness of plants to limiting environments mostly due to their ability in improving nutrient uptake from the soil solution. Despite their ecological significance, the mechanisms controlling AM development and functioning are largely unknown. The obligate mutualistic nature of the arbuscular mycorrhizal fungi (AMF has hampered the advances on the understanding and application of the symbiosis. Significant alterations in the genetic programs of both symbionts are required for the successful establishment of an AM, and complex signaling and signal transduction mechanisms are likely involved. The analyses of legume mutants affected in the development of nitrogen fixing nodules and AM suggest that part of the signal transduction pathways involved in the regulation of both symbioses are conserved. Even though the use of genomics of model plants has helped to advance our understanding of the regulatory mechanisms in AM, identifying the signal molecules involved in plant-AMF communication and determining their transduction pathways is still essential for its biotechnological application in agriculture.As micorrizas arbusculares (MAs são as associações simbióticas entre raízes de plantas e fungos mais comuns na natureza. Elas podem contribuir para o aumento da sobrevivência e adaptação das plantas a ambientes limitantes, principalmente devido a sua maior capacidade em absorver nutrientes da solução do solo. Apesar de sua importância ecológica, os mecanismos que controlam o desenvolvimento e fisiologia das MAs são pouco conhecidos. A natureza mutualística obrigatória dos fungos micorrízicos arbusculares (FMAs tem limitado os avanços na compreensão e aplicação da simbiose. Alterações significativas nos programas genéticos de ambos simbiontes são necessárias para o

  5. Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges

    DEFF Research Database (Denmark)

    Fitter, A.H.; Heinemeyer, A.; Husband, R.;

    2004-01-01

    Our ability to make predictions about the impact of global environmental change on arbuscular mycorrhizal (AM) fungi and on their role in regulating biotic response to such change is seriously hampered by our lack of knowledge of the basic biology of these ubiquitous organisms. Current information...... in determining the structure of the AM fungal community. Nevertheless, the direct response of AM fungi to temperature may have large implications for rates of C cycling. New evidence shows that AM fungal hyphae may be very short lived, potentially acting as a rapid route by which C may cycle back......, and if the number of species is much greater than the number currently described (150), as seems almost certain, then there is the potential for several new fields of study, including community ecology and biogeography of AM fungi, and these will give us new insights into the impacts of global environmental change...

  6. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    The influence of arbuscular mycorrhizal fungi (AMF) on the expression of plant nutrient transporters was studied using a relative. quantitative reverse-transcription polymerase chain-reaction (RQRT-PCR) technique. Reverse-transcribed 18S rRNA was used to standardize the treatments. The technique...... had high reproducibility and reflected trends in gene expression as observed by Northern blotting. Using this technique, it was demonstrated that both the high-affinity phosphate transporter MtPt2 and a putative nitrate transporter from Medicago truncatula were down-regulated in roots when colonized...... by some, but not all AMF. Colonization by the AMF Glomus rosen, in particular, failed to strongly down-regulate these plant genes within the root. This technique may be suitable for the study of plant genes in mycorrhizal roots when Northern blotting is not possible due to low gene expression or when...

  7. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa).

    Science.gov (United States)

    Rozpądek, Piotr; Rąpała-Kozik, Maria; Wężowicz, Katarzyna; Grandin, Anna; Karlsson, Stefan; Ważny, Rafał; Anielska, Teresa; Turnau, Katarzyna

    2016-10-01

    Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity.

  8. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa).

    Science.gov (United States)

    Rozpądek, Piotr; Rąpała-Kozik, Maria; Wężowicz, Katarzyna; Grandin, Anna; Karlsson, Stefan; Ważny, Rafał; Anielska, Teresa; Turnau, Katarzyna

    2016-10-01

    Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity. PMID:27318800

  9. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp. Sucessão de micorrizas vesicular-arbuscular e ectomicorrizas em mudas de Eucalyptus spp.

    Directory of Open Access Journals (Sweden)

    Vera Lúcia dos Santos

    2001-06-01

    Full Text Available The occurrence of vesicular-arbuscular mycorrhizae (AM and ectomycorrhizae (ECM in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonization increased followed by a decrease in AM. Pisolithus tinctorius was favored in simultaneous inoculation with G. etunicatum, and the positive effect of the simultaneous inoculation of both fungi in the percent colonization by the AM fungus occurred up to 60 days after inoculation. After 120 days, colonization of roots by G. etunicatum decreased in the presence of P. tinctorius. When inoculated simultaneously, the proportion of AM and ECM varied with evaluation time, while the combined percentage of mycorrhizal roots approached the maximum and remained more or less constant after 60 days, suggesting that there could be competition between the fungi for limiting substrate. The maximum percent mycorrhizal colonization varied with Eucalyptus species and the highest value was observed for E. camaldulensis, followed in order by E. citriodora, E. urophylla, E. grandis and E. cloeziana.A ocorrência de micorrizas arbusculares (AM e ectomicorrizas (ECM no mesmo sistema radicular foi observada quando Eucalyptus urophylla S.T. Blake, E. citriodora Hook F., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell e E. camaldulensis Dehnh foram inoculadas simultaneamente com Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch. A sucessão entre os dois fungos foi observada. De modo geral, o aumento da colonização ECM foi acompanhado de um decréscimo em AM. A inoculação simultânea resultou em percentagens de colonização diferenciadas das

  10. DIVERSITY OF TUBER CROPS AND ARBUSCULAR MYCORRHIZAE FUNGI (AMF UNDER COMMUNITY FOREST STAND IN SOUTH SULAWESI

    Directory of Open Access Journals (Sweden)

    Retno Prayudyaningsih

    2015-05-01

    Full Text Available Implementation of agroforestry system in community forest that incorporate local species Vitex cofassus (bitti, Toona sinensis (suren, Tectona grandis (teak and Aleurites moluccana (candlenut with seasonal crops such as tuber crops would create opportunities for local  people to improve the economic and food security. Tuber crops as the understory could be expected to reduce the rate of soil erosion and expand habitat of beneficia soil microorganisms such as arbuscular mycorrhizal fungi (AMF. The research aims to determine the diversity of tuber crops and AMF in the rhizosphere of tuber crops grown under community forest stands of bitti, suren, teak and candlelnut in South Sulawesi. Results showed that (1 there are 12 kinds of tuber crops that grow under community forest stands in which the 7 types are as alternative food sources, (2 Amorphophallus campanulatus (iles-iles/suweg and Xanthosoma violaceum (kimpul are species of tuber crops that is found growing under all of the commnunity forest stands, (3 all kinds of tuber crops that grow under the community forest stand associated with AMF, in which there are 3 AMF genus i.e Glomus sp. Acaulospora sp. and Gigaspora sp.with low spore density.

  11. Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill.

    Science.gov (United States)

    Rydlová, Jana; Jelínková, Marcela; Dušek, Karel; Dušková, Elena; Vosátka, Miroslav; Püschel, David

    2016-02-01

    Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.

  12. Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation

    Science.gov (United States)

    Deguchi, Yuichi; Banba, Mari; Shimoda, Yoshikazu; Chechetka, Svetlana A.; Suzuri, Ryota; Okusako, Yasuhiro; Ooki, Yasuhiro; Toyokura, Koichi; Suzuki, Akihiro; Uchiumi, Toshiki; Higashi, Shiro; Abe, Mikiko; Kouchi, Hiroshi; Izui, Katsura; Hata, Shingo

    2007-01-01

    Abstract To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the colonization by AM fungi, i.e. Glomus mosseae and Gigaspora margarita, was well established, four cysteine protease genes were induced. In situ hybridization revealed that these cysteine protease genes were specifically expressed in arbuscule-containing inner cortical cells of AM roots. On the other hand, phenylpropanoid biosynthesis-related genes for phenylalanine ammonia-lyase (PAL), chalcone synthase, etc. were repressed in the later stage, although they were moderately up-regulated on the initial association with the AM fungus. Real-time RT–PCR experiments supported the array experiments. To further confirm the characteristic expression, a PAL promoter was fused with a reporter gene and introduced into L. japonicus, and then the transformants were grown with a commercial inoculum of G. mosseae. The reporter activity was augmented throughout the roots due to the presence of contaminating microorganisms in the inoculum. Interestingly, G. mosseae only colonized where the reporter activity was low. Comparison of the transcriptome profiles of AM roots and nitrogen-fixing root nodules formed with Mesorhizobium loti indicated that the PAL genes and other phenylpropanoid biosynthesis-related genes were similarly repressed in the two organs. PMID:17634281

  13. The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phyto pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lioussanne, L.

    2010-07-01

    The mutualistic symbiosis of most land plants with arbuscular mycorrhizal (AM) fungi has been shown to favor mineral and water nutrition and to increase resistance to abiotic and biotic stresses. This review reports the main mechanisms involved in the control of the disease symptoms and of the intraradical proliferation of soilborne phytopathogens by root colonization with AM fungi, with a special emphasis on the role of the rhizobacteria shown to be specifically associated with the AM extraradical network and the mycorrhizosphere (the soil zone with particular characteristics under the influence of the root/AM association). The mycorrhizosphere would constitute an environment conducive to microorganisms antagonistic to pathogen proliferation. Moreover, attempts to identify rhizobacteria from AM structures and/or the mycorrhizosphere often lead to the isolation of organisms showing strong properties of antagonism on various soilborne pathogens. The ability of AM fungi to control soilborne diseases would be strongly related to their capacity to specifically stimulate the establishment of rhizobacteria unfavorable to pathogen development within the mycorrhizosphere before root infection. Current knowledge concerning the mechanisms involved in AM/rhizobacteria interactions are also described in this review. (Author) 101 refs.

  14. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.

    Science.gov (United States)

    Kumar, Pradeep; Lucini, Luigi; Rouphael, Youssef; Cardarelli, Mariateresa; Kalunke, Raviraj M; Colla, Giuseppe

    2015-01-01

    Physiological, biochemical, metabolite changes, and gene expression analysis of greenhouse tomato (Solanum lycopersicum L.) were investigated in two grafting combinations (self-grafted 'Ikram' and 'Ikram' grafted onto interspecific hybrid rootstock `Maxifort'), with and without arbuscular mycorrhizal (AM), exposed to 0 and 25 μM Cd. Tomato plants responded to moderate Cadmium (Cd) concentration by decreasing yield and crop growth parameters due to the accumulation of Cd in leaf tissue, inhibition of the PS II activity, reduced nutrients translocation, and also to the oxidative stress as evidenced by enhanced hydrogen peroxide (H2O2) generation, ion leakage, and lipid peroxidation. AM inoculation significantly enhanced the metal concentration in shoots and reduced growth and yield. The Ikram/Maxifort combination induced higher antioxidant enzymes, higher accumulation of proline and reduction of lipid peroxidation products. This suggests that the use of Maxifort rootstock in tomato has a high reactive oxygen species scavenging activity since lower H2O2 concentrations were observed in the presence of Cd. The higher crop performance of Ikram/Maxifort in comparison to Ikram/Ikram combination was also due to the improved nutritional status (higher P, K, Ca, Fe, Mn, and Zn) and increased availability of metabolites involved in cadmium tolerance (phytochelatin PC2, fructans, and inulins). The up-regulation of LeNRAMP3 gene in leaf of Ikram/Maxifort could explain the better nutritional status of interspecific grafting combination (higher Fe, Mn, and Zn).

  15. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea.

    Science.gov (United States)

    Shabani, Leila; Sabzalian, Mohammad R; Mostafavi pour, Sodabeh

    2016-01-01

    Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

  16. Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato

    Science.gov (United States)

    Martín-Rodríguez, José A.; Huertas, Raúl; Ho-Plágaro, Tania; Ocampo, Juan A.; Turečková, Veronika; Tarkowská, Danuše; Ludwig-Müller, Jutta; García-Garrido, José M.

    2016-01-01

    Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots. PMID:27602046

  17. Gibberellin-Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato.

    Science.gov (United States)

    Martín-Rodríguez, José A; Huertas, Raúl; Ho-Plágaro, Tania; Ocampo, Juan A; Turečková, Veronika; Tarkowská, Danuše; Ludwig-Müller, Jutta; García-Garrido, José M

    2016-01-01

    Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots.

  18. Gibberellin-abscisic acid balances during arbuscular mycorrhiza formation in tomato

    Directory of Open Access Journals (Sweden)

    José Angel Martín-Rodríguez

    2016-08-01

    Full Text Available Plant hormones become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in Arbuscular Mycorrhizal (AM symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots.

  19. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato

    Directory of Open Access Journals (Sweden)

    Pradeep eKumar

    2015-06-01

    Full Text Available Physiological, biochemical, metabolite changes and gene expression analysis of greenhouse tomato (Solanum lycopersicumL. were investigated in two grafting combinations (self-grafted ‘Ikram’ and ‘Ikram’ grafted onto interspecific hybrid rootstock ‘Maxifort’, with and without arbuscular mycorrhizal (AM, exposed to 0 and 25 µM Cd. Tomato plants responded to moderate Cd concentration by decreasing yield and crop growth parameters due to the accumulation of Cd in leaf tissue, inhibition of the PS II activity, reduced nutrients translocation, and also to the oxidative stress as evidenced by enhanced hydrogen peroxide (H2O2 generation, ion leakage and lipid peroxidation. AM inoculation significantly enhanced the metal concentration in shoots and reduced growth and yield. The Ikram/Maxifort combination induced higher antioxidant enzymes, higher accumulation of proline and reduction of lipid peroxidation products. This suggests that the use of Maxifort rootstock in tomato has a high reactive oxygen species scavenging activity since lower H2O2 concentrations were observed in the presence of Cd. The higher crop performance of Ikram/Maxifort in comparison to Ikram/Ikram combination was also due to the improved nutritional status (higher P, K, Ca, Fe, Mn, and Zn and increased availability of metabolites involved in cadmium tolerance (phytochelatin PC2 and fructans inulins. The up-regulation of LeNRAMP3 gene in leaf of Ikram/Maxifort could explain the better nutritional status of interspecific grafting combination (higher Fe, Mn, and Zn.

  20. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.

    Science.gov (United States)

    Kumar, Pradeep; Lucini, Luigi; Rouphael, Youssef; Cardarelli, Mariateresa; Kalunke, Raviraj M; Colla, Giuseppe

    2015-01-01

    Physiological, biochemical, metabolite changes, and gene expression analysis of greenhouse tomato (Solanum lycopersicum L.) were investigated in two grafting combinations (self-grafted 'Ikram' and 'Ikram' grafted onto interspecific hybrid rootstock `Maxifort'), with and without arbuscular mycorrhizal (AM), exposed to 0 and 25 μM Cd. Tomato plants responded to moderate Cadmium (Cd) concentration by decreasing yield and crop growth parameters due to the accumulation of Cd in leaf tissue, inhibition of the PS II activity, reduced nutrients translocation, and also to the oxidative stress as evidenced by enhanced hydrogen peroxide (H2O2) generation, ion leakage, and lipid peroxidation. AM inoculation significantly enhanced the metal concentration in shoots and reduced growth and yield. The Ikram/Maxifort combination induced higher antioxidant enzymes, higher accumulation of proline and reduction of lipid peroxidation products. This suggests that the use of Maxifort rootstock in tomato has a high reactive oxygen species scavenging activity since lower H2O2 concentrations were observed in the presence of Cd. The higher crop performance of Ikram/Maxifort in comparison to Ikram/Ikram combination was also due to the improved nutritional status (higher P, K, Ca, Fe, Mn, and Zn) and increased availability of metabolites involved in cadmium tolerance (phytochelatin PC2, fructans, and inulins). The up-regulation of LeNRAMP3 gene in leaf of Ikram/Maxifort could explain the better nutritional status of interspecific grafting combination (higher Fe, Mn, and Zn). PMID:26167168

  1. Arbuscular Mycorrhiza Prevents Suppression of Actual Nitrification Rates in the (Myco-)Rhizosphere of Plantago lanceolata

    Institute of Scientific and Technical Information of China (English)

    S.D.VERESOGLOU

    2012-01-01

    The vast majority of herbaceous plants engage into arbuscular mycorrhizal (AM) symbioses and consideration of their mycorrhizal status should be embodied in studies of plant-microbe interactions.To establish reliable AM contrasts,however,a sterilized re-inoculation procedure is commonly adopted.It was questioned whether the specific approach is sufficient for the studies targeting the bacterial domain,specifically nitrifiers,a group of autotrophic,slow growing microbes.In a controlled experiment mycorrhizal and non-mycorrhizal Plantago lanceolata were grown up in compartmentalized pots to study the AM effect on nitrification rates in the plant rhizosphere.Nitrification rates were assayed following an extensive 3-week bacterial equilibration step of the re-inoculated soil and a 13-week plant growth period in a controlled environment.Under these specific conditions,the nitrification potential levels at harvest were exceptionally low,and actual nitrification rates of the root compartment of non-mycorrhizal P.lanceolata were significantly lower than those of any other compartment.It is then argued that the specific effects should be attributed to the alleged higher growth rates of non-mycorrhizal plants that are known to occur early in the AM experiment.It is concluded that the specific experimental approach is not suitable for the study of microbes with slow growth rates.

  2. Effects of arbuscular mycorrhiza inoculation on growth and yield of tomato (Lycopersicum esculentum Mill. under salinity stress

    Directory of Open Access Journals (Sweden)

    D.R.R. Damaiyanti

    2015-10-01

    Full Text Available Objective of the research was to study the effect mycorrhiza on growth and yield of tomato. The experiment was conducted in screen house 14 m x 10.5 m, in Pasuruan on November 2013 until March 2014, The experiment was conducted as a factorial randomized complete design. The first factor was dose of mycorrhiza (without mycorrhiza, 5 g mycorrhiza, 10 g mycorrhiza, and 20 g mycorrhiza. The second factor was the salinity stress level (without NaCl, 2500 ppm NaCl, 5000 ppm NaCl, and 7500 ppm NaCl. The results showed that salinity stress at the level 7500 ppm decreased the amount of fruit by 30.84% and fresh weight per hectare decreased by 51.72%. Mycorrhizal application was not able to increase the growth and yield in saline stress conditions; it was shown by the level of infection and the number of spores on the roots of tomato plants lower the salinity level 5000 ppm and 7500 ppm. But separately, application of 20 g mycorrhiza enhanced plant growth, such as plant height, leaf area, leaf number and proline. Application of 20 g mycorrhiza increased the yield by 35.99%.

  3. Vesicular-arbuscular mycorrhiza response to crossed carbon and phosphorus resource gradients

    Energy Technology Data Exchange (ETDEWEB)

    Whitbeck, J.L. (Pennyslvania State Univ., University Park, PA (United States))

    1994-06-01

    Employing the annual herb Hemizonia luzulaefolia, native to nutrient limited grassland ecosystem in California, and a community of indigenous vesicular-arbuscular mycorrhizal (VAM) fungi, this study examined mycorrhizal response to interacting plant- and fungus-acquired resources. Plant carbon supply was manipulated through atmospheric carbon dioxide (CO[sub 2]) concentration, and substrate phosphorus (P) supply was varied in the nutrient solution. H. luzulaefolia responded strongly to VAM association, showing increased root and shoot biomass, greater leaf area, higher shoot P content and lower specific root length relative to non-mycorrhizal plants. Elevated (700 ppm) CO[sub 2] plants had lower mass, lower root:shoot ratios and slightly greater specific root length than ambient pCO[sub 2]-grown plants. VAM colonization of roots was stimulated by elevated CO[sub 2] early in the experiment. Low P plants showed greater leaf mass per area and lower shoot P concentration than plus-P plants. P effects on measures of VAM changed over time. While ambient pCO[sub 2]-grown plants responsed to added P with increased biomass, plants grown at elevated CO[sub 2] showed equivalent or lower biomass in plus-P treatments than in those with no added P. At the same time, ambient pCO[sub 2]-grown plants developed greater VAM colonization of roots in low P treatments, while at 700 ppm CO[sub 2]. VAM colonization was higher in plus-P treatments. It appears that atmospheric pCO[sub 2] affects the patterns of belowground allocation in H. luzulaefolia: ambient pCO[sub 2] plants direct carbon resources to VAM when P is low and to roots when P is available, while elevated CO[sub 2] plants maintain VAM colonization regardless of P environment and allocate to roots when P is low.

  4. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato.

    Science.gov (United States)

    Wu, Ping; Wu, Yue; Liu, Cheng-Chen; Liu, Li-Wei; Ma, Fang-Fang; Wu, Xiao-Yi; Wu, Mian; Hang, Yue-Yu; Chen, Jian-Qun; Shao, Zhu-Qing; Wang, Bin

    2016-01-01

    A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

  5. Identification of arbuscular mycorrhiza (AM-responsive microRNAs in tomato

    Directory of Open Access Journals (Sweden)

    Ping eWu

    2016-03-01

    Full Text Available A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM fungi. MicroRNAs (miRNAs have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

  6. Lights off for arbuscular mycorrhiza: On its symbiotic functioning under light deprivation

    Directory of Open Access Journals (Sweden)

    Tereza eKonvalinková

    2016-06-01

    Full Text Available Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM fungi and rhizobia represent particularly important cases – on the one hand, they consume a significant share of plant carbon (C budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015 in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months, positive mycorrhizal growth responses (MGR are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular

  7. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation.

    Science.gov (United States)

    Konvalinková, Tereza; Jansa, Jan

    2016-01-01

    Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore

  8. [Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks].

    Science.gov (United States)

    Xie, Li-Jun; Song, Yuan-Yuan; Zeng, Ren-Sen; Wang, Rui-Long; Wei, Xiao-Chen; Ye, Mao; Hu, Lin; Zhang, Hui

    2012-05-01

    Common mycorrhizal networks (CMNs) are the underground conduits of nutrient exchange between plants. However, whether the CMNs can serve as the underground conduits of chemical communication to transfer the disease resistance signals between plants are unknown. By inoculating arbuscular mycorrhizal fungus (AMF) Glomus mosseae to establish CMNs between 'donor' and 'receiver' tomato plants, and by inoculating Alternaria solani, the causal agent of tomato early blight disease, to the 'donor' plants, this paper studied whether the potential disease resistance signals can be transferred between the 'donor' and 'receiver' plants roots. The real time RT-PCR analysis showed that after inoculation with A. solani, the AMF-inoculated 'donor' plants had strong expression of three test defense-related genes in roots, with the transcript levels of the phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX) and chitinase (PR3) being significantly higher than those in the roots of the 'donor' plants only inoculated with A. solani, not inoculated with both A. solani and AMF, and only inoculated with AMF. More importantly, in the presence of CMNs, the expression levels of the three genes in the roots of the 'receiver' plants were significantly higher than those of the 'receiver' plants without CMNs connection, with the connection blocking, and with the connection but the 'donor' plants not A. solani-inoculated. Compared with the control (without CMNs connection), the transcript level of the PAL, LOX and PR3 in the roots of the 'receiver' plants having CMNs connection with the 'donor' plants was 4.2-, 4.5- and 3.5-fold higher, respectively. In addition, the 'donor' plants activated their defensive responses more quickly than the 'receiver' plants (18 and 65 h vs. 100 and 140 h). These findings suggested that the disease resistance signals produced by the pathogen-induced 'donor' tomato plant roots could be transferred to the 'receiver' plant roots through CMNs.

  9. SymGRASS: a database of sugarcane orthologous genes involved in arbuscular mycorrhiza and root nodule symbiosis

    Science.gov (United States)

    2013-01-01

    Background The rationale for gathering information from plants procuring nitrogen through symbiotic interactions controlled by a common genetic program for a sustainable biofuel production is the high energy demanding application of synthetic nitrogen fertilizers. We curated sequence information publicly available for the biofuel plant sugarcane, performed an analysis of the common SYM pathway known to control symbiosis in other plants, and provide results, sequences and literature links as an online database. Methods Sugarcane sequences and informations were downloaded from the nucEST database, cleaned and trimmed with seqclean, assembled with TGICL plus translating mapping method, and annotated. The annotation is based on BLAST searches against a local formatted plant Uniprot90 generated with CD-HIT for functional assignment, rpsBLAST to CDD database for conserved domain analysis, and BLAST search to sorghum's for Gene Ontology (GO) assignment. Gene expression was normalized according the Unigene standard, presented as ESTs/100 kb. Protein sequences known in the SYM pathway were used as queries to search the SymGRASS sequence database. Additionally, antimicrobial peptides described in the PhytAMP database served as queries to retrieve and generate expression profiles of these defense genes in the libraries compared to the libraries obtained under symbiotic interactions. Results We describe the SymGRASS, a database of sugarcane orthologous genes involved in arbuscular mycorrhiza (AM) and root nodule (RN) symbiosis. The database aggregates knowledge about sequences, tissues, organ, developmental stages and experimental conditions, and provides annotation and level of gene expression for sugarcane transcripts and SYM orthologous genes in sugarcane through a web interface. Several candidate genes were found for all nodes in the pathway, and interestingly a set of symbiosis specific genes was found. Conclusions The knowledge integrated in SymGRASS may guide studies on

  10. IMPACT OF BRACHIARIA, ARBUSCULAR MYCORRHIZA, AND POTASSIUM ENRICHED RICE STRAW COMPOST ON ALUMINIUM, POTASSIUM AND STABILITY OF ACID SOIL AGGREGATES

    Directory of Open Access Journals (Sweden)

    Bariot Hafif

    2013-04-01

    Full Text Available Acid soil is commonly grown with cassava, which in general, tolerate low soil  fertility and aluminum (Al toxicity. However, without any improvement efforts such soil will become worse. Intercropping cassava with Brachiaria decumbens (BD which adapts to acid soil and tolerates low fertility soils as well as application of arbuscular mycorrhiza (AM and organic matters are among the important efforts to rehabilitate this soil. The experiment was conducted to  examine the impact of BD, AM, and potassium (K enriched rice straw compost on exchangeable Al, available K, and stability of soil aggregates. Experiment was arranged in a completely randomized design with three factors and three replications. The first factor was BD as cassava intercropping, the second factor was AM, and the third factor was 2 t ha-1 rice straw compost enriched with 0 kg, 50 kg, 100 kg, and 200 kg KCl ha-1. Brick pots (1 m length x 1 m width x 0.45 m depth filled with Kanhapludult soil was used for growing cassava in which row of BD was planted at 60 cm from cassava stem. K-enriched rice straw compost and AM (10 g per stem were applied around cassava stem at 2 and 12 days after planting, respectively. BD was cut every 30 days and the cutting was returned to the soil. Soil exchangeable Al was analyzed at 0, 3, 6 and 9 months after planting (MAP, while Al and K contents as well as aggregate stability were measured at 6 MAP. The results showed that planting BD decreased 33% exchangeable Al, which means that the root exudates of this grass was effective in detoxifying Al3+. Treatment of BD and/or in combination with AM was effective in preserving K added to the soil, increasing total polysaccharides, and improving soil aggregate stability. This indicated that planting BD and applying AM and Kenriched rice straw compost improved acid soil fertility, and therefore can be recommended in cassava cultivation.

  11. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    Science.gov (United States)

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.

  12. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    by VAM remained at about 50% in the cereals and 75% in the peas. In the spring, infection levels were low in winter wheat, winter rye and winter barley, and development of infection was slower in them than in the spring-sown crops. VAM infection was also studied in relation to soil depth and root density......Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected....... The proportion of root length infected decreased markedly below 40 cm soil depth. Root density varied greatly between crops, whereas the absolute length of infected roots was similar in all crops. This indicates that susceptibility to infection was independent of host species. The results are discussed...

  13. Effect of arbuscular mycorrhiza fungi and organic fertilizers on yield and nutrients uptake of two wheat cultivars

    Directory of Open Access Journals (Sweden)

    B. Kermanizadeh

    2016-09-01

    Full Text Available This research was conducted in order to evaluate the direct effects of organic and biofertilizers on yield of two native wheat cultivars (Bolani and cross-Bolani in Sistan area. The experiment was performed as a factorial, based on a completely randomized design with three replications, in Research Greenhouse of University of Zabol. In this study, fertilizer factor at 8 levels [Vermicompost (F1, vermicompost + compost (F2, vermicompost + mycorrhiza (F3, vermicompost + mycorrhiza + compost (F4, compost (F5, compost + mycorrhiza (F6, mycorrhiza (F7 and control (no fertilizer application, F8] and two wheat cultivars [Bolani (C1 and cross-Bolani (C2] were considered. Results showed that the highest grain yield (1.13 g/pot was obtained from combination of mycorrhiza and cross-Bolani treatments (F7C2. Combined treatments of compost + mycorrhiza and cross-Bolani (F6C2 and vermicompost + compost and cross-Bolani (F2C2 were more suitable for nitrogen uptake. The highest percentage of protein (10.27% was resulted from F6C2 and F2C2 treatment. Overall, combined treatments of F6C2 and F2C2 seem appropriate for Bolani and cross-Bolani wheat cultivars.

  14. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences.

    Directory of Open Access Journals (Sweden)

    Jasmin Seven

    Full Text Available Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior are colonized by arbuscular mycorrhizal fungi (AM and beech roots (Fagus sylvatica by ectomycorrhizal fungi (EcM. Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations

  15. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D.S.

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  16. Influencia de la fertilización, la época y la especie forrajera en la presencia Influence of fertilization, season, and forage species in presence of arbuscular mycorrhizae in a degraded Andisoil of Colombia

    Directory of Open Access Journals (Sweden)

    Arnulfo Gómez-Carabalí

    2011-01-01

    and percentage of root infection of arbuscular mycorrhiza increased with age and varied with the species and season. We founded differences among forage grass and legume species under field conditions to form symbiosis with mycorrhizal fungi. Knowledge on these interspecific differences could contribute to developing better adapted forage systems to contribute recuperating the degraded soils of the Andean hillsides of Latin America.

  17. Effect of Arbuscular Mycorrhiza Fungi (AMF and The Organic Material to The Glomalin Production and The Soil Physical Properties of Ultisols

    Directory of Open Access Journals (Sweden)

    Amrizal Saidi

    2015-01-01

    Full Text Available Metabolism of Arbuscular mycorrhiza fungi (AMF requires nitrogen from organic matter to produce glomalin on hyphae. Glomalin able to granulate the soil particles are dispersed to form a stable soil aggregates to create good soil structure. Improvement of soil structure will provide optimal conditions for the development of organisms and plant roots. AMF and the use of organic matter as a source of N for the AMF has done research on Sitiung Ultisol. The purpose of this study was to determine the effect of AMF and organic material to the glomalin production, as well as its relationship with the soil physical properties. This research was conducted at the greenhouse of Faculty Agriculture Andalas University Padang. West Sumatra Indonesia. Soil samples of soil physical properties observed in the area of mycorrhiza hyphae found (mycorhizalsphere which is influenced by differences glomalin generated by the AMF. The results of the reserach showed that treatment of AMF and Nitrogen organic ingredients affect significantly on the glomalin, whereas the effect of treatment it gives a different effect on soil physical properties. Organic materials do not affect significantly on the availability of soil water content, but very significant effect on water content at 2.54 pF. AMF species that produce a higher glomalin can be significant in improving soil physical properties, ie versiforme G. and G. luteum although without the use of organic materials or organic. Both these species give a positive response to the growth of maize by mycorrhizalsphere (MGR = mycorrhizal growth response and nutrient uptake of maize.

  18. Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba

    OpenAIRE

    Herrera-Peraza, Ricardo A.; Eduardo Furrazola; Ferrer, Roberto L.; Rigel Fernández Valle; Yamir Torres Arias

    2004-01-01

    Se analizó aquí el funcionamiento excluyente de los pelos radicales y las micorrizas arbusculares (MA) a nivel de ecosistema, y se demostró que la exclusión de ambas estructuras depende de los tipos biológicos que sean considerados en el análisis. Por otra parte, recientemente, han sido definidas las estrategias exuberante y austera para explicar el papel funcional de grupos sucesionales de especies y ecosistemas forestales tropicales. Para conocer el funcionamiento micorrízico arbuscular (MA...

  19. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    Science.gov (United States)

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. PMID:26761602

  20. Unusually large contribution of arbuscular mycorrhizal fungi tosoil organic matter pools in tropical forest soils. Plant and soils

    Energy Technology Data Exchange (ETDEWEB)

    Rilling, M.C.; Wright, S.F.; Nicholas, K.A.; Schmidt, W.F.; Torn,M.S.

    2000-07-12

    The origins and composition of soil organic matter (SOM) are still largely uncertain. Arbuscular mycorrhizal fungi (AMF) are recognized as indirect contributors through their influence on soil aggregation, plant physiology, and plant community composition. Here we present evidence that AMF can also make large, direct contributions to SOM. Glomalin, a recently discovered glycoprotein produced by AMF hyphae, was detected in tropical soils in concentrations of over 60 mg cm-3. Along a chronosequence of soils spanning ages from 300 to 4.1 Mio years, a pattern of glomalin concentrations is consistent with the hypothesis that this protein accumulates in soil. Carbon dating of glomalin indicated turnover at time scales of several years to decades, much longer than the turnover of AMF hyphae (which is assumed to be on the order of days to weeks). This suggests that contributions of mycorrhizae to soil carbon storage based on hyphal biomass in soil and roots may be an underestimate. The amount of C and N in glomalin represented a sizeable amount (ca. 4-5 percent) of total soil C and N in the oldest soils. Our results thus indicate that microbial (fungal) carbon that is not derived from above- or below-ground litter can make a significant contribution to soil carbon and nitrogen pools and can far exceed the contributions of soil microbial biomass (ranging from 0.08 to 0.2 percent of total C for the oldest soils).

  1. NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development[C][W

    Science.gov (United States)

    Groth, Martin; Takeda, Naoya; Perry, Jillian; Uchida, Hisaki; Dräxl, Stephan; Brachmann, Andreas; Sato, Shusei; Tabata, Satoshi; Kawaguchi, Masayoshi; Wang, Trevor L.; Parniske, Martin

    2010-01-01

    Legumes form symbioses with arbuscular mycorrhiza (AM) fungi and nitrogen fixing root nodule bacteria. Intracellular root infection by either endosymbiont is controlled by the activation of the calcium and calmodulin-dependent kinase (CCaMK), a central regulatory component of the plant’s common symbiosis signaling network. We performed a microscopy screen for Lotus japonicus mutants defective in AM development and isolated a mutant, nena, that aborted fungal infection in the rhizodermis. NENA encodes a WD40 repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a conserved subcomplex of the nuclear pore scaffold. Although nena mutants were able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection was not observed. Moreover, Nod factor induction of the symbiotic genes NIN, SbtM4, and SbtS, as well as perinuclear calcium spiking, were impaired. Detailed phenotypic analyses of nena mutants revealed a rhizobial infection mode that overcame the lack of rhizodermal responsiveness and carried the hallmarks of crack entry, including a requirement for ethylene. CCaMK-dependent processes were only abolished in the rhizodermis but not in the cortex of nena mutants. These data support the concept of tissue-specific components for the activation of CCaMK. PMID:20675572

  2. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    Directory of Open Access Journals (Sweden)

    Veronica Massena Reis

    1999-10-01

    Full Text Available Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima do palhiço. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com água estéril.The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco, Brazil, were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2,070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State, especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Acaulospora sp. and Gigaspora margarita. A

  3. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity.

    Science.gov (United States)

    Nakagawa, Tomomi; Imaizumi-Anraku, Haruko

    2015-12-01

    Rice (Oryza sativa L.) is a monocot model crop for cereal molecular biology. Following the emergence of molecular genetics of arbuscular mycorrhizal (AM) symbiosis in model legumes in the 1990s, studies on rice genetic resources have considerably contributed to our understanding of the molecular mechanisms and evolution of root intracellular symbioses.In this review, we trace the history of these studies and suggest the potential utility of AM symbiosis for improvement in rice productivity.

  4. Effect of mutations in the pea genes Sym33 and Sym40. I. Arbuscular mycorrhiza formation and function.

    Science.gov (United States)

    Jacobi, Lidia M; Petrova, Olesia S; Tsyganov, Viktor E; Borisov, Alexey Y; Tikhonovich, Igor A

    2003-03-01

    Two pea (Pisum sativum L.) symbiotic mutants SGEFix(-)-1 (sym40) and SGEFix(-)-2 (sym33) with abnormalities in infection thread development and function in symbiotic root nodules have been characterised in terms of mycorrhizal colonisation of roots, shoot and root biomass accumulation and shoot and root phosphorus (P) content. The mutation in gene sym33 decreased mycorrhizal colonisation of roots (except arbuscule abundance in mycorrhizal root fragments, which increased) but did not change the effectiveness of mycorrhiza function. The mutation in sym40 did not affect either of these processes. Both mutants showed differences in plant development compared with the wild-type line SGE. The mutants had delayed flowering and pod ripening, and shoot/root biomass ratios and P accumulation also differed from those of SGE. These observations suggest that the gene mutations cause systemic changes in plant development.

  5. No significant transfer of N and P from Pueraria Phaseoloides to Hevea Brasiliensis via Hyphal links of Arbuscular Mycorrhiza

    DEFF Research Database (Denmark)

    Ikram, A.; Jensen, E.S.; Jakobsen, I.

    1994-01-01

    The possible role of arbuscular mycorrhizal fungi in the transfer of nitrogen and phosphorus from Pueraria phaseoloides (donor) to Hevea brasiliensis (receiver) was examined. P. phaseoloides is used as a cover crop in rubber tree (H. brasiliensis) plantations. Roots of donor and receiver plants....... brasiliensis was estimated to be 0.07 and 0.05% in the intact or shaded donor plant treatments, but 0.27% when the legume shoot had been removed. This transfer corresponded to 0.15, 0.07 and 0.40% of total N in H. brasiliensis The amounts of donor P transferred were 0.8% (intact), 1.6% (shoot removed) and 0...

  6. Functional diversity in arbuscular mycorrhizas: Exploitation of soil patches with different phosphate enrichment differs among fungal species

    DEFF Research Database (Denmark)

    Cavagnaro, T.R.; Smith, F.A.; Smith, S.E.;

    2005-01-01

    Most terrestrial plant species form associations with arbuscular mycorrhizal fungi (AMF) that transfer soil P to the plant via their external hyphae. The distribution of nutrients in soils is typically patchy (heterogeneous) but little is known about the ability of AMF to exploit P patches in soil...... by decreased P uptake by other parts of the mycelium. This is the first demonstration of variation in growth and nutrient uptake by an AMF as influenced by a localized P enrichment of the soil. The results are discussed in the context of functional diversity of AMF....

  7. Structure and function of arbuscular mycorrhiza: A review%丛枝菌根结构与功能研究进展

    Institute of Scientific and Technical Information of China (English)

    田蜜; 陈应龙; 李敏; 刘润进

    2013-01-01

    Arbuscular mycorrhiza (AM) is one of the most widely distributed and the most important mutualistic symbionts in terrestrial ecosystems,playing a significant role in enhancing plant resistance to stresses,remediating polluted environments,and maintaining ecosystem stabilization and sustainable productivity.The structural characteristics of AM are the main indicators determining the mycorrhizal formation in root system,and have close relations to the mycorrhizal functions.This paper summarized the structural characteristics of arbuscules,vesicles,mycelia and invasion points of AM,and analyzed the relationships between the Arum (A) type arbuscules,Paris (P) type arbuscules,vesicles,and external mycelia and their functions in improving plant nutrient acquisition and growth,enhancing plant resistance to drought,waterlogging,salinity,high temperature,diseases,heavy metals toxicity,and promoting toxic organic substances decomposition and polluted and degraded soil remediation.The factors affecting the AM structure and functions as well as the action mechanisms of mycorrhizal functions were also discussed.This review would provide a basis for the systemic study of AM structural characteristics and functional mechanisms and for evaluating and screening efficient AM fungal species.%丛枝菌根(arbuscular mycorrhiza,AM)是陆地生态系统中分布最广泛、最重要的互惠共生体之一,对提高植物抗逆性、修复污染生境、保持生态系统稳定与可持续生产力的作用显著.AM结构特征是判断菌根形成的主要指标,与其功能密切相关.本文总结了AM丛枝结构、泡囊结构、菌丝结构和侵入点结构等发育特征;分析了A型丛枝结构、P型丛枝结构、泡囊结构和根外菌丝结构与促进寄主植物养分吸收和生长、提高植物抗旱性、耐涝性、耐盐性、抗高温、拮抗病原物、提高植物抗病性、抗重金属毒性、分解有毒有机物、修复污染与退化土壤等功能

  8. Resolving the 'nitrogen paradox' of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth.

    Science.gov (United States)

    Thirkell, Tom J; Cameron, Duncan D; Hodge, Angela

    2016-08-01

    Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a (15) N-labelled, nitrogen-rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant.

  9. Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza1[w

    Science.gov (United States)

    Hohnjec, Natalija; Vieweg, Martin F.; Pühler, Alfred; Becker, Anke; Küster, Helge

    2005-01-01

    Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus applied 16,086 probe microarrays to profile the transcriptome of the model legume Medicago truncatula during interactions with Glomus mosseae and Glomus intraradices and specified a total of 201 plant genes as significantly coinduced at least 2-fold, with more than 160 being reported as AM induced for the first time. Several hundred genes were additionally up-regulated during a sole interaction, indicating that the plant genetic program activated in AM to some extent depends on the colonizing microsymbiont. Genes induced during both interactions specified AM-related nitrate, ion, and sugar transporters, enzymes involved in secondary metabolism, proteases, and Kunitz-type protease inhibitors. Furthermore, coinduced genes encoded receptor kinases and other components of signal transduction pathways as well as AM-induced transcriptional regulators, thus reflecting changes in signaling. By the use of reporter gene expression, we demonstrated that one member of the AM-induced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. A comparison of the AM expression profiles to those of nitrogen-fixing root nodules suggested only a limited overlap between the genetic programs orchestrating root endosymbioses. PMID:15778460

  10. Influência da colonização micorrízica arbuscular sobre a nutrição do quiabeiro Influence of arbuscular mycorrhiza fungi on the nutrition of okra plant

    Directory of Open Access Journals (Sweden)

    Ricardo Luís Louro Berbara

    1999-09-01

    Full Text Available Foram estudados em casa de vegetação alguns parâmetros de crescimento em plantas de quiabo (Abelmoschus esculentus (L. Moench cv. Piranema colonizadas por dois grupos de fungos micorrízicos arbusculares, com o objetivo de determinar a influência dos inóculos na nutrição e morfologia radicular do quiabeiro. Um grupo continha apenas esporos de Acaulospora longula (A enquanto o outro, esporos de oito espécies: Glomus occultum, Glomus aggregatum, Glomus microcarpum, Acaulospora longula, Acaulospora morrowae, Sclerocystis coremioides, Sclerocystis sinuosa, Scutellospora pellucida. As plantas foram submetidas a três níveis de P (0, 10 e 60 kg ha-1 de P2O5 e coletadas em três diferentes idades (22, 32 e 47 dias, com quatro repetições para cada tratamento. Foi determinado o acúmulo de N, P, K, e Mg na raiz e parte aérea, bem como o influxo médio desses elementos e a área radicular. Os resultados indicaram, além da resposta positiva do quiabeiro ao P, uma maior eficiência da inoculação com mistura de espécies apesar de o influxo médio, determinado aos 47 dias, apresentar maiores valores para o tratamento com A. longula.An experiment was carried out in greenhouse to determine the influence of inoculation of two groups of arbuscular mycorrhizae on the nutrition and radicular morphology of the okra plant (Abelmoschus esculentus (L. Moench cv. Piranema. One group had only Acaulospora longula spores and the other a spore mixture of eight species: Glomus occultum, Glomus aggregatum, Glomus microcarpum, Acaulospora longula, Acaulospora morrowae, Sclerocystis coremioides, Sclerocystis sinuosa, Scutellospora pellucida. The experiment was held in greenhouse conditions with three levels of P (0, 10 and 60 kg ha-1 of P2O5, three samplings dates (22, 32 and 47 days and four replications. The accumulation of N, P, K, Ca and Mg in roots and shoots, root area and their influx ratio were determined. The results made evident that the mixture of

  11. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Henry, Frédéric; Rangel-Castro, J. Ignacio;

    2008-01-01

    microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with 13CO2, root and rhizosphere soil 13C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot 13C enrichment (10-24%). AMF did not affect 13C enrichment...... and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere....... Despite these clear indications of reduced rhizosphere carbon-input, DGGE of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles...

  12. Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba

    Directory of Open Access Journals (Sweden)

    Ricardo A. Herrera-Peraza

    2004-01-01

    Full Text Available Se analizó aquí el funcionamiento excluyente de los pelos radicales y las micorrizas arbusculares (MA a nivel de ecosistema, y se demostró que la exclusión de ambas estructuras depende de los tipos biológicos que sean considerados en el análisis. Por otra parte, recientemente, han sido definidas las estrategias exuberante y austera para explicar el papel funcional de grupos sucesionales de especies y ecosistemas forestales tropicales. Para conocer el funcionamiento micorrízico arbuscular (MA en este sentido, fueron estudiadas seis parcelas forestales (tres réplicas cada una. Las parcelas fueron diferentes en cuanto a la presencia o no de raicillas entremezcladas con una matriz de necromasa de humus bruto sobre la superficie del suelo del bosque (estera radical. Al inicio, las réplicas fueron analizadas separadamente para las parcelas con tasas de renovación menores (PLTR o con tasas de renovación mayores (PHTR, a partir de lo cual, se demostró que el micelio externo de las MA está muy influido por el contenido de humus bruto del suelo. En un segundo análisis, las parcelas fueron usadas como réplicas de dos tratamientos (PLTR y PHTR para descubrir las tendencias principales del funcionamiento micorrízico. Las variables correspondientes a raicillas y AM se asociaron a la absorción de elementos nutritivos (fitomasa de raicillas, micelio externo, etc. y produjeron valores significativemente mayores en PLTR, mientras que el valor obtenido para la colonización AM fue significativamente mayor en PHTR. Se explican las tendencias exuberante y austera del funcionamiento micorrízico de acuerdo con los resultados obtenidos.

  13. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride.

    Science.gov (United States)

    Lace, Beatrice; Genre, Andrea; Woo, Sheridan; Faccio, Antonella; Lorito, Matteo; Bonfante, Paola

    2015-02-01

    Plant growth-promoting fungi include strains of Trichoderma species that are used in biocontrol, and arbuscular mycorrhizal (AM) fungi, that enhance plant nutrition and stress resistance. The concurrent interaction of plants with these two groups of fungi affects crop performance but has only been occasionally studied so far. Using in vivo imaging of green fluorescent protein-tagged lines, we investigated the cellular interactions occurring between Trichoderma atroviride PKI1, Medicago truncatula and two Gigaspora species under in vitro culture conditions. Trichoderma atroviride did not activate symbiotic-like responses in the plant cells, such as nuclear calcium spiking or cytoplasmic aggregations at hyphal contact sites. Furthermore, T. atroviride parasitized G. gigantea and G. margarita hyphae through localized wall breaking and degradation - although this was not associated with significant chitin lysis nor the upregulation of two major chitinase genes. Trichoderma atroviride colonized broad areas of the root epidermis, in association with localized cell death. The infection of both symbionts was also observed when T. atroviride was applied to a pre-established AM symbiosis. We conclude that - although this triple interaction is known to improve plant growth in agricultural environments - in vitro culture demonstrate a particularly aggressive mycoparasitic and plant-colonizing behaviour of a biocontrol strain of Trichoderma.

  14. Evaluation of Two Biochemical Markers for Salt Stress in Three Pistachio Rootstocks Inoculated with Arbuscular Mycorrhiza (Glomus mosseae

    Directory of Open Access Journals (Sweden)

    Shamshiri M.H.

    2014-03-01

    Full Text Available The possible involvement of the methylglyoxal and proline accumulation in leaves and roots of three pistachio rootstocks, cv. Sarakha, Abareqi and Bane baghi, pre-inoculated with arbuscular mycorrhizal fungus (Glomus mosseae in response to salt stress was studied during a greenhouse experiment in 2013. Six months old pistachio seedlings were exposed to four salinity levels of irrigation water (EC of 0.5 as control, 5, 10 and 15 dS m-1 for 70 days. Methylglyoxal and proline of the roots and leaves were increased by increasing salt stress. The highest concentrations of proline in leaves and roots were recorded in Abareqi rootstock while the lowest concentration was observed in Sarakhs. In general, a negative relationship was obtained between proline and methylglyoxal concentrations in both tissues especially at two highest levels of salinity. A very strong relationship between salinity and measured biochemical markers were found. The level of both biomarkers were reduced in both tissues and in all rootstocks as the effect of mycorrhizal symbiosis. Root colonization percentage was declined as the effect of salinity in Abareqi and Bane baghi and not in Sarakhs.

  15. Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis

    Science.gov (United States)

    Lingua, Guido; Bona, Elisa; Todeschini, Valeria; Cattaneo, Chiara; Marsano, Francesco; Berta, Graziella; Cavaletto, Maria

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein. PMID:22761694

  16. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    Science.gov (United States)

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research.

  17. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    Science.gov (United States)

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  18. Impact on Arbuscular Mycorrhiza Formation of Pseudomonas Strains Used as Inoculants for Biocontrol of Soil-Borne Fungal Plant Pathogens

    Science.gov (United States)

    Barea, J. M.; Andrade, G.; Bianciotto, V.; Dowling, D.; Lohrke, S.; Bonfante, P.; O’Gara, F.; Azcon-Aguilar, C.

    1998-01-01

    The arbuscular mycorrhizal symbiosis, a key component of agroecosystems, was assayed as a rhizosphere biosensor for evaluation of the impact of certain antifungal Pseudomonas inoculants used to control soil-borne plant pathogens. The following three Pseudomonas strains were tested: wild-type strain F113, which produces the antifungal compound 2,4-diacetylphloroglucinol (DAPG); strain F113G22, a DAPG-negative mutant of F113; and strain F113(pCU203), a DAPG overproducer. Wild-type strain F113 and mutant strain F113G22 stimulated both mycelial development from Glomus mosseae spores germinating in soil and tomato root colonization. Strain F113(pCU203) did not adversely affect G. mosseae performance. Mycelial development, but not spore germination, is sensitive to 10 μM DAPG, a concentration that might be present in the rhizosphere. The results of scanning electron and confocal microscopy demonstrated that strain F113 and its derivatives adhered to G. mosseae spores independent of the ability to produce DAPG. PMID:9603857

  19. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis.

    Directory of Open Access Journals (Sweden)

    Guido Lingua

    Full Text Available Arbuscular mycorrhizal (AM fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein.

  20. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis.

    Science.gov (United States)

    Jayne, Benjamin; Quigley, Martin

    2014-02-01

    Despite a large body of literature that describes the effects of arbuscular mycorrhizal colonization on plant response to water deficit, reviews of these works have been mainly in narrative form, and it is therefore difficult to quantify the magnitude of the effect. We performed a meta-analysis to examine the effect of mycorrhizal colonization on growth and yield of plants exposed to water deficit stress. Data were compared in the context of annual vs. perennial plants, herbaceous vs. woody plants, field vs. greenhouse conditions, degree of stress, functional group, regions of plant growth, and mycorrhizal and host species. We found that, in terms of biomass measurements, mycorrhizal plants have better growth and reproductive response under water stress compared to non-mycorrhizal plants. When variables such as habit, life cycle, or water stress level are considered, differences in mycorrhizal effect on plant growth between variables are observed. While growth of both annual and perennial plants is improved by symbiosis, perennials respond more favorably to colonization than annuals. Overall, our meta-analysis reveals a quantifiable corroboration of the commonly held view that, under water-deficit conditions, plants colonized by mycorrhizal fungi have better growth and reproductive response than those that are not.

  1. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    Science.gov (United States)

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  2. Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus.

    Science.gov (United States)

    Nagata, Maki; Yamamoto, Naoya; Miyamoto, Taro; Shimomura, Aya; Arima, Susumu; Hirsch, Ann M; Suzuki, Akihiro

    2016-06-01

    Red/Far Red (R/FR) sensing positively influences the arbuscular mycorrhizal (AM) symbiosis of both legume and nonlegume plants through jasmonic acid (JA) and strigolactone signaling. We previously reported that root exudates obtained from high R/FR-grown plants contained more strigolactone than low R/FR-grown plants. To determine whether JA and JA derivatives were secreted from roots, we investigated the expression levels of JA-responsive genes in L. japonicus Miyakojima MG20 plants treated with root exudates prepared from either high or low R/FR light-treated plants. The root exudates from high R/FR light-treated plants were found to enhance the expression levels of JA-responsive genes significantly. Moreover, exogenous JA increased AM fungal hyphal elongation as did the root exudates derived from high R/FR-grown L. japonicus plants. We conclude that increased JA accumulation and secretion into root exudates from high R/FR light-grown plants is the best explanation for increased colonization and enhanced mycorrhization under these conditions. PMID:27191935

  3. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region

    International Nuclear Information System (INIS)

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve 137Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009–2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with 137Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with 137Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to 137Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of 137Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of 137Cs could not be recommended. -- Highlights: • Effect of mycorrhization on 137Cs uptake by crops was studied in a field experiment. • AM fungi did not enhance radionuclide plant uptake or biomass. • Plants growing on inoculated and non-inoculated soil accumulate 137Cs equally

  4. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling

    Science.gov (United States)

    León-Morcillo, Rafael Jorge; Ángel, José; Martín-Rodríguez; Vierheilig, Horst; Ocampo, Juan Antonio; García-Garrido, José Manuel

    2012-01-01

    The establishment of an arbuscular mycorrhizal (AM) symbiotic interaction is a successful strategy for the promotion of substantial plant growth, development, and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the establishment of functional AM symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed up-regulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and indicate a key regulatory role for oxylipins during AM symbiosis in tomato, particularly those derived from the action of 9-lipoxygenases (9-LOXs). Continuing with the tomato as a model, the spatial and temporal expression pattern of genes involved in the 9-LOX pathway during the different stages of AM formation in tomato was analysed. The effects of JA signalling pathway changes on AM fungal colonization were assessed and correlated with the modifications in the transcriptional profiles of 9-LOX genes. The up-regulation of the 9-LOX oxylipin pathway in mycorrhizal wild-type roots seems to depend on a particular degree of AM fungal colonization and is restricted to the colonized part of the roots, suggesting that these genes could play a role in controlling fungal spread in roots. In addition, the results suggest that this strategy of the plant to control AM fungi development within the roots is at least partly dependent on JA pathway activation. PMID:22442425

  5. Arbuscular mycorrhizas contribute to phyto stabilization of uranium in uranium mining tailings

    DEFF Research Database (Denmark)

    Chen, Bao-Dong; Roos, Per; Zhu, Yong-Guan;

    2008-01-01

    Uranium (U) tailings pose environmental risks and call for proper remediation. In this paper medic and ryegrass plants were used as host plants to examine whether inoculation with an AM fungus, Glomus intraradices, would help phytostabilization of U tailings. The need of amending...

  6. Effects of arbuscular mycorrhizae on growth and mineral nutrition of greenhouse propagated fruit trees from diverse geographic provenances

    Directory of Open Access Journals (Sweden)

    Guissou, T.

    2016-01-01

    Full Text Available Description of the subject. Arbuscular mycorrhizal (AM fungi are known to promote plant growth by enhancing mineral uptake in nutrient deficient soils. These beneficial effects on plant growth may vary considerably between cultivars of a given species and between plant species originating from different locations. Objectives. The present experiment evaluated the response of three Sahelian fruit trees: néré (Parkia biglobosa [Jacq.] G.Don, tamarind (Tamarindus indica L., and jujube (Ziziphus mauritiana Lam., originating from five different geographic provenances, to mycorrhizal colonization, evaluate their respective mycorrhizal dependency (MD and analyze their leaf and stem mineral composition. Method. Trees were cultivated in a nursery on pre-sterilized soil substrate low in available P (2.18 μg·g-1 with or without inoculum of Glomus aggregatum (Schenck & Smith emend. Koske. The experiment was arranged in a factorial design for each fruit tree species separately: 5 provenances x 2 AM treatments (inoculated and non-inoculated [control] with 10 replicates per treatment. Plants were harvested six months after inoculation and different parameters were measured. Results. Overall, the results showed significant provenance variations in the plant response to mycorrhizal inoculation. Néré mycorrhizal plants, from two seed sources, tamarind and jujube plants from one seed source had significant higher dry weight and shoot height than those from other provenances. Jujube plants from 3 out of the 5 provenances showed significant higher MD. It then appears that seed provenance happened to be determinant even though AM-root colonization levels (80-90% do not vary much from one provenance to another. In all cases, the fruit trees benefited from AM fungi with increased N, P and K mineral uptake in aerial parts. In particular P uptake was proportional to MD concentration in AM-jujube plants. Conclusions. These results demonstrate the importance of

  7. A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis

    Science.gov (United States)

    2013-01-01

    Background About 80% of today’s land plants are able to establish an arbuscular mycorrhizal (AM) symbiosis with Glomeromycota fungi to improve their access to nutrients and water in the soil. On the molecular level, the development of AM symbioses is only partly understood, due to the asynchronous development of the microsymbionts in the host roots. Although many genes specifically activated during fungal colonization have been identified, genome-wide information on the exact place and time point of their activation remains limited. Results In this study, we relied on a combination of laser-microdissection and the use of Medicago GeneChips to perform a genome-wide analysis of transcription patterns in defined cell-types of Medicago truncatula roots mycorrhized with Glomus intraradices. To cover major stages of AM development, we harvested cells at 5-6 and at 21 days post inoculation (dpi). Early developmental stages of the AM symbiosis were analysed by monitoring gene expression in appressorial and non-appressorial areas from roots harbouring infection units at 5-6 dpi. Here, the use of laser-microdissection for the first time enabled the targeted harvest of those sites, where fungal hyphae first penetrate the root. Circumventing contamination with developing arbuscules, we were able to specifically detect gene expression related to early infection events. To cover the late stages of AM formation, we studied arbusculated cells, cortical cells colonized by intraradical hyphae, and epidermal cells from mature mycorrhizal roots at 21 dpi. Taken together, the cell-specific expression patterns of 18014 genes were revealed, including 1392 genes whose transcription was influenced by mycorrhizal colonization at different stages, namely the pre-contact phase, the infection of roots via fungal appressoria, the subsequent colonization of the cortex by fungal hyphae, and finally the formation of arbuscules. Our cellular expression patterns identified distinct groups of AM

  8. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake.

    Science.gov (United States)

    Schweiger, Rabea; Baier, Markus C; Müller, Caroline

    2014-12-01

    In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the changes in the leaf traits. PMID:25162317

  9. Fungos micorrízicos-arbusculares no desenvolvimento de mudas de helicônia e gérbera micropropagadas Application of arbuscular mycorrhiza to micropropagated heliconia and gerbera plants during acclimatization period

    Directory of Open Access Journals (Sweden)

    Aurora Yoshiko Sato

    1999-03-01

    Full Text Available Plântulas micropropagadas de helicônia (Heliconia sp gérbera (Gerbera sp de vaso, foram aclimatadas em substrato (torta de filtro 50%, solo 30% e areia 20%, inoculado com três espécies de fungo micorrízico (Glomus clarum Nicolson. & Schenck, Glomus etunicatum Becker & Gerdemann e Gigaspora margarita Becker & Hall e uma mistura destas espécies (inóculo múltiplo. As avaliações quanto ao desenvolvimento da parte aérea e do sistema radicular e porcentagem de colonização, foram feitas aos 60 dias para gérbera e aos 90 dias para helicônia, após transplante. As duas espécies comportaram-se de modo diferente em resposta à micorrização. Glomus etunicatum não colonizou bem nenhuma das duas espécies estudadas. Apesar da elevada colonização, a helicônia não se beneficiou da inoculação, enquanto que a gérbera beneficiou-se da inoculação com G. clarum, G. etunicatum e do inóculo misto.Heliconia (Heliconia sp. and pot gerbera plantlets (Gerbera sp. obtained by in vitro micropropagation on Murashige and Skoog (MS medium were inoculated with 3 vesicular arbuscular mycorrhiza (VAM species and a mixture of three species. A control treatment without inoculation was also included. The plantlets were acclimated in a mixture of soil 30%, sand 20% and "torta de filtro" 50%. The fungal species were Glomus clarum, Glomus etunicatum and Gigaspora margarita. At 60 days for gerbera and 90 days for heliconia after the inoculation, fresh and dry matter of the aerial and root parts were determined, and the percentage of mycorrhizal colonization of the roots was obtained. Both species behaved different to mycorrhization. Glomus etunicatum did not show to be effective in colonization of heliconia and gerbera. Colonization was high, but heliconia did not benefit from this inoculation, however Gerbera was benefited by G. clarum, G. etunicatum and mixture inoculation.

  10. Micorriza arbuscular e rizóbios no enraizamento e nutrição de mudas de angico-vermelho Arbuscular mycorrhizae and rhizobium in rooting and nutrition of angico-vermelho seedlings

    Directory of Open Access Journals (Sweden)

    Poliana Coqueiro Dias

    2012-12-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da inoculação dos fungos micorrízicos arbusculares (FMAs e rizóbio no enraizamento, crescimento e nutrição de mudas de angico-vermelho (Anadenanthera macrocarpa (Benth Brenan propagadas via miniestaquia. Foram utilizadas seis progênies, das quais foram confeccionadas miniestacas com um par de folhas inteiras, bem como tubetes de 55 cm³ contendo substrato comercial Bioplant®. Foram testados quatro tratamentos: 8 kg m-3 de superfosfato simples (SS misturados ao substrato; 4 kg m-3 de SS misturados ao substrato; 4 kg m-3 de SS misturados ao substrato e adição de suspensão contendo rizóbios; e 4 kg m-3 de SS e adição de suspensão contendo rizóbios e 5 g de solo contendo esporos de FMAs. Não houve interação entre os tratamentos para percentagem de sobrevivência das miniestacas e percentagem de miniestacas com raízes observadas na extremidade inferior do tubete, na saída da casa de vegetação (30 dias e da casa de sombra (40 dias, provavelmente em função do sistema radicular ainda estar em formação. Houve diferenças entre as progênies para percentagem de sobrevivência das miniestacas, percentagem de miniestacas com raízes observadas na extremidade inferior do tubete, altura, diâmetro de colo e massa seca da parte aérea. As avaliações das características de crescimento das miniestacas enraizadas, principalmente com relação à sobrevivência a pleno sol (140 dias, evidenciam a eficiência dos rizóbios e FMAs na produção de mudas desta espécie. Conclui-se que a associação simbiótica com rizóbio e/ou FMA favorece a produção de mudas de A. macrocarpa via miniestaquia.The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizae fungi (AMF and rhizobium on rooting, growth and nutrition of seedlings of angico-red (Anadenanthera macrocarpa (Benth Brenan propagated by minicutting. Six progenies were used, of which were prepared

  11. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis

    OpenAIRE

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; SAITO, KATSUHARU

    2015-01-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in ...

  12. Micorriza arbuscular e nutrição fosfática na toxidez de zinco para a trema [Trema micrantha (L. Blum.] Arbuscular mycorrhiza and phosphorus nutrition on zinc toxicity to trema [Trema micrantha (L. Blum.

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Fonsêca Sousa Soares

    2006-08-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de micorriza arbuscular, do estado nutricional de P da planta e de concentrações crescentes de P em solução nutritiva na toxidez de Zn para Trema micrantha (L. Blum. Em um primeiro experimento, mudas de trema foram formadas em substrato que continha doses crescentes de P [0, 100, 200 e 400 mg dm-3 na forma de Ca(H2PO42] e um tratamento de inoculação com Glomus etunicatum (Ge. Após crescimento por 60 dias, as mudas foram transferidas para vasos com solução nutritiva de Clark, que continha 2, 75, 150 e 225 µmol L-1 de Zn, e mantidas por mais 40 dias, quando foram colhidas e avaliadas. Os efeitos do P na amenização da fitotoxidez de Zn foram avaliados em outro experimento, aplicando-se, simultaneamente e de forma combinada em solução, doses de P (0,07; 0,5; 1 e 2 mmol L-1 fornecido por diferentes fontes e de Zn (2, 75, 150 e 225 µmol L-1 na forma de ZnSO4.7H2O, nas quais foram cultivadas mudas de trema por 40 dias. Houve acentuada inibição no crescimento e na colonização micorrízica da trema em doses elevadas de Zn em solução (150 e 225 µmol L-1. Constatou-se que a melhoria da nutrição fosfática reduziu a translocação do Zn das raízes para a parte aérea, mas isto, assim como a colonização micorrízica, não resultou em favorecimento do crescimento da planta em condições de excesso deste metal em solução. No segundo experimento, verificou-se que a elevação na concentração de P em solução nutritiva promoveu melhoria no estado nutricional de P, conferindo proteção à planta do excesso de Zn. Como a especiação química da solução indicou que a aplicação de P não interferiu, de modo significativo, nas formas de Zn em solução, os resultados indicam que a ação amenizante do P ocorre na planta, possivelmente reduzindo a translocação do Zn das raízes para a parte aérea.The objectives of the present study were to evaluate the effects of arbuscular

  13. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability.

    Science.gov (United States)

    Gabriel-Neumann, Elke; Neumann, Günter; Leggewie, Georg; George, Eckhard

    2011-06-15

    The sucrose transporter SUT1 functions in phloem loading of photoassimilates in solanaceous plant species. In the present study, wildtype and transgenic potato plants with either constitutive overexpression or antisense inhibition of SUT1 were grown under high or low phosphorus (P) fertilization levels in the presence or absence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices. At a low soil P fertilization level, the extent of AM fungal root colonization was not different among the genotypes. In all plants, the AM symbiosis contributed significantly to P uptake under these conditions. In response to a high soil P fertilization level, all genotypes showed a decrease in AM fungal root colonization, indicating that the expression level of SUT1 does not constitute a major mechanism of control over AM development in response to the soil P availability. However, plants with overexpression of SUT1 showed a higher extent of AM fungal root colonization compared with the other genotypes when the soil P availability was high. Whether an increased symbiotic C supply, alterations in the phytohormonal balance, or a decreased synthesis of antimicrobial compounds was the major cause for this effect requires further investigation. In plants with impaired phloem loading, a low C status of plant sink tissues did apparently not negatively affect plant C supply to the AM symbiosis. It is possible that, at least during vegetative and early generative growth, source rather than sink tissues exert control over amounts of C supplied to AM fungi. PMID:21382646

  14. Contribuição de fungos micorrízicos arbusculares autóctones no crescimento de Guazuma ulmifolia em solo de cerrado degradado Contribution of arbuscular mycorrhizal fungi to the growth of Guazuma ulmifolia in degraded 'cerrado' soil

    Directory of Open Access Journals (Sweden)

    Sueli da Silva Aquino

    2002-12-01

    Full Text Available Ensaios foram conduzidos, em casa de vegetação, com solos de pastagem degradada reflorestada e cerrado preservado (controle visando avaliar a contribuição de fungos micorrízicos arbusculares (FMA autóctones no crescimento de mutambo (Guazuma ulmifolia Lamb.. As mudas foram transplantadas para sacos de plástico (2 kg com substratos esterilizados na proporção 4:1 (solo:areia, e o tratamento inoculado recebeu 300 esporos de FMA por saco. A inoculação não proporcionou aumento significativo na produção da matéria seca da parte aérea, matéria fresca das raízes e altura da planta, sugerindo que a G. ulmifolia não é responsiva à micorrização.Experiments were carried out in a greenhouse, using reforested degraded pasture and preserved 'cerrado' (control soil with the objective to evaluate the contribution of autoctone arbuscular mycorrhizal fungi (AMF on the Guazuma ulmifolia Lamb. growth. Seedlings were transplanted to plastic bags with 2 kg of sterilized soil: sand substrate (4:1. Plants were inoculated with ca. 300 spores of AMF per replication; noninoculated plants served as control. AMF did not improve significantly canopy dry matter, root fresh matter and plant height. G. ulmifolia showed no response to mycorrhizae.

  15. Seedling mycorrhiza

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Nina; Rasmussen, Finn N.

    2014-01-01

    Recent phylogenetic analyses confirm the monophyly of Orchidaceae as sister group to the remainder of Asparagales, and identify the sequence of early branching lineages in Orchidaceae. Orchid seedling mycorrhiza (OSM) involving rhizoctonious fungi is distributed widely in all subfamilies, including...

  16. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1994-01-01

    horizontal compartments contained 100 g soil (quartz sand : clay loam, 1:1) with 0.5 g ground clover leaves labelled with P-32. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root...... of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.......An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two...

  17. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    Science.gov (United States)

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations.

  18. Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae) : sporophore diversity, patterns of root colonization, and effects on seedling growth and soil microbial catabolic diversity

    OpenAIRE

    Ramanankierana, N.; Ducousso, M.; Rakotoarimanga, N.; Prin, Y.; Thioulouse, J.; Randrianjohany, E.; Ramaroson, L.; Kisa, Marija; Galiana, A; Duponnois, Robin

    2007-01-01

    The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belongi...

  19. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yan; Zhu Yongguan [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, Adelaide, SA 5005 (Australia); Wang Youshan [Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry, Beijing 100089 (China); Chen Baodong [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)], E-mail: bdchen@rcees.ac.cn

    2008-09-15

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 {mu}m nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination.

  20. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    Science.gov (United States)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  1. 丛枝菌根(AM)对水稻生长促进及化肥减量研究%Application of arbuscular mycorrhiza on promoting the growth of rice and reducing the usage of chemical fertilizer

    Institute of Scientific and Technical Information of China (English)

    张淑娟; 王立; 马放; 李世阳; 张雪; 吴洁婷

    2010-01-01

    为了考察丛枝菌根(Arbuscular Mycorrhiza,AM)对水稻生长促进及化肥减量效果,以摩西球囊霉(Glomus mosseae)为实验材料在不同丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)含量的基质中进行水稻盆栽试验.对比分析了水稻根部AMF的侵染状况,及其对水稻生长的促进作用,并在此基础上探讨了AMF强化在农业面源污染化肥减量中的作用.结果表明:自然基质中土著G.mosseae普遍存在,并可与水稻根系形成菌根结构,但其对水稻的影响与AMF空白基质相比差异并不显著.AMF强化能显著提高其对水稻根部的侵染率.与自然基质相比,AMF强化使水稻的株高、总生物量、根系总表面积及产量分别提高了20.6%、30%、36.6%、45.3%.经计算,每生产100 kg水稻,AMF强化相对于自然条件下氮肥、磷肥、钾肥施用量分别减少3.14 kg、1.88 kg、2.42 kg,削减程度高达47%.AMF强化能够有效促进水稻生长并提高其产量,而且在农业面源污染化肥减量方面具有重要作用.

  2. Quantitative and Qualitative Effects of Phosphorus on Extracts and Exudates of Sudangrass Roots in Relation to Vesicular-Arbuscular Mycorrhiza Formation

    Science.gov (United States)

    Schwab, Suzanne M.; Menge, John A.; Leonard, Robert T.

    1983-01-01

    A comparison was made of water-soluble root exudates and extracts of Sorghum vulgare Pers. grown under two levels of P nutrition. An increase in P nutrition significantly decreased the concentration of carbohydrates, carboxylic acids, and amino acids in exudates, and decreased the concentration of carboxylic acids in extracts. Higher P did not affect the relative proportions of specific carboxylic acids and had little effect on proportions of specific amino acids in both extracts and exudates. Phosphorus amendment resulted in an increase in the relative proportion of arabinose and a decrease in the proportion of fructose in exudates, but did not have a large effect on the proportion of individual sugars in extracts. The proportions of specific carbohydrates, carboxylic acids, and amino acids varied between exudates and extracts. Therefore, the quantity and composition of root extracts may not be a reliable predictor of the availability of substrate for symbiotic vesicular-arbuscular mycorrhizal fungi. Comparisons of the rate of leakage of compounds from roots with the growth rate of vesicular-arbuscular mycorrhizal fungi suggest that the fungus must either be capable of using a variety of organic substrates for growth, or be capable of inducing a much higher rate of movement of specific organic compounds across root cell membranes than occurs through passive exudation as measured in this study. PMID:16663297

  3. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity.

    Science.gov (United States)

    Garg, Neera; Bhandari, Purnima

    2016-09-01

    Salinity is the major environmental constraint that affects legume productivity by inducing oxidative stress. Individually, both silicon (Si) nutrition and mycorrhization have been reported to alleviate salt stress. However, the mechanisms adopted by both in mediating stress responses are poorly understood. Thus, pot trials were undertaken to evaluate comparative as well as interactive effects of Si and/or arbuscular mycorrhiza (AM) in alleviating NaCl toxicity in modulating oxidative stress and antioxidant defence mechanisms in two Cicer arietinum L. (chickpea) genotypes-HC 3 (salt-tolerant) and CSG 9505 (salt-sensitive). Plants subjected to different NaCl concentrations (0-100 mM) recorded a substantial increase in the rate of superoxide radical (O2 (·-)), H2O2, lipoxygenase (LOX) activity and malondialdehyde (MDA) content, which induced leakage of ions and disturbed Ca(2+)/Na(+) ratio in roots and leaves. Individually, Si and AM reduced oxidative burst by strengthening antioxidant enzymatic activities (superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPOX)). Si was relatively more efficient in reducing accumulation of stress metabolites, while mycorrhization significantly up-regulated antioxidant machinery and modulated ascorbate-glutathione (ASA-GSH) cycle. Combined applications of Si and AM complemented each other in reducing reactive oxygen species (ROS) build-up by further enhancing the antioxidant defence responses. Magnitude of ROS-mediated oxidative burden was lower in HC 3 which correlated strongly with more effective AM symbiosis, better capacity to accumulate Si and stronger defence response when compared with CSG 9505. Study indicated that Si and/or AM fungal amendments upgraded salt tolerance through a dynamic shift from oxidative destruction towards favourable antioxidant defence system in stressed chickpea plants.

  4. Micorriza arbuscular e rizóbios no enraizamento e nutrição de mudas de angico-vermelho Arbuscular mycorrhizae and rhizobium in rooting and nutrition of angico-vermelho seedlings

    OpenAIRE

    Poliana Coqueiro Dias; Muriel da Silva Folli Pereira; Maria Catarina MegumiKasuya; Haroldo Nogueira de Paiva; Leandro Silva Oliveira; Aloisio Xavier

    2012-01-01

    O objetivo deste estudo foi avaliar o efeito da inoculação dos fungos micorrízicos arbusculares (FMAs) e rizóbio no enraizamento, crescimento e nutrição de mudas de angico-vermelho (Anadenanthera macrocarpa (Benth) Brenan) propagadas via miniestaquia. Foram utilizadas seis progênies, das quais foram confeccionadas miniestacas com um par de folhas inteiras, bem como tubetes de 55 cm³ contendo substrato comercial Bioplant®. Foram testados quatro tratamentos: 8 kg m-3 de superfosfato simples (SS...

  5. Micorriza arbuscular em plantações de Eucalyptus cloeziana F. Muell no litoral norte da Bahia, Brasil Arbuscular mycorrhiza in Eucalyptus cloeziana F. Muell plantations in the north littoral of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Cristiano V.M. Araújo

    2004-09-01

    Full Text Available As micorrizas arbusculares são de longa data conhecidas e exploradas devido à importância ecológica e aos efeitos no crescimento e na nutrição das plantas. Eucalyptus cloeziana F. Muell, particularmente nas áreas em estudo, apresenta comportamento diferenciado quando comparado com outras espécies de eucaliptos, instalando-se em sítios de solos pobres e textura arenosa, com crescimento reduzido, dificuldades para a formação das mudas e problemas nutricionais. Objetivando avaliar a percentagem de colonização radicular e a densidade de esporos de fungos micorrízicos arbusculares em plantações de E. cloeziana, foram realizadas coletas de solo rizosférico e de raízes em 20 áreas, distribuídas em seis municípios do Estado da Bahia, Brasil. Os resultados médios da percentagem de colonização variaram de 10% a 96,66% e a densidade de esporos variou de 3 a 110 esporos/50cm³ de solo, demonstrando a grande suscetibilidade do E. cloeziana à micorrização.The arbuscular mycorrhizal are known and explored long ago due to the ecological significance and the effects in the growth and nutrition of the plants. Eucalyptus cloeziana F. Muell, particularly in the studied sites, exhibit differenced behaviour when compared with other eucaliptus species, establishing in sites of the poor soils and sandy texture, with reduced growth, difficulty to formation of the seedling and nutritional problems. Aiming to evaluate the percentage of mycorrhizal colonization, as well as the density of arbuscular mycorrhizal fungi spores in E. cloeziana plantations, rhizospheric soil and roots samples were collected in twenty sites, distributed in six municipalities of Bahia state, Brazil. The mean results of percentage root colonization ranged from 10 to 96.66% and spore number ranged from 3 to 110 spores/50cm³ soil, demonstrating high susceptibility of the E. cloeziana to mycorrhization.

  6. Mycorrhiza of Dryopteris carthusiana in southern Poland

    Directory of Open Access Journals (Sweden)

    Juliusz Unrug

    2014-08-01

    Full Text Available The research on mycorrhiza of Dryopteris carthusiana from natural sites and those contaminated by heavy metals (Niepołomice Forest, both on lowlands and mountainous areas in Poland, was carried out. Mycorrhizal colonization of Arum-type was higher in ferns growing on tree stumps than in specimens developing directly on the soil. Additionally, an increase in mycorrhiza intensity and arbuscular richness with the rising ground humidity was observed. In comparison to natural sites, mycorrhizas from the areas contaminated by heavy metals were much less developed and the roots were often infected by parasites. Two morphotypes of mycorrhizal fungi have been described The most common was a fine endophyte (Glomales.

  7. Arbuscular Mycorrhizae-Trichoderma harzianum (Moniliaceae Interaction and Effects on Brachiaria decumbens (Poaceae’s Growth Interacción micorrizas arbusculares-Trichoderma harzianum (Moniliaceae y efectos sobre el crecimiento de Brachiaria decumbens (Poaceae

    Directory of Open Access Journals (Sweden)

    Morales Gutiérrez Esperanza

    2006-06-01

    Full Text Available The laboratory trial was made using native's Arbuscular Mycorrhizal Fungi (AMF sampled in Pennisetum clandestinum's rhizospheric soil obtained from Universidad Nacional de Colombia (Bogotá. Brachiaria decumbens was used as the host plant, growing in draining pots of steamed sandy soil supplemented with a complete nutritive solution.Four different treatments were tested to determine the kind of interaction between Arbuscular Mycorrhizal Fungi and Trichoderma harzianum and the effect of AMF plus T. harzianum on B. decumbens growth: plants with AMF inoculum, plants with T. harzianum, plants with AMF plus T. harzianum and uninoculated controls. Root colonization was decreased by T. harzianum, although AMF spores/g dry soil quantity was unaffected by this fungi. On the other hand, T. harzianum's population level (CFU /g dry soil decreased in presence of AMF. These results shows an interaction between AMF and T. harzianum and this interaction affects as AMF development as population density of T. harzianum. Based in the values of the plant growth parameters studied, is possible to conclude the AMF-T. harzianum interaction has a neutral effect on B. decumbens's growth.Se efectuó un ensayo en condiciones controladas utilizando hongos formadores de micorrizas arbusculares (HFMA nativos, provenientes de un suelo rizosférico de Pennisetum clandestinum de la Universidad Nacional de Colombia (Bogotá, manteniéndolos en plantas de Brachiaria decumbens creciendo sobre sustrato arenoso suplementado con solución nutritiva. Se evaluaron diferentes tratamientos: plantas con inóculo de HFMA, plantas con Trichoderma harzianum, plantas con HFMA+T. harzianum y plantas control no inoculadas, con el fin de determinar las posibles interacciones entre dichos microorganismos, así como su efecto sobre el crecimiento de B. decumbens. La presencia de T. harzianum disminuyó la colonización radicular por HFMA, aunque no afectó la cantidad de esporas de HFMA/g suelo

  8. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    OpenAIRE

    Veronica Massena Reis; Mauro Augusto de Paula; Johanna Döbereiner

    1999-01-01

    Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs) e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram ve...

  9. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands.

    Science.gov (United States)

    Rodrigues, Cassie R; Rodrigues, Bernard F

    2015-01-01

    Macaranga peltata (Roxb.) Mull. Arg. is a disturbance tolerant plant species with potential in mine wasteland reclamation. Our study aims at studying the phyto-extraction potential of M. peltata and determining plant-soil interaction factors effecting plant growth in iron ore mine spoils. Plants were grown in pure mine spoil and spoil amended with Farm Yard Manure (FYM) and Vermicompost (VC) along with arbuscular mycorrhizal (AM) species Rhizophagus irregularis. Pure and amended mine spoils were evaluated for nutrient status. Plant growth parameters and foliar nutrient contents were determined at the end of one year. FYM amendment in spoil significantly increased plant biomass compared to pure mine spoil and VC amended spoil. Foliar Fe accumulation was recorded highest (594.67 μg/g) in pure spoil with no mortality but considerably affecting plant growth, thus proving to exhibit phyto-extraction potential. FYM and VC amendments reduced AM colonization (30.4% and 37% resp.) and plants showed a negative mycorrhizal dependency (-30.35 and -39.83 resp.). Soil pH and P levels and, foliar Fe accumulation are major factors determining plant growth in spoil. FYM amendment was found to be superior to VC as a spoil amendment for hastening plant growth and establishment in iron ore mine spoil. PMID:25495939

  10. Effect of P Availability on Temporal Dynamics of Carbon Allocation and Glomus intraradices High-Affinity P Transporter Gene Induction in Arbuscular Mycorrhiza

    Science.gov (United States)

    Olsson, Pål Axel; Hansson, Maria C.; Burleigh, Stephen H.

    2006-01-01

    Arbuscular mycorrhizal (AM) fungi depend on a C supply from the plant host and simultaneously provide phosphorus to the colonized plant. We therefore evaluated the influence of external P on C allocation in monoxenic Daucus carota-Glomus intraradices cultures in an AM symbiosis. Fungal hyphae proliferated from a solid minimal medium containing colonized roots into a C-free liquid minimal medium with high or low P availability. Roots and hyphae were harvested periodically, and the flow of C from roots to fungus was measured by isotope labeling. We also measured induction of a G. intraradices high-affinity P transporter to estimate fungal P demand. The prevailing hypothesis is that high P availability reduces mycorrhizal fungal growth, but we found that C flow to the fungus was initially highest at the high P level. Only at later harvests, after 100 days of in vitro culture, were C flow and fungal growth limited at high P availability. Thus, AM fungi can benefit initially from P-enriched environments in terms of plant C allocation. As expected, the P transporter induction was significantly greater at low P availability and greatest in very young mycelia. We found no direct link between C flow to the fungus and the P transporter transcription level, which indicates that a good C supply is not essential for induction of the high-affinity P transporter. We describe a mechanism by which P regulates symbiotic C allocation, and we discuss how this mechanism may have evolved in a competitive environment. PMID:16751522

  11. Genetic Exchange in an Arbuscular Mycorrhizal Fungus Results in Increased Rice Growth and Altered Mycorrhiza-Specific Gene Transcription▿†

    Science.gov (United States)

    Colard, Alexandre; Angelard, Caroline; Sanders, Ian R.

    2011-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate symbionts with most terrestrial plants. They improve plant nutrition, particularly phosphate acquisition, and thus are able to improve plant growth. In exchange, the fungi obtain photosynthetically fixed carbon. AMF are coenocytic, meaning that many nuclei coexist in a common cytoplasm. Genetic exchange recently has been demonstrated in the AMF Glomus intraradices, allowing nuclei of different Glomus intraradices strains to mix. Such genetic exchange was shown previously to have negative effects on plant growth and to alter fungal colonization. However, no attempt was made to detect whether genetic exchange in AMF can alter plant gene expression and if this effect was time dependent. Here, we show that genetic exchange in AMF also can be beneficial for rice growth, and that symbiosis-specific gene transcription is altered by genetic exchange. Moreover, our results show that genetic exchange can change the dynamics of the colonization of the fungus in the plant. Our results demonstrate that the simple manipulation of the genetics of AMF can have important consequences for their symbiotic effects on plants such as rice, which is considered the most important crop in the world. Exploiting natural AMF genetic variation by generating novel AMF genotypes through genetic exchange is a potentially useful tool in the development of AMF inocula that are more beneficial for crop growth. PMID:21784911

  12. El tiempo de establecimiento de postura y su relación con la micorriza arbuscular en paisajes de loma y vega Time of Stablishment of Pastures and Their Relationship with Arbuscular Mycorrhiza in Hilly Terrain and Fertile Valley

    Directory of Open Access Journals (Sweden)

    Posada Almanza Raúl Hernando

    2006-12-01

    Full Text Available El presente trabajo fue realizado para evaluar el efecto del tiempo (0-5 años, 5-10 años y más de 10 años de establecimiento de pasturas de Brachiaria sp. sobre las poblaciones de hongos de micorriza arbuscular (HMA, su distribución de esporas, géneros, longitud de micelio extramatrical, colonización radical por HMA y otros hongos, en sistemas donde previamente existían bosques, en paisajes de loma y vega en Florencia, Caquetá, Colombia. Cualquiera que sea la edad de establecimiento de la pastura, predominan los géneros Glomus y Acaulospora; el cambio de la cobertura requiere de un periodo de más de diez años para que diferentes especies de HMA puedan recolonizar, adaptarse y diversificarse. En loma, la relación de Brachiaria sp. con los HMA disminuye con la edad, especialmente después de diez años; en vega se mantiene media y estable (21-50 %, mientras la colonización radical por hongos diferentes a los HMA se incrementa, mostrando posiblemente un mecanismo de competencia por el espacio radical, o una acción conjunta. Finalmente, el micelio extramatrical y las esporas en loma y vega siguen tendencias variables (incremento, descenso o
    estabilidad con la edad.The subject of this research was to evaluate the effect of the time of establishment (0-5 years, 5-10 years, and more than 10 years. of pastures of Brachiaria sp. over theArbuscular Mycorrhizal Fungal populations (AMF: genus and spore distribution, length of extramatrical mycelia, root colonizations by AMF and septate fungi; the pastures resulting from fragmentation of the tropical rainforest with valley and hilly landscapes at Florencia, Caquetá, Colombia. Whichever the age of pasture, the genera Glomus and Acaulospora predominate; the change of coverage require more than ten years for different species of MAF to recolonize, adapt and diversify. In hilly terrain, the Brachiaria sp-MAF relationship decrease with time, specially after ten years of establishment; in

  13. EL TIEMPO DE ESTABLECIMIENTO DE PASTURAS Y SU RELACIÓN CON LA MICORRIZA ARBUSCULAR EN PAISAJES DE LOMA Y VEGA Time of Stablishment of Pastures and Their Relationship with Arbuscular Mycorrhiza in Hilly Terrain and Fertile Valley

    Directory of Open Access Journals (Sweden)

    RAÚL HERNANDO POSADA ALMANZA

    Full Text Available El presente trabajo fue realizado para evaluar el efecto del tiempo (05 años, 510 años y más de 10 años de establecimiento de pasturas de Brachiaria sp. sobre las poblaciones de hongos de micorriza arbuscular (HMA, su distribución de esporas, géneros, longitud de micelio extramatrical, colonización radical por HMA y otros hongos, en sistemas donde previamente existían bosques, en paisajes de loma y vega en Florencia, Caquetá, Colombia. Cualquiera que sea la edad de establecimiento de la pastura, predominan los géneros Glomus y Acaulospora; el cambio de la cobertura requiere de un periodo de más de diez años para que diferentes especies de HMA puedan recolonizar, adaptarse y diversificarse. En loma, la relación de Brachiaria sp. con los HMA disminuye con la edad, especialmente después de diez años; en vega se mantiene media y estable (2150 %, mientras la colonización radical por hongos diferentes a los HMA se incrementa, mostrando posiblemente un mecanismo de competencia por el espacio radical, o una acción conjunta. Finalmente, el micelio extramatrical y las esporas en loma y vega siguen tendencias variables (incremento, descenso o estabilidad con la edad.The subject of this research was to evaluate the effect of the time of establishment (05 years, 510 years, and more than 10 years. of pastures of Brachiaria sp. over the Arbuscular Mycorrhizal Fungal populations (AMF: genus and spore distribution, length of extramatrical mycelia, root colonizations by AMF and septate fungi; the pastures resulting from fragmentation of the tropical rainforest with valley and hilly landscapes at Florencia, Caquetá, Colombia. Whichever the age of pasture, the genera Glomus and Acaulospora predominate; the change of coverage require more than ten years for different species of MAF to recolonize, adapt and diversify. In hilly terrain, the Brachiaria spMAF relationship decrease with time, specially after ten years of establishment; in valley

  14. Fungos micorrízicos arbusculares em seringueira em latossolo amarelo distrófico da amazônia ocidental Arbuscular mycorrhizae fungi, growth and nutrient content in rubber plants in a xanthic ferrasol of western amazon

    Directory of Open Access Journals (Sweden)

    Larissa Alexandra Cardoso Moraes

    2010-06-01

    Full Text Available A colonização radicular com fungos micorrízicos arbusculares (FMA pode aumentar a eficiência no crescimento e absorção de nutrientes pelas plantas. Com o objetivo de verificar esse efeito, foram avaliados o grau de colonização em seringais adultos cultivados em Latossolo Amarelo distrófico e a eficiência de seis FMAs na colonização, crescimento e estado nutricional de mudas de seringueira com três e seis meses de transplantio. Os resultados indicaram baixo grau de colonização micorrízica e número de esporos em seringal adulto. Seis meses depois do transplantio das mudas de seringueira foram suficientes para ocorrer colonização de FMAs detectável. Não houve aumento no incremento em altura, diâmetro e emissão de folhas, independentemente do inóculo utilizado. Os teores foliares de nutrientes (N, P, K, Ca, Mg, Cu, Fe, Mn e Zn também não foram influenciados pelo número de esporos e grau de colonização, havendo diferenças apenas em função da idade das plantas.The infection roots with arbuscular mycorrhizal fungi (AMF can increase the efficiency in growth and nutrients uptake of plants. With the objective to verify this effect, the degree of colonization in rubber tree plantation cultivated in a Xanthic Ferralsol (dystrophic Yellow Latosol and the efficiency of six AMF in colonization, growth and nutritional status of rubber tree seedlings were evaluated, with three and six months of transplanting. The results showed a low level of mycorrhizal infection and number of spores in adult rubber tree. Six months of transplanting of rubber tree seedlings were sufficient detectable AMFs infection. There was no increase in height, diameter and number of leaves. The foliar nutrients concentration (N, P, K, Ca, Mg, Cu, Fe, Mn and Zn were also not influenced by the number of spores and infection degree, with only differences by age of the plants (three and six months of transplanting.

  15. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions.

    Science.gov (United States)

    Bowles, Timothy M; Barrios-Masias, Felipe H; Carlisle, Eli A; Cavagnaro, Timothy R; Jackson, Louise E

    2016-10-01

    Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future. PMID:27266519

  16. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels.

    Science.gov (United States)

    Wu, Qiang-Sheng; Li, Yan; Zou, Ying-Ning; He, Xin-Hua

    2015-02-01

    Glomalin-related soil protein (GRSP) is beneficial to soil and plants and is affected by various factors. To address whether mycorrhizal-induced GRSP and relevant soil enzymes depend on external P levels, a pot study evaluated effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae on GRSP production and soil enzyme activities. Three GRSP categories, as easily-extractable GRSP (EE-GRSP), difficultly-extractable GRSP (DE-GRSP), and total (EE-GRSP + DE-GRSP) GRSP (T-GRSP), were analyzed, together with five enzyme activities (β-glucosidase, catalase, peroxidase, phosphatase, polyphenol oxidase) in the rhizosphere of trifoliate orange (Poncirus trifoliata) grown under 0, 3, and 30 mM KH2PO4 in a sand substrate. After 4 months, root AM colonization and substrate hyphal length decreased with increasing P levels. Shoot, root, and total biomass production was significantly increased by AM colonization, regardless of P levels, but more profound under 0 mM P than under 30 mM KH2PO4. In general, production of these three GRSP categories under 0 or 30 mM KH2PO4 was similar in non-mycorrhizosphere but decreased in mycorrhizosphere. Mycorrhization significantly increased the production of EE-GRSP, DE-GRSP and T-GRSP, soil organic carbon (SOC), and activity of substrate β-glucosidase, catalase, peroxidase, and phosphatase, but decreased polyphenol oxidase activity, irrespective of P levels. Production of EE-GRSP, DE-GRSP, and T-GRSP significantly positively correlated with SOC and β-glucosidase, catalase, and peroxidase activity, negatively with polyphenol oxidase activity, but not with hyphal length or phosphatase activity. These results indicate that AM-mediated production of GRSP and relevant soil enzyme activities may not depend on external P concentrations.

  17. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions.

    Science.gov (United States)

    Bowles, Timothy M; Barrios-Masias, Felipe H; Carlisle, Eli A; Cavagnaro, Timothy R; Jackson, Louise E

    2016-10-01

    Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future.

  18. Resources and Morphological Characteristics of Arbuscular Mycorrhiza Fungi (AMF) around Tea Rhizosphere in Guizhou%贵州茶树丛枝菌根真菌资源及其种属的形态特征

    Institute of Scientific and Technical Information of China (English)

    邢丹; 张爱民; 李珍; 陈娟; 王振轩; 涂逸洋; 高秀兵

    2015-01-01

    为丛枝菌根真菌(Arbuscular mycorrhiza fungi,AMF)在茶树上的开发利用提供种质资源理论依据,对贵州省10个茶树种植区、5个茶树品种的根及根际土壤进行取样,测定根的AMF侵染率并对根际土壤中的AMF进行分离鉴定.结果表明,所有根样均有AMF侵染,侵染程度均在1~3级.不同采集地点的侵染状况差异较大,其中都匀市和开阳县的根样AMF侵染率较高,分别为33.33%和30.67%,侵染等级均为3级;罗甸县的根样AMF侵染率最低,为4%,侵染等级为1级.不同茶树品种的AMF侵染状况差异较小,侵染程度均在2~3级,其中湄潭台茶的根样AMF侵染率较高,为43.61%,侵染等级为3级;福鼎白茶的根样AMF侵染率较低,为17.99%,侵染等级为2级.从样本土壤中共分离出4属31种AMF,其中球囊霉属(Glomus)18种,无梗囊霉(Acaulospora)9种,内养囊霉属(Entrophospora)1种,巨孢囊霉属(Gigaspora)3种.结论,贵州茶树AMF资源较为丰富,开发利用潜力较大.

  19. Mycorrhizas influence functional traits of two tallgrass prairie species.

    Science.gov (United States)

    Weremijewicz, Joanna; Seto, Kotaro

    2016-06-01

    Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm-season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool-season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root-to-shoot ratios. Unlike other highly dependent species, A. gerardii had a high root-to-shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root-to shoot ratio than A. gerardii. The mycorrhiza-related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and

  20. Mycorrhizas influence functional traits of two tallgrass prairie species.

    Science.gov (United States)

    Weremijewicz, Joanna; Seto, Kotaro

    2016-06-01

    Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm-season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool-season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root-to-shoot ratios. Unlike other highly dependent species, A. gerardii had a high root-to-shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root-to shoot ratio than A. gerardii. The mycorrhiza-related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and

  1. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata.

    Science.gov (United States)

    Pankoke, Helga; Höpfner, Ingo; Matuszak, Agnieszka; Beyschlag, Wolfram; Müller, Caroline

    2015-10-01

    Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence

  2. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata.

    Science.gov (United States)

    Pankoke, Helga; Höpfner, Ingo; Matuszak, Agnieszka; Beyschlag, Wolfram; Müller, Caroline

    2015-10-01

    Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence

  3. Fungos micorrízicos arbusculares em estéril revegetado com Acacia mangium, após mineração de bauxita Colonization of arbuscular mycorrhizae fungi in substrate, after bauxite mining, vegetated with Acacia mangium

    Directory of Open Access Journals (Sweden)

    Ana Lucy Caproni

    2005-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição das comunidades de FMAs em áreas revegetadas com Acacia mangium após a mineração de bauxita na região de Porto Trombetas, PA. Foram coletadas amostras de solo compostas nos períodos seco e chuvoso, em áreas revegetadas com Acacia mangium, que receberam inóculos de Glomus clarum e Gigaspora margarita, com 1 e 5 anos de idade. Os solos foram revegetados sem a reposição do horizonte superficial orgânico. Os esporos dos fungos micorrízicos arbusculares (FMAs foram extraídos e identificados através de suas características morfológicas. Analisou-se a densidade de esporos e de espécies em cada amostra, a densidade relativa e a freqüência de ocorrência de cada espécie por período de amostragem, além do índice de abundância e freqüência (IAF. Sob o plantio de mudas de A. mangium, a densidade de esporos de FMAs foi elevada e aumentou com a idade, enquanto o número de espécies não variou. Glomus clarum produz alta densidade de esporos na fase inicial do plantio e declina com o tempo, e Gigaspora margarita não esporula nas condições edafoclimáticas locais. A maioria das espécies de FMA não apresenta o mesmo padrão de esporulação nos períodos seco e chuvoso.The objective of this work was to monitor the establishment of Gigaspora margarita and Glomus clarum in reclaimed areas after the bauxite mining in Porto Trombetas, PA, Brazil. Soil samples were collected during the dry and rainy periods under one and five-year-old Acacia mangium trees grown from seedlings that had been inoculated with Glomus clarum and Gigaspora margarita. The exposed subsoil was managed without replacing the organic soil layer. FMA spores were extracted and identified through their morphologic characteristics. Spore density and frequency of each species were determined in each sampling The index of abundance and frequency (IAF were estimated for all samples. Under A. mangium the arbuscular

  4. Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants Micorriza arbuscular e os parâmetros cinéticos de absorção de fósforo pelo feijoeiro

    Directory of Open Access Journals (Sweden)

    Adriana Parada Dias da Silveira

    2004-04-01

    Full Text Available The mechanisms that determine greater P absorption by mycorrhizal plants are still not completely clear, and are attributed, in part, to an increase in the number of absorption sites promoted by the hyphae, and/or to a greater affinity of the colonized hypha or root carriers to P. The effect of mycorrhizae formed by Glomus etunicatum on the kinetic parameters of P absorption by the roots and on P influx in bean plants of the IAC-Carioca cultivar was evaluated, in two distinct plant development periods: at the onset of flowering and at the pod-filling stage (35 and 50 days after sowing, respectively. A mixture of sand and silica (9:1 was utilized as substrate and irrigated with nutrient solution. The kinetics assay was performed by the method of 32P depletion from the solution (depletion curve, using intact plants. Mycorrhization promoted greater growth and P absorption by bean plants, which was more conspicuously observed at the pod-filling stage. Mycorrhizal plants showed higher values of maximum ion uptake rate (Vmax and net P influx at the flowering stage. Lower minimum ion concentration (Cmin and Michaelis-Menten constant (Km values were verified in mycorrhizal plants at the pod-filling stage. Mycorrhizal plants also presented higher net P influx per plant, in both stages. Cmin was the kinetic parameter more intimately related to P absorption, and a significant correlation was obtained between this parameter and shoot P content and accumulation in bean plants.Os mecanismos envolvidos na maior absorção de P pela planta micorrizada ainda não estão totalmente esclarecidos, atribuindo-se, em parte, ao aumento no número de sítios de absorção promovido pela hifa e/ou maior afinidade dos carregadores da hifa ou da raiz colonizada ao P. Avaliou-se o efeito da micorriza formada por Glomus etunicatum nos parâmetros cinéticos da absorção radicular de P e no influxo de P em feijoeiro, cultivar IAC-Carioca, em duas épocas do ciclo da planta

  5. Colonização micorrízica arbuscular e tolerância ao mal-do-Panamá em mudas de banana-maçã Colonisation of arbuscular mycorrhiza and tolerance to Panama disease in seedlings of the maçã banana

    Directory of Open Access Journals (Sweden)

    Deusiane Batista Sampaio

    2012-09-01

    Full Text Available O objetivo desse trabalho foi avaliar o efeito da colonização micorrízica arbuscular na tolerância da bananeira, cv. Maçã, ao mal-do-Panamá, sob diferentes fontes de nutrientes. Utilizou-se um delineamento inteiramente casualizado com fatorial 2 x 4 [2 densidades de esporos de FMA nativos (D1 - 3.500 esporos kg-1 solo e D2 - 7.000 esporos kg-1 solo e 4 diferentes concentrações de fontes de nutrientes - três de solução nutritiva (SN 40%, SN 70% e SN 100% e uma de biofertilizante 100% (B4] com três repetições. Após o plantio inoculou-se Fusarium oxysporum f.sp. cubense e posteriormente avaliou-se matéria seca da parte aérea (MSPA, o teor de fósforo foliar (P, a colonização micorrízica, o pH do solo e o índice de severidade da doença (ID. As diferentes fontes de nutrientes influenciaram a matéria seca da parte aérea, o teor de fósforo, a colonização micorrízica e o índice de severidade da doença, porém não influenciaram o pH da solução do solo. O biofertilizante não atendeu à demanda nutricional das plantas, as quais se mostraram pouco desenvolvidas. Porém proporcionou intensa colonização micorrízica e menor índice de severidade da fusariose, o qual aumentou com a adubação mineral.The aim of this study was to evaluate the effect of the colonization of arbuscular mycorrhiza on the tolerance to Panama disease of the banana plant cv. maçã under different sources of nutrients. A completely randomized design was employed, having a 2 x 4 factorial [2 densities of native FMA spores (D1 - 3,500 spores kg-1 soil and D2 - 7000 spores kg-1 soil and four different concentrations of nutrient sources - three of a nutrient solution (SN 40%, SN 70% and SN 100% and a 100% solution of bio-fertiliser (B4], with three replications. After planting, the seedlings were inoculated with Fusarium oxysporum f.sp. cubense, and later the shoot dry matter, leaf phosphorus content, mycorrhizal colonization, soil pH and disease

  6. Vesicular-arbuscular mycorrhiza in guayule

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, H.E.

    1980-01-01

    There is renewed interest in the cultivation of guayule (Parthenium argentatum A. Gray) as a domestic source of natural rubber. Guayule roots from Texas were observed for the presence of mycorrihizae. A symbiont identified as Glomus fasciculatus has been isolated. (ACR)

  7. Effect of Arbuscular Mycorrhiza (AM) on Tolerance of Cattail to Cd Stress in Aquatic Environment%湿生环境中丛枝菌根(AM)对香蒲耐 Cd 胁迫的影响

    Institute of Scientific and Technical Information of China (English)

    罗鹏程; 李航; 王曙光

    2016-01-01

    Hygrophytes are planted more and more in landscaping and greening in many cities, but they often encounter threat from environmental pollution. Arbuscular mycorrhiza ( AM ) have been confirmed to enhance the tolerance of terrestrial plants to environmental pollution in many previous studies, but it is unclear how they affect hygrophytes. In the present study, a hydroponic culture experiment was carried out to investigate the effects of AM fungi ( Glomus etunicatum) inoculation on the tolerance of cattail (Typha latifolia) to different concentrations Cd2 + (0, 2. 5, 5. 0 mg•L - 1 ). The aim was to provide reference for evaluating whether mycorrhizal technology can be used to enhance the tolerance of hygrophytes to environmental pollution. The results showed that symbiotic association was well established between AM fungi and cattail roots, and the mycorrhizal colonization rates ( MCR) were beyond 30% . However, MCR presented downward trend one month after mycorrhizal cattails were transported to solution, and the maximal decrease was 25. 5% (P < 0. 05). AM increased pigment concentrations and peroxidase (POD) activity in cattail leaves, and also increased roots radial oxygen loss. However, AM only produced significant effect on increase of fresh weight in 5 mg•L - 1 Cd2 +solution. Although plant growth was inhibited by 5 mg•L - 1 Cd2 + and MCR was lower, AM increased Cd uptake of cattail at the two Cd2 + levels, and the maximal increments were 40. 24% and 56. 52% in aboveground and underground parts, respectively. This study indicates that AM has potential to enhance the tolerance of hygrophytes to environmental pollution and might be used to remedy heavy metal pollution.%湿生植物在城市景观绿化和美化中应用越来越多,但也经常遭遇环境污染胁迫的问题.大量研究证实丛枝菌根(AM)可提高陆生植物耐受环境污染胁迫的能力,但对湿生植物的影响却鲜有认识.通过水培实验,探索接种 AM

  8. MULTIPLICACIÓN DE HONGOS MICORRIZA ARBUSCULAR (H.M.A Y EFECTO DE LA MICORRIZACIÓN EN PLANTAS MICROPROPAGADAS DE BANANO (Musa AAA cv. Gran Enano (Musaceae MULTIPLICATION OF ARBUSCULAR MYCORRHIZAE FUNGI (AMF AND MYCORRHIZATION EFFECT IN MICROPROPAGATED PLANTS OF BANANA (Musa AAA cv. ‘Gran Enano’ (Musaceae

    Directory of Open Access Journals (Sweden)

    Carmen Elena Usuga Osorio

    2008-06-01

    Full Text Available Se evaluó el proceso de multiplicación de hongos que forman micorriza arbuscular (HMA, para lo cual se usaron diferentes tipos de inóculos entre ellos nativos de agroecosistemas bananeros del Urabá (Antioquia-Colombia, en sustrato sólido, con diferentes plantas hospedadoras y la infectividad y efectividad sobre plantas de banano (Musa AAA cv. Gran Enano. La colonización micorrizal promedio general de los HMA a las plantas trampa fue de 37,76 ± 21,86 %, con respecto a este porcentaje, las plantas B (Brachiaria decumbens y S (Sorgum vulgare fueron las que más favorecieron la simbiosis. Teniendo en cuenta el sustrato, el S2 (Arena 50 - suelo 50 y el S6 (Vermiculita 50-suelo 50 permitieron expresiones significativamente mayores respecto a los demás. El Sorgum vulgare y Pueraria phaseoloides y en el sustrato S1 (Arena 30 - suelo 70, se encontró un mayor número de esporas. La combinación planta-sustrato que más favoreció la asociación fue la planta trampa B en los sustratos S2 y S4 (cascarilla de arroz 50-suelo50 y la producción de esporas fueron las plantas K y S en el sustrato S1. La asociación micorrícica general en plantas de banano provenientes de cultivo de tejidos fue de 48,74 ± 30,44. No se encontraron diferencias significativas (P > 0,05 entre plantas de cero días con plantas de 30 de aclimatadas. Los inóculos que significativamente favorecieron la asociación fueron los provenientes de agroecosistemas bananeros al compararse con el inóculo comercial y el proveniente de ecosistemas naturales del Urabá. El mayor peso seco foliar y radical se encontró en plántulas de banano inoculadas con I5 (Inóculo proveniente de agroecosistema bananeros de la zona de estudio. Para las variables de crecimiento no se encontraron diferencias.The process of multiplication of arbuscular mycorrhizae fungi (AMF from indigenous banana agro-environments from Urabá (Antioquia - Colombia was evaluated, using solid substrate, with different

  9. Nutrição fosfática e micorriza arbuscular na redução da toxicidade de cádmio em trema [Trema micrantha (L. Blum.] Phosphate nutrition and arbuscular mycorrhiza on amelioration of cadmium toxicity in trema [Trema micrantha (L. Blum.

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Fonsêca Sousa Soares

    2007-10-01

    Full Text Available Neste trabalho, avaliaram-se os efeitos da nutrição fosfática e da micorriza arbuscular na toxicidade de Cd em Trema micrantha (L. Blum. Em um primeiro experimento, mudas de trema foram formadas em substrato contendo doses crescentes de P (0, 100, 200 e 400 mg dm-3 e com um tratamento de inoculação com Glomus etunicatum. Após crescimento por 60 dias, essas mudas foram transferidas para solução nutritiva de Clark sem Cd e suplementada com 5, 15 e 45 µmol L-1 de Cd e mantidas por mais 40 dias, quando os efeitos dos tratamentos foram avaliados. As influências do P na amenização da fitotoxidez de Cd foram também avaliados em outro experimento, aplicando-se simultaneamente e de forma combinada em solução, doses de P (0,07; 0,5; 1; e 2 mmol L-1 e de Cd (0, 5, 10 e 15 µmol L-1. Houve acentuada inibição no crescimento e colonização micorrízica da trema mesmo na dose mais baixa de Cd em solução (5 µmol L-1. Constatou-se que a melhoria da nutrição fosfática favoreceu o crescimento da planta, sendo isso associado à redução da toxicidade de Cd, enquanto a inoculação com G. etunicatum não teve o mesmo efeito. Encontrou-se uma relação inversa entre o aumento no fornecimento de P em solução e a absorção e acúmulo de Cd na trema. Análise da especiação química da solução indicou que o P não interferiu na disponibilidade de Cd em solução, o que evidencia que a ação amenizante do P se deve às interações na planta, possivelmente reduzindo a translocação do Cd.In the present study the effects of phosphorus nutrition and arbuscular mycorrhiza (AM were evaluated on Cd toxicity to Trema micrantha (L. Blum.. In a first experiment, trema seedlings were raised in a P-enriched substrate (0, 100, 200 and 400 mg dm-3 and with an AM treatment (inoculation with Glomus etunicatum. After sixty days of growth, plants were transferred to Clark nutrient solution either without Cd added or amended with this metal at

  10. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation.

    Science.gov (United States)

    Walter, Michael H; Floss, Daniela S; Hans, Joachim; Fester, Thomas; Strack, Dieter

    2007-01-01

    During colonization by arbuscular mycorrhizal (AM) fungi plant roots frequently accumulate two types of apocarotenoids (carotenoid cleavage products). Both compounds, C(14) mycorradicin and C(13) cyclohexenone derivatives, are predicted to originate from a common C(40) carotenoid precursor. Mycorradicin is the chromophore of the "yellow pigment" responsible for the long-known yellow discoloration of colonized roots. The biosynthesis of apocarotenoids has been investigated with a focus on the two first steps of the methylerythritol phosphate (MEP) pathway catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). In Medicago truncatula and other plants the DXS2 isogene appears to be specifically involved in the AM-mediated accumulation of apocarotenoids, whereas in the case of DXR a single gene contributes to both housekeeping and mycorrhizal (apo)carotenoid biosynthesis. Immunolocalization of DXR in mycorrhizal maize roots indicated an arbuscule-associated protein deposition, which occurs late in arbuscule development and accompanies arbuscule degeneration and breakdown. The DXS2 isogene is being developed as a tool to knock-down apocarotenoid biosynthesis in mycorrhizal roots by an RNAi strategy. Preliminary results from this approach provide starting points to suggest a new kind of function for apocarotenoids in mycorrhizal roots.

  11. Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes.

    Science.gov (United States)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-08-01

    Arbuscular mycorrhizal fungi (AMF) are integral functioning parts of plant root systems and are widely recognized for enhancing contaminants uptake and metabolism on severely disturbed sites. However, the patterns of their influence on the phytoremediation of iron-cyanide (Fe-CN) complexes are unknown. Fe-CN complexes are of great common interest, as iron is one of the most abundant element in soil and water. Effect of ryegrass (Lolium perenne L.) roots inoculation, using mycorrhizal fungi (Rhizophagus irregularis and a mixture of R. irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum), on iron-cyanide sorption was studied. Results indicated significantly higher colonization of R. irregularis than the mixture of AMF species on ryegrass roots. Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study is a first indication of the possible positive contribution of AM fungi on the phytoremediation of iron-cyanide complexes. PMID:27256319

  12. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying.

    Science.gov (United States)

    Neumann, Elke; Schmid, Barbara; Römheld, Volker; George, Eckhard

    2009-11-01

    Sweet potato plants were grown with or without Glomus intraradices in split-root pots with adjacent root compartments containing a soil with a low availability of phosphate. One fungal tube, from which root growth was excluded, was inserted into each root compartment. During 4 weeks before harvest, the soil moisture level in either both or only one of the two root-compartments of each pot was decreased. Controls remained well watered. Low soil moisture generally had a negative effect on the amount of extraradical mycelium of G. intraradices extracted from the fungal tubes. Sporulation in the fungal tubes was much higher compared with the soil in the root compartment, but remained unaffected by the soil moisture regime. Concentrations of P in extraradical mycelium were much lower than usually found in plants and fungi, while P concentrations in associated mycorrhizal host plant tissues were in an optimum range. This suggests efficient transfer of P from the extraradical mycelium to the host plant. Despite the negative effect of a low soil moisture regime on extraradical G. intraradices development, the symbiosis indeed contributed significantly to P uptake of plants exposed to partial rootzone drying. The possibility that extraradical arbuscular mycorrhizal fungal development was limited by P availability under dry soil conditions is discussed. PMID:19499252

  13. 蚕豆/玉米间作接种AM真菌和根瘤菌对外源有机磷利用的影响%Effect of Inoculating Rhizobium and Arbuscular Mycorrhiza on Organic P Uptake in Faba Bean/maize Intercropping System

    Institute of Scientific and Technical Information of China (English)

    李淑敏; 李隆

    2011-01-01

    本研究以植酸钠为有机磷源,利用根系不同分隔方式的盆栽实验研究了蚕豆/玉米问作体系中,接种根瘤菌、AH真菌(Glomus mosseae)和双接种对间作体系利用有机磷的影响.结果表明:接种AM真菌使蚕豆和玉米的根际磷酸酶活性增加,显著提高了蚕豆/玉米间作体系对有机磷的吸收,双接种处理蚕豆和玉米总吸磷量平均比单接AH真菌和根瘤菌平均分别增加了11.7%和90.8%;相对干其它处理,在双接种条件下蚕豆对玉米吸收有机磷的促进作用更显著,不分隔和尼龙网分隔处理玉米的吸磷量比完全分隔处理分别提高43.4%(5.29mg)和17.9%(2.18 mg);在问作体系中同时接种AM真菌和根瘤菌能提高玉米的菌根侵染率,间作产量优势显著高于单接AM真菌和根瘤菌.%Pot experiments with different root barriers were carried out to investigate rhizobium, mycorrhizal/fungus and interaction of rhizobium and mycorrhizal fungus (Glomus mosseae) on organic P (phytate) uptake in faba bean/maize intercropping system.The results showed that: acid phosphatase activities in soil rhizosphere of faba bean and maize were improved due to inoculating arbuscular mycorrhiza.P uptake from organic P source in faba bean/maize intercropping system was enhanced significantly.Total P uptake by maize and faba bean inoculated with both microorganisms was increased 11.7% and 90.8% than that inoculated with single arbuscular mycorrhiza and rhizobium respectively.Compared with the other treatments, organic P uptake by maize was most significantly facilitated by associated faba bean.P uptake by maize with no barriers or mesh barriers was improved 43.4%( 5.29mg )and 17.9%( 2.18 mg)than that with solid barriers respectively.Mycorrhizal root colonization of maize inoculated with rhizobium and mycorrhizai fungus in maize/faba bean intercropping system was higher than that single inoculated with mycorrhizal fungus and rhizobium.Yield advantage

  14. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza

    DEFF Research Database (Denmark)

    Rønn, R.; Gavito, M.; Larsen, J.;

    2002-01-01

    Possible interactions between mycorrhiza, atmospheric CO2, free-living soil microorganisms and protozoa were investigated in pot experimental systems. Pea plants (Pisum sativum L. cv. Solara) were grown under ambient (360 mul l(-1)) or elevated (700 mul l(-1)) atmospheric CO2 concentration...... with or without the presence of the arbuscular mycorrhizal (AM) fungus Glomus caledonium. It was hypothesised that (1) the populations of free-living soil protozoa would increase as a response to elevated CO2, (2) the effect of elevated CO2 on protozoa would be moderated by the presence of mycorrhiza and (3......) the presence of arbuscular mycorrhiza would affect soil protozoan numbers regardless of atmospheric CO2. After 3 weeks growth there was no difference in bacterial numbers (direct counts) in soil, but the number of free-living bacterial-feeding protozoa was significantly higher under elevated CO2...

  15. Arbuscular Mycorrhiza across Two Vegetation Types in Shangri-la Subalpine Areas of Northwest Yunnan%香格里拉亚高山两种植被类型主要植物的丛枝菌根研究

    Institute of Scientific and Technical Information of China (English)

    李晋; 景跃波; 张劲峰; 李勇鹏; 李荣波

    2012-01-01

    The arbuscular mycorrzhizal (AM) colonization and spore density in barren grassland and primary forest in Shangri-la subalpine areas of northwest Yunnan province were investigated. All the ten plant species in barren grassland and nine plant species in primary forest were found to be colonized by arbuscular mycorrhizal fungi (AMF) , and the average AMF spore density in two vegetation types were 674 ±221/100g soil and 290 ±72/100 g soil respectively. One-way analysis of variance ( ANOVA) showed that the AMF hypha colonization and spore density varied significantly between the two vegetation types. The plant species common to the two sampled sites had high AM fungal colonization in primary forest and high AMF spore density in barren grassland. No significant correlation between AM colonization and spore density was observed when vegetation types were either considered separately or together.%以滇西北香格里拉亚高山地区生态严重退化的荒草坡植被类型和基本实现恢复的近原生林地植被类型中主要植物的丛枝菌根真菌(AMF)作为研究对象,对这些植物根系的AMF感染率及其根际土壤中的AMF孢子密度进行了调查研究.结果表明,荒草坡的10种植物和近原生林地的9种植物,均形成典型的丛枝菌根(AM).荒草坡和近原生林植物根际土壤中的平均孢子密度分别为674±221(SE)个/100g(土)和290±72个/100g土.单因素方差分析表明,两植被类型的主要植物在根系AMF菌丝感染率以及根际土壤中AMF孢子密度方面的差异都极显著.同种植物在近原生林地具有较高的AMF感染率,而根际土壤中的孢子密度则是在荒草坡为高.相关性分析表明,所调查植物的根系AMF菌丝感染率与根际土壤中的AMF孢子密度间不存在相关性.

  16. Arbuscular mycorrhizal fungi (Glomeromycota associated with roots of plants

    Directory of Open Access Journals (Sweden)

    Sławomir Kowalczyk

    2013-12-01

    Full Text Available The results of studies of the occurrence of arbuscular mycorrhizal fungi (AMF and arbuscular mycorrhizae of the phylum Glomeromycota associated with roots of 31 cultivated, uncultivated and protected plant species growing at 103 sites of the Lubuskie province NW Poland are presented and discussed. The AMF most frequently found were members of the genus Glomus. Other relatively frequently revealed fungi were Scutellospora spp. Spore populations of AMF generally were more abundant and diverse in cultivated soils. Most protected plant species harboured AMF.

  17. Micorriza arbuscular em cupuaçu e pupunha cultivados em sistema agroflorestal e em monocultivo na Amazônia Central Arbuscular mycorrhiza in cupuaçu and peach palm cultivated in agroforestry and monoculture systems in the Central Amazon region

    Directory of Open Access Journals (Sweden)

    José Pereira da Silva Junior

    2006-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a colonização micorrízica arbuscular em pupunha (Bactris gasipaes Kunth e cupuaçu (Theobroma grandiflorum (Willd ex Spring K. Schum cultivados em sistema agroflorestal e em monocultivo na Amazônia Central, em duas épocas do ano, e também identificar características anatômicas da formação dessa simbiose nessas espécies. Foram realizadas coletas de solo e raízes em duas estações, seca e chuvosa. A colonização micorrízica arbuscular no cupuaçu e na pupunha é alterada pelo sistema de manejo adotado, com taxas maiores de colonização no monocultivo. A densidade total dos esporos de fungos micorrízicos arbusculares sob o cupuaçu não é alterada pelo sistema de manejo ou pela época do ano, ao contrário do que ocorre sob a pupunha. Nessa cultura, a densidade de esporos foi maior sob sistema agroflorestal no período seco. A colonização micorrízica na pupunha apresenta dois padrões anatômicos, Paris e Arum, enquanto no cupuaçu ocorre o padrão Arum.The objective of this work was to evaluate the arbuscular mycorrhizal colonization in peach palm (Bactris gasipaes Kunth and cupuaçu (Theobroma grandiflorum (Willd ex Spring K. Schum, in agroforestry systems and monoculture in the Central Amazon region, and to identify anatomic characteristics of mycorrhizal colonization in these species. Soil and root samples were collected in the field, in the dry and rainy season. Mycorrhizal root colonization of cupuaçu and peach palm is affected by the management systems, with higher colonization rates in the monoculture system. Total spore density of the arbuscular mycorrhizal fungi under cupuaçu is not affected by management systems or season, but under peach palm this variation is season dependent. Mycorrhizal colonization of Arum and Paris types occur in peach palm, and only Arum type occurs in cupuaçu.

  18. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner.

    Science.gov (United States)

    Ait Lahmidi, Nassima; Courty, Pierre-Emmanuel; Brulé, Daphnée; Chatagnier, Odile; Arnould, Christine; Doidy, Joan; Berta, Graziella; Lingua, Guido; Wipf, Daniel; Bonneau, Laurent

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We provide experimental support for a primary role of both RiMST5 and RiMST6 in sugar uptake directly from the soil. The expression patterns of RiMSTs in response to partial light deprivation and to interaction with different host plants were investigated. Expression of genes coding for RiMSTs was transiently enhanced after 48 h of shading and was unambiguously dependent on the host plant species. These results cast doubt on the 'fair trade' principle under carbon-limiting conditions. Therefore, in light of these findings, the possible mechanisms involved in the modulation between mutualism and parasitism in plant-AM fungus interactions are discussed. PMID:27362299

  19. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner.

    Science.gov (United States)

    Ait Lahmidi, Nassima; Courty, Pierre-Emmanuel; Brulé, Daphnée; Chatagnier, Odile; Arnould, Christine; Doidy, Joan; Berta, Graziella; Lingua, Guido; Wipf, Daniel; Bonneau, Laurent

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We provide experimental support for a primary role of both RiMST5 and RiMST6 in sugar uptake directly from the soil. The expression patterns of RiMSTs in response to partial light deprivation and to interaction with different host plants were investigated. Expression of genes coding for RiMSTs was transiently enhanced after 48 h of shading and was unambiguously dependent on the host plant species. These results cast doubt on the 'fair trade' principle under carbon-limiting conditions. Therefore, in light of these findings, the possible mechanisms involved in the modulation between mutualism and parasitism in plant-AM fungus interactions are discussed.

  20. Entrophospora schenckii and Pacispora franciscana, arbuscular mycorrhizal fungi (Glomeromycota new for Europe and Poland, respectively

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2014-08-01

    Full Text Available Morphological properties of spores of Pacispora franciscana, as well as spores and mycorrhizae of Entrophospora schenckii, arbuscular fungi of the phylum Glomeromycota found for the first time in Poland and Europe, respectively, are described and illustrated. Additionally, the known distribution of the two fungi is presented.

  1. Glomus eburneum and Scutellospora fulgida, species of arbuscular mycorrhizal fungi (Glomeromycota new for Europe

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2013-12-01

    Full Text Available Morphological characters of spores and mycorrhizae of Glomus eburneum and spores of Scutellospora fulgida, arbuscular mycorrhizal fungi of the phylum Glomeromycota, are described and illustrated. Additionally, the known distribution of these species in both Poland and other regions of the world is presented. Both species were not earlier reported from Europe.

  2. Changes in mycorrhiza development in maize induced by crop management practices

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    with maize (Zea mays L.) or with the original plant species in the field site, bromegrass (Bromus inermis Leys.) and alfalfa (Medicago sativa L.). The delay in mycorrhiza development after cropping with canola was also observed in samples taken from the field and in a bioassay, both conducted at the...... mays L.) or a non-host (canola, Brassica napus L.) crop, and all of them with maize for the second year. Tillage and P fertilization treatments were applied to the plots in the second year. Mycorrhiza development in maize was measured in pot culture bioassays conducted before planting and after harvest......We selected three crop production practices; crop rotation, tillage and phosphorus fertilization, all known to affect arbuscular mycorrhiza (AM) development, to study early AM intraradical colonization in maize. Half of the plots were planted during the first year with either a host (maize, Zea...

  3. Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress

    OpenAIRE

    Fuqiang Song; Jize Li; Xiaoxu Fan; Quan Zhang; Wei Chang; Fengshan Yang; Gui Geng

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. In this study effect of Glomus mosseae/Medicago sativa mycorrhiza on atrazine degradation was investigated. It was observed that the atrazine degradation rates with any addition level in mycorrhizal treatments were all significantly higher than those in non- mycorrhizal treatments. When atrazine was applied at 20 mg kg−1, the removal efficienc...

  4. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.)

    Institute of Scientific and Technical Information of China (English)

    YANG Ruyi; YU Guodong; TANG Jianjan; CHEN Xin

    2008-01-01

    It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants.A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species(Solidago canadensis L.)in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments.Three Pb levels(control,300,and 600 mg/kg soil)were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows.Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species (Glomus mosseae,Glomus versiform,Glomus diaphanum,Glomus geosporum,and Glomus etunicatum).The 15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants.The results showed that S. canadensis was highly dependent on mvcOrrhizae.The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization(root length colonized,RLC%) but did not affect spore numbers,N(including total N and 15N) and P uptake.The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments.The Pb was mostly sequestered in belowground of plant (root and rhizome).The results suggest that the high efficiency of mycorrhizae on nutrient uptake mightgive S. canadensis a great advantage over native species in Pb polluted softs.

  5. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    Science.gov (United States)

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  6. Effect of mycorrhizas application on plant growth and nutrient uptake in cucumber production under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ortas, I.

    2010-07-01

    Mycorrhizas application in horticultural production in the Eastern Mediterranean region of Turkey has been studied under field conditions for several years. The effects of different arbuscular mycorrhizal fungi (AMF) have been evaluated under field conditions for cucumber production. The parameters measured were seedling survival, plant growth and yield, and root colonization. In 1998 and 1999, Glomus mosseae and Glomus etunicatum inoculated cucumber seedlings were treated with and without P (100 kg P2O5 ha-1) application. A second experiment was set up to evaluate the response of cucumber to the inoculation with a consortia of indigenous mycorrhizae, G. mosseae, G. etunicatum, Glomus clarum, Glomus caledonium and a mixture of these four species. Inoculated and control non inoculated cucumber seedlings were established under field conditions in 1998, 2001, 2002 and 2004. Seedling quality, seedling survival under field conditions and yield response to mycorrhiza were tested. Fruits were harvested periodically; at blossom, plant leaves and root samples were taken for nutrient content and mycorrhizal colonization analysis respectively. The field experiment results showed that mycorrhiza inoculation significantly increased cucumber seedling survival, fruit yield, P and Zn shoot concentrations. Indigenous mycorrhiza inoculum was successful in colonizing plant roots and resulted in better plant growth and yield. The relative effectiveness of each of the inocula tested was not consistent in the different experiments, although inoculated plants always grew better than control no inoculated. The most relevant result for growers was the increased survival of seedlings. (Author) 20 refs.

  7. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcorms

    NARCIS (Netherlands)

    Boddington, C.L.; Dodd, J.C.

    2000-01-01

    Two glasshouse experiments were performed to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on Desmodium ovalifolium L. plants. In the first experiment the effect of

  8. 丛枝菌根真菌(AMF)对低温胁迫下黄瓜幼苗生长及叶绿素荧光参数的影响%Effects of Arbuscular Mycorrhiza Fungi on Seedlings Growth and Chlorophyll Fluorescence Parameters in Cucumber under Low Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    曹岩坡; 戴鹏; 戴素英

    2016-01-01

    以黄瓜品种津优303为试验材料,设低温+灭菌接种物、常温+菌剂、低温+菌剂3个处理,以常温+灭菌接种物处理为对照,研究了接种丛枝菌根真菌(AMF)对低温胁迫下黄瓜幼苗生长及叶绿素荧光参数的影响。结果表明:低温胁迫下黄瓜幼苗生长量(株高,地上部和地下部的鲜重与干重)、黄瓜幼苗叶片光合参数(净光合速率、气孔导度、蒸腾速率和叶绿素含量)以及叶绿素荧光参数[最大荧光(Fm)、初光能转换效率(Fv/Fm)、PSII的潜在光化学活性(Fv/F0)]均显著约CK,严重抑制了黄瓜幼苗的生长;初始荧光(F0)显著>CK,PSII反应中心遭受损害。低温胁迫下接种AMF处理的黄瓜幼苗生长量以及叶片幼苗光合参数和叶绿素荧光参数指标值均显著>未接种AMF处理,F0显著约未接种AMF处理,其中,叶绿素含量提高10.24%,Fm、Fv/Fm和Fv/F0分别提高14.2%、5.9%和31.4%,F0降低8%,明显缓解低温胁迫对幼苗的伤害。%The effects of inoculation of arbuscular mycorrhiza fungi on seedlings growth and chlorophyll fluorescent characteristics of seedlings of cucumber (Jinyou 303) under low temperature stress were inves-tigated in the growth chamber. The results showed that AMF inoculation treatment could significantly pro-mote the seedlings height,fresh weight,dry weigh under low temperature stress. Compared with the con-trol treatment,AMF inoculation treatment could significantly promote the chlorophyll contents by 10.24%, and increment Fm,Fv/Fm,Fv/F0 by 14.2%,5.9% and 31.4%,while reduced F0 by 8%.

  9. Propágulos de fungos micorrízicos arbusculares em solos deficientes em fósforo sob diferentes usos, da região semi-arida no nordeste do Brasil Propagules of arbuscular mycorrhizae in p-deficient soils under different land uses, in semi-arid NE Brazil

    Directory of Open Access Journals (Sweden)

    Regina Lúcia Félix de Aguiar Lima

    2007-04-01

    Full Text Available A conversão de áreas de caatinga em agricultura e pecuária de subsistência é uma das características marcantes da região semi-árida do Nordeste do Brasil. O presente estudo investigou o efeito dessa conversão sobre os propágulos de fungos micorrízicos arbusculares (FMA em 10 locais diferentes, distribuídos nos Estados da Paraíba e de Pernambuco. Cada local consistiu de uma área de vegetação nativa (caatinga contígua com uma área cultivada, na mesma posição de encosta. Amostras de solo foram coletadas a intervalos de 20-30 m, nas profundidades de 0-7,5 e 7,5-15 cm (10 locais x 2 usos do solo x 2 profundidades com 4 pontos amostrais ao longo de uma transecção que cruzava as áreas contíguas. As raízes (The conversion of tropical dry forest into areas used for subsistence agriculture or livestock production is a common feature of the semi-arid region of NE Brazil. Our study looked into the effect of these land use changes on propagules of arbuscular mycorrhizal fungi (AMF at ten sites distributed in the states of Paraíba and Pernambuco. Each site consisted of an area under native vegetation (Dry-Forest adjacent to a cultivated area in the same slope position. Soil samples were taken at distance intervals of 20-30 m from two depths (0-7.5 and 7.5-15 cm along a transect crossing the adjacent areas (10 sites x 2 land uses x 2 depths x 4 sampling points. Roots (< 2 mm found in the soil samples (n = 160 were stained with trypan blue to assess the percentage of AMF colonization as well as the type of fungal structures. The AMF spores were separated from soil by wet sieving, incubated in iodonitrotetrazolium chloride (INT solution and counted; those stained with INT were considered viable. Soil samples were analyzed for resin-extractable P and total organic carbon (TOC. For data analysis, the 10 areas under dry forest were separated in two sub-groups: Undisturbed-Dry-Forest (UDF, n = 6 and Disturbed-Dry-Forest (DDF, n = 4, owing

  10. Eficiência de fungos micorrízicos arbusculares isolados de solos sob diferentes sistemas de uso na região do Alto Solimões na Amazônia Effectiveness of arbuscular mycorrhiza fungal isolated from soils under different land use systems in the Alto Solimões river region in the Amazon

    Directory of Open Access Journals (Sweden)

    Gláucia Alves e Silva

    2009-09-01

    Full Text Available Os fungos micorrízicos arbusculares (FMAs são importantes componentes dos ecossistemas terrestres onde acredita-se desempenharem papel fundamental para a sustentabilidade destes. Estes fungos sofrem influência de diversos fatores antrópicos como o uso da terra, que modificam a estrutura e diversidade das comunidades podendo comprometer suas funções ecológicas. No presente estudo avaliou-se o comportamento de FMAs isolados de solos sob diferentes sistemas de uso (SUT. Fungos isolados de amostras de solo sob diferentes SUT foram testados em caupi [Vigna unguiculata (L. Walp] em condições controladas. Verificou-se que todos os cinqüenta e um fungos avaliados colonizaram o caupi, porém de modo muito diferenciado, tal como ocorreu para os efeitos destes na absorção de fósforo e crescimento da planta. A colonização variou de 1 a 68%, e os efeitos positivos no crescimento variaram de 33 a 148%, sendo mais comuns nos fungos isolados de pastagem e roça. O aumento nos teores de fósforo foi generalizado (95% dos fungos testados, no entanto, nem todos foram capazes de promover o crescimento do Caupi. Apenas 39% dos fungos foram considerados eficientes, sendo estes isolados de quase todos os SUT. Os tratamentos fúngicos de mais alta eficiência continham as espécies: A. foveata, Glomus sp.1, Acaulospora sp.1 e mistura dos dois primeiros mais E. infrequens e A. bireticulata-like. Os resultados indicam ampla diversidade de eficiência dos FMAs do Alto Solimões. Embora a eficiência não tenha relação direta com o SUT, a proporção de isolados eficientes variou com a origem de isolamento.Arbuscular mycorrhizal fungi (AMF are important components of terrestrial ecosystems where they are believed to play a fundamental role for their sustainability. These fungi are influenced by a number of anthropic factors such as, land use which modifies the structure and diversity of fungal communities and this may compromise their ecological functions

  11. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses.

    Science.gov (United States)

    Li, Huiying; Smith, Sally E; Holloway, Robert E; Zhu, Yongguan; Smith, F Andrew

    2006-01-01

    We used 32P to quantify the contribution of an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) to phosphorus (P) uptake by wheat (Triticum aestivum), grown in compartmented pots. The soil was from a major cereal-growing area, the Eyre Peninsula, South Australia; it was highly calcareous and P-fixing. Fertilizer P was added to soil at 20 mg kg(-1), as solid or liquid. Two extraction methods were used to estimate plant-available P. Fungal colonization was well established at harvest (36 d). Application of P decreased both colonization and hyphal length density in soil, with small differences between different P fertilizers. Plants showed large positive responses in terms of growth or total P uptake to all P additions, and showed no positive (or even negative) responses to AM colonization, regardless of P application. 32P was detected only in AM plants, and we calculated that over 50% of P uptake by plants was absorbed via AM fungi, even when P was added. The results add to the growing body of knowledge that 'nonresponsive' AM plants have a functional AM pathway for P transfer to the plant; it should not be ignored in breeding plants for root traits designed to improve P uptake.

  12. Septoglomus fuscum and S. furcatum, two new species of arbuscular mycorrhizal fungi (Glomeromycota)

    DEFF Research Database (Denmark)

    Blaszkowski, Janusz; Chwat, Gerad; Kovacs, Gábor M;

    2013-01-01

    Two new arbuscular mycorrhizal fungal species, (Glomeromycota) Septoglomus fuscum and S. furcatum, are described and illustrated. Spores of S. fuscum usually occur in loose hypogeous clusters, rarely singly in soil or inside roots, and S. furcatum forms only single spores in soil. Spores of S. fu...... as host plant, S. fuscum and S. furcatum formed arbuscular mycorrhizae. Phylogenetic analyses of the SSU, ITS and LSU nrDNA sequences placed the two new species in genus Septoglomus and both new taxa were separated from described Septoglomus species....

  13. The role of bacteria and mycorrhiza in plant sulfur supply

    Science.gov (United States)

    Gahan, Jacinta; Schmalenberger, Achim

    2014-01-01

    Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted. PMID:25566295

  14. The role of bacteria and mycorrhiza in plant sulfur supply

    Directory of Open Access Journals (Sweden)

    Jacinta Mariea Gahan

    2014-12-01

    Full Text Available Plant growth is highly dependent on bacteria, saprophytic and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.

  15. Glomus intraradices and Pacispora robiginia, species of arbuscular mycorrhizal fungi (Glomeromycota new for Poland

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2013-12-01

    Full Text Available Morphological characters of spores and mycorrhizae of Glomus intraradices, as well as spores of Pacispora robiginia, arbuscular mycorrhizal fungi of the phylum Glomeromycota, were described and illustrated. Additionally, the known distribution of these species in both Poland and other regions of the world was presented. Both the species were not so far recorded in Poland and this paper is the second report of the finding of P. robiginia in the

  16. Amazonian açai and food dyes for staining arbuscular- micorrhizal fungi

    OpenAIRE

    Aline Lourdes Martins Silva; Marcos Diones Ferreira Santana; John César de Jesus Pereira; Milena Pupo Raimam; Ulisses Brigatto Albino

    2015-01-01

    Arbuscular mycorrhizae microscopy requires differential staining of typical structures. Dyes employed, such as trypan blue, pose risks to health and environment. Alternative dyes such as pen ink and aniline have variable coloring efficiency. In this work, Brachiaria decumbens roots, discolored with caustic soda (NaOH), were stained with açai, annatto, saffron, trypan blue and pen inks. There were significant differences among dyes regarding stained mycorrhizal structures and pictures quality....

  17. Epiparasitic plants specialized on arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Bidartondo, Martin I; Redecker, Dirk; Hijri, Isabelle; Wiemken, Andres; Bruns, Thomas D; Domínguez, Laura; Sérsic, Alicia; Leake, Jonathan R; Read, David J

    2002-09-26

    Over 400 non-photosynthetic species from 10 families of vascular plants obtain their carbon from fungi and are thus defined as myco-heterotrophs. Many of these plants are epiparasitic on green plants from which they obtain carbon by 'cheating' shared mycorrhizal fungi. Epiparasitic plants examined to date depend on ectomycorrhizal fungi for carbon transfer and exhibit exceptional specificity for these fungi, but for most myco-heterotrophs neither the identity of the fungi nor the sources of their carbon are known. Because many myco-heterotrophs grow in forests dominated by plants associated with arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), we proposed that epiparasitism would occur also between plants linked by AMF. On a global scale AMF form the most widespread mycorrhizae, thus the ability of plants to cheat this symbiosis would be highly significant. We analysed mycorrhizae from three populations of Arachnitis uniflora (Corsiaceae, Monocotyledonae), five Voyria species and one Voyriella species (Gentianaceae, Dicotyledonae), and neighbouring green plants. Here we show that non-photosynthetic plants associate with AMF and can display the characteristic specificity of epiparasites. This suggests that AMF mediate significant inter-plant carbon transfer in nature.

  18. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Eva Nouri

    Full Text Available Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis, the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  19. Spider mites adaptively learn recognizing mycorrhiza-induced changes in host plant volatiles.

    Science.gov (United States)

    Patiño-Ruiz, J David; Schausberger, Peter

    2014-12-01

    Symbiotic root micro-organisms such as arbuscular mycorrhizal fungi commonly change morphological, physiological and biochemical traits of their host plants and may thus influence the interaction of aboveground plant parts with herbivores and their natural enemies. While quite a few studies tested the effects of mycorrhiza on life history traits, such as growth, development and reproduction, of aboveground herbivores, information on possible effects of mycorrhiza on host plant choice of herbivores via constitutive and/or induced plant volatiles is lacking. Here we assessed whether symbiosis of the mycorrhizal fungus Glomus mosseae with common bean plants Phaseolus vulgaris influences the response of the two-spotted spider mite Tetranychus urticae to volatiles of plants that were clean or infested with spider mites. Mycorrhiza-naïve and -experienced spider mites, reared on mycorrhizal or non-mycorrhizal bean plants for several days before the experiments, were subjected to Y-tube olfactometer choice tests. Experienced but not naïve spider mites distinguished between constitutive volatiles of clean non-mycorrhizal and mycorrhizal plants, preferring the latter. Neither naïve nor experienced spider mites distinguished between spider mite-induced volatiles of mycorrhizal and non-mycorrhizal plants. Learning the odor of clean mycorrhizal plants, resulting in a subsequent preference for these odors, is adaptive because mycorrhizal plants are more favorable host plants for fitness of the spider mites than are non-mycorrhizal plants.

  20. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance.

    Science.gov (United States)

    Li, Tao; Lin, Ge; Zhang, Xin; Chen, Yongliang; Zhang, Shubin; Chen, Baodong

    2014-11-01

    Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.

  1. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  2. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    OpenAIRE

    Giovannetti Marco; Balestrini Raffaella; Volpe Veronica; Guether Mike; Straub Daniel; Costa Alex; Ludewig Uwe; Bonfante Paola

    2012-01-01

    Abstract Background Arbuscular mycorrhizas (AM) are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus...

  3. Production and Application of Arbuscular Mycorrhizal Fungicides%丛枝菌根真菌菌剂的生产及应用概述

    Institute of Scientific and Technical Information of China (English)

    刘静; 刘洁; 金海如

    2012-01-01

    Arbuscular mycorrhizal fungus is a new microbial fertilizer, which plays an irreplaceable role in reduction of chemical fertilizer and pesticide application, reduction of environmental pollution and crop yield improvement. The authors introduce characteristics of arbuscular mycorrhiza fungus and microbial fertilizer types in China, review the production methods and application of arbuscular mycorrhiza fungicides and point out the further application prospect of arbuscular mycorrhiza fungicides.%丛枝菌根真菌(AM真菌)是一种新型的微生物肥料,对减少化肥和农药施用,减少环境污染,提高农作物产量等方面具有不可替代的作用.介绍了AM真菌的特点及我国生产的微生物肥料种类,对AM真菌菌剂的生产方法及其应用情况进行了概述,指出AM真菌菌剂的应用前景.

  4. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  5. Response of Root Properties to Tripartite Symbiosis between Lucerne (Medicago sativa L., Rhizobia and Mycorrhiza Under Dry Organic Farming Conditions

    Directory of Open Access Journals (Sweden)

    M. R. Ardakani

    2009-01-01

    Full Text Available Problem statement: It is generally considered that root turnover is a major contributor to organic matter and mineral nutrient cycles in organic managed agroecosystems. Approach: This study designed to investigate whether microbial activity could affect on root properties of Lucerne in an organically managed field under dry weather conditions. The trial was laid out as a factorial experiment in the fields of the University of Natural Resources and Applied Life Sciences, Vienna- Austria at Raasdorf in 2007. The experimental factors of Rhizobium (Sinorhizobium meliloti and Arbuscular Mycorrhiza (AM including Glomus etunicatum, G. intraradices and G. claroideum and irrigation levels were tested. Results: Results showed that increasing water deficit affected root dry weigh, specific root mass and root length significantly at 1% level and co-inoculation of rhizobium and mycorrhiza with irrigation increased all root parameters. Datas of variance analysis for mycorrhizal colonization showed that main effect of using mycorrhiza had significant effects on root parameters at 5 and 1% probability level at first and second harvest, respectively. Results of mean comparisons by Duncans Multiple Range Test showed that mycorrhizal colonization was higher in the inoculated treatments by rhizobium, mycorrhiza and irrigated plots in both harvests. Double interaction of mycorrhiza and irrigation was higher in both harvests (37.05 and 65.73%, respectively. Conclusion: It can be suggested that the tripartite symbiosis of Rhizobium, AM and Lucerne can improve the performance of Lucerne in organic farming and under dry conditions. Such traits could be incorporated into breeding programs to improve drought tolerance especially in organic fields.

  6. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

  7. Mycorrhiza: A Common Form of Mutualism.

    Science.gov (United States)

    Medve, Richard J.

    1978-01-01

    Mycorrhizae are among the most common examples of mutualism. This article discusses their structure, symbolic relationship, factors affecting formation and applying research. Questions are posed and answers suggested. (MA)

  8. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Karandashov, Vladimir; Nagy, Réka; Wegmüller, Sarah; Amrhein, Nikolaus; Bucher, Marcel

    2004-04-20

    Arbuscular mycorrhizae are ancient symbioses that are thought to have originated >400 million years ago in the roots of plants, pioneering the colonization of terrestrial habitats. In these associations, a key process is the transfer of phosphorus as inorganic phosphate to the host plant across the fungus-plant interface. Mycorrhiza-specific phosphate transporter genes and their regulation are conserved in phylogenetically distant plant species, and they are activated selectively by fungal species from the phylum Glomeromycota. The potato phosphate transporter gene StPT3 is expressed in a temporally defined manner in root cells harboring various mycorrhizal structures, including thick-coiled hyphae. The results highlight the role of different symbiotic structures in phosphorus transfer, and they indicate that cell-cell contact between the symbiotic partners is required to induce phosphate transport.

  9. Glomus claroideum and G. spurcum, arbuscular mycorrhizal fungi (Glomeromycota new for Poland and Europe, respectively

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2011-04-01

    Full Text Available The ontogenetic development and morphological properties of spores of two species of arbuscular mycorrhizal fungi (Glomeromycota of the genus Glomus, G. claroideum and G. spurcum, are described and illustrated. Spores of the two species were not earlier found in Poland, and this paper is the first report of the occurrence of G. spurcum in Europe. In one-species pot cultures with Plantago lanceolata as the host plant, the mycorrhizae of G. claroideum consist of arbuscules, vesicles, as well as intra- and extraradical hyphae staining intensively with trypan blue. Glomus spurcum mycorrhizae were not recognized, because many attempts to establish one-species cultures of this fungus failed. Additionally, the distribution of both the fungi in the world is presented.

  10. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    length density was twice as high in soil with added straw compared to the two other treatments. Mycorrhizal colonization resulted in lower activity of acid phosphatase in the HC for two out of three treatments. Alkaline phosphatase activity was only decreased by mycorrhiza in soil without organic matter...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may......Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...

  11. Reaction and interaction of mycorrhizae and rhizosphere

    International Nuclear Information System (INIS)

    Mycorrhizae of forest trees react and interact in a sensitive manner to environmental stress but have evolved adaption mechanism. Soil acidification causes no reduction of mycorrhizal frequency but shorter life span which is frequently compensated for by a higher production rate of mycorrhizae. Mycorrhizae of Norway spruce preferentially develop in soil pores. Nutrient availability probably relies more on the exchangeable ions at the surfaces of the pores than on the total ion exchange capacity. Additionally, organically bound compounds are mobilized by fungal hyphae and interaction on the rhizoplane. A lack of soil pores results in severe difficulties for Norway spruce to penetrate soil and to maintain mycorrhizal acticity. Water stress in the top soil causing a high percentage of dormant and dead mycorrhizae can be compensated for by a higher mycorrhizal production in deeper soil layers. At low nutrient availability in the mineral soil preferentially development of mycorrhizae is observed in the organic layer that may be regarded as an internal regulation mechanism, not as a toxic effect caused by Al in the mineral soil. Differentiated hyphal mantles protect mycorrhizae against water stress by impermeability and enhanced trehalose content and serve as storage and detoxification organs. There are indications of mycorrhizal types specially adapted to acidified soil conditions. (orig./vhe)

  12. The Distribution of Cytoplasm and Nuclei within the Extra-radical Mycelia in Glomus intraradices, a Species of Arbuscular Mycorrhizal Fungi

    OpenAIRE

    Lee, Jaikoo

    2011-01-01

    Nuclear distribution within the extra-radical fungal structures and during spore production in the arbuscular mycorrhizae fungus Glomus intraradices was examined using an in vitro monoxenic culture system. A di-compartmental monoxenic culture system was modified using a nitrocellulose membrane and a coverglass slip for detailed observations. Nuclear distribution was observed using the fluorescent DNA binding probes SYBR Green I and DAPI. Both septate and non-septate mycelial regions were obse...

  13. Amazonian açai and food dyes for staining arbuscular- micorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Aline Lourdes Martins Silva

    2015-12-01

    Full Text Available Arbuscular mycorrhizae microscopy requires differential staining of typical structures. Dyes employed, such as trypan blue, pose risks to health and environment. Alternative dyes such as pen ink and aniline have variable coloring efficiency. In this work, Brachiaria decumbens roots, discolored with caustic soda (NaOH, were stained with açai, annatto, saffron, trypan blue and pen inks. There were significant differences among dyes regarding stained mycorrhizal structures and pictures quality. Acai was considered the best alternative dye, with similar results to trypan blue.

  14. [Diversity of arbuscular mycorrhizal fungi in special habitats: a review].

    Science.gov (United States)

    Li, Su-Mei; Wang, Yin-Qiao; Liu, Run-Jin

    2013-11-01

    Arbuscular mycorrhizal fungi (AMF) are one of the important components in ecosystems, which not only have the diversity in genetics, species composition, and function, but also have the diversity in distribution and habitat. AMF infect plant root, form mycorrhiza, and nourish as obligate biotroph symbiont, with strong ecological adaptability. They not only distribute in forest, prairie, and farm land, but also distribute in the special habitats with less plant species diversity, such as commercial greenhouse soil, saline-alkali soil, mining pollution land, petroleum-contaminated land, pesticide-polluted soil, desert, dry land, wetland, marsh, plateau, volcanic, cooler, and arctic tundra, composing a unique community structure and playing an important irreplaceable role in the physiological and ecological functions. This paper summarized the species diversity and mycorrhizal morphological features of AMF in special habitats, aimed to provide essential information for the further studies on the AMF in these special habitats and extreme environments.

  15. Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism.

    Science.gov (United States)

    Merckx, Vincent; Bidartondo, Martin I

    2008-05-01

    The ancient arbuscular mycorrhizal association between the vast majority of plants and the fungal phylum Glomeromycota is a dominant nutritional mutualism worldwide. In the mycorrhizal mutualism, plants exchange photosynthesized carbohydrates for mineral nutrients acquired by fungi from the soil. This widespread cooperative arrangement is broken by 'cheater' plant species that lack the ability to photosynthesize and thus become dependent upon three-partite linkages (cheater-fungus-photosynthetic plant). Using the first fine-level coevolutionary analysis of mycorrhizas, we show that extreme fidelity towards fungi has led cheater plants to lengthy evolutionary codiversification. Remarkably, the plants' evolutionary history closely mirrors that of their considerably older mycorrhizal fungi. This demonstrates that one of the most diffuse mutualistic networks is vulnerable to the emergence, persistence and speciation of highly specific cheaters.

  16. Chasing the structures of small molecules in arbuscular mycorrhizal signaling.

    Science.gov (United States)

    Bucher, Marcel; Wegmüller, Sarah; Drissner, David

    2009-08-01

    The arbuscular mycorrhiza (AM) is a symbiosis between most terrestrial plants and fungi of the ancient phylum Glomeromycota. AM improves the uptake of water and mineral nutrients, such as phosphorus (P) and nitrogen (N), of the host plant in exchange for photosynthetically fixed carbon. Successful colonization and a functional interaction between host plant and mycobiont are based upon exchange of signaling molecules at different stages of symbiosis development. Strigolactones, a novel class of plant hormones, are secreted by plant roots stimulating presymbiotic growth of AM fungi. Fungi release soluble signaling molecules, the enigmatic 'Myc factors', that activate early symbiotic root responses. Lysophosphatidylcholine is a lipophilic intraradical mycorrhizal signal triggering plant phosphate transporter gene expression late in AM development through a P-controlled transcriptional mechanism. This enables uptake of orthophosphate released from the AM fungus.

  17. Mycorrhiza-induced resistance: more than the sum of its parts?

    Science.gov (United States)

    Cameron, Duncan D.; Neal, Andrew L.; van Wees, Saskia C.M.; Ton, Jurriaan

    2014-01-01

    Plants can develop an enhanced defensive capacity in response to infection by arbuscular mycorrhizal fungi (AMF). This ‘mycorrhiza-induced resistance’ (MIR) provides systemic protection against a wide range of attackers and shares characteristics with systemic acquired resistance (SAR) after pathogen infection and induced systemic resistance (ISR) following root colonisation by non-pathogenic rhizobacteria. It is commonly assumed that fungal stimulation of the plant immune system is solely responsible for MIR. In this opinion article, we present a novel model of MIR that integrates different aspects of the induced resistance phenomenon. We propose that MIR is a cumulative effect of direct plant responses to mycorrhizal infection and indirect immune responses to ISR-eliciting rhizobacteria in the mycorrhizosphere. PMID:23871659

  18. Enhanced Tomato Disease Resistance Primed by Arbuscular Mycorrhizal Fungus

    Directory of Open Access Journals (Sweden)

    Yuanyuan eSong

    2015-09-01

    Full Text Available Roots of most terrestrial plants form symbiotic associations (mycorrhiza with soil- borne arbuscular mycorrhizal fungi (AMF. Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill. early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL and lipoxygenase (LOX in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related (PR proteins, PR1, PR2 and PR3, as well as defense-related genes LOX, AOC and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT plant, a jasmonate (JA biosynthesis mutant (spr2, and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for

  19. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  20. Effects of mycorrhiza on growth and essential oil production in selected aromatic plants

    Directory of Open Access Journals (Sweden)

    Waed Tarraf

    2015-09-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis is widely investigated in aromatic herbs. Several studies have shown different effects on secondary metabolites, biomass production, as well as oil quantitative and qualitative aspects. The seeking to increase the yield of plants and their oils is an interesting topic in the world of medicinal and aromatic plant production. In tune with that, this study evaluated the effectiveness of two mycorrhiza fungi, Funneliformis mosseae (syn. Glomus mosseae and Septoglomus viscosum (syn. Glomus viscosum, on three species from Lamiaceae family: Salvia officinalis L., Origanum vulgare L., and Thymus vulgaris L. besides untreated control. It was found that the effect of symbiosis on growth was more favourable with S. viscosum than other AM fungus. The S. viscosum inoculation raised the yield of essential oil in oregano. Analysis of gas chromatography/mass spectrometry showed that manool obtained the highest abundance in leaf essential oil of inoculated sage; thymol was the major component whatever the treatment in thyme and lower relative content of carvacrol was reported with arbuscular mycorrhizal fungi inoculation in oregano. The results suggest the mycorrhizal inoculation as a promising technology in sustainable agricultural system to improve the plant productivity performance. Specific inocula are strategic to enhance the chemical profile of essential oils.

  1. Response Characteristics of Physiological Defense Indexes of Host Plant at Early Stage of Arbuscular Mycorrhiza Development between Amorpha fruticosa and AM Fungi%AM真菌和紫穗槐苗互作早期宿主防御生理指标的响应特征

    Institute of Scientific and Technical Information of China (English)

    宋鸽; 宋福强

    2011-01-01

    在温室盆栽条件下研究AM真菌与紫穗槐互作早期宿主防御生理指标的响应特征.结果表明:在AM真菌侵染宿主植物早期阶段,根系保护酶瞬时激活,植保素类黄酮瞬时积累,而且接种根内球囊霉( GI)同接种摩西球囊霉(GM)处理相比保护酶活性和类黄酮含量变化相对较大.接种AM真菌处理MDA含量下降,尤其在紫穗槐出苗后25天,接种GI和GM处理MDA含量分别降低26.6%和25.8%.在保护酶失活的同时,几丁质诱导子降解产物GlcN和可溶性蛋白含量增加,而且产生一些新的蛋白,由此推测:几丁质诱导子的降解和新增蛋白的出现是调节植物防御反应允许建立互惠共生体的可能机制.%This article studied the response characteristics of protective enzymes and malondialdehyde (MDA) at the early stage of the development of arbuscular mycorrhizal between AM fungi and Amorpha fruticosa with a potting experiment in a greenhouse. The result showed that at the early stage of A. Fruticosa infected with AM fungi, protective enzymes (PPO and POD) of the root system were transiently activated, along with an accumulation of flavonoid (a kind of phytoalexin). The activities of protective enzymes and the flavonoid contents had greater increases in roots inoculated with Gl (Glomus intraradices) than GM (Glomus mosseae). Additionally, the contents of MDA decreased respectively 26. 6% and 25. 8% in CM- and GI- colonized plants in 25 d after the seed germination. With inactivation of the protective enzymes, contents of soluble protein and GlcN (Glucosamine) increased and some new proteins occurred, which indicated that the degradation of chitin and emergence of new proteins were potential mechanisms regulating the defense responses of host plants to develop mutually beneficial symbiosis.

  2. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils

    International Nuclear Information System (INIS)

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of 137Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with 137Cs was investigated, with non-mycorrhizal quinoa included as a “reference” plant. The effect of cucumber and ryegrass inoculation with AM fungi on 137Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and 137Cs uptake increased on loamy sand and loamy soils. The total 137Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of 137Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. - Highlights: ► Effect of soil inoculation on 137Cs uptake by crops was studied in greenhouse. ► 137Cs uptake by inoculated sunflower plants was most pronounced. ► The higher 137Cs uptake by inoculated sunflower due to presence of mycorrhiza. ► Studies suggest potential for use of mycorrhiza on contaminated sites.

  3. Interação de chumbo, da saturação por bases do solo e de micorriza arbuscular no crescimento e nutrição mineral da soja Interaction between lead, soil base saturation rate, and mycorrhiza on soybean development and mineral nutrition

    Directory of Open Access Journals (Sweden)

    S. A. L. Andrade

    2003-10-01

    Full Text Available Existem divergências sobre o efeito do fungo micorrízico arbuscular (FMA na absorção de metais pesados pelas plantas. Isso pode ser atribuído não só às diferenças na disponibilidade do metal no solo, espécie de FMA e de planta, mas também às possíveis interações que ocorrem entre estes e os demais fatores ambientais. Realizou-se um experimento em casa de vegetação, com a finalidade de avaliar o efeito da inoculação de FMAe da saturação por bases do solo sobre o crescimento, nutrição e absorção de Pb em soja crescida em um Latossolo Vermelho-Amarelo. Os tratamentos consistiram de inoculação, ou não, de Glomus macrocarpum, duas doses de calcário, elevando a saturação por bases do solo a 63 e 82 %, e cinco doses de Pb (0; 7,5; 37,5; 150 e 300 mg dm-3, utilizando-se como fonte Pb(NO32. A inoculação do FMA aumentou a produção de matéria seca da parte aérea das plantas, as quais também apresentaram maiores teores de P e maiores quantidades acumuladas de P, Ca, Mg, Mn, Fe e Zn. A produção de matéria seca da soja micorrizada reduziu linearmente com o aumento da dose de Pb adicionada, em ambas as saturações por bases. No solo com menor V %, a colonização radicular pelo FMA diminuiu 40 % na maior dose de Pb adicionada, o teor de Pb na parte aérea da soja foi cinco vezes maior e as plantas micorrizadas apresentaram um teor de Pb 30 % menor do que as não micorrizadas. A adição de Pb afetou tanto o estabelecimento quanto o desempenho da simbiose. O FMA teve papel relevante na diminuição da concentração do Pb na parte aérea da soja, no solo com menor saturação por bases, conferindo tolerância à planta em uma condição de excesso de metal pesado no solo.The effects of arbuscular mycorrhizal fungi (AMF on heavy metal absorption by plants are controversial. This is due to the differences in soil metal availability, AMF and plant species, and also to possible interactions among these and other

  4. Effect of ryegrass (Lolium perenne L.) roots inoculation using different arbuscular mycorrhizal fungi (AMF) species on sorption of iron-cyanide (Fe-CN) complexes

    Science.gov (United States)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-04-01

    Soils and groundwater on sites of the former Manufactured Gas Plants (MGPs) are contaminated with various complex iron-cyanides (Fe-CN). Phytoremediation is a promising tool in stabilization and remediation of Fe-CN affected soils, however, it can be a challenging task due to extreme adverse and toxic conditions. Phytoremediation may be enhanced via rhizosphere microbial activity, which can cooperate on the degradation, transformation and uptake of the contaminants. Recently, increasing number of scientist reports improved plants performance in the removal of toxic compounds with the support of arbuscular mycorrhizae fungi (AMF). Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations, were used to study the effect of ryegrass roots (Lolium perenne L.) inoculation with Rhizophagus irregularis and a mixture of Rhizophagus irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum on Fe-CN sorption. Results indicated significantly higher colonization of R. irregularis than for the mixture of AMF species on ryegrass roots. Sorption experiments revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study indicates contribution of AM fungi in phytoremediation of Fe-CN contaminated soil.

  5. Effects of Arbuscular Mycorrhiza Fungi on Seedlings Growth and Antioxidant Systems of Leaves in Cucumber Under Low Temperature Stress%AMF对低温胁迫下黄瓜幼苗生长和叶片抗氧化系统的影响

    Institute of Scientific and Technical Information of China (English)

    韩冰; 贺超兴; 闫妍; 郭世荣; 于贤昌

    2011-01-01

    [目的]研究丛枝菌根真菌(arbuscular mucorrhiz fungi,AMF)对低温胁迫下黄瓜(Cucumis sativusL.)幼苗生长和抗氧化酶活性等生理指标的影响.[方法]以黄瓜品种‘津春2号'为试材,利用人工气候箱进行低温处理(昼/夜,15/10℃),研究低温胁迫下接种AMF对黄瓜幼苗生长、电解质渗透率、根系活力和叶绿素、丙二醛(MDA)、可溶性蛋白质含量及过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性的影响.[结果]与低温胁迫的未接菌对照相比,接种AMF可以使低温胁迫下黄瓜幼苗的株高增长量、茎粗增长量、地上部和地下部鲜质量的增长量、地上部和地下部干质量的增长量均显著提高,可溶性蛋白含量增加10.24%,根系活力提高178.32%,POD、SOD、CAT活性分别提高57.63%、6.72%和35%,MDA含量和电解质渗透率分别降低11.05%和16.08%.[结论]接种AMF可通过促进低温胁迫下黄瓜幼苗叶片可溶性蛋白的大量积累和抗氧化酶活性的提高,来降低膜脂过氧化水平,从而增强黄瓜幼苗对低温胁迫的适应性.%[Objective] The aim of this experiment was to study the effects ofarbuscular mycorrhiz fungi(AMF) on the growth,antioxidant enzyme activities and other physiological indices in cucumber (Cucumis sativus L.) seedlings. [Method] Cucumber cultivar ‘Jinchun 2’ was subjected to low temperature treatment of 15/10℃ ( day / night ) in the artificial climate chamber. The effects of AMF on the growth and the changes in electrolyte leakage rate, root activity, chlorophyll, soluble protein and malondialdehyde (MDA) contents, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities under low temperature stress in the seedling leaves were investigated. [Result] Under low temperature stress, the increments of height, stem diameter, fresh weight and dry weight of root or shoot were suppressed. Compared with the control treatment, AMF-inoculation treatment

  6. What restoration ecology can tell us about mycorrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.

    1984-01-01

    Research is summarized on how different topsoil handling procedures influence mycorrhizal propagule survival. The relationship of mycorrhiza to plant establishment and survival is also discussed. (ACR)

  7. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens

    NARCIS (Netherlands)

    Liang, Minxia; Liu, Xubing; Etienne, Rampal S; Huang, Fengmin; Wang, Yongfan; Yu, Shixiao

    2015-01-01

    Soilborne pathogens can contribute to diversity maintenance in tree communities through the Janzen-Connell effect, whereby the pathogenic reduction of seedling performance attenuates with distance from conspecifics. By contrast, arbuscular mycorrhizal fungi (AMF) have been reported to promote seedli

  8. 桑树(Morusalba)与丛枝菌根的共生对重金属元素吸收的影响%Effects of symbiosis of mulberry (Morus alba) with arbuscular mycorrhizae on absorption of heavy metals (Fe, Mn, Zn, Cu and Cd)

    Institute of Scientific and Technical Information of China (English)

    樊宇红; 凌宏文; 朴河春

    2014-01-01

    Mulberry is colonized by Arbuscular mycorrhizal (AM) fungi. The AM symbiosis is important for heavy metal absorption by host mulberry. However, the symbiont of mulberry with AM fungi should change with various soil conditions. Mulberry is usually established for sericulture in Libo and Huangping areas of southwest China. Therefore, the leaf quality is important for sericulture. Libo and Huangping are located in limestone areas, among where sandstone distributed, resulting in different soil pH in collected samples in both Libo and Huangping. Our results showed that average soil pH of Libo soils (4.92±1.03) was significantly lower than that of Huangping soils (5.96±1.08). Soil acidity directly affects the distribution of AM fungi. Relatively lower soil pH of Libo soils should be favorable to the growth of fungi, therefore, to the formation of symbionts, resulting in higher bioavailability of heavy metals in soils, and higher absorption of heavy metals by mulberry. In addition, sugar concentration of mulberry foliage from Libo (67±27) mg·g-1 was significantly lower than that from Huangping (105±57) mg·g-1, but sugar concentration of mulberry roots from Libo (125±43) mg·g-1was significantly higher than that from Huangping (91±43) mg·g-1 Those results indicate that compared with Huangping (with higher soil pH), more products of photosynthesis enter to roots from Libo (with lower soil pH). Fungi are obligated symbionts and cannot survive without photosynthate supply from plants. Another role of root exudates is the solubility of heavy metals, resulting in higher ability of movements, and easily absorption by host plants. Therefore, it is why mulberry foliagein from Libo with lower soil pH having higher concentrations of heavy metal. Although mulberry can adapt to Kast areas with drought and poor nutrients of environments, their favorable soil is relatively acidified with rich nutrients.%桑树(Morus alba)可与丛枝菌根(AM)真菌形成互利共生

  9. Soil lime level (pH) and VA-Mycorrhiza effects on growth responses of sweetgum seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E.A.; Young, J.L.; Linderman, R.G.

    1983-01-01

    Sequential greenhouse experiments limed a strongly acid surface and subsurface horizons of phosphorus-deficient Jory clay loam with increments of calcium carbonate to attain a range in soil pH from 5.0 to 8.1. In the absence of vesicular-arbuscular mycorrhizae (VAM), neither the organic matter-rich surface nor the organic matter-poor subsurface horizon supported growth of sweetgum seedlings at any pH despite regular nutrient supplements. The effects of pH, VAM, and soil horizon on nutrient accumulation and plant nutrient concentrations were variable. Nitrogen and phosphorus concentrations were generally higher in the VAM than in control seedlings, which suggests that host plant should be matched with VAM species adapted to particular soil and climate conditions to obtain maximum benefit from a mycorrhizal association. 18 references, 2 figures, 3 tables.

  10. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.

    Science.gov (United States)

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2016-08-01

    The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely.

  11. The characterization of novel mycorrhiza-specific phosphate transporters from ¤Lycopersicon esculentum¤ and ¤Solanum tuberosum¤ uncovers functional redundancy in symbiotic phosphate transport in solanaceous species

    DEFF Research Database (Denmark)

    Nagy, F.; Karandashov, V.; Chague, W.;

    2005-01-01

    Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture...... species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice...... identity and were shown to direct expression exclusively in colonized cells when fused to the GUS reporter gene, in accordance with the abundance of LePT4 and StPT4 transcripts in mycorrhized roots. Furthermore, extensive sequencing of StPT4-like clones and subsequent expression analysis in potato...

  12. The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato

    Science.gov (United States)

    Sanchez-Bel, Paloma; Troncho, Pilar; Gamir, Jordi; Pozo, Maria J.; Camañes, Gemma; Cerezo, Miguel; Flors, Víctor

    2016-01-01

    Mycorrhizal plants are generally quite efficient in coping with environmental challenges. It has been shown that the symbiosis with arbuscular mycorrhizal fungi (AMF) can confer resistance against root and foliar pathogens, although the molecular mechanisms underlying such mycorrhiza-induced resistance (MIR) are poorly understood. Tomato plants colonized with the AMF Rhizophagus irregularis display enhanced resistance against the necrotrophic foliar pathogen Botrytis cinerea. Leaves from arbuscular mycorrhizal (AM) plants develop smaller necrotic lesions, mirrored also by a reduced levels of fungal biomass. A plethora of metabolic changes takes place in AMF colonized plants upon infection. Certain changes located in the oxylipin pathway indicate that several intermediaries are over-accumulated in the AM upon infection. AM plants react by accumulating higher levels of the vitamins folic acid and riboflavin, indolic derivatives and phenolic compounds such as ferulic acid and chlorogenic acid. Transcriptional analysis support the key role played by the LOX pathway in the shoots associated with MIR against B. cinerea. Interestingly, plants that have suffered a short period of nitrogen starvation appear to react by reprogramming their metabolic and genetic responses by prioritizing abiotic stress tolerance. Consequently, plants subjected to a transient nitrogen depletion become more susceptible to B. cinerea. Under these experimental conditions, MIR is severely affected although still functional. Many metabolic and transcriptional responses which are accumulated or activated by MIR such NRT2 transcript induction and OPDA and most Trp and indolic derivatives accumulation during MIR were repressed or reduced when tomato plants were depleted of N for 48 h prior infection. These results highlight the beneficial roles of AMF in crop protection by promoting induced resistance not only under optimal nutritional conditions but also buffering the susceptibility triggered by

  13. Cloning arbuscule-related genes from mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen

    2000-01-01

    Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials...... available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential...

  14. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    Energy Technology Data Exchange (ETDEWEB)

    Renker, C. [Institute of Ecology, Department of Environmental Sciences, University of Jena, Dornburger Str. 159, D-07743 Jena (Germany)]. E-mail: crenker@uni-leipzig.de; Blanke, V. [Institute of Ecology, Department of Environmental Sciences, University of Jena, Dornburger Str. 159, D-07743 Jena (Germany); Buscot, F. [Institute of Ecology, Department of Environmental Sciences, University of Jena, Dornburger Str. 159, D-07743 Jena (Germany)

    2005-05-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal.

  15. Sugar beet waste and its component ferulic acid inhibits external mycelium of arbuscular mycorrhizal fungus

    DEFF Research Database (Denmark)

    Medina, Almudena; Jakobsen, Iver; Egsgaard, Helge

    2011-01-01

    mycelium in soil whereas non-fermented waste (SB) had a strong inhibitory effect. The underlying mechanisms are not understood. We used gas chromatography–mass spectrometry to identify differences in composition of water extracts of ASB and SB. The chromatograms showed that ferulic acid was present in SB...... and absent in ASB. We compared the effects of the water extracts of SB and ASB and ferulic acid upon the growth of Glomus intraradices in in vitro monoxenic cultures. Hyphal growth of the AM fungus G. intraradices was extremely reduced in ferulic acid and SB treatments. Moreover, AM hyphae appeared......External arbuscular mycorrhiza (AM) mycelium plays an important role in soil while interacting with a range of biotic and abiotic factors. One example is the soil organic amendment sugar beet waste. The fermented Aspergillus niger–sugar beet waste (ASB) increases growth and P uptake by the AM...

  16. A critical review on the nutrition role of arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2012-06-01

    Full Text Available Even though many factors influence the accession of mineral nutrients required for plantgrowth, arbuscular mycorrhizal-roots can greatly enhance the accession of mineral nutrients in hostplants. The nutrients enhanced most by AM are those that are of low mobility or sparingly soluble. Withother factors being equal in specific environments, AM may be the difference between whether plants willsurvive and/or have the ability to obtain the required mineral nutrients for sustainability. Although themost commonly reported mineral nutrient enhanced in host plants with AM-roots is P, accession of manyother mineral nutrients (e.g., Zn, Cu, N, S, Ca, Mg, K may be enhanced in plants by AM. Severalreviews about accession of mineral nutrients in AM plants have been published fairly recently. Some ofthe concepts mentioned with P accession may be applicable to the other mineral nutrients. This reviewgives an overview on the role of mycorrhizae in nutrition.

  17. Modelling Spatial Interactions in the Arbuscular Mycorrhizal Symbiosis using the Calculus of Wrapped Compartments

    CERN Document Server

    Calcagno, Cristina; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Troina, Angelo; 10.4204/EPTCS.67.3

    2011-01-01

    Arbuscular mycorrhiza (AM) is the most wide-spread plant-fungus symbiosis on earth. Investigating this kind of symbiosis is considered one of the most promising ways to develop methods to nurture plants in more natural manners, avoiding the complex chemical productions used nowadays to produce artificial fertilizers. In previous work we used the Calculus of Wrapped Compartments (CWC) to investigate different phases of the AM symbiosis. In this paper, we continue this line of research by modelling the colonisation of the plant root cells by the fungal hyphae spreading in the soil. This study requires the description of some spatial interaction. Although CWC has no explicit feature modelling a spatial geometry, the compartment labelling feature can be effectively exploited to define a discrete surface topology outlining the relevant sectors which determine the spatial properties of the system under consideration. Different situations and interesting spatial properties can be modelled and analysed in such a ligh...

  18. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses.

    Science.gov (United States)

    Buscot, François

    2015-01-01

    Being highly sensitive to ecological variations, symbiotic associations should inherently have a limited occurrence in nature. To circumvent this sensitivity and reach their universal distribution, symbioses used three strategies during their evolution, which all generated high biodiversity levels: (i) specialization to a specific environment, (ii) protection of one partner via its internalization into the other, (iii) frequent partner exchange. Mycorrhizal associations follow the 3rd strategy, but also present traits of internalization. As most ancient type, arbuscular mycorrhiza (AM) formed by a monophyletic fungal group with reduced species richness did constantly support the mineral nutrition of terrestrial plants and enabled their ecological radiation and actual biodiversity level. In contrast ectomycorrhiza (EM) evolved later and independently within different taxa of fungi able to degrade complex organic plant residues, and the diversity levels of EM fungal and tree partners are balanced. Despite their different origins and diversity levels, AM and EM fungi display similar patterns of diversity dynamics in ecosystems. At each time or succession interval, a few dominant and many rare fungi are recruited by plants roots from a wide reservoir of propagules. However, the dominant fungal partners are frequently replaced in relation to changes in the vegetation or ecological conditions. While the initial establishment of AM and EM fungal communities corresponds to a neutral recruitment, their further succession is rather driven by niche differentiation dynamics. PMID:25239593

  19. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    Science.gov (United States)

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants.

  20. Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress.

    Science.gov (United States)

    Song, Fuqiang; Li, Jize; Fan, Xiaoxu; Zhang, Quan; Chang, Wei; Yang, Fengshan; Geng, Gui

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. In this study effect of Glomus mosseae/Medicago sativa mycorrhiza on atrazine degradation was investigated. It was observed that the atrazine degradation rates with any addition level in mycorrhizal treatments were all significantly higher than those in non-mycorrhizal treatments. When atrazine was applied at 20 mg kg(-1), the removal efficiency was up to 74.65%. Therefore, G. mosseae can be considered as ideal inhabitants of technical installations to facilitate phytoremediation. Furthermore, a total of 10.4 Gb was used for de novo transcriptome assembly, resulting in a comprehensive data set for the identification of genes corresponding to atrazine stress in the AM association. After comparative analysis with edgeR, a total of 2,060 differential expressed genes were identified, including 570 up-regulated genes and 1490 down-regulated genes. After excluding 'function unknown' and 'general function predictions only' genes, 172 up-regulated genes were obtained. The differentially expressed genes in AM association with and without atrazine stress were associated with molecular processes/other proteins, zinc finger protein, intracellular/extracellular enzymes, structural proteins, anti-stress/anti-disease protein, electron transport-related protein, and plant growth associated protein. Our results not only prove AMF has important ecological significance on atrazine degradation but also provide evidence for the molecular mechanisms of atrazine degradation by AMF. PMID:26833403

  1. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    Science.gov (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth.

  2. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    Science.gov (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth. PMID:22418429

  3. Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress.

    Science.gov (United States)

    Song, Fuqiang; Li, Jize; Fan, Xiaoxu; Zhang, Quan; Chang, Wei; Yang, Fengshan; Geng, Gui

    2016-02-02

    Arbuscular mycorrhizal fungi (AMF) protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. In this study effect of Glomus mosseae/Medicago sativa mycorrhiza on atrazine degradation was investigated. It was observed that the atrazine degradation rates with any addition level in mycorrhizal treatments were all significantly higher than those in non-mycorrhizal treatments. When atrazine was applied at 20 mg kg(-1), the removal efficiency was up to 74.65%. Therefore, G. mosseae can be considered as ideal inhabitants of technical installations to facilitate phytoremediation. Furthermore, a total of 10.4 Gb was used for de novo transcriptome assembly, resulting in a comprehensive data set for the identification of genes corresponding to atrazine stress in the AM association. After comparative analysis with edgeR, a total of 2,060 differential expressed genes were identified, including 570 up-regulated genes and 1490 down-regulated genes. After excluding 'function unknown' and 'general function predictions only' genes, 172 up-regulated genes were obtained. The differentially expressed genes in AM association with and without atrazine stress were associated with molecular processes/other proteins, zinc finger protein, intracellular/extracellular enzymes, structural proteins, anti-stress/anti-disease protein, electron transport-related protein, and plant growth associated protein. Our results not only prove AMF has important ecological significance on atrazine degradation but also provide evidence for the molecular mechanisms of atrazine degradation by AMF.

  4. Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Schweiger, P.F.; Jakobsen, I.

    1998-01-01

    was separated from the main root compartment by nylon mesh. After 5 weeks of plant growth external hyphae of the AM fungi had spread throughout the hyphal compartment. At this time aqueous solutions of both P-32 and pesticide were added to the hyphal compartment. Resulting soil pesticide concentrations covered...... a wide range with the aim of describing the dose-response relationships between pesticide concentration and hyphal P uptake. Plants were harvested 6d after pesticide application. The amount of P-32 taken up into the plant was measured as was hyphal length in the hyphal compartment. Carbendazim had...... effects on hyphal P uptake even when applied at concentrations of 125 or 46 mu g g(-1) respectively. These concentrations are equivalent to expected field concentrations following pesticide applications at 100 times the recommended field rate. (C) 1998 Elsevier Science Ltd. All rights reserved....

  5. Arbuscular mycorrhiza and plant succesion on zinc smelter spoil heap in Katowice-Wełnowiec

    Directory of Open Access Journals (Sweden)

    Ewa Gucwa-Przepióra

    2014-02-01

    Full Text Available Mycorrhizal status of plants colonising the zinc wastes in Katowice was surveyed. In total 69 vascular plant species (25 families appearing on the investigated area have been noted. More than 60% of them were mycorrhizal. Non-mycorrhizal species, such as Cardaminopsis arenosa and Silene vulgaris dominated the early successional part of the zinc heap. Tussilago farfara was the only AM plant there, however, no arbuscules were developed at this stage. The number of AM species was increased on the 20 years old part of the zinc wastes and on the older 30-50 years old areas. AM plants constituted about 60% of the total number of species there. The frequency of particular AM species was the highest on the oldest part of the investigated area. The usefulness of the results for restoration practices was discussed.

  6. Arbuscular mycorrhiza of plants from the Mountain Botanical Garden in Zakopane

    Directory of Open Access Journals (Sweden)

    Szymon Zubek

    2014-08-01

    Full Text Available The mycorrhizal status of 77 plant species collected from the Mountain Botanical Garden of the Polish Academy of Sciences in Zakopane (southern Poland was surveyed. These plants include rare, endemic and threatened species in the Tatra Mts. (the Western Carpathians and are maintained in the botanical garden in order to develop effective methods of protection and cultivation. Plants belonging to Brassicaceae, Caryophyllaceae, Dryopteridaceae, Juncaceae, Polygonaceae, Rubiaceae and Woodsiaceae families were nonmycorrhizal. 41 species formed AM symbiosis. Spores of nine AMF spccies (Glomeromycota, including Archaeospora trappei, Glomus aggregatum, G. claroideum, G. constrictum, G. deserticola, G. geosponrum, G. microcarpum, G. mosseae and G.rubiforme were isolated for the first time from this region of Poland. In addition, the occurrence of the fine endophyte, G. tenue was detected in roots of 18 species from the study area, although formation of arbuscules by this fungus was observed rarely. AM fungi were sporadically accompanied by dark septate endophytes (DSE. 70% of nonmycorrhizal plant sepcies were devoid of DSE.

  7. Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts

    Directory of Open Access Journals (Sweden)

    Szymon Zubek

    2011-04-01

    Full Text Available The mycorrhizal status of 24 plant species considered as endemic, endangered in Poland and included in the IUCN Red List of Threatened Plants is reported. Selected plants and rhizosphere soil samples were collected in the Tatra Mts (Western Carpathians. Individuals of seriously threatened taxa were obtained from seeds and inoculated with available AM fungal strains under laboratory conditions. AM colonisation was found in 16 plants; 9 species were of the Arum-type, 4 - Paris and 3 taxa revealed intermediate morphology. The mycelium of the fine endophyte (Glomus tenue and dark septate fungi (DSE were observed in the material collected in the field. 20 AMF species (Glomeromycota found in the rhizosphere of the investigated plants were reported for the first time from the Tatra Mts. The results provide information that might be useful for conservation and restoration programmes of these species. Application of AMF in active plant protection projects is discussed.

  8. Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi

    OpenAIRE

    Cordier, Christelle; Trouvelot, A; GIANINAZZI, Silvio; Gianinazzi-Pearson, Vivienne

    1996-01-01

    Deux champignons endomycorhizogenes a arbuscules (Glomus intraradices, Glomus caledonium), introduits pendant la periode d'acclimatation, ont ete testes pour leur pouvoir infectieux et leur effet sur la croissance de plants micropropages de merisiers (Prunus avium L) transplantes dans deux differents sols neutres, prealablement desinfectes ou non. Les vitroplants endomycorhizes presentent une meilleure croissance que les plantes temoins sur les deux sols desinfectes. L'importance de l'augment...

  9. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    Directory of Open Access Journals (Sweden)

    David P Janos

    Full Text Available Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  10. Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas ( Pisum sativum ) caused by Aphanomyces euteiches

    DEFF Research Database (Denmark)

    Bødker, Lars; Kjøller, Rasmus; Rosendahl, Søren

    1998-01-01

    The effects of inorganic phosphate levels and the presence of arbuscular mycorrhiza on disease severity of Aphanomyces euteiches in pea roots were studied. Disease severity on roots and epicotyl as well as the oospore number within infected root tissue were correlated with the phosphorus (P) level...... in the growth medium. The arbuscular mycorrhizal fungus Glomus intraradices increased P uptake and the P concentration in the plant but reduced disease development in peas. Polyacrylamide gel electrophoresis followed by densitometry of glucose-6-phosphate dehydrogenase specific to A.euteiches was used...... to measure the activity of the pathogen in roots. The enzyme activity increased with disease severity and disease incidence, except in plants supplemented with P at the highest level, where a peak in activity was seen 12 days after inoculation with the pathogen, followed by a decrease in activity...

  11. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives.

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Chen, Bao-Dong; Hao, Zhi-Peng; Wang, Ji-Yong; Huang, Lu-Qi; Yang, Guang; Cui, Xiu-Ming; Yang, Li; Wu, Zhao-Xiang; Chen, Mei-Lan; Zhang, Yan

    2013-05-01

    Medicinal plants have been used world-wide for thousands of years and are widely recognized as having high healing but minor toxic side effects. The scarcity and increasing demand for medicinal plants and their products have promoted the development of artificial cultivation of medicinal plants. Currently, one of the prominent issues in medicinal cultivation systems is the unstable quality of the products. Arbuscular mycorrhiza (AM) affects secondary metabolism and the production of active ingredients of medicinal plants and thus influence the quality of herbal medicines. In this review, we have assembled, analyzed, and summarized the effects of AM symbioses on secondary metabolites of medicinal plants. We conclude that symbiosis of AM is conducive to favorable characteristics of medicinal plants, by improving the production and accumulation of important active ingredients of medicinal plants such as terpenes, phenols, and alkaloids, optimizing the composition of different active ingredients in medicinal plants and ultimately improving the quality of herbal materials. We are convinced that the AM symbiosis will benefit the cultivation of medicinal plants and improve the total yield and quality of herbal materials. Through this review, we hope to draw attention to the status and prospects of, and arouse more interest in, the research field of medicinal plants and mycorrhiza.

  12. [Arbuscular mycorrhizal bioremediation and its mechanisms of organic pollutants-contaminated soils].

    Science.gov (United States)

    Li, Qiuling; Ling, Wanting; Gao, Yanzheng; Li, Fuchun; Xiong, Wei

    2006-11-01

    Arbuscular mycorrhiza (AM), the symbiont of arbuscular mycorrhizal fungi (AMF) and host plant root, has been proved to be able to improve soil structure and enhance the plant resistance to environmental stress. There are more than 170 kinds of AMF worldwide. Recently, the promoted degradation of organic pollutants in soils in the presence of AM was observed, and AM bioremediation (AMB) is becoming a promising and perspective remediation technique for organic pollutants-contaminated soils. This paper reviewed the research progress on the AMB of soils contaminated by typical organic pollutants such as polycyclic aromatic hydrocarbons, PAEs, petroleum, and pesticides. The mechanisms of AMB mainly include the metabolism of organic pollutants by AM fungi, the degradation of these pollutants by the enzymes derived from AM exudation and by the enhanced root exudation and rhizospheric microbial activity in the presence of AM, and the removal of the pollutants by plant uptake and accumulation. As a new approach for the remediation of contaminated soils, some aspects involved in AMB, e.g., the screening of high efficient AM fungi, efficacy of co-existing AM fungi, soil ageing, and plant uptake of organic pollutants from soils in the presence of AM, still need to be further investigated.

  13. Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Błaszkowski, Janusz; Renker, Carsten; Buscot, François

    2006-05-01

    Two new ectocarpic arbuscular mycorrhizal fungal species, Glomus drummondii and G. walkeri (Glomeromycota), found in maritime sand dunes of northern Poland and those adjacent to the Mediterranean Sea are described and illustrated. Mature spores of G. drummondii are pastel yellow to maize yellow, globose to subglobose, (58-)71(-85) micromdiam, or ovoid, 50-80x63-98 microm. Their wall consists of three layers: an evanescent, hyaline, short-lived outermost layer, a laminate, smooth, pastel yellow to maize yellow middle layer, and a flexible, smooth, hyaline innermost layer. Spores of G. walkeri are white to pale yellow, globose to subglobose, (55-)81(-95) micromdiam, or ovoid, 60-90x75-115 microm, and have a spore wall composed of three layers: a semi-permanent, hyaline outermost layer, a laminate, smooth, white to pale yellow middle layer, and a flexible, smooth, hyaline innermost layer. In Melzer's reagent, only the inner- and outermost layers stain reddish white to greyish rose in G. drummondii and G. walkeri, respectively. Both species form vesicular-arbuscular mycorrhizae in one-species cultures with Plantago lanceolata as the host plant. Phylogenetic analyses of the ITS and parts of the LSU of the nrDNA of spores placed both species in Glomus Group B sensu Schüssler et al. [Schüssler A, Schwarzott D, Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycolological Research 105: 1413-1421.].

  14. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.

    Science.gov (United States)

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2016-08-01

    The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely. PMID:27208643

  15. The effects of endogenous mycorrhiza (Glomus spp. on plant growth and yield of grafted cucumber (Cucumis sativum l under common commercial greenhouse conditions

    Directory of Open Access Journals (Sweden)

    ISMET BABAJ

    2014-07-01

    Full Text Available The objective of the study was to evaluate the effect of the Arbuscular mycorrhizae (AM fungi on plant growth and yield of grafted cucumber seedlings. The experiment was conducted in a plastic greenhouse located in Shipol, Mitrovica municipality of Kosovo.Graded seeds of cucumber (cv. Ekron F1, and graded seeds of a rootstock (cv. Nimbus F1; C. maxima Duchesne x C. moschata Duchesne, were sown in polysterol trays. Three types of grafted seedlings; self-grafted (SEG, splice grafted (SG and root pruned splice grafted (RPSG were simultaneously produced in equal number as inoculated and non- inoculated with endogenous mycorrhiza. The combined effects of grafting methods and endogenous mycorrhiza (Glomus spp. application on the growth parameters during the nursery period as well as growth rate and yield after transplanting were tested under common commercial conditions. The different grafting methods of cucumber seedlings on C. maxima x C. moschata (SG versus RPSG have significant effects on seedlings growth parameters. Despite of commonly higher relative growth rate of RPSG seedlings till the transplanting time, SG seedlings have a significantly higher total plant dry weight (W. No difference was found regarding leaf dry weight (LW, while a significantly larger leaf area was found for RPSG seedlings. No effect of AM fungi presence was found regarding the growth parameters of grafted cucumber seedlings during the nursery stage, but the presence of AM fungi has significantly improved the growth rate of each grafting method after transplanting, as also increased the total harvested yield. The highest yield was recorded by AM inoculated RPSG seedlings.

  16. Plant-mediated 'apparent effects' between mycorrhiza and insect herbivores.

    Science.gov (United States)

    Gilbert, Lucy; Johnson, David

    2015-08-01

    Plants mediate indirect 'apparent' effects between above-ground herbivores and below-ground mutualistic mycorrhizal fungi. The herbivore-plant-mycorrhiza continuum is further complicated because signals produced by plants in response to herbivores can be transmitted to other plants via shared fungal networks below ground. Insect herbivores, such as aphids, probably affect the functioning of mycorrhizal fungi by changing the supply of recent photosynthate from plants to mycorrhizas, whereas there is evidence that mycorrhizas affect aphid fitness by changing plant signalling pathways, rather than only through improved nutrition. New knowledge of the transfer of signals through fungal networks between plant species means we now need a better understanding of how this process occurs in relation to the feeding preferences of herbivores to shape plant community composition and herbivore behaviour in nature.

  17. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-07-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  18. III. MYCORRHIZAE IN AGROFORESTRY: A CASE-STUDY

    Directory of Open Access Journals (Sweden)

    S.T. NUHAMARA

    1987-01-01

    Full Text Available Census of mycorrhizae in Shorea javanica agroforests has been made periodically in the district of Krui, Lampung, Sumatra. Amanita hemibapha (Amanitaceae, Cantharellus cibarius (Cantharella-ceae, Lactarius spp., Russula spp. (Russulaceae and Scleroderma sp. (Sclerodermataceae were commonly encountered on the agroforest floor. These mycorrhizal fungi are naturally associated with the planted trees. The significance of mycorrhizae for the maximization of growth and sustained productivity of resin is discussed as well as the need to design well defined agroforestry systems to facilitate growth and to improve production management techniques. INTRODU

  19. Injuries to Scots pine mycorrhizas and chemical gradients in forest soil in the environment of a pulp mill in Central Finland

    International Nuclear Information System (INIS)

    The occurrence and condition of Scots pine mycorrhizas were studied at different distances from a pulp mill in Central Finland. The chemical analyses of the soil humus layer in the vicinity of the mill revealed increased levels of ammonium-nitrogen, sulphur and calcium but unaltered concentrations of phosphorus and magnesium. Higher nitrate levels and nitrification were clearly detected at some sites which had recently been limed. Significant decreases in root ramification index and number of living mycorrhizas were found in a 0-0.6 km zone surrounding the factory but these parameters increased with increasing distance. Within a 2 km zone around the mill there were abundant Cenococcum geophilus and Paxilus involutus-type mycorrhizas while lowered frequencies of several other mycorrhizal types were detected. An ultrastructural study revealed changes in several types of mycorrhizas, the clearest of which were increased tannin deposition in cortical cells, intracellular growth of hyphae in cortical cells and the appearance of electron dense accumulations in the vacuoles of the funal cells. The ultrastructural changes observed were distributed at least to a distance of 3 km from the mill and occurred in the roots of trees that had only a slight loss of needle mass. Nitrogen deposition is suspected to be the primary cause of root decline but atmospheric SO2 through the tree crown is also likely to be a contributing factor. 37 refs., 10 figs., 7 tabs

  20. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    Science.gov (United States)

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants. PMID:27094118

  1. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae).

    Science.gov (United States)

    Kühdorf, Katja; Münzenberger, B; Begerow, D; Gómez-Laurito, J; Hüttl, R F

    2015-02-01

    Arbutoid mycorrhizal plants are commonly found as understory vegetation in forests worldwide where ectomycorrhiza-forming trees occur. Comarostaphylis arbutoides (Ericaceae) is a tropical woody plant and common in tropical Central America. This plant forms arbutoid mycorrhiza, whereas only associations with Leccinum monticola as well as Sebacina sp. are described so far. We collected arbutoid mycorrhizas of C. arbutoides from the Cerro de la Muerte (Cordillera de Talamanca), Costa Rica, where this plant species grows together with Quercus costaricensis. We provide here the first evidence of mycorrhizal status for the Ascomycete Leotia cf. lubrica (Helotiales) that was so far under discussion as saprophyte or mycorrhizal. This fungus formed arbutoid mycorrhiza with C. arbutoides. The morphotype was described morphologically and anatomically. Leotia cf. lubrica was identified using molecular methods, such as sequencing the internal-transcribed spacer (ITS) and the large subunit (LSU) ribosomal DNA regions, as well as phylogenetic analyses. Specific plant primers were used to confirm C. arbutoides as the host plant of the leotioid mycorrhiza.

  2. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae).

    Science.gov (United States)

    Kühdorf, Katja; Münzenberger, B; Begerow, D; Gómez-Laurito, J; Hüttl, R F

    2015-02-01

    Arbutoid mycorrhizal plants are commonly found as understory vegetation in forests worldwide where ectomycorrhiza-forming trees occur. Comarostaphylis arbutoides (Ericaceae) is a tropical woody plant and common in tropical Central America. This plant forms arbutoid mycorrhiza, whereas only associations with Leccinum monticola as well as Sebacina sp. are described so far. We collected arbutoid mycorrhizas of C. arbutoides from the Cerro de la Muerte (Cordillera de Talamanca), Costa Rica, where this plant species grows together with Quercus costaricensis. We provide here the first evidence of mycorrhizal status for the Ascomycete Leotia cf. lubrica (Helotiales) that was so far under discussion as saprophyte or mycorrhizal. This fungus formed arbutoid mycorrhiza with C. arbutoides. The morphotype was described morphologically and anatomically. Leotia cf. lubrica was identified using molecular methods, such as sequencing the internal-transcribed spacer (ITS) and the large subunit (LSU) ribosomal DNA regions, as well as phylogenetic analyses. Specific plant primers were used to confirm C. arbutoides as the host plant of the leotioid mycorrhiza. PMID:25033922

  3. On mycorrhiza development of spruces and firs in damaged stands

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, T.; Weber, G.; Kottke, I.; Oberwinkler, F.

    1989-02-01

    The authors studied the very fine roots of sick spruces and firs and established the following: 1. a surprising stability of mycorrhiza development, 2. differences in the dynamism of development and 3. modifications in the composition of the accompanying microfungi. The results suggest connections in the chain of causes of forest disease which have received little attention so far.

  4. Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil.

    Science.gov (United States)

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2015-12-01

    Abiotic stress factors including poor nutrient content and heavy metal contamination in soil, can limit plant growth and productivity. The main goal of our study was to evaluate element uptake, biomass and metabolic responses in maize roots growing in mining-impacted soil with the combination of arbuscular mycorrhiza (My) and plant growth promoting bacteria (PGPB/B). Maize plants subjected to PGPB, My and combined treatments showed a significant increase in biomass and uptake of some elements in shoot and root. Metabolite analysis identified 110 compounds that were affected ≥2-fold compared to control, with 69 metabolites upregulated in the My group, 53 metabolites in the My+B group and 47 metabolites in B group. Pathway analysis showed that impact on glyoxylate and dicarboxylate metabolism was common between My and My+B groups, whereas PGPB group showed a unique effect on fatty acid biosynthesis with significant increase in palmitic acid and stearic acid. Differential regulation of some metabolites by mycorrhizal treatment correlated with root biomass while PGPB regulated metabolites correlated with biomass increase in shoot. Overall, the combination of rhizospheric microorganisms used in our study significantly increased maize nutrient uptake and growth relative to control. The changes in metabolic pathways identified during the symbiotic interaction will improve our understanding of mechanisms involved in rhizospheric interactions that are responsible for increased growth and nutrient uptake in crop plants.

  5. The dark side of the mycorrhiza

    Science.gov (United States)

    Bennett, Alison E; Fornoni, Juan; Strauss, Sharon Y

    2010-01-01

    Plant association with arbuscular mycorrhizal (AM) fungi is usually regarded as mutualistic. However, this positive effect could disappear if the benefit of the fungal-plant association changes with colonization density. In order to test the conditionality of this interaction, we evaluated plant performance and tolerance to defoliation across five levels of commercial AM fungal inoculum concentrations. Additionally, we evaluated if plant performance and tolerance were similarly affected by a whole soil community collected under a native congener. Along the gradient of inoculation, plant performance exhibited a peak at intermediate inoculum concentration, indicating the presence of an optimum level of AM fungal concentration that maximized AM fungal benefit. Root colonization by fungal hyphae increased linearly across the experimental inoculation gradient. Paralleling root colonization, plant tolerance to defoliation decreased linearly along the inoculum gradient. Plant performance was similar under the whole soil and commercial treatments. Our results show a negative correlation between tolerance to defoliation and AM fungal inoculum concentration, indicating that AM fungi colonization could constrain the evolution of plant tolerance to herbivory. PMID:20724825

  6. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  7. Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    HongLing LIU; Yong TAN; Monika NELL; Karin ZITTER-EGLSEER; Chris WAWSCRAH; Brigitte KOPP; ShaoMing WANG; Johannes NOVAK

    2014-01-01

    Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min-eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel-opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G. intraradices, G. cladoideum, G. microagregatum, G. caledonium and G. etunica-tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab-lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con-centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.

  8. A study on the inoculated root of Sorghum vulgare by mycorrhiza under the water stress condition

    OpenAIRE

    Omid Alizadeh; Ali Parsaeimehr

    2011-01-01

    An experiment was carried out to determine the symbiotic effect of mycorrhiza on the yieldand root characteristics of Sorghum vulgare under water stress. The experiment was carried out in afactorial test using a Randomized Complete Block Design (RCBD) in three replications. Treatmentswere conducted base on drought stress in four levels and mycorrhiza were applied in two ranges M1(inoculated by mycorrhiza) and M0 (non-mycorrhiza). The Results showed that, the drought stress hadsignificant infl...

  9. Cultivable microflora and endo mycorrhizas obtained in litter forest (Paramo Guerrero - Finca Puente de Tierra) Zipaquira, Colombia

    International Nuclear Information System (INIS)

    The count of cultivable microorganisms (bacteria and fungi), cellulolytic microorganisms and endo mycorrhizas present in litter forest (property Puente de Tierra) in the Guerrero's moor, Colombia was made. The most frequently isolated microorganisms belonged to the staphylococcus, bacillus, pseudomonas, micrococcus, penicillium and rhodotorulagenus and cladosporium sp., which is a cellulolytic microorganism, was isolated in carboxymethyl cellulose agar. In addition eight morphotypes of endomycorrhizas were found, species of glomus and acaulospora predominated among them. This study contributes with the knowledge of the cultivable microorganisms of litter that have been little explored in moor ecosystems

  10. Glomus africanum and G. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Błaszkowski, Janusz; Kovács, Gábor M; Balázs, Tímea K; Orlowska, Elzbieta; Sadravi, Mehdi; Wubet, Tesfaye; Buscot, François

    2010-01-01

    Two new arbuscular mycorrhizal fungal species (Glomeromycota) of genus Glomus, G. africanum and G. iranicum, are described and illustrated. Both species formed spores in loose clusters and singly in soil and G. iranicum sometimes inside roots. G. africanum spores are pale yellow to brownish yellow, globose to subglobose, (60-)87(-125) μm diam, sometimes ovoid to irregular, 80-110 x 90-140 μm. The spore wall consists of a semipermanent, hyaline, outer layer and a laminate, smooth, pale yellow to brownish yellow, inner layer, which always is markedly thinner than the outer layer. G. iranicum spores are hyaline to pastel yellow, globose to subglobose, (13-)40(-56) μm diam, rarely egg-shaped, prolate to irregular, 39-54 x 48-65 μm. The spore wall consists of three smooth layers: one mucilaginous, short-lived, hyaline, outermost; one permanent, semirigid, hyaline, middle; and one laminate, hyaline to pastel yellow, innermost. Only the outermost spore wall layer of G. iranicum stains red in Melzer's reagent. In the field G. africanum was associated with roots of five plant species and an unrecognized shrub colonizing maritime sand dunes of two countries in Europe and two in Africa, and G. iranicum was associated with Triticum aestivum cultivated in southwestern Iran. In one-species cultures with Plantago lanceolata as the host plant G. africanum and G. iranicum formed arbuscular mycorrhizae. Phylogenetic analyses of partial SSU sequences of nrDNA placed the two new species in Glomus group A. Both species were distinctly separated from sequences of described Glomus species.

  11. Effects of VA Mycorrhiza on Content of Nitrogen and Nitrogenous Matter of Amur Cork Tree%丛枝菌根对黄檗氮素及含氮物质含量的影响

    Institute of Scientific and Technical Information of China (English)

    方杰; 范继红

    2012-01-01

    [目的]为了研究丛枝菌根对黄檗叶片氮素及含氮代谢物质含量的影响.[方法]通过盆栽试验,用摩西球囊霉、幼套球囊霉、地表球囊霉、透光球囊霉4种丛枝菌根真菌接种黄檗一年生实生苗.[结果]黄檗幼苗形成丛枝菌根后,黄檗叶片氮素含量增加,接种摩西球囊霉的苗木叶片氮素含量比对照提高了1.28 ~1.60倍,植物体内硝酸还原酶的活性增强,可溶性蛋白含量、植物体内吲哚乙酸的含量增加.[结论]丛枝菌根能够增强黄檗氮素代谢能力,促进氮素吸收及含氮物质合成代谢,有利于黄檗生长发育.%[Objective] The research aimed to explore the effects of VA mycorrhiza on the content of nitrogen and nitrogenous matter of amur cork trees(Phellodendron amurense Rupr. ). [Method] The annual seedlings were inoculated with four arbuscular mycorrhiza fungi through potted experiments. [Result] VA mycorrhiza obviously increased the content of nitrogen and nitrogenous matter. The nitrogen content of the leaves increased significantly through infection by VA mycorrhizal fungi. With the inoculating with G. Mosseae, the nitrogen content of seedlings increased by 1.28 to 1. 60 times. VA mycorrhiza also enhanced the activity of nitric acid reductase of the plants, and the content of soluble protein and the proportion of the indole acetic acid. [ Conclusion ] VA mycorrhiza can enhance the metabolic ability of amur cork trees and the photosynthesis characteristics, and promote the growth of the whole plant.

  12. Miombo trees and mycorrhizae: ecological strategies, a basis for afforestation.

    OpenAIRE

    Munyanziza, E.

    1994-01-01

    This project has covered one or several aspects of the life cycle of the main miombo tree species, namely Afzelia quanzensis ,Brachystegia microphylla, Brachystegia spiciformis ,Julbernardia globifloraand Pterocarpus angolensis . These aspects included natural and artificial regeneration, fertilization, artificial inoculation of seedlings and natural occurrence of mycorrhizae on field-grown seedlings. Mycorrhizal survey of pine seedlings in various nurseries and inoculation trials on pines wi...

  13. Mycorrhizae of Japanese black pine (Pinus thunbergii): Protection of seedlings from acid mist and effect of acid mist on mycorrhiza formation

    Energy Technology Data Exchange (ETDEWEB)

    Maehara, Noritoshi; Kikuchi, Junichi; Futai, Kazuyoshi

    1993-01-01

    To determine the effects of acid precipitation on Japanese black pine (Pinus thunbergii Parl.) with and without mycorrhizae (Pisolithus tinctorius (Pers.) Coker et Couch), 1-year-old seedlings were exposed to simulated acid rain mist, pH 3.0, for 10 min per day twice a week for 3 or 4 months. Simulated acid mist adversely affected the transpiration rate and lowered the extractable phosphorus content on seedlings, but seedlings with mycorrhizae were less affected by acid mist than were nonmycorrhizal seedlings. Simulated acid mist also retarded mycorrhiza formation. 41 refs., 7 figs.

  14. A study on the inoculated root of Sorghum vulgare by mycorrhiza under the water stress condition

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2011-12-01

    Full Text Available An experiment was carried out to determine the symbiotic effect of mycorrhiza on the yieldand root characteristics of Sorghum vulgare under water stress. The experiment was carried out in afactorial test using a Randomized Complete Block Design (RCBD in three replications. Treatmentswere conducted base on drought stress in four levels and mycorrhiza were applied in two ranges M1(inoculated by mycorrhiza and M0 (non-mycorrhiza. The Results showed that, the drought stress hadsignificant influences on dry matter of shoot, length of the root and percentage of the mycorrhizacolonization. It seemed that, the mycorrhiza had significantly increased the biomass of sorghum byinfluences on the root characteristics, such as: root length, colonization and root/shoot ratio.

  15. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    Science.gov (United States)

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  16. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    Science.gov (United States)

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  17. The influence of pre-crop plants on the occurrence of arbuscular mycorrhizal fungi (Glomales and Phialophora graminicola associated with roots of winter XTriticosecale

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2014-08-01

    Full Text Available The influence of four pre-crop plant species on the occurrence of arbuscular mycorrhizal fungal (AMF, Glomales, Zygomycetes spores, mycorrhizae and Phialophora graminicola (Deacon Walker associated with roots of field-culuvated XTriticosecale Wittmack cv. Malno was investigated. The pre-crop plant species were Hordeum vutgare L., Lupinus luteus L., Pisum sativum L., and Vicia faba v. major Harz. Most spores and species of AMF were found when XTriticosecale was cultivated following P. sativum. Prior cropping with L. luteus caused the occurrence of the lowest number of spores among XTriticosecale roots. Mycorrhizal colonization of XTriticosecale was highest when planted after P. sativum and lowest when grown after L. luteus.

  18. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  19. Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    García de León, David; Moora, Mari; Öpik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C Guillermo; Davison, John; Zobel, Martin

    2016-07-01

    Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession. PMID:27162183

  20. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis.

    Science.gov (United States)

    Tisserant, Emilie; Malbreil, Mathilde; Kuo, Alan; Kohler, Annegret; Symeonidi, Aikaterini; Balestrini, Raffaella; Charron, Philippe; Duensing, Nina; Frei dit Frey, Nicolas; Gianinazzi-Pearson, Vivienne; Gilbert, Luz B; Handa, Yoshihiro; Herr, Joshua R; Hijri, Mohamed; Koul, Raman; Kawaguchi, Masayoshi; Krajinski, Franziska; Lammers, Peter J; Masclaux, Frederic G; Murat, Claude; Morin, Emmanuelle; Ndikumana, Steve; Pagni, Marco; Petitpierre, Denis; Requena, Natalia; Rosikiewicz, Pawel; Riley, Rohan; Saito, Katsuharu; San Clemente, Hélène; Shapiro, Harris; van Tuinen, Diederik; Bécard, Guillaume; Bonfante, Paola; Paszkowski, Uta; Shachar-Hill, Yair Y; Tuskan, Gerald A; Young, J Peter W; Young, Peter W; Sanders, Ian R; Henrissat, Bernard; Rensing, Stefan A; Grigoriev, Igor V; Corradi, Nicolas; Roux, Christophe; Martin, Francis

    2013-12-10

    The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

  1. Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers.

    Science.gov (United States)

    Redecker, Dirk; Raab, Philipp

    2006-01-01

    The fungal symbionts of arbuscular mycorrhiza form a monophyletic group in the true Fungi, the phylum Glomeromycota. Fewer than 200 described species currently are included in this group. The only member of this clade known to form a different type of symbiosis is Geosiphon pyriformis, which associates with cyanobacteria. Because none of these fungi has been cultivated without their plant hosts or cyanobacterial partners, progress in obtaining multigene phylogenies has been slow and the nuclear-encoded ribosomal RNA genes have remained the only widely accessible molecular markers. rDNA phylogenies have revealed considerable polyphyly of some glomeromycotan genera that has been used to reassess taxonomic concepts. Environmental studies using phylogenetic methods for molecular identification have recovered an amazing diversity of unknown phylotypes, suggesting considerable cryptic species diversity. Protein gene sequences that have become available recently have challenged the rDNA-supported sister group relationship of the Glomeromycota with Asco/Basidiomycota. However the number of taxa analyzed with these new markers is still too small to provide a comprehensive picture of intraphylum relationships. We use nuclear-encoded rDNA and rpb1 protein gene sequences to reassess the phylogeny of the Glomeromycota and discuss possible implications.

  2. Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.

    Science.gov (United States)

    Recorbet, Ghislaine; Abdallah, Cosette; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane

    2013-07-01

    The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.

  3. Role of Dual Inoculation of Rhizobium and Arbuscular Mycorrhizal (AM Fungi on Pulse Crops Production

    Directory of Open Access Journals (Sweden)

    Erneste HAVUGIMANA

    2016-01-01

    Full Text Available Legume crops are useful as human and animal feed, wood energy, and as soil-improving components of agricultural and agro forestry systems through its association with bio-fertilizers. The later have a potential environment friendly inputs that are supplemented for proper plant growth. Bio-fertilizers are preparations containing living cells of microorganisms that help crop plants in the uptake of nutrients by their interactions in the rhizosphere. Arbuscular mycorrhizal (AM fungi are beneficial symbionts for plant growth. They are associated with higher plants by a symbiotic association and benefit plants in the uptake of phosphorus nutrients, production of growth hormones, increase of proteins, lipids and sugars levels, helps in heavy metal binding, salinity tolerance and disease resistance. In nature symbiotic association of Rhizobium and leguminous plants fixes atmospheric nitrogen. Indeed, research has proved that the association of mycorrhizae fungi and Rhizobium, with pulse crops, increased the beneficial aspects comparatively more than their single associations with the host plants. This review focuses on the role of dual inoculation of AM fungi and Rhizobium on different pulse crops.

  4. Ambispora granatensis, a new arbuscular mycorrhizal fungus, associated with Asparagus officinalis in Andalucia (Spain).

    Science.gov (United States)

    Palenzuela, Javier; Barea, José-Miguel; Ferrol, Nuria; Oehl, Fritz

    2011-01-01

    A new dimorphic fungal species in the arbuscular mycorrhiza-forming Glomeromycota, Ambispora granatensis, was isolated from an agricultural site in the province of Granada (Andalucía, Spain) growing in the rhizosphere of Asparagus officinalis. It was propagated in pot cultures with Trifolium pratense and Sorghum vulgare. The fungus also colonized Ri T-DNA transformed Daucus carota roots but did not form spores in these root organ cultures. The spores of the acaulosporoid morph are 90-150 μm diam and hyaline to white to pale yellow. They have three walls and a papillae-like rough irregular surface on the outer surface of the outer wall. The irregular surface might become difficult to detect within a few hours in lactic acid-based mountings but are clearly visible in water. The structural central wall layer of the outer wall is only 0.8-1.5 μm thick. The glomoid spores are formed singly or in small, loose spore clusters of 2-10 spores. They are hyaline to pale yellow, (25)40-70 μm diam and have a bilayered spore wall without ornamentation. Nearly full length sequences of the 18S and the ITS regions of the ribosomal gene place the new fungus in a separate clade next to Ambispora fennica and Ambispora gerdemannii. The acaulosporoid spores of the new fungus can be distinguished easily from all other spores in genus Ambispora by the conspicuous thin outer wall. PMID:20952800

  5. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  6. Relative Importance of Individual Climatic Drivers Shaping Arbuscular Mycorrhizal Fungal Communities.

    Science.gov (United States)

    Xiang, Dan; Veresoglou, Stavros D; Rillig, Matthias C; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Baodong

    2016-08-01

    The physiological tolerance hypothesis (PTH) postulates that it is the tolerance of species to climatic factors that determines overall community richness. Here, we tested whether a group of mutualistic microbes, Glomeromycota, is distributed in semi-arid environments in ways congruent with the PTH. For this purpose, we modeled with climatic predictors the niche of each of the four orders of Glomeromycota and identified predictors of arbuscular mycorrhizal (AM) fungal operational taxonomic unit (OTU) richness. Our dataset consisted of 50 paired grassland and farmland sites in the farming-pastoral ecotone of northern China. We observed shifts in the relative abundance of AM fungal orders in response to climatic variables but also declines in OTU richness in grassland sites that had experienced high precipitation during the preceding year which was incongruous with the PTH. We found pronounced differences across groups of Glomeromycotan fungi in their responses to climatic variables and identified strong dependencies of AM fungal communities on precipitation. Given that precipitation is expected to further decline in the farming-pastoral ecotone over the coming years and that mycorrhiza represents an integral constituent of ecosystem functioning, it is likely that the ecosystem services in the region will change accordingly. PMID:27117797

  7. Effect of inoculation with arbuscular mycorrhizal fungi on the degradation of DEHP in soil

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-guang; LIN Xian-gui; YIN Rui; HOU Yan-lin

    2004-01-01

    The effect of inoculation with arbuscular mycorrhiza(AM) fungi(Acaulospora lavis) on the degradation of di(2-ethylhexyl) phthalate(DEHP) in soil was studies. Cowpea plants(Pigna sinensis) were used as host plants and grown in a specially designed rhizobox. The experimental results indicated that, both in sterile and non-sterile soil, mycorrhizal colonization rates were much higher in the mycorrhizal plants than in the non-mycorrhizal plants. Addition of 4 mg/kg DEHP slightly affected mycorrhizal colonization, but the addition of 100 mg/kg DEHP significantly decreased mycorrhizal colonization. DEHP degradation in the mycorrhizosphere(Ms) and hyphosphere(Hs), especially in the Hs, increased after inoculation with Acaulospora lavis. It is concluded that mycorrhizal hyphae play an important role in the plant uptake, degradation and translocation of DEHP. The mechanism might be attributed to increased numbers of bacteria and actinomycetes and activity of dehydrogenase, urease and acid phosphatase in the Ms and Hs by mycorrhizal fungi.

  8. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina).

    Science.gov (United States)

    Becerra, Alejandra; Zak, Marcelo R; Horton, Thomas R; Micolini, Jorge

    2005-11-01

    The objective of this study was to determine patterns of ectomycorrhizas (ECM) and arbuscular mycorrhizas (AM) colonization associated with Alnus acuminata (Andean alder), in relation to soil parameters (electrical conductivity, field H(2)O holding capacity, pH, available P, organic matter, and total N) at two different seasons (autumn and spring). The study was conducted in natural forests of A. acuminata situated in Calilegua National Park (Jujuy, Argentina). Nine ECM morphotypes were found on A. acuminata roots. The ECM colonization was affected by seasonality and associated positively with field H(2)O holding capacity, pH, and total N and negatively associated with organic matter. Two morphotypes (Russula alnijorullensis and Tomentella sp. 3) showed significant differences between seasons. Positive and negative correlations were found between five morphotypes (Alnirhiza silkacea, Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp. 3, and Lactarius sp.) and soil parameters (total N, pH, and P). A significant negative correlation was found between field H(2)O holding capacity and organic matter with AM colonization. Results of this study provide evidence that ECM and AM colonization of A. acuminata can be affected by some soil chemical edaphic parameters and indicate that some ECM morphotypes are sensitive to changes in seasonality and soil parameters. PMID:16034621

  9. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R. [Universite du Littoral-Cote d' Opale, Lab. de Mycologie/Phytopathologie/Environnement, 62 - Calais (France)

    2005-07-01

    sporulation, hyphal length development. It was clearly demonstrated that G. intraradices is able to fulfill its life cycle on anthracene and benzo[a]pyrene polluted medium. In spite of a reduced development of extra-radical mycelium, a decrease of sporulation, root colonization and spore germination, we observed a tolerance of the strain G. intraradices to PAHs. The mycorrhiza improved the growth of the roots in a contaminated medium suggesting a positive contribution of G. intraradices to the PAH tolerance of the roots.

  10. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    International Nuclear Information System (INIS)

    sporulation, hyphal length development. It was clearly demonstrated that G. intraradices is able to fulfill its life cycle on anthracene and benzo[a]pyrene polluted medium. In spite of a reduced development of extra-radical mycelium, a decrease of sporulation, root colonization and spore germination, we observed a tolerance of the strain G. intraradices to PAHs. The mycorrhiza improved the growth of the roots in a contaminated medium suggesting a positive contribution of G. intraradices to the PAH tolerance of the roots

  11. Activation Effects of Polysaccharides of Flammulina velutipes Mycorrhizae on the T Lymphocyte Immune Function

    Directory of Open Access Journals (Sweden)

    Zheng-Fei Yan

    2014-01-01

    Full Text Available Flammulina velutipes mycorrhizae have increasingly been produced with increasing of F. velutipes production. A mouse model was thus used to examine potential effect of F. velutipes mycorrhizae on the immune function. Fifty female Wistar mice (5-weeks-old weighed 15–20 g were randomly allocated into five groups. Polysaccharide of F. velutipes mycorrhizae were treated with mice and mice spleen lymphocytes. The levels of CD3+, CD4+, and CD8+ T lymphocyte, interleukin-2 (IL-2, and tumor necrosis factor-a (TNF-α were determined. The results showed that the proportions of CD3+, and CD4+ T lymphocyte, the ratio of CD4+/CD8+, and the levels of IL-2 and TNF-a were significantly increased in polysaccharide of F. velutipes mycorrhizae, while the proportion of CD8+ T lymphocyte was decreased in polysaccharide of F. velutipes mycorrhizae-dose dependent manner. Our findings indicated that a long term exposure of polysaccharide of F. velutipes mycorrhizae could activate the T lymphocyte immune function. Polysaccharide of F. velutipes mycorrhizae was expected to develop into the immune health products.

  12. Root foraging for Patchy Phosphorus of Plant Species with Contrasting Foraging Strategy - Role of Roots and Mycorrhiza

    Science.gov (United States)

    Felderer, B.; Robinson, B. H.; Jansa, J.; Vontobel, P.; Frossard, E.; Schulin, R.

    2009-04-01

    three species of arbuscular mycorrhizal fungi (AMF; Glomus intraradices, Glomus claroideum, Gigaspora margarita). Therefore, we will conduct a mesocosm experiment in a 2 x 2 x 5 factorial design, with two plant species, two P distribution patterns (homogeneous, heterogeneous) and five mycorrhizal treatments (three sterilized treatments inoculated with different AMF species, one sterilized inoculated control, one non-sterilized control). We will apply Neutron Radiography (NR)-technique to investigate root architecture on a time line. NR is a non-invasive technique that can be applied to image roots in sand or soil. In the soil-root system, neutrons are mainly retained or scattered by hydrogen. Because of the higher water content, roots appear darker on the image than the surrounding sand/soil. At the end of the experiment, above and belowground biomass will be harvested and P concentrations will be determined. Roots within and outside nutrient-rich patches will be sampled separately. Root architecture will be determined with WinRhizo. We will apply dual radioisotopic labeling of the soil P to investigate physiological plasticity of the roots and/or plant-mycorrhizal association with respect to the P uptake. Ten days before the end of the experiment we will inject carrier-free 32P-orthophosphate solution to the P-rich patch and 33P to the substrate outside the patch. At harvest, we will measure 32P and 33P availabilities in the substrate and the radioisotope contents in plants, and calculate P uptake per unit of root surface within and outside the P-rich patch. We will use real-time polymerase chain reaction assay targeting the species-specific motifs in the ribosomal large subunit to assess abundances of the different AMF species within the roots and in the soil enriched or not with P (i.e. plasticity of mycorrhiza-plant association).

  13. Synergism Among VA Mycorrhiza, Phosphate Solubilizing Bacteria and Rhizobium for Symbiosis with Blackgram (Vigna mungo L.) UnderField Conditions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A field experiment was conducted at the G.B. Pant University Research Station, Ujhani (U.P.) in rainy (Kharif) season of the year 1994-1995 to study the effect of Rhizobium, VAM (vesicular arbuscular mycorrhiza) and PSB (phosphate solubilizing bacteria) inoculation, with and without P, on blackgram (Vigna mungo L.) seed yield. Phosphorus application in soil with medium P content (5.4 mg kg1) increased nodulation, grain yield, N and P in plant and grain over no phosphorus control. Forty kilograms of P2O5 each hactare recorded an increase of 20.6 % in nodule dry weight, significant increases of 0.35 g kg-1 in N concentration and 1.28 g kg-1 in P concentration of plant over 20 kg P2O5 ha-1. Similar significant increases of 0.59 g kg-1 in grain yield and 0.54 and 0.23 g kg-1 in N and P concentrations of the grain, respectively, over 20 kg P2O5 ha-1 were also obtained with higher dose. Inoculation of Rhizobium + VAM + PSB at all the stages of plant growth recorded maximum increases in all the parameters studied. Dual inoculation of Rhizobium with either VAM or PSB was generally significant in the effect and better than that of VAM + PSB, however, P accumulation in plant and grain was more with VAM + PSB. Among single inoculations, Rhizobium gave highest and 21.0 % more nodule number, 34.7 % more nodule dry mass, 0.73 g kg-1 more N in grain and 4.2 % higher grain yield over PSB. PSB, however, registered significant increases in P concentration in plant and grain over VAM and Rhizobium.

  14. Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris)

    NARCIS (Netherlands)

    Nielsen, K.F.; Bouma, T.J.; Lynch, J.P.; Eissenstat, D.M.

    1998-01-01

    Low phosphorus availability is often a primary constraint to plant productivity in native soils. Here we test the hypothesis that root carbon costs are a primary limitation to plant growth in low P soils by assessing the effect of P availability and mycorrhizal infection on whole plant C budgets in

  15. The Potential Use of Arbuscular Mycorrhiza in the Cultivation of Medicinal Plants in Barak Valley, Assam: A Review

    Directory of Open Access Journals (Sweden)

    Dhritiman Chanda

    2014-08-01

    Full Text Available AM fungi are widespread and are found from arctic to tropics in most agricultural and natural ecosystems. They play an important role in plant growth, health and productivity. They increase seedling tolerance to drought, high temperatures, toxic heavy metals, high or low pH and even extreme soil acidity. The cultivation of medicinal and herbal plants has assumed greater importance in recent years due to their tremendous potential in modern and traditional medicine. They are also used as raw materials for pharmaceutical, cosmetic and fragrance industries. Indian system of medicine (ISM uses 25,000 species belonging to more than 1000 genera. About 25% species are used by the industries. The Barak Valley is the southernmost part of the Assam and consists of three districts namely Cachar, Karimganj and Hailakandi. Different tribes staying here are directly using of medicinal plants for the treatments of different ailments. Comparatively very less attention has been given for the conservation of some of these rare and endangered medicinal plants which are extensively used by the tribes of Assam. So, AM fungi can play an effective role in the conservation of some valuable medicinal plants where Glomus sp. was found to be widely used for the increase yield of important medicinal plants. This review summarizes the data from recent studies to elucidate the potential use of AM fungi for promoting growth and disease resistance in medicinal plants found in southern part of Assam, which in turn provide a natural enhancer for the commercial production of traditional drugs from various important plants.

  16. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens

    Science.gov (United States)

    Budi, S. W.; van Tuinen, D.; Martinotti, G.; Gianinazzi, S.

    1999-01-01

    A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization. PMID:10543835

  17. THE EFFECT OF INOCULATING WITH ARBUSCULAR MYCORRHIZA AND BRADYRHIZOBIUM STRAINS ON SOYBEAN (Glycine max (L Merrill CROP DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Marlen Hernández

    2003-01-01

    Full Text Available El presente trabajo se realizó durante la primavera del 2001, en áreas de la Estación Experimental del Arroz "Los Palacios", perteneciente al Instituto Nacional de Ciencias Agrícolas. Se evaluó la respuesta de la variedad de soya G7-R-315, ante las inoculaciones simple y combinada de las cepas de Bradyrhizobium japonicum y Glomus fasciculatum. Para ello se realizó un experimento empleando un diseño de bloques al azar con seis tratamientos y cuatro réplicas. Los resultados mostraron influencia positiva de los microorganismos utilizados sobre la altura y el rendimiento de las plantas de soya, obteniéndose los mejores resultados en los tratamientos donde se combinó la inoculación de la semilla con ambas cepas, así como en el tratamiento donde se sustituyó la fertilización nitrogenada por Bradyrhizobium japonicum.

  18. Influence of cultivation regime of an arbuscular mycorrhizal fungal isolate on its symbiotic efficacy in phyto restoration of disturbed ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R. S.; Vosatka, M.; Castro, P. M. L.; Dodd, J. C.

    2009-07-01

    Arbuscular mycorrhizal fungi (AMF), from the Phylum Glomeromycota, are a group of soil organisms that forms symbiotic associations with plant roots and can contribute to increase plant biomass and promote phyto restoration of disturbed ecosystems. The influence of cultivation regime of a Glomus geosporum isolate, obtained from a highly alkaline anthropogenic sediment, on its symbiotic efficacy was investigated. (Author)

  19. Effect of P and Ca on the mycorrhiza of P. sylvestris formation in aseptic condition

    Directory of Open Access Journals (Sweden)

    Elżbieta Chruścik

    2014-08-01

    Full Text Available Ihe effect of some phosphorus and calcium compounds on mycorrhiza formation in pure cultures was investigated. In this experiment — Cenococcum groniforme, Suillus bovinus and Tricholoma albobrunneum were used. The ability to synthese acid phosphatase was tested in 11 strains. The presence of P has a stimulating effect on mycorrhiza formation by S. bovinus und T. albobrunneum. On control medium and medium containing CaO mycorrhiza was absent or only single. Ali strains synthetised phosphatase. The lowest enzymatic activity was found in two C. graniforme strains.

  20. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems.

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.-G.; Miller, R. M.; Environmental Research; Chinese Academy of Sciences

    2003-09-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in regulating carbon fluxes between the biosphere and the atmosphere. A recent study showed that live hyphae can turn over rapidly, in five to six days on average, suggesting that carbon flow to AMF hyphae might be respired back to the atmosphere quickly. However, that study gives a limited view of the residence time of AMF hyphae in soils. AMF hyphae can also contribute to soil carbon storage through other mechanisms.

  1. The role of mycorrhizae in mediterranean ecosystem revegetation

    OpenAIRE

    Correia, Patrícia Maria Ferreira, 1970-

    2005-01-01

    Tese de doutoramento em Biologia (Ecologia), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2006 The reestablishment of a functional soil microbial community, in particular arbuscular mycorrhizal fungi (AMF), is crucial for successful plant establishment in ecosystem restoration trials. AMF soil inoculation is suggested for these extreme situations. However, little is known about its beneficial effects on woody Mediterranean plants. The overall aim of this research ...

  2. Mycorrhizas effects on nutrient interception in two riparian grass species

    OpenAIRE

    Hamid Reza Asghari; Timothy Richard Cavagnaro

    2014-01-01

    Effects of arbuscular mycorrhizal (AM) fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM) plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively) for 8 weeks under glasshouse conditions. Mycorrhi...

  3. The use of nuclear and related techniques for evaluating the agronomic effectiveness of phosphate fertilizers, in particular rock phosphate, in Venezuela: II. Monitoring mycorrhizas and phosphate solubilizing microorganisms

    International Nuclear Information System (INIS)

    The objectives of the study were to quantify and isolate P solubilizing microorganisms (fungus and bacteria) from corn, sorghum and beans rhizosphere from El Sombrero soil, located in Guarico state, a very important agricultural area in Venezuela. Rhizospheric soil samples were taken from the crops in the field and taken to the laboratory to conduct a serial dilution procedure in specific medium culture to obtain pure cultures and isolate microorganisms according to their function. The spores of arbuscular mycorrhiza (AM) from the soils were reproduced using trap pots in the greenhouse and after 4-6 months a dilute soil sample was wet-sieved and decanted for isolation of AM spores which were used for classification and for obtaining native pure cultures. Finally, the infective potential of AM was determined by setting pots with test crops and determining the AM colonization and efficiency to produce potential infection in the root system. There were no differences in the total microflora in both crop rhizospheres but there was a tendency of higher values in the corn rhizosphere due to the root exudates. Two solubilizing fungi identified were Aspergillus terreus and Aspergillus niger. (author)

  4. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  5. Native arbuscular mycorrhizal fungi in the Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta N; Bartoloni, Norberto J

    2011-01-01

    The arbuscular mycorrhizal fungal (AMF) communities from the Yungas forests of Argentina were studied. The AMF species present in the rhizosphere of some dominant native plants (one tree: Alnus acuminata; three herbaceous species: Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub: Sambucus peruviana) from two sites (Quebrada del Portugués and Narváez Range) of the Yungas forests were isolated, identified and quantified during the four seasons of the year. Twenty-two AMF morphotaxa were found. Spore density of some AMF species at each site varied among seasons. The genera that most contributed to the biodiversity index were Acaulospora for Quebrada del Portugués and Glomus for Narváez Range. High diversity values were observed in the Yungas forests, particularly in the spring (rainy season). We concluded AMF differed in species composition and seasonal sporulation dynamics in the Yungas forests. PMID:21415289

  6. Effects of topsoil storage during surface mining on the viability of VA mycorrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Rives, C.S. (Illinois State Univ., Normal); Bajwa, M.I.; Liberta, A.E.; Miller, R.M.

    1980-04-01

    Storing topsoil for 3 years was shown to reduce substantially the levels of viable inocula relative to levels in adjacent, undisturbed prairie soils. The detrimental effect of storage on VA mycorrhiza is associated with the loss of viability of mycorrhizal fragments occurring in the stored soil. Data are also presented supporting an interaction between infected root segments and roots of uninfected plants as a major means of spreading mycorrhiza in these soils.

  7. Succession of arbuscular mycorrhizal fungi in a deflation hollow of the Słowiński National Park, Poland

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-02-01

    Full Text Available In the years 1994-1995, the occurrence of arbuscular mycorrhizal fungi (AMF and arbuscular mycorrhizae (AM in eight successional stages of vegetation of a deflation hollow no. 12 of the Łeba Bar, Poland, was investigated. Early successional stages were colonized by members of the families Gramineae and Juncaceae, being gradually replaced by ericaceous plants in the middle and later stages and by trees in the most advanced stage corresponding to the Empetro nigri-Pinetum plant association. From the 96 soil samples collected, 21 species in three genera of AMF were recovered. The fungi most frequently found were members of the genus Acaulospora. The overall spore abundance, the species_ richness of AMF and the level of AM colonisation increased from stage 1 to reach a maximum in the middle stages and then gradually declined, being lowest in the forested stage 8. The values of the overall spore abundance and those of the abundances of the most frequently occurring AMF species strongly evidenced functioning in nature of the process of host-dependent differentiation of AMF communities. Of the five most numerously represented AMF species, the early colonizer and quickly diminishing in later successional stages was Glomus 107. The mid-late successor was A. koskei, and the latest - Glomus aggregatum. All measures of AMF presence negatively correlated with the content of organic C in the soil and most of them were negatively correlated with soil N-NO3 and P concentrations. In contrast, the occurrence of AMY and AM generally was positively correlated with soil pH and the K content of the soil.

  8. Metal content in fruit-bodies and mycorrhizas of Pisolithus arrhizus from zinc wastes in Poland

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-08-01

    Full Text Available Pisolithus arrhizus has been selected for investigation as one of the ectomycorrhizal species most resistant to stress factors. Metal content in fruit-bodies and mycorrhizas was estimated to evaluate their role as bioindicators and to check whether mycorrhizas have any special properties for heavy metal accumulation. Fruit-bodies and mycorrhizas were collected from zinc wastes in Katowice-Wełnowiec and analyzed using conventional atomic absorption spectroscopy and energy dispersive spectroscopy accompanying scanning electron microscopy. Differences in tendencies to accumulate metals within sporophores and mycorrhizas were found. The fruit-bodies accumulated Al (up to 640 µg g-1, while high concentrations of Al, Zn, Fe, Ca and Si were noted in the outer mantle of the mycorrhizas. in the material secreted and in the mycelium wali. The content of elements varied depending on the agę of mycorrhizas. The ability of extramatrical mycelium and hyphae forming mycorrhizal mantle to immobilize potentially toxic elements might indicate biofiltering properties though thc next step should include investigations on ability of the fungus to prevent element uptake by the plant.

  9. Arbuscular mycorrhizal fungi affect phytophagous insect specialism

    OpenAIRE

    Gange, Alan; Stagg, P.G.; Ward, L. K.

    2002-01-01

    The majority of phytophagous insects eat very few plant species, yet the ecological and evolutionary forces that have driven such specialism are not entirely understood. The hypothesis that arbuscular mycorrhizal (AM) fungi can determine phytophagous insect specialism, through differential effects on insect growth, was tested using examples from the British flora. In the UK, plant families and species in the family Lamiaceae that are strongly mycorrhizal have higher proportions of specialist ...

  10. The effect of potassium and mycorrhiza on growth of vanilla (Vanilla planifolia Andrew

    Directory of Open Access Journals (Sweden)

    I GEDE TIRTA

    2006-04-01

    Full Text Available The few and shallow roots caused slow growth of vanilla seedling. Mycorrhiza may increased the absorption of water and nutrients, while potassium may increased the rate of growth and strength of seedlings. This study was conducted at Sambangan Village, Buleleng, Bali in 2003 (April-Agustus 2003. The experiment was done in polybag and was arranged in Randomized Block Design with three replications. The treatments were consisted of two factors. The first factor was the rates of KCl fertilizer ( 0, 100 and 200 kg ha-1 or 0, 0,10 and 0,20 9 plant-1 and the second factor was the rates of mycorrhiza (0, 20 and 30 g plant-1. The aim of the research to study interactions between potassium and mycorrhiza and The optimum dosage the mycorrhiza on growth of vanilla (Vanilla planifolia Andrew. The resultes showed that there were interactions between potassium and mycorrhiza on fresh weight of the new shoot, root length and fresh root weight. The optimum dosage of the mycorrhiza was 20 g plant-1 with new shoot fresh weight was 25.63 g plant-1. The longest root (24.67 cm plant-1 was observed at the treatment without potasium with 20 g plant-1 mycorrhiza and this was 23% longer than control (19.93 cm plant-1. The highest fresh root weight (2.48 g plant-1 was observed at the dosage of 200 kg KCl ha-1 and 20 g mycorrhiza plant-1 and that was 55% heavier than control (1.60 g plant-1. The leaf number of the plant with 20 g plant-1 mycorrhiza was 6.22 and that was 18% more than control with leaf number 5.25. The total fresh weight of the seedling with 20 g plant-1 mycorrhiza was 86.74 g plant-1or 15% higher compared with control (75.18 g plant-1. The dosage of 100 kg KCl ha-1 increased the K content of the plant (2.45%K or 35% higher than control (1.81%K.

  11. A preliminary survey of arbuscular mycorrhizal fungi in salinealkaline soil of the Yellow River Delta%黄河三角洲盐碱土壤中AM真菌的初步调查

    Institute of Scientific and Technical Information of China (English)

    王发园; 刘润进

    2001-01-01

    2000年3月~2001年2月对黄河三角洲盐碱土壤中5种优势植物柽柳(Tamarix chinensis)、芦苇(Phragmitescommums)、碱蓬(Suaeda glauca)、獐毛(Aeluropus littoralis var.sinensis)和刺儿菜(Cirsium setosum)根围内丛枝菌根(arbuscular mycorrhiza,AM)真菌进行了长期定点调查.结果表明,AM真菌在这5种植物根围土壤内都有分布,但多样性较低,尤其在冬季,AM真菌种的丰度和孢子密度分别比夏季降低了18.0%和61.6%.不同深度土层中AM真菌的分布存在诸多差异.

  12. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest.

    Science.gov (United States)

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2016-01-01

    Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016

  13. Response of Solanum melongena L. to Inoculation with Arbuscular Mycorrhizal Fungi under Low and High Phosphate Condition

    Directory of Open Access Journals (Sweden)

    Irfan AZIZ

    2011-08-01

    Full Text Available Solanum melongena L. a medicinally and economically important crop plants were grown in polythene bags. The effect of mycorrhizal inoculation (Glomus mosseae and increasing phosphate levels on the expression of the photosynthetic activity in terms of chlorophyll content. Antioxidant enzymes like peroxidase, polyphenol oxidase, root acid and alkaline phosphatase activity of Solanum melongena were evaluated. The experimental design was entirely at CRBD with eight treatments with three levels of phosphate (50,100,150 mg kg-1 of soil. Root colonization ranged from 50.33% to 67.33% . The activity of the studied antioxidant enzymes were found to be increased in arbuscular mycorrhizal (AM Solanum plants. Root phosphatase activity was greater in 100 and 150 mg phosphate level in AM treated than non AM treated Solanum plants. Besides, only AM treated plants of Solanum reflected increase in total chlorophyll content as compared to non AM plants. This work suggests that the mycorrhiza helps Solanum plants to perform better in low and high phosphate level by enhancing antioxidant enzyme activity, acid and alkaline phosphatase activity and total chlorophyll content.

  14. Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.).

    Science.gov (United States)

    Hua, Jianfeng; Lin, Xiangui; Yin, Rui; Jiang, Qian; Shao, Yufang

    2009-01-01

    A pot experiment was conducted to study the effects of arbuscular mycorrhizal (AM) fungi (from contaminated or uncontaminated soils) on arsenic (As) uptake of tobacco (Nicotiana tabacum L.) in As-contaminated soil. Mycorrhizal colonization rate, dry weight, As and P uptake by plants, concentrations of water-extractable As and As fractions were determined. A low mycorrhizal colonization rate (fungi isolated from polluted soils were no more effective than those from unpolluted soils when grown in symbiosis with tobacco. No significant differences were observed in roots and stalks dry weights among all treatments. Leaves and total plant dry weights were much higher in Glomus versiforme treatment than that in control treatment. As contents in roots and stalks from mycorrhizal treatments were much lower than that from control treatment. Total plant As content exhibited the same trend. P concentrations in tobacco were not affected by colonization, nor were stalks, leaves and total plant P contents. Roots P contents were remarkably lower in HN treatments than in other treatments. Meanwhile, decreased soil pH and lower water-extractable As concentrations and higher levels of As fraction bound to well-crystallized hydrous oxides of Fe and Al were found in mycorrhizal treatments than in controls. The protective effect of mycorrhiza against plant As uptake may be associated with changes in As solubility mediated by changing soil pH. These results indicated that under As stress, proper mechanisms employed by AM fungi can protect tobacco against As uptake. Results confirmed that AM fungi can play an important role in food quality and safety. PMID:19999968

  15. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem

    Directory of Open Access Journals (Sweden)

    Nicholas A Barber

    2013-09-01

    Full Text Available Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant-AMF interactions should include these indirect effects. To determine how AMF affect plant-insect interactions, we grew Cucumis sativus (Cucurbitaceae under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context dependency of plant-AMF interactions.

  16. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    Science.gov (United States)

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi

  17. Effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L. under different phosphorus application rates

    Directory of Open Access Journals (Sweden)

    S. Fatih Ergin

    2016-10-01

    Full Text Available In this study, effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L. under different phosphorus fertilization rates were investigated. Phosphorus were added into growing media as 0, 50, 100 and 200 mg P2O5/kg with and without mycorrhiza applications. Phosphorus applications significantly increased yield criteria of lettuce according to the control treatment statistically. Mycorrhiza application also significantly increased plant diameter, plant dry weight and phosphor uptake by plant. The highest phosphorus uptakes by plants were determined in 200 mg P2O5/kg treatments as 88.8 mg P/pot with mycorrhiza and 83.1 mg P/pot without mycorrhiza application. In the control at 0 doses of phosphorus with mycorrhiza treatment, phosphorus uptake (69.9 mg P/pot, edible weight (84.36 g, dry weight (8.64 g and leaf number (28 of lettuce were higher than that (47.7 mg P/pot, 59.33 g, 6.75 g and 20, respectively in the control without mycorrhiza application. It was determined that mycorrhiza had positive effect on growth criteria and phosphorus nutrition by lettuce plant, and this effect decreased at higher phosphorus application rates.

  18. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  19. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Science.gov (United States)

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  20. Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species

    OpenAIRE

    Guisande-Collazo, Alejandra; González, Luís; Souza-Alonso, Pablo

    2016-01-01

    This study contributes to knowledge on the effect of the invasive N2-fixing tree, Acacia dealbata, on soil microbial communities and consequences on plant species that are dependent on symbiotic relationships as in the case of Plantago lanceolata. The main results of this work indicate that Acacia dealbata modifies the structure of arbuscular mycorrhizal fungi in the invaded shrublands and consequently the growth and development of plants that depend on AMF. Plantago lanceolata showed a subst...

  1. Inoculations with Arbuscular Mycorrhizal Fungi Increase Vegetable Yields and Decrease Phoxim Concentrations in Carrot and Green Onion and Their Soils

    OpenAIRE

    Fa Yuan Wang; Rui Jian Tong; Zhao Yong Shi; Xiao Feng Xu; Xin Hua He

    2011-01-01

    BACKGROUND: As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C(12)H(15)N(2)O(3)PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: A greenhouse pot experiment studied the influen...

  2. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    B. Knegt; J. Jansa; O. Franken; D.J.P. Engelmoer; G.D.A. Werner; H. Bücking; E.T. Kiers

    2014-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  3. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...

  4. Fungos micorrízicos arbusculares e adubação fosfatada em mudas de mangabeira Arbuscular mycorrhizal fungi and phosphorus supply on seedlings of mangabeira

    Directory of Open Access Journals (Sweden)

    Cynthia Maria Carneiro Costa

    2005-03-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de fungos micorrízicos arbusculares (FMA e da adubação fosfatada em mudas de mangabeira (Hancornia speciosa Gomes. O experimento, em casa de vegetação, utilizou delineamento inteiramente casualizado em fatorial com dois tratamentos de solo nativo oriundo de pomar com mangabeiras, desinfestado com brometo de metila e não-desinfestado, seis doses de P (3*, 3, 48, 93, 138 e 183 mg dm-3 e três tratamentos de inoculação, Gigaspora albida Schenck & Smith, Glomus etunicatum Becker & Gerdemann e controle sem inoculação, com quatro repetições. O tratamento 3* não recebeu solução nutritiva e os demais receberam solução nutritiva de Hoagland sem fósforo por ocasião da inoculação. Após 150 dias, observou-se aumento na altura, biomassa e área foliar nos tratamentos com G. albida, em solo desinfestado. Respostas à inoculação ocorreram nas mudas cultivadas com a menor dose de P, nos dois tratamentos de solo. A mangabeira mostrou-se dependente da micorrização apenas na menor dose de P em solo desinfestado. Nos demais níveis de P, a dependência variou em função do FMA e da condição do solo. A associação com G. albida proporcionou melhor desenvolvimento das mudas de mangabeira.The objective of this work was to evaluate the effects of the association of arbuscular mycorrhizal fungi (AMF and phosphorus fertilization on seedlings of "mangaba" (Hancornia speciosa. The experiment, at a greenhouse, was in a completely randomized factorial design with two treatments of the native soil from an H. speciosa orchard, fumigated with methyl bromite and non-fumigated, six doses of P (3*, 3, 48, 93, 138 and 183 mg dm-3 and three inoculation treatments, Gigaspora albida Schenck & Smith, Glomus etunicatum Becker & Gerdemann and an uninoculated control, with four replicates. The treatment 3* did not receive nutrient solution and the others received Hoagland nutrient solution without phosphorus

  5. Uptake of Organic Phosphorus by Arbuscular Mycorrhizal Red Clover

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The capacities of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae and Glomus versiforme, to mineralize added organic P were studied in a sterilized calcareous soil. Mycorrhizal (inoculated with either of the AM fungi) and non-mycorrhizal red clover (Trifolium pratense L.) plants were grown for eight weeks in pots with upper root, central hyphal and lower soil compartments. The hyphal and soil compartments received either organic P (as Na-phytate) or inorganic P (as KH2PO4) at the rate of 50 mg P kg-1. No P was added to the root compartments. Control pots received no added P. Yields were higher in mycorrhizal than in non-mycorrhizal clover. Mycorrhizal inoculation doubled shoot P concentration and more than doubled total P uptake of plants in P-amended soil, irrespective of the form of applied P. The mycorrhizal contribution to inorganic P uptake was 80% or 76% in plants inoculated with G. mosseae or G. versiforme, respectively.Corresponding values were 74% and 82% when Na-phytate was applied. In the root compartments of the mycorrhizal treatments, the proportion of root length infected, hyphal length density and phosphatase activity were all higher when organic P was applied than when inorganic P was added.

  6. Influence of mycorrhiza and organic ferlitizer to the growth of matoa (Pometia pinnata seedling

    Directory of Open Access Journals (Sweden)

    EDWI MAHAJOENO

    2013-11-01

    Full Text Available Sugiyarto, Wardani PK, Setyono P, Mahajoeno E, Sunarto. 2013. Influence of mycorrhiza and organic ferlitizer to the growth of matoa (Pometia pinnata seedling. Nusantara Bioscience 5: 57-62. The purpose of this research was to find out the influence of mycorrhiza, organic fertilizer and their combination to the growth of seedlings matoa. The reseach was arranged on Completely Randomized design with two treatments factor; i.e. giving mycorrhiza (0 g, 5 g, 10 g/polybag and giving organic fertilizer (0 mL, 1 mL, 2 mL/polybag respectively each in 6 replications. The observed treatments were plant height, leaf number and plant biomass. The observation datas were analyzed by multivariate analysis level of 5 %, continued with LSD test. The result showed that there was no significant influence on given mycorrhiza for matoa seedling growth for all of the growth parameters. There was no influence of organic fertilizer for plant height parameter, but significantly influence for the number of leaf and biomass. The best increase of the number of leaf and biomass was on organic fertilizer treatment at 2 mL dosage. There were no influence in the growth of matoa by the combination treatments betwen mycorrhyza and organik fertilizer.

  7. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    used with previous crop (Zea mays L.-maize and Brassica napus L.-canola), tillage practices (no-tillage or conventional tillage) and P fertilization (5 levels) as factors chosen to modify mycorrhizae development at early developmental stages of maize. Previous cropping with canola resulted in decreased...

  8. Desenvolvimento Vegetativo e morfologia radicular de citrange carrizo afetado por ácido indolbutírico e micorrizas arbusculares Vegetative development and root morphology of carrizo citrange affected by indolebutyric acid and arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Paulo Vitor Dutra de Souza

    2000-04-01

    Full Text Available Este estudo foi realizado na localidade de Alcanar (Tarragona, Espanha e objetivou avaliar o efeito de cinco concentrações do ácido indolbutírico (AIB (0,0; 0,5; 1,0; 1,5; 2,0 g/L e da inoculação com micorrizas arbusculares (MA (Glomus intraradices Schenck & Smith sobre o desenvolvimento vegetativo, conteúdo foliar de P e K e morfologia radicular de plântulas de citrange Carrizo (Citrus sinensis (L. X Poncirus trifoliata (L. Raf.. Utilizou-se o delineamento experimental de blocos completos casualisados em esquema fatorial, com 4 repetições e 10 plantas por parcela. A aplicação de AIB não alterou o desenvolvimento vegetativo das plântulas cultivadas em ausência de MA, apesar de haver incrementado a quantidade de P e K e a espessura dos feixes vasculares. As MA incrementaram o conteúdo de P foliar. Encontrou-se uma interação positiva entre o AIB e as MA, pois as plântulas micorrizadas apresentaram um incremento no desenvolvimento vegetativo, nos conteúdos foliares de P e K e na espessura dos feixes vasculares com o aumento das concentrações de AIB.This study was carried out in Alcanar (Tarragona - Spain to evaluate the effect of five indolebutyric acid (IBA concentrations (0.0; 0.5; 1.0; 1.5; 2.0 g/L and inoculation with arbuscular mycorrhizae fungi (AMF (Glomus intraradices Schenck & Smith on Carrizo citrange (Citrus sinensis (L. x Poncirus trifoliata (L. Raf. vegetative development, P and K foliar contents and root morphology. The experimental design was in a Completly Randomized Block Design with 10 seedlings per plot and 4 replicates. The IBA concentrations had no effect on vegetative development of nonmycorrhizal seedlings, althougt it had increased P and K foliar contents and primary xylem tickness. AMF increased P foliar content. IBA x AMF interaction was observed, increasing IBA concentrations on mycorrhizal seedlings resulted in increased in vegetative development, P and K foliar contents and primary xylem thickness.

  9. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress.

    Science.gov (United States)

    Zou, Ying-Ning; Huang, Yong-Ming; Wu, Qiang-Sheng; He, Xin-Hua

    2015-02-01

    Mechanisms of arbuscular mycorrhiza (AM)-induced lower oxidative burst of host plants under drought stress (DS) are not elucidated. A noninvasive microtest technology (NMT) was used to investigate the effects of Funneliformis mosseae on net fluxes of root hydrogen peroxide (H2O2) and calcium ions (Ca2+) in 5-month-old Poncirus trifoliata, in combination with catalase (CAT) and superoxide dismutase (SOD) activities as well as tissue superoxide radical (O2•-) and H2O2 concentrations under DS and well-watered (WW) conditions. A 2-month DS (55% maximum water holding capacity of growth substrates) significantly inhibited AM fungal root colonization, while AM symbiosis significantly increased plant biomass production, irrespective of water status. F. mosseae inoculation generally increased SOD and CAT activity but decreased O2•- and H2O2 concentrations in leaves and roots under WW and DS. Compared with non-AM seedlings, roots of AM seedlings had significantly higher net H2O2 effluxes and net Ca2+ influxes, especially in the meristem zone, but lower net H2O2 efflux in the elongation zone. Net Ca2+ influxes into roots were significantly positively correlated with root net H2O2 effluxes but negatively with root H2O2 concentrations. Results from this study suggest that AM-induced lower oxidative burst is related with higher antioxidant enzyme activities, root net H2O2 effluxes, and Ca2+ influxes under WW and DS.

  10. Compatibilidade simbiótica de fungos micorrízicos arbusculares com espécies arbóreas tropicais Symbiotic compatibility of arbuscular mycorrhizal fungi with tropical tree species

    Directory of Open Access Journals (Sweden)

    Enrique Pouyu-Rojas

    2006-06-01

    revegetação de áreas degradadas é discutida.Revegetation with tree species is an appropriate strategy for the rehabilitation of degraded areas. However, the establishment and growth of these species in low nutrient soils depends upon several factors, such as the ability of the species to form and benefit from mycorrhizae. In this study, conducted in pots under greenhouse conditions at the Federal University of Lavras in Minas Gerais, Brazil, aspects of host-fungus relationship in tree species found in Southeastern Brazil were evaluated. The following arbuscular mycorrhiza (AM fungal species were studied: Scutellospora pellucida, Acaulospora scrobiculata, Entrophospora colombiana, Gigaspora gigantea, Gigaspora margarita, Glomus etunicatum, Scutellospora gregaria, Glomus clarum, and fungi isolated from agrosystems and native forest. All these fungi were inoculated on the following sixteen plant species: Luehea grandiflora, Cecropia pachystachya, Schinus terebinthifoliu, Machaerium nyctitans, Senna macranthera, Senna spectabilis, Solanum granuloso-leprosum, Caesalpinea férrea, Tabebuia serratifolia, Maclura tinctoria, Guazuma ulmifolia, Acacia polyphylla, Mimosa caesalpiniaefolia, Enterolobium contortisiliquum, Trema micrantha, and Cedrela fissilis. These species presented differentiated susceptibility and growth response under inoculation with AM fungi. Within the substantially wide range of symbiotic efficiency Gl. clarum, E. colombiana, S. pellucid,a and Gl. etunicatum presented the highest amplitudes, being efficient for over 80 % of all studied species, whereas A. scrobiculata was the fungus with the most restricted range of hosts. A compatibility analysis of the host-fungus relationships indicated the existence of a differential selectivity among them, resulting in varied symbiotic efficiency for the host plants. The importance of these results for the revegetation of degraded areas is discussed.

  11. A quantitative and molecular examination of Tuber melanosporum mycorrhizae in Quercus ilex seedlings from different suppliers in Spain

    Directory of Open Access Journals (Sweden)

    P. Alvarado

    2013-07-01

    Full Text Available Aim of study: The aim of the work was to determine the degree of mycorrhization of Quercus ilex L. subsp. ballota (Desf. Samp. by the black truffle fungus T. melanosporum Vittad. by quantitative and molecular analyses.Area of study: seedlings inoculated by different Spanish suppliers.Material and methods: The internal transcribed spacers (ITS of mycorrhizae from different plants were amplified by nested PCR involving fluorescently-labelled primers, and the amplicons either directly sized by ARISA or analysed by TRFLP following their digestion with restriction endonucleases. TRFLP analysis distinguished between mycorrhizae of T. melanosporum, T. indicum Cooke & Massee and T. borchii Vittad., as suggested possible by virtual (in silico TRFLP analysis and real TRFLP analysis of the ascomata of these species.Main results: Significant differences between suppliers were detected in terms of the mean number of mycorrhizae established per plant and percentage mycorrhization. These results allowed the following quality standards for 2 year-old plants to be proposed: a good quality: >3000 mycorrhizae/plant, >40% mycorrhization, b medium (acceptable: >3000 mycorrhizae/plant, >30% mycorrhization, c low quality: <3000 mycorrhizae/plant or <30% mycorrhization, always supposing the mycorrhizae counted represent the species of interest as confirmed by the presence of its DNA and the absence of DNA belonging to contaminating species. Finally, a new microsatellite allelic map obtained from the analysis of several T. melanosporum populations across Spain was used to provide a tool capable of determining the geographic origin of the fungi used to inoculate plants.Research highlights: The proposed quality standards can be useful for the evaluation and certification of commercialized Q. ilex plants mycorrhized with T. melanosporum.Keywords: mycorrhiza; certification; truffle; TRFLP; fungi.

  12. Summary evaluation of the seminar results on the subjects 'root growth and mycorrhiza'

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, H.; Roehrig, E.; Fuehr, F.; Ganser, S.; Kloster, G.; Prinz, B.; Stuettgen, E. (comps.)

    1986-08-01

    The report summarizes results of papers and discussions dealing with effects of air pollutants on growth of roots and mycorrhizas. The ratio of calcium and aluminium and its influence on the mentioned parameters is explained. Comparing experiments with trees of different damage degree were carried out to investigate the effects of liming. Changes of nutrient content, of physiology and morphology and of the dominance of mycorrhiza-species could be found.

  13. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance.

    Science.gov (United States)

    Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel

    2014-04-01

    The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions.

  14. Use of the Signature Fatty Acid 16:1ω5 as a Tool to Determine the Distribution of Arbuscular Mycorrhizal Fungi in Soil

    Directory of Open Access Journals (Sweden)

    Christopher Ngosong

    2012-01-01

    Full Text Available Biomass estimation of arbuscular mycorrhiza (AM fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.

  15. Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhizal mycelium

    Institute of Scientific and Technical Information of China (English)

    JIN HaiRu

    2009-01-01

    Bi-directional translocatlon and degradation of Arginine (Arg) along the arbuscular mycorrhizal (AM) fungal mycellum were testified through 15N and/or 13C isotopic labeling. In vitro mycorrhizas of Glomus intraradices and Ri T-DNA-transformed carrot roots were grown in dual compartment Petri dishes. [15N-and/or13C]Arg was supplied to either the fungal compartment or the mycorrhizal compartment or separate dishes containing the uncolonized roots. The levels and labeling of free amino acids (AAs) in the mycorrhizal roots and in the extraradical mycelia(ERM) were measured by gas chromatogra-phy/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The ERM of AM fungi exposed in either NH4+ or urea as sole external nitrogen source had much higher 15N enrichment of Arg, compared with those In nitrate or exogenous Arg; however, glycerol supplied as an external car-bon source to the ERM had no significant effect on the level of Arg in the ERM. Meanwhile, Arg bio-synthesized In the ERM could be translocated intact to the mycorrhizal roots and thereby the level of Arg in the mycorrhizal roots increased to about 20% after culture of ERM in 4 mmol/L NH4+ for 6 weeks.Also Arg was found to be bi-directionally transported along the AM fungal mycelium through [U-13C]Arg labeling either In the mycorrhizal compartment or in the fungal compartment. Once Arg was translo-cated to the potential N-limited sites, it would be further degraded into ornithine (Orn) and urea since either [U-13C] or [U-15N/U-13C]Orn was apparently shown up in the mycorrhizal root tissues when [U-13C] or [U-15N/U-13C]Arg was labeled In the fungal compartment, respectively. Evidently Orn formation indi-cated the ongoing activities of Arg translocation and degradation through the urea cycle in AM fungal mycelium.

  16. Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhizal mycelium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Bi-directional translocation and degradation of Arginine (Arg) along the arbuscular mycorrhizal (AM) fungal mycelium were testified through 15N and/or 13C isotopic labeling. In vitro mycorrhizas of Glomus intraradices and Ri T-DNA-transformed carrot roots were grown in dual compartment Petri dishes. [15N- and/or13C]Arg was supplied to either the fungal compartment or the mycorrhizal compartment or separate dishes containing the uncolonized roots. The levels and labeling of free amino acids (AAs) in the mycorrhizal roots and in the extraradical mycelia(ERM) were measured by gas chromatogra- phy/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The ERM of AM fungi exposed in either NH4+ or urea as sole external nitrogen source had much higher 15N enrichment of Arg, compared with those in nitrate or exogenous Arg; however, glycerol supplied as an external car- bon source to the ERM had no significant effect on the level of Arg in the ERM. Meanwhile, Arg bio- synthesized in the ERM could be translocated intact to the mycorrhizal roots and thereby the level of Arg in the mycorrhizal roots increased to about 20% after culture of ERM in 4 mmol/L NH4+ for 6 weeks. Also Arg was found to be bi-directionally transported along the AM fungal mycelium through [U-13C]Arg labeling either in the mycorrhizal compartment or in the fungal compartment. Once Arg was translo- cated to the potential N-limited sites, it would be further degraded into ornithine (Orn) and urea since either [U-13C] or [U-15N/U-13C]Orn was apparently shown up in the mycorrhizal root tissues when [U-13C] or [U-15N/U-13C]Arg was labeled in the fungal compartment, respectively. Evidently Orn formation indi- cated the ongoing activities of Arg translocation and degradation through the urea cycle in AM fungal mycelium.

  17. Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling

    Directory of Open Access Journals (Sweden)

    Bo eShu

    2016-03-01

    Full Text Available Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinenis Sonn.. However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes and AM fungi unigenes (33,120 unigenes were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin

  18. Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species.

    Science.gov (United States)

    Guisande-Collazo, Alejandra; González, Luís; Souza-Alonso, Pablo

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate soil biotrophs that establish intimate relationships with 80 % of terrestrial plant families. Arbuscular mycorrhizal fungi obtain carbon from host plants and contribute to the acquisition of mineral nutrients, mainly phosphorus. The presence of invasive plants has been identified as a soil disturbance factor, often conditioning the structure and function of soil microorganisms. Despite the investigation of many aspects related to the invasion ofAcacia dealbata, the effect produced on the structure of AMF communities has never been assessed. We hypothesize thatA. dealbatamodifies the structure of AMF community, influencing the establishment and growth of plants that are dependent on these mutualisms. To validate our hypothesis, we carried out denaturing gradient gel electrophoresis (DGGE) analysis and also grew plants ofPlantago lanceolatain pots using roots of native shrublands or fromA. dealbata, as inoculum of AMF. Cluster analyses from DGGE indicated an alteration in the structure of AMF communities in invaded soils. After 15 weeks, we found that plants grown in pots containing native roots presented higher stem and root growth and also produced higher biomass in comparison with plants grown withA. dealbatainoculum. Furthermore, plants that presented the highest biomass and growth exhibited the maximum mycorrhizal colonization and phosphorus content. Moreover, fluorescence measurements indicated that plants grown withA. dealbatainoculum even presented higher photosynthetic damage. Our results indicate that the presence of the invaderA. dealbatamodify the composition of the arbuscular fungal community, conditioning the establishment of native plants. PMID:26984185

  19. Mycorrhizas effects on nutrient interception in two riparian grass species

    Directory of Open Access Journals (Sweden)

    Hamid Reza Asghari

    2014-12-01

    Full Text Available Effects of arbuscular mycorrhizal (AM fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively for 8 weeks under glasshouse conditions. Mycorrhizal colonization, AM external hyphae development, plant growth, nutrient uptake and NO3, NH4 and available P in soil and leachate were measured. Mycorrhizal fungi highly colonized roots of exotic grass Phalaris aquatica and significantly increased plant growth and nutrient uptake. Columns containing of AM Phalaris aquatica had higher levels of AM external hyphae, lower levels of NO3, NH4 and available P in soil and leachate than NM columns. Although roots of native grass Austrodanthonia caespitosa had moderately high levels of AM colonization and AM external hyphae in soil, AM inoculation had no significant effects on plant growth, soil and leachate concentration of NO3 and NH4. But AM inoculation decreased available soil P concentration in deeper soil layer and had no effects on dissolved P in leachate. Although both grass species had nearly the same biomass, results showed that leachate collected from Austrodanthonia caespitosa columns significantly had lower levels of NO3, NH4 and dissolve P than leachate from exotic Phalaris aquatica columns. Taken together, these data shows that native plant species intercept higher nutrient than exotic plant species and had no responsiveness to AM fungi related to nutrient leaching, but AM fungi play an important role in interception of nutrient in exotic plant species.

  20. Rendimento de massa seca e absorção de fósforo pelo milho afetado pela aplicação de fósforo, calcário e inoculação com fungos micorrízicos Dry matter of corn and phosphorus uptake as affected by liming, rates of phosphorus, and mycorrhizae inoculation

    Directory of Open Access Journals (Sweden)

    Julio Cesar Pires Santos

    1996-04-01

    Full Text Available A colonização do sistema radicular com micorrizas pode aumentar a absorção de P e com isto aumentar o crescimento das plantas, o que parece ser mais comum em solos com baixa disponibilidade de P. No presente trabalho, a inoculação com fungos micorrízicos arbusculares (FMA, objetivou avaliar seu efeito na morfologia do sistema radicular, na produção de massa seca e na absorção de fósforo pelo milho. Utilizou-se o latossolo bruno argiloso, e os tratamentos consistiram de dois valores de pH (4,8 e 5,5, duas doses de fósforo (25 e 100mg P/kg de solo e inoculação com FMA. O experimento foi conduzido em casa de vegetação com cinco repetições, distribuídas no delineamento experimental completamente casualisado. Aos 46 dias após a emergência as plantas foram colhidas, e nelas determinou-se a produção de massa seca de parte aérea e de raízes, o comprimento e o raio médio radicular. a porcentagem e intensidade de colonização micorrízica e a absorção de fósforo. A inoculação com FMA aumentou a CM mas não afetou a produção de massa seca e absorção de fósforo pelo milho, embora as raízes mostrassem menor comprimento, indicando que as hifas extraradiculares compensaram o crescimento radicular. A adição de fósforo e a elevação do pH aumentaram a massa seca da parte aérea e raízes, a absorção de fósforo e o comprimento radicular.The existence of mycorrhiza in the plant roots may increase phosphorus uptake and thus crop yield. This effect, however, seems to occur only in phosphorus deficient soils. The objetive of this work was to evaluate the effect of soil pH, rates of phosphorus addition, and mycorrhiza inoculation on dry matter yield of corn and on phosphorus uptake. The experiment was run in a greenhouse, using an oxisol, with five replicates per treatment distributed in a completely randomized experimental design. The treatments, a 2x2x2 factorial, were two rates of phosphorus (25 and 100mg P/kg, two p

  1. Communities, populations and individuals of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi.

  2. Effect of Arbuscular Mycorrhizal Inoculation on Plant Growth and Phthalic Ester Degradation in Two Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-Rui; YIN Rui; LIN Xian-Gui; CAO Zhi-Hong

    2005-01-01

    A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorrhizal inoculation on plant growth and degradation of DEHP in two contaminated soils, a yellow-brown soil and a red soil. The air-dried soils were uniformly sprayed with different concentrations of DEHP, inoculated or left uninoculated with an arbuscular mycorrhizal (AM) fungus, and planted with cowpea seeds. After 60 days the positive impact of AM inoculation on the growth of cowpea was more pronounced in the red soil than in the yellow-brown soil, with significantly higher (P < 0.01)mycorrhizal colonization rate, shoot dry weight and total P content in shoot tissues for the red soil. Both in the yellowbrown and red soils, AM inoculation significantly (P < 0.01) reduced shoot DEHP content, implying that AM inoculation could inhibit the uptake and translocation of DEHP from roots to the aboveground parts. However, with AM inoculation no positive contribution to the degradation of DEHP was found.

  3. Effects of VA mycorrhizas fungus on phosphorus and potassium uptake in tea seedlings

    International Nuclear Information System (INIS)

    Tea (Camellia sinensis) seeds were sown on sterilized acidic yellow soil (pH 5.6) in a pot experiment and treated as follows: 1) inoculated with VA mycorrhizas fungus (Glomus citricolum), 2) nonmycorrhizal as control, top dressed with 32P-single superphosphate (M-32P) and 86Rb-rubidium chloride (M-86Rb). The results showed that the percentage of VA mycorrhizas infection was 52.6% for M-32P and 56.7% for M-86Rb. Plant height, dry weight and the uptake of phosphorus and potassium were 2.1 and 1.8 times, 2.4 and 2.5 times, 5.6 and 4.1 times as that of control respectively. The utilization rate of phosphorus and potassium were raised by 14.10% and 17.13% respectively

  4. Improvement of production of high-yield poplar varieties seedlings by mycorrhiza application

    Directory of Open Access Journals (Sweden)

    Galić Zoran A.

    2007-01-01

    Full Text Available Research related to the effects of treatment by mycorrhiza preparations Ectovit, Rhodovit (preparations Symbio-m Ltd., Czech Rep. and their combination on growth of four high-yield poplar clones of Populus deltoides and one variety of Populus x euramericana are presented in this paper. In order to make more accurate assessment of mycorrhiza effect, soil characteristics such as morphology, texture and chemical composition were determined. The study results indicate that mycorrhized cuttings had the same or the better survival in all the study clones compared to the control. The application of the preparation Ectovit and Rhodovit resulted averagely in the first class planting stock of all the study clones. The combination of the preparations Ectovit and Rhodovit produced averagely the first class planting stock only of the clone Populus x euramericana.

  5. {sup 134}Cs in heather seed plants grown with and without mycorrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, M. [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Johansson, M. [Department of Mycology, Botanical Institute, University of Copenhagen, Oester Farimagsgade 2D, DK-1353 Copenhagen K. (Denmark)

    1988-08-01

    Experiments were carried out to determine differences between mycorrhized and non-mycorrhized seed plants of heather, Calluna vulgaris(L)Hull, as regards the uptake of {sup 134}Cs. In most treatments heather with mycorrhiza had a significantly higher transfer of {sup 134}Cs to the shoots than heather without mycorrhiza. As an average the concentration of {sup 134}Cs was 18% higher in the mycorrhized plants than in the non-mycorrhized. Application of 10 kg K/ha reduced the concentration of {sup 134}Cs in shoots of heather by 49% as an average. Because of improved growth in the potassium fertilized pots the reduction viewed on the basis of the area was only 33%. Nitrogen application does not significantly influence the concentration of {sup 134}Cs in shoots of heather regardless of mycorrhizal status. (Copyright (c) 1988 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Dipterocarps and Mycorrhiza. An ecological adaptation and a factor in forest regeneration

    OpenAIRE

    Smits, W.Th.M.

    1983-01-01

    Each dipterocarp has its own species of fungus, forming an ectomycorrhiza. From literature and experiments (in East Kalimantan and in vitro) ecological consequences are explored. These help explain the clumping of dipterocarp trees in the forest, the lack of hybrids, the poor dispersal, and speciation as dependent on the viability of the root-fungus combination on a particular soil type. Mycorrhizas are located in the top soil. They are extremely sensitive to increase of soil temperatures as ...

  7. Influence of fertilization of nitrogen on the mycorrhiza-system of spruce

    Energy Technology Data Exchange (ETDEWEB)

    Haug, I.; Kottke, I.; Oberwinkler, F.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A.

    1988-04-01

    A laboratory experiment was carried out with different nitrogen forms (NH/sub 4//sup +/, NO/sub 3//sup -/) and different nitrogen levels. For each nitrogen form three concentrations were chosen. Spruce seedlings inoculated with Pisolithus tinctorius or Amanita muscaria were placed in growth chambers with the different nitrogen-variants. After 7 weeks most seedlings in the high ammonium concentration were dead. There was no significant difference in the growth rate of the roots with exception of the high ammonium variant. The greatest total root length was reached in the low variants, also the highest amount of short roots. The shoot/root-ratio is positively correlated with the ammonium concentration. With increasing nitrate concentrations, the shoot/root-ratio also increases, but the differences are not significant. In the low and middle variants, there were well developed mycorrhizae with a hyphal mantle and a Hartig net. The greatest amount of mycorrhizae was found in the low nitrate variant. Light microscopic investigations revealed no differences in the structure of the mycorrhizae from the different variants. Quantitative analyses are not possible with the used method.

  8. Effects of arbuscular mycorrhizal fungus on net ion fluxes in the roots of trifoliate orange(Poncirus trifoliata) and mineral nutrition in seedlings under zinc contamination%丛枝菌根真菌对枳根净离子流及锌污染下枳苗矿质营养的影响

    Institute of Scientific and Technical Information of China (English)

    肖家欣; 杨慧; 张绍铃

    2012-01-01

    We investigated the effects of arbuscular mycorrhizal fungus inoculation on net ion flux in the roots of trifoliate orange ( Poncirus trifoliata ( L. ) Raf. ) and mineral nutrition in seedlings under zinc contamination. A pot experiment was conducted to study plant growth as well as the distribution of zinc, copper, phosphorus, potassium, calcium, and magnesium in trifoliate orange seedlings inoculated by the arbuscular mycorrhizal fungus, Glomus intraradices, under greenhouse conditions. Plants were grown in yellow soil:quartz sand (9:1 , v/v) medium and were irrigated with solutions containing three different zinc concentrations (0, 300 and 600 mg/kg) , which corresponded to control, medium and high zinc contamination treatments, respectively. Meanwhile, a non-invasive micro-test technique was used to determine the net fluxes of Ca2+, H+ and NO-3 along mycorrhizal and non-mycorrhizal roots of trifoliate orange seedlings grown in medium with no zinc added. Arbuscular mycorrhizal colonization significantly increased the fresh weight of shoots and roots exposed todifferent zinc levels. With increasing zinc concentrations, the myeorrhizal colonization percentage decreased, while the zinc levels in the shoots and roots progressively increased. Zinc concentrations in the roots were significantly higher in arbuscular myeorrhizal seedlings than in non-arbuscular myeorrhizal seedlings. The shoot/root ratios of the zinc translocation coefficient gradually decreased in arbuscular myeorrhizal seedlings with increasing zinc concentrations. This indicated that at medium or high levels of zinc contamination, a lot of zinc was immobilized in roots through the establishment of mycorrhizae. Therefore, phytotoxicity might be alleviated. Copper, phosphorus, potassium, and magnesium concentrations in shoots of plants grown in medium with no added zinc were significantly higher in arbuscular myeorrhizal seedlings than those in non-arbuscular myeorrhizal seedlings. Similarly, copper

  9. Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula.

    Science.gov (United States)

    Mediavilla, Olaya; Olaizola, Jaime; Santos-del-Blanco, Luis; Oria-de-Rueda, Juan Andrés; Martín-Pinto, Pablo

    2016-02-01

    Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.

  10. Effect of humic acid and mycorrhiza fungi on some characteristics of “Speedy green” perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    M. Kafi

    2013-04-01

    Full Text Available To investigate the effects of humic acid and mycorrhiza fungi on visual quality, some characteristics of roots and chlorophyll changes of ryegrass, an experiment was carried out in Research Greenhouses of Department of Horticultural Science, University of Tehran, in spring and summer of 2009. The ryegrass was “Speedy green” perennial ryegrass, which is composed of three lolium (Lolium perenne L. cultivars. After autoclave of the soil, addition of inoculums of mycorrhiza fungi (Glomus mosseae and Glomus intraradices to pots and sowing of the seeds, plants were given enough time to grow. After establishment, humic acid was sprayed on leaves at concentrations of 0 (as control, 100, 400 and 1000 mg/L, and the above-mentioned characteristics were measured until the 9th week after starting the treatments. The results showed that humic acid was significantly effective on chlorophyll a, b, and total chlorophyll content, root length and fresh and dry weights of roots; but had no effect on visual quality, root volume and colonization percentage. Mycorrhiza fungi were effective on all characteristics. Among the mycorrhiza fungi, G. mosseae was better than G. intraradices on root factors, while had no positive effect on aerial parts. Colonization percentage was almost equal in both fungi. The effect of mycorrhiza fungi on the above-mentioned characteristics, with respect to the inoculums solution, was probably due to the production of hormone-like effects and enhanced hypha density in soil.

  11. Effect of plant species, soil and environmental factors on vesicular-arbuscular mycorrhizal (VAM) infection and nutrient uptake

    International Nuclear Information System (INIS)

    The vesicular-arbuscular mycorrhizal (VAM) system should meaningfully be considered as a 3-way interaction between plant, soil and fungus. By disassembling the complex VA mycorrhizal symbiosis and considering each component in turn, it has become evident that many factors, such as plant species, soil and environmental conditions can affect the overall balance of the complete system. For the plant to gain maximum benefits from the association, the best possible contribution of plant, fungus and environmental conditions need to be identified and maintained. (author)

  12. Effects of two arbuscular mycorrhizae fungi on some soil hydraulic properties and nutrient uptake by spring barley in an alkaline soil under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    2015-06-01

    Full Text Available In order to investigate the effects of mycorrhizal symbiosis on some soil hydraulic properties and nutrients uptake by spring barley, a greenhouse experiment was conducted based on a completely randomized blocks design with four replications, using two mycorrhizl fungi including Glomus intraradices (GI and Glomus etunicatum (GE and non-mycorrhizal (control treatments, in an alkaline coarse-textured soil. Results showed that GE and GI significantly increased (P< 0.01 field capacity (FC water content by 24.7 and 12.6%, permanent wilting point (PWP water content by 20.1 and 11.1%, available water capacity (AWC by 27.1 and 13.3%, micropores by 14.1 and 5%, mesopores by 27.8 and 20.8% and decreased macropores by 17.3 and 9.5% and saturated hydraulic conductivity by 88.2 and 68.8% relative to the control, respectively. Also, GE and GI fungi significantly increased (P< 0.01 uptake of phosphorus in barely seeds by 44.1 and 20.3% and in stem by 181 and 50.6% and potassium in seeds by 290.8 and 167.9%, respectively. It is concluded that mycorrhizal symbiosis, as a biological and sustainable method, improved hydraulic and chemical quality of the alkaline coarse-textured soil.

  13. 丛枝菌根在芦荟育苗中的应用%Study on Application of Arbuscular-Mycorrhizas in Growing Seedlings of Aloe vera

    Institute of Scientific and Technical Information of China (English)

    弓明钦; 王凤珍; 陈羽

    2002-01-01

    利用6种丛枝(AM)菌和 1 种 AM 菌剂对库拉索芦荟Aloe vera 组培幼苗接种的结果表明:供试菌种或菌剂均可使幼苗形成丛枝菌根,感染率达96.67%~100%,感染指数达73.30~86.67;接种13个月的苗高比对照增加19.85%~51.91%;叶片长度比对照增加56.67%;芦荟幼苗经接种后,叶片汁液的干物质含量,比对照分别增加13.13%~150.%%.接种15个月的芦荟幼苗叶汁鲜重比对照增加60.87%~233.80%;折合有效成分的生药含量,比对照提高2.17倍~7.24倍.

  14. Effects of cadmium and lead concentrations and arbuscular mycorrhiza on growth, flowering and heavy metal accumulation in scarlet sage (Salvia splendens sello 'torreador'

    Directory of Open Access Journals (Sweden)

    Joanna Nowak

    2012-12-01

    Full Text Available The objective of this research was to examine the influence of Cd (0, 10, 20, 40 mg Cd·dm-3 and Pb (0, 10, 100, 200 mg Pb·dm-3 in growing substrate and mycorrhizal colonization of root system on growth, flowering, Cd and Pb accumulation in scarlet sage shoots. Both Cd and Pb had a negative effect on mycorrhizal colonization of scarlet sage roots. The effect of Cd and Pb on the growth of scarlet sage was negligible. Cd at 40 mg·dm-3 lowered the number of inflorescences and caused slight chlorosis of the lowermost leaves. Pb at 200 mg·dm-3 caused drying of the lowermost leaves. Both heavy metals accelerated flowering of non-mycorrhizal plants, independently of the concentration in growing media. Cd and Pb contents in scarlet sage shoots increased with the increasing content of these heavy metals in growing substrate in both non-mycorrhizal and mycorrhizal plants. Mycorrhization decreased the growth of scarlet sage and increased the accumulation of Cd and Pb in shoots of plants grown in media strongly polluted with heavy metals.

  15. Effect of Household Solid Waste on Initial Growth Performance of Acacia auriculiformis and Cedrela toona in Mycorrhiza Inoculated Soil

    Directory of Open Access Journals (Sweden)

    M.M. Abdullah-Al-Mamun

    2015-09-01

    Full Text Available Solid waste disposal and management became one of the major environmental concerns in Bangladesh. Realising the problem, the present study has been undertaken with a view to find a sound and effective way of bio-degradable solid waste management. The study was carried out in the nursery of Institute of Forestry and Environmental Sciences at University of Chittagong to determine the effects of solid waste and waste inoculated with mycorrhizal soil on initial growth performance of Acacia auriculiformis and Cedrela toona. Before planting the seedlings, decomposable waste and mycorrhiza inoculated decomposable waste were placed on the planting holes. Physical growth parameters of seedlings (shoot and root length, leaf and branch number, fresh and dry weight of shoot and root and nodulation status and the macro nutrients (N, P and K were recorded after six months of planting. The highest performance of physical parameters was recorded in the soil treated by mycorrhiza inoculated waste. Cedrela toona was represented by maximum nutrients uptake (N-2.60%, P-0.21% and K-2.34% respectively in the soil treated with mycorrhiza. In case of Acacia auriculiformis, N uptake was maximum (3.02% in control while K uptake was highest (1.27% in soil with waste and P (0.18% uptake was highest in the soil treated with mycorrhiza inoculated waste. Highest initial growth performance was revealed by seedlings treated with mycorrhiza inoculated waste. This study suggested to use mycorrhiza and waste for plantation purposes for hygienic disposal of solid waste and to reduce cost of cultivation.

  16. 丛枝菌根真菌(AMF)提高人工湿地去污能力及运行稳定性的潜力分析%The Potential of Arbuscular Mycorrhizal Fungi(AMF) to Improve Decontamination Capability and Operational Stability of Constructed Wetland

    Institute of Scientific and Technical Information of China (English)

    彭麟; 刘子芳; 肖文雄; 阳路芳; 邓仕槐

    2012-01-01

    Constructed wetland is widely used in sewage treatment. However, blockage and decrease in ability of decontamination in winter have restricted the development of constructed wetland. Arbuscular mycorrhizal and its host plant can form a symbiotic relationship. There is a great potential of arbuscular mycorrhizal to improve operational stability of constructed wetland and capability of removal of phosphorus, nitrogen and organic matter. Nevertheless, few factors can affect the application of AMF. In order to promote AMF to play an optimal role in the constructed wetland, an analysis based on the type of wetland, operation mode, plant species, strain of AMF, composition of sewage and wetland was carried out. To sum up, there is a bright future for the application of AMF in constructed wetland.%目前人工湿地在污水处理中的应用日益广泛,围绕丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)对提高人工湿地除磷、除氮、降解有机物以及运行稳定性等方面的潜力进行了评述,同时结合当前AMF研究现状,针对如何使AMF在人工湿地中发挥最优作用,从人工湿地的类型、运行方式、植物种类、菌种组成及污水水质与湿地基质等5个方面进行了系统分析.

  17. Efeito da mobilização do solo nas micorrizas arbusculares de cereais de Inverno Effects of soil management on arbuscular mycorrhizal fungi in autumn-sown crops

    Directory of Open Access Journals (Sweden)

    I. Brito

    2007-01-01

    sua capacidade para gerar novas colonizações no período cultural. Com o objectivo de avaliar a diversidade dos Glomeromycota presentes no campo de ensaios em estudo, sujeito aos dois tipos de mobilização do solo (SD e MT, foi usada a técnica de amplificação de sequências de rDNA destes fungos a partir de DNA total do solo. Esta técnica permite uma avaliação abrangente, evitando a morosidade e complexidade da abordagem clássica através de culturas armadilha. No total foram analisadas 87 sequencias, provenientes de solo perturbado e não perturbado, e encontrados 11 tipos ribosomais. Considerando as diferenças de frequência dos tipos ribosomais presentes em cada tipo de solo, os resultados parecem confirmar que os fungos micorrízicos arbusculares são diferencialmente susceptíveis à perturbação do solo, não só em termos de diversidade como ao nível da estrutura da comunidade.Soil tillage may markedly reduce the rate of arbuscular mycorrhiza (AM establishment by breaking up the living AM fungal mycelium in the soil. In no till or reduced till management, this mycelium can allow earlier AM formation. Work under field conditions in a Mediterranean climate clearly confirmed that wheat plants cultivated under no-till system had a 6 fold greater mycorrhizal colonization than those grown using a conventional tillage system. Pot experiments were initiated to determine the benefit of the timing of colonization on plants. Soil disturbance induced by tillage practices was simulated by passing the soil through a 4 mm sieve at the start of each successive period of 3 weeks plant growth cycles. After 4 cycles of plant growth (wheat, significant effects in all colonization parameters were detected. Arbuscular, vesicular and hyphal colonization were clearly higher in undisturbed soil. To gain a global overview of the diversity of Glomeromycota under the 2 cultivation systems in the experimental field, rDNA sequences from the fungi have been amplified

  18. 丛枝菌根影响纳米 ZnO 对玉米的生物效应%Arbuscular Mycorrhizal Symbiosis Influences the Biological Effects of Nano-ZnO on Maize

    Institute of Scientific and Technical Information of China (English)

    王卫中; 王发园; 李帅; 刘雪琴

    2014-01-01

    , and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  19. Fungos micorrízicos-arbusculares no desenvolvimento de mudas de helicônia e gérbera micropropagadas Application of arbuscular mycorrhiza to micropropagated heliconia and gerbera plants during acclimatization period

    OpenAIRE

    Aurora Yoshiko Sato; Dulcimara Carvalho Nannetti; José Eduardo Brasil Pereira Pinto; José Oswaldo Siqueira; Maria de Fátima Arrigoni Blank

    1999-01-01

    Plântulas micropropagadas de helicônia (Heliconia sp) gérbera (Gerbera sp) de vaso, foram aclimatadas em substrato (torta de filtro 50%, solo 30% e areia 20%), inoculado com três espécies de fungo micorrízico (Glomus clarum Nicolson. & Schenck, Glomus etunicatum Becker & Gerdemann e Gigaspora margarita Becker & Hall) e uma mistura destas espécies (inóculo múltiplo). As avaliações quanto ao desenvolvimento da parte aérea e do sistema radicular e porcentagem de colonização, foram feitas aos 60 ...

  20. Interactions between arbuscular mycorrhizal fungi and organic material substrates.

    Science.gov (United States)

    Hodge, Angela

    2014-01-01

    Arbuscular mycorrhizal (AM) associations are widespread and form between ca. two-thirds of all land plants and fungi in the phylum Glomeromycota. The association is a mutualistic symbiosis with the fungi enhancing nutrient capture for the plant while obtaining carbon in return. Although arbuscular mycorrhizal fungi (AMF) lack any substantial saprophytic capability they do preferentially associate with various organic substrates and respond by hyphal proliferation, indicating the fungus derives a benefit from the organic substrate. AMF may also enhance decomposition of the organic material. The benefit to the host plant of this hyphal proliferation is not always apparent, particularly regarding nitrogen (N) transfer, and there may be circumstances under which both symbionts compete for the N released given both have a large demand for N. The results of various studies examining AMF responses to organic substrates and the interactions with other members of the soil community will be discussed.

  1. Colonization of new land by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Nielsen, Knud Brian; Kjøller, Rasmus; Bruun, Hans Henrik;

    2016-01-01

    was significantly lower on the artificial island than on the neighboring natural island, indicating that richness of the colonizing AM fungal community is restricted by limited dispersal. The AM fungal communities colonizing the new island appeared to be a non-random subset of communities on the natural and much......The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities...... was assessed through 454 pyrosequencing. Internal community structure was investigated through fitting the rank-abundance of Operational Taxonomic Units to different models. Heterogeneity of communities within islands was assessed by analysis of group dispersion. The mean OTU richness per sample...

  2. When do arbuscular mycorrhizal fungi protect plant roots from pathogens?

    OpenAIRE

    Sikes, Benjamin A

    2010-01-01

    Arbuscular mycorrhizal (AM) fungi are mainly thought to facilitate phosphorus uptake in plants, but they can also perform several other functions that are equally beneficial. Our recent study sheds light on the factors determining one such function, enhanced plant protection from root pathogens. Root infection by the fungal pathogen Fusarium oxysporum was determined by both plant susceptibility and the ability of an AM fungal partner to suppress the pathogen. The non-susceptible plant species...

  3. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-07-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  4. Investigating the Endobacteria Which Thrive in Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Desirò, Alessandro; Salvioli, Alessandra; Bonfante, Paola

    2016-01-01

    The study of the so-called unculturable bacteria is still considered a challenging task. However, given recent improvements in the sensitivity of culture-free approaches, the identification and characterization of such microbes in complex biological samples is now possible. In this chapter we report how endobacteria thriving inside arbuscular mycorrhizal fungi (AMF), which are themselves obligate biotrophs of plants, can be studied using a combination of in vitro culture, molecular biology, and microscopy techniques. PMID:26791495

  5. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form function and detection

    NARCIS (Netherlands)

    Dodd, J.C.; Boddington, C.L.; Rodriguez, A.; Gonzalez-Chavez, C.; Marsur, I.

    2000-01-01

    It is often assumed that all species of arbuscular mycorrhizal fungi (AMF) have the same function because of the ubiquity of the arbuscular mycorrhizal symbiosis and the fact that all AMF occupy the same plant/soil niche. Despite apparent differences in the timing of evolutionary divergence and the

  6. 三角叶黄连丛枝菌根真菌的多样性研究%Diversity Study of Arbuscular Mycorrhizal Fungi of Coptis deltoidea

    Institute of Scientific and Technical Information of China (English)

    黄文丽; 范昕建; 严铸云; 马云桐; 孟宪丽

    2012-01-01

    Objective:To investigate the resources and distribution of Arbuscular Myconhizal Fungi( AMF) in rhizosphere of Coptis deltoidea. Methods:The colonization situation of AMF of Coptis deltoidea were detected by acid fuchsin staining and then calculated the colonization rate. AMF fungal spores were obtained by Wet-screening method and then classified and identified by their morphological characteristics and histochemical staining method. Results:Coptis deltoidea and AMF could engender the mycorrhiza. Colonization rates were different in different producing areas and ranged from 23.3% to 34.4%. Thirty species of AMF belonging in 6 genera were found, including 17 species of the Acaulospora,7 of the Glomus,2 of the Gigaspora,1 of the Entrophospora,1 of the Paraglomus and 2 of the Archaeospora were isolated from rhizosphere of Coptis deltoidea. Acaulospora and Glooms were the dominant genera and the AMF species of genuine producing regions in Hongya county was the most diversiform among the six areas. Conclusion:Coptis deltoidea is a kind of nutrition type of mycorrhiza plant. The rich diversity of AMF of Coptis deltoidea in producing areas make the AMF is a biological resource of significant application prospects in enlarging yield and non-pollution production.%目的:调查三角叶黄连主产区根围中丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)的资源和分布情况.方法:采用碱解离-L酸甘油酸性品红染色法观察三角叶黄连根系侵染情况,并计算侵染率;采用湿筛-倾注-蔗糖离心法分离提取孢子,利用形态特征及组织化学染色的方法对AMF孢子进行分类鉴定.结果:三角叶黄连能与AMF形成菌根,不同产地采集三角叶黄连菌根侵染率不同,为23.3% ~34.4%;从6个产地共分离出了6属30种丛枝菌根真菌,其中无梗囊霉属Acaulospora 17种、球囊霉属Glomus 7种、巨孢囊霉属Gigaspora 2种、内养囊霉属Entrophospora 1种、类球囊霉属Paraglomus 1

  7. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Lobinski, R.; Burger-Meyer, K.;

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzy...

  8. Uptake and specification of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    NARCIS (Netherlands)

    Larsen, E.H.; Lobinski, R.; Burger-Meijer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.E.; Kik, C.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes

  9. Location and Survival of Mycorrhiza Helper Pseudomonas fluorescens during Establishment of Ectomycorrhizal Symbiosis between Laccaria bicolor and Douglas Fir

    Science.gov (United States)

    Frey-Klett, P.; Pierrat, J. C.; Garbaye, J.

    1997-01-01

    The mycorrhiza helper bacterium Pseudomonas fluorescens BBc6, isolated from a Laccaria bicolor sporocarp, consistently promotes L. bicolor-Douglas fir (Pseudotsuga menziesii) ectomycorrhizal formation, even with low doses of bacterial inoculum. In order to describe this phenomenon more accurately, we have looked at the location and survival of the introduced bacterial strain in the soil and in the rhizosphere during the establishment of mycorrhizal symbiosis in glasshouse and nursery experiments. Bacterial populations were quantified with a spontaneous, stable, rifampin-resistant mutant, BBc6R8, which phenotypically conformed to the parental strain. BBc6R8 populations declined rapidly, reaching the detection limit after 19 weeks, and did not increase either when L. bicolor sporocarps were forming in autumn or when Douglas fir roots resumed growing in spring. BBc6R8 was neither an endophyte nor a rhizobacterium. Furthermore, it was not particularly associated with either mycorrhizas of Douglas fir-L. bicolor or L. bicolor sporocarps. Surprisingly, a significant mycorrhiza helper effect was observed when the inoculated BBc6R8 population had dropped as low as 30 CFU g of dry matter(sup-1) in the soil. This study raises questions concerning the bacterial concentration in the soil which is effective for promotion of mycorrhizal establishment and the timing of the bacterial effect. It allows us to develop working hypotheses, which can be tested experimentally, to identify the mechanisms of the mycorrhiza helper effect. PMID:16535478

  10. Investigations of the mycorrhiza reactions to ozone and acid mist. Untersuchungen zur Reaktion von Mykorrhizen auf Ozon und sauren Nebel

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M. (Muenchen Univ. (Germany, F.R.). Inst. fuer Systematische Botanik)

    1989-07-01

    In several experiments the root system and the mycorrhizae of Picea abies were studied in their reaction to different soils and to application of ozon and acid mist. While significant responses to substrat could be found, the tested parameters in most cases did not show significant reactions to the applicated ozon and acid mist. (orig.).

  11. The role of pH in Tuber aestivum syn. uncinatum mycorrhiza development within commercial orchards

    Directory of Open Access Journals (Sweden)

    Paul W. Thomas

    2013-12-01

    Full Text Available The accepted advice when establishing a plantation of Tuber aestivum syn. uncinatum is that young inoculated trees should be planted on calcareous soils with a naturally high pH level. When a site is employed that has a naturally low pH level, lime is often applied to raise the pH to a considered ideal level of c.7.5. However, this may not be the correct approach. Here we present data from 33 data points taken from commercial truffle orchards in England, UK. Soil pH is correlated to Tuber aestivum syn. uncinatum mycorrhiza survivorship and development. The optimal observed pH was 7.51 but the actual optimal pH for cultivation may be higher. Sub optimal pH levels lead to a reduction of Tuber aestivum syn. uncinatum mycorrhiza. This reduction is not permanent and mycorrhization levels may be improved within a 12 month period by amending the soil pH. The importance of understanding the interaction of pH with other variables and the results in relation truffle cultivation are discussed.

  12. Fungos micorrízicos arbusculares na formação de mudas de cafeeiro, em substratos orgânicos comerciais Arbuscular mycorrhizal fungi on the development of coffee plantlets using different organic substrates

    Directory of Open Access Journals (Sweden)

    Fabrício Sales Massafera Tristão

    2006-01-01

    Full Text Available Realizou-se um experimento, em casa de vegetação, em arranjo fatorial 9 x 4, com o objetivo de avaliar o efeito de substratos orgânicos comerciais e inoculação de fungos micorrízicos arbusculares (FMAs no desenvolvimento de mudas de cafeeiro, cultivar 'Catuaí Amarelo', IAC 62. Utilizaram-se substratos à base de fibra de coco (Golden Mix 11, Golden Mix 47 e Golden Mix 80, casca de pinus (Rendmax, Vida Verde com adubação, Vida Verde sem adubação e Terra do Paraíso, solo puro e solo + esterco (70% e 30%,v/v, inoculando-se os FMAs Glomus intraradices, Glomus etunicatum e Gigaspora margarita. Manteve-se um tratamento sem inoculação. Aos 200 dias após transplante avaliaram-se: altura, diâmetro do caule, número de folhas, matéria seca da parte aérea, matéria fresca da raiz, teor de fósforo na parte aérea, colonização radicular, comprimento do micélio externo, atividade da fosfatase ácida e teores de pigmentos fotossintetizantes nas folhas do cafeeiro. Independentemente da micorrização, o melhor crescimento das mudas foi obtido no substrato Vida Verde sem adubação. Os melhores efeitos da micorrização foram constatados nas plantas colonizadas por G. margarita e crescidas nos substratos convencional (solo + esterco e Vida Verde com adubação, nas quais se verificaram mais eficácia na utilização de P, o que reverteu em maior crescimento e produção de biomassa, resultando em maior eficiência simbiótica. No substrato solo + esterco, a micorrização favoreceu a concentração de pigmentos fotossintetizantes e diminuiu a atividade da fosfatase ácida nas folhas do cafeeiro.A greenhouse experiment with an alleatory factorial 9 x 4 scheme was carried out to evaluate the effects of different substrates and species of arbuscular mycorrhizal fungi (AMF on the development of coffee plants, cultivar Catuaí Amarelo, IAC 62. Nine substrates were used: seven commercial organic substrates - four substrates containing composted

  13. Effects and mechanisms of interactions between arbuscular mycorrrhizal fungi and plant growth promoting rhizobacteria%丛枝菌根真菌与根围促生细菌相互作用的效应与机制

    Institute of Scientific and Technical Information of China (English)

    戴梅; 王洪娴; 殷元元; 武侠; 王淼焱; 刘润进

    2008-01-01

    丛枝菌根(arbuscular mycorrhiza,AM)真菌是植物活体营养专性共生菌,广泛存在于陆地各生态系统中.研究表明,AM真菌与根围促生细菌(plant growth promoting rhizobacteria,PGPR)之间的相互作用,尤其是它们之间的协同作用不仅影响植物养分吸收利用、病原物发生发展、土壤理化特性与生物修复等,而且对于可持续农、林、牧业生产、稳定生态系统都具有十分重要的意义.因此,近年来给予众多关注和研究.综述了AM真菌与PGPR之间的相互影响及其可能的作用机制,以及AM真菌与PGPR协同改善植物营养和生长、协同抑制病原菌、协同修复土壤方面的作用,旨在总结AM真菌与PGPR相互作用的效应与机制方面的最新研究进展,为今后研究发展提供依据.

  14. 丛枝菌根真菌对澳洲坚果幼苗的生长效应%Effects of Arbuscular Mycorrhizal Fungi on the Growth and Development of Macadamia Plantlets

    Institute of Scientific and Technical Information of China (English)

    刘建福; 张勇; 谢丽源; 曾明

    2005-01-01

    将澳洲坚果种子进行表面消毒,并播种于盛装已灭菌珍珠岩的塑料育苗盒中,观察其幼苗期接种丛枝菌根真菌[Arbuscular Mycorrhiza Fungi,AMF(Gl.mosseae)]对澳洲坚果幼苗生长效应的影响.试验结果表明,AMF对澳洲坚果幼苗的生长发育均有重要的促进作用.AMF能促进澳洲坚果幼苗的生长及其幼苗叶片蛋白质及糖分的积累;能促进其根系磷酸酶的活性,磷酸酶活性与AMF侵染率存在显著相关性.接种AMF可增强澳洲坚果幼苗根系活力,促进其根系对N,P等矿质养分的吸收和积累,并促进澳洲坚果植株的光合作用,提高其幼苗的生长势.

  15. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.

    Science.gov (United States)

    Tian, Chunjie; Kasiborski, Beth; Koul, Raman; Lammers, Peter J; Bücking, Heike; Shachar-Hill, Yair

    2010-07-01

    The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.

  16. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. PMID:25535196

  17. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique.

    Directory of Open Access Journals (Sweden)

    François Le Tacon

    Full Text Available Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy or from soil organic matter (saprotrophy. The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum production and situated in the west part of the Vosges, France, was labeled with (13CO2. The transfer of (13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13C prior to ascocarp development. Then, the mycorrhizas transferred (13C to the ascocarps to provide constitutive carbon (1.7 mg of (13C per day. The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season came from the host.

  18. PHOSPHATE AND INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI ON THE GROWTH OF Cecropia pachystachya (Trec SEEDLINGS FÓSFORO E INOCULAÇÃO COM FUNGOS MICORRÍZICOS ARBUSCULARES NO ESTABELECIMENTO DE MUDAS DE EMBAÚBA (Cecropia pachystachya Trec

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro

    2007-09-01

    Full Text Available

    The objective of this study was to evaluate the effect of the inoculation with arbuscular mycorrhizal fungi (FMA in different levels of P2O5 on the growth of Cecropia pachystachya seedlings in the field. The study consisted of a 5x2 factorial with five levels of P2O5 (zero, 85, 170, 255 and 340 mg.kg-1, with and ithout inoculation with a mixture of FMA. It was used four replications, each one with twelve seedlings. The seeds were sowed in plastic tubes with capacity of 50 cm3 of substratum and stored for 120 days. After this period the seedlings were transplanted to the field, where they remained for another 150 days. Seedling diameter and height were measured at 60 and 120 days, aerial part and root dry matter, and arbuscular mycorrhizal colonization. Diameter, height, leaf area, aerial part dry matter and the number of surviving seedlings were determined after 150 days. None of the factors tested had any effect on seedling growth with one exception; inoculated plants with FMA had more root dry matter. Plants inoculated with smaller doses of P2O5 showed a larger percentage of surviving individuals and more vigorous seedlings. Results suggest that in low fertility soils of and subject to the hydric stress the C. pachystachya seedlings should be inoculated with FMA.

    KEY-WORDS: Native vegetation; mycorrhiza fungi; native species; seedling production; inoculation.

    O objetivo deste estudo foi avaliar o efeito da inoculação com fungos micorrízicos arbusculares (FMA em diferentes doses de P2O5 na formação de mudas de embaúba (Cecropia pachystachya e no seu estabelecimento em campo. O estudo constou de um experimento fatorial 5x2, sendo cinco doses de P2O5

  19. Investigations regarding vitalization and revitalization of ailing spruce stands by mycorrhiza inoculation. Untersuchungen zur Vitalisierung und Revitalisierung erkrankter Fichtenbestaende durch Mykorrhizaimpfung

    Energy Technology Data Exchange (ETDEWEB)

    Wuestenhoefer, B.

    1989-01-01

    In an experimental site with an ailing spruce stand the question was investigated whether vitalization of the spruces could be achieved by inoculation with mycorrhiza fungi and/or by implanting beech trees that carry mycorrhizas. In order to create better soil conditions for the mycorrhization experiments, a number of the plots were treated with different fertilization variants. Application of two mycorrhiza fungi was by spraying of spores and/or intermediate planting of mycorrhiza-supported beeches. The effects of the activities were controlled both by vegetation and fungus mappings and by soil and root analyses. In the fertilized plots, notable changes as to the quantity of plants and spectrum of species were observed. The number of the species of mycorrhiza fungus remained relatively constant. But in the fertilized plots, distinctly less fruit-bodies were counted. Altogether, the activities resulted in a significant change in the amount of mycorrhizas at the roots of spruces. Over the next years, the applied fungi are expected to establish themselves firmly by added spore formation. (JH).

  20. Soil CO2 efflux in a sand grassland: contribution by root, mycorrhizal and basal respiration components

    Science.gov (United States)

    Papp, Marianna; Balogh, János; Pintér, Krisztina; Cserhalmi, Dóra; Nagy, Zoltán

    2014-05-01

    Grasslands play an important role in global carbon cycle because of their remarkable extension and carbon storage capacity. Soil respiration takes a major part in the carbon cycle of the ecosystems; ratio of its autotrophic and heterotrophic components is important also when considering their sensitivity to environmental drivers. The aim of the study was to estimate the contribution by root, mycorrhizal and basal components to total soil CO2 efflux. The study was carried out in the semi-arid sandy grassland dominated by Festuca pseudovina at the Kiskunság National Park in Hungary (Bugac site) where C-flux measurements have been going on since 2002. The soil CO2 effluxes were measured in the following treatments: a./ control, b./ root-exclusion, c./ root and mycorrhiza exclusion by using 80 cm long 15 cm inner diameter PVC tubes and micro-pore inox meshes. Inox mesh was used to exclude roots, but let the mycorrhiza filaments to grow into the tubes. 10 soil cores were excavated, sieved, then root-free soil was packed back layer by layer into the cores giving 6 and 4 repetitions in b and c treatments respectively. Basal respiration is referred to as the heterotrophic respiration without influence of roots or mycorrhiza. Difference between root-exclusion and root and mycorrhiza exclusion treatment gave the value of mycorrhizal respiration and control (non-disturbed) plots the total soil CO2 efflux. The contribution by the above components was evaluated. Soil CO2 efflux was measured continuously by using an automated open system of 10 soil respiration chambers. Data was collected in every two hours from each treatment (one of the chambers recorded basal respiration, 3 chambers were settled on root-excluded treatments and 6 chambers measured control plots). Chambers were moved in every 2 weeks between the repetitions of the treatments. Soil CO2 efflux (mycorrhiza-free, root free, control) data were fitted using a soil respiration model, where soil temperature, soil

  1. Availability of caesium radionuclides to plants - classification of soils and role of mycorrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Drissner, J.; Buermann, W.; Enslin, F.; Heider, R.; Klemt, E.; Miller, R.; Schick, G.; Zibold, G. [Fachhochschule Ravensburg-Weingarten, D-88241 Weingarten (Germany)

    1998-10-01

    At different locations in spruce stands spread rather homogeneously over southern Baden-Wuerttemberg, samples of soil and plants were taken and the vertical distribution of the caesium radionuclides in the soil was studied. As a direct measure of the bioavailability, the aggregated transfer factor, T{sub ag}, was determined for fern, bilberry, raspberry, blackberry, and clover. The T{sub ag} (in m2 kg{sup -1}) is defined by the specific caesium activity (in Bq kg{sup -1}) of the dry mass of the plants, divided by the total inventory (in Bq m{sup -2}) of the soil. It varies between 0{center_dot}5 and 0{center_dot}001 m2kg{sup -1}, being highest for fern and lowest for blackberry or clover at all sampling sites. Most decisive for the value of the T{sub ag} are kind of humus deposit, thickness and pH value of the humus layers. Also important are the soil properties, whereas geology has only a minor influence on T{sub ag}. At different sampling sites in spruce forests, the T{sub ag} can vary by two orders of magnitude for one plant species. Caesium desorption experiments were performed. We could not find a dependence of the transfer of caesium to the plant on the desorbability of caesium from the soil, which implies a more complex transport mechanism than simple ion exchange in the soil solution. It is suggested that the transport of caesium is mediated by mycorrhiza fungi. Therefore, we studied the density of mycorrhiza hyphae in the O{sub f}, O{sub h} and A{sub h} soil horizons of two sites differing in T{sub ag} by a factor of 10. The densities of mycorrhiza hyphae in the O{sub h} and A{sub h} soil horizons each differ by a factor of 2 for the two sites. Yet, the effect of the hyphae density on radiocaesium uptake has to be a subject of further investigation. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Associação micorrízica e teores de nutrientes nas folhas de cupuaçuzeiro (Theobroma grandiflorum e guaranazeiro (Paullinia cupana de um sistema agroflorestal em Manaus, Amazonas Arbuscular mycorrhizal association and foliar nutrient concentrations of cupuassu (Theobroma grandiflorum and guaraná (Paullinia cupana plants in an agroforestry system in Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    A. N. Oliveira

    2004-12-01

    Full Text Available As micorrizas arbusculares podem ser importantes na nutrição das plantas em solos ácidos e de baixa fertilidade, como são os da Amazônia de modo geral. Avaliaram-se a colonização radicular por fungos micorrízicos arbusculares (FMAs nativos e os teores de nutrientes em cupuaçuzeiro e guaranazeiro em um sistema agroflorestal no município de Manaus, Amazonas. Dez plantas de cada espécie foram selecionadas, das quais foram coletadas amostras de raiz, folha e solo durante o período seco e chuvoso da região de Manaus. Os guaranazeiros e os cupuaçuzeiros apresentaram maior colonização radicular por FMAs na época chuvosa. Os teores foliares de Ca, Mg, K, P, Zn, Cu e Mn nas duas espécies não foram influenciados pelas épocas de amostragem. O teor de Fe nas folhas dos cupuaçuzeiros foi maior na época chuvosa, enquanto o dos guaranazeiros, na época seca. A colonização micorrízica correlacionou-se com a concentração foliar de Ca, Mg, P e Cu nos cupuaçuzeiros e com a de Ca, Fe, Zn e Cu nos guaranazeiros.Arbuscular mycorrhiza can be important for plant nutrition in acid and low fertility soils such as those of the Amazon. The present study evaluated the mycorrhizal colonization by native arbuscular mycorrhizal fungi (AMF and nutrient concentrations of cupuassu and guarana leaves in an agroforestry system in Manaus, Amazonas State, Brazil. Ten plants of each species were selected, of which the roots, soil and leaves were sampled during the rainy and dry seasons. Guarana and cupuassu trees presented higher levels of AMF colonization during the rainy season. Ca, Mg, K, P, Zn, Cu, and Mn concentrations in both species were not affected by the season. Fe concentration was higher during the rainy season in the cupuassu leaves, but higher in the dry season in the guarana leaves. Mycorrhizal colonization correlated with Ca, Mg, P, and Cu concentrations in cupuassu plants and with Ca, Fe, Zn, and Cu in guarana plants.

  3. Root Respiration and Growth in Plantago major as Affected by Vesicular-Arbuscular Mycorrhizal Infection.

    Science.gov (United States)

    Baas, R; van der Werf, A; Lambers, H

    1989-09-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) infection and P on root respiration and dry matter allocation were studied in Plantago major L. ssp. pleiosperma (Pilger). By applying P, the relative growth rate of non-VAM controls and plants colonized by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe was increased to a similar extent (55-67%). However, leaf area ratio was increased more and net assimilation rate per unit leaf area was increased less by VAM infection than by P addition. The lower net assimilation rate could be related to a 20 to 30% higher root respiration rate per unit leaf area of VAM plants. Root respiration per unit dry matter and specific net uptake rates of N and P were increased more by VAM infection than by P addition. Neither the contribution of the alternative respiratory path nor the relative growth rate could account for the differences in root respiration rate between VAM and non-VAM plants. It was estimated that increased fungal respiration (87%) and ion uptake rate (13%) contributed to the higher respiratory activity of VAM roots of P. major.

  4. Root Respiration and Growth in Plantago major as Affected by Vesicular-Arbuscular Mycorrhizal Infection.

    Science.gov (United States)

    Baas, R; van der Werf, A; Lambers, H

    1989-09-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) infection and P on root respiration and dry matter allocation were studied in Plantago major L. ssp. pleiosperma (Pilger). By applying P, the relative growth rate of non-VAM controls and plants colonized by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe was increased to a similar extent (55-67%). However, leaf area ratio was increased more and net assimilation rate per unit leaf area was increased less by VAM infection than by P addition. The lower net assimilation rate could be related to a 20 to 30% higher root respiration rate per unit leaf area of VAM plants. Root respiration per unit dry matter and specific net uptake rates of N and P were increased more by VAM infection than by P addition. Neither the contribution of the alternative respiratory path nor the relative growth rate could account for the differences in root respiration rate between VAM and non-VAM plants. It was estimated that increased fungal respiration (87%) and ion uptake rate (13%) contributed to the higher respiratory activity of VAM roots of P. major. PMID:16667001

  5. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  6. Mycorrhiza Reduces Adverse Effects of Dark Septate Endophytes (DSE) on Growth of Conifers

    Science.gov (United States)

    Reininger, Vanessa; Sieber, Thomas N.

    2012-01-01

    Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and

  7. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE on growth of conifers.

    Directory of Open Access Journals (Sweden)

    Vanessa Reininger

    Full Text Available Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC. These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM. Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce, mycorrhization by Laccaria bicolor (strain S238N and two temperature regimes (19°C and 25°C on the biomass of the Douglas-fir (Pseudotsuga menziesii and Norway spruce (Picea abies seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts

  8. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  9. Arbuscular mycorrhizal fungi (Glomeromycota of soils of the Lubuskie province

    Directory of Open Access Journals (Sweden)

    Sławomir Kowalczyk

    2012-12-01

    Full Text Available In the year 2003, the occurrence of arbuscular mycorrhizal fungi (AMF of the phylum Glomeromycota in cultivated and uncultivated soils of the Lubuskie province was investigated. The occurrence of AMF was examined based on 56 root and rhizosphere soils collected under 7 species of cultivated and uncultivated plants growing in 28 localities. Spores of AMF were isolated from both field-collected samples and trap cultures. They were revealed in 100% of field soils and 93.8% of trap cultures and represented 7 of the 8 recognized genera of the Glomeromycota. The arbuscular fungi occurring distinctly more frequently in the soil and root samples examined were members of the genus Glomus. The species of AMF most frequently occurring in cultivated soils of the Lubuskie province were G. claroideum, G. constrictum, G. deserticola and G. mosseae, whereas G. claroideum, G. constrictum, G. deserticola, G. mosseae, and S. dipurpurescens were more frequently found in uncultivated sites. The analysis of similarity of the species composition of AMF populations in sites of the Lubuskie province and the Western Pomeranian province earlier examined showed that (1 the occurrence in Poland of most taxa of these fungi detected in the study presented here is even and does not change with time, (2 the communities of AMF area are stable, despite the arduousness resulting from the agricultural and chemical practices conducted, and (3 the species diversity of the plants cultivated in a long period of time has no influence on the species composition of populations of AMF.

  10. Draft Genome Sequence of Klebsiella variicola Strain KV321 Isolated from Rhizosphere Soil of Pisolithus tinctorius-Eucalyptus Mycorrhiza.

    Science.gov (United States)

    Jiang, Shao-Feng; Liu, Yi; Xiao, Mi-Yun; Ruan, Chu-Jin; Lu, Zu-Jun

    2016-01-01

    The draft genome sequences of Klebsiella variicola strain KV321, which was isolated from rhizosphere soil of Pisolithus tinctorius-Eucalyptus mycorrhiza, are reported here. The genome sequences contain genes involved in ABC transporter function in multiple-antibiotic drug resistance and colonization. This genomic analysis will help understand the genomic basis of K. variicola virulence genes and how the genes play a part in its interaction with other living organisms. PMID:27445373

  11. Draft Genome Sequence of Klebsiella variicola Strain KV321 Isolated from Rhizosphere Soil of Pisolithus tinctorius-Eucalyptus Mycorrhiza.

    Science.gov (United States)

    Jiang, Shao-Feng; Liu, Yi; Xiao, Mi-Yun; Ruan, Chu-Jin; Lu, Zu-Jun

    2016-07-21

    The draft genome sequences of Klebsiella variicola strain KV321, which was isolated from rhizosphere soil of Pisolithus tinctorius-Eucalyptus mycorrhiza, are reported here. The genome sequences contain genes involved in ABC transporter function in multiple-antibiotic drug resistance and colonization. This genomic analysis will help understand the genomic basis of K. variicola virulence genes and how the genes play a part in its interaction with other living organisms.

  12. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Erik H.; Hansen, Marianne; Rasmussen, Peter Have; Sloth, Jens J. [Danish Institute for Food and Veterinary Research, Department of Food Chemistry, Soeborg (Denmark); Lobinski, Ryszard; Ruzik, Rafal; Mazurowska, Lena [CNRS UMR 5034, Pau (France); Warsaw University of Technology, Department of Analytical Chemistry, Warsaw (Poland); Burger-Meyer, Karin; Scholten, Olga [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Kik, Chris [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Wageningen University and Research Centre, Centre for Genetic Resources, The Netherlands (CGN), P.O. Box 16, Wageningen (Netherlands)

    2006-07-15

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 {mu}g g{sup -1} (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that {gamma}-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of {gamma}-glutamyl-Se-methyl-selenocysteine and {gamma}-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry. (orig.)

  13. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NARCIS (Netherlands)

    Reidinger, S.; Eschen, R.; Gange, A.C.; Finch, P.; Bezemer, T.M.

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF

  14. Stomatal Conductance, Plant Species Distribution, and an Exploration of Rhizosphere Microbes and Mycorrhizae at a Deliberately Leakimg Experimental Carbon Sequestration Field (ZERT)

    Science.gov (United States)

    Sharma, B.; Apple, M. E.; Morales, S.; Zhou, X.; Holben, B.; Olson, J.; Prince, J.; Dobeck, L.; Cunningham, A. B.; Spangler, L.

    2010-12-01

    One measure to reduce atmospheric CO2 is to sequester it in deep geological formations. Rapid surface detection of any CO2 leakage is crucial. CO2 leakage rapidly affects vegetation above sequestration fields. Plant responses to high CO2 are valuable tools in surface detection of leaking CO2. The Zero Emission Research Technology (ZERT) site in Bozeman, MT is an experimental field for surface detection of CO2 where 0.15 ton/day of CO2 was released (7/19- 8/15/2010) from a 100m horizontal injection well, HIW, 1.5 m underground with deliberate leaks of CO2 at intervals, and from a vertical injector, VI, (6/3-6/24/2010). The vegetation includes Taraxacum officinale (Dandelion), Dactylis glomerata (Orchard Grass), and other herbaceous plants. We collected soil and roots 1, 3 and 5 m from the VI to determine the responses of mycorrhizal fungi and rhizosphere microbes to high CO2. Mycorrhizal fungi obtain C from root exudates, increase N and P availability, and reduce desiccation, while prokaryotic rhizosphere microbes fix atmospheric N and will be examined for abundance and expression of carbon and nitrogen cycling genes. We are quantifying mycorrhizal colonization and the proportion of spores, hyphae, and arbuscules in vesicular-arbuscular mycorrhizae (VAM) in cleared and stained roots. Stomatal conductance is an important measure of CO2 uptake and water loss via transpiration. We used a porometer (5-40°C, 0-90% RH, Decagon) to measure stomatal conductivity in dandelion and orchard grass at 1, 3, and 5 m from the VI and along a transect perpendicular to the HIW. Dandelion conductance was highest close to the VI and almost consistently higher close to hot spots (circular regions with maximum CO2 and leaf dieback) at the HIW, with 23.2 mmol/m2/s proximal to the hot spot, and 10.8 mmol/m2/s distally. Average conductance in grass (50.3 mmol/m2/s) was higher than in dandelion, but grass did not have high conductance near hot spots. Stomata generally close at elevated CO2

  15. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. PMID:27209517

  16. Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus

    Directory of Open Access Journals (Sweden)

    Sanders Ian R

    2009-01-01

    Full Text Available Abstract Background Arbuscular mycorrhizal fungi (AMF are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory. Results We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences. Conclusion Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.

  17. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?

    Science.gov (United States)

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui

    2016-11-15

    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice. PMID:27450963

  18. Spatio-Temporal Variation of Core and Satellite Arbuscular Mycorrhizal Fungus Communities in Miscanthus giganteus.

    Science.gov (United States)

    Barnes, Christopher J; Burns, Caitlin A; van der Gast, Christopher J; McNamara, Niall P; Bending, Gary D

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are a group of obligate plant symbionts which can promote plant nutrition. AMF communities are diverse, but the factors which control their assembly in space and time remain unclear. In this study, the contributions of geographical distance, environmental heterogeneity and time in shaping AMF communities associated with Miscanthus giganteus (a perennial grass originating from south-east Asia) were determined over a 13 months period. In particular, the community was partitioned into core (abundant and persistent taxa) and satellite (taxa with low abundance and persistence) constituents and the drivers of community assembly for each determined. β-diversity was exceptionally low across the 140 m line transects, and there was limited evidence of geographical scaling effects on the composition of the core, satellite or combined communities. However, AMF richness and community composition changed over time associated with fluctuation within both the core and satellite communities. The degree to which AMF community variation was explained by soil properties was consistently higher in the core community than the combined and satellite communities, suggesting that the satellite community had considerable stochasticity associated with it. We suggest that the partitioning of communities into their core and satellite constituents could be employed to enhance the variation explained within microbial community analyses. PMID:27597844

  19. Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes.

    Science.gov (United States)

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Fu, Dafang

    2016-08-01

    Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. PMID:27521940

  20. Influence of Arbuscular Mycorrhizal Fungus (AMF) on degradation of iron-cyanide complexes

    Science.gov (United States)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2015-04-01

    Soil contamination in the vicinities of former Manufactured Gas Plant (MGP) sites is a worldwide known environmental issue. The pollutants, in form of iron-cyanide complexes, originating from the gas purification process, create a risk for human health due to potential release of toxic free cyanide, CN(aq) and HCN(g), (aq).The management and remediation of cyanide contaminated soil can be very challenging due to the complex chemistry and toxicity of CN compounds. The employment of phytoremediation to remove or stabilize contaminants at a former MGP site is an inexpensive process, but can be limited through shallow rotting, decreased biomass, poor growing and the risk of secondary accumulation. However, this adaptation may be enhanced via arbuscular mycorrhizal fungi (AMF) activity, which may cooperate on the degradation, transformation or uptake of the contaminants. We would like to present our preliminary results from the ongoing project concerning toxic substrate-AMF-plant relation, based on studying the site of a former MGP site. In situ experiments contributed to identifying those fungi that are likely to persist in extremely acidic and toxic conditions. Subsequently, commercially available Rhizophagus irregularis was grown in sterilized, un-spiked soil with the roots of the host plant Calamagrostis epigejos. Extracted roots and AMF hyphae were used in the batch experiment, were the potential of this association on degradation of iron-cyanide complexes, in form of potassium ferrocyanide solution, was assessed.

  1. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vítor Gabriel Ambrosini

    2015-12-01

    Full Text Available Abstract High copper (Cu levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF. The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM, height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels.

  2. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil.

    Science.gov (United States)

    Ambrosini, Vítor Gabriel; Voges, Joana Gerent; Canton, Ludiana; Couto, Rafael da Rosa; Ferreira, Paulo Ademar Avelar; Comin, Jucinei José; de Melo, George Wellington Bastos; Brunetto, Gustavo; Soares, Cláudio Roberto Fonsêca Sousa

    2015-01-01

    High copper (Cu) levels in uprooted old vineyard soils may cause toxicity in transplanted young vines, although such toxicity may be reduced by inoculating plants with arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the effects of AMF on the plant growth, chlorophyll contents, mycorrhizal colonization, and Cu and phosphorus (P) absorption in young vines cultivated in a vineyard soil contaminated by Cu. Commercial vineyard soil with high Cu levels was placed in plastic tubes and transplanted with young vines, which were inoculated with six AMF species (Dentiscutata heterogama, Gigaspora gigantea, Acaulospora morrowiae, A. colombiana, Rhizophagus clarus, R. irregularis) and a control treatment on randomized blocks with 12 replicates. After 130 days, the mycorrhizal colonization, root and shoot dry matter (DM), height increment, P and Cu absorption, and chlorophyll contents were evaluated. The height increment, shoot DM and chlorophyll contents were not promoted by AMF, although the root DM was increased by R. clarus and R. irregularis, which had the greatest mycorrhizal colonization and P uptake. AMF increased Cu absorption but decreased its transport to shoots. Thus, AMF species, particularly R. clarus and R. irregularis, contribute to the establishment of young vines exposed to high Cu levels. PMID:26691462

  3. Diversity of Arbuscular Mycorrhizal Fungi in a Brazilian Atlantic Forest Toposequence.

    Science.gov (United States)

    Bonfim, Joice Andrade; Vasconcellos, Rafael Leandro Figueiredo; Gumiere, Thiago; de Lourdes Colombo Mescolotti, Denise; Oehl, Fritz; Nogueira Cardoso, Elke Jurandy Bran

    2016-01-01

    The diversity of arbuscular mycorrhizal fungi (AMF) was studied in the Atlantic Forest in Serra do Mar Park (SE Brazil), based on seven host plants in relationship to their soil environment, altitude and seasonality. The studied plots along an elevation gradient are located at 80, 600, and 1,000 m. Soil samples (0-20 cm) were collected in four seasons from SE Brazilian winter 2012 to autumn 2013. AMF spores in rhizosperic soils were morphologically classified and chemical, physical and microbiological soil caracteristics were determined. AMF diversity in roots was evaluated using the NS31/AM1 primer pair, with subsequent cloning and sequencing. In the rhizosphere, 58 AMF species were identified. The genera Acaulospora and Glomus were predominant. However, in the roots, only 14 AMF sequencing groups were found and all had high similarity to Glomeraceae. AMF species identities varied between altitudes and seasons. There were species that contributed the most to this variation. Some soil characteristics (pH, organic matter, microbial activity and microbial biomass carbon) showed a strong relationship with the occurrence of certain species. The highest AMF species diversity, based on Shannon's diversity index, was found for the highest altitude. Seasonality did not affect the diversity. Our results show a high AMF diversity, higher than commonly found in the Atlantic Forest. The AMF detected in roots were not identical to those detected in rhizosperic soil and differences in AMF communities were found in different altitudes even in geographically close-lying sites. PMID:26304552

  4. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  5. Dynamics of phoxim residues in green onion and soil as influenced by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Wang, Fa Yuan; Shi, Zhao Yong; Tong, Rui Jian; Xu, Xiao Feng

    2011-01-15

    Organophosphorus pesticides in crops and soil pose a serious threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to organophosphate degradation in soil and consequently decrease chemical residues in crops. A pot culture experiment was conducted to investigate the influences of Glomus caledonium 90036 and Acaulospora mellea ZZ on the dynamics of phoxim residues in green onion (Allium fistulosum L.) and soil at different harvest dates after phoxim application. Results show that mycorrhizal colonization rates of inoculated plants were higher than 70%. Shoot and root fresh weights did not vary with harvest dates but increased significantly in AM treatments. Phoxim residues in plants and soil decreased gradually with harvest dates, and markedly reduced in AM treatments. Kinetic analysis indicated that phoxim degradation in soil followed a first-order kinetic model. AM inoculation accelerated the degradation process and reduced the half-life. G. caledonium 90036 generally produced more pronounced effects than A. mellea ZZ on both the plant growth and phoxim residues in plants and soil. Our results indicate a promising potential of AM fungi for the control of organophosphate residues in vegetables, as well as for the phytoremediation of organophosphorus pesticide-contaminated soil. PMID:20870354

  6. Spatio-temporal variation of core and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus

    Directory of Open Access Journals (Sweden)

    Christopher James Barnes

    2016-08-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are a group of obligate plant symbionts which can promote plant nutrition. AMF communities are diverse, but the factors which control their assembly in space and time remain unclear. In this study, the contributions of geographical distance, environmental heterogeneity and time to shaping AMF communities associated with Miscanthus giganteus were determined over a 13 month period. In particular, the community was partitioned into core (abundant and persistent taxa and satellite (taxa with low abundance and persistence constituents and the drivers of community assembly for each determined. We show that AMF richness and community composition changed over time associated with fluctuation within both the core and satellite communities. The degree to which AMF community variation was explained by soil properties was consistently higher in the core community than the combined and satellite communities, suggesting that the satellite community had considerable stochasticity associated with it. We suggest that the partitioning of communities into their core and satellite constituents could be employed to enhance the variation explained within microbial community analyses.

  7. Spatio-Temporal Variation of Core and Satellite Arbuscular Mycorrhizal Fungus Communities in Miscanthus giganteus

    Science.gov (United States)

    Barnes, Christopher J.; Burns, Caitlin A.; van der Gast, Christopher J.; McNamara, Niall P.; Bending, Gary D.

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are a group of obligate plant symbionts which can promote plant nutrition. AMF communities are diverse, but the factors which control their assembly in space and time remain unclear. In this study, the contributions of geographical distance, environmental heterogeneity and time in shaping AMF communities associated with Miscanthus giganteus (a perennial grass originating from south-east Asia) were determined over a 13 months period. In particular, the community was partitioned into core (abundant and persistent taxa) and satellite (taxa with low abundance and persistence) constituents and the drivers of community assembly for each determined. β-diversity was exceptionally low across the 140 m line transects, and there was limited evidence of geographical scaling effects on the composition of the core, satellite or combined communities. However, AMF richness and community composition changed over time associated with fluctuation within both the core and satellite communities. The degree to which AMF community variation was explained by soil properties was consistently higher in the core community than the combined and satellite communities, suggesting that the satellite community had considerable stochasticity associated with it. We suggest that the partitioning of communities into their core and satellite constituents could be employed to enhance the variation explained within microbial community analyses. PMID:27597844

  8. Diversidade de fungos micorrízicos arbusculares em remanescente florestal impactado (Parque Cinqüentenário - Maringá, Paraná, Brasil Diversity of arbuscular mycorrizal fungi in an impacted forest remnant - Parque Cinquentenário, Maringá, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Eduardo Ferreira dos Santos

    2011-06-01

    Full Text Available As micorrizas são consideradas importante componente na recuperação e restabelecimento da vegetação em áreas frágeis ou degradadas, bem como na manutenção da biodiversidade de plantas e das funções dos ecossistemas. O conhecimento da diversidade e dinâmica dos fungos micorrízicos arbusculares (FMA em áreas impactadas pela ação humana é importante para seu manejo e como indicador de sua qualidade. O Parque Cinqüentenário, localizado no município de Maringá, PR, pertence à formação original do conjunto Mata Atlântica, do domínio da floresta Estacional semi-decidual, é um dos poucos remanescentes florestais existentes na cidade de Maringá, PR, e encontra-se em estádio acelerado de degradação. O objetivo deste trabalho foi avaliar a diversidade de FMA nativos no solo e o grau de micorrização das plantas neste ecossistema. Amostras de solo e raízes foram coletadas em 65 pontos diferentes, na profundidade de 0-20 cm. A determinação da porcentagem de colonização micorrízica arbuscular foi feita sob microscópio estereoscópico, pelo método da interseção de quadrantes. A identificação das espécies de FMA foi realizada de acordo com a análise morfológica dos esporos. Foram estimados índices de diversidade, calculados com base no número de esporos em cada amostra. Foi verificada a ocorrência de 50 espécies de FMA, distribuídas em cinco gêneros: Glomus (31 espécies, Acaulospora (10 espécies, Scutellospora (6 espécies, Gigaspora (duas espécies e Paraglomus (uma espécie. Glomus foi o gênero mais abundante, com várias espécies esporocárpicas.Mycorrhizae are important components of any recuperation and recovery plan for threatened and endangered vegetation in degraded areas, as well as for the maintenance of plant diversity and ecosystem functions. Knowledge of diversity and dynamics of arbuscular mycorrhizal fungi (AMF in areas impacted by anthropic activities is important for managing these areas

  9. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, Elzbieta, E-mail: elo@mb.au.dk [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Przybylowicz, Wojciech; Orlowski, Dariusz [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Turnau, Katarzyna [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Mesjasz-Przybylowicz, Jolanta [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa)

    2011-12-15

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: > The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. > Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. > Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. > Mycorrhizal colonization affected concentration and uptake of other elements. > Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  10. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Declerck, Stephane [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Dupre de Boulois, Herve, E-mail: herve.dupre@uclouvain.b [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-08-15

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  11. Effect of Various Organic Matter stimulates Bacteria and Arbuscular Mycorrhizal Fungi Plantations on Eroded Slopes in Nepal

    Science.gov (United States)

    Shrestha Vaidya, G.; Shrestha, K.; Wallander, H.

    2009-04-01

    Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces erosion. Trees and shrubs on the lower hillsides in Nepal form symbiosis with arbuscular mycorrhizal (AM) fungi and these fungi are important for the uptake of mineral nutrients from the soil. In addition, the mycelia formed by these fungi have an important function in stabilizing the soil. The success of plantations of these eroded slopes is therefore highly dependent on the extent of mycorrhizal colonization of the plants. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant and nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter was placed in mesh bags which were buried around the trees of Bauhinia purpurea and Leucaena diversifolia .This experiment were done in two seasons ( (the wet and the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the six month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the wet and dry seasons. More microbial biomass was produced during wet season than during dry season. Further more, organic matter addition enhanced the production of AM fungal and bacterial biomass during both seasons. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival, growth and nutrient composition in the soil in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded

  12. Morphotype-based characterization of arbuscular mycorrhizal fungal communities in a restored tropical dry forest, Margarita island-Venezuela.

    Science.gov (United States)

    Fajardo, Laurie; Loveral, Milagros; Arrindell, Pauline; Aguilar, Victor Hugo; Hasmy, Zamira; Cuenca, Gisela

    2015-09-01

    The mycorrhizal component of revegetated areas after ecological restoration or rehabilitation in arid and semiarid tropical areas has been scarcely assessed, particularly those made after mining disturbance. We evaluated and compared the presence of arbuscular mycorrhizal fungi of a small area of restored tropical dry forest destroyed by sand extraction, with a non-restored area of similar age, at the peninsula of Macanao, Margarita Island (Venezuela). Our study was undertaken in 2009, four years after planting, and the mycorrhizal status was evaluated in four restored plots (8 x 12.5 m) (two were previously treated with hydrogel (R2 and R2'), and two were left untreated (R1 and R1'), and four non-restored plots of similar size (NR1 and NR1' with graminoid physiognomy with some scattered shrubs; and NR2 and NR2', with a more species rich plant community). Apparently the restoration management promoted higher arbuscular mycorrhizal fungi (AMF) species richness and diversity, particularly in restored soils where the hydrogel was added (R2 treatment). Soil of the NRI treatment (with a higher herbaceous component) showed the highest spore density, compared to samples of soils under the other treatments. Considering species composition, Claroideoglomus etunicatum and Rhizophagus intraradices were found in all treatments; besides, Diversispora spurca and Funnefformis geosporum were only found in non-restored plots, while members of the Gigasporaceae (a family associated with little disturbed sites) were commonly observed in the plots with restored soils. Mycorrhizal colonization was similar in the restored and non-restored areas, being a less sensitive indicator of the ecosystem recovery. The trend of higher richness and diversity of AMF in the restored plot with hydrogel suggests that this management strategy contributes to accelerate the natural regeneration in those ecosystems where water plays an essential role. PMID:26666138

  13. Efeito da sucessão com leguminosas sob diferentes níveis de calagem no desenvolvimento e micorrização do trigo Effect of legumes succession under different liming levels on the development and mycorrhizae of wheat

    Directory of Open Access Journals (Sweden)

    Aildson Pereira Duarte

    1995-01-01

    Full Text Available Estudou-se, em areia quartzosa, em Assis (SP, a influência da calagem e de leguminosas para adubação verde sobre o desenvolvimento e micorrização do trigo. Verificou-se o efeito do pousio, do cultivo da soja e dos adubos verdes Crotalaria paulina, Crotalaria juncea e mucuna-preta (Stizolobium aterrimum, e da dosagem de calcário 0, 2 e 4 t/ha sobre os seguintes fatores: massa das raízes e da parte aérea e produtividade de grãos de trigo; teores de fósforo no solo e na folha-bandeira; percentagem de colonização e número de esporos de fungos micorrízicos no solo. A percentagem do sistema radicular do trigo, colonizado por fungos micorrízicos arbusculares aos 21 dias da emergência, e a massa de matéria seca da parte aérea e de grãos foram maiores nos tratamentos com aplicação de calcário e nos cultivados com C. paulina. A colonização do sistema radicular por fungos micorrízicos arbusculares influenciou positivamente o desenvolvimento da parte aérea e a produção de grãos do trigo. O teor de fósforo no solo e a micorrização não correlacionaram com o estado nutricional da planta em relação ao fósforo.Triticum aestivum was cropped in a quartz sand soil, in the region of Assis, State of São Paulo, Brazil, following soil that was kept fallow or soil that was previously cropped with Glycine max, Crotalaria paulina, Crotalaria juncea or Stizolobium aterrimum. All the treatments were submitted to three different doses of lime (0, 2 and 4 t/ha. The plants were evaluated in relation to mycorrhizae; shoot and root dry weight: grain production: and, phosphorus content in the flag leaf. The soil was analyzed in relation to phosphorus and mycorrhizal fungi sporos number. At 21-day plant emergence, the treatments that had received lime and one cropped with C. paulina showed higher percentage of: mycorrhizal colonization in the roots; shoot dry matter; and, grain production when compared to those that were cropped with G. max or

  14. AM真菌对重金属污染土壤生物修复的应用与机理%Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi

    Institute of Scientific and Technical Information of China (English)

    罗巧玉; 王晓娟; 林双双; 李媛媛; 孙莉; 金樑

    2013-01-01

    土壤重金属污染威胁人类健康和整个生态系统,而高效、低耗、安全的生物修复技术显示出了极大的应用潜力,特别是利用植物-微生物共生体增强生物修复效应的应用.丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与90%以上的陆生高等植物形成共生体.研究发现,AM真菌能够增强宿主植物对土壤中重金属胁迫的耐受性.当前,利用AM真菌开展重金属污染土壤的生物修复已经引起环境学家和生态学家的广泛关注.基于此,围绕AM真菌在重金属污染土壤生物修复作用中的最新研究进展,从物理性防御体系的形成、对植物生理代谢的调控、生化拮抗物质的产生、基因表达的调控等角度探究AM真菌在重金属污染土壤生物修复中的作用机理,以期为利用AM真菌开展重金属污染的生物修复提供理论依据,并对本领域未来的发展和应用前景进行了展望.

  15. Efecto de algunos fungicidas sobre la interacción Rhizoctonia solani Kuhn-Micorriza vesículo arbuscular en soya, Glycine max Merril

    Directory of Open Access Journals (Sweden)

    Sánchez de Prager Marina

    1987-09-01

    Full Text Available En el campo se dispuso de dos preparaciones de suelo: natural y desinfectado químicamente (Ditrapex-CE y en el invernadero de suelo esterilizado con vapor. Se utilizaron los fungicidas Propamocarb, SN-84364, PCNB y Vitavax-300. Se contó con la flora micorrizógena natural y una cepa introducida, Glomus manihotis. R. solani disminuyó en un 50 % la emergencia de la soya, comportándose más agresivo en suelo desinfectado. En los primeros 15 días su ataque se incrementó y redujo el desarrollo de MVA en suelo natural. Al avanzar la edad de la planta decreció su infección. Con relación a la MVA la tendencia es contraria. La presencia de la MVA, incluyendo G. manihotis no incrementó significativamente la materia seca y el rendimiento de la soya. Al desinfectar el suelo los fungicidas afectaron negativamente la infección micorrizógena, mientras que en suelo natural no sucedió este fenómeno, al contrario SN-84364 incrementó su presencia. Este producto es el que menos afecta la simbiosis en el suelo desinfectado. Los fungicidas SN-84364 y PCNB mostraron gran especificidad contra R. solani y Vitavax-300 mayor espectro de acción.With the object to evaluate in the soybeans crop behavior in the interaction of Rhizoctonia solani, vesicular-arbuscular mycorrhizae (VAM and fungicides used to treatment of seed, two different soil preparations were used in the field trials: natural and chemically disinfected (Ditrapex-CE and under greenhouse: using vapor- sterilized. Was utilized the fungicides Propamocarb, SN-84364, PCNB y Vitavax- 300. Be had into account the natural mycorrhizal flora and a source of Glomus manihotis introduced. R. solani reduced the emergence of soybean by 50%, the above-metioned pathogen was more agressive in disinfected soil. In the 15 days first the attack increased and reduced the VAM development in the natural soil. With the age of the plant the pathogen infection decreased. With relation by VAM is contrary the tendency

  16. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology.

    Science.gov (United States)

    Hempel, Stefan; Götzenberger, Lars; Kühn, Ingolf; Michalski, Stefan G; Rillig, Matthias C; Zobel, Martin; Moora, Mari

    2013-06-01

    Plant traits have been widely used to characterize different aspects of the ecology of plant species. Despite its wide distribution and its proven significance at the level of individuals, communities, and populations, the ability to form mycorrhizal associations has been largely neglected in these studies so far. Analyzing plant traits associated with the occurrence of mycorrhizas in plants can therefore enhance our understanding of plant strategies and distributions. Using a comparative approach, we tested for associations between mycorrhizal status and habitat characteristics, life history traits, and plant distribution patterns in 1752 species of the German flora (a major part of the Central European flora). Data were analyzed using log-linear models or generalized linear models, both accounting for phylogenetic relationships. Obligatorily mycorrhizal (OM) species tended to be positively associated with higher temperature, drier habitats, and higher pH; and negatively associated with moist, acidic, and fertile soils. Competitive species were more frequently OM, and stress tolerators were non-mycorrhizal (NM), while ruderal species did not show any preference. Facultatively mycorrhizal (FM) species showed the widest geographic and ecological amplitude. Indigenous species were more frequently FM and neophytes (recent aliens) more frequently OM than expected. FM species differed markedly from OM and NM species in almost all analyzed traits. Specifically, they showed a wider geographic distribution and ecological niche. Our study of the relationships between mycorrhizal status and other plant traits provides a comprehensive test of existing hypotheses and reveals novel patterns. The clear distinction between FM and OM + NM species in terms of their ecology opens up a new field of research in plant-mycorrhizal ecology. PMID:23923502

  17. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32.

    Science.gov (United States)

    Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling

    2015-11-01

    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.

  18. MYCORRHIZAL AND NONMYCORRHIZAL DOUGLAS-FIR GROWN IN HYDROCULTURE - THE EFFECT OF NUTRIENT CONCENTRATION ON THE FORMATION AND FUNCTIONING OF MYCORRHIZA

    NARCIS (Netherlands)

    KAMMINGAVANWIJK, C; PRINS, HBA; KUIPER, PJC

    1992-01-01

    A series of experiments using the Douglas fir as the subject of research were performed in hydroculture. Different relative nutrient addition rates were used prior to and after plants had been inoculated with Laccaria bicolor. The effect of the resulting nutrient conditions on mycorrhiza formation w

  19. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32.

    Science.gov (United States)

    Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling

    2015-11-01

    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system. PMID:26322853

  20. When do arbuscular mycorrhizal fungi protect plant roots from pathogens?

    Science.gov (United States)

    Sikes, Benjamin A

    2010-06-01

    Arbuscular mycorrhizal (AM) fungi are mainly thought to facilitate phosphorus uptake in plants, but they can also perform several other functions that are equally beneficial. Our recent study sheds light on the factors determining one such function, enhanced plant protection from root pathogens. Root infection by the fungal pathogen Fusarium oxysporum was determined by both plant susceptibility and the ability of an AM fungal partner to suppress the pathogen. The non-susceptible plant species (Allium cepa) had limited F. oxysporum infection even without AM fungi. In contrast, the susceptible plant species (Setaria glauca) was heavily infected and only AM fungi in the family Glomeraceae limited pathogen abundance. Plant susceptibility to pathogens was likely determined by contrasting root architectures between plants, with the simple rooted plant (A. cepa) presenting fewer sites for infection.AM fungal colonization, however, was not limited in the same way in part because plants with fewer, simple roots are more mycorrhizal dependent. Protection only by Glomus species also indicates that whatever the mechanism(s) of this function, it responds to AM fungal families differently. While poor at pathogen protection, AM fungal species in the family Gigasporaceae most benefited the growth of the simple rooted plant species. Our research indicates that plant trait differences, such as root architecture can determine how important each mycorrhizal function is to plant growth but the ability to provide these functions differs among AM fungi. PMID:20400855

  1. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales.

    Science.gov (United States)

    Horn, Sebastian; Caruso, Tancredi; Verbruggen, Erik; Rillig, Matthias C; Hempel, Stefan

    2014-11-01

    Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.

  2. Soil characteristics driving arbuscular mycorrhizal fungi communities in semiarid soils

    Science.gov (United States)

    Torrecillas, Emma; del Mar Alguacil, Maria; Torres, Pilar; Díaz, Gisela; Caravaca, Fuensanta; Montesinos, Alicia; Roldán, Antonio

    2014-05-01

    Arbuscular mycorrhizal fungi (AMF) are an important soil microbial group that affects multiple ecosystems functions and processes, including nutrient cycling, plant productivity and competition, and plant diversity. We carried out a study to investigate AMF communities in the roots and the rhizosphere of Brachypodium retusum (Pers.) Beauv., a common plant species of great ecological importance that grows in different type of soils in semiarid Mediterranean areas with similar climatic conditions. We hypothesized that if both factors, host plant species and climatic conditions, cannot influence the differences in AMF communities in the roots and in the rhizosphere of Brachypodium retusum, variances in AMF richness and diversity could be due to soil characteristics. Hence we study the relationships between physical, chemical and biological soil characteristics and AMF community composition found in the roots and in the rhizospheres. We recorded sixty-seven AMF operational taxonomical units (OTUs). Each soil type presented a different AMF community composition and thus, can be characterized by its own AMF communities. A combination among some of the soil parameters could define the AMF species present in the roots and the rhizosphere of B. retusum. It was the case for calcium, urease, protease and ß-glucosidase which explained the variation in the AMF communities. In conclusion, soil charactristics can be decisive in the assembling of the AMF communities, managing the diversity and composition of these communities.

  3. Arbuscular Mycorrhizal Fungal Associations in Biofuel Cropping Systems

    Science.gov (United States)

    Murray, K.

    2012-12-01

    Arbuscular mycorrhizal fungi (AMF) are soil microorganisms that play an important role in delivering nutrients to plant roots via mutualistic symbiotic relationships. AMF root colonization was compared between four different biofuel cropping systems in an effort to learn more about the factors that control colonization. The four biofuel systems sampled were corn, switchgrass, prairie, and fertilized prairie. We hypothesized that prairie systems would have the highest levels of AMF colonization and that fertilization would result in lower AMF colonization rates. Roots were sampled from each system in early June and mid-July. Soil P and pH were also measured. In contrast to our hypothesis, corn systems had 70-80% colonization and the unfertilized prairie system had ~35% (P=0.001) in June. In July, all systems saw an increase in colonization rate, but corn roots still had significantly more AMF colonization than unfertilized prairie (P=0.001). AMF colonization in the unfertilized prairie system increased ~55% from June to July. In contrast to previous work, AMF colonization rates were highest in systems with the greatest availability on P and N (corn systems). These results indicate that seasonal differences in root growth were more influential to AMF root colonization than soil nutrient availability.

  4. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.; Dalpe, Y. [Agriculture Canada, Ottawa, ON (Canada). Grain and Oilseeds Branch

    2005-07-01

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement.

  5. Arbuscular mycorrhizal fungi (AMF) as bio protector agents against wilt induced by Verticillium spp. in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, N.; Garmendia, I.; Sanchez-Diaz, M.; Aguirreolea, J.

    2010-07-01

    Verticillium dahliae Kleb. is a vascular pathogen that alters water status and growth of pepper plants and causes drastic reductions in yield. Its control is difficult because it can survive in field soil for several years. The application of arbuscular mycorrhizal fungi (AMF) as bio protector agents against V. dahliae is an alternative to the use of chemicals which, in addition, is more respectful with the environment. The establishment of the mutualistic association of plant roots and AMF involves a continuous cellular and molecular dialogue between both symbionts that includes the pre activation of plant defense responses that may enhance the resistance or tolerance of mycorrhizal plants to soil-borne pathogens. Some AMF can improve the resistance of Capsicum annuum L. against V. dahliae. This is especially relevant for pepper cultivars (i.e. cv. Piquillo) that exhibit high susceptibility to this pathogen. Compared with non-mycorrhizal plants, mycorrhizal pepper can exhibit more balanced antioxidant metabolism in leaves along the first month after pathogen inoculation, which may contribute to delay both the development of disease symptoms and the decrease of photosynthesis in Verticillium-inoculated plants with the subsequent benefit for yield. In stems, mycorrhizal pepper show earlier and higher deposition of lignin in xylem vessels than non mycorrhizal plants, even in absence of the pathogen. Moreover, AMF can induce new isoforms of acidic chitinases and superoxide dismutase in roots. Mycorrhizal-specific induction of these enzymatic activities together with enhanced peroxidase and phenylalanine ammonia-lyase in roots may also be involved in the bio protection of Verticillium-induced wilt in pepper by AMF. (Author) 81 refs.

  6. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    Science.gov (United States)

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances. PMID:16159334

  7. Effect of Co-Inoculation with Mycorrhiza and Rhizobia on the Nodule Trehalose Content of Different Bean Genotypes

    Science.gov (United States)

    Ballesteros-Almanza, L; Altamirano-Hernandez, J; Peña-Cabriales, J.J; Santoyo, G; Sanchez-Yañez, J.M; Valencia-Cantero, E; Macias-Rodriguez, L; Lopez-Bucio, J; Cardenas-Navarro, R; Farias-Rodriguez, R

    2010-01-01

    Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose dynamics in the Mycorrhiza-Rhizobium-Legume tripartite symbiosis is unknown. The present study explores the role of this tripartite symbiosis in the trehalose content of nodules grown under contrasting moisture conditions. Three wild genotypes (P. filiformis, P. acutifolis and P. vulgaris) and two commercial genotypes of Phaseolus vulgaris (Pinto villa and Flor de Mayo) were used. Co-inoculation treatments were conducted with Glomus intraradices and a mixture of seven native rhizobial strains, and trehalose content was determined by GC/MS. The results showed a negative effect of mycorrhizal inoculation on nodule development, as mycorrhized plants showed fewer nodules and lower nodule dry weight compared to plants inoculated only with Rhizobium. Mycorrhizal colonization was also higher in plants inoculated only with Glomus as compared to plants co-inoculated with both microsymbionts. In regard to trehalose, co-inoculation negatively affects its accumulation in the nodules of each genotype tested. However, the correlation analysis showed a significantly positive correlation between mycorrhizal colonization and nodule trehalose content. PMID:21253462

  8. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

    Science.gov (United States)

    Averill, Colin; Turner, Benjamin L; Finzi, Adrien C

    2014-01-23

    Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle.

  9. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Science.gov (United States)

    Adolfsson, Lisa; Solymosi, Katalin; Andersson, Mats X; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with P(i) fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i) fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i) supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i)-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i) fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i)-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  10. INFLUENCE OF MYCORRHIZAS, ORGANIC SUBSTRATES AND CONTAINER VOLUMES ON THE GROWTH OF Heliocarpus popayanensis Kunth

    Directory of Open Access Journals (Sweden)

    Waldemar Zangaro

    2015-09-01

    Full Text Available This work assessed, under nursery conditions, the effect of arbuscular mycorrhizal fungi (AMF inoculation on the initial growth of the woody species Heliocarpus popayanensis Kunth in containers of different sizes (nursery tubes of 50 or 250 cm3 containing composted cattle manure or organic Pinus spp bark compost diluted (0 to 100%, each 9% with low fertility soil. Plants in cattle manure grew more than plants grown in pine bark manure independent of tube size. AMF were more efficient in improving plant growth in 250 cm3 tubes than in 50 cm3 tubes independent of the substrates. Mycorrhizal plants grown in 50 cm3 tubes showed less growth than non-mycorrhizal ones irrespective of the substrates. Nevertheless, this growth depression decreased with an increase of substrates dilution with low fertility soil. In the higher dilutions, growth depression did not occur and there was a positive response to AMF inoculation. In addition, only mycorrhizal plantlets showed some growth in low fertility soil as the sole substrate. These results indicated that AMF affect plantlet growth positively or negatively depending on the combination of substrates, fertility level, and container size.

  11. Nuclear techniques to study the role of mycorrhiza in increasing food crop production

    International Nuclear Information System (INIS)

    A group of consultants, whose names are listed at the end of this publication were invited by the FAO/IAEA Division to Vienna from 16-20 November 1981 to review, together with the Division's staff, the state-of-the-art regarding Vascular-arbuscular-mycorrhizal symbiosis with various food crops, to assess the useful role of the association in food crop production, and to recommend inputs that the Joint FAO/IAEA Division could make to promote research which might lead to the exploitation of VAM for increased crop production. The reports presented at the meeting covered several topics, including the ecology of the VAM fungus, mechanism of VAM infection, factors affecting the establishment of an effective symbiosis with food crops, mechanisms for enhanced nutrient availability to mycorrhizal plants, increased tolerance of mycorrhizal plants to adverse environmental conditions, inoculum production and field inoculation procedures. These reports, together with the experimental plans and recommendations made at the meeting, are embodied in this unpriced Technical Document. Separate abstracts were prepared for the various presentations at this meeting

  12. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  13. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Chavez, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Mexico-Texcoco, km 36.5. Montecillo, Texcoco, Mexico, 56230 (Mexico)], E-mail: carmeng@colpos.mx; Carrillo-Gonzalez, R.; Gutierrez-Castorena, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Mexico-Texcoco, km 36.5. Montecillo, Texcoco, Mexico, 56230 (Mexico)

    2009-01-30

    A field study of the natural attenuation occurring in a slag heap contaminated with high available cadmium was carried out. The aims of this research were: to determine plants colonizing this slag heap; to analyze colonization and morphological biodiversity of spores of arbuscular mycorrhizal fungi (AMF); to determine spore distribution in undisturbed samples; to know mycelium and glomalin abundance in the rhizosphere of these plants, and to investigate glomalin participation in Cd-stabilization. Forming vegetal islands, 22 different pioneering plant species from 11 families were colonizing the slag heap. The most common plants were species of Fabaceae, Asteraceae and Poaceae. Almost all plants were hosting AMF in their roots, and spores belonging to Gigaspora, Glomus, Scutellospora and Acaulospora species were observed. Micromorphological analysis showed that spores were related to decomposing vegetal residues and excrements, which means that mesofauna is contributing to their dispersion in the groundmass. Mycelium mass ranged from 0.11 to 26.3 mg/g, which contained between 13 and 75 mg of glomalin/g. Slag-extracted total glomalin was between 0.36 and 4.74 mg/g. Cadmium sequestered by glomalin extracted from either slag or mycelium was 0.028 mg/g. The ecological implication of these results is that organisms occupying vegetal patches are modifying mine residues, which contribute to soil formation.

  14. Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common contaminants in soil. Arbuscular mycorrhizal (AM) fungi make host plants resistant to pollutants. This study aims to evaluate the impact of anthracene, phenanthrene and dibenzothiophene on the AM fungus Rhizophagus custos, isolated from soil contaminated by heavy metals and PAHs, under monoxenic conditions. We found a high level of tolerance in R. custos to the presence of PAHs, especially in the case of anthracene, in which no negative effect on AM-colonized root dry weight (root yield) was observed, and also a decrease in the formation of anthraquinone was detected. Increased PAH dissipation in the mycorrhizal root culture medium was observed; however, dissipation was affected by the level of concentration and the specific PAH, which lead us to a better understanding of the possible contribution of AM fungi, and in particular R. custos, to pollutant removal. -- Highlights: •The AM fungus R. custos contributes to PAH dissipation and removal from the medium. •R. custos showed high levels of tolerance to high concentrations of anthracene. •Phenanthrene negatively affects the functionality of the symbiosis. •R. custos accumulates PAHs in spores and extraradical mycelia. •R. custos is able to prevent PAHs from entering roots. -- The AM fungus Rhizophagus custos is involved in PAH dissipation in absence of other microorganisms and could be potentially effective in protecting anthracene exposed plants

  15. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    A field study of the natural attenuation occurring in a slag heap contaminated with high available cadmium was carried out. The aims of this research were: to determine plants colonizing this slag heap; to analyze colonization and morphological biodiversity of spores of arbuscular mycorrhizal fungi (AMF); to determine spore distribution in undisturbed samples; to know mycelium and glomalin abundance in the rhizosphere of these plants, and to investigate glomalin participation in Cd-stabilization. Forming vegetal islands, 22 different pioneering plant species from 11 families were colonizing the slag heap. The most common plants were species of Fabaceae, Asteraceae and Poaceae. Almost all plants were hosting AMF in their roots, and spores belonging to Gigaspora, Glomus, Scutellospora and Acaulospora species were observed. Micromorphological analysis showed that spores were related to decomposing vegetal residues and excrements, which means that mesofauna is contributing to their dispersion in the groundmass. Mycelium mass ranged from 0.11 to 26.3 mg/g, which contained between 13 and 75 mg of glomalin/g. Slag-extracted total glomalin was between 0.36 and 4.74 mg/g. Cadmium sequestered by glomalin extracted from either slag or mycelium was 0.028 mg/g. The ecological implication of these results is that organisms occupying vegetal patches are modifying mine residues, which contribute to soil formation

  16. Comparison of communities of arbuscular mycorrhizal fungi in roots of two Viola species

    DEFF Research Database (Denmark)

    Opik, M; Moora, Mari; Liira, Jaan;

    2006-01-01

    The composition of arbuscular mycorrhizal (AM) fungal communities in roots of rare Viola elatior and common V. mirabilis was investigated using PCR with primers specific for Glomus and common was investigated using PCR with primers specific for group A, followed by single-stranded conformation po...

  17. Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia.

    NARCIS (Netherlands)

    Emiru Birhane, E.B.; Kuyper, T.W.; Sterck, F.J.; Bongers, F.

    2010-01-01

    This study assessed the arbuscular mycorrhizal (AM) status of Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands in relation to season, management and soil depth in Ethiopia. We studied 43 woody species in 52 plots in three areas. All woody species were colonized by AM fungi,

  18. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Doddema, H; Kuiper, PJC; Stulen, I.

    2005-01-01

    The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars-a traditional, low-yielding Mozambican landrace (Local) and a mo

  19. The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: Implications for heathland restoration

    NARCIS (Netherlands)

    Vergeer, P.; Berg, van den L.J.L.; Baar, J.; Ouborg, N.J.; Roelofs, J.G.M.

    2006-01-01

    In two natural heathland vegetations, we analysed the effect of turf cutting on spore numbers of arbuscular mycorrhizal fungi (AMF). Next to this, we performed a controlled factorial experiment to examine the role of AMF for germination and establishment of Arnica montana in both turf cut and non-tu

  20. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rdna sequences

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Holtgrewe-Stukenbrock, Eva

    2004-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with plant roots and are found in most ecosystems. In this study the community structure of AMF in a clade of the genus Glomus was examined in undisturbed costal grassland using LSU rDNA sequences amplified from roots of Hieracium pi...

  1. The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus

    NARCIS (Netherlands)

    Song, Fang; Pan, Zhiyong; Bai, Fuxi; An, Jianyong; Liu, Jihong; Guo, Wenwu; Bisseling, Ton; Deng, Xiuxin; Xiao, Shunyuan

    2015-01-01

    Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colon

  2. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth;

    2010-01-01

    , the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...... involved in the early and late stages of AMF symbiosis....

  3. Arbuscular Mycorrhizal Fungus Alleviates Chilling Stress by Boosting Redox Poise and Antioxidant Potential of Tomato Seedlings

    NARCIS (Netherlands)

    Liu, Airong; Chen, Shuangchen; Wang, Mengmeng; Liu, Dilin; Chang, Rui; Wang, Zhonghong; Lin, Xiaomin; Bai, Bing; Ahammed, Golam Jalal

    2016-01-01

    The universal symbiotic associations between arbuscular mycorrhizal fungi (AMF) and plant roots remarkably stimulate plant growth, nutrient uptake, and stress responses. The present study investigated the stress ameliorative potential of the AM fungus Funneliformis mosseae against chilling in tom

  4. Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland

    NARCIS (Netherlands)

    Gamper, H.A.; Leuchtmann, A.

    2007-01-01

    Taxon-specific polymerase chain reaction (PCR) primers enable detection of arbuscular mycorrhizal fungi (AMF, Glomeromycota) in plant roots where the fungi lack discriminative morphological and biochemical characters. We designed and validated pairs of new PCR primers targeted to the flanking region

  5. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes

    NARCIS (Netherlands)

    Kowalchuk, G.A.; De Souza, F.A.; Van Veen, J.A.

    2002-01-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach for the detection and characterization of arbuscular mycorrhizal fungi (AMF) 18S ribosomal DNA (rDNA) was developed and applied to the study of AMF communities associated with the main sand-stabilizing plant spec

  6. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato

    NARCIS (Netherlands)

    Ruiz-Lozano, J.M.; Aroca, R.; Zamarreno, A.M.; Molina, S.; Andreo Jimenez, B.; Porcel, R.; Garcia-Mina, J.M.; Ruyter-Spira, C.P.; Lopez-Raez, J.A.

    2015-01-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of drou

  7. Biology, ecology and evolution of the family Gigasporaceae, arbuscular mycorrhizal fungi (Glomeromycota)

    NARCIS (Netherlands)

    Souza, Francisco Adriano de

    2005-01-01

    Research described in this thesis focused on biological, ecological and evolutionary aspects of Arbuscular Mycorrhizal Fungi (AMF), and in particular of the family Gigasporaceae (Gigaspora and Scutellospora, genera). This study had two major objectives. The first objective was to obtain better knowl

  8. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L

    International Nuclear Information System (INIS)

    The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concentration and uptake between different AMF isolates. Inoculation with the indigenous isolate resulted in increased transfer of As from roots to shoots; AMF from non-polluted area apparently restricted plants from absorbing As to the tissue; and plants inoculated with an AMF isolate from Zn–Pb waste showed strong As retainment within the roots. Staining with dithizone indicated that AMF might be actively involved in As accumulation. The mycorrhizal colonization affected also the concentration of Cd and Zn in roots and Pb concentration, both in shoots and roots. - Highlights: ► The role of arbuscular mycorrhizal fungi (AMF) in As uptake was studied. ► Growth of Plantago lanceolata was significantly enhanced by mycorrhizal inoculation. ► Arsenic concentration and uptake significantly depended on the AMF isolate. ► Arbuscular mycorrhizal fungi may be useful for bioremediation of As contaminated wastes. - Effect of arbuscular mycorrhizal fungi on As uptake by Plantago lanceolata strongly depends on the origin of fungal isolates.

  9. Características químicas determinan la capacidad micotrófica arbuscular de suelos agrícolas y prístinos de Buenos Aires (Argentina Chemical characteristics as determinants of arbuscular mycotrophic ability of agricultural and pristine soils from Buenos Aires (Argentina

    Directory of Open Access Journals (Sweden)

    Fernanda Covacevich

    2012-12-01

    , the soils' natural fertility and the beneficial microbial populations such as arbuscular mycorrhizal fungi (AMF could be affected. The objective of this study was to identify changes in the nutrient content in soils under contrasting managements (agricultural vs. pristine that could influence the mycotrophic ability of AMF. Soil samples were collected from 29 agricultural sites in Buenos Aires Province under cropped and non-cropped (pristine systems. Chemical characteristics were determined (CIC, Fe, Mn, Cu, Zn, B, P-Bray, CO and pH in composed samples collected from each field. Mycotrophic ability was estimated by assessing the degree of root colonization by native mycorrhiza in trap crops after 12 weeks of sowing. The values of chemical properties were generally higher for pristine sites than for agricultural plots. However, the mycotrophic ability did not differ between cropped and pristine soils. The principal component analysis allowed grouping field sites under agriculture or pristine conditions. Soil available P content, together with Fe and to a lesser extent Mn content- seemed to depress the mycotrophic ability of the analyzed soil, particularly under moderate to low organic carbon contents conditions.

  10. Uso de fungos micorrízicos arbusculares (FMA na promoção do crescimento de mudas de pinheira (Annona squamosa L., Annonaceae Use of arbuscular mycorrhizal fungi (AMF to promote the growth of sugar apple seedlings (Annona squamosa L. Annonaceae

    Directory of Open Access Journals (Sweden)

    Ieda Ribeiro Coelho

    2012-12-01

    Full Text Available Os fungos micorrízicos arbusculares (FMA podem ser usados na formação de mudas frutíferas, porém o seu efeito na pinheira não é conhecido. Foi investigado o papel de dois isolados de FMA (Acaulospora longula e Gigaspora albida na promoção do crescimento de mudas de pinheira. O delineamento experimental foi tipo inteiramente casualizado em seis tratamentos: 1 Controle não inoculado em solo; 2 Controle não inoculado em solo adubado; 3 Inoculado com A. longula em solo; 4 Inoculado com A. longula em solo adubado; 5 Inoculado com G. albida em solo; 6 Inoculado com G. albida em solo adubado, em quatro repetições, totalizando 24 unidades. Plântulas com duas folhas foram inoculadas na região das raízes com solo-inóculo fornecendo 200 esporos de G. albida ou de A. longula. Após 140 dias em casa de vegetação avaliou-se: altura, número de folhas, diâmetro do caule, área foliar, massa fresca e seca da parte aérea e radicular, colonização micorrízica e produção de esporos de FMA. Em solo não adubado, os benefícios da micorrização foram evidenciados nas mudas formando simbiose com G. albida. Em solo com vermicomposto, a micorrização não incrementou o crescimento da mudas. A micorrização com G. albida pode ser alternativa para produção de mudas de pinheira, dispensando a fertilização.Arbuscular mycorrhizal fungi (AMF can be used to promote seedling growth of fruit trees, but their effect on sugar apple is not known. We investigated the role of two isolates of AMF (Acaulospora longula and Gigaspora albida in promoting the growth of sugar apple seedlings. The experimental design was completely randomized with six treatments and four replicates (totaling 24 units: 1 uninoculated control; 2 uninoculated control in fertilized soil; 3 inoculated with A. longula in soil, 4 inoculated with A. longula in fertilized soil, 5 inoculated with G. albida in soil; 6 inoculated with G. albida in fertilized soil. Seedlings with two

  11. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Hijri Mohamed

    2011-02-01

    Full Text Available Abstract Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF. This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  12. Arbuscular mycorrhizal fungi (Glomeromycota of the Vistula Bar

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2014-08-01

    Full Text Available The occurrence of arbuscular mycorrhizal fungi (AMF of the, phylum Glomeromycota associated with plants of maritime sand dunes of the Vistula Bar localed in north-eastern Poland was investigated. The presence of AMF was revealed based on spores isolated from field-collected root-rhizosphere soil mixtures and two-cycle pot trap cultures established with parts of these mixtures. The mixtures came from under five species in four plant families. Spores of AMF occurred in 54.8% of the field samples and belonged to eight species. Additionally, culturing of root-soil mixtures in trap cultures revealed nine species and three undescribed morphotypes carlier not found in the field samples. Considering the number of records of species and morphotypes in the field samples and trap cultures, the fungal species most frequently occurring in dunes of the Vistula Bar is Scutellospora dipurpurescens, followed by Archaeospora trappei, Glomus laccatum, and Scu. armeniaca. The overall average spore abundance in the field samples is low (4.48, range O-3l in 100g dry soil. The ovcrall average species richness determined based on spores from both the field and trap cultures was 2 l and ranged from 0 lo 7 in 100g dry soil. The plant harbouring the highest number of species of AMF was Festuca rubra. Of the maritime dune sites of Poland examined to date, the species composition of AMF of the Vistula Bar is most similar to that of the Słowiński National Park. When the comparisons included 15 maritime dune areas located outside Poland, the highest similarity occurred in the Vistula Bar/Canada comparison.

  13. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  14. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  15. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    Directory of Open Access Journals (Sweden)

    Johann G Zaller

    Full Text Available Both earthworms and arbuscular mycorrhizal fungi (AMF are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2. AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study

  16. Application of mycorrhizas to ornamental horticultural crops: lisianthus (Eustoma grandiflorum) as a test case

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Ornamental crops are high-cash crops, grown under greenhouse conditions in semi-arid regions in Israel where a reduction in the native population of arbuscular mycorrhizal fungi (AMF) is expected due to routine soil disinfection. The application of AMF inoculum to the soil has been shown to be effective at improving plant growth and enhancing plant resilience to abiotic and biotic stresses. One of our aims is to introduce mycorrhizal application to ornamental crops, and a test case is presented here for two cultivars of lisianthus (Eustoma grandiflorum), one of the major ornamental crops grown in Israel. Several different methods of AMF application and their effects on growth, yield and vase life were examined in lisianthus grown in two different semi-arid locations in southern Israel. AMF enhanced lisianthus growth and yield, especially when introduced to the growth medium during seeding and to the pit hole during planting. Significantly enhanced growth and yield parameters included flowering stem length (58 {+-} 0.7 and 65.1 {+-} 0.7 cm for control and AMF treated, respectively) and number of flowering stems per square meter (73 {+-} 9 and 106 {+-} 6 for control and AMF treated, respectively); positive but non-significant effects were recorded on stem weight, number of flowers per stem and vase life of cut flowers. Yield enhancement was recorded under both low and regular phosphorus conditions. Although not significant, higher resilience against two pathogenic fungi was also recorded following AMF inoculation (23 {+-} 13 and 41 {+-} 10 surviving plants for control and AMF treated, respectively). Hence, AMF is suggested to be a useful growth amendment for promotion of lisianthus commercial production, and may potentially be applied to additional ornamental crops. (Author) 23 refs.

  17. Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils

    OpenAIRE

    ANUJ KUMAR SINGH; JAMALUDDIN

    2011-01-01

    Singh AK, Jamaluddin (2011) Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils. Biodiversitas 12: 107-111. Limestone mined spoils are devoid of adequate population of beneficial microbial flora. Arbuscular mycorrhizal fungi (AMF) are very important constituent of plant- soil-microbe system. In mined spoils the population of AMF is greatly reduced and hence the spoils become very inhospitable for establishment of vegetation. In t...

  18. Arbuscular Mycorrhizal Fungi May Mitigate the Influence of a Joint Rise of Temperature and Atmospheric CO2 on Soil Respiration in Grasslands

    Directory of Open Access Journals (Sweden)

    S. Vicca

    2009-01-01

    Full Text Available We investigated the effects of mycorrhizal colonization and future climate on roots and soil respiration (Rsoil in model grassland ecosystems. We exposed artificial grassland communities on pasteurized soil (no living arbuscular mycorrhizal fungi (AMF present and on pasteurized soil subsequently inoculated with AMF to ambient conditions and to a combination of elevated CO2 and temperature (future climate scenario. After one growing season, the inoculated soil revealed a positive climate effect on AMF root colonization and this elicited a significant AMF x climate scenario interaction on root biomass. Whereas the future climate scenario tended to increase root biomass in the noninoculated soil, the inoculated soil revealed a 30% reduction of root biomass under warming at elevated CO2 (albeit not significant. This resulted in a diminished response of Rsoil to simulated climatic change, suggesting that AMF may contribute to an attenuated stimulation of Rsoil in a warmer, high CO2 world.

  19. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest.

    Science.gov (United States)

    de Oliveira Freitas, Rejane; Buscardo, Erika; Nagy, Laszlo; dos Santos Maciel, Alex Bruno; Carrenho, Rosilaine; Luizão, Regina C C

    2014-01-01

    Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a 'terra firme forest' in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species. PMID:23754540

  20. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest.

    Science.gov (United States)

    de Oliveira Freitas, Rejane; Buscardo, Erika; Nagy, Laszlo; dos Santos Maciel, Alex Bruno; Carrenho, Rosilaine; Luizão, Regina C C

    2014-01-01

    Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a 'terra firme forest' in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.