WorldWideScience

Sample records for arbuscular mycorrhizal fungus

  1. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  2. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Wu Naiying; Huang Honglin; Zhang Shuzhen; Zhu Yongguan; Christie, Peter; Zhang Yong

    2009-01-01

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  3. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dubchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intraradices in 134 Cs isotope by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phyto remediation of radioactively contaminated areas is analyzed. It is found that colonization pf plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  4. Influence of arbuscular mycorrhizal fungus Glomus intra-radices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dudchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intra-radices in 134 Cs isotope uptake by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed.It is found that colonization of plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocaesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  5. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    Science.gov (United States)

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  6. Identification of a Vesicular-Arbuscular Mycorrhizal Fungus by Using Monoclonal Antibodies in an Enzyme-Linked Immunosorbent Assay †

    OpenAIRE

    Wright, Sara F.; Morton, Joseph B.; Sworobuk, Janis E.

    1987-01-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were no...

  7. Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Wright, S F; Morton, J B; Sworobuk, J E

    1987-09-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were nonreactive with the monoclonal antibodies. A single spore of G. occultum was detectable in the presence of high numbers of spores of other vesicular-arbuscular mycorrhizal fungi. Variation in the reaction of G. occultum isolates from West Virginia, Florida, and Colombia suggests that monoclonal antibodies may differentiate strains.

  8. Effect of biochar soil-amendments on Allium porrum growth, arbuscular mycorrhizal fungus colonization

    Science.gov (United States)

    Aims: Examine the interaction of biochar addition and arbuscular mycorrhizal [AM] fungus inoculation upon growth and Zn and Cu uptake by Allium porrum L. in heavy metal amended soil mix, and relate these responses to physicochemical properties of the biochars. Methods: The experiment was a complete ...

  9. Carbon availability for the fungus triggers nitrogen uptake and transport in the arbuscular mycorrhizal symbiosis

    Science.gov (United States)

    The arbuscular mycorrhizal (AM) symbiosis is characterized by a transfer of nutrients in exchange for carbon. We tested the effect of the carbon availability for the AM fungus Glomus intraradices on nitrogen (N) uptake and transport in the symbiosis. We followed the uptake and transport of 15N and ...

  10. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China)]. E-mail: szzhang@mail.rcees.ac.cn; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Chen Baodong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Bell, J. Nigel B. [Center for Environmental Policy, Imperial College, London (United Kingdom)

    2007-03-15

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize.

  11. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    International Nuclear Information System (INIS)

    Huang Honglin; Zhang Shuzhen; Shan Xiaoquan; Chen Baodong; Zhu Yongguan; Bell, J. Nigel B.

    2007-01-01

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize

  12. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    The biocontrol bacterium Burkholderia cepacia is known to suppress a broad range of root pathogenic fungi, while its impact on other beneficial non-target organisms such as arbuscular mycorrhizal (AM) fungi is unknown. Direct interactions between five B. cepacia strains and the AM fungus, Glomus ...

  13. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    Science.gov (United States)

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  14. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance.

    Science.gov (United States)

    Merlos, Miguel A; Zitka, Ondrej; Vojtech, Adam; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2016-12-01

    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg -1 soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  16. Effect of vesicular arbuscular mycorrhizal fungus on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... ... association between certain plants and microorganisms plays an important role in soil ..... an Agrostis capillaris population on a copper contaminated soil. Plant ... vesicular-arbuscular mycorrhizal fungi in Amazonian Peru.

  17. Interaction of arbuscular mycorrhizal fungus ( Glomus intraradices ...

    African Journals Online (AJOL)

    In this research, the effect of two arbuscular mycorrhizal fungal (AMF) inoculation (Glomus intraradices and Glomus etunicatum) on tomato plants growing in nutrient solution with high concentrations of copper were studied. Copper (Cu) is an essential micronutrient for plant growth. In the present study, the effect of copper ...

  18. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    International Nuclear Information System (INIS)

    Xu Pengliang; Christie, Peter; Liu Yu; Zhang Junling; Li Xiaolin

    2008-01-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg -1 ) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition

  19. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengliang [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Christie, Peter [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Liu Yu [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhang Junling [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)], E-mail: junlingz@cau.edu.cn; Li Xiaolin [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2008-11-15

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg{sup -1}) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition.

  20. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...... and top of tubes, and of cocci with a diameter of 0.55-0.78 mum in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1-7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil...... biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [H-3]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal...

  1. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NARCIS (Netherlands)

    Reidinger, S.; Eschen, R.; Gange, A.C.; Finch, P.; Bezemer, T.M.

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF

  2. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  3. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism

    Czech Academy of Sciences Publication Activity Database

    Davison, J.; Moora, M.; Öpik, M.; Adholeya, A.; Ainsaar, L.; Bâ, A.; Burla, S.; Diedhiou, A. G.; Hiiesalu, Inga; Jairus, T.; Johnson, N. C.; Kane, A.; Koorem, K.; Kochar, M.; Ndiaye, C.; Pärtel, M.; Reier, Ü.; Saks, Ü.; Singh, R.; Vasar, M.; Zobel, M.

    2015-01-01

    Roč. 349, č. 6251 (2015), 970-973 ISSN 0036-8075 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * 454 sequencing * diversity Subject RIV: EH - Ecology, Behaviour Impact factor: 34.661, year: 2015

  4. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  5. Co-ordinated Changes in the Accumulation of Metal Ions in Maize (Zea mays ssp. mays L.) in Response to Inoculation with the Arbuscular Mycorrhizal Fungus Funneliformis mosseae

    Science.gov (United States)

    Arbuscular mycorrhizal symbiosis is an ancient interaction between plants and Glomeromycotan fungi. In exchange for photosynthetically fixed carbon, the fungus provides the plant host with greater access to soil nutrients via an extensive network of root-external hyphae. Here, to determine the impac...

  6. The effects of arbuscular mycorrhizal fungus and free living nitrogen fixing bacteria on growth, photosynthesis and yield of corn

    Directory of Open Access Journals (Sweden)

    mohsen jahan

    2009-06-01

    Full Text Available In recent years, biological fertilizers have received special attention by scientists in sustainable and low input agriculture. In order to study the effects of arbuscular mycorrhizal fungi and free living nitrogen fixing bacteria on growth and photosynthesis characteristics of corn in conventional and ecological cropping systems, a field experiment was conducted at the Research Farm of Ferdowsi University of Mashhad during year 2006. A split plots arrangement based on randomized complete block design with three replications was used. Treatments consisted four cropping systems (1- High input conventional system, 2- Medium input conventional system, 3- Low input conventional system and 4- Ecological system and four inoculations (1- Mycorrhiza fungus, Glomus intraradices, 2- Bacteria, Azotobacter paspali and Azospirillum brasilense, 3- Dual inoculation, Fungus plus bacteria, and 4- No-inoculation, control, which were allocated to main plots and sub plots, respectively. All agronomic practices and inputs application during planting and nursing for each of cropping systems were conducted according to regional traditions. Results showed that the effect of inoculation on photosynthesis rates of corn was significant, as the highest photosynthesis rate obtained in dual inoculation. Single inoculation (fungus or bacteria was ranked second. The effect of all inoculations on corn dry matter production was significant and dual inoculation produced the highest dry matter yield. The cropping systems have significant effect on corn yield and the difference between medium input conventional system and high input conventional system was significant, but the high input, low input and ecological cropping systems showed no differences. Inoculants affected the SPAD readings, and dual inoculation showed the highest SPAD readings. This study showed that utilization of low input conventional and ecological systems in combination with use of dual inoculation of

  7. Co-ordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae

    DEFF Research Database (Denmark)

    Ramrez-Flores, M. Rosario; Relln-Lvarez, Rubn; Wozniak, Barbara

    2017-01-01

    Arbuscular mycorrhizal symbiosis is an ancient interaction between plants and fungi of the phylum Glomeromycota. In exchange for photosynthetically fixed carbon, the fungus provides the plant host with greater access to soil nutrients via an extensive network of root-external hyphae. Here, to det...

  8. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  9. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition

    DEFF Research Database (Denmark)

    Smith, S.E.; Jakobsen, Iver; Grønlund, Mette

    2011-01-01

    In this Update, we review new findings about the roles of the arbuscular mycorrhizas (mycorrhiza = fungus plus root) in plant growth and phosphorus (P) nutrition. We focus particularly on the function of arbuscular mycorrhizal (AM) symbioses with different outcomes for plant growth (from positive...

  10. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  11. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots.

    Science.gov (United States)

    Vangelisti, Alberto; Natali, Lucia; Bernardi, Rodolfo; Sbrana, Cristiana; Turrini, Alessandra; Hassani-Pak, Keywan; Hughes, David; Cavallini, Andrea; Giovannetti, Manuela; Giordani, Tommaso

    2018-01-08

    Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.

  12. Transport of trace elements through the hyphae of an arbuscular mycorrhizal fungus into marigold determined by the multitracer technique

    International Nuclear Information System (INIS)

    Suzuki, H.; Kumagai, H.; Oohashi, K.; Sakamoto, K.; Inubushi, K.; Enomoto, S.

    2001-01-01

    The contribution of the hyphae of an arbuscular mycorrhizal (AM) fungus to the uptake of traceelements by marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7 Be, 22 Na, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, 65 Zn, 75 Se, 83 Rb, 85 Sr, 88 Y, 88 Zr, and 95m Tc. Marigold plants colonized and not colonized with Glomus etunicatum were grown for 40 and 60 d in pots with a hyphal compartment separated from the rooting medium by a fine nylon mesh. The multitracer was applied to the hyphal compartment. We found that the uptake of 22 Na, 65 Zn , 75 Se, 83 Rb, 85 Sr, and 88 Y by the mycorrhizal plants was higher than that by the non-mycorrhizal ones. In the case of 95m Tc, the uptake by the mycorrhizal plants was similar to that by the control ones. The radioactivity of 7 Be, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, and 88 Zr could not be detected in any plants. Our results suggest that the AM fungus can absorb Na, Zn, Se, Rh, Sr, and Y from the soil and transport these elements to the plant through its hyphae. The transport ability of the AM fungal hyphae to plant for Be, Sc, Cr, Mn, Fe, Co, Zr, and Tc is likely to be low. (author)

  13. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate

    DEFF Research Database (Denmark)

    Johansen, A.; Jakobsen, I.; Jensen, E.S.

    1993-01-01

    Transport of N by hyphae of a vesicular-arbuscular mycorrhizal fungus was studied under controlled experimental conditions. The N source was applied to the soil as (NH4+)-N-15 or (NH3-)N-15. Cucumis sativus was grown for 25 days, either alone or in symbiosis with Glomus intraradices, in containers...... with a hyphal compartment separated from the root compartment by a fine nylon mesh. Mineral N was then applied to the hyphal compartment as (NH4+)-N-15 or (NO3-)-N-15 at 5 cm distance from the root compartment. Soil samples were taken from the hyphal compartment at 1, 3 and 5 cm distance from the root...... compartment at 7 and 12 days after labelling, and the concentration of mineral N in the samples was measured from 2 M KCl extracts. Mycorrhizal colonization did not affect plant dry weight. The recovery of N-15 in mycorrhizal plants was 38 or 40%, respectively, when (NH4+)-N-15 or (NO3-)-N-15 was applied...

  14. Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels

    International Nuclear Information System (INIS)

    Vivas, A.; Voeroes, I.; Biro, B.; Campos, E.; Barea, J.M.; Azcon, R.

    2003-01-01

    Selected ubiquitous microorganisms are important components of Cd tolerance in plants. - The effect of inoculation with indigenous naturally occurring microorganisms [an arbuscular mycorrhizal (AM) fungus and rhizosphere bacteria] isolated from a Cd polluted soil was assayed on Trifolium repens growing in soil contaminated with a range of Cd. One of the bacterial isolate showed a marked PGPR effect and was identified as a Brevibacillus sp. Mycorrhizal colonization also enhanced Trifolium growth and N, P, Zn and Ni content and the dually inoculated (AM fungus plus Brevibacillus sp.) plants achieved further growth and nutrition and less Cd concentration, particularly at the highest Cd level. Increasing Cd level in the soil decreased Zn and Pb shoot accumulation. Coinoculation of Brevibacillus sp. and AM fungus increased shoot biomass over single mycorrhizal plants by 18% (at 13.6 mg Cd kg -1 ), 26% (at 33.0 mg Cd kg -1 ) and 35% (at 85.1 mg Cd kg -1 ). In contract, Cd transfer from soil to plants was substantially reduced and at the highest Cd level Brevibacillus sp. lowered this value by 37.5% in AM plants. Increasing Cd level highly reduced plant mycorrhization and nodulation. Strong positive effect of the bacterium on nodule formation was observed in all treatments. Results show that selected ubiquitous microorganisms, applied as enriched inocula, are important in plant Cd tolerance and development in Cd polluted soils

  15. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    Science.gov (United States)

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  17. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  18. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-10-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.

  19. Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems.

    Science.gov (United States)

    Schreiner, R P; Koide, R T

    1993-08-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  20. Stimulation of Vesicular-Arbuscular Mycorrhizal Fungi by Mycotrophic and Nonmycotrophic Plant Root Systems

    OpenAIRE

    Schreiner, R. Paul; Koide, Roger T.

    1993-01-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  1. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Dupre de Boulois, Herve; Delvaux, Bruno; Declerck, Stephane

    2005-01-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  2. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  3. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato

    NARCIS (Netherlands)

    Ruiz-Lozano, J.M.; Aroca, R.; Zamarreno, A.M.; Molina, S.; Andreo Jimenez, B.; Porcel, R.; Garcia-Mina, J.M.; Ruyter-Spira, C.P.; Lopez-Raez, J.A.

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of

  4. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... temperature regimes. AM symbiosis modulated C metabolic enzymes, thereby inducing an accumulation of soluble sugars, which may have contributed to an increased tolerance to low temperature, and therefore higher Pn in maize plants....

  5. Colonization of new land by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Nielsen, Knud Nor; Kjøller, Rasmus; Bruun, Hans Henrik

    2016-01-01

    The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities wa...

  6. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, C.; Garcia-Figueres, F.; Lovato, P.; Camprubi, A.

    2015-07-01

    Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr) P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72) and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5) media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment. (Author)

  7. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    Science.gov (United States)

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  8. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder.

    Science.gov (United States)

    Schweiger, Peter F

    2016-10-20

    Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi affect plant nitrogen (N) dynamics. Plant N isotope patterns have been used to characterise the contribution of ECM fungi to plant N uptake. By quantifying and comparing the effects of an AM and an ECM fungus on growth, N uptake and isotopic composition of one host plant grown at different relative N supply levels, the aim of this study was to improve the mechanistic understanding of natural 15 N abundance patterns in mycorrhizal plants and their underlying causes. Grey alders were inoculated with one ECM fungus or one AM fungus or left non-mycorrhizal. Plants were grown under semi-hydroponic conditions and were supplied with three rates of relative N supply ranging from deficient to luxurious. Neither mycorrhizal fungus increased plant growth or N uptake. AM root colonisation had no effect on whole plant δ 15 N and decreased foliar δ 15 N only under N deficiency. The roots of these plants were 15 N-enriched. ECM root colonisation consistently decreased foliar and whole plant δ 15 N. It is concluded, that both mycorrhizal fungi contributed to plant N uptake into the shoot. Nitrogen isotope fractionation during N assimilation and transformations in fungal mycelia is suggested to have resulted in plants receiving 15 N-depleted N via the mycorrhizal uptake pathways. Negative mycorrhizal growth effects are explained by symbiotic resource trade on carbon and N and decreased direct plant N uptake. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil : I. Host-fungus compatibility

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Kuiper, P.J C; Stulen, I.

    2005-01-01

    The effects of inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on two peanut (Arachis hypogaea L.) cultivars, a traditional, low-yielding Mozambican landrace (Local) and a modern, high-yielding cultivar (Falcon), were tested in a non-sterile and

  10. Soil mineral concentrations and soil microbial activity in grapevine inoculated with arbuscular mycorrhizal (AM fungus in Chile

    Directory of Open Access Journals (Sweden)

    Eduardo von Bennewitz

    2008-01-01

    Full Text Available A two year-experiment was carried out to study an effect of root inoculation with arbuscular mycorrhizal (AM fungus on soil mineral concentrations and soil microbial activity in grapevine (Vitis vi­ni­fe­ra cv. “Cabernet Sauvignon” cultivated in Chile. Plants were inoculated with a commercial granular inoculant (Mycosym Tri-ton® and cultivated in 20 L plastic pots filled with an unsterilized sandy clay soil from the Vertisols class under climatic conditions of Curicó (34°58´ S; 71°14´ W; 228 m ASL, Chile.Soil analyses were carried out at the beginning of the study and after two years (four samples of rhizospheric soil for each treatment to assess the effects of mycorrhizal infection on soil mineral concentration and physical properties. Soil microbial activity was measured by quantifying the soil production of CO2 in ten replications of 50 g of soil from each treatment. Root mycorrhizal infection was assessed through samples of fresh roots collected during 2005 and 2006. Fifty samples for each treatment were analyzed and the percentage of root length containing arbuscules and vesicles was assessed.During both years (2005 and 2006 all treatments showed mycorrhizal infection, even the Control treatment where no AM was applied. Mycorrhizal colonization did not affect the soil concentrations of N, P, K, Ca, Mg, K, Ca, Mg, Mn, Zn, Cu, Fe, B, organic matter, pH/KCl and ECe. Soil CO2-C in vitro production markedly decreased during the period of the study. No significant differences where detected among treatments in most cases.

  11. An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth.

    Science.gov (United States)

    Li, Fang; Guo, Yan'e; Christensen, Michael J; Gao, Ping; Li, Yanzhong; Duan, Tingyu

    2018-02-01

    Leaf spot of perennial ryegrass (Lolium perenne) caused by Bipolaris sorokiniana is an important disease in temperate regions of the world. We designed this experiment to test for the combined effects of the arbuscular mycorrhizal (AM) fungus Claroideoglomus etunicatum and the grass endophyte fungus Epichloë festucae var. lolii on growth and disease occurrence in perennial ryegrass. The results show that C. etunicatum increased plant P uptake and total dry weight and that this beneficial effect was slightly enhanced when in association with the grass endophyte. The presence in plants of both the endophyte and B. sorokiniana decreased AM fungal colonization. Plants inoculated with B. sorokiniana showed the typical leaf spot symptoms 2 weeks after inoculation and the lowest disease incidence was with plants that were host to both C. etunicatum and E. festucae var. lolii. Plants with these two fungi had much higher activity of peroxidases (POD), superoxide dismutase (SOD) and catalase (CAT) and lower values of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ). The AM fungus C. etunicatum and the grass endophyte fungus E. festucae var. lolii have the potential to promote perennial ryegrass growth and resistance to B. sorokiniana leaf spot.

  12. A Native Arbuscular Mycorrhizal Fungus, Acaulospora scrobiculata Stimulated Growth of Mongolian Crested Wheatgrass ( Agropyron cristatum (L. Gaertn.

    Directory of Open Access Journals (Sweden)

    Burenjargal Otgonsuren

    2010-12-01

    Full Text Available Agr opyron cristatum (L. Gaertn. (crested wheatgrass is an endemic plant species, which dominates most area of the Mongolian steppe and forest steppe. In the present study, spores of arbuscular mycorrhizal fungi in the rhizosphere soil of crested wheatgrass were isolated with wet- sieving/decanting methods, and the major species was identifi ed as Acaulospora scrobiculata Trappe. For arbuscular-mycorrhizal resynthesis, the spores of A. scrobiculata were propagated with corn pot-culture technique and inoculated onto the roots of crested wheatgrass seedlings. The inoculated crested wheatgrass seedlings exhibited vigor in growth, and examination of the root structure revealed the occurrence of arbuscules and vesicles in the cortical cells. These results demonstrated that A. scrobiculata could effectively form arbuscular mycorrhizas with crested wheatgrass and promote its growth, which can be used to restore Mongolian grassland.

  13. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Directory of Open Access Journals (Sweden)

    Cinta Calvet

    2015-09-01

    Full Text Available Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72 and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5 media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment.

  14. Dynamic of arbuscular mycorrhizal population on Amazon forest from the south Colombia

    International Nuclear Information System (INIS)

    Pena Vanegas, Clara P

    2001-01-01

    This work compared changes occurred on the number of arbuscular mycorrhizal spores at three mature forests and three regenerative forests, before and after clear-cutting. Results suggest that it is possible to predict the quantity of arbuscular mycorrhizal inocule after clear-cutting if initial number and type of forests is known before. A model to explain these changes shows that arbuscular mycorrhizal depletion on mature forests is about 70% after clear-cutting. Survival mycorrhizal populations colonize regenerative forests. Then, if a clear-cutting occurs on regenerative forests, arbuscular mycorrhizal populations will decrease on 35%, being less drastic that it occurred on mature forests

  15. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation.

    Science.gov (United States)

    Lopes Leal, Patrícia; Varón-López, Maryeimy; Gonçalves de Oliveira Prado, Isabelle; Valentim Dos Santos, Jessé; Fonsêca Sousa Soares, Cláudio Roberto; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    Spore counts, species composition and richness of arbuscular mycorrhizal fungi, and soil glomalin contents were evaluated in a soil contaminated with Zn, Cu, Cd and Pb after rehabilitation by partial replacement of the contaminated soil with non-contaminated soil, and by Eucalyptus camaldulensis planting with and without Brachiaria decumbens sowing. These rehabilitation procedures were compared with soils from contaminated non-rehabilitated area and non-contaminated adjacent soils. Arbuscular mycorrhizal fungi communities attributes were assessed by direct field sampling, trap culture technique, and by glomalin contents estimate. Arbuscular mycorrhizal fungi was markedly favored by rehabilitation, and a total of 15 arbuscular mycorrhizal fungi morphotypes were detected in the studied area. Species from the Glomus and Acaulospora genera were the most common mycorrhizal fungi. Number of spores was increased by as much as 300-fold, and species richness almost doubled in areas rehabilitated by planting Eucalyptus in rows and sowing B. decumbens in inter-rows. Contents of heavy metals in the soil were negatively correlated with both species richness and glomalin contents. Introduction of B. decumbens together with Eucalyptus causes enrichment of arbuscular mycorrhizal fungi species and a more balanced community of arbuscular mycorrhizal fungi spores in contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...... of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  17. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    International Nuclear Information System (INIS)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-01-01

    The influence of arbuscular mycorrhizal fungus on 1 34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more 1 34Cs (up to 250,000 Bq kg - 1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased 1 34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg - 1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  18. DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant

    International Nuclear Information System (INIS)

    Wu Naiying; Zhang Shuzhen; Huang Honglin; Shan Xiaoquan; Christie, Peter; Wang Youshan

    2008-01-01

    A greenhouse pot experiment was conducted to investigate the colonization of alfalfa roots by the arbuscular mycorrhizal (AM) fungus Glomus etunicatum and application of the non-ionic surfactant Triton X-100 on DDT uptake by alfalfa and depletion in soil. Mycorrhizal colonization led to an increase in the accumulation of DDT in roots but a decrease in shoots. The combination of AM inoculation and Triton X-100 application enhanced DDT uptake by both the roots and shoots. Application of Triton X-100 gave much lower residual concentrations of DDT in the bulk soil than in the rhizosphere soil or in the bulk soil without Triton X-100. AM colonization significantly increased bacterial and fungal counts and dehydrogenase activity in the rhizosphere soil. The combined AM inoculation of plants and soil application of surfactant may have potential as a biotechnological approach for the decontamination of soil polluted with DDT. - Combined colonization of alfalfa roots by an arbuscular mycorrhizal fungus and addition of non-ionic surfactant to the soil promoted root and shoot uptake and soil dissipation of DDT

  19. DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: szzhang@rcees.ac.cn; Huang Honglin; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Christie, Peter [Agricultural and Environmental Science Department, Queen' s University Belfast, Newforge Lane, Belfast BT9 5PX (United Kingdom); Wang Youshan [Municipal Academy of Agriculture and Forestry, Institute of Plant Nutrition and Resources, Beijing 100097 (China)

    2008-02-15

    A greenhouse pot experiment was conducted to investigate the colonization of alfalfa roots by the arbuscular mycorrhizal (AM) fungus Glomus etunicatum and application of the non-ionic surfactant Triton X-100 on DDT uptake by alfalfa and depletion in soil. Mycorrhizal colonization led to an increase in the accumulation of DDT in roots but a decrease in shoots. The combination of AM inoculation and Triton X-100 application enhanced DDT uptake by both the roots and shoots. Application of Triton X-100 gave much lower residual concentrations of DDT in the bulk soil than in the rhizosphere soil or in the bulk soil without Triton X-100. AM colonization significantly increased bacterial and fungal counts and dehydrogenase activity in the rhizosphere soil. The combined AM inoculation of plants and soil application of surfactant may have potential as a biotechnological approach for the decontamination of soil polluted with DDT. - Combined colonization of alfalfa roots by an arbuscular mycorrhizal fungus and addition of non-ionic surfactant to the soil promoted root and shoot uptake and soil dissipation of DDT.

  20. Does origin of mycorrhizal fungus on mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis?

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2001-01-01

    Mycorrhizal effectiveness depends on the compatibility between fungus and plant. Therefore, genetic variation in plant and fungal species affect the effectiveness of the symbiosis. The importance of mycorrhizal plant and mycorrhizal fungus origin was investigated in two experiments. In the first

  1. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil

    International Nuclear Information System (INIS)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-01-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. - Highlights: • Phytoremediation of aged-hydrocarbon polluted soils may be improved using arbuscular mycorrhizal fungi. • Inoculation of wheat with R. irregularis improved dissipation of PAH and alkanes. • Dissipation resulted from adsorption and bioaccumulation in wheat and mainly from biodegradation in soil. • Biodegradation was due to a stimulation of rhizosphere bacteria and an induction of root peroxidase. - Inoculation of wheat by an arbuscular mycorrhizal fungus improves biodegradation of alkanes and polycyclic aromatic hydrocarbons in an aged

  2. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    Science.gov (United States)

    Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik

    2018-05-01

    Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  3. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P arbuscular mycorrhizal colonization of roots.

  4. Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?

    Science.gov (United States)

    Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna

    2018-04-01

    Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.

  5. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    DEFF Research Database (Denmark)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal......-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock. (c) 2007 Elsevier Ltd. All rights...

  6. Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures.

    Science.gov (United States)

    Bago, Alberto; Cano, Custodia; Toussaint, Jean-Patrick; Smith, Sally; Dickson, Sandy

    2006-09-01

    Monoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar "RioGrande 76R" was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior. Colonization by G. intraradices in monoxenic culture of the wild-type line was low (<10%) but supported extensive development of extraradical mycelium, branched absorbing structures, and spores. The reduced colonization of rmc under monoxenic conditions (0.6%) was similar to that observed previously in soil. Extraradical development of runner hyphae was low and proportional to internal colonization. Few spores were produced. These results might suggest that carbon transfer may be modified in the rmc mutant. Our results support the usefulness of monoxenically obtained mycorrhizas for investigation of AM colonization and intraradical symbiotic functioning.

  7. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.

  8. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Mori, Narumi; Nishiuma, Kenta; Sugiyama, Takuya; Hayashi, Hideo; Akiyama, Kohki

    2016-10-01

    Hyphal branching in the vicinity of host roots is a host recognition response of arbuscular mycorrhizal fungi. This morphological event is elicited by strigolactones. Strigolactones are carotenoid-derived terpenoids that are synthesized from carlactone and its oxidized derivatives. To test the possibility that carlactone and its oxidized derivatives might act as host-derived precolonization signals in arbuscular mycorrhizal symbiosis, carlactone, carlactonoic acid, and methyl carlactonoate as well as monohydroxycarlactones, 4-, 18-, and 19-hydroxycarlactones, were synthesized chemically and evaluated for hyphal branching-inducing activity in germinating spores of the arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal branching activity was found to correlate with the degree of oxidation at C-19 methyl. Carlactone was only weakly active (100 ng/disc), whereas carlactonoic acid showed comparable activity to the natural canonical strigolactones such as strigol and sorgomol (100 pg/disc). Hydroxylation at either C-4 or C-18 did not significantly affect the activity. A series of carlactone analogues, named AD ester and AA'D diester, was synthesized by reacting formyl Meldrum's acid with benzyl, cyclohexylmethyl, and cyclogeranyl alcohols (the A-ring part), followed by coupling of the potassium enolates of the resulting formylacetic esters with the D-ring butenolide. AD ester analogues exhibited moderate activity (1 ng-100 pg/disc), while AA'D diester analogues having cyclohexylmethyl and cyclogeranyl groups were highly active on the AM fungus (10 pg/disc). These results indicate that the oxidation of methyl to carboxyl at C-19 in carlactone is a prerequisite but BC-ring formation is not essential to show hyphal branching activity comparable to that of canonical strigolactones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Partitioning of Intermediary Carbon Metabolism in Vesicular-Arbuscular Mycorrhizal Leek.

    Science.gov (United States)

    Shachar-Hill, Y.; Pfeffer, P. E.; Douds, D.; Osman, S. F.; Doner, L. W.; Ratcliffe, R. G.

    1995-05-01

    Vesicular-arbuscular mycorrhizal fungi are symbionts for a large variety of crop plants; however, the form in which they take up carbon from the host is not established. To trace the course of carbon metabolism, we have used nuclear magnetic resonance spectroscopy with [13C]glucose labeling in vivo and in extracts to examine leek (Allium porrum) roots colonized by Glomus etunicatum (and uncolonized controls) as well as germinating spores. These studies implicate glucose as a likely substrate for vesicular-arbuscular mycorrhizal fungi in the symbiotic state. Root feeding of 0.6 mM 1-[13C]glucose labeled only the fungal metabolites trehalose and glycogen. The time course of this labeling was dependent on the status of the host. Incubation with 50 mM 1-[13C]glucose caused labeling of sucrose (in addition to fungal metabolites) with twice as much labeling in uncolonized plants. There was no detectable scrambling of the label from C1 glucose to the C6 position of glucose moieties in trehalose or glycogen. Labeling of mannitol C1,6 in the colonized root tissue was much less than in axenically germinating spores. Thus, carbohydrate metabolism of host and fungus are significantly altered in the symbiotic state.

  10. [Discussion on appraisal methods and key technologies of arbuscular mycorrhizal fungi and medicinal plant symbiosis system].

    Science.gov (United States)

    Chen, Meilan; Guo, Lanping; Yang, Guang; Chen, Min; Yang, Li; Huang, Luqi

    2011-11-01

    Applications of arbuscular mycorrhizal fungi in research of medicinal plant cultivation are increased in recent years. Medicinal plants habitat is complicated and many inclusions are in root, however crop habitat is simple and few inclusions in root. So appraisal methods and key technologies about the symbiotic system of crop and arbuscular mycorrhizal fungi can't completely suitable for the symbiotic system of medicinal plants and arbuscular mycorrhizal fungi. This article discuss the appraisal methods and key technologies about the symbiotic system of medicinal plant and arbuscular mycorrhizal fungi from the isolation and identification of arbuscular mycorrhiza, and the appraisal of colonization intensity. This article provides guidance for application research of arbuscular mycorrhizal fungi in cultivation of medicinal plants.

  11. Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum.

    Science.gov (United States)

    Cliquet, J. B.; Stewart, G. R.

    1993-03-01

    To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.

  12. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota.

    Science.gov (United States)

    Lee, Soon-Jae; Kong, Mengxuan; Harrison, Paul; Hijri, Mohamed

    2018-01-01

    Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society

  13. Cd-induced production of glomalin by arbuscular mycorrhizal fungus (Rhizophagus irregularis) as estimated by monoclonal antibody assay.

    Science.gov (United States)

    Malekzadeh, Elham; Aliasgharzad, Nasser; Majidi, Jafar; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal

    2016-10-01

    Glomalin is a specific fungal glycoprotein produced by arbuscular mycorrhizal (AM) fungi belonging to the Glomerales which could efficiently sequestrate heavy metals. The glomalin has been introduced as a heat shock protein and there are evidences that increasing levels of heavy metals could enhance its production. We examined the influence of Cd concentrations on glomalin production by AM fungus, as well as its contribution to the sequestration of Cd in both pot and in vitro culture conditions. Pot experiment was carried out using pure sand with Trifolium repens L. as host plant, mycorrhized by Rhizophagus irregularis and treated with Cd levels of 0, 15, 30, and 45 μM. In vitro experiment was performed in two-compartment plates containing the transformed carrot roots mycorrhized with the same fungus and treated with Cd levels of 0, 0.001, 0.01, and 0.1 mM. The immunoreactive and Bradford reactive glomalin contents in both experiments increased as so raising Cd concentration. Total Cd sequestrated by hyphal glomalin in both cultures was significantly increased as the levels of Cd increased. The highest contents of Cd sequestration in pot (75.78 μg Cd/mg glomalin) and in vitro (11.44 μg Cd/mg glomalin) cultures were recorded at the uppermost levels of Cd, which significantly differed with other levels. Our results suggested that under Cd-induced stress, stimulated production of glomalin by AM fungus may be a protective mechanism against the toxic effect of Cd.

  14. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    Science.gov (United States)

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  15. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  16. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  17. Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis.

    Science.gov (United States)

    Rúa, Megan A; Antoninka, Anita; Antunes, Pedro M; Chaudhary, V Bala; Gehring, Catherine; Lamit, Louis J; Piculell, Bridget J; Bever, James D; Zabinski, Cathy; Meadow, James F; Lajeunesse, Marc J; Milligan, Brook G; Karst, Justine; Hoeksema, Jason D

    2016-06-10

    Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness. Using meta-analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape plant growth responses to arbuscular mycorrhizal inoculation. The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil yielded large increases in host biomass compared to when all three components were allopatric. The origin of either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil. This study underscores the potential to detect local adaptation for mycorrhizal relationships across a broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil is important for describing the

  18. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.

    Science.gov (United States)

    Karasawa, T; Hodge, A; Fitter, A H

    2012-04-01

    Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures. © 2011 Blackwell Publishing Ltd.

  19. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants

    DEFF Research Database (Denmark)

    Merrild, Marie Porret; Ambus, Per; Rosendahl, Søren

    2013-01-01

    ) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact...... or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed...

  20. Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes

    Czech Academy of Sciences Publication Activity Database

    Sudová, Radka; Jurkiewicz, A.; Turnau, K.; Vosátka, Miroslav

    2007-01-01

    Roč. 43, č. 2 (2007), s. 71-82 ISSN 0334-5114 Grant - others:Genomyca(XE) QLK5-CT-2000-01319; FNP(PL) Regle 25/97; FNP(PL) Subin 1996; FNP(PL) Subin 2000 Institutional research plan: CEZ:AV0Z60050516 Keywords : arbuscular mycorrhizal symbiosis * lead * manganese Subject RIV: EF - Botanics Impact factor: 0.598, year: 2007

  1. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.

    Science.gov (United States)

    Harrison, M J; van Buuren, M L

    1995-12-07

    Vesicular-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a transmembrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

  2. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  3. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  4. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning.

    Science.gov (United States)

    Li, Jinglong; Sun, Yuqing; Jiang, Xuelian; Chen, Baodong; Zhang, Xin

    2018-08-15

    In a pot experiment, Medicago sativa inoculated with/without arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were grown in four levels (0, 10, 25, and 75 mg/kg) of arsenic (As)-polluted soil to investigate the influences of AM symbiosis on plant As tolerance. The results showed that mycorrhizal inoculation significantly increased plant biomass, while As addition decreased mycorrhizal colonization and hyphal length density. Mycorrhizal inoculation dramatically improved plant phosphorus (P) nutrition, restricted As uptake and retained more As in roots by upregulating the expression of the AM-induced P transporter gene MsPT4 and the metallothionein gene MsMT2. High soil As content downregulated MsPT4 expression. Dimethylarsenic acid (DMA) was detected only in the shoots of mycorrhizal plants, indicating that AM fungi likely play an essential role in As detoxification by biological methylation. The present investigation allowed deeper insights into the As detoxification mechanisms of AM associations and demonstrated the important role of AM fungi in plant resistance under As-contaminated conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Extensive In Vitro Hyphal Growth of Vesicular-Arbuscular Mycorrhizal Fungi in the Presence of CO(2) and Flavonols.

    Science.gov (United States)

    Bécard, G; Douds, D D; Pfeffer, P E

    1992-03-01

    Various flavonoids were tested for their ability to stimulate in vitro growth of germinated spores of vesicular-arbuscular mycorrhizal fungi. Experiments were performed in the presence of 2% CO(2), previously demonstrated to be required for growth of Gigaspora margarita (G. Bécard and Y. Piché, Appl. Environ. Microbiol. 55:2320-2325, 1989). Only the flavonols stimulated fungal growth. The flavones, flavanones, and isoflavones tested were generally inhibitory. Quercetin (10 muM) prolonged hyphal growth from germinated spores of G. margarita from 10 to 42 days. An average of more than 500 mm of hyphal growth and 13 auxiliary cells per spore were obtained. Quercetin also stimulated the growth of Glomus etunicatum. The glycosides of quercetin, rutin, and quercitrin were not stimulatory. The axenic growth of G. margarita achieved here under rigorously defined conditions is the most ever reported for a vesicular-arbuscular mycorrhizal fungus.

  6. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  7. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Javaid, A.; Anjum, T.; Shah, M.H.M.

    2007-01-01

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  8. Inoculation of Mimosa latispinosa Lam with the Commercial Arbuscular Mycorrhizal Fungus Rhizophagus irregularis DAOM 197198, and Bradyrhizobium spp. Under Nursery Production Conditions in South-East Madagascar

    Directory of Open Access Journals (Sweden)

    Sarasin, G.

    2017-01-01

    Full Text Available Qit Madagascar Minerals (QMM has planned several actions to reduce the environmental footprint of its mining project located near the city of Fort-Dauphin (Madagascar. One of these actions is the reclamation of a portion of its mined sites. Different symbiotic strains were tested as bio-enhancers for the ecological restoration using Mimosa latispinosa Lam, a native and pioneer shrub. The symbiotic strains tested in nursery were the commercial strain of arbuscular mycorrhizal fungus, Rhizophagus irregularis DAOM197198, and two local strains of Bradyrhizobium spp., STM1415 and STM1447, inoculated alone or dually with the arbuscular mycorrhiza. Treatments did not significantly increase the plant height and dry mass. However, plants grown in tyndallized soil had better growth than those in unsterilized soil. Results obtained twenty weeks after inoculation suggest that soil tyndallization (heating at 100°C and at atmospheric pressure of 700 kPa during three hours is an effective method for nursery production of high quality seedlings of M. latispinosa.

  9. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    2016-12-01

    Full Text Available The adoption of biological resources in agriculture may allow less dependence and better use of finite resources. This study aimed at evaluating the effects of inoculation with arbuscular mycorrhizal fungi native to the Brazilian Savannah associated with the application of mycorrhizal stimulant (7-hydroxy, 4'-methoxy-isoflavone, in the early growth of common bean and soybean. The experiment was carried out in a greenhouse, in a completely randomized design, with a 7 x 2 factorial arrangement, consisting of five arbuscular mycorrhizal fungi species, joint inoculation (junction of all species in equal proportions and native fungi (without inoculation, in the presence and absence of stimulant. The following traits were evaluated: shoot dry matter, root dry matter, mycorrhizal colonization, nodules dry matter and accumulation of calcium, zinc and phosphorus in the shoot dry matter. The increase provided by the arbuscular mycorrhizal fungi and the use of stimulant reached over 200 % in bean and over 80 % in soybean plants. The fungi Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus, for bean, and Claroideoglomus etunicatum, Dentiscutata heterogama, Rhizophagus clarus and the joint inoculation, for soybean, increased the dry matter and nutrients accumulation.

  10. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil

    International Nuclear Information System (INIS)

    Rufyikiri, Gervais; Huysmans, Lien; Wannijn, Jean; Hees, May van; Leyval, Corinne; Jakobsen, Iver

    2004-01-01

    Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238 U in the range 0-87 mg kg -1 . Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg -1 soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil. - Plant mycorrhization may decrease U concentration in shoots of plants grown at high level of U in soil

  11. Uptake of 15 trace elements in arbuscular mycorrhizal marigold measured by the multitracer technique

    International Nuclear Information System (INIS)

    Suzuki, H.; Kumagai, H.; Oohashi, K.; Sakamoto, K.; Inubushi, K.; Enomoto, S.; Ambe, F.

    2000-01-01

    The effect of arbuscular mycorrhizal (AM) colonization on the uptake of trace elements in marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7 Be, 22 Na, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, 65 Zn, 74 As, 75 Se, 83 Rb, 85 Sr, 88 Y, 88 Zr, and 95m Tc. Marigold plants were grown under controlled environmental conditions in sand culture either without mycorrhizas or in association with an AM fungus, Glomus etunicatum. The multitracer was applied to the pot, and plants were harvested at 7 and 21 d after tracer application. We found that the uptake of 7 Be, 22 Na, 51 Cr, 59 Fe, 65 Zn, and 95m Tc was higher in the mycorrhizal marigolds than in the non-mycorrhizal ones, while that of 46 Sc, 56 Co, 83 Rb, and 85 Sr was lower in the mycorrhizal marigolds than in the non-mycorrhizal ones. Thus, the multitracer technique enabled to analyze the uptake of various elements by plant simultaneously. It is suggested that this technique could be used to analyze the effects of AM colonization on the uptake of trace elements by plant. (author)

  12. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review

    Science.gov (United States)

    Jamiołkowska, Agnieszka; Księżniak, Andrzej; Gałązka, Anna; Hetman, Beata; Kopacki, Marek; Skwaryło-Bednarz, Barbara

    2018-01-01

    Arbuscular mycorrhizal fungi inhabiting soil play an important role for vascular plants. Interaction between arbuscular mycorrhizal fungi, plants and soil microorganisms leads to many mutual advantages. However, the effectiveness of mycorrhizal fungi depends not only on biotic, but also abiotic factors such as physico-chemical properties of the soil, availability of water and biogenic elements, agricultural practices, and climatic conditions. First of all, it is important to adapt the arbuscular mycorrhizal fungi species to changing environmental conditions. The compactness of the soil and its structure have a huge impact on its biological activity. Soil pH reaction has a substantial impact on the mobility of ions in soil dilutions and their uptake by plants and soil microflora. Water excess can be a factor negatively affecting arbuscular mycorrhizal fungi because these microorganisms are sensitive to a lower availability of oxygen. Mechanical cultivation of the soil has a marginal impact on the arbuscular mycorrhizal fungi spores. However, soil translocation can cause changes to the population of the arbuscular mycorrhizal fungi abundance in the soil profile. The geographical location and topographic differentiation of cultivated soils, as well as the variability of climatic factors affect the population of the arbuscular mycorrhizal fungi in the soils and their symbiotic activity.

  13. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    Science.gov (United States)

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.

  14. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces

    DEFF Research Database (Denmark)

    Hammer, Edith; Balogh-Brunstad, Zsuzsanna; Jakobsen, Iver

    2014-01-01

    Biochar application to soils has potential to simultaneously improve soil fertility and store carbon to aid climate change mitigation. While many studies have shown positive effects on plant yields, much less is known about the synergies between biochar and plant growth promoting microbes......, such as mycorrhizal fungi. We present the first evidence that arbuscular mycorrhizal (AM) fungi can use biochar as a physical growth matrix and nutrient source. We used monoxenic cultures of the AM fungus Rhizophagus irregularis in symbiosis with carrot roots. Using scanning electron microscopy we observed that AM...... fungal hyphae grow on and into two contrasting types of biochar particles, strongly attaching to inner and outer surfaces. Loading a nutrient-poor biochar surface with nutrients stimulated hyphal colonization. We labeled biochar surfaces with 33P radiotracer and found that hyphal contact to the biochar...

  15. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5...... in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...... lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely, with neutral lipid fatty acid 16:1 omega 5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1 omega 5. The fungal neutral lipid/phospholipid ratio...

  16. Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots.

    Science.gov (United States)

    Balestrini, Raffaella; Salvioli, Alessandra; Dal Molin, Alessandra; Novero, Mara; Gabelli, Giovanni; Paparelli, Eleonora; Marroni, Fabio; Bonfante, Paola

    2017-07-01

    Grapevine, cultivated for both fruit and beverage production, represents one of the most economically important fruit crops worldwide. With the aim of better understanding how grape roots respond to beneficial microbes, a transcriptome sequencing experiment has been performed to evaluate the impact of a single arbuscular mycorrhizal (AM) fungal species (Funneliformis mosseae) versus a mixed inoculum containing a bacterial and fungal consortium, including different AM species, on Richter 110 rootstock. Results showed that the impact of a single AM fungus and of a complex microbial inoculum on the grapevine transcriptome differed. After 3 months, roots exclusively were colonized after the F. mosseae treatment and several AM marker genes were found to be upregulated. The mixed inoculum led only to traces of colonization by AM fungi, but elicited an important transcriptional regulation. Additionally, the expression of genes belonging to categories such as nutrient transport, transcription factors, and cell wall-related genes was significantly altered in both treatments, but the exact genes affected differed in the two conditions. These findings advance our understanding about the impact of soil beneficial microbes on the root system of a woody plant, also offering the basis for novel approaches in grapevine cultivation.

  17. Impact of fertilizer, corn residue, and cover crops on mycorrhizal inoculum potential and arbuscular mycorrhizal fungi associations

    Science.gov (United States)

    Arbuscular Mycorrhizal Fungi (AMF) increase nutrient and water acquisition for mycorrhizal-susceptible plants, which may lead to higher yields. However, intensive agricultural practices such as tilling, fallow treatments, and inorganic nutrient application reduce soil AMF. The purpose of the three e...

  18. Composition of arbuscular mycorrhizal fungi associated with cassava

    African Journals Online (AJOL)

    SARAH

    2016-02-29

    Feb 29, 2016 ... Objectives: Arbuscular mycorrhizal fungi (AMF) form root symbiotic relationships with higher plants, but .... including growth habit of stem, stem colour, outer and inner root ..... of AM fungi to colonize roots, breaking down their.

  19. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    International Nuclear Information System (INIS)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock

  20. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Per [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Jakobsen, Iver [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark)], E-mail: iver.jakobsen@risoe.dk

    2008-05-15

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock.

  1. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-09-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  2. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-07-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  3. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress.

    Science.gov (United States)

    Wang, Yanhong; Wang, Minqiang; Li, Yan; Wu, Aiping; Huang, Juying

    2018-01-01

    Soil salinity is a common and serious environmental problem worldwide. Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators of soil salinity tolerance in plants. However, few studies have addressed the possible benefits of AMF inoculation for medicinal plants under saline conditions. In this study, we examined the effects of colonization with two AMF, Funneliformis mosseae and Diversispora versiformis, alone and in combination, on the growth and nutrient uptake of the medicinal plant Chrysanthemum morifolium (Hangbaiju) in a greenhouse salt stress experiment. After 6 weeks of a non-saline pretreatment, Hangbaiju plants with and without AMF were grown for five months under salinity levels that were achieved using 0, 50 and 200 mM NaCl. Root length, shoot and root dry weight, total dry weight, and root N concentration were higher in the mycorrhizal plants than in the non-mycorrhizal plants under conditions of moderate salinity, especially with D. versiformis colonization. As salinity increased, mycorrhizal colonization and mycorrhizal dependence decreased. The enhancement of root N uptake is probably the main mechanism underlying salt tolerance in mycorrhizal plants. These results suggest that the symbiotic associations between the fungus D. versiformis and C. morifolium plants may be useful in biotechnological practice.

  4. Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico

    Science.gov (United States)

    Ligia Lebrón; Jean D. Lodge; Paul. Bayman

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbon, at three farms in...

  5. Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site.

    Science.gov (United States)

    Firmin, Stéphane; Labidi, Sonia; Fontaine, Joël; Laruelle, Frédéric; Tisserant, Benoit; Nsanganwimana, Florian; Pourrut, Bertrand; Dalpé, Yolande; Grandmougin, Anne; Douay, Francis; Shirali, Pirouz; Verdin, Anthony; Lounès-Hadj Sahraoui, Anissa

    2015-09-15

    Arbuscular mycorrhizal fungus (AMF)-assisted phytoremediation could constitute an ecological and economic method in polluted soil rehabilitation programs. The aim of this work was to characterize the trace element (TE) phytoremediation potential of mycorrhizal Miscanthus × giganteus. To understand the mechanisms involved in arbuscular mycorrhizal symbiosis tolerance to TE toxicity, the fatty acid compositions and several stress oxidative biomarkers were compared in the roots and leaves of Miscanthus × giganteus cultivated under field conditions in either TE-contaminated or control soils. TEs were accumulated in greater amounts in roots, but the leaves were the organ most affected by TE contamination and were characterized by a strong decrease in fatty acid contents. TE-induced oxidative stress in leaves was confirmed by an increase in the lipid peroxidation biomarker malondialdehyde (MDA). TE contamination decreased the GSSG/GSH ratio in the leaves of exposed plants, while peroxidase (PO) and superoxide dismutase (SOD) activities were increased in leaves and in whole plants, respectively. AMF inoculation also increased root colonization in the presence of TE contamination. The mycorrhizal colonization determined a decrease in SOD activity in the whole plant and PO activities in leaves and induced a significant increase in the fatty acid content in leaves and a decrease in MDA formation in whole plants. These results suggested that mycorrhization is able to confer protection against oxidative stress induced by soil pollution. Our findings suggest that mycorrhizal inoculation could be used as a bioaugmentation technique, facilitating Miscanthus cultivation on highly TE-contaminated soil. Copyright © 2015. Published by Elsevier B.V.

  6. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  7. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  8. ARBUSCULAR MYCORRHIZAL IN THE GROWTH OF LEGUMINOUS TREES ON COALMINE WASTE ENRICHED SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Shantau Camargo Gomes Stoffel

    2016-06-01

    Full Text Available The objective of this work was to evaluate the effects of arbuscular mycorrhizal inoculation in the growth, colonization and absorption of P and trace elements of leguminous trees on coal mine wastes. Independent assays for Mimosa scabrella Benth. (common name bracatinga, Mimosa bimucronata (DC. Kuntze (maricá and Parapiptadenia rigida (Benth. Brenan (angico-vermelho were carried out in a greenhouse on an entirely casualized experimental delineation composed of six treatments. Five coal mine autochthonous arbuscular mycorrhizal fungal isolates were tested, including Acaulospora colombiana, Acaulospora morrowiae, Dentiscutata heterogama, Rhizophagus clarus and Rhizophagus irregulars, aside from a control treatment, with four replications each. Results show that arbuscular mycorrhizal colonization was greater than 60% for Mimosa species, and up to 26% for Parapiptadenia. Overall, the fungal inoculation promoted better plant growth, with increments of up to 1430%. Phosphorous absorption was favored, especially when inoculation was done with A. colombiana, R. irregularis and A. morrowiae. Even though there was a conclusive reduction in the levels of trace elements in the plant´s shoots, the inoculation with those species of fungi promoted significant increments in the accumulated levels of As, Cu, Zn and Cr for all plant species tested. Therefore, arbuscular mycorrhizal fungi play important roles in these poor, degraded and often contaminated environments.

  9. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    Directory of Open Access Journals (Sweden)

    David P Janos

    Full Text Available Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  10. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plants

    International Nuclear Information System (INIS)

    Dubchak, S.; Bondar, O.

    2018-01-01

    The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed. It is found that colonization of plants by AM fungus resulted to significant decrease of radiocaesium content in their aboveground parts, while it didn't have considerable impact on the radionuclide uptake by plant root system. AM fungi can restrict or enhance direct root uptake of radiocaesium as well as its root to shoot translocation. Radiocaesium activity concentration was considerably lower in shoots of mycorrhizal plants as compared to nonmycorrhizal ones grown on different soil types. Plant colonization with the G. intraradices resulted in 50 - 100 % decrease of radiocaesium TF from soil to aboveground biomass and 40 - 70% reduction of its translocation from plant roots to shoots. The studied plants could be potentially cultivated within areas with moderate radiocaesium contamination levels and further used in agricultural purposes. The opposite effect was observed in case of H. annuus (sunflower), where AM colonization led to nearly 10-fold increase of 134 Cs activity in roots and shoots. This hyper-accumulating plant could be used in combination with AM fungi for radiocaesium phytoextraction from the soil. (authors)

  11. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy ...

    African Journals Online (AJOL)

    sadia

    2016-05-18

    May 18, 2016 ... Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Received 19 ... weeks of pot experiment, roots colonization, shoot and root biomass, growth, heavy metals contents ... using arbuscular mycorrhizal fungi (AMF) in soil.

  12. Response of Arbuscular mycorrhizal fungi and Rhizobium ...

    African Journals Online (AJOL)

    The aim of the present study was to investigate the effect ofRhizobium and Arbuscular mycorrhizal fungi inoculation, both individually and in combination on growth and chlorophyll content of economically important plant Vigna unguiculata L. A significant (p < 0.05) increase over control in root length (45.6 cm), shoot height ...

  13. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    Science.gov (United States)

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  14. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Ouahmane Lahcen, Ndoye Ibrahima, Morino Abdessadek, Ferradous Abderrahim, Sfairi Youssef, Al Faddy Mohamed Najib, Abourouh Mohamed ...

  15. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  16. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun

    2014-12-01

    The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).

  17. arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    PROF EKWUEME

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross. River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  18. Arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  19. Occurrence of arbuscular mycorrhizal fungi on King George Island, South Shetland Islands, Antarctica.

    Science.gov (United States)

    Barbosa, Marisângela V; Pereira, Elismara A; Cury, Juliano C; Carneiro, Marco A C

    2017-01-01

    Arbuscular mycorrhizal fungi make up an important ecological niche in ecosystems, and knowledge of their diversity in extreme environments is still incipient. The objective of this work was to evaluate the density and diversity of arbuscular mycorrhizal fungi in the soil of King George Island in the South Shetland Islands archipelago, Antarctica. For that, soil and roots of Deschampsia antarctica were collected at the brazilian research station in Antarctica. The spore density, species diversity and mycorrhizal colonization in the roots were evaluated. There was a low density of spores (27.4 ± 17.7) and root mycorrhizal colonization (6 ± 5.1%), which did not present statistical difference. Four species of arbuscular mycorrhizal fungi were identified, distributed in two genera: three species of the genus Glomus (Glomus sp1, Glomus sp2 and Glomus sp3) and one of the genus Acaulospora, which was identified at species level (Acaulospora mellea). Greater soil diversity was verified with pH 5.9 and phosphorus concentration of 111 mg dm-3, occurring two species of genus Glomus and A. mellea. Based on literature data, this may be the first record of this species of Acaulospora mellea in Antarctic soils, colonizing D. antarctica plants.

  20. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    Science.gov (United States)

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  1. Plant Signals Disrupt (regulate?) Arbuscular Mycorrhizal Fungal Growth Under Enhanced Ozone and CO2 Growing Conditions for Populus tremuloides

    Science.gov (United States)

    Miller, R. M.; Podila, G. K.

    2008-12-01

    An understanding of the genetic determinants of keystone symbiotic relationships is essential to elucidating adaptive mechanisms influencing higher-order processes, including shifts in community composition following environmental perturbations. The Aspen FACE project offers a unique opportunity to address adaptive processes with an imposed three way interaction experiment composed of the atmospheric pollutant ozone (eO3), elevated CO2 (eCO2) fumigations, five Populus tremuloides (aspen) genotypes, and both arbuscular mycorrhizal and ectomycorrhizal fungal interactions. The 10 year time span of this experiment has allowed for a realistic and mechanistic understanding of above ground responses of the aspen genotypes to eCO2, eO3 and the interaction effects of eCO2 and eO3. Even so, treatment influences to the below ground, including carbon allocation to roots and associated mycorrhizal symbionts, and rhizosphere dynamics are just beginning to be understood. We hypothesized that mycorrhizal fungal responses to eCO2, eO3, and the interaction effects of eCO2+eO3 are conditioned by the degree of response of their aspen hosts. We intend to describe the molecular mechanisms of an important critical interaction between host and fungus using microarray analysis of expression profiles, as well as metabolic profiling of aspen roots and their associated mycorrhizal partner, the arbuscular mycorrhizal fungus (AMF) Glomus intraradices, under eCO2, eO3 and eCO2+eO3. We present evidence that host-derived factors, expressed in response to eCO2+eO3, trigger responses in Glomus leading to the partitioning or metabolic shift in lipid biosynthesis that is associated with reduced extraradical hyphae growth and altered lipid metabolism. We then scale these lower-level responses to give better insight to fungal intraradical and extraradical allocation of biomass and fungal and root lipid and carbohydrate content in association with aspen genotype responses to the imposed treatments. By

  2. Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment.

    Science.gov (United States)

    Varga, Sandra

    2015-03-01

    Arbuscular mycorrhizal fungi usually enhance overall plant performance, yet their effects on seed germination and early plant establishment, crucial steps in plant cycles, are generally overlooked. In gynodioecious species, sexual dimorphism in these traits has been reported, with females producing seeds that germinate at a faster rate than seeds from hermaphrodites.• Using the gynodioecious plant Geranium sylvaticum, I investigated in a greenhouse experiment whether the presence of arbuscular mycorrhizal spores affects seed germination and early plant establishment, examining at the same time whether the sex of the mother producing the seeds also influences these parameters and whether sex-specific interactions between these two factors exist.• The presence of arbuscular mycorrhizal spores in the soil decreased seed germination, did not affect plant survival, but did increase plant growth. Moreover, no significant differences in seed traits were detected between the sexes of the plants producing the seeds.• This study demonstrates that arbuscular mycorrhizal fungi may have contrasting effects for plants during early life stages and that mycorrhizal effects can take place even at the precolonization stage. © 2015 Botanical Society of America, Inc.

  3. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    Science.gov (United States)

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  4. Arbuscular-mycorrhizal fungi (Glomales) in Egypt. III: Distribution ...

    African Journals Online (AJOL)

    Roots and rhizospheric soils of 26 plant species belonging to 18 families representing five different habitats at El-Omayed Biosphere Reserve were collected and examined for arbuscular-mycorrhizal fungal (AMF) associations. Plant species recorded in the habitat of coastal sand dunes had the highest percentage of ...

  5. Solanum cultivar responses to arbuscular mycorrhizal fungi: growth ...

    African Journals Online (AJOL)

    A greenhouse experiment was carried out in a sandy soil with a low available phosphorus to evaluate responsiveness of four Solanum aethiopicum cultivars to indigenous arbuscular mycorrhizal fungi. Results showed clear interaction between genetic variability of cultivars and fungal isolates on shoot biomass and on ...

  6. Meta-analysis of crop and weed growth responses to arbuscular-mycorrhizal fungi

    Science.gov (United States)

    Arbuscular mycorrhizal fungi (AMF) have long been regarded as beneficial soil microorganisms, but have been reported to have detrimental effects on several non-mycorrhizal agricultural weed species. If AMF have negative effects on weeds but neutral or positive effects on crops under certain cropping...

  7. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting

  8. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  9. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L

    International Nuclear Information System (INIS)

    Orłowska, Elżbieta; Godzik, Barbara; Turnau, Katarzyna

    2012-01-01

    The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concentration and uptake between different AMF isolates. Inoculation with the indigenous isolate resulted in increased transfer of As from roots to shoots; AMF from non-polluted area apparently restricted plants from absorbing As to the tissue; and plants inoculated with an AMF isolate from Zn–Pb waste showed strong As retainment within the roots. Staining with dithizone indicated that AMF might be actively involved in As accumulation. The mycorrhizal colonization affected also the concentration of Cd and Zn in roots and Pb concentration, both in shoots and roots. - Highlights: ► The role of arbuscular mycorrhizal fungi (AMF) in As uptake was studied. ► Growth of Plantago lanceolata was significantly enhanced by mycorrhizal inoculation. ► Arsenic concentration and uptake significantly depended on the AMF isolate. ► Arbuscular mycorrhizal fungi may be useful for bioremediation of As contaminated wastes. - Effect of arbuscular mycorrhizal fungi on As uptake by Plantago lanceolata strongly depends on the origin of fungal isolates.

  10. Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm

    NARCIS (Netherlands)

    Boon, E.; Halary, S.; Bapteste, E.; Hijri, M.

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great

  11. Arbuscular mycorrhizal fungi species associated with rhizosphere of ...

    African Journals Online (AJOL)

    A survey of arbuscular mycorrhizal fungi (AMF) diversity and date palm (Phoenix dactylifera L.) tree root colonization in arid areas was undertaken in ten palm groves located along the Ziz valley (Tafilalet, south-west Morocco). The frequency and the mean intensity of root colonization reached 72 and 43% respectively and ...

  12. Beneficial contribution of the arbuscular mycorrhizal fungus, Rhizophagus irregularis, in the protection of Medicago truncatula roots against benzo[a]pyrene toxicity.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Tisserant, Benoît; Laruelle, Frédéric; Lounès-Hadj Sahraoui, Anissa

    2017-07-01

    Arbuscular mycorrhizal fungi are able to improve plant establishment in polluted soils but little is known about the genes involved in the plant protection against pollutant toxicity by mycorrhization, in particular in the presence of polycyclic aromatic hydrocarbons (PAH). The present work aims at studying in both symbiotic partners, Medicago truncatula and Rhizophagus irregularis: (i) expression of genes putatively involved in PAH tolerance (MtSOD, MtPOX, MtAPX, MtGST, MtTFIIS, and MtTdp1α), (ii) activities of antioxidant (SOD, POX) and detoxification (GST) enzymes, and (iii) H 2 O 2 and the heavy PAH, benzo[a]pyrene (B[a]P) accumulation. In the presence of B[a]P, whereas induction of the enzymatic activities was detected in R. irregularis and non-mycorrhizal roots as well as upregulation of the gene expressions in the non-mycorrhizal roots, downregulation of the gene expressions and decrease of enzyme activities were observed in mycorrhizal roots. Moreover, B[a]P increased H 2 O 2 production in non-mycorrhizal roots and in R. irregularis but not in mycorrhizal roots. In addition, a lower B[a]P bioaccumulation in mycorrhizal roots was measured in comparison with non-mycorrhizal roots. Being less affected by pollutant toxicity, mycorrhizal roots did not activate any defense mechanism either at the gene expression regulation level or at the enzymatic level.

  13. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils

    Czech Academy of Sciences Publication Activity Database

    Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, Jan; Egli, S.

    2017-01-01

    Roč. 53, č. 7 (2017), s. 777-797 ISSN 0178-2762 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal * Agriculture * Biodiversity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.683, year: 2016

  14. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne

    2016-10-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.

  15. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings

    International Nuclear Information System (INIS)

    Chen, B.D.; Zhu, Y.-G.; Duan, J.; Xiao, X.Y.; Smith, S.E.

    2007-01-01

    A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings. - This study demonstrated that AM associations can encourage plant survival in Cu mine tailings

  16. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used

  17. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    International Nuclear Information System (INIS)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-01-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. (Author)

  18. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-07-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseaae and G. deserticola in vitro. (Author)

  19. Differences in Arbuscular Mycorrhizal Fungi among Three Coffee Cultivars in Puerto Rico

    OpenAIRE

    Lebrón, Ligia; Lodge, D. Jean; Bayman, Paul

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbón, at three farms in Puerto Rico. Caturra had significantly lower total extraradical AM hyphal length than Pacas and Borbón at all locations. P content did not differ a...

  20. Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize.

    Science.gov (United States)

    Wang, Xin-Xin; Hoffland, Ellis; Feng, Gu; Kuyper, Thomas W

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We investigated the effect of mycorrhizal hyphae-mediated phytase activity on P uptake by maize. Two maize ( Zea mays L.) cultivars, non-inoculated or inoculated with the arbuscular mycorrhizal fungi Funneliformis mosseae or Claroideoglomus etunicatum , were grown for 45 days in two-compartment rhizoboxes, containing a root compartment and a hyphal compartment. The soil in the hyphal compartment was supplemented with 20, 100, and 200 mg P kg -1 soil as calcium phytate. We measured activity of phytase and acid phosphatase in the hyphal compartment, hyphal length density, P uptake, and plant biomass. Our results showed: (1) phytate addition increased phytase and acid phosphatase activity, and resulted in larger P uptake and plant biomass; (2) increases in P uptake and biomass were correlated with phytase activity but not with acid phosphatase activity; (3) lower phytate addition rate increased, but higher addition rate decreased hyphal length density. We conclude that P from phytate can be taken up by arbuscular mycorrhizal plants and that phytase plays a more important role in mineralizing phytate than acid phosphatase.

  1. Influence of host plants and soil diluents on arbuscular mycorrhizal fungus propagation for on-farm inoculum production using leaf litter compost and agrowastes

    Science.gov (United States)

    Arbuscular mycorrhizal (AM) fungi (Claroideoglomus etunicatum NNT10, C. etunicatum PBT03 and Funneliformis mosseae RYA08) were propagated using different culture materials (sterile sandy soil by itself or mixed 1:1 (v/v) with clay-brick granules, rice husk charcoal, or vermiculite) and host plants (...

  2. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    Science.gov (United States)

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/ P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  3. Molecular trait indicators: Moving beyond phylogeny in arbuscular mycorrhizal ecology

    NARCIS (Netherlands)

    Gamper, H.A.; van der Heijden, M.; Kowalchuk, G.A.

    2010-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with the roots of most plants, thereby mediating nutrient and carbon fluxes, plant performance, and ecosystem dynamics. Although considerable effort has been expended to understand the keystone ecological position of AM symbioses, most

  4. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize

    NARCIS (Netherlands)

    Wang, Xinxin; Hoffland, Ellis; Feng, Gu; Kuijper, Thomas

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We

  5. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices

    NARCIS (Netherlands)

    Croll, D.; Wille, L.; Gamper, H.A.; Mathimaran, N.; Lammers, P.J.; Corradi, N.; Sanders, I.R.

    2008-01-01

    Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of

  6. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse.

    Science.gov (United States)

    Kobae, Yoshihiro; Gutjahr, Caroline; Paszkowski, Uta; Kojima, Tomoko; Fujiwara, Toru; Hata, Shingo

    2014-11-01

    Plants share photosynthetically fixed carbon with arbuscular mycorrhizal (AM) fungi to maintain their growth and nutrition. AM fungi are oleogenic fungi that contain numerous lipid droplets in their syncytial mycelia during most of their life cycle. These lipid droplets are probably used for supporting growth of extraradical mycelia and propagation; however, when and where the lipid droplets are produced remains unclear. To address these issues, we investigated the correlation between intracellular colonization stages and the appearance of fungal lipid droplets in roots by a combination of vital staining of fungal structures, selective staining of lipids and live imaging. We discovered that a surge of lipid droplets coincided with the collapse of arbuscular branches, indicating that arbuscule collapse and the emergence of lipid droplets may be associated processes. This phenomenon was observed in the model AM fungus Rhizophagus irregularis and the ancestral member of AM fungi Paraglomus occultum. Because the collapsing arbuscules were metabolically inactive, the emerged lipid droplets are probably derived from preformed lipids but not de novo synthesized. Our observations highlight a novel mode of lipid release by AM fungi. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Diversity and classification of mycorrhizal associations.

    Science.gov (United States)

    Brundrett, Mark

    2004-08-01

    Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.

  8. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture.

    Science.gov (United States)

    Hung, L L; Sylvia, D M

    1988-02-01

    Bahia grass (Paspalum notatum) and industrial sweet potato (Ipomoea batatas) colonized by Glomus deserticola, G. etunicatum, and G. intraradices were grown in aeroponic cultures. After 12 to 14 weeks, all roots were colonized by the inoculated vesicular-arbuscular mycorrhizal fungi. Abundant vesicles and arbuscules formed in the roots, and profuse sporulation was detected intra-and extraradically. Within each fungal species, industrial sweet potato contained significantly more roots and spores per plant than bahia grass did, although the percent root colonization was similar for both hosts. Mean percent root colonization and sporulation per centimeter of colonized root generally increased with time, although with some treatments colonization declined by week 14. Spore production ranged from 4 spores per cm of colonized root for G. etunicatum to 51 spores per cm for G. intraradices. Infectivity trials with root inocula resulted in a mean of 38, 45, and 28% of bahia grass roots colonized by G. deserticola, G. etunicatum, and G. intraradices, respectively. The germination rate of G. etunicatum spores produced in soil was significantly higher than that produced in aeroponic cultures (64% versus 46%) after a 2-week incubation at 28 degrees C. However, infectivity studies comparing G. etunicatum spores from soil and aeroponic culture indicated no biological differences between the spore sources. Aeroponically produced G. deserticola and G. etunicatum inocula retained their infectivity after cold storage (4 degrees C) in either sterile water or moist vermiculite for at least 4 and 9 months, respectively.

  9. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    De Jaeger, Nathalie; de la Providencia, Ivan E; de Boulois, Hervé Dupré; Declerck, Stéphane

    2011-09-01

    Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Administrator

    2011-05-05

    May 5, 2011 ... Key words: Arbuscular mycorrhizal fungi, agroforestry tree species. INTRODUCTION ... plant growth hormones, protection of host roots from pathogens .... interactions between fungal strains and soil than between the fungus ... phosphorus and drought stress on the growth of Acacic nilotica and. Leucaena ...

  11. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2018-01-01

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  12. Arsenic uptake and phytoremediation potential by arbuscular mycorrhizal fungi

    Science.gov (United States)

    Xinhua He; Erik Lilleskov

    2014-01-01

    Arsenic (As) contamination of soils and water is a global problem because of its impacts on ecosystems and human health. Various approaches have been attempted for As remediation, with limited success. Arbuscular mycorrhizal (AM) fungi play vital roles in the uptake of water and essential nutrients, especially phosphorus (P), and hence enhance plant performance and...

  13. Effect of arbuscular mycorrhizal fungal inoculation on growth, and ...

    African Journals Online (AJOL)

    The aim of our work was to assess the effect of inoculation with three arbuscular mycorrhizal fungi (AMF) (Rhizoglomus aggregatum (N.C. Schenck and G.S. Sm.) Sieverd., G.A. Silva and Oeh., Funneliformis mosseae (T.H. Nicolson and Gerd.) C. Walker and A. Schüssler. and Rhizoglomus intraradices (N.C. Schenck and ...

  14. Responses of potatoes plants inoculated with arbuscular ...

    African Journals Online (AJOL)

    A pot experiment was set to examine the impact of the foliar litter (Hardwickia binata and Azadirachta indica) and an arbuscular mycorrhizal (AM) fungus on the development of two varieties of potato plants (Aida, Atlas). Three litter doses (0, 25 and 50 g) were applied to the pots after bedding plantlets. The plants were ...

  15. Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses.

    Science.gov (United States)

    Niwa, Rieko; Koyama, Takuya; Sato, Takumi; Adachi, Katsuki; Tawaraya, Keitaro; Sato, Shusei; Hirakawa, Hideki; Yoshida, Shigenobu; Ezawa, Tatsuhiro

    2018-05-09

    Arbuscular mycorrhizal (AM) fungi associate with most land plants and deliver phosphorus to the host. Identification of biotic/abiotic factors that determine crop responses to AM fungal inoculation is an essential step for successful application of the fungi in sustainable agriculture. We conducted three field trials on soybean with a commercial inoculum and developed a new molecular tool to dissect interactions between the inoculum and indigenous fungi on the MiSeq sequencing platform. Regression analysis indicated that sequence read abundance of the inoculum fungus was the most significant factor that determined soybean yield responses to the inoculation, suggesting that dominance of the inoculum fungus is a necessary condition for positive yield responses. Agricultural practices (fallow/cropping in the previous year) greatly affected the colonization levels (i.e. read abundances) of the inoculum fungus via altering the propagule density of indigenous AM fungi. Analysis of niche competition revealed that the inoculum fungus competed mainly with the indigenous fungi that are commonly distributed in the trial sites, probably because their life-history strategy is the same as that of the inoculum fungus. In conclusion, we provide a new framework for evaluating the significance of environmental factors towards successful application of AM fungi in agriculture.

  16. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens

    NARCIS (Netherlands)

    Liang, Minxia; Liu, Xubing; Etienne, Rampal S; Huang, Fengmin; Wang, Yongfan; Yu, Shixiao

    Soilborne pathogens can contribute to diversity maintenance in tree communities through the Janzen-Connell effect, whereby the pathogenic reduction of seedling performance attenuates with distance from conspecifics. By contrast, arbuscular mycorrhizal fungi (AMF) have been reported to promote

  18. ARBUSCULAR MYCORRHIZAL ASSOCIATION IN Coccothrinax readii Quero

    Directory of Open Access Journals (Sweden)

    Gerardo Emmanuel Polanco Hernández

    2013-08-01

    Full Text Available Coccothrinax readii, is a palm endemic to the Yucatan coast, its successful establishment in stressful environments suggests that factors such as mycorrhizal association may determine its success, the question arose in this work, assess environmental conditions which states and to describe their particular characteristics related to the anatomy of their roots and mycorrhizal colonization in three different seasons over a year. The study site was the coastal dune scrub of San Benito, Yucatan, where he placed a data logger that measurements performed ambient temperature (T, relative humidity (HR and photosynthethic photon flux (PPF for five days in dry, rainy and windy, also determined  the total phosphorus and extractable of the soil. The results indicate significant fluctuations of environmental variables throughout the year, on the other hand, the presence of the velamen on the roots of C. readii not restrict arbuscular mycorrhizal colonization. This association is affected by microenvironmental conditions, as during the dry season, when environmental conditions are unfavorable, the colonization percentage is higher than in the windy season, when microenvironmental conditions are more favorable.

  19. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    Science.gov (United States)

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  20. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    Energy Technology Data Exchange (ETDEWEB)

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  1. Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus.

    Science.gov (United States)

    González-Chávez, Ma Del Carmen A; Carrillo-González, Rogelio; Hernández Godínez, María Isabel; Evangelista Lozano, Silvia

    2017-02-01

    Soil pollution is an important ecological problem worldwide. Phytoremediation is an environmental-friendly option for reducing metal pollution. A greenhouse experiment was conducted to determine the growth and physiological response, metal uptake, and the phytostabilization potential of a nontoxic Jatropha curcas L. genotype when grown in multimetal-polluted conditions. Plants were established on a mine residue (MR) amended or not amended with corn biochar (B) and inoculated or not inoculated with the mycorrhizal fungus Acaulospora sp. (arbuscular mycorrhizal fungus, AMF). J. curcas was highly capable of growing in an MR and showed no phytotoxic symptoms. After J. curcas growth (105 days), B produced high desorption of Cd and Pb from the MR; however, no increases in metal shoot concentrations were observed. Therefore, Jatropha may be useful for phytostabilization of metals in mine tailings. The use of B is recommended because improved MR chemical properties conduced to plant growth (cation-exchange capacity, organic matter content, essential nutrients, electrical conductivity, water-holding capacity) and plant growth development (higher biomass, nutritional and physiological performance). Inoculation with an AMF did not improve any plant growth or physiological plant characteristic. Only higher Zn shoot concentration was observed, but it was not phytotoxic. Future studies of B use and its long-term effect on MR remediation should be conducted under field conditions.

  2. The distribution of vesicular-arbuscular mycorrhizal fungi in India.

    Science.gov (United States)

    Rani, R; Mukerji, K G

    1990-01-01

    Vesicular-arbuscular mycorrhizal fungi are widely distributed throughout the area studied including different altitudes ranging from sea level to 2500 ft above sea level. VAM fungi were recorded from 88% of the sites examined with Glomus fasciculatum and Glomus macrocarpum being the most commonly recorded. Mean species diversity was found to be maximum in the areas thickly vegetated and undisturbed.

  3. The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones

    Czech Academy of Sciences Publication Activity Database

    Sudová, Radka; Pavlíková, D.; Macek, Tomáš; Vosátka, Miroslav

    2007-01-01

    Roč. 35, č. 1 (2007), s. 163-173 ISSN 0929-1393 R&D Projects: GA ČR GA526/02/0293 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z40550506 Keywords : fytostabilization * soil contamination * arbuscular mycorrhizal symbiosis Subject RIV: EF - Botanics Impact factor: 1.810, year: 2007

  4. In vitro culture of arbuscular mycorrhizal fungi: advances and future ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal (AM) fungi are ecologically important for most vascular plants for their growth and survival. AM fungi are obligate symbionts. In recent years, there have been many attempts to cultivate in vitro. Some relevant results indicate efforts are not far from successful growth of AM fungi independent of a plant ...

  5. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities.

    NARCIS (Netherlands)

    Scheublin, T.R.; Ridgway, K.P.; Young, J.P.W.; van der Heijden, M.G.A.

    2004-01-01

    Legumes are an important plant functional group since they can form a tripartite symbiosis with nitrogen-fixing Rhizobium bacteria and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF). However, not much is known about AMF community composition in legumes and their root nodules. In this study,

  6. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    Science.gov (United States)

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses.

    Science.gov (United States)

    Mayer, Zoltán; Duc, Nguyen Hong; Sasvári, Zita; Posta, Katalin

    2017-12-01

    The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.

  9. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  10. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn

    International Nuclear Information System (INIS)

    Chen Baodong; Xiao Xueyi; Zhu Yongguan; Smith, F. Andrew; Miao Xie, Z.; Smith, Sally E.

    2007-01-01

    Mycorrhizal fungi may play an important role in protecting plants against arsenic (As) contamination. However, little is known about the direct and indirect involvement of arbuscular mycorrhizal fungi (AMF) in detoxification mechanisms. A compartmented pot cultivation system ('cross-pots') is used here to investigate the roles of AMF Glomus mosseae in plant phosphorus (P) and As acquisition by Medicago sativa, and P-As interactions. The results indicate that fungal colonization dramatically increased plant dry weight by a factor of around 6, and also substantially increased both plant P and As contents (i.e. total uptake). Irrespective of P and As addition levels, AM plants had shoot and root P concentrations 2 fold higher, but As concentrations significantly lower, than corresponding uninoculated controls. The decreased shoot As concentrations were largely due to 'dilution effects' that resulted from stimulated growth of AM plants and reduced As partitioning to shoots. The study provides further evidence for the protective effects of AMF on host plants against As contamination, and have uncovered key aspects of underlying mechanisms. The possible application of AMF in remediation practices is discussed

  11. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching

    NARCIS (Netherlands)

    Köhl, Luise; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi have been shown to play a crucial role in nutrient cycling and can reduce nutrient losses after rain induced leaching events. It is still unclear whether nutrient leaching losses vary depending on the AM fungal taxa that are present in soil. Using experimental

  12. Interaction of Vesicular-arbuscular Mycorrhizal Fungi and Phosphorus with Meloidogyne incognita on Tomato.

    Science.gov (United States)

    Cason, K M; Hussey, R S; Roncadori, R W

    1983-07-01

    The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 mug [low P] or 30 mug [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 mu/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.

  13. Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment

    NARCIS (Netherlands)

    Van de Voorde, T.F.J.; Van der Putten, W.H.; Gamper, H.A.; Hol, W.H.G.; Bezemer, T.M.

    2010-01-01

    Plants differ greatly in the soil organisms colonizing their roots. However, how soil organism assemblages of individual plant roots can be influenced by plant community properties remains poorly understood. We determined the composition of arbuscular mycorrhizal fungi (AMF) in Jacobaea vulgaris

  14. Biology, ecology and evolution of the family Gigasporaceae, arbuscular mycorrhizal fungi (Glomeromycota)

    NARCIS (Netherlands)

    Souza, Francisco Adriano de

    2005-01-01

    Research described in this thesis focused on biological, ecological and evolutionary aspects of Arbuscular Mycorrhizal Fungi (AMF), and in particular of the family Gigasporaceae (Gigaspora and Scutellospora, genera). This study had two major objectives. The first objective was to obtain better

  15. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe

    2017-01-11

    Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated carbon dioxide

    Science.gov (United States)

    A major goal of climate change research is to understand whether and how terrestrial ecosystems can sequester more carbon to mitigate rising atmospheric carbon dioxide (CO2) levels. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric CO2 has been assumed to be a major mecha...

  17. [Effect of Ryegrass and Arbuscular Mycorrhizal on Cd Absorption by Varieties of Tomatoes and Cadmium Forms in Soil].

    Science.gov (United States)

    Chen, Yong-qin; Jiang, Ling; Xu, Wei-hong; Chi, Sun-lin; Chen, Xu-gen; Xie, Wen-wen; Xiong, Shi- juan; Zhang, Jin-zhong; Xiong, Zhi-ting

    2015-12-01

    Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" arbuscular mycorrhizal.

  18. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    International Nuclear Information System (INIS)

    Lingua, Guido; Franchin, Cinzia; Todeschini, Valeria; Castiglione, Stefano; Biondi, Stefania; Burlando, Bruno; Parravicini, Valerio; Torrigiani, Patrizia; Berta, Graziella

    2008-01-01

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes

  19. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  20. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Janoušková, Martina; Hujslová, M.; Slavíková, R.; Gryndlerová, H.; Jansa, J.

    2016-01-01

    Roč. 6, č. 13 (2016), s. 4332-4346 ISSN 2045-7758 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * nutrient uptake response * mycorrhizal benefits and costs Subject RIV: EF - Botanics Impact factor: 2.440, year: 2016

  1. Lack of global population genetic differentiation in thearbuscular mycorrhizal fungus Glomus mosseae suggestsa recent range expansion which may have coincided withthe spread of agriculture

    DEFF Research Database (Denmark)

    Rosendahl, Søren; McGee, Peter; Morton, Joseph B

    2009-01-01

    ; second, the distribution is a result of human-mediated dispersal related to agriculture and finally, the morphologically defined species may encompass several local endemic species. To test these hypotheses, three genes were sequenced from 82 isolates of G. mosseae originating from six continents......The arbuscular mycorrhizal fungus Glomus mosseae is commonly found in agricultural fields. The cosmopolitan species is found in Africa, Europe, America, Asia and Australia. Three hypotheses may explain this worldwide distribution: First, speciation occurred before the continents separated 120 Ma...

  2. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus

    NARCIS (Netherlands)

    Siciliano, V.; Genre, A.; Balestrini, R.; Cappellazzo, G.; Wit, de P.J.G.M.; Bonfante, P.

    2007-01-01

    Information on changes in the plant transcriptome during early interaction with arbuscular mycorrhizal (AM) fungi is still limited since infections are usually not synchronized and plant markers for early stages of colonization are not yet available. A prepenetration apparatus (PPA), organized in

  3. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.

    NARCIS (Netherlands)

    Fellbaum, C.R.; Gachomo, E.W.; Beesetty, Y.; Choudhari, S.; Strahan, G.D.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H.

    2012-01-01

    The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against

  4. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    International Nuclear Information System (INIS)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-01-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  5. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-07-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  6. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria

    Science.gov (United States)

    Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume

    2006-01-01

    The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10 −13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants. PMID:16787107

  7. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.

    Directory of Open Access Journals (Sweden)

    Arnaud Besserer

    2006-07-01

    Full Text Available The association of arbuscular mycorrhizal (AM fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants.

  8. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    International Nuclear Information System (INIS)

    Gyuricza, Veronika; Declerck, Stephane; Dupre de Boulois, Herve

    2010-01-01

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  9. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Declerck, Stephane [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Dupre de Boulois, Herve, E-mail: herve.dupre@uclouvain.b [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-08-15

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  10. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks

    Czech Academy of Sciences Publication Activity Database

    Vosátka, Miroslav; Látr, A.; Gianinazzi, S.; Albrechtová, Jana

    2013-01-01

    Roč. 58, 1-3 (2013), s. 29-37 ISSN 0334-5114 R&D Projects: GA MPO FR-TI1/299 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * sustainable agriculture * inoculum quality Subject RIV: EF - Botanics Impact factor: 0.941, year: 2013

  11. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants.

    Science.gov (United States)

    Merrild, Marie P; Ambus, Per; Rosendahl, Søren; Jakobsen, Iver

    2013-10-01

    Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Effectiveness of Arbuscular Mycorrhizal Fungal Isolates from the Land Uses of Amazon Region in Symbiosis with Cowpea.

    Science.gov (United States)

    Silva, Gláucia Alves E; Siqueira, José O; Stürmer, Sidney L; Moreira, Fatima M S

    2018-01-01

    Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.

  14. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baodong [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Xiao Xueyi [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: ygzhu@rcees.ac.en; Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia); Miao Xie, Z. [Department of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Smith, Sally E. [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia)

    2007-07-01

    Mycorrhizal fungi may play an important role in protecting plants against arsenic (As) contamination. However, little is known about the direct and indirect involvement of arbuscular mycorrhizal fungi (AMF) in detoxification mechanisms. A compartmented pot cultivation system ('cross-pots') is used here to investigate the roles of AMF Glomus mosseae in plant phosphorus (P) and As acquisition by Medicago sativa, and P-As interactions. The results indicate that fungal colonization dramatically increased plant dry weight by a factor of around 6, and also substantially increased both plant P and As contents (i.e. total uptake). Irrespective of P and As addition levels, AM plants had shoot and root P concentrations 2 fold higher, but As concentrations significantly lower, than corresponding uninoculated controls. The decreased shoot As concentrations were largely due to 'dilution effects' that resulted from stimulated growth of AM plants and reduced As partitioning to shoots. The study provides further evidence for the protective effects of AMF on host plants against As contamination, and have uncovered key aspects of underlying mechanisms. The possible application of AMF in remediation practices is discussed.

  15. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress.

    Science.gov (United States)

    Huang, Xiaochen; Ho, Shih-Hsin; Zhu, Shishu; Ma, Fang; Wu, Jieting; Yang, Jixian; Wang, Li

    2017-07-15

    Arbuscular mycorrhizal (AM) fungi have been reported to play a central role in improving plant tolerance to cadmium (Cd)-contaminated sites. This is achieved by enhancing both the growth of host plants and the nutritive elements in plants. This study assessed potential regulatory effects of AM symbiosis with regard to nutrient uptake and transport, and revealed different response strategies to various Cd concentrations. Phragmites australis was inoculated with Rhizophagus irregularis in the greenhouse cultivation system, where it was treated with 0-20 mg L -1 of Cd for 21days to investigate growth parameters, as well as Cd and nutritive element distribution in response to AM fungus inoculation. Mycorrhizal plants showed a higher tolerance, particularly under high Cd-level stress in the substrate. Moreover, our results determined the roots as dominant Cd reservoirs in plants. The AM fungus improved Cd accumulation and saturated concentration in the roots, thus inhibiting Cd uptake to shoots. The observed distributions of nutritive elements and the interactions among these indicated the highest microelement contribution to roots, Ca contributed maximally in leaves, and K and P contributed similarly under Cd stress. In addition, AM fungus inoculation effectively impacted Mn and P uptake and accumulation while coping with Cd toxicity. This study also demonstrated translocation factor from metal concentration (TF) could be a good parameter to evaluate different transportation strategies induced by various Cd stresses in contrast to the bioconcentration factor (BCF) and translocation factor from metal accumulation (TF'). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    Czech Academy of Sciences Publication Activity Database

    Drumonde Melo, C.; Luna, S.; Krüger, Claudia; Walker, C.; Mendonça, D.; Fonseca, H. M. A. C.; Jaizme-Vega, M.; da Camara Machado, A.

    2017-01-01

    Roč. 79, FEB 2017 (2017), s. 48-61 ISSN 1146-609X Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * Juniperus bravifolia * native forests Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.652, year: 2016

  17. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  18. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.

    Science.gov (United States)

    Pérez-Tienda, Jacob; Corrêa, Ana; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-02-01

    Arbuscular mycorrhizal (AM) fungi play a key role in the nutrition of many land plants. AM roots have two pathways for nutrient uptake, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. Recent studies demonstrated that the AM symbiosis modifies the expression of plant transporter genes and that NH₄⁺ is the main form of N transported in the symbiosis. The aim of the present work was to get insights into the mycorrhizal N uptake pathway in Oryza sativa by analysing the expression of genes encoding ammonium transporters (AMTs), glutamine synthase (GS) and glutamate synthase (GOGAT) in roots colonized by the AM fungus Rhizophagus irregularis and grown under two N regimes. We found that the AM symbiosis down-regulated OsAMT1;1 and OsAMT1;3 expression at low-N, but not at high-N conditions, and induced, independently of the N status of the plant, a strong up-regulation of OsAMT3;1 expression. The AM-inducible NH₄⁺ transporter OsAMT3;1 belongs to the family 2 of plant AMTs and is phylogenetically related to the AM-inducible AMTs of other plant species. Moreover, for the first time we provide evidence of the specific induction of a GOGAT gene upon colonization with an AM fungus. These data suggest that OsAMT3;1 is likely involved in the mycorrhizal N uptake pathway in rice roots and that OsGOGAT2 plays a role in the assimilation of the NH₄⁺ supplied via the OsAMT3;1 AM-inducible transporter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits

    NARCIS (Netherlands)

    Behm, J.E.; Kiers, E.T.

    2014-01-01

    Statistical models of ecosystem functioning based on species traits are valuable tools for predicting how nutrient cycling will respond to global change. However, species such as arbuscular mycorrhizal fungi (AMF) have evolved high intraspecific trait variation, making trait characterization and

  20. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  1. Influence of Arbuscular Mycorrhizal Fungus (AMF) on degradation of iron-cyanide complexes

    Science.gov (United States)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2015-04-01

    Soil contamination in the vicinities of former Manufactured Gas Plant (MGP) sites is a worldwide known environmental issue. The pollutants, in form of iron-cyanide complexes, originating from the gas purification process, create a risk for human health due to potential release of toxic free cyanide, CN(aq) and HCN(g), (aq).The management and remediation of cyanide contaminated soil can be very challenging due to the complex chemistry and toxicity of CN compounds. The employment of phytoremediation to remove or stabilize contaminants at a former MGP site is an inexpensive process, but can be limited through shallow rotting, decreased biomass, poor growing and the risk of secondary accumulation. However, this adaptation may be enhanced via arbuscular mycorrhizal fungi (AMF) activity, which may cooperate on the degradation, transformation or uptake of the contaminants. We would like to present our preliminary results from the ongoing project concerning toxic substrate-AMF-plant relation, based on studying the site of a former MGP site. In situ experiments contributed to identifying those fungi that are likely to persist in extremely acidic and toxic conditions. Subsequently, commercially available Rhizophagus irregularis was grown in sterilized, un-spiked soil with the roots of the host plant Calamagrostis epigejos. Extracted roots and AMF hyphae were used in the batch experiment, were the potential of this association on degradation of iron-cyanide complexes, in form of potassium ferrocyanide solution, was assessed.

  2. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont.

    Science.gov (United States)

    Xie, Xianan; Lin, Hui; Peng, Xiaowei; Xu, Congrui; Sun, Zhongfeng; Jiang, Kexin; Huang, Antian; Wu, Xiaohui; Tang, Nianwu; Salvioli, Alessandra; Bonfante, Paola; Zhao, Bin

    2016-12-05

    The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A 146 (in transmembrane domain [TMD] IV) and Val 357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. Comparison of communities of arbuscular mycorrhizal fungi in roots of two Viola species

    DEFF Research Database (Denmark)

    Opik, M; Moora, Mari; Liira, Jaan

    2006-01-01

    The composition of arbuscular mycorrhizal (AM) fungal communities in roots of rare Viola elatior and common V. mirabilis was investigated using PCR with primers specific for Glomus and common was investigated using PCR with primers specific for group A, followed by single-stranded conformation...

  4. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Püschel, David; Hujslová, Martina; Slavíková, Renata; Jansa, Jan

    2015-01-01

    Roč. 25, č. 3 (2015), s. 205-214 ISSN 0940-6360 R&D Projects: GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal fungi * Intraradical colonization * PCR inhibition Subject RIV: EE - Microbiology, Virology Impact factor: 3.252, year: 2015

  5. Arbuscular Mycorrhizal Fungus Enhances Lateral Root Formation in Poncirus trifoliata (L.) as Revealed by RNA-Seq Analysis.

    Science.gov (United States)

    Chen, Weili; Li, Juan; Zhu, Honghui; Xu, Pengyang; Chen, Jiezhong; Yao, Qing

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) establish symbiosis with most terrestrial plants, and greatly regulate lateral root (LR) formation. Phosphorus (P), sugar, and plant hormones are proposed being involved in this regulation, however, no global evidence regarding these factors is available so far, especially in woody plants. In this study, we inoculated trifoliate orange seedlings ( Poncirus trifoliata L. Raf) with an AMF isolate, Rhizophagus irregularis BGC JX04B. After 4 months of growth, LR formation was characterized, and sugar contents in roots were determined. RNA-Seq analysis was performed to obtain the transcriptomes of LR root tips from non-mycorrhizal and mycorrhizal seedlings. Quantitative real time PCR (qRT-PCR) of selected genes was also conducted for validation. The results showed that AMF significantly increased LR number, as well as plant biomass and shoot P concentration. The contents of glucose and fructose in primary root, and sucrose content in LR were also increased. A total of 909 differentially expressed genes (DEGs) were identified in response to AMF inoculation, and qRT-PCR validated the transcriptomic data. The numbers of DEGs related to P, sugar, and plant hormones were 31, 32, and 25, respectively. For P metabolism, the most up-regulated DEGs mainly encoded phosphate transporter, and the most down-regulated DEGs encoded acid phosphatase. For sugar metabolism, the most up-regulated DEGs encoded polygalacturonase and chitinase. For plant hormones, the most up-regulated DEGs were related to auxin signaling, and the most down-regulated DEGs were related to ethylene signaling. PLS-SEM analysis indicates that P metabolism was the most important pathway by which AMF regulates LR formation in this study. These data reveal the changes of genome-wide gene expression in responses to AMF inoculation in trifoliate orange and provide a solid basis for the future identification and characterization of key genes involved in LR formation induced by AMF.

  6. Fungicidal seed coatings exert minor effects on arbuscular mycorrhizal fungi and plant nutrient content

    Science.gov (United States)

    Aims: Determine if contemporary, seed-applied fungicidal formulations inhibit colonization of plant roots by arbuscular mycorrhizal (AM) fungi, plant development, or plant nutrient content during early vegetative stages of several commodity crops. Methods: We evaluated seed-applied commercial fungic...

  7. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species

    Science.gov (United States)

    Benedicte Bachelot; María Uriarte; Krista L. McGuire; Jill Thompson; Jess Zimmerman

    2017-01-01

    Negative population feedbacks mediated by natural enemies can promote species coexistence at the community scale through disproportionate mortality of numerically dominant (common) tree species. Simultaneously, associations with arbuscular mycorrhizal fungi (AMF) can result in positive effects on tree populations. Coupling data on seedling foliar damage from herbivores...

  8. Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines.

    OpenAIRE

    Nogales, A. (Amaia); Aguirreolea, J. (Jone); Santa-Maria, E. (Eva); Camprubi, A. (Amalia); Calvet, C. (Cinta)

    2009-01-01

    A study was conducted with the vine rootstock Richter 110 (Vitis berlandieri Planch. x Vitis rupestris L.) in order to assess whether the colonisation by the arbuscular mycorrhizal fungus (AMF) Glomus intraradices (BEG 72) can delay the disease development in plants inoculated with the root-rot fungus Armillaria mellea (Vahl:Fr) Kummer, and to elucidate if the levels of polyamines (PAs) are modified in response to G. intraradices, A. mellea or by the dual infection. Four treatments were consi...

  9. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.

    Science.gov (United States)

    Khalvati, M A; Hu, Y; Mozafar, A; Schmidhalter, U

    2005-11-01

    Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.

  10. Effects of Arbuscular Mycorrhizal Symbiosis (Glomus intraradice on Egyptian Broomrape (Orobanche aegyptiaca. Pers in Cultivated Tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    mojtaba zafarian

    2017-03-01

    the data in the end of experiment collected on the characteristics of tomato and broomrape (after normality test of Kolmogorov - Smirnov was done separately using software SAS V 9.2 and the comparisons were done with Fisher LSD test at the 5% and 1% levels and drawing graphs in Excel. Results and Discussion: The results showed that among arbuscular mycorrhizal fungi treatments, two levels of 50 and 100 kg ha-1 in most cases, orobanche and tomato traits had no significant effect within the orobanche infested control treatment. With the possible existence of uniform density of orobanche seeds ready to germinate in the surroundings of tomato root and absence of adequate colonization by the fungies, these treatments will not be able to prevent the germination establishment of weed on tomato roots. Lack of adequate root colonization can firstly be due to the lack of sufficient numbers of fungi and secondly because of the unsuitable growth environment conditions for fungal propagation. But the treatments of 150 and 200 kg ha-1 decreased the number of nodules on the roots of tomato, orobanche dry weight, and time of emergence of orobanche flower on the soil surface, ratio of orobanche dry weight to tomato shoot dry weight. The difference may be due to the high fungal mycorrhiza colonization on the tomato roots that has led to a significant level of tomato root covered with the fungus, thereby was prohibited the haustorium penetration of orobanche into the root host. The host plant roots do this effect with the release of molecular signals called branching factors (BFs that induced a wide branching of fungal hyphae. Whereas the treatments of 150 and 200 kg ha-1 increased tomato shoot dry weight and the percentage of tomato root dry weight to shoot dry weight. Even in these two measured traits, the treatments of 150 and 200 kg ha-1 were also transcended on weed-free treatment. Generally, because of no of significant differences between the two treatments of 150 and 200 kg ha-1

  11. An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Ho-Plágaro, Tania; Huertas, Raúl; Tamayo-Navarrete, María I; Ocampo, Juan A; García-Garrido, José M

    2018-01-01

    Solanum lycopersicum , an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes -mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots . S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.

  12. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Yamir Torres-Arias

    Full Text Available Abstract In order to obtain an arbuscular mycorrhizal fungi (AMF native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum. Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.

  13. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia

    Directory of Open Access Journals (Sweden)

    Z. I. Antoniolli

    2002-09-01

    Full Text Available Communities of arbuscular mycorrhizal fungi (AMF were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.

  14. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Vlasáková, E.; Sudová, Radka

    2013-01-01

    Roč. 370, 1-2 (2013), s. 149-161 ISSN 0032-079X R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * drought * serpentine soil Subject RIV: EF - Botanics Impact factor: 3.235, year: 2013

  15. Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration.

    Science.gov (United States)

    Lingua, Guido; Copetta, Andrea; Musso, Davide; Aimo, Stefania; Ranzenigo, Angelo; Buico, Alessandra; Gianotti, Valentina; Osella, Domenico; Berta, Graziella

    2015-12-01

    High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.

  16. Large-scale diversity patterns in spore communities of Arbuscular mycorrhizal fungi [Chapter 2

    Science.gov (United States)

    Javier Alvarez-Sanchez; Nancy C. Johnson; Anita Antoninka; V. Bala Chaudhary; Matthew K. Lau; Suzanne M. Owen; Patricia Gauadarrama; Silvia. Castillo

    2010-01-01

    Surprising little is known about the factors controlling Arbuscular Mycorrhizal (AM) fungal diversity and distribution patterns. A better understanding of these factors is necessary before mycorrhizas can be effectively managed for their benefits in ecosystem restoration and agriculture. The goal of this chapter is to examine the relationships between AM fungal...

  17. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  18. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    Science.gov (United States)

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

  19. Impacts of farm management upon arbuscular mycorrhizal fungi and production and utilization of inoculum

    Science.gov (United States)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a mutualistic symbiosis with the roots of most crop plants. The plant benefits through increased: nutrient uptake from the soil, disease resistance, and water stress resistance. Optimal utilization of AM fungi is essen...

  20. Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status?

    Science.gov (United States)

    Reinhart, Kurt O; Lekberg, Ylva; Klironomos, John; Maherali, Hafiz

    2017-08-01

    Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.

  1. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Chen, Aiqun; Gu, Mian; Wang, Shuangshuang; Chen, Jiadong; Xu, Guohua

    2018-02-01

    Many terrestrial plants can form root symbiosis with beneficial microorganisms for enhancing uptake of mineral nutrients or increasing fitness to adverse environmental challenges. Arbuscular mycorrhizal (AM) symbiosis that is formed by AM fungi and the roots of vascular flowering plants is the most widespread mutualistic associations in nature. As a typical endosymbiosis, AM interactions involves the differentiation of both symbionts to create novel symbiotic interfaces within the root cells, and requires a continuous nutrient exchange between the two partners. AM plants have two pathways for nutrient uptake, either direct uptake via the root hairs and root epidermis at the plant-soil interface, or indirectly through the AM fungal hyphae at the plant-fungus interface. Over the last few years, great progress has been made in deciphering the mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and an increasing number of plant and fungal genes responsible for transporting nutrients from the soil or across the intraradical symbiotic interfaces have been identified and functionally characterized. Here, we summarize the recent advances in the nitrogen uptake, assimilation and translocation in the AM symbiosis, and also explore the current understanding of how the N status and interplay with C and P in modulating the development of AM associations. Copyright © 2017. Published by Elsevier Ltd.

  2. Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes

    DEFF Research Database (Denmark)

    Drew, E.A.; Murray, R.S.; Smith, S.E.

    2003-01-01

    Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected....... intraradices obtained a greater proportion of P at a distance from the host roots. Differences in P acquisition were not correlated with production of external hyphae in the four media zones and changes in sand pore size did not affect the ability of the fungi studied to acquire P at a distance from the host...... roots. Production of external hyphae in HC2 was influenced by fungal species and media treatment. Both fungi produced maximum amounts of external hyphae in the soil medium. Sand pore size affected growth of G. intraradices (but not G. mosseae) and hyphal diameter distributions of both fungi. The results...

  3. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions.

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes

  4. Effect of arbuscular mycorrhizal fungi and pesticides on Cynara cardunculus growth

    Directory of Open Access Journals (Sweden)

    M. MARIN

    2008-12-01

    Full Text Available Wild cardoon (Cynara cardunculus L. is a promising crop for biomass production. A nursery trial was conducted to investigate the effectiveness of mycorrhizal inoculation on the biomass yield of wild cardoon seedlings and the effect of the pesticides fosetyl-Al, folpet and propamocarb, as fungicides, and isofenphos, phoxim and oxamyl, as insecticides, on cardoon plant growth and the mycorrhization. The arbuscular mycorrhizal (AM fungi inocula were: commercial inoculum with Glomus mosseae spores, and an inoculum of a Glomus sp. strain (AMF-i isolated locally. Mycorrhizal inoculation with either inoculum increased cardoon shoot biomass compared to non-inoculated control plants. The pesticide applications had a neutral or positive effect on cardoon seedling growth. However, the AM fungi colonisation did not decrease except for plants colonised by G. mosseae and treated with the insecticides isofenphos and oxamyl. Thus, the mycorrhiza can survive to pesticide concentrations employed in commercial nursery, and enhance cardoon plant productivity.

  5. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L.

    Science.gov (United States)

    Oliveira, Rui S; Ma, Ying; Rocha, Inês; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The widespread use of agrochemicals is detrimental to the environment and may exert harmful effects on human health. The consumer demand for organic food plants has been increasing. There is thus a rising need for alternatives to agrochemicals that can foster sustainable plant production. The aim of this study was to evaluate the potential use of an arbuscular mycorrhizal (AM) fungus as an alternative to application of chemical fertilizer for improving growth performance of the medicinal and aromatic plant Coriandrum sativum. Plants were inoculated with the AM fungus Rhizophagus irregularis BEG163 and/or supplemented with a commercial chemical fertilizer (Plant Marvel, Nutriculture Bent Special) in agricultural soil. Plant growth, nutrition, and development of AM fungus were assessed. Plants inoculated with R. irregularis and those supplemented with chemical fertilizer displayed significantly improved growth performances when compared with controls. There were no significant differences in total fresh weight between plants inoculated with R. irregularis or those supplemented with chemical fertilizer. Leaf chlorophyll a + b (82%), shoot nitrogen (44%), phosphorus (254%), and potassium (27%) concentrations increased in plants inoculated with R. irregularis compared to controls. Application of chemical fertilizer inhibited root mycorrhizal colonization and the length of the extraradical mycelium of R. irregularis. Inoculation with R. irregularis was equally or more efficient than application of chemical fertilizer in promoting growth and nutrition of C. sativum. AM fungi may thus contribute to improve biologically based production of food plants and reduce the dependence on agrochemicals in agriculture.

  6. Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland

    NARCIS (Netherlands)

    Gamper, H.A.; Leuchtmann, A.

    2007-01-01

    Taxon-specific polymerase chain reaction (PCR) primers enable detection of arbuscular mycorrhizal fungi (AMF, Glomeromycota) in plant roots where the fungi lack discriminative morphological and biochemical characters. We designed and validated pairs of new PCR primers targeted to the flanking

  7. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars.

    Science.gov (United States)

    Salloum, M S; Guzzo, M C; Velazquez, M S; Sagadin, M B; Luna, C M

    2016-12-01

    Breeding selection of germplasm under fertilized conditions may reduce the frequency of genes that promote mycorrhizal associations. This study was developed to compare variability in mycorrhizal colonization and its effect on mycorrhizal dependency (MD) in improved soybean genotypes (I-1 and I-2) with differential tolerance to drought stress, and in unimproved soybean genotypes (UI-3 and UI-4). As inoculum, a mixed native arbuscular mycorrhizal fungi (AMF) was isolated from soybean roots, showing spores mostly of the species Funneliformis mosseae. At 20 days, unimproved genotypes followed by I-2, showed an increase in arbuscule formation, but not in I-1. At 40 days, mycorrhizal plants showed an increase in nodulation, this effect being more evident in unimproved genotypes. Mycorrhizal dependency, evaluated as growth and biochemical parameters from oxidative stress was increased in unimproved and I-2 since 20 days, whereas in I-1, MD increased at 40 days. We cannot distinguish significant differences in AMF colonization and MD between unimproved and I-2. However, variability among improved genotypes was observed. Our results suggest that selection for improved soybean genotypes with good and rapid AMF colonization, particularly high arbuscule/hyphae ratio could be a useful strategy for the development of genotypes that optimize AMF contribution to cropping systems.

  8. Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Dupre de Boulois, Herve [Universite catholique de Louvain, Unite de microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane, E-mail: stephan.declerck@uclouvain.b [Universite catholique de Louvain, Unite de microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-06-15

    Potassium, a chemical analogue of cesium, and phosphorus, an essential macronutrient transported by arbuscular mycorrhizal fungi (AMF), have been suggested to influence the transport of radiocesium by AMF. However, no study investigated the effects of increasing concentrations of both elements on the importance of this transport. Here, the arbuscular mycorrhizal-plant (AM-P) in vitro culture system associating Medicago truncatula plantlets with Glomus intraradices was used to evaluate this effect. Using three concentrations of K (0, 1, 10 mM) and two concentrations of P (30 and 3000 muM) added to a compartment only accessible to the AMF, we demonstrated that K and P individually and in combination significantly influenced radiocesium transport by AMF. Whilst increased concentration of K decreased the amount of radiocesium transported, the opposite was observed for P. Although the exact mechanisms involved need to be assessed, both elements were identified as important factors influencing the transport of radiocesium by AMF.

  9. Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Gyuricza, Veronika; Dupre de Boulois, Herve; Declerck, Stephane

    2010-01-01

    Potassium, a chemical analogue of cesium, and phosphorus, an essential macronutrient transported by arbuscular mycorrhizal fungi (AMF), have been suggested to influence the transport of radiocesium by AMF. However, no study investigated the effects of increasing concentrations of both elements on the importance of this transport. Here, the arbuscular mycorrhizal-plant (AM-P) in vitro culture system associating Medicago truncatula plantlets with Glomus intraradices was used to evaluate this effect. Using three concentrations of K (0, 1, 10 mM) and two concentrations of P (30 and 3000 μM) added to a compartment only accessible to the AMF, we demonstrated that K and P individually and in combination significantly influenced radiocesium transport by AMF. Whilst increased concentration of K decreased the amount of radiocesium transported, the opposite was observed for P. Although the exact mechanisms involved need to be assessed, both elements were identified as important factors influencing the transport of radiocesium by AMF.

  10. Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp. modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids.

    Science.gov (United States)

    Mechri, Beligh; Attia, Faouzi; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2014-09-01

    The influence of arbuscular mycorrhizal (AM) fungi colonization on photosynthesis, mineral nutrition, the amount of phospholipids and glycolipids in the leaves of olive (Olea europaea L.) trees was investigated. After six months of growth, the rate of photosynthesis, carboxylation efficiency, transpiration and stomatal conductance in mycorrhizal (M) plants was significantly higher than that of non-mycorrhizal (NM) plants. The inoculation treatment increased the foliar P and Mg but not N. The amount of glycolipids in the leaves of M plants was significantly higher than that of NM plants. However, the amount of phospholipids in the leaves of M plants was not significantly different to that in the leaves of NM plants. Also, we observed a significant increase in the level of α-linolenic acid (C18:3ω3) in glycolipids of M plants. This work supports the view that increased glycolipids level in the leaves of M plants could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on photosynthesis performance of olive trees. To our knowledge, this is the first report on the effect of AM fungi on the amount of glycolipids in the leaves of mycorrhizal plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization

    Czech Academy of Sciences Publication Activity Database

    Konvalinková, Tereza; Püschel, David; Řezáčová, Veronika; Gryndlerová, Hana; Jansa, Jan

    2017-01-01

    Roč. 419, 1-2 (2017), s. 319-333 ISSN 0032-079X R&D Projects: GA MŠk(CZ) LK11224; GA ČR(CZ) GA14-19191S Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhiza * Carbon allocation * Mycorrhizal cost Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.052, year: 2016

  12. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbios

    Directory of Open Access Journals (Sweden)

    Daniel eWipf

    2014-12-01

    Full Text Available Sulfur plays an essential role in plants’ growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate. It is part of amino acids, glutathione (GSH, thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM interaction improves N, P and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis.Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.

  13. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    Science.gov (United States)

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  14. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil

    Directory of Open Access Journals (Sweden)

    Graziella S Gattai

    2011-09-01

    Full Text Available The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco. Dilutions were prepared by adding lead contaminated soil (270 mg Kg-1 to uncontaminated soil (37 mg Pb Kg soil-1 in the proportions of 7.5%, 15%, and 30% (v:v. The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil.

  15. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

    Science.gov (United States)

    Rasmussen, S. R.; Füchtbauer, W.; Novero, M.; Volpe, V.; Malkov, N.; Genre, A.; Bonfante, P.; Stougaard, J.; Radutoiu, S.

    2016-07-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.

  16. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition.

    Science.gov (United States)

    Burleigh, S H; Harrison, M J

    1997-05-01

    A cDNA clone (Mt4) was isolated as a result of a differential screen to identify genes showing altered expression during the interaction between Medicago truncatula and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus versiforme. Mt4 represents a M. truncatula mRNA that contains numerous short open reading frames, the two longest of which are predicted to encode polypeptides of 51 amino acids each. One of these open reading frames shares a short region of identity with a phosphate starvation-inducible gene from tomato. Mt4 gene expression is regulated in response to colonization by mycorrhizal fungi: transcripts were detected in non-colonized roots and levels decreased in both M. truncatula and M. sativa (alfalfa) roots after colonization by G. versiforme. Transcript levels also decreased during the incomplete interaction between G. versiforme and a M. sativa mycorrhizal minus (myc-) line, indicating that the down-regulation of this gene occurs early during the interaction between the fungus and its host plant. Phosphate levels in the nutrient media also affected the expression of the Mt4 gene: transcripts were present in the roots of plants grown under phosphate-deficient conditions, but were undetectable in the roots of plants grown under phosphate sufficient conditions. Furthermore, expression was only observed when plants were grown under nitrogen-sufficient conditions. Northern blot analyses indicate that Mt4 transcripts are present primarily in roots and barely detectable in stems or leaves. Thus, Mt4 represents a M. truncatula gene whose expression is regulated in response to both colonization by mycorrhizal fungi and to the phosphate status of the plant.

  17. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Suda, Jan; Sudová, Radka

    2012-01-01

    Roč. 4, č. 1 (2012), s. 56-64 ISSN 0038-0717 R&D Projects: GA AV ČR KJB600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : serpentine syndrome * arbuscular mycorrhizal fungi * reciprocal transplant experiment Subject RIV: EF - Botanics Impact factor: 3.654, year: 2012

  18. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ning, J.C.; Cumming, J.R.

    2001-07-01

    Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 {mu}M for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation ({lt}60 {mu}M). Colonization by AM fungi greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 {mu}M). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of nonmycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C-min values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.

  19. Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution?

    Czech Academy of Sciences Publication Activity Database

    Kohout, P.; Sudová, R.; Janoušková, M.; Čtvrtlíková, Martina; Hejda, M.; Pánková, H.; Slavíková, R.; Štajerová, K.; Vosátka, M.; Sýkorová, Z.

    2014-01-01

    Roč. 68, January (2014), s. 482-493 ISSN 0038-0717 Institutional support: RVO:60077344 Keywords : arbuscular mycorrhizal fungi * primers * diversity Subject RIV: EF - Botanics Impact factor: 3.932, year: 2014

  20. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Science.gov (United States)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions

    Science.gov (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and O2− compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances

  2. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  3. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions

    Science.gov (United States)

    Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller

    2007-01-01

    Arbuscular mycorrhizal (AM) fungi are important below-ground carbon (C) sinks that can be sensitive to increased nitrogen (N) availability. The abundance of AM fungi (AMF) was estimated in maple (Acer spp.) fine roots following more than a decade of experimental additions of N designed to simulate chronic atmospheric N deposition.

  4. Dual Inoculation with Mycorrhizal and Saprotrophic Fungi Applicable in Sustainable Cultivation Improves the Yield and Nutritive Value of Onion

    OpenAIRE

    Albrechtova, Jana; Latr, Ales; Nedorost, Ludovit; Pokluda, Robert; Posta, Katalin; Vosatka, Miroslav

    2012-01-01

    The aim of this paper was to test the use of dual microbial inoculation with mycorrhizal and saprotrophic fungi in onion cultivation to enhance yield while maintaining or improving the nutritional quality of onion bulbs. Treatments were two-factorial: (1) arbuscular mycorrhizal fungi (AMF): the mix corresponding to fungal part of commercial product Symbivit (Glomus etunicatum, G. microaggregatum, G. intraradices, G. claroideum, G. mosseae, and G. geosporum) (M1) or the single-fungus inoculum ...

  5. Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil. II. Alleviation of drought stress

    NARCIS (Netherlands)

    Quilambo, OA; Weissenhorn, I.; Doddema, H; Kuiper, PJC; Stulen, I.

    2005-01-01

    The effect of drought stress and inoculation with an indigenous Mozambican and a commercial arbuscular mycorrhizal (AM) inoculant on root colonization and plant growth and yield was studied in two peanut (Arachis hypogaea L.) cultivars-a traditional, low-yielding Mozambican landrace (Local) and a

  6. Impact of arbuscular mycorrhizal fungi on maize physiology and biochemical response under variable nitrogen levels

    Science.gov (United States)

    Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...

  7. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    International Nuclear Information System (INIS)

    Liu, A.; Dalpe, Y.

    2005-01-01

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement

  8. The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava

    Science.gov (United States)

    Ceballos, Isabel; Ruiz, Michael; Fernández, Cristhian; Peña, Ricardo

    2013-01-01

    The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future. PMID:23950975

  9. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava.

    Directory of Open Access Journals (Sweden)

    Isabel Ceballos

    Full Text Available The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF and plant roots. The fungi provide the plant with inorganic phosphate (P. The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.

  10. Vesicular-arbuscular mycorrhizal populations in stored topsoil

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.A.; Hunter, D.; Birch, P.; Short, K.C. (North East London Polytechnic, London (UK). Environment and Industry Research Unit, Dept. of Biology and Biochemistry)

    1987-01-01

    Two soil stores of different ages were sampled to investigate their vesicular-arbuscular mycorrhizal (VAM) populations. The soils collected were assessed for pH, moisture content, loss on ignition, spore numbers, number and size of root fragments present and percentage of these roots infected with VAM. A corn-root bioassay was used to determine soil infectivity. Root fragment number, size, % root infection and soil infectivity were negatively correlated with soil depth. VAM spore number was not significantly correlated with depth in either store. It appears that infected root fragments and fresh roots were the source of inoculum although there may have been a contribution from spores in the younger store. The infectivity of the older store soil was less than that of the younger store. 12 refs., 5 tabs.

  11. Initial vesicular-arbuscular mycorrhizal development of slender wheatgrass on two amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Zak, J.C.; Parkinson, D. (University of Calgary, Calgary, AB (Canada). Dept. of Biology)

    1982-01-01

    The initial vesicular-arbuscular (VA) mycorrhizal development of slender wheatgrass on extracted oil-sands and subalpine coal-mine spoils, amended with either fertilizer, peat, or liquid sewage sludge, was examined. Plants were sampled at 2,6 and 10 weeks after plant emergence and the level of infection was expressed as length of mycorrhizal root per plant and length of root which contained arbuscules, vesicles, or only hyphae. Mycorrhizal infection of slender wheatgrass on the oil sands was limited to plants on the peat-amended spoil. Infection of plants on the peat-amended oil-sands spoil was detected by 2 weeks. Plants on the subalpine spoil were infected at 2 weeks only on the peat-amended spoil. While slender wheatgrass on the control and fertilizer-amended spoil developed mycorrhizae by 6 weeks, infection was not observed in plants on the sewage-amended spoil until 10 weeks. At 10 weeks, there were no significant differences in lengths of mycorrhizal root per plant among the amendments. Increased P levels in the fertilizer- and sewage-amended subalpine spoil did not suppress VA mycorrhizal development. 43 refs., 6 tabs.

  12. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    Science.gov (United States)

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations. © 2014 SETAC.

  13. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... additions. In soil with added clover alkaline phosphatase activity increased due to the presence of mycorrhizal hyphae. We suggest that mycorrhizas may influence the exudation of acid phosphatase by roots. Hyphae of G. invermaium did apparently not excrete extracellular phosphatases, but their presence may...

  14. Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi

    Science.gov (United States)

    Four cultivars of basil (Ocimum basilicum ‘Cinnamon’, ‘Siam Queen’, ‘Sweet Dani’, and ‘Red Rubin’) were inoculated or not with the arbuscular mycorrhizal fungus (AMF), Rhizophagus intraradices, and grown with a fertilizer containing either 64 mg/l P (low-P) or 128 mg/l P (high-P) to assess whether (...

  15. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism

    OpenAIRE

    Inès, Zouari; Alessandra, Salvioli; Matteo, Chialva; Mara, Novero; Laura, Miozzi; Gian Carlo, Tenore; Paolo, Bagnaresi; Paola, Bonfante

    2014-01-01

    Background Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Results Fruits were collected at 55 days after flowering, from plants coloni...

  16. An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts.

    Science.gov (United States)

    Koyama, Akihiro; Pietrangelo, Olivia; Sanderson, Laura; Antunes, Pedro M

    2017-08-01

    Little is known about the adaptive capacity of arbuscular mycorrhizal (AM) fungi to novel hosts. Here we assessed the possibility of two heterospecific AM fungal isolates to adaptively change, in terms of host biomass response, as a function of host plant identity, over the course of a growing season. First, we produced pure inocula of Rhizophagus clarus and Rhizophagus intraradices, each starting from a single spore. Second, we "trained" each isolate individually in a community with two plants, sudangrass (Sorgum bicolour subsp. drummondii) and leek (Aliium ampeloprasum var. porrum), using a dual-compartment system to allow the establishment of a common mycorrhizal network between the two hosts. Third, we conducted a greenhouse experiment to reciprocally test each "trained" clone, obtained from each compartment, either with the same (home), or the other host (away) under two contrasting phosphorus levels. Overall, results did not support adaptive responses of the AM fungi to their hosts (i.e., greater host biomass under "home" relative to "away" conditions), but the opposite (i.e., greater host biomass under "away" relative to "home" conditions) was more frequently observed. These changes in AM fungal symbiotic functioning open the possibility for relatively rapid genetic change of arbuscular mycorrhizal fungi in response to new hosts, which represents one step forward from in vitro experiments.

  17. Influence of mycorrhizal fungi on the growth and development of sandy everlasting Helichrysum arenarium (L. Moench.

    Directory of Open Access Journals (Sweden)

    Anna K. Sawilska

    2012-12-01

    Full Text Available The significance of root colonization by mycorrhizal fungi for the growth and development of Helichrysum arenarium was investigated in two independent experiments. In the first experiment the association of root colonization level with the pluviothermal conditions within the growing season and the age of a natural plant population was analyzed. In the second one, under controlled conditions, the influence of artificial inoculation with the arbuscular fungus Glomus intraradices on the features of plants raised from achenes was studied. It was shown that hydrothermal conditions during blooming period had a greater influence on reproduction processes of sandy everlasting than both the population age (the secondary succession progress and the level of root colonization by mycorrhizal fungi. High amount of precipitation at plant generative development phase positively influences the potential and actual fertility of ramets. The presence of arbuscular fungus in the soil favors the growth and development of sandy everlasting specimens at their early growing stages: they have a better-developed root system and a greater photosynthetic area.

  18. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Sudová, Radka

    2014-01-01

    Roč. 24, č. 3 (2014), s. 209-217 ISSN 0940-6360 R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal * symbiosis * nickel toxicity * semi-hydroponics Subject RIV: EF - Botanics Impact factor: 3.459, year: 2014

  19. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    Science.gov (United States)

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  20. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups

    NARCIS (Netherlands)

    De Souza, F.A.; Fernández, F.; Delmas, N.S.; Declerck, S.

    2005-01-01

    The significance of anastomosis formation and the hyphal healing mechanism (HHM) for functionality and integrity of the arbuscular mycorrhizal (AM) fungal mycelial network remains poorly documented. Four Glomeraceae and three Gigasporaceae were cultured monoxenically. Anastomosis formation was

  1. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Wiesel, Lea; Dubchak, Sergiy; Turnau, Katarzyna; Broadley, Martin R.; White, Philip J.

    2015-01-01

    Contamination of soils with radioisotopes of caesium (Cs) is of concern because of their emissions of harmful β and γ radiation. Radiocaesium enters the food chain through vegetation and the intake of Cs can affect the health of organisms. Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with plants through colonization of the roots and previous studies on the influence of AM on Cs concentrations in plants have given inconsistent results. These studies did not investigate the influence of Cs on AM fungi and it is therefore not known if Cs has a direct effect on AM colonization. Here, we investigated whether Cs influences AM colonization and if this effect impacts on the influence of Rhizophagus intraradices on Cs accumulation by Medicago truncatula. M. truncatula was grown with or without R. intraradices in pots containing different concentrations of Cs. Here, we present the first evidence that colonization of plants by AM fungi can be negatively affected by increasing Cs concentrations in the soil. Mycorrhizal colonization had little effect on root or shoot Cs concentrations. In conclusion, the colonization by AM fungi is impaired by high Cs concentrations and this direct effect of soil Cs on AM colonization might explain the inconsistent results reported in literature that have shown increased, decreased or unaffected Cs concentrations in AM plants. - Highlights: • Colonization of plants by arbuscular mycorrhizal fungi is negatively affected by increasing soil caesium concentrations. • Shoot caesium concentrations are not influenced by AM fungi at soil caesium concentrations above about 3 μg Cs kg −1 . • The direct effect of caesium on AM fungi might impact on the influence of AM fungi on Cs accumulation in plants. • This might explain the inconsistent results reported in literature on Cs accumulation in AM plants

  2. Cooperation through Competition-Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the "cooperation" between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time.

  3. Airstream Fractionation of Vesicular-Arbuscular Mycorrhizal Fungi: Concentration and Enumeration of Propagules

    OpenAIRE

    Tommerup, Inez C.

    1982-01-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particl...

  4. Effects of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species.

    Science.gov (United States)

    Caglar, S; Akgun, A

    2006-07-01

    The experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species used as rootstocks. The stratified Pistacia seeds were inoculated with VAM fungi. The highest rate of inoculated roots was 96.7% in P. khinjuck seedlings with G. clarum and G. etunicatum, 83.3% in P. vera seedlings with G. caledonium and 73.3% in P. terebinthus seedlings with G. caledonium. Mycorrhizal inoculations improved seedling height only in P. terebinthus. Certain mycorrhizal inoculations increased the leaf N, but not P and K contents. Seedlings inoculated with G. caledonium had higher reducing sugar contents. It was concluded that pre-inoculated Pistacia seedlings could have a better growth in the harsh field conditions.

  5. Arbuscular mycorrhizal impacts on competitive interactions between Acacia etbaica and Boswellia papyrifera seedlings under drought stress

    NARCIS (Netherlands)

    Birhane, E.; Sterck, F.J.; Bongers, F.; Kuyper, T.W.

    2014-01-01

    Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses. In this study we focus on interspecific competition between Acaia etbaica and Boswellia

  6. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats

    Czech Academy of Sciences Publication Activity Database

    Kohout, Petr; Doubková, Pavla; Bahram, M.; Suda, Jan; Tedersoo, L.; Voříšková, Jana; Sudová, Radka

    2015-01-01

    Roč. 24, č. 8 (2015), s. 1831-1843 ISSN 0962-1083 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : arbuscular mycorrhizal fungi * community ecology * NDA barcoding Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.947, year: 2015

  7. Growth and nutritional status of Brazilian wood species Cedrella fissilis and Anadenanthera peregrina in bauxite spoil in response to arbuscular mycorrhizal inoculation and substrate amendment

    Directory of Open Access Journals (Sweden)

    Tótola Marcos Rogério

    2000-01-01

    Full Text Available The growth of Cedrella fissilis Vell. (Cedro Rosa and of Anadenanthera peregrina Benth (Angico Vermelho in bauxite spoil was studied to evaluate their response to substrate amendment or to inoculation with arbuscular mycorrhizal fungi (AMF. The plants were grown in bauxite spoil, topsoil or spoil amended with either topsoil or compost, and inoculated with the AMF Acaulospora scrobiculata, Gigaspora margarita or Glomus etunicatum. Root colonization was highly dependent on the interaction plant-fungus-substrate. In C. fissilis, root colonization by Gigaspora margarita dropped from 75% in bauxite spoil to only 4% in topsoil. Contrarily, root colonization of A. peregrina by the same fungus increased from 48% in spoil to 60% in topsoil. Root colonization of C. fissilis in topsoil was lower than in the three other substrates. The opposite was observed for A. peregrina. Inoculation of the plants with Acaulospora scrobiculata or Glomus etunicatum was very effective in promoting plant growth. Plants of both C. fissilis and A. peregrina did not respond to amendments of bauxite spoil unless they were mycorrhizal. Also, a preferential partitioning of photosynthates to the shoots of A. peregrina inoculated with G. etunicatum or A. scrobiculata, and of C. fissilis inoculated with any of the three species of AMF was observed. C. fissilis showed a greater response to mycorrhizal inoculation than A. peregrina. The mean mycorrhizal efficiency (ME for dry matter production by C. fissilis was 1,847% for A. scrobiculata, 1,922% for G. etunicatum, and 119% for G. margarita. In A. peregrina, the ME was 249% for A. scrobiculata, 540% for G. etunicatum, and 50% for G. margarita. The effect of mycorrhizal inoculation on plant growth seems to be related in part to an enhanced phosphorus absorption by inoculated plants. Moreover, the efficiency with which the absorbed nutrients were used to produce plant biomass was much greater in plants inoculated with A. scrobiculata or

  8. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    Czech Academy of Sciences Publication Activity Database

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Roč. 4, MAY 12 (2016), s. 711 ISSN 1664-302X R&D Projects: GA ČR GAP504/12/1665; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : soil heterogeneity * organic amendments * arbuscular mycorrhizal (AM) fungi Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  9. Contribution of arbuscular mycorrhizal fungus to red kidney and ...

    African Journals Online (AJOL)

    ... fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. ... artificially contaminated with high oncentrations of zinc, copper, lead and cadmium. ... strategies of remediation of highly heavy metal contaminated soils.

  10. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    Science.gov (United States)

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.

  11. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  12. Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Sudová, Radka

    2016-01-01

    Roč. 99, MAR 2016 (2016), s. 78-88 ISSN 0929-1393 R&D Projects: GA AV ČR(CZ) KJB600050636 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * heavy metal contamination * lead, zinc, copper and cadmium Subject RIV: EH - Ecology, Behaviour Impact factor: 2.786, year: 2016

  13. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rdna sequences

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Holtgrewe-Stukenbrock, Eva

    2004-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with plant roots and are found in most ecosystems. In this study the community structure of AMF in a clade of the genus Glomus was examined in undisturbed costal grassland using LSU rDNA sequences amplified from roots of Hieracium...

  14. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass

    International Nuclear Information System (INIS)

    Rosen, Klas; Weiliang, Zhong; Maertensson, Anna

    2005-01-01

    In a first experiment of soil contaminated with 137 Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of 137 Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the 137 Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of 137 Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced 137 Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or 137 Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of 137 Cs. There may be a potential for selecting fungal strains that stimulate 137 Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of 137 Cs-contaminated soil

  15. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    Science.gov (United States)

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.

    Science.gov (United States)

    Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann

    2009-06-01

    The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.

  17. Inoculation of fumigated nursery beds and containers with arbuscular mycorrhizal products for eastern redcedar production

    Science.gov (United States)

    Michelle M. Cram; Stephen W. Fraedrich

    2015-01-01

    Commercially available arbuscular mycorrhizal (AM) products were applied at an operational rate to eastern redcedar (Juniperus virginiana L.) nursery beds and containers to evaluate seedling growth and colonization responses. A field study at the Augusta Forestry Center in Crimora, VA, and a companion container study were initiated in the fall of 2012. MycoApply® Endo...

  18. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth

    2010-01-01

    , the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...... involved in the early and late stages of AMF symbiosis....

  19. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Increased Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi by Manipulation of Nutrient Regimens †

    OpenAIRE

    Douds, David D.; Schenck, N. C.

    1990-01-01

    Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions contain...

  1. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cooperation through Competition—Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis

    Science.gov (United States)

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L.; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the “cooperation” between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time. PMID:27446142

  3. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale

    OpenAIRE

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2012-01-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Loliu...

  4. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    Science.gov (United States)

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Arbuscular mycorrhizal fungi enhance biomass, photosynthesis and water use efficiency of frankincense seedlings in a drought -pulse environment

    NARCIS (Netherlands)

    Emiru Birhane, E.B.; Sterck, F.J.; Fetene, M.; Bongers, F.; Kuyper, T.W.

    2012-01-01

    Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status

  6. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Oliviera, R. S.; Rocha, I.; Ma, Y.; Vosátka, Miroslav; Freitas, H.

    2016-01-01

    Roč. 79, č. 7 (2016), s. 329-337 ISSN 1528-7394 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * phosphorus uptake * soil Subject RIV: GC - Agronomy Impact factor: 2.731, year: 2016

  7. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil.

    Science.gov (United States)

    Zhang, Xin; Ren, Bai-Hui; Wu, Song-Lin; Sun, Yu-Qing; Lin, Ge; Chen, Bao-Dong

    2015-01-01

    In two pot experiments, wild type and a non-mycorrhizal mutant (TR25:3-1) of Medicago truncatula were grown in arsenic (As)-contaminated soil to investigate the influences of arbuscular mycorrhizal fungi (AMF) on As accumulation and speciation in host plants. The results indicated that the plant biomass of M. truncatula was dramatically increased by AM symbiosis. Mycorrhizal colonization significantly increased phosphorus concentrations and decreased As concentrations in plants. Moreover, mycorrhizal colonization generally increased the percentage of arsenite in total As both in shoots and roots, while dimethylarsenic acid (DMA) was only detected in shoots of mycorrhizal plants. The results suggested that AMF are most likely to get involved in the methylating of inorganic As into less toxic organic DMA and also in the reduction of arsenate to arsenite. The study allowed a deeper insight into the As detoxification mechanisms in AM associations. By using the mutant M. truncatula, we demonstrated the importance of AMF in plant As tolerance under natural conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ploidy-specific interactions of three host plants with arbuscular mycorrhizal fungi: Does genome copy number matter?

    Czech Academy of Sciences Publication Activity Database

    Sudová, Radka; Rydlová, Jana; Münzbergová, Z.; Suda, J.

    2010-01-01

    Roč. 97, č. 11 (2010), s. 1798-1807 ISSN 0002-9122 R&D Projects: GA ČR GA206/06/0598; GA ČR GA526/08/0706 Institutional research plan: CEZ:AV0Z60050516 Keywords : arbuscular mycorrhizyl symbiosis * polyploidy * mycorrhizal growth response Subject RIV: EF - Botanics Impact factor: 3.052, year: 2010

  9. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    International Nuclear Information System (INIS)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun

    2016-01-01

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  10. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Songlin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycká 129, Prague 6−Suchdol 165 21 (Czech Republic); Zhang, Xin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Sun, Yuqing; Wu, Zhaoxiang [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Li, Tao [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu, Yajun [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 (China); Lv, Jitao; Li, Gang; Zhang, Zhensong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Jing; Zheng, Lirong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhen, Xiangjun [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); and others

    2016-10-05

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  11. Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots.

    Science.gov (United States)

    Negrel, Jonathan; Javelle, Francine; Morandi, Dominique; Lucchi, Géraldine

    2016-12-01

    A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K m  = 2 μM) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid isomers), feruloyl esterases substrates (methyl caffeate and methyl ferulate), and even caffeoyl-CoA in vitro but all of them were less active than chlorogenic acid, demonstrating that the esterase is a genuine chlorogenic acid esterase. It was also induced when the bacterial strain was cultured in the presence of hydroxycinnamic acids (caffeic, p-coumaric or ferulic acid) as sole carbon source, but not in the presence of simple phenolics such as catechol or protocatechuic acid, nor in the presence of organic acids such as succinic or quinic acids. The purified esterase was remarkably stable in the presence of methanol, rapid formation of methyl caffeate occurring when its activity was measured in aqueous solutions containing 10-60% methanol. Our results therefore show that this bacterial chlorogenase can catalyse the transesterification reaction previously detected during the methanolic extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Data are presented suggesting that colonisation by Rhizophagus irregularis could increase chlorogenic acid exudation from tomato roots, especially in nutrient-deprived plants, and thus favour the growth of chlorogenate-metabolizing bacteria on the root surface or in the mycorhizosphere. Copyright © 2016 Elsevier Masson SAS. All rights

  12. Effect of past agricultural use on the infectivity and composition of a community of arbuscular mycorrhizal fungi

    Czech Academy of Sciences Publication Activity Database

    Voříšková, Alena; Janoušková, Martina; Slavíková, R.; Pánková, Hana; Daniel, Ondřej; Vazačová, Kristýna; Rydlová, Jana; Vosátka, Miroslav; Münzbergová, Zuzana

    2016-01-01

    Roč. 221, APR 01 (2016), s. 28-39 ISSN 0167-8809 R&D Projects: GA ČR GAP504/10/1486 Institutional support: RVO:67985939 Keywords : terminal restriction fragment length polymorfism (T-RFLP) * arbuscular mycorrhizal fungi (AMF) * secondary succession Subject RIV: EF - Botanics Impact factor: 4.099, year: 2016

  13. The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Heng Gui

    2017-06-01

    Full Text Available Bacterial communities and arbuscular mycorrhizal fungi (AMF co-occur in the soil, however, the interaction between these two groups during litter decomposition remains largely unexplored. In order to investigate the effect of AMF on soil bacterial communities, we designed dual compartment microcosms, where AMF (Funneliformis mosseae was allowed access (AM to, or excluded (NM from, a compartment containing forest soil and litterbags. Soil samples from this compartment were analyzed at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used to assess any changes in the soil bacterial communities. We found that most of the obtained operational taxonomic units (OTUs from both treatments belonged to the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community composition of bacteria at phylum and class levels was slightly influenced by both time and AMF. In addition, time and AMF significantly affected bacterial genera (e.g., Candidatus Solibacter, Dyella, Phenylobacterium involved in litter decomposition. Opposite to the bacterial community composition, we found that overall soil bacterial OTU richness and diversity are relatively stable and were not significantly influenced by either time or AMF inoculation. OTU richness at phylum and class levels also showed consistent results with overall bacterial OTU richness. Our study provides new insight into the influence of AMF on soil bacterial communities at the genus level.

  14. Transcriptome Analysis of Arbuscular Mycorrhizal Roots during Development of the Prepenetration Apparatus1[W

    Science.gov (United States)

    Siciliano, Valeria; Genre, Andrea; Balestrini, Raffaella; Cappellazzo, Gilda; deWit, Pierre J.G.M.; Bonfante, Paola

    2007-01-01

    Information on changes in the plant transcriptome during early interaction with arbuscular mycorrhizal (AM) fungi is still limited since infections are usually not synchronized and plant markers for early stages of colonization are not yet available. A prepenetration apparatus (PPA), organized in epidermal cells during appressorium development, has been reported to be responsible for assembling a trans-cellular tunnel to accommodate the invading fungus. Here, we used PPAs as markers for cell responsiveness to fungal contact to investigate gene expression at this early stage of infection with minimal transcript dilution. PPAs were identified by confocal microscopy in transformed roots of Medicago truncatula expressing green fluorescent protein-HDEL, colonized by the AM fungus Gigaspora margarita. A PPA-targeted suppressive-subtractive cDNA library was built, the cDNAs were cloned and sequenced, and, consequently, 107 putative interaction-specific genes were identified. The expression of a subset of 15 genes, selected by reverse northern dot blot screening, and five additional genes, potentially involved in PPA formation, was analyzed by real-time reverse transcription-polymerase chain reaction and compared with an infection stage, 48 h after the onset of the PPA. Comparison of the expression profile of G. margarita-inoculated wild type and the mycorrhiza-defective dmi3-1 mutant of M. truncatula revealed that an expansin-like gene, expressed in wild-type epidermis during PPA development, can be regarded as an early host marker for successful mycorrhization. A putative Avr9/Cf-9 rapidly elicited gene, found to be up-regulated in the mutant, suggests novel regulatory roles for the DMI3 protein in the early mycorrhization process. PMID:17468219

  15. Growth and nutrition of eucalyptus clones seedlings inoculated with mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Francisco de Sousa Lima

    2014-06-01

    Full Text Available Eucalyptus is one of the most planted forest species, in Brazil, due to its rapid growth and high economic yield. Arbuscular mycorrhizal fungi improve the seedlings nutritional and phytosanitary status, besides increasing their resistance to biotic and abiotic stress. This study aimed to evaluate the effect of inoculation with arbuscular mycorrhizal fungi species on the growth and nutrition of different eucalyptus clones seedlings. The experiment was conducted under greenhouse conditions, in a randomized blocks design and a 5x5 factorial scheme (five fungal species and five eucalyptus clones, with five replications. In general, the mycorrhizal symbiosis significantly increased the growth and nutrition of eucalyptus seedlings, when compared to the non-inoculated seedlings. The most efficient interaction occured between the 2361 clone and the Entrophospora infrequens fungus, with increases of 107.3% and 120.6%, for the shoot and root dry biomass yield, and 107.7%, 94.1% and 103.3%, respectively for the accumulation of N, P and K in the seedlings shoots. All the fungal species studied showed a high absolute compatibility index with eucalyptus clones. The Glomus manihots and E. infrequens fungi presented a higher functional compatibility index with the clones tested. The 5204 clone showed 75% of compatibility with the fungi evaluated.

  16. Morphotype-based characterization of arbuscular mycorrhizal fungal communities in a restored tropical dry forest, Margarita island-Venezuela

    Directory of Open Access Journals (Sweden)

    Laurie Fajardo

    2015-09-01

    Full Text Available The mycorrhizal component of revegetated areas after ecological restoration or rehabilitation in arid and semiarid tropical areas has been scarcely assessed, particularly those made after mining disturbance. We evaluated and compared the presence of arbuscular mycorrhizal fungi of a small area of restored tropical dry for est destroyed by sand extraction, with a non-restored area of similar age, at the peninsula of Macanao, Margarita Island (Venezuela. Our study was undertaken in 2009, four years after planting, and the mycorrhizal status was evaluated in four restored plots (8 x 12.5 m (two were previously treated with hydrogel (R2 and R2', and two were left untreated (R1 and R1', and four non-restored plots of similar size (NR1 and NR1' with graminoid physiognomy with some scattered shrubs; and NR2 and NR2', with a more species rich plant community. Apparently the restoration management promoted higher arbuscular mycorrhizal fungi (AMF species richness and diversity, particularly in restored soils where the hydrogel was added (R2 treatment. Soil of the NR1 treat ment (with a higher herbaceous component showed the highest spore density, compared to samples of soils under the other treatments. Considering species composition, Claroideoglomus etunicatumand Rhizophagus intraradiceswere found in all treatments; besides, Diversispora spurcaand Funneliformis geosporumwere only found in non-restored plots, while members of the Gigasporaceae (a family associated with little disturbed sites were commonly observed in the plots with restored soils. Mycorrhizal colonization was similar in the restored and non-restored areas, being a less sensitive indicator of the ecosystem recovery. The trend of higher richness and diversity of AMF in the restored plot with hydrogel suggests that this management strategy contributes to accelerate the natural regeneration in those ecosystems where water plays an essential role.

  17. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, T.; Radimszky, L.; Nemeth, T. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuezfoe, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent. (orig.)

  18. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Fulai

    2017-01-01

    Temperature is one of the most important environmental factors that determine the growth and productivity of plants across the globe. Many physiological and biochemical processes and functions are affected by low and high temperature stresses. Arbuscular mycorrhizal (AM) symbiosis has been shown...... to improve tolerance to temperature stress in plants. This chapter addresses the effect of AM symbiosis on plant growth and biomass production, water relations (water potential, stomatal conductance, and aquaporins), photosynthesis (photosynthetic rate, chlorophyll, and chlorophyll fluorescence), plasma...... tolerance of the host plants via enhancing water and nutrient uptake, improving photosynthetic capacity and efficiency, protecting plant against oxidative damage, and increasing accumulation of osmolytes are discussed. This chapter also provides some future perspectives for better understanding...

  19. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  20. Real-time PCR and microscopy: Are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance?

    NARCIS (Netherlands)

    Gamper, H.A.; Young, J.P.W.; Jones, D.L.; Hodge, A.

    2008-01-01

    To enable quantification of mycelial abundance in mixed-species environments, eight new TaqMan® real-time PCR assays were developed for five arbuscular mycorrhizal fungal (AMF, Glomeromycota) taxa. The assays targeted genes encoding 18S rRNA or actin, and were tested on DNA from cloned gene

  1. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Gerlach, Nina; Schmitz, Jessica; Polatajko, Aleksandra; Schlüter, Urte; Fahnenstich, Holger; Witt, Sandra; Fernie, Alisdair R; Uroic, Kalle; Scholz, Uwe; Sonnewald, Uwe; Bucher, Marcel

    2015-08-01

    Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential. © 2015 John Wiley & Sons Ltd.

  2. Fungos micorrízicos arbusculares no crescimento e nutrição de mudas de jenipapeiro Arbuscular mycorrhizal fungi in the growth and nutrition of jenipapo fruit tree seedlings

    Directory of Open Access Journals (Sweden)

    Ana Cristina Fermino Soares

    2012-03-01

    Full Text Available Alguns trabalhos têm demonstrado que a inoculação de fungos micorrízicos arbusculares (FMA na produção de mudas apresenta grande potencial para o desenvolvimento de um cultivo racional e eficiente de mudas de fruteiras. O objetivo neste trabalho foi avaliar a inoculação de fungos micorrízicos arbusculares no crescimento e nutrição de mudas de jenipapeiro (Genipa americana L.. O experimento foi conduzido em blocos casualizados, avaliando-se seis espécies fúngicas: Glomus clarum, Glomus etunicatum, Glomus manihots, Gigaspora albida, Acaulospora scrobiculata e Scutellospora heterogama, com dez repetições. As espécies A. scrobiculata, G. clarum e G. etunicatum colonizaram mais intensamente o sistema radicular e promoveram melhor desenvolvimento das mudas de jenipapeiro quando comparados a G. manihots e G. albida. O fungo G. etunicatum destacou-se, promovendo incrementos na altura (44,4%; no diâmetro do caule (63,6%; na produção de biomassa seca na parte aérea (288,8%, nas raízes (248,7% e na área foliar (315,7% em comparação às mudas controle. Com exceção de Mn e Fe, mudas inoculadas apresentaram teores de nutrientes superior às mudas controle. As mudas que receberam inóculo de S. heterogama apresentaram crescimento e teor de nutrientes similares aos das mudas controle. A colonização micorrízica correlacionou-se positivamente com os teores de N, P, K, Mg e Cu e negativamente com os teores de Fe e Mn nas folhas das mudas de jenipapeiro. O jenipapeiro é uma planta responsiva aos FMA e a inoculação beneficiou o crescimento e a nutrição das mudas.Some studies have shown that inoculation with arbuscular mycorrhizal fungi (AMF in seedling production has great potential for developing a rational and efficient cultivation of fruit tree seedlings. The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizal fungi on growth and nutrition of seedlings of genipap (Genipa americana L.. The

  3. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica.

    Directory of Open Access Journals (Sweden)

    S Antony Ceasar

    Full Text Available Phosphorus (P is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12 in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  4. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica).

    Science.gov (United States)

    Ceasar, S Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  5. SOIL CHEMICAL PROPERTIES AND GROWTH OF SUNFLOWER (HELIANTHUS ANNUUS L. AS AFFECTED BY THE APPLICATION OF ORGANIC FERTILIZERS AND INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Apolino José Nogueira da Silva

    2015-02-01

    Full Text Available The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L. and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi. The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.

  6. Diversity of arbuscular mycorrhizal fungi in Tectona grandis Linn.f. plantations and their effects on growth of micropropagated plantlets

    Science.gov (United States)

    Regeneration of stands of valuable tropical hardwood tree species for sustainable harvest requires production of seedlings with high probabilities of survival. One way to enhance the vigor of plants for outplanting is pre-colonization of roots by arbuscular mycorrhizal [AM] fungi. We pursued the s...

  7. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-07-01

    The influence of albacore's mycorrhizal fungus on {sup 1}34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more {sup 1}34Cs (up to 250,000 Bq kg{sup -}1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased {sup 1}34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg{sup -}1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  8. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Janoušková, Martina; Hujslová, Martina; Slavíková, Renata; Gryndlerová, Hana; Jansa, Jan

    2016-01-01

    Roč. 6, č. 13 (2016), s. 4332-4346 ISSN 2045-7758 R&D Projects: GA ČR(CZ) GA14-19191S; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal fungi * belowground carbon drain * inoculation Subject RIV: EE - Microbiology, Virology Impact factor: 2.440, year: 2016

  9. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses

    NARCIS (Netherlands)

    Kaschuk, G.; Leffelaar, P.A.; Giller, K.E.; Alberton, O.; Hungria, M.; Kuyper, T.W.

    2010-01-01

    Legumes are prized for their seed protein and lipid mass fractions. Since legumes spend up to 4–16% of photosynthesis on each of the rhizobial and arbuscular mycorrhizal (AM) fungal symbioses, it might be expected that positive responses in yield due to rhizobial and AM symbioses are accompanied by

  10. Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution?

    Czech Academy of Sciences Publication Activity Database

    Kohout, Petr; Sudová, Radka; Janoušková, Martina; Čtvrtlíková, Martina; Hejda, Martin; Pánková, Hana; Slavíková, Renata; Štajerová, Kateřina; Vosátka, Miroslav; Sýkorová, Zuzana

    2014-01-01

    Roč. 68, Jan 2014 (2014), s. 482-493 ISSN 0038-0717 R&D Projects: GA ČR GAP504/10/0781; GA ČR GAP504/10/1486; GA ČR(CZ) GAP505/11/1112 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * primers * diversity Subject RIV: EF - Botanics Impact factor: 3.932, year: 2014

  11. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species.

    Science.gov (United States)

    Martín-Robles, Nieves; Lehmann, Anika; Seco, Erica; Aroca, Ricardo; Rillig, Matthias C; Milla, Rubén

    2018-04-01

    The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. BIOFERTILIZATION WITH RHIZOBACTERIA AND A CONSORTIUM OF ARBUSCULAR MYCORRHIZAL FUNGI IN CITRUS ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Roberto Gregorio Chiquito-Contreras

    2012-11-01

    Full Text Available Biofertilization of plants with rhizobacteria and vesicular arbuscular mycorrhizae (mycorrhizal consortium, potentially promotes plant growth and health, and reduces the use of agrochemicals. The effect of individual and combined biofertilization with three strains of rhizobacteria and the mycorrhizal consortium (MTZ-1 was evaluated under nursery conditions on the growth of rootstocks of Citrus volkameriana and Rangpur lime grafted with Tahiti lime. Plants were inoculated individually and combined with the rhizobacteria strains FCA-8, FCA-56 and FCA-60 of Pseudomonas putida, and with MTZ-1; 50 % fertilization also was applied (18-46-00 N-P-K and compared with controls that received nursery management and 100 % fertilization. A split-plot experimental design with five replications per treatment was established. Individual and combined biofertilization with the three strains of bacteria and MTZ-1 positively promoted the growth of C. volkameriana, and Rangpur lime grafted with Tahiti lime, similar to the control with 100 % fertilization. The nutrient content of Tahiti lime leaves was similar to the control for both rootstocks. The presence of rhizobacterial and mycorrhizal populations in the combined biofertilization treatments demonstrated a positive synergism in the colonization of rootstock roots. Results demonstrate the potential of the three strains of P. putida and the MTZ-1 mycorrhizal consortium on the promotion of plant growth and assimilation of nutrients.

  13. Arbuscular mycorrhizal fungi mediated uptake of {sup 137}Cs in leek and ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Klas; Weiliang, Zhong; Maertensson, Anna [Department of Soil Sciences, Swedish University of Agricultural Sciences P.O. Box 7014, SE-750 07 Uppsala (Sweden)

    2005-02-15

    In a first experiment of soil contaminated with {sup 137}Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of {sup 137}Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the {sup 137}Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of {sup 137}Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced {sup 137}Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or {sup 137}Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of {sup 137}Cs. There may be a potential for selecting fungal strains that stimulate {sup 137}Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of {sup 137}Cs-contaminated soil.

  14. Micorrizas arbusculares del tipo 'Arum' y 'Paris' y endófitos radicales septados oscuros en Miconia ioneura y Tibouchina paratropica (Melastomataceae 'Arum' and 'Paris' arbuscular mycorrhizal types and dark septate root endophytes in Miconia ioneura and Tibouchina paratropica (Melastomataceae

    Directory of Open Access Journals (Sweden)

    Carlos Urcelay

    2005-12-01

    Full Text Available Se estudió la colonización de las raíces por simbiontes fúngicos en Miconia ioneura y Tibouchina paratropica (Melastomataceae. Se observaron y describen estructuras micorrícicas arbusculares pertenecientes a los tipos 'Paris' (hifas y rulos intracelulares y 'Arum' (hifas intercelulares y arbúsculos. Además se observaron endófitos septados oscuros (hifas y esclerocios. Se registra por primera vez la ocurrencia de ambos tipos micorrícicos arbusculares y de endófitos septados oscuros en raíces de especies pertenecientes a la familia Melastomataceae. Se discuten las implicancias ecológicas y evolutivas de la ocurrencia simultánea de los distintos tipos de colonización micorrícica en raíces de la misma especie.The roots of Miconia ioneura and Tibouchina paratropica (Melastomataceae were studied for fungal symbionts colonization. Typical structures of 'Paris' (intracellular hyphae and coils and 'Arum' (intercellular hyphae and arbuscules arbuscular mycorrhizal types were observed and are described here. Dark septate fungi (hyphae and sclerotia were also observed. The occurrence of both types of arbuscular mycorrhizal colonisation and dark septate fungi in the roots of species belonging to Melastomataceae is reported for the first time. The possible ecological and evolutionary implications of the co-occurrence of these mycorrhizal colonisation types in the same species are discussed.

  15. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transportors in maize (Zea mays L.)

    Science.gov (United States)

    A greenhouse experiment was conducted to study the expression of two phosphate (P) transporter genes ZEAma:Pht1;3 (epidermal-expressed) and ZEAma:Pht1;6 (AM specific induced, and expressed around arbuscules) in maize root to colonization by different arbuscular mycorrhizal (AM) fungal inoculants. No...

  16. Influencia de diferentes especies de fungo micorrizico arbuscular no desenvolvimento do crisântemo Influence of different species of arbuscular mycorrhizal fungi on chrysanthemum growth

    Directory of Open Access Journals (Sweden)

    Adriana Parada Dias da Silveira

    1996-01-01

    Full Text Available Com o objetivo de verificar o desenvolvimento e florescimento do crisântemo (Dendranthema grandiflora na presença de micorriza arbuscular, foi instalado, em casa de vegetação, um experimento, empregando-se os fungos Gigaspora margarita, Glomus leptotichum, Glomus macrocarpum e Scutellospora heterogama. Utilizou-se terra roxa estruturada, da Série Luiz de Queiroz, esterilizada (por autoclavagem e não esterilizada. No florescimento, colheram-se as plantas e determinaram-se a altura, a matéria seca da parte aérea, a matéria fresca da raiz, o teor de P e K na parte aérea, a colonização micorrízica e o número de esporos do fungo micorrízico. O desenvolvimento e o florescimento foram favorecidos pela inoculação de G. leptotichum e G.macrocarpum, quando as plantas foram cultivadas em solo esterilizado, superando o efeito dos fungos micorrízicos nativos. Entretanto, no solo não esterilizado, a inoculação dessas espécies de fungo não promoveu aumento no desenvolvimento da planta.A greenhouse experiment was conducted to verify the effect of arbuscular mycorrhiza on growth and flowering of chrysanthemum. Rooted plants were inoculated with Gigaspora margarita, Glomus leptotichum, Glomus macrocarpum e Scutellospora heterogama or non-inoculated. Plants were grown in a autoclave sterilized, and non-sterilized soil of the type "Terra Roxa Estruturada". At the flowering stage, plants were harvested and measured for plant height, shoot dry matter, root fresh matter, shoot P and K content, mycorrhizal root colonization and number of mycorrhizal fungi spores. Plants colonized with G.leptotichum and G. macrocarpum presented higher growth and flowering than control plants, in sterilized soil, overcoming the effect of native mycorrhizal fungi. However, there was no effect of introduced mycorrhizal fungi on non-sterilized soil.

  17. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats.

    Science.gov (United States)

    Will, M E; Sylvia, D M

    1990-07-01

    Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N(2) fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO(4)) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.

  18. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    Science.gov (United States)

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.

    Science.gov (United States)

    Mustafa, G; Randoux, B; Tisserant, B; Fontaine, J; Magnin-Robert, M; Lounès-Hadj Sahraoui, A; Reignault, Ph

    2016-10-01

    A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered

  20. Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi

    OpenAIRE

    Castillo, Pablo; Nico, Andrés I.; Azcón González de Aguilar, Concepción; Río Rincón, C. del; Calvet, Cinta; Jiménez-Díaz, Rafael M.

    2006-01-01

    The effects were investigated, under controlled conditions, of single and joint inoculation of olive planting stocks cvs Arbequina and Picual with the arbuscular mycorrhizal fungi (AMF) Glomus intraradices, Glomus mosseae or Glomus viscosum, and the root-knot nematodes Meloidogyne incognita and Meloidogyne javanica, on plant performance and nematode infection. Establishment of the fungal symbiosis significantly increased growth of olive plants by 88·9% within a range of 11·9–214·0%, ...

  1. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    OpenAIRE

    Meyer, Joana Beatrice; Song-Wilson, Yi; Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

    2013-01-01

    This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denatu...

  2. Effects of arbuscular mycorrhizal fungi on gas exchange and stable isotope ratio of δ13C, δ15N of leymus chinensis plant

    International Nuclear Information System (INIS)

    Shi Weiqi; Wang Guoan; Li Xiaolin

    2008-01-01

    Leymus chinensis, one of dominant species in Inner Mongolia grassland, was selected to evaluate the effects of arbuscular mycorrhizal fungi (AMF) on plant gas change parameters and stable isotope ratio in pot culture. The plant was inoculated with two mycorrhizal fungi, Glomus intraradices and Glomus claroidum, and the uninoculated plant was used as the control check. On the 45th , 60th , 75th days after sowing, gas exchange parameters and stable isotope ratio were measured. The results showed that AM infection promoted phosphoms content, stomatal conductance and photosynthetic rate of Leymus chinensis, reduced host δ 15 N, however, it did not influence host intrinsic water using efficiency and δ 13 C. It was the growth time that significantly affected the gas exchange and stable isotope ratio of δ 13 C and δ 15 N. And the interaction of inoculation and growth time also influenced on the net photosynthetic rate, δ 13 C and δ 15 N of the host. Stomatal conductance and photosynthetic rate were always changed the same direction by arbuscular mycorrhizal fungi causing no significant difference between mycorrhizal and non-mycorrhizal plant. AMF absorbed nitrogen and accumulated δ 15 N, thus, it transformed less 15 N into the host, and as a result, the mycorrhizal plant had lower δ 15 N. Therefore, the results gave a new way and reference to know of the grass balance of carbon gain and water cost and the nitrogen cycle in grassland. (authors)

  3. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

    Czech Academy of Sciences Publication Activity Database

    Voříšková, Alena; Jansa, J.; Püschel, David; Krüger, Manuela; Cajthaml, T.; Vosátka, Miroslav; Janoušková, Martina

    2017-01-01

    Roč. 27, č. 6 (2017), s. 577-585 ISSN 0940-6360 R&D Projects: GA ČR GA15-05466S Institutional support: RVO:67985939 Keywords : real-time PCR * quantification * arbuscular mycorrhizal fungi Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.047, year: 2016

  4. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

    Czech Academy of Sciences Publication Activity Database

    Voříšková, A.; Jansa, Jan; Püschel, David; Krüger, M.; Cajthaml, Tomáš; Vosátka, M.; Janoušková, M.

    2017-01-01

    Roč. 27, č. 6 (2017), s. 577-585 ISSN 0940-6360 R&D Projects: GA ČR GA15-05466S Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal fung * Real-time PCR * PLFA Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.047, year: 2016

  5. Influence of arbuscular mycorrhizal fungi inoculum produced on-farm and phosphorus on growth and nutrition of native woody plant species from Brazil

    Directory of Open Access Journals (Sweden)

    Luis Claudio Goetten

    2016-03-01

    Full Text Available Mycorrhizal fungus inoculum produced on-farm can be used during production of woody plant seedlings to reduce costs associated with purchase of commercial inoculant and fertilization. This study aimed to test the efficiency of a mycorrhizal inoculant produced on-farm to promote growth and nutrition of woody species in combination with different levels of phosphorus. Plants were submitted to different treatments of phosphorus (0, 40 and 80 mg P/dm3 and mycorrhizal inoculation (uninoculated, and inoculation with Rhizophagus clarus [Rc] or Claroideoglomus etunicatum [Ce]. Species included were Luehea divaricata, Centrolobium robustum, Schinus terebinthifolius, Garcinia gardneriana, Cedrella fissilis, and Lafoensia pacari. The inoculum was produced using the on-farm methodology. Mycorrhizal colonization of plants inoculated with Rc and Ce ranged from 44.8 to 74.8%, except forGarcinia gardneriana. Inoculation treatment increased plant height and stem diameter of Luehea divaricata, Centrolobium robustum and Cedrella fissilis while phosphorus, inoculation and the interaction affected these parameters for G. gardneriana and Lafoensia pacari. Shoot biomass increased significantly with inoculation treatment in four species. For most species, mycorrhizal fungus inoculation and the addition of phosphorus increased the shoot phosphorus content. Mycorrhizal fungus inoculum produced on-farm successfully colonized tree seedlings and improved growth and/or nutrition under nursery conditions, producing seedlings useful for revegetation of degraded lands.

  6. A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1

    Science.gov (United States)

    Guether, Mike; Neuhäuser, Benjamin; Balestrini, Raffaella; Dynowski, Marek; Ludewig, Uwe; Bonfante, Paola

    2009-01-01

    In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic or organic forms of N and translocate them via arginine from the extra- to the intraradical mycelium, where the N is transferred to the plant without any carbon skeleton. However, the molecular form in which N is transferred, as well as the involved mechanisms, is still under debate. NH4+ seems to be the preferential transferred molecule, but no plant ammonium transporter (AMT) has been identified so far. Here, we offer evidence of a plant AMT that is involved in N uptake during mycorrhiza symbiosis. The gene LjAMT2;2, which has been shown to be the highest up-regulated gene in a transcriptomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita, has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is exclusively expressed in the mycorrhizal roots, but not in the nodules, and transcripts have preferentially been located in the arbusculated cells. Yeast (Saccharomyces cerevisiae) mutant complementation has confirmed its functionality and revealed its dependency on acidic pH. The transport experiments using Xenopus laevis oocytes indicated that, unlike other plant AMTs, LjAMT2;2 transports NH3 instead of NH4+. Our results suggest that the transporter binds charged ammonium in the apoplastic interfacial compartment and releases the uncharged NH3 into the plant cytoplasm. The implications of such a finding are discussed in the context of AM functioning and plant phosphorus uptake. PMID:19329566

  7. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis.

    Science.gov (United States)

    Sun, Zhongfeng; Song, Jiabin; Xin, Xi'an; Xie, Xianan; Zhao, Bin

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201 , Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis , respectively. The transcriptional levels of Fm201 , Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201 , Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus- Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and

  8. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.

    Science.gov (United States)

    Sawers, Ruairidh J H; Svane, Simon F; Quan, Clement; Grønlund, Mette; Wozniak, Barbara; Gebreselassie, Mesfin-Nigussie; González-Muñoz, Eliécer; Chávez Montes, Ricardo A; Baxter, Ivan; Goudet, Jerome; Jakobsen, Iver; Paszkowski, Uta

    2017-04-01

    Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using 33 P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Biocontrol traits of plant growth suppressive arbuscular mycorrhizal fungi against root rot in tomato caused by Pythium aphanidermatum

    DEFF Research Database (Denmark)

    Larsen, John; Graham, James H.; Cubero, Jaime

    2012-01-01

    Arbuscular mycorrhizal (AM) fungi known to cause plant growth depressions in tomato were examined for their biocontrol effects against root rot caused by Pythium aphanidermatum. The main hypothesis was that plant growth suppressive AM fungi would elicit a defence response in the host plant reduci...

  10. The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: Enhancing sustainability through plant-microbial partnership

    Science.gov (United States)

    The role of arbuscular mycorrhizal (AM) fungi and fertilization in sorghum grain production and quality was assessed for 3 hybrid genotypes, 2 open-pollinated African genotypes, and 1 open-pollinated Latin American genotype. The open-pollinated genotypes produced an average of 206% more vegetative b...

  11. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?

    Science.gov (United States)

    Bukovská, Petra; Bonkowski, Michael; Konvalinková, Tereza; Beskid, Olena; Hujslová, Martina; Püschel, David; Řezáčová, Veronika; Gutiérrez-Núñez, María Semiramis; Gryndler, Milan; Jansa, Jan

    2018-04-01

    Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15 N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15 N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.

  12. Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts

    Czech Academy of Sciences Publication Activity Database

    Courty, P.-E.; Doubková, Pavla; Calabrese, S.; Niemann, H.; Lehmann, M. F.; Vosátka, Miroslav; Selosse,, M.-A.

    2015-01-01

    Roč. 82, Mar 2015 (2015), s. 52-61 ISSN 0038-0717 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * carbon and nitrogen stable isotopes * C3 and C4 plants Subject RIV: EF - Botanics Impact factor: 4.152, year: 2015

  13. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz

    2008-01-01

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  14. Arbuscular mycorrhizal colonization in field-collected terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns (Osmundaceae, Gleicheniaceae, Plagiogyriaceae, Cyatheaceae).

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Hirayama, Yumiko; Sakoda, Aki; Suzuki, Ayako; Ebihara, Atsushi; Morita, Nana; Imaichi, Ryoko

    2016-02-01

    To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97% of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.

  15. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

    Czech Academy of Sciences Publication Activity Database

    Voříšková, A.; Jansa, J.; Püschel, D.; Krüger, Manuela; Cajthaml, T.; Vosátka, M.; Janoušková, M.

    2017-01-01

    Roč. 27, č. 6 (2017), s. 577-585 ISSN 0940-6360 Institutional support: RVO:61389030 Keywords : Arbuscular mycorrhizal fungi * Isolate discrimination * Microsymbiont screening * Mitochondrial DNA * Molecular genetic quantification * Nuclear ribosomal DNA * plfa * Real-time PCR Subject RIV: EA - Cell Biology OBOR OECD: Cell biology Impact factor: 3.047, year: 2016

  16. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. © 2015 John Wiley & Sons Ltd.

  17. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    International Nuclear Information System (INIS)

    Renker, C.; Blanke, V.; Buscot, F.

    2005-01-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal

  18. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    Directory of Open Access Journals (Sweden)

    Lin, XG.

    1993-01-01

    Full Text Available Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight of shoots and roots, total uptake of nitrogen, phosphorus and other elements, the final yields and recovery of phosphorus of white clover were significantly increased by vesicular-arbuscular mycorrhizal inoculation and dual inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobium. The highest response of inoculation was obtained by adding fertilizer phosphorus at the level of 60 kg P205 ha in form of superphosphate.

  19. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

    Science.gov (United States)

    Ingraffia, Rosolino; Giambalvo, Dario; Frenda, Alfonso Salvatore

    2017-01-01

    Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non-mycorrhizal

  20. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat.

    Science.gov (United States)

    Fileccia, Veronica; Ruisi, Paolo; Ingraffia, Rosolino; Giambalvo, Dario; Frenda, Alfonso Salvatore; Martinelli, Federico

    2017-01-01

    Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non-mycorrhizal

  1. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  2. Ocorrência e atividade de fungos micorrízicos arbusculares em plantios de eucalipto (eucalyptus sp. no litoral norte da Bahia, Brasil Occurrence and activity arbuscular mycorrhizal fungi in eucalypt (eucalyptus sp. plantations in the northern coast of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Francisco de Sousa Lima

    2013-04-01

    Full Text Available Nas últimas décadas, tecnologias alternativas vêm sendo estudadas visando tornar o cultivo do eucalipto (Eucalyptus sp. mais econômico e sustentável. Entre estas, as associações micorrízicas merecem destaque devido aos inúmeros benefícios que proporcionam às plantas hospedeiras. Este trabalho teve como objetivo avaliar a ocorrência e atividade de fungos micorrízicos arbusculares em plantios de eucalipto utilizados comercialmente pela Copener Florestal Ltda. no litoral norte da Bahia. Foi observada grande variabilidade na densidade de esporos (36,2 a 203,2 esporos em 50 g de solo, colonização micorrízica (10,6 a 57,8% e nos teores de glomalina facilmente extraível e total (0,34 a 1,92 mg g de solo-1 e 0,48 a 3,88 mg g de solo-1 nos plantios de eucalipto. Os resultados neste estudo permitiram concluir que, embora os clones apresentem suscetibilidade à micorrização em condições de campo, variações nas características do solo afetam aspectos ecológicos dos fungos micorrízicos arbusculares nos plantios de eucalipto da Copener Florestal Ltda. no litoral norte da Bahia.In recent decades, alternative technologies have been studied in order to make the cultivation of eucalyptus more economical and sustainable. Among these, the mycorrhizal associations deserve mention because of the many benefits they provide to host plants. Mycorrhizal fungi (AMF form mutualistic association with plant roots, promoting greater uptake of nutrients to the host, which in turn yields products of photosynthesis to the fungus. With the establishment of the association, the plants become more resistant to adverse conditions such as nutrient-poor soil, low pH, high temperature, water stress, decreased microbial activity, among other biotic and abiotic stresses. This study aimed to evaluate the occurrence and activity of mycorrhizal fungi in eucalypt plantations used commercially by Copener Florestal Ltda. northern coast of Bahia. A high variability in

  3. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    Science.gov (United States)

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p rice production when growing in As-contaminated soils.

  4. Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Kohout, Petr; Sudová, Radka

    2013-01-01

    Roč. 23, č. 7 (2013), s. 561-572 ISSN 0940-6360 R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * serpentine soils * nutrient availability Subject RIV: EF - Botanics Impact factor: 2.985, year: 2013

  5. Radiocesium compartmentalization at the root system of plants as a possible consequence of their symbiosis with arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Kripka, A.V.; Sorochinskij, B.V.; Lekki, Ya.; Stakhura, Z.; Grodzins'kij, D.M.

    2004-01-01

    The influence of arbuscular mycorrhizal (AM) fungi on the radiocesium transport in plants has been analyzed. It was shown that the AM treatment can affect the transport of radionuclides into plants. Radiocesium can be accumulated from the soil complex directly at the AM structures as it was shown with the PIXE technique

  6. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza1

    Science.gov (United States)

    Rich, Mélanie K.

    2015-01-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) GIBBERELLIC ACID INSENSITIVE, REPRESSOR of GIBBERELLIC ACID INSENSITIVE, and SCARECROW (GRAS)-type transcription factor, ATYPICAL ARBUSCULE (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of REQUIRED FOR ARBUSCULAR MYCORRHIZA1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550

  7. BIOMETRIC PARAMETERS OF FIELD GROWN SESAME INFLUENCED BY ARBUSCULAR MYCORRHIZAL INOCULATION, ROCK PHOSPHATE FERTILIZATION AND IRRIGATION

    Directory of Open Access Journals (Sweden)

    V.S. Harikumar

    2017-08-01

    Full Text Available The aim of the study was to assess the effect of inoculation with arbuscular mycorrhizal fungi (AMF and rock phosphate (RP fertilization on biometric parameters and mycorrhizal colonization of field grown sesame under rainfed and irrigated conditions. Inoculation of AMF Funneliformis dimorphicus improved the biometric parameters of the crop such as leaf area (LA, leaf area index (LAI, specific leaf weight (SLW, net assimilation rate (NAR, oil index (OI as well as mycorrhizal colonization (%F in roots. Mycorrhizal inoculation however, did not give any positive response on harvest index (HI. LA, LAI and OI and %F showed a general increment in treatments of no added P (P0, while the other parameters such as SLW and NAR were improved by the application of RP at half the recommended dose (P50. HI did not respond to RP fertilization. Most of the parameters (LA, LAI, NAR, %F showed higher values under rainfed condition than irrigated condition whereas, SLW, HI and OI improved significantly under irrigated condition. Results indicated that the inoculation of AMF to field grown sesame can compensate for 50% of the recommended P fertilizer under a need based irrigation schedule, without affecting the biometric parameters.

  8. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests.

    Science.gov (United States)

    Veresoglou, Stavros D; Wulf, Monika; Rillig, Matthias C

    2017-02-01

    In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser-Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.

  9. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants.

    Science.gov (United States)

    Gomes, Sofia I F; Aguirre-Gutiérrez, Jesús; Bidartondo, Martin I; Merckx, Vincent S F T

    2017-02-01

    In general, plants and arbuscular mycorrhizal (AM) fungi exchange photosynthetically fixed carbon for soil nutrients, but occasionally nonphotosynthetic plants obtain carbon from AM fungi. The interactions of these mycoheterotrophic plants with AM fungi are suggested to be more specialized than those of green plants, although direct comparisons are lacking. We investigated the mycorrhizal interactions of both green and mycoheterotrophic plants. We used next-generation DNA sequencing to compare the AM communities from roots of five closely related mycoheterotrophic species of Thismia (Thismiaceae), roots of surrounding green plants, and soil, sampled over the entire temperate distribution of Thismia in Australia and New Zealand. We observed that the fungal communities of mycoheterotrophic and green plants are phylogenetically more similar within than between these groups of plants, suggesting a specific association pattern according to plant trophic mode. Moreover, mycoheterotrophic plants follow a more restricted association with their fungal partners in terms of phylogenetic diversity when compared with green plants, targeting more clustered lineages of fungi, independent of geographic origin. Our findings demonstrate that these mycoheterotrophic plants target more narrow lineages of fungi than green plants, despite the larger fungal pool available in the soil, and thus they are more specialized towards mycorrhizal fungi than autotrophic plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    Science.gov (United States)

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

  11. Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L

    Czech Academy of Sciences Publication Activity Database

    Oliviera, R. S.; Ma, Y.; Rocha, I.; Carvalho, M. F.; Vosátka, Miroslav; Freitas, H.

    2016-01-01

    Roč. 79, č. 7 (2016), s. 320-328 ISSN 1528-7394 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * Coriandrum sativum Subject RIV: GC - Agronomy Impact factor: 2.731, year: 2016

  12. Cooperation through Competition?Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis

    OpenAIRE

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L.; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By app...

  13. Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium.

    Science.gov (United States)

    Arias, Milton Senen Barcos; Peña-Cabriales, Juan José; Alarcón, Alejandro; Maldonado Vega, María

    2015-01-01

    The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and (32)P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg(-1) substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg(-1)) shoot dry weight than non-colonized controls (26.5 mg Pb kg(-1)) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg(-1) root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.

  14. Can Cd translocation in Oryza sativa L. be attenuated by arbuscular mycorrhizal fungi in the presence of EDTA?

    Science.gov (United States)

    Huang, Xiaochen; An, Guangnan; Zhu, Shishu; Wang, Li; Ma, Fang

    2018-04-01

    Arbuscular mycorrhizal (AM) fungi play an important role in plant tolerance of heavy metal contamination. In this study, a pot experiment was conducted to illustrate the effects of the two AM fungi species Funneliformis mosseae (Fm) and Rhizophagus irregularis (Ri) on plant growth of Oryza sativa L. either with or without ethylenediamine tetraacetate (EDTA) addition and during exposure to five Cd concentrations (in the range of 0-5 mg kg -1 ). The results showed that Fm inoculation achieved greater mycorrhizal colonization and mycorrhizal dependency indexes than Ri inoculation. In addition, the effects of AM fungi on Cd biosorption and translocation in rice were also investigated in the presence of EDTA. Despite cooperative adsorption, the Freundlich isotherm could describe the biosorption effects of Cd on rice roots regardless of AM fungi inoculation or EDTA addition. Cd concentrations in mycorrhizal roots increased but decreased in mycorrhizal shoots in contrast to the control treatment. Although EDTA addition negatively inhibited the uptake of Cd to mycorrhizal shoots, lower translocation factor (TF) and bioconcentration factor (BCF) were still observed in treatments with EDTA compared to control treatment. Our findings suggest that Ri and Fm inoculation enhanced Cd immobilization in the roots, thus preventing Cd entry into the food chain during exposure to low and high Cd stress, respectively.

  15. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    Science.gov (United States)

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Preliminary studies on the relationship between Tuber melanosporum and vesicular arbuscular mycorrizhae in the "burnt-places"

    Directory of Open Access Journals (Sweden)

    Rosell Armengol, Alexis

    1997-12-01

    Full Text Available The vesicular-arbuscular mycorrhizal status of the herbaceous plants living inside and outside the "burnt- places" caused by Tuber melanosporum Vitt. was examined in order to determine whether the fungus may interfere with endomycorrhizal formation. When plants surviving in the burnt-out areas were compared to those in surrounding ground, a clear reduction in growth and vesicular-arbuscular mycorrhizal colonization were observed; additionally a reduction in the number of endogonaceous spores occurring in me soil was detected. These results suggest mat T. melanosporum produces substances also inhibitive to endomycorrhizal fungi.

    S'ha examinat l'estat de les micorrizes vessículo-arbusculars de les plantes herbácies que viuen dins i fora deis tofoners deguts a Tuber melanosporum Vitt., a fi de determinar si el fong interfereix en la formació endomicorrízica. Quan varen comparar-se les plantes que sobrevivien als tofoners amb les del terreny del voltant, es va observar una clara reducció en llur creixement i en la micorrizació vessículo-arbuscular; i, a més, es va detectar una reducció notable en el nombre d'espores endogàmiques presents al sòl. Tot això suggereix que T. melanosporum produeix substancies inhibents també respecte als fongs endomicorrízics.

  17. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza.

    Science.gov (United States)

    de Andrade, Sara Adrián López; da Silveira, Adriana Parada Dias; Jorge, Renato Atílio; de Abreu, Mônica Ferreira

    2008-01-01

    In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.

  18. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    Science.gov (United States)

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  19. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    Science.gov (United States)

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  20. EFFECT OF DIESEL AND BIODIESEL ON THE GROWTH OF Brachiaria decumbens INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Dora Trejo

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi have been found to be associated with plants useful in soil phytoremediation. The aim of this study was to compare the effects of diesel and biodiesel in soil and sand on the growth of Brachiaria decumbens inoculated with mycorrhizae. Two experiments were carried out: one experiment in soil and another in sand. A two-level- factorial design with three factors was used (one on sterile and another on non-sterile soil, with and without mycorrhizae; and one with diesel and another with biodiesel. In sand, a two-factor design with two levels was used (with and without mycorrhizae and with diesel and biodiesel, both with three replications. NOVADIESEL, biodiesel and PEMEX diesel were use as contaminants, both at 7%. The fresh and dry weight of the plants and percentage of mycorrhizal colonization, were assessed 30 days after planting. In soil, biodiesel was more toxic and reduced the fresh and dry weights of plants, especially in non-sterile soil. Biodiesel yielded greater mycorrhizal colonization values that doubled those of the control. In sand, diesel was found to reduce three times the fresh and dry weights of plants, compared to the biodiesel. In sand diesel presented high values of mycorrhizal colonization in comparison with biodiesel.  Plants inoculated with mycorrhizal fungi exhibited better development than non-inoculated plants, even in the presence of contaminants.

  1. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  2. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rasmussen, N.; Lloyd, D.C.; Ratcliffe, R.G.

    2000-01-01

    spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the P-i taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed...

  3. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garmendia, I.; Mangas, V. J.

    2012-11-01

    The objective of this work was to study the influence of two arbuscular mycorrhizal fungi (AMF) Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and G. intraradices (Schenck and Smith) on cut flower yield of rose (Rosa hybrida L. cv. Grand Gala) under commercial-like greenhouse conditions. Flower production was positively influenced by G. mosseae inoculation. Both inocula tested caused low levels of mycorrhizal root colonization, with higher percentages in Rosa associated with G. mosseae. Significant improvement of plant biomass, leaf nutritional status or flower quality was not detected in inoculated plants probably due to the low symbiosis establishment. However, G. mosseae reduced by one month the time needed for 80% of the plants to flower and slightly increased number of cut flowers relative to non-mycorrhizal controls on the fourth, sixth and eighth months after transplanting. It is suggested that an altered carbohydrate metabolism could contribute to this positive effect. Low colonization of rose roots supports the idea that more effort is required to ensure successful application of AMF in ornamental production systems. (Author) 40 refs.

  5. A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes

    NARCIS (Netherlands)

    Boddington, C.L.; Dodd, J.C.

    1998-01-01

    Two glasshouse experiments were done to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on either Pueraria phaseoloides L. or Desmodium ovalifolium L. plants. The

  6. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    OpenAIRE

    Lin, XG.; Hao, WY.; Wu, TH.

    1993-01-01

    Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight ...

  7. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  8. Influence of cover crops on citrus crops on arbuscular mycorrhizal fungi development in the Colombian piedmont Oxisols

    Directory of Open Access Journals (Sweden)

    Hernán Javier Monroy L.

    2013-01-01

    Full Text Available Native arbuscular mycorrhizal fungi associated with grassand legume cover crops established on Oxisol soils in the Colombian piedmont (Meta were identified morphologically and the ability to colonize was evaluated. The experimental area consisted of cover crops Arachispintoi (CIAT 18744, Brachiaria brizantha cv. Toledo, B. dictyoneura cv. Llanero, Desmodium ovalifolium c v. Maquenque, Panicum maximum (CIAT 36000, Paspalumnotatum, and a chemical control (Glyphosate and mechanical control established in the rows in a Valencia orange grove. The experiment followed a complete randomized block design (8 cover crops and three replications, evaluated during the wet and dry seasons. Rhizosphere soil and grass and legumes roots were sampled in order to identified AMF and quantify the number of spores and the percentage of colonization. A total of 26 species were identified, including Acaulosporascrobiculata, A. morrowiae and, Scutellospora heterogama, which accounted for over 65% of the population. Thepercentage of root colonization ranged between 47% and 94% with spore counts between 63 and 300/100 g of dry soil. Cover crops with the highest colonization percentage and AMF diversity were B. brizantha, B. dictyoneura and P. notatumin their respective order. Glyphosate and mechanical control had a negative influence on the sporulation and colonization of the arbuscular mycorrhizal fungi in the root system

  9. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Chan, W.F.; Chen, X.W.; Wu, F.Y.; Wu, S.C.; Wong, M.H.

    2011-01-01

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg -1 . In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: → Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. → Rice colonized with suitable AMF can increase grain yield. → The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  10. Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato.

    Science.gov (United States)

    Vos, Christine; Geerinckx, Katleen; Mkandawire, Rachel; Panis, Bart; De Waele, Dirk; Elsen, Annemie

    2012-02-01

    The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.

  11. Arbuscular mycorrhizal fungi (AMF) as bio protector agents against wilt induced by Verticillium spp. in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, N.; Garmendia, I.; Sanchez-Diaz, M.; Aguirreolea, J.

    2010-07-01

    Verticillium dahliae Kleb. is a vascular pathogen that alters water status and growth of pepper plants and causes drastic reductions in yield. Its control is difficult because it can survive in field soil for several years. The application of arbuscular mycorrhizal fungi (AMF) as bio protector agents against V. dahliae is an alternative to the use of chemicals which, in addition, is more respectful with the environment. The establishment of the mutualistic association of plant roots and AMF involves a continuous cellular and molecular dialogue between both symbionts that includes the pre activation of plant defense responses that may enhance the resistance or tolerance of mycorrhizal plants to soil-borne pathogens. Some AMF can improve the resistance of Capsicum annuum L. against V. dahliae. This is especially relevant for pepper cultivars (i.e. cv. Piquillo) that exhibit high susceptibility to this pathogen. Compared with non-mycorrhizal plants, mycorrhizal pepper can exhibit more balanced antioxidant metabolism in leaves along the first month after pathogen inoculation, which may contribute to delay both the development of disease symptoms and the decrease of photosynthesis in Verticillium-inoculated plants with the subsequent benefit for yield. In stems, mycorrhizal pepper show earlier and higher deposition of lignin in xylem vessels than non mycorrhizal plants, even in absence of the pathogen. Moreover, AMF can induce new isoforms of acidic chitinases and superoxide dismutase in roots. Mycorrhizal-specific induction of these enzymatic activities together with enhanced peroxidase and phenylalanine ammonia-lyase in roots may also be involved in the bio protection of Verticillium-induced wilt in pepper by AMF. (Author) 81 refs.

  12. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Science.gov (United States)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  13. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    Science.gov (United States)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  14. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    Science.gov (United States)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  15. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    Science.gov (United States)

    Veiga, Rita S. L.; Jansa, Jan; Frossard, Emmanuel; van der Heijden, Marcel G. A.

    2011-01-01

    Background Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. Methodology/Principal Findings First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. Conclusions/Significance Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions. PMID

  16. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

    Science.gov (United States)

    McArthur, D A; Knowles, N R

    1992-09-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  17. Accumulation of New Polypeptides in Ri T-DNA-Transformed Roots of Tomato (Lycopersicon esculentum) during the Development of Vesicular-Arbuscular Mycorrhizae.

    Science.gov (United States)

    Simoneau, P; Louisy-Louis, N; Plenchette, C; Strullu, D G

    1994-06-01

    Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors.

  18. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    Science.gov (United States)

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  19. Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing.

    Science.gov (United States)

    Trejo-Aguilar, Dora; Lara-Capistrán, Liliana; Maldonado-Mendoza, Ignacio E; Zulueta-Rodríguez, Ramón; Sangabriel-Conde, Wendy; Mancera-López, María Elena; Negrete-Yankelevich, Simoneta; Barois, Isabelle

    2013-12-01

    Long-term successional dynamics of an inoculum of arbuscular mycorrhizal fungi (AMF) associated with the maize rhizosphere (from traditionally managed agroecosystems in Los Tuxtlas, Veracruz, Mexico), was followed in Bracchiaria comata trap cultures for almost eight years. The results indicate that AMF diversity is lost following long-term subculturing of a single plant host species. Only the dominant species, Claroideoglomus etunicatum, persisted in pot cultures after 13 cycles. The absence of other morphotypes was demonstrated by an 18S rDNA survey, which confirmed that the sequences present solely belonged to C. etunicatum. Members of Diversisporales were the first to decrease in diversity, and the most persistent species belonged to Glomerales.

  20. Correlations of Glomalin Contents and PAHs Removal in Alfalfa-vegetated Soils with Inoculation of Arbuscular Mycorrhizal Fungi

    OpenAIRE

    YANG Zhen-ya; ZONG Jiong; ZHU Xue-zhu; LING Wan-ting

    2016-01-01

    The correlations of glomalin contents and removal of phenanthrene and pyrene as representative polycyclic aromatic hydrocarbons (PAHs) in soils with inoculation of arbuscular mycorrhizal fungi(AMF) were investigated. The test AMF included Glomus etunicatum(Ge), Glomus mosseae(Gm), and Glomus lamellosum(Gla), and the host plant was alfalfa(Medicago sativa L.). The AMF hyphal density and contents of easily extractable glomalin and total glomalin in AMF-inoculated soils were observed to increase...

  1. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  2. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-06-01

    We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels) were the main factors

  3. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils

    Science.gov (United States)

    Torres, Maria Pilar; Montesinos-Navarro, Alicia; Roldán, Antonio

    2016-01-01

    ABSTRACT We investigated communities of arbuscular mycorrhizal fungi (AMF) in the roots and the rhizosphere soil of Brachypodium retusum in six different natural soils under field conditions. We explored phylogenetic patterns of AMF composition using indicator species analyses to find AMF associated with a given habitat (root versus rhizosphere) or soil type. We tested whether the AMF characteristics of different habitats or contrasting soils were more closely related than expected by chance. Then we used principal-component analysis and multivariate analysis of variance to test for the relative contribution of each factor in explaining the variation in fungal community composition. Finally, we used redundancy analysis to identify the soil properties that significantly explained the differences in AMF communities across soil types. The results pointed out a tendency of AMF communities in roots to be closely related and different from those in the rhizosphere soil. The indicator species analyses revealed AMF associated with rhizosphere soil and the root habitat. Soil type also determined the distribution of AMF communities in soils, and this effect could not be attributed to a single soil characteristic, as at least three soil properties related to microbial activity, i.e., pH and levels of two micronutrients (Mn and Zn), played significant roles in triggering AMF populations. IMPORTANCE Communities of arbuscular mycorrhizal fungi (AMF) are main components of soil biota that can determine the productivity of ecosystems. These fungal assemblages vary across host plants and ecosystems, but the main ecological processes that shape the structures of these communities are still largely unknown. A field study in six different soil types from semiarid areas revealed that AMF communities are significantly influenced by habitat (soil versus roots) and soil type. In addition, three soil properties related to microbiological activity (i.e., pH and manganese and zinc levels

  4. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem.

    Science.gov (United States)

    Jiang, Shengjing; Liu, Yongjun; Luo, Jiajia; Qin, Mingsen; Johnson, Nancy Collins; Öpik, Maarja; Vasar, Martti; Chai, Yuxing; Zhou, Xiaolong; Mao, Lin; Du, Guozhen; An, Lizhe; Feng, Huyuan

    2018-03-30

    Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Evaluation of Two Biochemical Markers for Salt Stress in Three Pistachio Rootstocks Inoculated with Arbuscular Mycorrhiza (Glomus mosseae)

    OpenAIRE

    Shamshiri M.H.; Fattahi. M.

    2014-01-01

    The possible involvement of the methylglyoxal and proline accumulation in leaves and roots of three pistachio rootstocks, cv. Sarakha, Abareqi and Bane baghi, pre-inoculated with arbuscular mycorrhizal fungus ( Glomus mosseae ) in response to salt stress was studied during a greenhouse experiment in 2013. Six months old pistachio seedlings were exposed to four salinity levels of irrigation water (EC of 0.5 as control, 5, 10 and 15 dS m -1) for 70 days. Methylglyoxal and proline of the roots a...

  6. Influence of cultivation regime of an arbuscular mycorrhizal fungal isolate on its symbiotic efficacy in phyto restoration of disturbed ecosystems

    International Nuclear Information System (INIS)

    Oliveira, R. S.; Vosatka, M.; Castro, P. M. L.; Dodd, J. C.

    2009-01-01

    Arbuscular mycorrhizal fungi (AMF), from the Phylum Glomeromycota, are a group of soil organisms that forms symbiotic associations with plant roots and can contribute to increase plant biomass and promote phyto restoration of disturbed ecosystems. The influence of cultivation regime of a Glomus geosporum isolate, obtained from a highly alkaline anthropogenic sediment, on its symbiotic efficacy was investigated. (Author)

  7. Influence of cultivation regime of an arbuscular mycorrhizal fungal isolate on its symbiotic efficacy in phyto restoration of disturbed ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R. S.; Vosatka, M.; Castro, P. M. L.; Dodd, J. C.

    2009-07-01

    Arbuscular mycorrhizal fungi (AMF), from the Phylum Glomeromycota, are a group of soil organisms that forms symbiotic associations with plant roots and can contribute to increase plant biomass and promote phyto restoration of disturbed ecosystems. The influence of cultivation regime of a Glomus geosporum isolate, obtained from a highly alkaline anthropogenic sediment, on its symbiotic efficacy was investigated. (Author)

  8. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation

    Science.gov (United States)

    Konvalinková, Tereza; Jansa, Jan

    2016-01-01

    Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases—on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore

  9. Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas

    DEFF Research Database (Denmark)

    Schweiger, P.F.; Spliid, N.H.; Jakobsen, I.

    2001-01-01

    The effect of two commercial fungicide formulations on phosphorus (P) uptake into peas via hyphae of a native arbuscular mycorrhizal (AM) fungal community was examined in the field. The fungicides contained carbendazim or a mixture of propiconazole and fenpropimorph as their active ingredients...... from overall P uptake, Fungicides were added to the soil inside the HCs at concentrations assumed to reflect their concentration in the surrounding soil. At two harvests, plant growth, total P and P-32 uptake as well as root length density and AM root colonisation were measured. Length of hyphae inside...

  10. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza.

    Science.gov (United States)

    Rich, Mélanie K; Schorderet, Martine; Bapaume, Laure; Falquet, Laurent; Morel, Patrice; Vandenbussche, Michiel; Reinhardt, Didier

    2015-07-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles.

    Science.gov (United States)

    Moche, Martin; Stremlau, Stefanie; Hecht, Lars; Göbel, Cornelia; Feussner, Ivo; Stöhr, Christine

    2010-01-01

    Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.

  12. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Sergio Saia

    Full Text Available Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  13. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Science.gov (United States)

    Saia, Sergio; Amato, Gaetano; Frenda, Alfonso Salvatore; Giambalvo, Dario; Ruisi, Paolo

    2014-01-01

    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  14. Airstream fractionation of vesicular-arbuscular mycorrhizal fungi: concentration and enumeration of propagules.

    Science.gov (United States)

    Tommerup, I C

    1982-09-01

    Spores and fragments of vesicular-arbuscular mycorrhizal fungi in dry soils were concentrated up to 100-fold when the soils were partitioned by fluidization and elutriation with a series of upward airstreams at progressively increasing velocities. The propagules were transported with the finer soil particles according to their equivalent spherical diameters. The system was used to predict the transport of propagules by wind. Concentrated propagules were rapidly separated from the soil particles in each soil fraction by an aqueous flotation method. The technique is proposed as a quantitative method for estimating the numbers of spores and fragments of mycorrhizae. The scheme includes a viability test that was used to differentiate between potentially infective propagules and those that were either dormant or incapable of regrowth.

  15. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  16. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  17. Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots.

    Science.gov (United States)

    Gao, Yanzheng; Cheng, Zhaoxia; Ling, Wanting; Huang, Jing

    2010-09-01

    The arbuscular mycorrhizal (AM) hyphae-mediated uptake of polycyclic aromatic hydrocarbons (PAHs) by the roots of ryegrass (Lolium multiflorum Lam.) was investigated using three-compartment systems. Glomus mosseae and Glomus etunicatum were chosen, and fluorene and phenanthrene were used as representative PAHs. When roots were grown in un-spiked soils, AM hyphae extended into PAH-spiked soil and clearly absorbed and transported PAHs to roots, resulting in high concentrations of fluorene and phenanthrene in roots. This was further confirmed by the batch equilibration experiment, which revealed that the partition coefficients (K(d)) of tested PAHs by mycorrhizal hyphae were 270-356% greater than those by roots, suggesting the great potential of hyphae to absorb PAHs. Because of fluorene's lower molecular weight and higher water solubility, its translocation by hyphae was greater than that of phenanthrene. These results provide new perspectives on the AM hyphae-mediated uptake by plants of organic contaminants from soil. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress.

    Science.gov (United States)

    Pollastri, Susanna; Savvides, Andreas; Pesando, Massimo; Lumini, Erica; Volpe, Maria Grazia; Ozudogru, Elif Aylin; Faccio, Antonella; De Cunzo, Fausta; Michelozzi, Marco; Lambardi, Maurizio; Fotopoulos, Vasileios; Loreto, Francesco; Centritto, Mauro; Balestrini, Raffaella

    2018-03-01

    AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H 2 O 2 , especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.

  19. Signaling events during initiation of arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Schmitz, Alexa M; Harrison, Maria J

    2014-03-01

    Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression. © 2014 Institute of Botany, Chinese Academy of Sciences.

  20. Arbuscular Mycorrhizal fungi from the Chernobyl exclusion zone and their possible influence to the accumulation of radionuclides byplants

    International Nuclear Information System (INIS)

    Kripka, A.V.; Kuchma, A.N.; Sorochinskij, B.V.

    2002-01-01

    More then 30 plants species from the Chernobyl exclusion zone have been analyzed and plant samples with high level of arbuscular mycorrhizal fungi (AM) colonization were selected. Spores of AM fungi have isolated from the rhizosphere of those plants, which had high accumulation abilities related to the radionuclides and were high AM colonized as well. These AM spores are used to produce inocula in order of it's forthcoming application in the phytoremediation activity

  1. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before InfectionW⃞

    Science.gov (United States)

    Genre, Andrea; Chabaud, Mireille; Timmers, Ton; Bonfante, Paola; Barker, David G.

    2005-01-01

    The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed. PMID:16284314

  2. FUNGOS MICORRÍZICOS ARBUSCULARES NO CONTROLE DE Meloidogyne incognita EM MUDAS DE TOMATEIRO

    Directory of Open Access Journals (Sweden)

    CARLA DA SILVA SOUSA

    2010-01-01

    Full Text Available Mycorrhizal fungi has been shown to affect some species of parasitic nematodes, in many cases reducing oviposition and the number of galls on the root system of infected plants. In order to evaluate the biocontrol potential of arbuscular mycorrhizal fungi to reduce the infectivity of Meloidogyne incognita in tomato plants, an experiment was conducted with a randomized block design with eight replications in a factorial with thefollowing treatments: with and without M . incognita, with presence and absence of fungal species Glomus clarum Nicolson & Schenck, Gigaspora albida Schanck & amp; Smith and Acaulospora scrobiculata Trappe. The fungus G. clarum significantly reduced the gall index (46.4% and the number of egg mass (78.8% of the nematode on tomato seedlings. The percentage of root colonization is not in itself an indicator of efficiency in controlling fungal infectivity of M. incognita in tomato plants, since A. scrobiculata exhibited a high degree of colonization (77.6% and was not effective in controlling nematode reproduction. The species of mycorrhizal fungi differ in efficiency in reducing the infectivity of M. incognita in tomato seedlings.

  3. Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera.

    Science.gov (United States)

    Cosme, Marco; Franken, Philipp; Mewis, Inga; Baldermann, Susanne; Wurst, Susanne

    2014-10-01

    Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.

  4. Alleviatory activities in mycorrhizal tobacco plants subjected to increasing chloride in irrigation water

    Directory of Open Access Journals (Sweden)

    Ali Reza Safahani Langeroodi

    2017-03-01

    Full Text Available The effects of presence and absence of arbuscular mycorrhizal (AM+ and AM- fungus (AMF Glomus intraradices on agronomic and chemical characteristics of field-grown tobacco (Nicotiana tabacum L. Virginia type (cv. K-326 plants exposed to varying concentrations of chloride 10, 40, 70 and 100 mg Cl L–1 (C1-C4 were studied over two growing seasons (2012-2013. Mycorrhizal plants had significantly higher uptake of nutrients in shoots and number of leaves regardless of intensities of chloride stress. The cured leaves yields of AM+ plants under C2-C4 chloride stressed conditions were higher than AM- plants. Leaf chloride content increased in line with the increase of chloride level, while AMF colonised plants maintained low Cl content. AM+ plants produced tobacco leaves that contained significantly higher quantities of nicotine than AM- plants. AM inoculation ameliorated the chloride stress to some extent. Antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase as well as non-enzymatic antioxidants (ascorbic acid and glutathione also exhibited great variation with chloride treatment. Chloride stress caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of chloride. The level of 40 mg L–1 in combination with arbuscular mycorrhizal can be considered as the acceptable threshold to avoid adverse effects on Virginia tobacco.

  5. Response of Gliricidia sepium tree to phosphorus application and ...

    African Journals Online (AJOL)

    A pot experiment was carried out in a green house at Bel Air station to determine effect of phosphorus on the growth of Gliricidia sepium in presence of rhizobial strains and an arbuscular mycorrhiza fungus. A factorial 3 factors block was designed with arbuscular mycorrhizal fungus Glomus aggregatum, phophorus ...

  6. On-farm production of arbuscular mycorrhizal funus inoculum in compost and vermiculite mixtures: results of on-farm demonstrations and impact of compost microbiological quality

    Science.gov (United States)

    The sustainability and profitability of many agricultural systems can be enhanced through the utilization of inoculum of arbuscular mycorrhizal fungi. Inocula are commercially available, but inoculum can also be produced on-farm in mixtures of compost and vermiculite with a nurse host plant. Demon...

  7. Influence of Vesicular-Arbuscular Mycorrhizal Fungi on the Response of Potato to Phosphorus Deficiency.

    Science.gov (United States)

    McArthur, DAJ.; Knowles, N. R.

    1993-01-01

    Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM

  8. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies

  9. Vesicular-arbuscular mycorrhizal status of plant species in the peat swamp forest of Setia Alam Jaya, Sebangau, Central Kalimantan

    OpenAIRE

    Suciatmih Suciatmih

    2003-01-01

    In order to describe the vesicular-arbuscular mycorrhizal (VAM) status of plants growing on peat soil, a study was carried out inthe peat swamp forest of Setia Alam Jaya in Sebangau, Central Kalimantan. Out of 146 plant root samples belonging to 48 plantspecies from 25 families examined, all plants colonized by VAM fungi namely 14 (29.2%) high level, 32 (66.7%) medium level, and 2(4.1%) low level respectively.

  10. Effects of drought stress and arbuscular mycorrhizal fungi on some morphophysiological traits and yield of savory (Satureja hortensis L.)

    OpenAIRE

    B. Esmaielpour; P. Jalilvand; J. Hadian

    2016-01-01

    Water deficit stress permanent or temporary limits the growth and distribution of natural vegetation and performance of plants more than other environmental factors. In order to investigate the effect of drought stress and mycorrhizal-arbuscular fungi inoculation on the growth and yield of savory (Satureja hortensis L.) a factorial experiment based on completely randomized design were conducted in Research Greenhouse of Horticulture Department of Mohaghegh Ardabili University during 2010. Exp...

  11. Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Wirsel, Stefan G R

    2004-05-01

    A molecular approach was applied to investigate the colonisation of arbuscular mycorrhizal fungi (AMF) on the wetland grass Phragmites australis. A PCR assay targeting the traditional families of the Glomeromycota yielded products that were used to construct libraries of 18S rDNA. Five hundred and forty six clones were typed by restriction analysis and 76 representatives were sequenced. The majority corresponded to a wide range of taxa within Glomus group A, a few belonged to the "Diversisporaceae" and none to the genera Scutellospora or Acaulospora. Among these sequences, some were very similar to those reported earlier, e.g. Glomus mosseae and G. fasciculatum, other pointed to various new taxa. Although this wetland habitat harboured just one single plant species, phylogenetic analysis exhibited 21 AMF phylotypes, which is in the same range as reported for other natural ecosystems composed of more diverse host communities. Diversity indices supported the perception that the AMF mycoflora associated with this natural grass "monoculture" is not depauperate as it had been described for grasses of crop monocultures. Soil conditions determined the mycorrhizal state of the host, since AMF were not detected at the lakeward front of the reed belt, which is permanently waterlogged.

  12. Growth responses of maritime sand dune plant species to arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Mariusz Tadych

    2014-08-01

    Full Text Available In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species Glomus aggregatum. Except for Corynephorus canescens and Festuca rubra subsp. arenaria, both the growth and the dry matter of above-ground parts of plants of Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus and J. balticus inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in Festuca rubra subsp. arenaria due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of Juncus spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of Juncaceae on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.

  13. Contrasting the Community Structure of Arbuscular Mycorrhizal Fungi from Hydrocarbon-Contaminated and Uncontaminated Soils following Willow (Salix spp. L.) Planting

    OpenAIRE

    Hassan, Saad El-Din; Bell, Terrence H.; Stefani, Franck O. P.; Denis, David; Hijri, Mohamed; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF) form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Al...

  14. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimens.

    Science.gov (United States)

    Douds, D D; Schenck, N C

    1990-02-01

    Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions containing P. However, Glomus intraradices produced significantly more spores in plant roots in the tap water control treatment. The effect of the nutrient solutions was not due solely to N nutrition, because the addition of NH(4)NO(3) decreased both colonization and sporulation by G. margarita relative to levels produced by Hoagland solution without P.

  15. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  16. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    International Nuclear Information System (INIS)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants found in many environments as result of the incomplete combustion of organic matter, and some of them are of great environmental concern due to their highly cytotoxic, genotoxic and carcinogenic properties for mammals. PAHs are thermodynamically stable and recalcitrant to microbial degradation, due to their aromatic nature and low aqueous solubility. Ecologically and economically speaking, plants have tremendous potential for bio-remediation of PAH-contaminated soils. The effect of plant roots on the dissipation of organic pollutants has mainly been attributed to an increase in microbial population and selection of specialized microbial communities in the rhizosphere, and also by improving physical and chemical soil conditions. Arbuscular mycorrhizal (AM) fungi living in symbiosis with plant roots play an essential role in plant nutrition and stress tolerance. AM plants are known to be involved in the biodegradation of pollutants such as PAHs. The role of AM fungi concerns two aspects: the improvement of the establishment and development of plants on polluted soil and the enhancement of PAHs degradation levels. AM colonization of different plant species is negatively affected when the plants are grown in contaminated soils. Nevertheless the AM colonization was shown to enhance plant survival and growth. Objectives of this work was to study the impact of PAHs on the development of G. intraradices and on the colonization of chicory (Cichorium intybus L.) and carrot (Daucus carota L.) roots transformed by Agrobacterium rhizogenes. Monoxenous root cultures have obvious advantages over traditional systems. This technique provides unique visualization of extra-radical fungus development and also allows an important production of extra-radical hyphae, spores and colonized roots free of any other microorganisms. These aspects are important to evaluate direct impact of PAHs on AM fungal

  17. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R. [Universite du Littoral-Cote d' Opale, Lab. de Mycologie/Phytopathologie/Environnement, 62 - Calais (France)

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants found in many environments as result of the incomplete combustion of organic matter, and some of them are of great environmental concern due to their highly cytotoxic, genotoxic and carcinogenic properties for mammals. PAHs are thermodynamically stable and recalcitrant to microbial degradation, due to their aromatic nature and low aqueous solubility. Ecologically and economically speaking, plants have tremendous potential for bio-remediation of PAH-contaminated soils. The effect of plant roots on the dissipation of organic pollutants has mainly been attributed to an increase in microbial population and selection of specialized microbial communities in the rhizosphere, and also by improving physical and chemical soil conditions. Arbuscular mycorrhizal (AM) fungi living in symbiosis with plant roots play an essential role in plant nutrition and stress tolerance. AM plants are known to be involved in the biodegradation of pollutants such as PAHs. The role of AM fungi concerns two aspects: the improvement of the establishment and development of plants on polluted soil and the enhancement of PAHs degradation levels. AM colonization of different plant species is negatively affected when the plants are grown in contaminated soils. Nevertheless the AM colonization was shown to enhance plant survival and growth. Objectives of this work was to study the impact of PAHs on the development of G. intraradices and on the colonization of chicory (Cichorium intybus L.) and carrot (Daucus carota L.) roots transformed by Agrobacterium rhizogenes. Monoxenous root cultures have obvious advantages over traditional systems. This technique provides unique visualization of extra-radical fungus development and also allows an important production of extra-radical hyphae, spores and colonized roots free of any other microorganisms. These aspects are important to evaluate direct impact of PAHs on AM fungal

  18. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    Science.gov (United States)

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils.

    Science.gov (United States)

    Vinichuk, M; Mårtensson, A; Ericsson, T; Rosén, K

    2013-01-01

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of (137)Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with (137)Cs was investigated, with non-mycorrhizal quinoa included as a "reference" plant. The effect of cucumber and ryegrass inoculation with AM fungi on (137)Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and (137)Cs uptake increased on loamy sand and loamy soils. The total (137)Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of (137)Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Vesicular-arbuscular mycorrhizal status of plant species in the peat swamp forest of Setia Alam Jaya, Sebangau, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Suciatmih Suciatmih

    2003-06-01

    Full Text Available In order to describe the vesicular-arbuscular mycorrhizal (VAM status of plants growing on peat soil, a study was carried out inthe peat swamp forest of Setia Alam Jaya in Sebangau, Central Kalimantan. Out of 146 plant root samples belonging to 48 plantspecies from 25 families examined, all plants colonized by VAM fungi namely 14 (29.2% high level, 32 (66.7% medium level, and 2(4.1% low level respectively.

  1. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Science.gov (United States)

    Vannette, Rachel L.; Hunter, Mark D.; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense. PMID:24065971

  2. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species.

    Science.gov (United States)

    Vannette, Rachel L; Hunter, Mark D; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

  3. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Directory of Open Access Journals (Sweden)

    Rachel L Vannette

    2013-09-01

    Full Text Available Belowground symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above and belowground herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed--which all produce toxic cardenolides--with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in above- and below-ground plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and

  4. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

    Science.gov (United States)

    Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina

    2013-06-18

    Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.

  5. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition.

    Science.gov (United States)

    Facelli, Evelina; Smith, Sally E; Facelli, José M; Christophersen, Helle M; Andrew Smith, F

    2010-03-01

    *We studied the effects of two arbuscular mycorrhizal (AM) fungi, singly or together, on the outcome of competition between a host (tomato cultivar, wild-type (WT)) and a surrogate nonhost (rmc, a mycorrhiza-defective mutant of WT) as influenced by the contributions of the direct and AM phosphorus (P) uptake pathways to plant P. *We grew plants singly or in pairs of the same or different genotypes (inoculated or not) in pots containing a small compartment with (32)P-labelled soil accessible to AM fungal hyphae and determined expression of orthophosphate (P(i)) transporter genes involved in both AM and direct P uptake. *Gigaspora margarita increased WT competitive effects on rmc. WT and rmc inoculated with Glomus intraradices both showed growth depressions, which were mitigated when G. margarita was present. Orthophosphate transporter gene expression and (32)P transfer showed that the AM pathway operated in single inoculated WT, but not in rmc. *Effects of AM fungi on plant competition depended on the relative contributions of AM and direct pathways of P uptake. Glomus intraradices reduced the efficiency of direct uptake in both WT and rmc. The two-fungus combination showed that interactions between fungi are important in determining outcomes of plant competition.

  6. Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development.

    Science.gov (United States)

    Diagne, Nathalie; Diouf, Diegane; Svistoonoff, Sergio; Kane, Aboubacry; Noba, Kandioura; Franche, Claudine; Bogusz, Didier; Duponnois, Robin

    2013-10-15

    Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter 1 Gene Family

    DEFF Research Database (Denmark)

    Yang, Shu-Yi; Grønlund, Mette; Jakobsen, Iver

    2012-01-01

    Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited highgrade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via...... or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands...... the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage...

  8. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    Science.gov (United States)

    Selvakumar, G; Shagol, C C; Kang, Y; Chung, B N; Han, S G; Sa, T M

    2018-06-01

    The propagation of pure cultures of arbuscular mycorrhizal fungal (AMF) is an essential requirement for their large-scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single-spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of sorghum-sudangrass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1-kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2·5-kg capacity pots containing sterilized soil. Among the 150 inoculated seedlings, only 27 seedlings were colonized by AMF spores. After 240 days, among the 27 seedlings, five inoculants resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single-spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum and Funneliformis mosseae. Furthermore, indigenous spore F. mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using the single-spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describe the feasible and cost-effective method to mass produce AMF spores for large-scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. © 2018 The Society for Applied Microbiology.

  9. Pre-inoculation by an arbuscular mycorrhizal fungus enhances male reproductive output of Cucurbita foetidissima

    Science.gov (United States)

    Rosemary L. Pendleton

    2000-01-01

    Male and female reproductive output of Cucurbita foetidissima, a gynodioecious native perennial, was examined in a 2-yr greenhouse/outplanting study. Plants were divided into three treatment groups: (1) a lowphosphorus (P) soil mix control; (2) a low-P soil mix with the addition of mycorrhizal inoculum (Glomus intraradices); and (3) a high-P soil mix. Plants were...

  10. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    Science.gov (United States)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  11. Fermentation of sugar beet waste by ¤Aspergillus niger¤ facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Medina, A.; Jakobsen, Iver; Vassilev, N.

    2007-01-01

    Sugar beet waste has potential value as a soil amendment and this work studied whether fermentation of the waste by Aspergillus niger would influence the growth and P uptake of arbuscular mycorrhizal (AM) fungi. Plants were grown in compartmentalised growth units, each with a root compartment (RC...

  12. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Dionicia Gloria León-Martínez

    2012-06-01

    Full Text Available To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010. Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction.

  13. Uptake of different forms of nitrogen by hyphae of arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Li Xia; Zhang Junling

    2007-01-01

    A two-compartment incorporating air-gap device and 15 N-labeling technique was used to investigate the uptake of different forms of N by arbuscular mycorrhizal fungi (AMF). Maize (Zea mays L.) was in association with Glomus mosseae, or Glomus intraradices. Solutions labeled with different forms of 15 N were supplied to the hyphae compartment 48 h before harvesting. The results showed that the uptake capability of 15 N varied with fungi species and N forms supplied. Percentage of 15 N taken up over 48 h by G. intraradices was higher than that by G. mosseae. The uptake capability of 15 N by AMF was in the order of 15 NH 4 + > 15 N-Gln> 15 N-Gly> 15 NO 3 - . 15 N uptake by AMF hyphae accounted for 0.005-0.032% of total N uptake. (authors)

  14. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.

    Science.gov (United States)

    Jankong, P; Visoottiviseth, P

    2008-07-01

    Arbuscular mycorrhizal fungi (AMF) may play an important role in phytoremediation of As-contaminated soil. In this study the effects of AMF (Glomus mosseae, Glomus intraradices and Glomus etunicatum) on biomass production and arsenic accumulation in Pityrogramma calomelanos, Tagetes erecta and Melastoma malabathricum were investigated. Soil (243 +/- 13 microg As g(-1)) collected from Ron Phibun District, an As-contaminated area in Thailand, was used in a greenhouse experiment. The results showed different effects of AMF on phytoremediation of As-contaminated soil by different plant species. For P. calomelanos and T. erecta, AMF reduced only arsenic accumulation in plants but had no significant effect on plant growth. In contrast, AMF improved growth and arsenic accumulation in M. malabathricum. These findings show the importance of understanding different interactions between AMF and their host plants for enhancing phytoremediation of As-contaminated soils.

  15. Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots.

    Science.gov (United States)

    Guttenberger, M

    2000-08-01

    The most widespread type of mycorrhiza is the so-called vesicular-arbuscular mycorrhiza. In this endomycorrhiza, fungal hyphae penetrate plant cell walls in the root cortex. There they form densely branched arbuscules. Fungus and plant plasma membrane are separated by a common interfacial apoplast. The pH of the compartment between the symbionts is of pivotal importance for nutrient transfer. Histochemical experiments were conducted to check for an acidic nature of the interface in the model system Glomus versiforme (Karst.) Berch-Allium porrum L. Two chemically different acidotropic dyes (neutral red and LysoSensor Green DND-189) stained the arbuscules intensely. The staining of arbuscules could be eliminated by addition of the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) or treatments leading to membrane rupture. Therefore, the staining of the arbuscules was based on the ion-trap mechanism, which indicates acidic, membrane-bound compartments. Microscopic examination of stained arbuscules at high optical resolution revealed a peripheral accumulation of the dye. Since plasmolysis rapidly destained the arbuscules, it is concluded that the dyes accumulate in the arbuscular interface, indicating the highly acidic nature of this compartment. The findings are discussed with respect to their relevance for the nutrient transfer in mycorrhizas. In addition, evidence for a discontinuity in the arbuscular interface between the stem and the branches of the arbuscule is given.

  16. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis.

    Science.gov (United States)

    Chen, Eric C H; Morin, Emmanuelle; Beaudet, Denis; Noel, Jessica; Yildirir, Gokalp; Ndikumana, Steve; Charron, Philippe; St-Onge, Camille; Giorgi, John; Krüger, Manuela; Marton, Timea; Ropars, Jeanne; Grigoriev, Igor V; Hainaut, Matthieu; Henrissat, Bernard; Roux, Christophe; Martin, Francis; Corradi, Nicolas

    2018-01-22

    Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. The role of the extraradical mycelium network of arbuscular mycorrhizal fungi on the establishment and growth of Calamagrostis epigejos in industrial waste substrates

    Czech Academy of Sciences Publication Activity Database

    Malcová, Radka; Albrechtová, J.; Vosátka, Miroslav

    2001-01-01

    Roč. 18, - (2001), s. 129-142 ISSN 0929-1393 R&D Projects: GA ČR GA526/99/0895; GA MŠk OC 838.10; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : arbuscular mycorrhizal fungi * Industrial waste substrates * edaphic stress Subject RIV: EF - Botanics Impact factor: 1.150, year: 2001

  18. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    Science.gov (United States)

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  19. Influence of PGPR Bacteria and Arbuscular Mycorrhizal Fungi on Growth and some Physiological Parameters of Onopordon acanthium in a Cd-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    MirHassan Rasouli-Sadaghiani

    2017-02-01

    Full Text Available Introduction: Heavy metals (HMs are serious threat for environment due to their dangerous effects. These metals as contaminants that can be accumulated in soil and after absorption by plants, finally will be found in food chains. Cadmium (Cd is one of the dangerous HMs that threats the health of plants, living organisms and human. Physicochemical remediation methods may cause large changes in different characteristics of soils . Recently environmental-friendly strategies including phytoremediation have been emphasized by researchers. Phytoremediation that refers to the use of plants and their assistance with microorganisms for remediation of contaminated soils is an effective and low cost method for reclamation of heavy metals polluted soils. The most important limitation of phytoremediation is low availability of heavy metals and sensitivity of plants to contamination. There are evidences that soil microbes can help to overcome these limitations through several ways. Plant growth promoting rhizobacteria (PGPR and arbuscular mycorrhizal fungi (AMF are known to enhance plant growth and survival in heavy metal contaminated soils through different mechanisms including producing promoting metabolites, auxin, siderophore and antibiotics. In this study the role of some strains of PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa and AMF (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum, on uptake and accumulation of Cd, Fe, Zn and Cu as well as some physiological properties of Onopordon (Onopordon acanthium L were evaluated. Materials and Methods:This study was carried out under greenhouse condition as a factorial experiment based on a randomized complete block design with two factors including Cd concentration (four levels and microbial treatment (three levels in three replications. Consequently, a soil was selected and spiked uniformly with different concentrations of

  20. The ecology of arbuscular-mycorrhizal fungi (AMF) under different cropping regimes

    International Nuclear Information System (INIS)

    Chaudhry, M. S.; Saeed, M.; Nasim, F. U. H.; Anjum, S.

    2015-01-01

    The ecology of Arbuscular Mycorrhizal Fungi (AMF) in mono-cropping and low-input ideal agroforestry cropping systems of Avena sativa has been studied. Soil chemical heterogeneity, seasonality and nature of cropping system showed significant attributes on AMF. AMF percentage in roots and spore populations in soil were elevated in dry season compared to wet season. With respect to cropping regimes, mono-cropping systems exhibited highest root infection whereas the agroforestry systems possessed highest AM fungal spore populations. Generally, farming systems tested here possessed significant colonization of AMF, however, overall extent of colonization and spore densities were low. While assessing the correlation between soil chemical composition and AMF, electrical conductivity, organic carbon content, available potassium and saturation percentage showed a negative correlation. However, pH showed a positive correlation and available phosphorus content showed no correlation with AMF. Present study was aimed to view the importance of agroforestry in modern agriculture and normal agricultural system and the benefits associated with AM fungi. (author)

  1. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    Science.gov (United States)

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  2. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes.

    Science.gov (United States)

    Hart, Miranda; Ehret, David L; Krumbein, Angelika; Leung, Connie; Murch, Susan; Turi, Christina; Franken, Philipp

    2015-07-01

    Arbuscular mycorrhizal (AM) fungi can affect many different micronutrients and macronutrients in plants and also influence host volatile compound synthesis. Their effect on the edible portions of plants is less clear. Two separate studies were performed to investigate whether inoculation by AM fungi (Rhizophagus irregularis, Funneliformis mosseae, or both) can affect the food quality of tomato fruits, in particular common minerals, antioxidants, carotenoids, a suite of vitamins, and flavor compounds (sugars, titratable acids, volatile compounds). It was found that AM fungal inoculation increased the nutrient quality of tomato fruits for most nutrients except vitamins. Fruit mineral concentration increased with inoculation (particularly N, P, and Cu). Similarly, inoculated plants had fruit with higher antioxidant capacity and more carotenoids. Furthermore, five volatile compounds were significantly higher in AM plants compared with non-AM controls. Taken together, these results show that AM fungi represent a promising resource for improving both sustainable food production and human nutritional needs.

  3. Obtaining and testing of the arbuscular mycorrhizal fungies inocula for the modification of radionuclides transport into the plants

    International Nuclear Information System (INIS)

    Kryipka, A.V.; Sorochins'kij, B.V.

    2003-01-01

    Spores of the arbuscular mycorrhizal (AM) fungies have been isolaten from the plants collected at the Chernobyl zone. Selection of the plants were done due to their high radionuclides' accumulation ability and AM colonization level as well. These spores were used to start the inocula production for the plant treatment aimed to affect radionuclides transport. Spores identification was done based on their morphological and molecular features. Three different AM inocula with high potential to modify 90 Sr and 137 Cs transport at the phytoremediation experiments were obtained

  4. The effects of arbuscular mycorrhizal fungi inoculation on Euterpe oleracea mart. (açaí seedlings Efeitos da inoculação de fungos micorrízicos arbusculares em mudas de Euterpe oleracea mart. (açaí

    Directory of Open Access Journals (Sweden)

    Elizabeth Ying Chu

    1999-06-01

    Full Text Available With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.Com objetivo de verificar a resposta das plântulas de Euterpe oleracea Mart. à inoculação de sete espécies de fungos micorrízicos arbusculares, foi realizado um experimento em casa de vegetação. Sementes de E. oleracea germinadas em casca de arroz carbonizada foram inicialmente transferidas para copos de plástico contendo Areia Quartzosa Vermelho-Amarela fumigada, e nelas inoculados fungos micorrízicos arbusculares. Dois meses depois, as plântulas foram repassadas para sacos de plástico preto contendo o mesmo solo, sem fumigação. Foram avaliados o crescimento e a nutrição mineral das plantas nove meses após a inoculação. Efeitos diferenciados

  5. Alleviation of adverse impact of salinity on faba bean (vicia faba l.) by arbuscular mycorrhizal fungialleviation of adverse impact of salinity on faba bean (vicia faba l.) by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Abeer, H.; Didamony, E.L.

    2014-01-01

    The present study was conducted to assess the effect of different concentrations of sodium chloride (NaCl) in presence and absence of AMF on growth, physio-biochemical and enzymatic activity in faba bean (Vicia faba). Different concentrations of NaCl showed reduction in growth and yield parameters, which indicates the deleterious effects of salinity on the plant. The total spore count and colonization by arbuscular mycorrhizal fungi (AMF) is also decreasing at higher concentrations of NaCl. Application of AMF mitigates the effect of NaCl stress and improved the growth and yield in the present study. NaCl also decreased the nodulation as well as nodule activity and pigments content, however the supplementation of by AMF to plants treated with sodium chloride showed enhancement in nodule activity and pigment content. Polyamines (Putresciene, Spermidine, Spermine), acid and alkaline phosphates increased with increasing concentration of sodium chloride and application of by AMF showed further increase in the above phytoconstituents, proving the protective role of these phytoconstituents against salt stress. Salinity stress is responsible for the generation of reactive oxygen species, which lead to the membrane damage through lipid peroxidation in the present study. Maximum lipid peroxidation was observed at higher concentration of sodium chloride and AMF treatment minimized the effect of salinity on lipid peroxidation. To combat with the reactive oxygen species, plants upregulate the enzymatic antioxidants like superoxide dismutase, catalase, peroxidase and ascorbate peroxidase. As the concentration of sodium chloride increases the enzyme activity also increases and further increase was observed with supplementation of AMF to salt treated plants. Arbuscular mycorrhizal fungi also restores the potassium and calcium contents and maintain their ratio that was hampered with increasing concentration of sodium chloride in the present study. In conclusion, application of AMF

  6. Arbuscular mycorrhizal fungi in a semi-arid, limestone mining-impacted area of Brazil

    Directory of Open Access Journals (Sweden)

    Thaís Teixeira-Rios

    2013-12-01

    Full Text Available The main goal of this study was to determine the diversity and activity of arbuscular mycorrhizal fungi (AMF in an area degraded by limestone mining within the semi-arid region of Brazil known as the caatinga (shrublands. Near a limestone quarry, we selected two areas of caatinga (preserved and degraded for study. The number of glomerospores did not differ significantly between the two areas. There was a trend toward the most probable number of infective propagules being higher in the degraded area. Twenty AMF taxa were identified in the two sampled areas, species richness, diversity and evenness being higher in the preserved area. Two species of Racocetra represent new records for the semi-arid region of Brazil. Glomerospore production and AMF species richness were unaffected by mining activity in the study area.

  7. Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy

    Directory of Open Access Journals (Sweden)

    Mauritz Vestberg

    2012-03-01

    Full Text Available The impact of host mycotrophy on arbuscular mycorrhizal fungal (AMF markers was studied in a temperate agricultural soil cropped with mycorrhizal barley, flax, reed canary-grass, timothy, caraway and quinoa and non-mycorrhizal buckwheat, dyer's woad, nettle and false flax. The percentage of AMF root colonization, the numbers of infective propagules by the Most Probable Number (MPN method, and the amounts of signature Phospholipid Fatty Acid (PLFA 16:1ω5 and Neutral Lipid Fatty Acid (NLFA 16:1ω5 were measured as AMF markers.  Crop had a significant impact on MPN levels of AMF, on NLFA 16:1ω5 levels in bulk and rhizosphere soil and on PLFA 16:1ω5 levels in rhizosphere soil. Reed canary-grass induced the highest levels of AMF markers. Mycorrhizal markers were at low levels in all non-mycorrhizal crops. NLFA 16:1ω5 and the ratio of NLFA to PLFA 16:1ω5 from bulk soil are adequate methods as indicators of AMF biomass in soil.

  8. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  9. Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity.

    Science.gov (United States)

    Del-Saz, Néstor Fernández; Romero-Munar, Antonia; Alonso, David; Aroca, Ricardo; Baraza, Elena; Flexas, Jaume; Ribas-Carbo, Miquel

    2017-11-01

    Growth and maintenance partly depend on both respiration and ATP production during oxidative phosphorylation in leaves. Under stress, ATP is needed to maintain the accumulated biomass. ATP production mostly proceeds from the cytochrome oxidase pathway (COP), while respiration via the alternative oxidase pathway (AOP) may decrease the production of ATP per oxygen consumed, especially under phosphorus (P) limitation and salinity conditions. Symbiosis with arbuscular mycorrhizal (AM) fungi is reputed by their positive effect on plant growth under stress at mature stages of colonization; however, fungal colonization may decrease plant growth at early stages. Thus, the present research is based on the hypothesis that AM fungus colonization will increase both foliar respiration and ATP production at mature stages of plant growth while decreasing them both at early stages. We used the oxygen-isotope-fractionation technique to study the in vivo respiratory activities and ATP production of the COP and AOP in AM and non-AM (NM) tobacco plants grown under P-limiting and saline conditions in sand at different growth stages (14, 28 and 49days). Our results suggest that AM symbiosis represents an ATP cost detrimental for shoot growth at early stages, whilst it represents a benefit on ATP allowing for faster rates of growth at mature stages, even under salinity conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Low concentration of copper inhibits colonization of soil by the arbuscular mycorrhizal fungus Glomus intraradices and radically changes the microbial community structure

    DEFF Research Database (Denmark)

    Hagerberg, David; Manique, Nina; Brandt, Kristian K.

    2011-01-01

    . To avoid indirect effects through the plant, copper was only added to root-free microcosm compartments. [Cu]bio was measured using a Pseudomonas fluorescens biosensor strain. In the range of 0–1.5 μg g−1 [Cu]bio, a log–log linear relationship between added copper and [Cu]bio was found. Microbial...... colonization of the root-free compartment was evaluated by whole-cell fatty acid analysis (WCFA) and amplified rDNA restriction analysis (ARDRA). The WCFA analysis showed that the AM fungus soil colonization was severely inhibited by Cu with a 50% reduction of mycorrhizal growth at 0.26 μg g−1 [Cu......]bio. The growth of other main microbial groups was not significantly affected by copper. However, ARDRA analysis showed a very strong effect of copper on the bacterial community composition probably caused by an increased proportion of Cu-resistant bacteria. Our results suggest that problems with plant yield may...

  11. Arbuscular Mycorrhizal Colonization Alters Subcellular Distribution and Chemical Forms of Cadmium in Medicago sativa L. and Resists Cadmium Toxicity

    Science.gov (United States)

    Gao, Yanzheng

    2012-01-01

    Some plants can tolerate and even detoxify soils contaminated with heavy metals. This detoxification ability may depend on what chemical forms of metals are taken up by plants and how the plants distribute the toxins in their tissues. This, in turn, may have an important impact on phytoremediation. We investigated the impact of arbuscular mycorrhizal (AM) fungus, Glomus intraradices, on the subcellular distribution and chemical forms of cadmium (Cd) in alfalfa (Medicago sativa L.) that were grown in Cd-added soils. The fungus significantly colonized alfalfa roots by day 25 after planting. Colonization of alfalfa by G. intraradices in soils contaminated with Cd ranged from 17% to 69% after 25–60 days and then decreased to 43%. The biomass of plant shoots with AM fungi showed significant 1.7-fold increases compared to no AM fungi addition under the treatment of 20 mg·kg−1 Cd. Concentrations of Cd in the shoots of alfalfa under 0.5, 5, and 20 mg·kg−1 Cd without AM fungal inoculation are 1.87, 2.92, and 2.38 times higher, respectively, than those of fungi-inoculated plants. Fungal inoculation increased Cd (37.2–80.5%) in the cell walls of roots and shoots and decreased in membranes after 80 days of incubation compared to untreated plants. The proportion of the inactive forms of Cd in roots was higher in fungi-treated plants than in controls. Furthermore, although fungi-treated plants had less overall Cd in subcellular fragments in shoots, they had more inactive Cd in shoots than did control plants. These results provide a basis for further research on plant-microbe symbioses in soils contaminated with heavy metals, which may potentially help us develop management regimes for phytoremediation. PMID:23139811

  12. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region

    International Nuclear Information System (INIS)

    Zarei, M.; Koenig, S.; Hempel, S.; Nekouei, M. Khayam; Savaghebi, Gh.; Buscot, F.

    2008-01-01

    Root colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in Veronica rechingeri growing in heavy metal (HM) and non-polluted soils of the Anguran Zn and Pb mining region (Iran). Three species could be separated morphologically, while phylogenetic analyses after PCR amplification of the ITS region followed by RFLP and sequencing revealed seven different AMF sequence types all within the genus Glomus. Rarefaction analysis confirmed exhaustive molecular characterization of the AMF diversity present within root samples. Increasing heavy metal contamination between the sites studied was accompanied by a decrease in AMF spore numbers, mycorrhizal colonization parameters and the number of AMF sequence types colonizing the roots. Some AMF sequence types were only found at sites with the highest and lowest soil HM contents, respectively. - The increase in soil heavy metal content between sites was accompanied by a decrease in mycorrhization parameters, spore numbers and AMF molecular diversity

  13. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, M. [Department of Soil Science Engineering, Soil and Water Engineering Faculty, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of)], E-mail: mehdizarei20@yahoo.ca; Koenig, S. [UFZ Helmholtz Center for Environmental Research Leipzig-Halle Ltd, Department of Soil Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle (Germany)], E-mail: stephan.koenig@ufz.de; Hempel, S. [UFZ Helmholtz Center for Environmental Research Leipzig-Halle Ltd, Department of Soil Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle (Germany)], E-mail: hempel.stefan@gmail.com; Nekouei, M. Khayam [Agricultural Biotechnology Research Institute of Iran (ABRII), P.O. Box 31535-1897, Karaj (Iran, Islamic Republic of)], E-mail: Khayam@abrii.ac.ir; Savaghebi, Gh. [Department of Soil Science Engineering, Soil and Water Engineering Faculty, University College of Agriculture and Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of)], E-mail: Savagheb@ut.ac.ir; Buscot, F. [UFZ Helmholtz Center for Environmental Research Leipzig-Halle Ltd, Department of Soil Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle (Germany)], E-mail: francois.buscot@ufz.de

    2008-12-15

    Root colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in Veronica rechingeri growing in heavy metal (HM) and non-polluted soils of the Anguran Zn and Pb mining region (Iran). Three species could be separated morphologically, while phylogenetic analyses after PCR amplification of the ITS region followed by RFLP and sequencing revealed seven different AMF sequence types all within the genus Glomus. Rarefaction analysis confirmed exhaustive molecular characterization of the AMF diversity present within root samples. Increasing heavy metal contamination between the sites studied was accompanied by a decrease in AMF spore numbers, mycorrhizal colonization parameters and the number of AMF sequence types colonizing the roots. Some AMF sequence types were only found at sites with the highest and lowest soil HM contents, respectively. - The increase in soil heavy metal content between sites was accompanied by a decrease in mycorrhization parameters, spore numbers and AMF molecular diversity.

  14. Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side.

    Science.gov (United States)

    Liu, Zhi-Lei; Li, Yuan-Jing; Hou, Hong-Yan; Zhu, Xian-Can; Rai, Vandna; He, Xing-Yuan; Tian, Chun-Jie

    2013-10-01

    We performed an experiment to determine how N and C metabolism is involved in the low-temperature tolerance of mycorrhizal rice (Oryza sativa) at different N levels and examined the possible signaling molecules involved in the stress response of mycorrhizal rice. Pot cultures were performed, and mycorrhizal rice growth was evaluated based on treatments at two temperatures (15 °C and 25 °C) and two N levels (20 mg pot(-1) and 50 mg pot(-1)). The arbuscular mycorrhizal fungi (AMF) colonization of rice resulted in different responses of the plants to low and high N levels. The mycorrhizal rice with the low N supplementation had more positive feedback from the symbiotic AMF, as indicated by accelerated N and C metabolism of rice possibly involving jasmonic acid (JA) and the up-regulation of enzyme activities for N and C metabolism. Furthermore, the response of the mycorrhizal rice plants to low temperature was associated with P uptake and nitric oxide (NO). Crown Copyright © 2013. Published by Elsevier Masson SAS. All rights reserved.

  15. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings.

    Science.gov (United States)

    Yang, Shou-Jun; Zhang, Zhong-Lan; Xue, Yuan-Xia; Zhang, Zhi-Fen; Shi, Shu-Yi

    2014-12-01

    Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2‰, 4‰ and 6‰ salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2‰ and 4‰ salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2‰ and 4‰ salt concentrations. Under salt stress condition, Cl - and Na + concentrations clearly increased and K + contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K + /Na + ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4‰ salinity, similarly in mycorrhization under 6‰ salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. These results suggest that 2‰ and 4‰ salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.

  16. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests

    Science.gov (United States)

    Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller

    2010-01-01

    Increased nitrogen (N) deposition caused by human activities has altered ecosystem functioning and biodiversity. To understand the effects of altered N availability, we measured the abundance of arbuscular mycorrhizal fungi (AMF) and the microbial community in northern hardwood forests exposed to long-term (12 years) simulated N deposition (30 kg N ha-1...

  17. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  18. Biodiversity of Arbuscular mycorrhizal fungi associated with Acacia gerrardii Benth in different habitats of Saudi Arabia

    International Nuclear Information System (INIS)

    Hashim, A.; Huqail, A.A.; Alqarawi, A.A.

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) are the most influential and ubiquitous rhizosphere microbiome. AMF improve the soil characteristics and assist the symbiotic plants by improving plant absorption of soil nutrients particularly phosphorus. The biodiversity of native AMF highly influenced by soil nature and plant composition. The present investigation studied the enumeration and biodiversity of AMF associated with rhizosphere soil and roots of Acacia gerrardii (Talh trees) grown natively in different habitats of Saudi Arabia (SA). Soil analysis were varied with locations nonetheless, there are no distinct correlations has been estimated among the root colonization with AMF, spores number of AMF and soil properties. Fifteen mycorrhizal fungal species belong to seven genus (Funneliformis; Glomus; Rhizophagus; Septoglomus; Acaulospora; Claroideoglomus; Archaeospora) and four families (Glomeraceae; Acaulosporaceae; Claroideoglomeraceae; Archaeosporaceae) were identified from forty soil samples collected from four different locations belong to Riyadh region (Rawdhat Khuraim, Houta Bani Tamim) and Holy Madina region (Ola city, Werqaan Mountain) in SA. The present investigation extends our knowledge on the biodiversity of AMF associated with rhizosphere soil of Talh trees (A.gerrardii) grown natively in different Saudi locations. (author)

  19. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.

    Science.gov (United States)

    Azcón, Rosario; Medina, Almudena; Roldán, Antonio; Biró, Borbála; Vivas, Astrid

    2009-04-01

    In this study, we analyzed the impact of treatments such as Aspergillus niger-treated sugar beet waste (SB), PO4(3-) fertilization and autochthonous inoculants [arbuscular mycorrhizal (AM) fungi and Bacillus cereus], on the bacterial community structure in a soils contaminated with heavy metals as well as, the effectiveness on plant growth (Trifolium repens). The inoculation with AM fungi in SB amended soil, increased plant growth similarly to PO4(3-) addition, and both treatments matched in P acquisition but bacterial biodiversity estimated by denaturing gradient gel electrophoresis of amplified 16S rDNA sequences, was more stimulated by the presence of the AM fungus than by PO4(3-) fertilization. The SB amendment plus AM inoculation increased the microbial diversity by 233% and also changed (by 215%) the structure of the bacterial community. The microbial inoculants and amendment used favoured plant growth and the phytoextraction process and concomitantly modified bacterial community in the rhizosphere; thus they can be used for remediation. Therefore, the understanding of such microbial ecological aspects is important for phytoremediation and the recovery of contaminated soils.

  20. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Directory of Open Access Journals (Sweden)

    Johann Louarn

    Full Text Available Broomrapes (Orobanche and Phelipanche spp are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.

  1. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Science.gov (United States)

    Louarn, Johann; Carbonne, Francis; Delavault, Philippe; Bécard, Guillaume; Rochange, Soizic

    2012-01-01

    Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.

  2. What we know about arbuscular mycorhizal fungi and associated ...

    African Journals Online (AJOL)

    Mycorrhizal fungi are common soil microorganisms and are well known for their symbiotic association with the roots of host plants. The soil is a complex environment harbouring a wide diversity of microorganisms. The interaction between soil bacteria and arbuscular mycorrhizal fungi has been shown in several studies to ...

  3. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    International Nuclear Information System (INIS)

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake

  4. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Kump, Peter [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Necemer, Marijan [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: marjana.regvar@bf.uni-lj.si

    2006-01-15

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake.

  5. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species.

    Science.gov (United States)

    Suvi, Triin; Tedersoo, Leho; Abarenkov, Kessy; Beaver, Katy; Gerlach, Justin; Kõljalg, Urmas

    2010-01-01

    Nyctaginaceae includes species that are predominantly non-mycorrhizal or form arbuscular or ectomycorrhiza. Root-associated fungi were studied from P. grandis and P. sechellarum roots collected respectively on the islands of Cousin and Silhouette in Seychelles. In addition fungal sporocarps were collected from the sampling area. Fungal symbionts were identified from the roots by anatomotyping and rDNA sequencing; sporocarps collected were examined microscopically and sequenced. Three distantly related ectomycorrhizal fungal species belonging to Thelephoraceae were identified from the roots of P. grandis. Sporocarps also were found for two symbionts and described as new Tomentella species. In addition Tomentella species collected from other Seychelles islands were studied and described as new species if there was no close resemblance to previously established species. P. sechellarum was determined to be an arbuscular mycorrhizal plant; three arbuscular mycorrhizal fungal species were detected from the roots. P. grandis is probably associated only with species of Thelephoraceae throughout its area. Only five Tomentella species are known to form ectomycorrhiza with P. grandis and they never have been found to be associated with another host, suggesting adaptation of these fungi to extreme environmental conditions in host's habitat.

  6. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

    Science.gov (United States)

    Weremijewicz, Joanna; da Silveira Lobo O'Reilly Sternberg, Leonel; Janos, David P

    2018-01-01

    Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13 C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

  7. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil.

    Science.gov (United States)

    Schneider, Jerusa; Stürmer, Sidney Luiz; Guilherme, Luiz Roberto Guimarães; de Souza Moreira, Fatima Maria; Soares, Claudio Roberto Fonsêca de Sousa

    2013-11-15

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous and establish important symbiotic relationships with the majority of the plants, even in soils contaminated with arsenic (As). In order to better understand the ecological relationships of these fungi with excess As in soils and their effects on plants in tropical conditions, occurrence and diversity of AMF were evaluated in areas affected by gold mining activity in Minas Gerais State, Brazil. Soils of four areas with different As concentrations (mg dm(-3)) were sampled: reference Area (10); B1 (subsuperficial layer) (396); barren material (573), and mine waste (1046). Soil sampling was carried out in rainy and dry seasons, including six composite samples per area (n = 24). AMF occurred widespread in all areas, being influenced by As concentrations and sampling periods. A total of 23 species were identified, belonging to the following genus: Acaulospora (10 species), Scutellospora (4 species), Racocetra (3 species), Glomus (4 species), Gigaspora (1 species) and Paraglomus (1 species). The most frequent species occurring in all areas were Paraglomus occultum, Acaulospora morrowiae and Glomus clarum. The predominance of these species indicates their high tolerance to excess As. Although arsenic contamination reduced AMF species richness, presence of host plants tended to counterbalance this reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Dispersal of arbuscular mycorrhizal fungi and plants during succession

    Science.gov (United States)

    García de León, David; Moora, Mari; Öpik, Maarja; Jairus, Teele; Neuenkamp, Lena; Vasar, Martti; Bueno, C. Guillermo; Gerz, Maret; Davison, John; Zobel, Martin

    2016-11-01

    Arbuscular mycorrhizal (AM) fungi are important root symbionts that enhance plant nutrient uptake and tolerance to pathogens and drought. While the role of plant dispersal in shaping successional vegetation is well studied, there is very little information about the dispersal abilities of AM fungi. We conducted a trap-box experiment in a recently abandoned quarry at 10 different distances from the quarry edge (i.e. the potential propagule source) over eleven months to assess the short term, within-year, arrival of plant and AM fungal assemblages and hence their dispersal abilities. Using DNA based techniques we identified AM fungal taxa and analyzed their phylogenetic diversity. Plant diversity was determined by transporting trap soil to a greenhouse and identifying emerging seedlings. We recorded 30 AM fungal taxa. These contained a high proportion of ruderal AM fungi (30% of taxa, 79% of sequences) but the richness and abundance of AM fungi were not related to the distance from the presumed propagule source. The number of sequences of AM fungi decreased over time. Twenty seven plant species (30% of them ruderal) were recorded from the soil seed traps. Plant diversity decreased with distance from the propagule source and increased over time. Our data show that AM fungi with ruderal traits can be fast colonizers of early successional habitats.

  9. Application of Arbuscular Mycorrhizal Fungi during the Acclimatization of Alpinia purpurata to Induce Tolerance to Meloidogyne arenaria

    Directory of Open Access Journals (Sweden)

    Maryluce Albuquerque da Silva Campos

    2017-06-01

    Full Text Available An experiment was conducted to evaluate the tolerance of micropropagated and mycorrhized alpinia plants to the parasite Meloidogyne arenaria. The experimental design was completely randomized with a factorial arrangement of four inoculation treatments with arbuscular mycorrhizal fungi (AMF (Gigaspora albida, Claroideoglomus etunicatum, Acaulospora longula, and a non-inoculated control in the presence or absence of M. arenaria with five replicates. The following characteristics were evaluated after 270 days of mycorrhization and 170 days of M. arenaria inoculation: height, number of leaves and tillers, fresh mass of aerial and subterranean parts, dry mass of aerial parts, foliar area, nutritional content, mycorrhizal colonization, AMF sporulation, and the number of galls, egg masses, and eggs. The results indicated a significant interaction between the treatments for AMF spore density, total mycorrhizal colonization, and nutrient content (Zn, Na, and N, while the remaining parameters were influenced by either AMF or nematodes. Plants inoculated with A. longula or C. etunicatum exhibited greater growth than the control. Lower N content was observed in plants inoculated with AMF, while Zn and Na were found in larger quantities in plants inoculated with C. etunicatum. Fewer galls were observed on mycorrhized plants, and egg mass production and the number of eggs were lower in plants inoculated with G. albida. Plants inoculated with A. longula showed a higher percentage of total mycorrhizal colonization in the presence of the nematode. Therefore, the association of micropropagated alpinia plants and A. longula enhanced tolerance to parasitism by M. arenaria.

  10. The effects of road building on arbuscular mycorrhizal fungal diversity in Huangshan Scenic Area.

    Science.gov (United States)

    Yang, Anna; Tang, Dongmei; Jin, Xiulong; Lu, Lin; Li, Xiaohong; Liu, Kun

    2018-01-22

    Arbuscular mycorrhizal (AM) fungi are vital soil microbes that connect many individual plants into a large functional organism via a vast mycelial network under the ground. In this study, the changes of soil AM fungal community in response to road-building disturbance caused by tourism development in Huangshan (Yellow Mountain) Scenic Area are assessed. Road building have brought negative effects on AM fungal community, inducing lower diversity parameters, including species number, spore density and diversity indices. However, the dominant genus and species of AM fungi which play key roles in the AM fungal community composition are quite similar before and after road building. Moreover, there are no significant differences in species richness of AM fungi associated with plants, suggesting the tolerance of AM fungal community to the disturbance of road building.

  11. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil.

    Science.gov (United States)

    Leung, H M; Leung, A O W; Ye, Z H; Cheung, K C; Yung, K K L

    2013-08-01

    A greenhouse pot experiment was conducted to study the effects of three types of single inoculum [indigenous mycorrhizas (IM) isolated from As mine, Glomus mosseae (GM) and Glomus intraradices (GI)] and two types of mixed inoculum (mixed with IM and either GM or GI) on the growth response of Pteris vittata (hyperaccumulator) and Cynodon dactylon (non-hyperaccumulator) at three levels of As concentrations (0, 100 and 200mgkg(-1)). Both mycorrhizal plants exhibited significantly higher biomass, and N and P accumulation in its tissue than the control. Among the mycorrhizal inoculum, the mixed inoculum IM/GM promoted substantially higher mycorrhizal colonization and arsenate reductase activity in P. vittata than C. dactylon, among all As levels. The portion of Paris arbuscular mycorrhizal structure (observed in colonized roots) together with the highest As translocation factor of 10.2 in P. vittata inoculated with IM/GM was also noted. It was deduced that IM/GM inoculum may be the best choice for field inoculation at any contaminated lands as the inoculum exhibited better adaptation to variable environmental conditions and hence benefited the host plants. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes Gm......FOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA.   Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were...

  13. Efeito de fungos micorrízicos arbusculares no desenvolvimento do abacateiro Effect of arbuscular mycorrhizal fungi on growth of avocado

    Directory of Open Access Journals (Sweden)

    Samar Velho da Silveira

    2002-11-01

    Full Text Available O objetivo deste trabalho foi determinar a influência da inoculação de seis espécies de fungos micorrízicos arbusculares (FMA (Glomus clarum, G. etunicatum, G. manihotis, Acaulospora scrobiculata, Scutellospora heterogama e Gigaspora margarita sobre o desenvolvimento vegetativo de mudas de abacateiro (Persea sp., nas fases de porta-enxerto, de muda enxertada e de muda no pomar. A influência dos FMA em abacateiros foi variável conforme a espécie do endófito em estudo. As espécies S. heterogama, A. scrobiculata, G. etunicatum e G. clarum colonizaram mais intensamente o sistema radicular dos abacateiros, promovendo melhor desenvolvimento vegetativo das plantas, na fase de porta-enxerto, ao longo do período de produção da muda e após o transplante para pomar.The objective of this work was to evaluate the influence of six arbuscular mycorrhizal fungi (AMF (Glomus clarum, G. etunicatum, G. manihotis, Acaulospora scrobiculata, Scutellospora heterogama and Gigaspora margarita on the vegetative growth, of grafted avocado plants (Persea sp., in the rootstocks phase, grafted plant and after transplant to the orchard. The influence of AMF in avocado plants varyed according to the endophytic mycorrhiza species under study. The species S. heterogama, A. scrobiculata, G. etunicatum and G. clarum were more effective in root colonization, promoting better vegetative growth of plants on the rootstock phase, during the plant production period and after the transplanting to the orchard.

  14. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.

    Science.gov (United States)

    Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali

    2017-02-01

    Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies both in tree species as well as in two different nurseries. This variation is attributed to various factors such ...

  16. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia

    International Nuclear Information System (INIS)

    Vogel-Mikus, Katarina; Drobne, Damjana; Regvar, Marjana

    2005-01-01

    Significant hyperaccumulation of Zn, Cd and Pb in field samples of Thlaspi praecox Wulf. collected from a heavy metal polluted area in Slovenia was found, with maximal shoot concentrations of 14590 mg kg -1 Zn, 5960 mg kg -1 Cd and 3500 mg kg -1 Pb. Shoot/root ratios of 9.6 for Zn and 5.6 for Cd show that the metals were preferentially transported to the shoots. Shoot bioaccumulation factors exceeded total soil Cd levels 75-fold and total soil Zn levels 20-fold, further supporting the hyperaccumulation of Cd and Zn. Eighty percent of Pb was retained in roots, thus indicating exclusion as a tolerance strategy for Pb. Low level colonisation with arbuscular mycorrhizal fungi (AMF) of a Paris type was observed at the polluted site, whereas at the non-polluted site Arum type colonisation was more common. To our knowledge this is the first report of Cd hyperaccumulation and AMF colonisation in metal hyperaccumulating T. praecox. - Thlaspi praecox Wulf. (Brassicaceae) is a newly discovered Cd, Zn and Pb hyperaccumulator able to form symbiosis with arbuscular mycorrhizal fungi

  17. Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings

    Directory of Open Access Journals (Sweden)

    Margaret W. Mwangi

    2011-06-01

    Full Text Available A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52 and arbuscular mycorrhizal fungi (AMF in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05 enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05 enhanced all growth parameters (heights; shoot and root dry weight investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P0.05. A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.

  18. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    Science.gov (United States)

    Melo, Catarina Drumonde; Luna, Sara; Krüger, Claudia; Walker, Christopher; Mendonça, Duarte; Fonseca, Henrique M. A. C.; Jaizme-Vega, Maria; da Câmara Machado, Artur

    2017-02-01

    The communities of glomeromycotan fungi (arbuscular mycorrhizal fungi, AMF) under native Juniperus brevifolia forest from two Azorean islands, Terceira and São Miguel, were compared, mainly by spore morphology, and when possible, by molecular analysis. Thirty-nine morphotypes were detected from 12 genera. Glomeromycotan fungal richness was similar in Terceira and São Miguel, but significantly different among the four fragments of native forest. Spore diversity and community composition differed significantly between the two islands. The less degraded island, Terceira, showed 10 exclusive morphotypes including more rare types, whereas the more disturbed forest on São Miguel showed 13 morphs, mostly of common types. Forests from Terceira were dominated by Acaulosporaceae and Glomeraceae. Whereas members of Acaulosporaceae, Glomeraceae and Ambisporaceae were most frequent and abundant in those from São Miguel. Spore abundance was greatest on Terceira, and correlated with soil chemical properties (pH), average monthly temperature and relative humidity.

  19. Diversidade e função de fungos micorrízicos arbusculares em sucessão de espécies hospedeiras Diversity and function of arbuscular mycorrhizal fungi in host species succession

    Directory of Open Access Journals (Sweden)

    Plínio Henrique Oliveira Gomide

    2009-11-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do pré-cultivo de diferentes espécies vegetais e de fungos micorrízicos arbusculares (FMA na esporulação, colonização e crescimento da braquiária cultivada em sucessão, em casa de vegetação. As plantas cresceram em vasos com uma mistura esterilizada de Latossolo Vermelho distrófico muito argiloso e areia de rio lavada, na proporção de 2:1 (v/v. Inicialmente, foram testados nove tratamentos: seis espécies vegetais micotróficas, uma espécie não micotrófica (nabo-forrageiro, um tratamento com Urochloa decumbens e um controle sem planta. Todos receberam uma mistura de oito espécies de FMA. O delineamento experimental foi inteiramente casualizado, com dez repetições. Foram avaliadas a esporulação e a colonização micorrízica da Urochloa decumbens, a partir de propágulos de FMA remanescentes dos cultivos das seis espécies micotróficas e da espécie não microtrófica. Houve diferença entre as plantas hospedeiras quanto à percentagem de colonização micorrízica e produção total de esporos, tendo sido identificados cinco dos oito isolados estudados. Glomus clarum foi o FMA dominante na maioria dos tratamentos, seguido de Scutellospora heterogama e G. etunicatum. A espécie vegetal em pré-cultivo da braquiária não teve efeito na diversidade de FMA, tendo sido a espécie de fungo o fator efetivo para a composição de isolados fúngicos.The objective of this work was to evaluate the effects of pre-cultivation of different plant species and of arbuscular mycorrhizal fungi (AMF on the sporulation, colonization and growth of Urochloa cultivated in succession, under greenhouse conditions. Plants were grown in pots containing a sterilized mixture of very clayey Oxisol and washed river sand at a 2:1 ratio (v/v. A completely randomized experiment with nine treatments and ten replicates was initially tested: six mycotrophic plant species; a non-mycotrophic species (forage

  20. Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Błaszkowski, Janusz; Renker, Carsten; Buscot, François

    2006-05-01

    Two new ectocarpic arbuscular mycorrhizal fungal species, Glomus drummondii and G. walkeri (Glomeromycota), found in maritime sand dunes of northern Poland and those adjacent to the Mediterranean Sea are described and illustrated. Mature spores of G. drummondii are pastel yellow to maize yellow, globose to subglobose, (58-)71(-85) micromdiam, or ovoid, 50-80x63-98 microm. Their wall consists of three layers: an evanescent, hyaline, short-lived outermost layer, a laminate, smooth, pastel yellow to maize yellow middle layer, and a flexible, smooth, hyaline innermost layer. Spores of G. walkeri are white to pale yellow, globose to subglobose, (55-)81(-95) micromdiam, or ovoid, 60-90x75-115 microm, and have a spore wall composed of three layers: a semi-permanent, hyaline outermost layer, a laminate, smooth, white to pale yellow middle layer, and a flexible, smooth, hyaline innermost layer. In Melzer's reagent, only the inner- and outermost layers stain reddish white to greyish rose in G. drummondii and G. walkeri, respectively. Both species form vesicular-arbuscular mycorrhizae in one-species cultures with Plantago lanceolata as the host plant. Phylogenetic analyses of the ITS and parts of the LSU of the nrDNA of spores placed both species in Glomus Group B sensu Schüssler et al. [Schüssler A, Schwarzott D, Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycolological Research 105: 1413-1421.].

  1. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  2. Increased heavy metal tolerance of cowpea plants by dual ...

    African Journals Online (AJOL)

    Through biological inoculation technology, the bacterial-mycorrhizal-legume tripartite symbiosis in artificially heavy metal polluted soil was documented and the effects of dual inoculation with arbuscular mycorrhizal (AM) fungus and Rhizobium (N-fixing bacteria, NFB) on the host plant cowpea (Vigna sinensis) in pot ...

  3. Role of bioinoculants in development of salt-tolerance of Vicia faba ...

    African Journals Online (AJOL)

    Through biological inoculation technology, the bacterial-mycorrhizal-legume tripartite symbiosis in saline conditions was documented and the effects of dual inoculation with Azospirillum brasilense (NFB) and Arbuscular mycorrhizal (Am) fungus Glomus clarum on the host plants (Vicia faba) in pot cultures were investigated ...

  4. Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize

    NARCIS (Netherlands)

    Cardoso, I.M.; Boddington, C.L.; Janssen, B.H.; Oenema, O.; Kuyper, T.W.

    2006-01-01

    This study investigated whether arbuscular mycorrhizal fungi (AMF) could take up phosphorus (P) from pools that are normally considered unavailable to plants. An aluminum (Al) resistant maize variety, inoculated with three species of Glomus or uninoculated, supplied with nutrient solution without P,

  5. Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming; Feng, Youzhi

    2014-11-01

    A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.

  6. GintAMT3 – a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis

    Directory of Open Access Journals (Sweden)

    Silvia eCalabrese

    2016-05-01

    Full Text Available Nutrient acquisition and transfer are essential steps in the arbuscular mycorrhizal (AM symbiosis, which is formed by the majority of land plants. Mineral nutrients are taken up by AM fungi from the soil and transferred to the plant partner. Within the cortical plant root cells the fungal hyphae form tree-like structures (arbuscules where the nutrients are released to the plant-fungal interface, i.e. to the periarbuscular space, before being taken up by the plant. In exchange, the AM fungi receive valuable carbohydrates from the plant host. Besides the well-studied uptake of phosphorus (P, the uptake and transfer of nitrogen (N plays a crucial role in this mutualistic interaction. In the AM fungus Rhizophagus irregularis (formerly called Glomus intraradices, two ammonium transporters (AMT were previously described, namely GintAMT1 and GintAMT2. Here, we report the identification and characterization of a newly identified R. irregularis AMT, GintAMT3. Phylogenetic analyses revealed high sequence similarity to previously identified AM fungal AMTs and a clear separation from other fungal AMTs. Topological analysis indicated GintAMT3 to be a membrane bound pore forming protein, and GFP tagging showed it to be highly expressed in the intraradical mycelium (IRM of a fully established AM symbiosis. Expression of GintAMT3 in yeast successfully complemented the yeast AMT triple deletion mutant (MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ::KanMX2. GintAMT3 is characterized as a low affinity transport system with an apparent Km of 1.8 mM and a Vmax of 240 nmol-1 min-1 108 cells-1, which is regulated by substrate concentration and carbon supply.

  7. Interplant communication of tomato plants through underground common mycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Zeng, Ren Sen; Xu, Jian Feng; Li, Jun; Shen, Xiang; Yihdego, Woldemariam Gebrehiwot

    2010-10-13

    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.

  8. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    Science.gov (United States)

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  9. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae.

    Science.gov (United States)

    Zhou, Xishi; Fu, Lei; Xia, Yan; Zheng, Luqing; Chen, Chen; Shen, Zhenguo; Chen, Yahua

    2017-07-19

    Arbuscular mycorrhizal fungi (AMF) are widespread soil fungi that can form endosymbiotic structures with the root systems of most plants and can improve the tolerance of host plants to heavy metals. In the present study, we investigated the effects of AMF (Glomus coronatum) inoculation on the tolerance of Tagetes patula L. to Cu. Almost all of the non-mycorrhizal plants exposed to 100 μM Cu died after 3 d, whereas phytotoxicity was only observed in mycorrhizal plants that were exposed to Cu concentrations greater than 100 μM. Analysing the dynamic accumulation of Cu indicated that, after 7 d of Cu exposure, less Cu was absorbed or accumulated by mycorrhizal plants than by control plants, and significantly less Cu was translocated to the shoots. Meanwhile, analysing the root morphology, the integrity of the root plasma membranes, the photosynthesis rate, and the content of essential elements of plants growing in cultures with 50 μM Cu revealed that AMF inoculation markedly alleviated the toxic effects of Cu stress on root system activity, photosynthesis rate, and mineral nutrient accumulation. In addition, to understand the Cu allocation, an energy spectrum analysis of Cu content at the transverse section of root tips was conducted and subsequently provided direct evidence that intraradical hyphae at the root endodermis could selectively immobilise large amounts of Cu. Indeed, the sorption and barrier mechanisms of AMF hyphae reduce Cu toxicity in the roots of T. patula and eventually enhance the plants' Cu tolerance.

  10. Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    NARCIS (Netherlands)

    Lendzemo, V.W.; Kuyper, T.W.; Vierheilig, H.

    2009-01-01

    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal

  11. Calcium uptake by cowpea as influenced by mycorrhizal colonization and water stress

    International Nuclear Information System (INIS)

    Pai, G.; Bagyaraj, D.J.; Padmavathi Ravindra, T.; Prasad, T.G.

    1994-01-01

    The role of vesicular-arbuscular mycorrhizal (VAM) colonization on calcium uptake was studied under different levels of moisture stress. Pots maintained at different moisture levels were given water containing known amount of radioactive calcium. The radioactivity in different parts of the plant was assessed 60 h after giving 45 Ca to the soil. High 45 Ca activity was present in all parts of vesicular-arbuscular mycrrohizal (VAM) plants compared to non-mycorrhizal plants at all levels of moisture stress. (author). 14 refs., 1 tab

  12. [Proteome analysis on interaction between Anoectochilus roxburghii and Mycorrhizal fungus].

    Science.gov (United States)

    Gao, Chuan; Guo, Shun-Xing; Zhang, Jing; Chen, Juan; Zhang, Li-Chun

    2012-12-01

    To study the mechanism of plant growing promoted by Mycorrhizal fungus through the difference of proteomes. The differential proteomes between uninoculated and inoculated endophytic fungi, Epulorhiza sp. on Anoectochilus roxburghii were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrum. Twenty-seven protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Twenty-two candidate proteins were identified by database comparisons. The function of these proteins mostly involved in signal transduction, metabolic regulation, as well as photosynthesis and substance metabolism. The results indicate that the regulator control system of plant is influenced by fungi action, and the positive regulation improves substance metabolism and photosynthesis, which results in strong plant and higher resistance. It is also deduced that silent genes may exist in endosymbiosis plants.

  13. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency.

    Science.gov (United States)

    Wang, Xiurong; Zhao, Shaopeng; Bücking, Heike

    2016-07-01

    Arbuscular mycorrhizal (AM) fungi play a key role in the phosphate (P) uptake of many important crop species, but the mechanisms that control their efficiency and their contribution to the P nutrition of the host plant are only poorly understood. The P uptake and growth potential of two soybean genotypes that differ in their root architectural traits and P acquisition efficiency were studied after colonization with different AM fungi and the transcript levels of plant P transporters involved in the plant or mycorrhizal P uptake pathway were examined. The mycorrhizal growth responses of both soybean genotypes ranged from highly beneficial to detrimental, and were dependent on the P supply conditions, and the fungal species involved. Only the colonization with Rhizophagus irregularis increased the growth and P uptake of both soybean genotypes. The expression of GmPT4 was downregulated, while the mycorrhiza-inducible P transporter GmPT10 was upregulated by colonization with R. irregularis Colonization with both fungi also led to higher transcript levels of the mycorrhiza-inducible P transporter GmPT9, but only in plants colonized with R. irregularis were the higher transcript levels correlated to a better P supply. The results suggest that AM fungi can also significantly contribute to the P uptake and growth potential of genotypes with a higher P acquisition efficiency, but that mycorrhizal P benefits depend strongly on the P supply conditions and the fungal species involved. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Crescimento, parâmetros biofísicos e aspectos anatômicos de plantas jovens de seringueira inoculadas com fungo micorrízico arbuscular Glomus clarum Growth, biophysical parameters and anatomical aspects of young rubber tree plants inoculated with arbuscular mycorrhizal fungi Glomus clarum

    Directory of Open Access Journals (Sweden)

    Patrícia Fabian de Araújo Diniz

    2010-03-01

    Full Text Available Fungos micorrízicos são reconhecidamente benéficos quando em associação às plantas por favorecerem seu crescimento e desenvolvimento. Apesar de pouco comum para a seringueira, a inoculação artificial de fungos micorrízicos arbusculares (FMAs tem se mostrado uma alternativa para a redução no uso de fertilizantes e pesticidas nas culturas, bem como para a formação de mudas, visando obtenção de porta-enxertos precoces e bem nutridos. O estudo objetivou avaliar o efeito da inoculação do FMA Glomus clarum no crescimento e características biofísicas e anatômicas de plantas jovens de seringueira. Os tratamentos consistiram de plantas inoculadas com o fungo Glomus clarum adubadas com 50 ppm de fósforo (mic+50P, plantas não inoculadas adubadas com 50 ppm de fósforo (s/mic+50P e plantas não inoculadas adubadas com 500 ppm de fósforo (s/mic+500P. Constatou-se que as plantas micorrizadas apresentaram altura e diâmetro dos caules, matéria seca da parte aérea, densidade estomática e área foliar, semelhantes às plantas s/mic+500P. Maior acúmulo de matéria seca de raiz, maior taxa de transpiração, menor resistência estomática e menor temperatura foliar foram observadas para as plantas micorrizadas. As análises anatômicas das raízes evidenciam a ocorrência de alterações no tecido vascular, com aumento no número de pólos de xilema das raízes das plantas micorrizadas.Mycorrhizal fungi are beneficial when associated with plants because they favor growth and develop. Although infrequent, artificial inoculation of arbuscular mycorrhizal fungi (AMF has become an alternative to reduce the use of fertilizers and pesticides in crops, as well as for the formation of seedlings, to obtain precocious and well fed rootstocks. The objective of the study was to evaluate the effect of inoculation of AMF Glomus clarum on growth and biophysical and anatomical characteristics of young rubber trees. The treatments consist of plants

  15. Identification of genes that regulate phosphate acquisition and plant performance during arbuscular my corrhizal symbiosis in medicago truncatula and brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Maria J [Boyce Thompson Institute, Ithaca, NY (United States); Hudson, Matthew E [Univ. of Illinois, Champaign, IL (United States)

    2015-11-24

    Most vascular flowering plants have the ability to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots and can have a profound effect on plant productivity, largely through improvements in plant mineral nutrition. Within the root cortical cells, the plant and fungus create novel interfaces specialized for nutrient transfer, while the fungus also develops a network of hyphae in the rhizosphere. Through this hyphal network, the fungus acquires and delivers phosphate and nitrogen to the root. In return, the plant provides the fungus with carbon. In addition, to enhancing plant mineral nutrition, the AM symbiosis has an important role in the carbon cycle, and positive effects on soil health. Here we identified and characterized plant genes involved in the regulation and functioning of the AM symbiosis in Medicago truncatula and Brachypodium distachyon. This included the identification and and characterization of a M. truncatula transcription factors that are required for symbiosis. Additionally, we investigated the molecular basis of functional diversity among AM symbioses in B. distachyon and analysed the transcriptome of Brachypodium distachyon during symbiosis.

  16. Neem ( Azadirachta indica a. juss) seedling growth as influenced by ...

    African Journals Online (AJOL)

    The effect of Arbuscular mycorrhizal fungus (AMF), specifically, Glomus moseae and cow dung on the growth of Neem (Azadiracchta indica, A. Juss) seedlings was investigated at the forestry quarters, Lagos Street, Maiduguri, Borno State, Nigeria. The study included three treatments: the cow dung, mycorrhizal treatments ...

  17. Preliminary study on biodiversity of arbuscular mycorrhizal fungi (AMF) in oil palm (Elaeis guineensis Jacq.) plantations in Thailand

    Science.gov (United States)

    Auliana; Kaonongbua, W.

    2018-04-01

    Oil palm (Elaeis guineensis Jacq.) is one of the promising crop plants which has been used as raw material for producing daily products. In agricultural ecosystems, crop plants could develop a plant-fungal association with arbuscular mycorrhizal fungi (AMF). The objectives of this study were to determine the AMF biodiversity and mycorrhizal infection percentage (MIP) from field-collected soil samples of three oil palm plantations from Nong Khai, Surat Thani, and Chiang Rai provinces of Thailand. Soil characteristics (moisture content, pH, and available phosphorus) were also measured. Thirteen AMF species belonging to seven genera were identified from all soil samples, whereas Glomus spp. and Acaulospora spp. were most commonly found species. AMF biodiversity value from Chiang Rai was statistically different from other two provinces (p biodiversity. These results confirmed that AMF normally occurs in oil palm plantations, but at different levels of biodiversity possibly due to different environmental factors in each plantation. Nevertheless, this information could be useful for using AMF in plant growth promoter and pathogen resistance programs in order to achieve the agricultural sustainability, especially in oil palm plantations.

  18. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  19. Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration.

    Science.gov (United States)

    Holste, Ellen K; Holl, Karen D; Zahawi, Rakan A; Kobe, Richard K

    2016-10-01

    Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species ( Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis ) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora , accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal-tree-soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.

  20. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.